xref: /openbmc/linux/mm/vmscan.c (revision 0a73d21e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	/* Allocation order */
72 	int order;
73 
74 	/*
75 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 	 * are scanned.
77 	 */
78 	nodemask_t	*nodemask;
79 
80 	/*
81 	 * The memory cgroup that hit its limit and as a result is the
82 	 * primary target of this reclaim invocation.
83 	 */
84 	struct mem_cgroup *target_mem_cgroup;
85 
86 	/* Scan (total_size >> priority) pages at once */
87 	int priority;
88 
89 	/* The highest zone to isolate pages for reclaim from */
90 	enum zone_type reclaim_idx;
91 
92 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
93 	unsigned int may_writepage:1;
94 
95 	/* Can mapped pages be reclaimed? */
96 	unsigned int may_unmap:1;
97 
98 	/* Can pages be swapped as part of reclaim? */
99 	unsigned int may_swap:1;
100 
101 	/*
102 	 * Cgroups are not reclaimed below their configured memory.low,
103 	 * unless we threaten to OOM. If any cgroups are skipped due to
104 	 * memory.low and nothing was reclaimed, go back for memory.low.
105 	 */
106 	unsigned int memcg_low_reclaim:1;
107 	unsigned int memcg_low_skipped:1;
108 
109 	unsigned int hibernation_mode:1;
110 
111 	/* One of the zones is ready for compaction */
112 	unsigned int compaction_ready:1;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 };
120 
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field)			\
123 	do {								\
124 		if ((_page)->lru.prev != _base) {			\
125 			struct page *prev;				\
126 									\
127 			prev = lru_to_page(&(_page->lru));		\
128 			prefetch(&prev->_field);			\
129 		}							\
130 	} while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
134 
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field)			\
137 	do {								\
138 		if ((_page)->lru.prev != _base) {			\
139 			struct page *prev;				\
140 									\
141 			prev = lru_to_page(&(_page->lru));		\
142 			prefetchw(&prev->_field);			\
143 		}							\
144 	} while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
148 
149 /*
150  * From 0 .. 100.  Higher means more swappy.
151  */
152 int vm_swappiness = 60;
153 /*
154  * The total number of pages which are beyond the high watermark within all
155  * zones.
156  */
157 unsigned long vm_total_pages;
158 
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161 
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
164 {
165 	return !sc->target_mem_cgroup;
166 }
167 
168 /**
169  * sane_reclaim - is the usual dirty throttling mechanism operational?
170  * @sc: scan_control in question
171  *
172  * The normal page dirty throttling mechanism in balance_dirty_pages() is
173  * completely broken with the legacy memcg and direct stalling in
174  * shrink_page_list() is used for throttling instead, which lacks all the
175  * niceties such as fairness, adaptive pausing, bandwidth proportional
176  * allocation and configurability.
177  *
178  * This function tests whether the vmscan currently in progress can assume
179  * that the normal dirty throttling mechanism is operational.
180  */
181 static bool sane_reclaim(struct scan_control *sc)
182 {
183 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
184 
185 	if (!memcg)
186 		return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 		return true;
190 #endif
191 	return false;
192 }
193 #else
194 static bool global_reclaim(struct scan_control *sc)
195 {
196 	return true;
197 }
198 
199 static bool sane_reclaim(struct scan_control *sc)
200 {
201 	return true;
202 }
203 #endif
204 
205 /*
206  * This misses isolated pages which are not accounted for to save counters.
207  * As the data only determines if reclaim or compaction continues, it is
208  * not expected that isolated pages will be a dominating factor.
209  */
210 unsigned long zone_reclaimable_pages(struct zone *zone)
211 {
212 	unsigned long nr;
213 
214 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 	if (get_nr_swap_pages() > 0)
217 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219 
220 	return nr;
221 }
222 
223 /**
224  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
225  * @lruvec: lru vector
226  * @lru: lru to use
227  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
228  */
229 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
230 {
231 	unsigned long lru_size;
232 	int zid;
233 
234 	if (!mem_cgroup_disabled())
235 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
236 	else
237 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
238 
239 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
240 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
241 		unsigned long size;
242 
243 		if (!managed_zone(zone))
244 			continue;
245 
246 		if (!mem_cgroup_disabled())
247 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
248 		else
249 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
250 				       NR_ZONE_LRU_BASE + lru);
251 		lru_size -= min(size, lru_size);
252 	}
253 
254 	return lru_size;
255 
256 }
257 
258 /*
259  * Add a shrinker callback to be called from the vm.
260  */
261 int register_shrinker(struct shrinker *shrinker)
262 {
263 	size_t size = sizeof(*shrinker->nr_deferred);
264 
265 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
266 		size *= nr_node_ids;
267 
268 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
269 	if (!shrinker->nr_deferred)
270 		return -ENOMEM;
271 
272 	down_write(&shrinker_rwsem);
273 	list_add_tail(&shrinker->list, &shrinker_list);
274 	up_write(&shrinker_rwsem);
275 	return 0;
276 }
277 EXPORT_SYMBOL(register_shrinker);
278 
279 /*
280  * Remove one
281  */
282 void unregister_shrinker(struct shrinker *shrinker)
283 {
284 	if (!shrinker->nr_deferred)
285 		return;
286 	down_write(&shrinker_rwsem);
287 	list_del(&shrinker->list);
288 	up_write(&shrinker_rwsem);
289 	kfree(shrinker->nr_deferred);
290 	shrinker->nr_deferred = NULL;
291 }
292 EXPORT_SYMBOL(unregister_shrinker);
293 
294 #define SHRINK_BATCH 128
295 
296 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
297 				    struct shrinker *shrinker, int priority)
298 {
299 	unsigned long freed = 0;
300 	unsigned long long delta;
301 	long total_scan;
302 	long freeable;
303 	long nr;
304 	long new_nr;
305 	int nid = shrinkctl->nid;
306 	long batch_size = shrinker->batch ? shrinker->batch
307 					  : SHRINK_BATCH;
308 	long scanned = 0, next_deferred;
309 
310 	freeable = shrinker->count_objects(shrinker, shrinkctl);
311 	if (freeable == 0)
312 		return 0;
313 
314 	/*
315 	 * copy the current shrinker scan count into a local variable
316 	 * and zero it so that other concurrent shrinker invocations
317 	 * don't also do this scanning work.
318 	 */
319 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
320 
321 	total_scan = nr;
322 	delta = freeable >> priority;
323 	delta *= 4;
324 	do_div(delta, shrinker->seeks);
325 	total_scan += delta;
326 	if (total_scan < 0) {
327 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
328 		       shrinker->scan_objects, total_scan);
329 		total_scan = freeable;
330 		next_deferred = nr;
331 	} else
332 		next_deferred = total_scan;
333 
334 	/*
335 	 * We need to avoid excessive windup on filesystem shrinkers
336 	 * due to large numbers of GFP_NOFS allocations causing the
337 	 * shrinkers to return -1 all the time. This results in a large
338 	 * nr being built up so when a shrink that can do some work
339 	 * comes along it empties the entire cache due to nr >>>
340 	 * freeable. This is bad for sustaining a working set in
341 	 * memory.
342 	 *
343 	 * Hence only allow the shrinker to scan the entire cache when
344 	 * a large delta change is calculated directly.
345 	 */
346 	if (delta < freeable / 4)
347 		total_scan = min(total_scan, freeable / 2);
348 
349 	/*
350 	 * Avoid risking looping forever due to too large nr value:
351 	 * never try to free more than twice the estimate number of
352 	 * freeable entries.
353 	 */
354 	if (total_scan > freeable * 2)
355 		total_scan = freeable * 2;
356 
357 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
358 				   freeable, delta, total_scan, priority);
359 
360 	/*
361 	 * Normally, we should not scan less than batch_size objects in one
362 	 * pass to avoid too frequent shrinker calls, but if the slab has less
363 	 * than batch_size objects in total and we are really tight on memory,
364 	 * we will try to reclaim all available objects, otherwise we can end
365 	 * up failing allocations although there are plenty of reclaimable
366 	 * objects spread over several slabs with usage less than the
367 	 * batch_size.
368 	 *
369 	 * We detect the "tight on memory" situations by looking at the total
370 	 * number of objects we want to scan (total_scan). If it is greater
371 	 * than the total number of objects on slab (freeable), we must be
372 	 * scanning at high prio and therefore should try to reclaim as much as
373 	 * possible.
374 	 */
375 	while (total_scan >= batch_size ||
376 	       total_scan >= freeable) {
377 		unsigned long ret;
378 		unsigned long nr_to_scan = min(batch_size, total_scan);
379 
380 		shrinkctl->nr_to_scan = nr_to_scan;
381 		shrinkctl->nr_scanned = nr_to_scan;
382 		ret = shrinker->scan_objects(shrinker, shrinkctl);
383 		if (ret == SHRINK_STOP)
384 			break;
385 		freed += ret;
386 
387 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
388 		total_scan -= shrinkctl->nr_scanned;
389 		scanned += shrinkctl->nr_scanned;
390 
391 		cond_resched();
392 	}
393 
394 	if (next_deferred >= scanned)
395 		next_deferred -= scanned;
396 	else
397 		next_deferred = 0;
398 	/*
399 	 * move the unused scan count back into the shrinker in a
400 	 * manner that handles concurrent updates. If we exhausted the
401 	 * scan, there is no need to do an update.
402 	 */
403 	if (next_deferred > 0)
404 		new_nr = atomic_long_add_return(next_deferred,
405 						&shrinker->nr_deferred[nid]);
406 	else
407 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
408 
409 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
410 	return freed;
411 }
412 
413 /**
414  * shrink_slab - shrink slab caches
415  * @gfp_mask: allocation context
416  * @nid: node whose slab caches to target
417  * @memcg: memory cgroup whose slab caches to target
418  * @priority: the reclaim priority
419  *
420  * Call the shrink functions to age shrinkable caches.
421  *
422  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
423  * unaware shrinkers will receive a node id of 0 instead.
424  *
425  * @memcg specifies the memory cgroup to target. If it is not NULL,
426  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
427  * objects from the memory cgroup specified. Otherwise, only unaware
428  * shrinkers are called.
429  *
430  * @priority is sc->priority, we take the number of objects and >> by priority
431  * in order to get the scan target.
432  *
433  * Returns the number of reclaimed slab objects.
434  */
435 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
436 				 struct mem_cgroup *memcg,
437 				 int priority)
438 {
439 	struct shrinker *shrinker;
440 	unsigned long freed = 0;
441 
442 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
443 		return 0;
444 
445 	if (!down_read_trylock(&shrinker_rwsem)) {
446 		/*
447 		 * If we would return 0, our callers would understand that we
448 		 * have nothing else to shrink and give up trying. By returning
449 		 * 1 we keep it going and assume we'll be able to shrink next
450 		 * time.
451 		 */
452 		freed = 1;
453 		goto out;
454 	}
455 
456 	list_for_each_entry(shrinker, &shrinker_list, list) {
457 		struct shrink_control sc = {
458 			.gfp_mask = gfp_mask,
459 			.nid = nid,
460 			.memcg = memcg,
461 		};
462 
463 		/*
464 		 * If kernel memory accounting is disabled, we ignore
465 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
466 		 * passing NULL for memcg.
467 		 */
468 		if (memcg_kmem_enabled() &&
469 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
470 			continue;
471 
472 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
473 			sc.nid = 0;
474 
475 		freed += do_shrink_slab(&sc, shrinker, priority);
476 		/*
477 		 * Bail out if someone want to register a new shrinker to
478 		 * prevent the regsitration from being stalled for long periods
479 		 * by parallel ongoing shrinking.
480 		 */
481 		if (rwsem_is_contended(&shrinker_rwsem)) {
482 			freed = freed ? : 1;
483 			break;
484 		}
485 	}
486 
487 	up_read(&shrinker_rwsem);
488 out:
489 	cond_resched();
490 	return freed;
491 }
492 
493 void drop_slab_node(int nid)
494 {
495 	unsigned long freed;
496 
497 	do {
498 		struct mem_cgroup *memcg = NULL;
499 
500 		freed = 0;
501 		do {
502 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
503 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
504 	} while (freed > 10);
505 }
506 
507 void drop_slab(void)
508 {
509 	int nid;
510 
511 	for_each_online_node(nid)
512 		drop_slab_node(nid);
513 }
514 
515 static inline int is_page_cache_freeable(struct page *page)
516 {
517 	/*
518 	 * A freeable page cache page is referenced only by the caller
519 	 * that isolated the page, the page cache radix tree and
520 	 * optional buffer heads at page->private.
521 	 */
522 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
523 		HPAGE_PMD_NR : 1;
524 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
525 }
526 
527 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
528 {
529 	if (current->flags & PF_SWAPWRITE)
530 		return 1;
531 	if (!inode_write_congested(inode))
532 		return 1;
533 	if (inode_to_bdi(inode) == current->backing_dev_info)
534 		return 1;
535 	return 0;
536 }
537 
538 /*
539  * We detected a synchronous write error writing a page out.  Probably
540  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
541  * fsync(), msync() or close().
542  *
543  * The tricky part is that after writepage we cannot touch the mapping: nothing
544  * prevents it from being freed up.  But we have a ref on the page and once
545  * that page is locked, the mapping is pinned.
546  *
547  * We're allowed to run sleeping lock_page() here because we know the caller has
548  * __GFP_FS.
549  */
550 static void handle_write_error(struct address_space *mapping,
551 				struct page *page, int error)
552 {
553 	lock_page(page);
554 	if (page_mapping(page) == mapping)
555 		mapping_set_error(mapping, error);
556 	unlock_page(page);
557 }
558 
559 /* possible outcome of pageout() */
560 typedef enum {
561 	/* failed to write page out, page is locked */
562 	PAGE_KEEP,
563 	/* move page to the active list, page is locked */
564 	PAGE_ACTIVATE,
565 	/* page has been sent to the disk successfully, page is unlocked */
566 	PAGE_SUCCESS,
567 	/* page is clean and locked */
568 	PAGE_CLEAN,
569 } pageout_t;
570 
571 /*
572  * pageout is called by shrink_page_list() for each dirty page.
573  * Calls ->writepage().
574  */
575 static pageout_t pageout(struct page *page, struct address_space *mapping,
576 			 struct scan_control *sc)
577 {
578 	/*
579 	 * If the page is dirty, only perform writeback if that write
580 	 * will be non-blocking.  To prevent this allocation from being
581 	 * stalled by pagecache activity.  But note that there may be
582 	 * stalls if we need to run get_block().  We could test
583 	 * PagePrivate for that.
584 	 *
585 	 * If this process is currently in __generic_file_write_iter() against
586 	 * this page's queue, we can perform writeback even if that
587 	 * will block.
588 	 *
589 	 * If the page is swapcache, write it back even if that would
590 	 * block, for some throttling. This happens by accident, because
591 	 * swap_backing_dev_info is bust: it doesn't reflect the
592 	 * congestion state of the swapdevs.  Easy to fix, if needed.
593 	 */
594 	if (!is_page_cache_freeable(page))
595 		return PAGE_KEEP;
596 	if (!mapping) {
597 		/*
598 		 * Some data journaling orphaned pages can have
599 		 * page->mapping == NULL while being dirty with clean buffers.
600 		 */
601 		if (page_has_private(page)) {
602 			if (try_to_free_buffers(page)) {
603 				ClearPageDirty(page);
604 				pr_info("%s: orphaned page\n", __func__);
605 				return PAGE_CLEAN;
606 			}
607 		}
608 		return PAGE_KEEP;
609 	}
610 	if (mapping->a_ops->writepage == NULL)
611 		return PAGE_ACTIVATE;
612 	if (!may_write_to_inode(mapping->host, sc))
613 		return PAGE_KEEP;
614 
615 	if (clear_page_dirty_for_io(page)) {
616 		int res;
617 		struct writeback_control wbc = {
618 			.sync_mode = WB_SYNC_NONE,
619 			.nr_to_write = SWAP_CLUSTER_MAX,
620 			.range_start = 0,
621 			.range_end = LLONG_MAX,
622 			.for_reclaim = 1,
623 		};
624 
625 		SetPageReclaim(page);
626 		res = mapping->a_ops->writepage(page, &wbc);
627 		if (res < 0)
628 			handle_write_error(mapping, page, res);
629 		if (res == AOP_WRITEPAGE_ACTIVATE) {
630 			ClearPageReclaim(page);
631 			return PAGE_ACTIVATE;
632 		}
633 
634 		if (!PageWriteback(page)) {
635 			/* synchronous write or broken a_ops? */
636 			ClearPageReclaim(page);
637 		}
638 		trace_mm_vmscan_writepage(page);
639 		inc_node_page_state(page, NR_VMSCAN_WRITE);
640 		return PAGE_SUCCESS;
641 	}
642 
643 	return PAGE_CLEAN;
644 }
645 
646 /*
647  * Same as remove_mapping, but if the page is removed from the mapping, it
648  * gets returned with a refcount of 0.
649  */
650 static int __remove_mapping(struct address_space *mapping, struct page *page,
651 			    bool reclaimed)
652 {
653 	unsigned long flags;
654 	int refcount;
655 
656 	BUG_ON(!PageLocked(page));
657 	BUG_ON(mapping != page_mapping(page));
658 
659 	spin_lock_irqsave(&mapping->tree_lock, flags);
660 	/*
661 	 * The non racy check for a busy page.
662 	 *
663 	 * Must be careful with the order of the tests. When someone has
664 	 * a ref to the page, it may be possible that they dirty it then
665 	 * drop the reference. So if PageDirty is tested before page_count
666 	 * here, then the following race may occur:
667 	 *
668 	 * get_user_pages(&page);
669 	 * [user mapping goes away]
670 	 * write_to(page);
671 	 *				!PageDirty(page)    [good]
672 	 * SetPageDirty(page);
673 	 * put_page(page);
674 	 *				!page_count(page)   [good, discard it]
675 	 *
676 	 * [oops, our write_to data is lost]
677 	 *
678 	 * Reversing the order of the tests ensures such a situation cannot
679 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
680 	 * load is not satisfied before that of page->_refcount.
681 	 *
682 	 * Note that if SetPageDirty is always performed via set_page_dirty,
683 	 * and thus under tree_lock, then this ordering is not required.
684 	 */
685 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
686 		refcount = 1 + HPAGE_PMD_NR;
687 	else
688 		refcount = 2;
689 	if (!page_ref_freeze(page, refcount))
690 		goto cannot_free;
691 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
692 	if (unlikely(PageDirty(page))) {
693 		page_ref_unfreeze(page, refcount);
694 		goto cannot_free;
695 	}
696 
697 	if (PageSwapCache(page)) {
698 		swp_entry_t swap = { .val = page_private(page) };
699 		mem_cgroup_swapout(page, swap);
700 		__delete_from_swap_cache(page);
701 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
702 		put_swap_page(page, swap);
703 	} else {
704 		void (*freepage)(struct page *);
705 		void *shadow = NULL;
706 
707 		freepage = mapping->a_ops->freepage;
708 		/*
709 		 * Remember a shadow entry for reclaimed file cache in
710 		 * order to detect refaults, thus thrashing, later on.
711 		 *
712 		 * But don't store shadows in an address space that is
713 		 * already exiting.  This is not just an optizimation,
714 		 * inode reclaim needs to empty out the radix tree or
715 		 * the nodes are lost.  Don't plant shadows behind its
716 		 * back.
717 		 *
718 		 * We also don't store shadows for DAX mappings because the
719 		 * only page cache pages found in these are zero pages
720 		 * covering holes, and because we don't want to mix DAX
721 		 * exceptional entries and shadow exceptional entries in the
722 		 * same page_tree.
723 		 */
724 		if (reclaimed && page_is_file_cache(page) &&
725 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
726 			shadow = workingset_eviction(mapping, page);
727 		__delete_from_page_cache(page, shadow);
728 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
729 
730 		if (freepage != NULL)
731 			freepage(page);
732 	}
733 
734 	return 1;
735 
736 cannot_free:
737 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 	return 0;
739 }
740 
741 /*
742  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
743  * someone else has a ref on the page, abort and return 0.  If it was
744  * successfully detached, return 1.  Assumes the caller has a single ref on
745  * this page.
746  */
747 int remove_mapping(struct address_space *mapping, struct page *page)
748 {
749 	if (__remove_mapping(mapping, page, false)) {
750 		/*
751 		 * Unfreezing the refcount with 1 rather than 2 effectively
752 		 * drops the pagecache ref for us without requiring another
753 		 * atomic operation.
754 		 */
755 		page_ref_unfreeze(page, 1);
756 		return 1;
757 	}
758 	return 0;
759 }
760 
761 /**
762  * putback_lru_page - put previously isolated page onto appropriate LRU list
763  * @page: page to be put back to appropriate lru list
764  *
765  * Add previously isolated @page to appropriate LRU list.
766  * Page may still be unevictable for other reasons.
767  *
768  * lru_lock must not be held, interrupts must be enabled.
769  */
770 void putback_lru_page(struct page *page)
771 {
772 	lru_cache_add(page);
773 	put_page(page);		/* drop ref from isolate */
774 }
775 
776 enum page_references {
777 	PAGEREF_RECLAIM,
778 	PAGEREF_RECLAIM_CLEAN,
779 	PAGEREF_KEEP,
780 	PAGEREF_ACTIVATE,
781 };
782 
783 static enum page_references page_check_references(struct page *page,
784 						  struct scan_control *sc)
785 {
786 	int referenced_ptes, referenced_page;
787 	unsigned long vm_flags;
788 
789 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
790 					  &vm_flags);
791 	referenced_page = TestClearPageReferenced(page);
792 
793 	/*
794 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
795 	 * move the page to the unevictable list.
796 	 */
797 	if (vm_flags & VM_LOCKED)
798 		return PAGEREF_RECLAIM;
799 
800 	if (referenced_ptes) {
801 		if (PageSwapBacked(page))
802 			return PAGEREF_ACTIVATE;
803 		/*
804 		 * All mapped pages start out with page table
805 		 * references from the instantiating fault, so we need
806 		 * to look twice if a mapped file page is used more
807 		 * than once.
808 		 *
809 		 * Mark it and spare it for another trip around the
810 		 * inactive list.  Another page table reference will
811 		 * lead to its activation.
812 		 *
813 		 * Note: the mark is set for activated pages as well
814 		 * so that recently deactivated but used pages are
815 		 * quickly recovered.
816 		 */
817 		SetPageReferenced(page);
818 
819 		if (referenced_page || referenced_ptes > 1)
820 			return PAGEREF_ACTIVATE;
821 
822 		/*
823 		 * Activate file-backed executable pages after first usage.
824 		 */
825 		if (vm_flags & VM_EXEC)
826 			return PAGEREF_ACTIVATE;
827 
828 		return PAGEREF_KEEP;
829 	}
830 
831 	/* Reclaim if clean, defer dirty pages to writeback */
832 	if (referenced_page && !PageSwapBacked(page))
833 		return PAGEREF_RECLAIM_CLEAN;
834 
835 	return PAGEREF_RECLAIM;
836 }
837 
838 /* Check if a page is dirty or under writeback */
839 static void page_check_dirty_writeback(struct page *page,
840 				       bool *dirty, bool *writeback)
841 {
842 	struct address_space *mapping;
843 
844 	/*
845 	 * Anonymous pages are not handled by flushers and must be written
846 	 * from reclaim context. Do not stall reclaim based on them
847 	 */
848 	if (!page_is_file_cache(page) ||
849 	    (PageAnon(page) && !PageSwapBacked(page))) {
850 		*dirty = false;
851 		*writeback = false;
852 		return;
853 	}
854 
855 	/* By default assume that the page flags are accurate */
856 	*dirty = PageDirty(page);
857 	*writeback = PageWriteback(page);
858 
859 	/* Verify dirty/writeback state if the filesystem supports it */
860 	if (!page_has_private(page))
861 		return;
862 
863 	mapping = page_mapping(page);
864 	if (mapping && mapping->a_ops->is_dirty_writeback)
865 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
866 }
867 
868 struct reclaim_stat {
869 	unsigned nr_dirty;
870 	unsigned nr_unqueued_dirty;
871 	unsigned nr_congested;
872 	unsigned nr_writeback;
873 	unsigned nr_immediate;
874 	unsigned nr_activate;
875 	unsigned nr_ref_keep;
876 	unsigned nr_unmap_fail;
877 };
878 
879 /*
880  * shrink_page_list() returns the number of reclaimed pages
881  */
882 static unsigned long shrink_page_list(struct list_head *page_list,
883 				      struct pglist_data *pgdat,
884 				      struct scan_control *sc,
885 				      enum ttu_flags ttu_flags,
886 				      struct reclaim_stat *stat,
887 				      bool force_reclaim)
888 {
889 	LIST_HEAD(ret_pages);
890 	LIST_HEAD(free_pages);
891 	int pgactivate = 0;
892 	unsigned nr_unqueued_dirty = 0;
893 	unsigned nr_dirty = 0;
894 	unsigned nr_congested = 0;
895 	unsigned nr_reclaimed = 0;
896 	unsigned nr_writeback = 0;
897 	unsigned nr_immediate = 0;
898 	unsigned nr_ref_keep = 0;
899 	unsigned nr_unmap_fail = 0;
900 
901 	cond_resched();
902 
903 	while (!list_empty(page_list)) {
904 		struct address_space *mapping;
905 		struct page *page;
906 		int may_enter_fs;
907 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
908 		bool dirty, writeback;
909 
910 		cond_resched();
911 
912 		page = lru_to_page(page_list);
913 		list_del(&page->lru);
914 
915 		if (!trylock_page(page))
916 			goto keep;
917 
918 		VM_BUG_ON_PAGE(PageActive(page), page);
919 
920 		sc->nr_scanned++;
921 
922 		if (unlikely(!page_evictable(page)))
923 			goto activate_locked;
924 
925 		if (!sc->may_unmap && page_mapped(page))
926 			goto keep_locked;
927 
928 		/* Double the slab pressure for mapped and swapcache pages */
929 		if ((page_mapped(page) || PageSwapCache(page)) &&
930 		    !(PageAnon(page) && !PageSwapBacked(page)))
931 			sc->nr_scanned++;
932 
933 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935 
936 		/*
937 		 * The number of dirty pages determines if a zone is marked
938 		 * reclaim_congested which affects wait_iff_congested. kswapd
939 		 * will stall and start writing pages if the tail of the LRU
940 		 * is all dirty unqueued pages.
941 		 */
942 		page_check_dirty_writeback(page, &dirty, &writeback);
943 		if (dirty || writeback)
944 			nr_dirty++;
945 
946 		if (dirty && !writeback)
947 			nr_unqueued_dirty++;
948 
949 		/*
950 		 * Treat this page as congested if the underlying BDI is or if
951 		 * pages are cycling through the LRU so quickly that the
952 		 * pages marked for immediate reclaim are making it to the
953 		 * end of the LRU a second time.
954 		 */
955 		mapping = page_mapping(page);
956 		if (((dirty || writeback) && mapping &&
957 		     inode_write_congested(mapping->host)) ||
958 		    (writeback && PageReclaim(page)))
959 			nr_congested++;
960 
961 		/*
962 		 * If a page at the tail of the LRU is under writeback, there
963 		 * are three cases to consider.
964 		 *
965 		 * 1) If reclaim is encountering an excessive number of pages
966 		 *    under writeback and this page is both under writeback and
967 		 *    PageReclaim then it indicates that pages are being queued
968 		 *    for IO but are being recycled through the LRU before the
969 		 *    IO can complete. Waiting on the page itself risks an
970 		 *    indefinite stall if it is impossible to writeback the
971 		 *    page due to IO error or disconnected storage so instead
972 		 *    note that the LRU is being scanned too quickly and the
973 		 *    caller can stall after page list has been processed.
974 		 *
975 		 * 2) Global or new memcg reclaim encounters a page that is
976 		 *    not marked for immediate reclaim, or the caller does not
977 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 		 *    not to fs). In this case mark the page for immediate
979 		 *    reclaim and continue scanning.
980 		 *
981 		 *    Require may_enter_fs because we would wait on fs, which
982 		 *    may not have submitted IO yet. And the loop driver might
983 		 *    enter reclaim, and deadlock if it waits on a page for
984 		 *    which it is needed to do the write (loop masks off
985 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
986 		 *    would probably show more reasons.
987 		 *
988 		 * 3) Legacy memcg encounters a page that is already marked
989 		 *    PageReclaim. memcg does not have any dirty pages
990 		 *    throttling so we could easily OOM just because too many
991 		 *    pages are in writeback and there is nothing else to
992 		 *    reclaim. Wait for the writeback to complete.
993 		 *
994 		 * In cases 1) and 2) we activate the pages to get them out of
995 		 * the way while we continue scanning for clean pages on the
996 		 * inactive list and refilling from the active list. The
997 		 * observation here is that waiting for disk writes is more
998 		 * expensive than potentially causing reloads down the line.
999 		 * Since they're marked for immediate reclaim, they won't put
1000 		 * memory pressure on the cache working set any longer than it
1001 		 * takes to write them to disk.
1002 		 */
1003 		if (PageWriteback(page)) {
1004 			/* Case 1 above */
1005 			if (current_is_kswapd() &&
1006 			    PageReclaim(page) &&
1007 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1008 				nr_immediate++;
1009 				goto activate_locked;
1010 
1011 			/* Case 2 above */
1012 			} else if (sane_reclaim(sc) ||
1013 			    !PageReclaim(page) || !may_enter_fs) {
1014 				/*
1015 				 * This is slightly racy - end_page_writeback()
1016 				 * might have just cleared PageReclaim, then
1017 				 * setting PageReclaim here end up interpreted
1018 				 * as PageReadahead - but that does not matter
1019 				 * enough to care.  What we do want is for this
1020 				 * page to have PageReclaim set next time memcg
1021 				 * reclaim reaches the tests above, so it will
1022 				 * then wait_on_page_writeback() to avoid OOM;
1023 				 * and it's also appropriate in global reclaim.
1024 				 */
1025 				SetPageReclaim(page);
1026 				nr_writeback++;
1027 				goto activate_locked;
1028 
1029 			/* Case 3 above */
1030 			} else {
1031 				unlock_page(page);
1032 				wait_on_page_writeback(page);
1033 				/* then go back and try same page again */
1034 				list_add_tail(&page->lru, page_list);
1035 				continue;
1036 			}
1037 		}
1038 
1039 		if (!force_reclaim)
1040 			references = page_check_references(page, sc);
1041 
1042 		switch (references) {
1043 		case PAGEREF_ACTIVATE:
1044 			goto activate_locked;
1045 		case PAGEREF_KEEP:
1046 			nr_ref_keep++;
1047 			goto keep_locked;
1048 		case PAGEREF_RECLAIM:
1049 		case PAGEREF_RECLAIM_CLEAN:
1050 			; /* try to reclaim the page below */
1051 		}
1052 
1053 		/*
1054 		 * Anonymous process memory has backing store?
1055 		 * Try to allocate it some swap space here.
1056 		 * Lazyfree page could be freed directly
1057 		 */
1058 		if (PageAnon(page) && PageSwapBacked(page)) {
1059 			if (!PageSwapCache(page)) {
1060 				if (!(sc->gfp_mask & __GFP_IO))
1061 					goto keep_locked;
1062 				if (PageTransHuge(page)) {
1063 					/* cannot split THP, skip it */
1064 					if (!can_split_huge_page(page, NULL))
1065 						goto activate_locked;
1066 					/*
1067 					 * Split pages without a PMD map right
1068 					 * away. Chances are some or all of the
1069 					 * tail pages can be freed without IO.
1070 					 */
1071 					if (!compound_mapcount(page) &&
1072 					    split_huge_page_to_list(page,
1073 								    page_list))
1074 						goto activate_locked;
1075 				}
1076 				if (!add_to_swap(page)) {
1077 					if (!PageTransHuge(page))
1078 						goto activate_locked;
1079 					/* Fallback to swap normal pages */
1080 					if (split_huge_page_to_list(page,
1081 								    page_list))
1082 						goto activate_locked;
1083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1084 					count_vm_event(THP_SWPOUT_FALLBACK);
1085 #endif
1086 					if (!add_to_swap(page))
1087 						goto activate_locked;
1088 				}
1089 
1090 				may_enter_fs = 1;
1091 
1092 				/* Adding to swap updated mapping */
1093 				mapping = page_mapping(page);
1094 			}
1095 		} else if (unlikely(PageTransHuge(page))) {
1096 			/* Split file THP */
1097 			if (split_huge_page_to_list(page, page_list))
1098 				goto keep_locked;
1099 		}
1100 
1101 		/*
1102 		 * The page is mapped into the page tables of one or more
1103 		 * processes. Try to unmap it here.
1104 		 */
1105 		if (page_mapped(page)) {
1106 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1107 
1108 			if (unlikely(PageTransHuge(page)))
1109 				flags |= TTU_SPLIT_HUGE_PMD;
1110 			if (!try_to_unmap(page, flags)) {
1111 				nr_unmap_fail++;
1112 				goto activate_locked;
1113 			}
1114 		}
1115 
1116 		if (PageDirty(page)) {
1117 			/*
1118 			 * Only kswapd can writeback filesystem pages
1119 			 * to avoid risk of stack overflow. But avoid
1120 			 * injecting inefficient single-page IO into
1121 			 * flusher writeback as much as possible: only
1122 			 * write pages when we've encountered many
1123 			 * dirty pages, and when we've already scanned
1124 			 * the rest of the LRU for clean pages and see
1125 			 * the same dirty pages again (PageReclaim).
1126 			 */
1127 			if (page_is_file_cache(page) &&
1128 			    (!current_is_kswapd() || !PageReclaim(page) ||
1129 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1130 				/*
1131 				 * Immediately reclaim when written back.
1132 				 * Similar in principal to deactivate_page()
1133 				 * except we already have the page isolated
1134 				 * and know it's dirty
1135 				 */
1136 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1137 				SetPageReclaim(page);
1138 
1139 				goto activate_locked;
1140 			}
1141 
1142 			if (references == PAGEREF_RECLAIM_CLEAN)
1143 				goto keep_locked;
1144 			if (!may_enter_fs)
1145 				goto keep_locked;
1146 			if (!sc->may_writepage)
1147 				goto keep_locked;
1148 
1149 			/*
1150 			 * Page is dirty. Flush the TLB if a writable entry
1151 			 * potentially exists to avoid CPU writes after IO
1152 			 * starts and then write it out here.
1153 			 */
1154 			try_to_unmap_flush_dirty();
1155 			switch (pageout(page, mapping, sc)) {
1156 			case PAGE_KEEP:
1157 				goto keep_locked;
1158 			case PAGE_ACTIVATE:
1159 				goto activate_locked;
1160 			case PAGE_SUCCESS:
1161 				if (PageWriteback(page))
1162 					goto keep;
1163 				if (PageDirty(page))
1164 					goto keep;
1165 
1166 				/*
1167 				 * A synchronous write - probably a ramdisk.  Go
1168 				 * ahead and try to reclaim the page.
1169 				 */
1170 				if (!trylock_page(page))
1171 					goto keep;
1172 				if (PageDirty(page) || PageWriteback(page))
1173 					goto keep_locked;
1174 				mapping = page_mapping(page);
1175 			case PAGE_CLEAN:
1176 				; /* try to free the page below */
1177 			}
1178 		}
1179 
1180 		/*
1181 		 * If the page has buffers, try to free the buffer mappings
1182 		 * associated with this page. If we succeed we try to free
1183 		 * the page as well.
1184 		 *
1185 		 * We do this even if the page is PageDirty().
1186 		 * try_to_release_page() does not perform I/O, but it is
1187 		 * possible for a page to have PageDirty set, but it is actually
1188 		 * clean (all its buffers are clean).  This happens if the
1189 		 * buffers were written out directly, with submit_bh(). ext3
1190 		 * will do this, as well as the blockdev mapping.
1191 		 * try_to_release_page() will discover that cleanness and will
1192 		 * drop the buffers and mark the page clean - it can be freed.
1193 		 *
1194 		 * Rarely, pages can have buffers and no ->mapping.  These are
1195 		 * the pages which were not successfully invalidated in
1196 		 * truncate_complete_page().  We try to drop those buffers here
1197 		 * and if that worked, and the page is no longer mapped into
1198 		 * process address space (page_count == 1) it can be freed.
1199 		 * Otherwise, leave the page on the LRU so it is swappable.
1200 		 */
1201 		if (page_has_private(page)) {
1202 			if (!try_to_release_page(page, sc->gfp_mask))
1203 				goto activate_locked;
1204 			if (!mapping && page_count(page) == 1) {
1205 				unlock_page(page);
1206 				if (put_page_testzero(page))
1207 					goto free_it;
1208 				else {
1209 					/*
1210 					 * rare race with speculative reference.
1211 					 * the speculative reference will free
1212 					 * this page shortly, so we may
1213 					 * increment nr_reclaimed here (and
1214 					 * leave it off the LRU).
1215 					 */
1216 					nr_reclaimed++;
1217 					continue;
1218 				}
1219 			}
1220 		}
1221 
1222 		if (PageAnon(page) && !PageSwapBacked(page)) {
1223 			/* follow __remove_mapping for reference */
1224 			if (!page_ref_freeze(page, 1))
1225 				goto keep_locked;
1226 			if (PageDirty(page)) {
1227 				page_ref_unfreeze(page, 1);
1228 				goto keep_locked;
1229 			}
1230 
1231 			count_vm_event(PGLAZYFREED);
1232 			count_memcg_page_event(page, PGLAZYFREED);
1233 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1234 			goto keep_locked;
1235 		/*
1236 		 * At this point, we have no other references and there is
1237 		 * no way to pick any more up (removed from LRU, removed
1238 		 * from pagecache). Can use non-atomic bitops now (and
1239 		 * we obviously don't have to worry about waking up a process
1240 		 * waiting on the page lock, because there are no references.
1241 		 */
1242 		__ClearPageLocked(page);
1243 free_it:
1244 		nr_reclaimed++;
1245 
1246 		/*
1247 		 * Is there need to periodically free_page_list? It would
1248 		 * appear not as the counts should be low
1249 		 */
1250 		if (unlikely(PageTransHuge(page))) {
1251 			mem_cgroup_uncharge(page);
1252 			(*get_compound_page_dtor(page))(page);
1253 		} else
1254 			list_add(&page->lru, &free_pages);
1255 		continue;
1256 
1257 activate_locked:
1258 		/* Not a candidate for swapping, so reclaim swap space. */
1259 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1260 						PageMlocked(page)))
1261 			try_to_free_swap(page);
1262 		VM_BUG_ON_PAGE(PageActive(page), page);
1263 		if (!PageMlocked(page)) {
1264 			SetPageActive(page);
1265 			pgactivate++;
1266 			count_memcg_page_event(page, PGACTIVATE);
1267 		}
1268 keep_locked:
1269 		unlock_page(page);
1270 keep:
1271 		list_add(&page->lru, &ret_pages);
1272 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1273 	}
1274 
1275 	mem_cgroup_uncharge_list(&free_pages);
1276 	try_to_unmap_flush();
1277 	free_unref_page_list(&free_pages);
1278 
1279 	list_splice(&ret_pages, page_list);
1280 	count_vm_events(PGACTIVATE, pgactivate);
1281 
1282 	if (stat) {
1283 		stat->nr_dirty = nr_dirty;
1284 		stat->nr_congested = nr_congested;
1285 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1286 		stat->nr_writeback = nr_writeback;
1287 		stat->nr_immediate = nr_immediate;
1288 		stat->nr_activate = pgactivate;
1289 		stat->nr_ref_keep = nr_ref_keep;
1290 		stat->nr_unmap_fail = nr_unmap_fail;
1291 	}
1292 	return nr_reclaimed;
1293 }
1294 
1295 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1296 					    struct list_head *page_list)
1297 {
1298 	struct scan_control sc = {
1299 		.gfp_mask = GFP_KERNEL,
1300 		.priority = DEF_PRIORITY,
1301 		.may_unmap = 1,
1302 	};
1303 	unsigned long ret;
1304 	struct page *page, *next;
1305 	LIST_HEAD(clean_pages);
1306 
1307 	list_for_each_entry_safe(page, next, page_list, lru) {
1308 		if (page_is_file_cache(page) && !PageDirty(page) &&
1309 		    !__PageMovable(page)) {
1310 			ClearPageActive(page);
1311 			list_move(&page->lru, &clean_pages);
1312 		}
1313 	}
1314 
1315 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1316 			TTU_IGNORE_ACCESS, NULL, true);
1317 	list_splice(&clean_pages, page_list);
1318 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1319 	return ret;
1320 }
1321 
1322 /*
1323  * Attempt to remove the specified page from its LRU.  Only take this page
1324  * if it is of the appropriate PageActive status.  Pages which are being
1325  * freed elsewhere are also ignored.
1326  *
1327  * page:	page to consider
1328  * mode:	one of the LRU isolation modes defined above
1329  *
1330  * returns 0 on success, -ve errno on failure.
1331  */
1332 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1333 {
1334 	int ret = -EINVAL;
1335 
1336 	/* Only take pages on the LRU. */
1337 	if (!PageLRU(page))
1338 		return ret;
1339 
1340 	/* Compaction should not handle unevictable pages but CMA can do so */
1341 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1342 		return ret;
1343 
1344 	ret = -EBUSY;
1345 
1346 	/*
1347 	 * To minimise LRU disruption, the caller can indicate that it only
1348 	 * wants to isolate pages it will be able to operate on without
1349 	 * blocking - clean pages for the most part.
1350 	 *
1351 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1352 	 * that it is possible to migrate without blocking
1353 	 */
1354 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1355 		/* All the caller can do on PageWriteback is block */
1356 		if (PageWriteback(page))
1357 			return ret;
1358 
1359 		if (PageDirty(page)) {
1360 			struct address_space *mapping;
1361 			bool migrate_dirty;
1362 
1363 			/*
1364 			 * Only pages without mappings or that have a
1365 			 * ->migratepage callback are possible to migrate
1366 			 * without blocking. However, we can be racing with
1367 			 * truncation so it's necessary to lock the page
1368 			 * to stabilise the mapping as truncation holds
1369 			 * the page lock until after the page is removed
1370 			 * from the page cache.
1371 			 */
1372 			if (!trylock_page(page))
1373 				return ret;
1374 
1375 			mapping = page_mapping(page);
1376 			migrate_dirty = mapping && mapping->a_ops->migratepage;
1377 			unlock_page(page);
1378 			if (!migrate_dirty)
1379 				return ret;
1380 		}
1381 	}
1382 
1383 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1384 		return ret;
1385 
1386 	if (likely(get_page_unless_zero(page))) {
1387 		/*
1388 		 * Be careful not to clear PageLRU until after we're
1389 		 * sure the page is not being freed elsewhere -- the
1390 		 * page release code relies on it.
1391 		 */
1392 		ClearPageLRU(page);
1393 		ret = 0;
1394 	}
1395 
1396 	return ret;
1397 }
1398 
1399 
1400 /*
1401  * Update LRU sizes after isolating pages. The LRU size updates must
1402  * be complete before mem_cgroup_update_lru_size due to a santity check.
1403  */
1404 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1405 			enum lru_list lru, unsigned long *nr_zone_taken)
1406 {
1407 	int zid;
1408 
1409 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1410 		if (!nr_zone_taken[zid])
1411 			continue;
1412 
1413 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1414 #ifdef CONFIG_MEMCG
1415 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1416 #endif
1417 	}
1418 
1419 }
1420 
1421 /*
1422  * zone_lru_lock is heavily contended.  Some of the functions that
1423  * shrink the lists perform better by taking out a batch of pages
1424  * and working on them outside the LRU lock.
1425  *
1426  * For pagecache intensive workloads, this function is the hottest
1427  * spot in the kernel (apart from copy_*_user functions).
1428  *
1429  * Appropriate locks must be held before calling this function.
1430  *
1431  * @nr_to_scan:	The number of eligible pages to look through on the list.
1432  * @lruvec:	The LRU vector to pull pages from.
1433  * @dst:	The temp list to put pages on to.
1434  * @nr_scanned:	The number of pages that were scanned.
1435  * @sc:		The scan_control struct for this reclaim session
1436  * @mode:	One of the LRU isolation modes
1437  * @lru:	LRU list id for isolating
1438  *
1439  * returns how many pages were moved onto *@dst.
1440  */
1441 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1442 		struct lruvec *lruvec, struct list_head *dst,
1443 		unsigned long *nr_scanned, struct scan_control *sc,
1444 		isolate_mode_t mode, enum lru_list lru)
1445 {
1446 	struct list_head *src = &lruvec->lists[lru];
1447 	unsigned long nr_taken = 0;
1448 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1449 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1450 	unsigned long skipped = 0;
1451 	unsigned long scan, total_scan, nr_pages;
1452 	LIST_HEAD(pages_skipped);
1453 
1454 	scan = 0;
1455 	for (total_scan = 0;
1456 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1457 	     total_scan++) {
1458 		struct page *page;
1459 
1460 		page = lru_to_page(src);
1461 		prefetchw_prev_lru_page(page, src, flags);
1462 
1463 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1464 
1465 		if (page_zonenum(page) > sc->reclaim_idx) {
1466 			list_move(&page->lru, &pages_skipped);
1467 			nr_skipped[page_zonenum(page)]++;
1468 			continue;
1469 		}
1470 
1471 		/*
1472 		 * Do not count skipped pages because that makes the function
1473 		 * return with no isolated pages if the LRU mostly contains
1474 		 * ineligible pages.  This causes the VM to not reclaim any
1475 		 * pages, triggering a premature OOM.
1476 		 */
1477 		scan++;
1478 		switch (__isolate_lru_page(page, mode)) {
1479 		case 0:
1480 			nr_pages = hpage_nr_pages(page);
1481 			nr_taken += nr_pages;
1482 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1483 			list_move(&page->lru, dst);
1484 			break;
1485 
1486 		case -EBUSY:
1487 			/* else it is being freed elsewhere */
1488 			list_move(&page->lru, src);
1489 			continue;
1490 
1491 		default:
1492 			BUG();
1493 		}
1494 	}
1495 
1496 	/*
1497 	 * Splice any skipped pages to the start of the LRU list. Note that
1498 	 * this disrupts the LRU order when reclaiming for lower zones but
1499 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1500 	 * scanning would soon rescan the same pages to skip and put the
1501 	 * system at risk of premature OOM.
1502 	 */
1503 	if (!list_empty(&pages_skipped)) {
1504 		int zid;
1505 
1506 		list_splice(&pages_skipped, src);
1507 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1508 			if (!nr_skipped[zid])
1509 				continue;
1510 
1511 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1512 			skipped += nr_skipped[zid];
1513 		}
1514 	}
1515 	*nr_scanned = total_scan;
1516 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1517 				    total_scan, skipped, nr_taken, mode, lru);
1518 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1519 	return nr_taken;
1520 }
1521 
1522 /**
1523  * isolate_lru_page - tries to isolate a page from its LRU list
1524  * @page: page to isolate from its LRU list
1525  *
1526  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1527  * vmstat statistic corresponding to whatever LRU list the page was on.
1528  *
1529  * Returns 0 if the page was removed from an LRU list.
1530  * Returns -EBUSY if the page was not on an LRU list.
1531  *
1532  * The returned page will have PageLRU() cleared.  If it was found on
1533  * the active list, it will have PageActive set.  If it was found on
1534  * the unevictable list, it will have the PageUnevictable bit set. That flag
1535  * may need to be cleared by the caller before letting the page go.
1536  *
1537  * The vmstat statistic corresponding to the list on which the page was
1538  * found will be decremented.
1539  *
1540  * Restrictions:
1541  *
1542  * (1) Must be called with an elevated refcount on the page. This is a
1543  *     fundamentnal difference from isolate_lru_pages (which is called
1544  *     without a stable reference).
1545  * (2) the lru_lock must not be held.
1546  * (3) interrupts must be enabled.
1547  */
1548 int isolate_lru_page(struct page *page)
1549 {
1550 	int ret = -EBUSY;
1551 
1552 	VM_BUG_ON_PAGE(!page_count(page), page);
1553 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1554 
1555 	if (PageLRU(page)) {
1556 		struct zone *zone = page_zone(page);
1557 		struct lruvec *lruvec;
1558 
1559 		spin_lock_irq(zone_lru_lock(zone));
1560 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1561 		if (PageLRU(page)) {
1562 			int lru = page_lru(page);
1563 			get_page(page);
1564 			ClearPageLRU(page);
1565 			del_page_from_lru_list(page, lruvec, lru);
1566 			ret = 0;
1567 		}
1568 		spin_unlock_irq(zone_lru_lock(zone));
1569 	}
1570 	return ret;
1571 }
1572 
1573 /*
1574  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1575  * then get resheduled. When there are massive number of tasks doing page
1576  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1577  * the LRU list will go small and be scanned faster than necessary, leading to
1578  * unnecessary swapping, thrashing and OOM.
1579  */
1580 static int too_many_isolated(struct pglist_data *pgdat, int file,
1581 		struct scan_control *sc)
1582 {
1583 	unsigned long inactive, isolated;
1584 
1585 	if (current_is_kswapd())
1586 		return 0;
1587 
1588 	if (!sane_reclaim(sc))
1589 		return 0;
1590 
1591 	if (file) {
1592 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1593 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1594 	} else {
1595 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1596 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1597 	}
1598 
1599 	/*
1600 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1601 	 * won't get blocked by normal direct-reclaimers, forming a circular
1602 	 * deadlock.
1603 	 */
1604 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1605 		inactive >>= 3;
1606 
1607 	return isolated > inactive;
1608 }
1609 
1610 static noinline_for_stack void
1611 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1612 {
1613 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1614 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1615 	LIST_HEAD(pages_to_free);
1616 
1617 	/*
1618 	 * Put back any unfreeable pages.
1619 	 */
1620 	while (!list_empty(page_list)) {
1621 		struct page *page = lru_to_page(page_list);
1622 		int lru;
1623 
1624 		VM_BUG_ON_PAGE(PageLRU(page), page);
1625 		list_del(&page->lru);
1626 		if (unlikely(!page_evictable(page))) {
1627 			spin_unlock_irq(&pgdat->lru_lock);
1628 			putback_lru_page(page);
1629 			spin_lock_irq(&pgdat->lru_lock);
1630 			continue;
1631 		}
1632 
1633 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1634 
1635 		SetPageLRU(page);
1636 		lru = page_lru(page);
1637 		add_page_to_lru_list(page, lruvec, lru);
1638 
1639 		if (is_active_lru(lru)) {
1640 			int file = is_file_lru(lru);
1641 			int numpages = hpage_nr_pages(page);
1642 			reclaim_stat->recent_rotated[file] += numpages;
1643 		}
1644 		if (put_page_testzero(page)) {
1645 			__ClearPageLRU(page);
1646 			__ClearPageActive(page);
1647 			del_page_from_lru_list(page, lruvec, lru);
1648 
1649 			if (unlikely(PageCompound(page))) {
1650 				spin_unlock_irq(&pgdat->lru_lock);
1651 				mem_cgroup_uncharge(page);
1652 				(*get_compound_page_dtor(page))(page);
1653 				spin_lock_irq(&pgdat->lru_lock);
1654 			} else
1655 				list_add(&page->lru, &pages_to_free);
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * To save our caller's stack, now use input list for pages to free.
1661 	 */
1662 	list_splice(&pages_to_free, page_list);
1663 }
1664 
1665 /*
1666  * If a kernel thread (such as nfsd for loop-back mounts) services
1667  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1668  * In that case we should only throttle if the backing device it is
1669  * writing to is congested.  In other cases it is safe to throttle.
1670  */
1671 static int current_may_throttle(void)
1672 {
1673 	return !(current->flags & PF_LESS_THROTTLE) ||
1674 		current->backing_dev_info == NULL ||
1675 		bdi_write_congested(current->backing_dev_info);
1676 }
1677 
1678 /*
1679  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1680  * of reclaimed pages
1681  */
1682 static noinline_for_stack unsigned long
1683 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1684 		     struct scan_control *sc, enum lru_list lru)
1685 {
1686 	LIST_HEAD(page_list);
1687 	unsigned long nr_scanned;
1688 	unsigned long nr_reclaimed = 0;
1689 	unsigned long nr_taken;
1690 	struct reclaim_stat stat = {};
1691 	isolate_mode_t isolate_mode = 0;
1692 	int file = is_file_lru(lru);
1693 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1694 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1695 	bool stalled = false;
1696 
1697 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1698 		if (stalled)
1699 			return 0;
1700 
1701 		/* wait a bit for the reclaimer. */
1702 		msleep(100);
1703 		stalled = true;
1704 
1705 		/* We are about to die and free our memory. Return now. */
1706 		if (fatal_signal_pending(current))
1707 			return SWAP_CLUSTER_MAX;
1708 	}
1709 
1710 	lru_add_drain();
1711 
1712 	if (!sc->may_unmap)
1713 		isolate_mode |= ISOLATE_UNMAPPED;
1714 
1715 	spin_lock_irq(&pgdat->lru_lock);
1716 
1717 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1718 				     &nr_scanned, sc, isolate_mode, lru);
1719 
1720 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1721 	reclaim_stat->recent_scanned[file] += nr_taken;
1722 
1723 	if (current_is_kswapd()) {
1724 		if (global_reclaim(sc))
1725 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1726 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1727 				   nr_scanned);
1728 	} else {
1729 		if (global_reclaim(sc))
1730 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1731 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1732 				   nr_scanned);
1733 	}
1734 	spin_unlock_irq(&pgdat->lru_lock);
1735 
1736 	if (nr_taken == 0)
1737 		return 0;
1738 
1739 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1740 				&stat, false);
1741 
1742 	spin_lock_irq(&pgdat->lru_lock);
1743 
1744 	if (current_is_kswapd()) {
1745 		if (global_reclaim(sc))
1746 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1747 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1748 				   nr_reclaimed);
1749 	} else {
1750 		if (global_reclaim(sc))
1751 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1752 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1753 				   nr_reclaimed);
1754 	}
1755 
1756 	putback_inactive_pages(lruvec, &page_list);
1757 
1758 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1759 
1760 	spin_unlock_irq(&pgdat->lru_lock);
1761 
1762 	mem_cgroup_uncharge_list(&page_list);
1763 	free_unref_page_list(&page_list);
1764 
1765 	/*
1766 	 * If reclaim is isolating dirty pages under writeback, it implies
1767 	 * that the long-lived page allocation rate is exceeding the page
1768 	 * laundering rate. Either the global limits are not being effective
1769 	 * at throttling processes due to the page distribution throughout
1770 	 * zones or there is heavy usage of a slow backing device. The
1771 	 * only option is to throttle from reclaim context which is not ideal
1772 	 * as there is no guarantee the dirtying process is throttled in the
1773 	 * same way balance_dirty_pages() manages.
1774 	 *
1775 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1776 	 * of pages under pages flagged for immediate reclaim and stall if any
1777 	 * are encountered in the nr_immediate check below.
1778 	 */
1779 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1780 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1781 
1782 	/*
1783 	 * Legacy memcg will stall in page writeback so avoid forcibly
1784 	 * stalling here.
1785 	 */
1786 	if (sane_reclaim(sc)) {
1787 		/*
1788 		 * Tag a zone as congested if all the dirty pages scanned were
1789 		 * backed by a congested BDI and wait_iff_congested will stall.
1790 		 */
1791 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1792 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1793 
1794 		/*
1795 		 * If dirty pages are scanned that are not queued for IO, it
1796 		 * implies that flushers are not doing their job. This can
1797 		 * happen when memory pressure pushes dirty pages to the end of
1798 		 * the LRU before the dirty limits are breached and the dirty
1799 		 * data has expired. It can also happen when the proportion of
1800 		 * dirty pages grows not through writes but through memory
1801 		 * pressure reclaiming all the clean cache. And in some cases,
1802 		 * the flushers simply cannot keep up with the allocation
1803 		 * rate. Nudge the flusher threads in case they are asleep, but
1804 		 * also allow kswapd to start writing pages during reclaim.
1805 		 */
1806 		if (stat.nr_unqueued_dirty == nr_taken) {
1807 			wakeup_flusher_threads(WB_REASON_VMSCAN);
1808 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1809 		}
1810 
1811 		/*
1812 		 * If kswapd scans pages marked marked for immediate
1813 		 * reclaim and under writeback (nr_immediate), it implies
1814 		 * that pages are cycling through the LRU faster than
1815 		 * they are written so also forcibly stall.
1816 		 */
1817 		if (stat.nr_immediate && current_may_throttle())
1818 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1819 	}
1820 
1821 	/*
1822 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1823 	 * is congested. Allow kswapd to continue until it starts encountering
1824 	 * unqueued dirty pages or cycling through the LRU too quickly.
1825 	 */
1826 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1827 	    current_may_throttle())
1828 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1829 
1830 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1831 			nr_scanned, nr_reclaimed,
1832 			stat.nr_dirty,  stat.nr_writeback,
1833 			stat.nr_congested, stat.nr_immediate,
1834 			stat.nr_activate, stat.nr_ref_keep,
1835 			stat.nr_unmap_fail,
1836 			sc->priority, file);
1837 	return nr_reclaimed;
1838 }
1839 
1840 /*
1841  * This moves pages from the active list to the inactive list.
1842  *
1843  * We move them the other way if the page is referenced by one or more
1844  * processes, from rmap.
1845  *
1846  * If the pages are mostly unmapped, the processing is fast and it is
1847  * appropriate to hold zone_lru_lock across the whole operation.  But if
1848  * the pages are mapped, the processing is slow (page_referenced()) so we
1849  * should drop zone_lru_lock around each page.  It's impossible to balance
1850  * this, so instead we remove the pages from the LRU while processing them.
1851  * It is safe to rely on PG_active against the non-LRU pages in here because
1852  * nobody will play with that bit on a non-LRU page.
1853  *
1854  * The downside is that we have to touch page->_refcount against each page.
1855  * But we had to alter page->flags anyway.
1856  *
1857  * Returns the number of pages moved to the given lru.
1858  */
1859 
1860 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1861 				     struct list_head *list,
1862 				     struct list_head *pages_to_free,
1863 				     enum lru_list lru)
1864 {
1865 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1866 	struct page *page;
1867 	int nr_pages;
1868 	int nr_moved = 0;
1869 
1870 	while (!list_empty(list)) {
1871 		page = lru_to_page(list);
1872 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1873 
1874 		VM_BUG_ON_PAGE(PageLRU(page), page);
1875 		SetPageLRU(page);
1876 
1877 		nr_pages = hpage_nr_pages(page);
1878 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1879 		list_move(&page->lru, &lruvec->lists[lru]);
1880 
1881 		if (put_page_testzero(page)) {
1882 			__ClearPageLRU(page);
1883 			__ClearPageActive(page);
1884 			del_page_from_lru_list(page, lruvec, lru);
1885 
1886 			if (unlikely(PageCompound(page))) {
1887 				spin_unlock_irq(&pgdat->lru_lock);
1888 				mem_cgroup_uncharge(page);
1889 				(*get_compound_page_dtor(page))(page);
1890 				spin_lock_irq(&pgdat->lru_lock);
1891 			} else
1892 				list_add(&page->lru, pages_to_free);
1893 		} else {
1894 			nr_moved += nr_pages;
1895 		}
1896 	}
1897 
1898 	if (!is_active_lru(lru)) {
1899 		__count_vm_events(PGDEACTIVATE, nr_moved);
1900 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1901 				   nr_moved);
1902 	}
1903 
1904 	return nr_moved;
1905 }
1906 
1907 static void shrink_active_list(unsigned long nr_to_scan,
1908 			       struct lruvec *lruvec,
1909 			       struct scan_control *sc,
1910 			       enum lru_list lru)
1911 {
1912 	unsigned long nr_taken;
1913 	unsigned long nr_scanned;
1914 	unsigned long vm_flags;
1915 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1916 	LIST_HEAD(l_active);
1917 	LIST_HEAD(l_inactive);
1918 	struct page *page;
1919 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1920 	unsigned nr_deactivate, nr_activate;
1921 	unsigned nr_rotated = 0;
1922 	isolate_mode_t isolate_mode = 0;
1923 	int file = is_file_lru(lru);
1924 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1925 
1926 	lru_add_drain();
1927 
1928 	if (!sc->may_unmap)
1929 		isolate_mode |= ISOLATE_UNMAPPED;
1930 
1931 	spin_lock_irq(&pgdat->lru_lock);
1932 
1933 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1934 				     &nr_scanned, sc, isolate_mode, lru);
1935 
1936 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1937 	reclaim_stat->recent_scanned[file] += nr_taken;
1938 
1939 	__count_vm_events(PGREFILL, nr_scanned);
1940 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1941 
1942 	spin_unlock_irq(&pgdat->lru_lock);
1943 
1944 	while (!list_empty(&l_hold)) {
1945 		cond_resched();
1946 		page = lru_to_page(&l_hold);
1947 		list_del(&page->lru);
1948 
1949 		if (unlikely(!page_evictable(page))) {
1950 			putback_lru_page(page);
1951 			continue;
1952 		}
1953 
1954 		if (unlikely(buffer_heads_over_limit)) {
1955 			if (page_has_private(page) && trylock_page(page)) {
1956 				if (page_has_private(page))
1957 					try_to_release_page(page, 0);
1958 				unlock_page(page);
1959 			}
1960 		}
1961 
1962 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1963 				    &vm_flags)) {
1964 			nr_rotated += hpage_nr_pages(page);
1965 			/*
1966 			 * Identify referenced, file-backed active pages and
1967 			 * give them one more trip around the active list. So
1968 			 * that executable code get better chances to stay in
1969 			 * memory under moderate memory pressure.  Anon pages
1970 			 * are not likely to be evicted by use-once streaming
1971 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1972 			 * so we ignore them here.
1973 			 */
1974 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1975 				list_add(&page->lru, &l_active);
1976 				continue;
1977 			}
1978 		}
1979 
1980 		ClearPageActive(page);	/* we are de-activating */
1981 		list_add(&page->lru, &l_inactive);
1982 	}
1983 
1984 	/*
1985 	 * Move pages back to the lru list.
1986 	 */
1987 	spin_lock_irq(&pgdat->lru_lock);
1988 	/*
1989 	 * Count referenced pages from currently used mappings as rotated,
1990 	 * even though only some of them are actually re-activated.  This
1991 	 * helps balance scan pressure between file and anonymous pages in
1992 	 * get_scan_count.
1993 	 */
1994 	reclaim_stat->recent_rotated[file] += nr_rotated;
1995 
1996 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1997 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1998 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1999 	spin_unlock_irq(&pgdat->lru_lock);
2000 
2001 	mem_cgroup_uncharge_list(&l_hold);
2002 	free_unref_page_list(&l_hold);
2003 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2004 			nr_deactivate, nr_rotated, sc->priority, file);
2005 }
2006 
2007 /*
2008  * The inactive anon list should be small enough that the VM never has
2009  * to do too much work.
2010  *
2011  * The inactive file list should be small enough to leave most memory
2012  * to the established workingset on the scan-resistant active list,
2013  * but large enough to avoid thrashing the aggregate readahead window.
2014  *
2015  * Both inactive lists should also be large enough that each inactive
2016  * page has a chance to be referenced again before it is reclaimed.
2017  *
2018  * If that fails and refaulting is observed, the inactive list grows.
2019  *
2020  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2021  * on this LRU, maintained by the pageout code. An inactive_ratio
2022  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2023  *
2024  * total     target    max
2025  * memory    ratio     inactive
2026  * -------------------------------------
2027  *   10MB       1         5MB
2028  *  100MB       1        50MB
2029  *    1GB       3       250MB
2030  *   10GB      10       0.9GB
2031  *  100GB      31         3GB
2032  *    1TB     101        10GB
2033  *   10TB     320        32GB
2034  */
2035 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2036 				 struct mem_cgroup *memcg,
2037 				 struct scan_control *sc, bool actual_reclaim)
2038 {
2039 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2040 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2041 	enum lru_list inactive_lru = file * LRU_FILE;
2042 	unsigned long inactive, active;
2043 	unsigned long inactive_ratio;
2044 	unsigned long refaults;
2045 	unsigned long gb;
2046 
2047 	/*
2048 	 * If we don't have swap space, anonymous page deactivation
2049 	 * is pointless.
2050 	 */
2051 	if (!file && !total_swap_pages)
2052 		return false;
2053 
2054 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2055 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2056 
2057 	if (memcg)
2058 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2059 	else
2060 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2061 
2062 	/*
2063 	 * When refaults are being observed, it means a new workingset
2064 	 * is being established. Disable active list protection to get
2065 	 * rid of the stale workingset quickly.
2066 	 */
2067 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2068 		inactive_ratio = 0;
2069 	} else {
2070 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2071 		if (gb)
2072 			inactive_ratio = int_sqrt(10 * gb);
2073 		else
2074 			inactive_ratio = 1;
2075 	}
2076 
2077 	if (actual_reclaim)
2078 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2079 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2080 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2081 			inactive_ratio, file);
2082 
2083 	return inactive * inactive_ratio < active;
2084 }
2085 
2086 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2087 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2088 				 struct scan_control *sc)
2089 {
2090 	if (is_active_lru(lru)) {
2091 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2092 					 memcg, sc, true))
2093 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2094 		return 0;
2095 	}
2096 
2097 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2098 }
2099 
2100 enum scan_balance {
2101 	SCAN_EQUAL,
2102 	SCAN_FRACT,
2103 	SCAN_ANON,
2104 	SCAN_FILE,
2105 };
2106 
2107 /*
2108  * Determine how aggressively the anon and file LRU lists should be
2109  * scanned.  The relative value of each set of LRU lists is determined
2110  * by looking at the fraction of the pages scanned we did rotate back
2111  * onto the active list instead of evict.
2112  *
2113  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2114  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2115  */
2116 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2117 			   struct scan_control *sc, unsigned long *nr,
2118 			   unsigned long *lru_pages)
2119 {
2120 	int swappiness = mem_cgroup_swappiness(memcg);
2121 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2122 	u64 fraction[2];
2123 	u64 denominator = 0;	/* gcc */
2124 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2125 	unsigned long anon_prio, file_prio;
2126 	enum scan_balance scan_balance;
2127 	unsigned long anon, file;
2128 	unsigned long ap, fp;
2129 	enum lru_list lru;
2130 
2131 	/* If we have no swap space, do not bother scanning anon pages. */
2132 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2133 		scan_balance = SCAN_FILE;
2134 		goto out;
2135 	}
2136 
2137 	/*
2138 	 * Global reclaim will swap to prevent OOM even with no
2139 	 * swappiness, but memcg users want to use this knob to
2140 	 * disable swapping for individual groups completely when
2141 	 * using the memory controller's swap limit feature would be
2142 	 * too expensive.
2143 	 */
2144 	if (!global_reclaim(sc) && !swappiness) {
2145 		scan_balance = SCAN_FILE;
2146 		goto out;
2147 	}
2148 
2149 	/*
2150 	 * Do not apply any pressure balancing cleverness when the
2151 	 * system is close to OOM, scan both anon and file equally
2152 	 * (unless the swappiness setting disagrees with swapping).
2153 	 */
2154 	if (!sc->priority && swappiness) {
2155 		scan_balance = SCAN_EQUAL;
2156 		goto out;
2157 	}
2158 
2159 	/*
2160 	 * Prevent the reclaimer from falling into the cache trap: as
2161 	 * cache pages start out inactive, every cache fault will tip
2162 	 * the scan balance towards the file LRU.  And as the file LRU
2163 	 * shrinks, so does the window for rotation from references.
2164 	 * This means we have a runaway feedback loop where a tiny
2165 	 * thrashing file LRU becomes infinitely more attractive than
2166 	 * anon pages.  Try to detect this based on file LRU size.
2167 	 */
2168 	if (global_reclaim(sc)) {
2169 		unsigned long pgdatfile;
2170 		unsigned long pgdatfree;
2171 		int z;
2172 		unsigned long total_high_wmark = 0;
2173 
2174 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2175 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2176 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2177 
2178 		for (z = 0; z < MAX_NR_ZONES; z++) {
2179 			struct zone *zone = &pgdat->node_zones[z];
2180 			if (!managed_zone(zone))
2181 				continue;
2182 
2183 			total_high_wmark += high_wmark_pages(zone);
2184 		}
2185 
2186 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2187 			/*
2188 			 * Force SCAN_ANON if there are enough inactive
2189 			 * anonymous pages on the LRU in eligible zones.
2190 			 * Otherwise, the small LRU gets thrashed.
2191 			 */
2192 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2193 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2194 					>> sc->priority) {
2195 				scan_balance = SCAN_ANON;
2196 				goto out;
2197 			}
2198 		}
2199 	}
2200 
2201 	/*
2202 	 * If there is enough inactive page cache, i.e. if the size of the
2203 	 * inactive list is greater than that of the active list *and* the
2204 	 * inactive list actually has some pages to scan on this priority, we
2205 	 * do not reclaim anything from the anonymous working set right now.
2206 	 * Without the second condition we could end up never scanning an
2207 	 * lruvec even if it has plenty of old anonymous pages unless the
2208 	 * system is under heavy pressure.
2209 	 */
2210 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2211 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2212 		scan_balance = SCAN_FILE;
2213 		goto out;
2214 	}
2215 
2216 	scan_balance = SCAN_FRACT;
2217 
2218 	/*
2219 	 * With swappiness at 100, anonymous and file have the same priority.
2220 	 * This scanning priority is essentially the inverse of IO cost.
2221 	 */
2222 	anon_prio = swappiness;
2223 	file_prio = 200 - anon_prio;
2224 
2225 	/*
2226 	 * OK, so we have swap space and a fair amount of page cache
2227 	 * pages.  We use the recently rotated / recently scanned
2228 	 * ratios to determine how valuable each cache is.
2229 	 *
2230 	 * Because workloads change over time (and to avoid overflow)
2231 	 * we keep these statistics as a floating average, which ends
2232 	 * up weighing recent references more than old ones.
2233 	 *
2234 	 * anon in [0], file in [1]
2235 	 */
2236 
2237 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2238 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2239 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2240 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2241 
2242 	spin_lock_irq(&pgdat->lru_lock);
2243 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2244 		reclaim_stat->recent_scanned[0] /= 2;
2245 		reclaim_stat->recent_rotated[0] /= 2;
2246 	}
2247 
2248 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2249 		reclaim_stat->recent_scanned[1] /= 2;
2250 		reclaim_stat->recent_rotated[1] /= 2;
2251 	}
2252 
2253 	/*
2254 	 * The amount of pressure on anon vs file pages is inversely
2255 	 * proportional to the fraction of recently scanned pages on
2256 	 * each list that were recently referenced and in active use.
2257 	 */
2258 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2259 	ap /= reclaim_stat->recent_rotated[0] + 1;
2260 
2261 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2262 	fp /= reclaim_stat->recent_rotated[1] + 1;
2263 	spin_unlock_irq(&pgdat->lru_lock);
2264 
2265 	fraction[0] = ap;
2266 	fraction[1] = fp;
2267 	denominator = ap + fp + 1;
2268 out:
2269 	*lru_pages = 0;
2270 	for_each_evictable_lru(lru) {
2271 		int file = is_file_lru(lru);
2272 		unsigned long size;
2273 		unsigned long scan;
2274 
2275 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2276 		scan = size >> sc->priority;
2277 		/*
2278 		 * If the cgroup's already been deleted, make sure to
2279 		 * scrape out the remaining cache.
2280 		 */
2281 		if (!scan && !mem_cgroup_online(memcg))
2282 			scan = min(size, SWAP_CLUSTER_MAX);
2283 
2284 		switch (scan_balance) {
2285 		case SCAN_EQUAL:
2286 			/* Scan lists relative to size */
2287 			break;
2288 		case SCAN_FRACT:
2289 			/*
2290 			 * Scan types proportional to swappiness and
2291 			 * their relative recent reclaim efficiency.
2292 			 */
2293 			scan = div64_u64(scan * fraction[file],
2294 					 denominator);
2295 			break;
2296 		case SCAN_FILE:
2297 		case SCAN_ANON:
2298 			/* Scan one type exclusively */
2299 			if ((scan_balance == SCAN_FILE) != file) {
2300 				size = 0;
2301 				scan = 0;
2302 			}
2303 			break;
2304 		default:
2305 			/* Look ma, no brain */
2306 			BUG();
2307 		}
2308 
2309 		*lru_pages += size;
2310 		nr[lru] = scan;
2311 	}
2312 }
2313 
2314 /*
2315  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2316  */
2317 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2318 			      struct scan_control *sc, unsigned long *lru_pages)
2319 {
2320 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2321 	unsigned long nr[NR_LRU_LISTS];
2322 	unsigned long targets[NR_LRU_LISTS];
2323 	unsigned long nr_to_scan;
2324 	enum lru_list lru;
2325 	unsigned long nr_reclaimed = 0;
2326 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2327 	struct blk_plug plug;
2328 	bool scan_adjusted;
2329 
2330 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2331 
2332 	/* Record the original scan target for proportional adjustments later */
2333 	memcpy(targets, nr, sizeof(nr));
2334 
2335 	/*
2336 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2337 	 * event that can occur when there is little memory pressure e.g.
2338 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2339 	 * when the requested number of pages are reclaimed when scanning at
2340 	 * DEF_PRIORITY on the assumption that the fact we are direct
2341 	 * reclaiming implies that kswapd is not keeping up and it is best to
2342 	 * do a batch of work at once. For memcg reclaim one check is made to
2343 	 * abort proportional reclaim if either the file or anon lru has already
2344 	 * dropped to zero at the first pass.
2345 	 */
2346 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2347 			 sc->priority == DEF_PRIORITY);
2348 
2349 	blk_start_plug(&plug);
2350 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2351 					nr[LRU_INACTIVE_FILE]) {
2352 		unsigned long nr_anon, nr_file, percentage;
2353 		unsigned long nr_scanned;
2354 
2355 		for_each_evictable_lru(lru) {
2356 			if (nr[lru]) {
2357 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2358 				nr[lru] -= nr_to_scan;
2359 
2360 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2361 							    lruvec, memcg, sc);
2362 			}
2363 		}
2364 
2365 		cond_resched();
2366 
2367 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2368 			continue;
2369 
2370 		/*
2371 		 * For kswapd and memcg, reclaim at least the number of pages
2372 		 * requested. Ensure that the anon and file LRUs are scanned
2373 		 * proportionally what was requested by get_scan_count(). We
2374 		 * stop reclaiming one LRU and reduce the amount scanning
2375 		 * proportional to the original scan target.
2376 		 */
2377 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2378 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2379 
2380 		/*
2381 		 * It's just vindictive to attack the larger once the smaller
2382 		 * has gone to zero.  And given the way we stop scanning the
2383 		 * smaller below, this makes sure that we only make one nudge
2384 		 * towards proportionality once we've got nr_to_reclaim.
2385 		 */
2386 		if (!nr_file || !nr_anon)
2387 			break;
2388 
2389 		if (nr_file > nr_anon) {
2390 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2391 						targets[LRU_ACTIVE_ANON] + 1;
2392 			lru = LRU_BASE;
2393 			percentage = nr_anon * 100 / scan_target;
2394 		} else {
2395 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2396 						targets[LRU_ACTIVE_FILE] + 1;
2397 			lru = LRU_FILE;
2398 			percentage = nr_file * 100 / scan_target;
2399 		}
2400 
2401 		/* Stop scanning the smaller of the LRU */
2402 		nr[lru] = 0;
2403 		nr[lru + LRU_ACTIVE] = 0;
2404 
2405 		/*
2406 		 * Recalculate the other LRU scan count based on its original
2407 		 * scan target and the percentage scanning already complete
2408 		 */
2409 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2410 		nr_scanned = targets[lru] - nr[lru];
2411 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2412 		nr[lru] -= min(nr[lru], nr_scanned);
2413 
2414 		lru += LRU_ACTIVE;
2415 		nr_scanned = targets[lru] - nr[lru];
2416 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2417 		nr[lru] -= min(nr[lru], nr_scanned);
2418 
2419 		scan_adjusted = true;
2420 	}
2421 	blk_finish_plug(&plug);
2422 	sc->nr_reclaimed += nr_reclaimed;
2423 
2424 	/*
2425 	 * Even if we did not try to evict anon pages at all, we want to
2426 	 * rebalance the anon lru active/inactive ratio.
2427 	 */
2428 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2429 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2430 				   sc, LRU_ACTIVE_ANON);
2431 }
2432 
2433 /* Use reclaim/compaction for costly allocs or under memory pressure */
2434 static bool in_reclaim_compaction(struct scan_control *sc)
2435 {
2436 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2437 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2438 			 sc->priority < DEF_PRIORITY - 2))
2439 		return true;
2440 
2441 	return false;
2442 }
2443 
2444 /*
2445  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2446  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2447  * true if more pages should be reclaimed such that when the page allocator
2448  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2449  * It will give up earlier than that if there is difficulty reclaiming pages.
2450  */
2451 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2452 					unsigned long nr_reclaimed,
2453 					unsigned long nr_scanned,
2454 					struct scan_control *sc)
2455 {
2456 	unsigned long pages_for_compaction;
2457 	unsigned long inactive_lru_pages;
2458 	int z;
2459 
2460 	/* If not in reclaim/compaction mode, stop */
2461 	if (!in_reclaim_compaction(sc))
2462 		return false;
2463 
2464 	/* Consider stopping depending on scan and reclaim activity */
2465 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2466 		/*
2467 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2468 		 * full LRU list has been scanned and we are still failing
2469 		 * to reclaim pages. This full LRU scan is potentially
2470 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2471 		 */
2472 		if (!nr_reclaimed && !nr_scanned)
2473 			return false;
2474 	} else {
2475 		/*
2476 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2477 		 * fail without consequence, stop if we failed to reclaim
2478 		 * any pages from the last SWAP_CLUSTER_MAX number of
2479 		 * pages that were scanned. This will return to the
2480 		 * caller faster at the risk reclaim/compaction and
2481 		 * the resulting allocation attempt fails
2482 		 */
2483 		if (!nr_reclaimed)
2484 			return false;
2485 	}
2486 
2487 	/*
2488 	 * If we have not reclaimed enough pages for compaction and the
2489 	 * inactive lists are large enough, continue reclaiming
2490 	 */
2491 	pages_for_compaction = compact_gap(sc->order);
2492 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2493 	if (get_nr_swap_pages() > 0)
2494 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2495 	if (sc->nr_reclaimed < pages_for_compaction &&
2496 			inactive_lru_pages > pages_for_compaction)
2497 		return true;
2498 
2499 	/* If compaction would go ahead or the allocation would succeed, stop */
2500 	for (z = 0; z <= sc->reclaim_idx; z++) {
2501 		struct zone *zone = &pgdat->node_zones[z];
2502 		if (!managed_zone(zone))
2503 			continue;
2504 
2505 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2506 		case COMPACT_SUCCESS:
2507 		case COMPACT_CONTINUE:
2508 			return false;
2509 		default:
2510 			/* check next zone */
2511 			;
2512 		}
2513 	}
2514 	return true;
2515 }
2516 
2517 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2518 {
2519 	struct reclaim_state *reclaim_state = current->reclaim_state;
2520 	unsigned long nr_reclaimed, nr_scanned;
2521 	bool reclaimable = false;
2522 
2523 	do {
2524 		struct mem_cgroup *root = sc->target_mem_cgroup;
2525 		struct mem_cgroup_reclaim_cookie reclaim = {
2526 			.pgdat = pgdat,
2527 			.priority = sc->priority,
2528 		};
2529 		unsigned long node_lru_pages = 0;
2530 		struct mem_cgroup *memcg;
2531 
2532 		nr_reclaimed = sc->nr_reclaimed;
2533 		nr_scanned = sc->nr_scanned;
2534 
2535 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2536 		do {
2537 			unsigned long lru_pages;
2538 			unsigned long reclaimed;
2539 			unsigned long scanned;
2540 
2541 			if (mem_cgroup_low(root, memcg)) {
2542 				if (!sc->memcg_low_reclaim) {
2543 					sc->memcg_low_skipped = 1;
2544 					continue;
2545 				}
2546 				mem_cgroup_event(memcg, MEMCG_LOW);
2547 			}
2548 
2549 			reclaimed = sc->nr_reclaimed;
2550 			scanned = sc->nr_scanned;
2551 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2552 			node_lru_pages += lru_pages;
2553 
2554 			if (memcg)
2555 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2556 					    memcg, sc->priority);
2557 
2558 			/* Record the group's reclaim efficiency */
2559 			vmpressure(sc->gfp_mask, memcg, false,
2560 				   sc->nr_scanned - scanned,
2561 				   sc->nr_reclaimed - reclaimed);
2562 
2563 			/*
2564 			 * Direct reclaim and kswapd have to scan all memory
2565 			 * cgroups to fulfill the overall scan target for the
2566 			 * node.
2567 			 *
2568 			 * Limit reclaim, on the other hand, only cares about
2569 			 * nr_to_reclaim pages to be reclaimed and it will
2570 			 * retry with decreasing priority if one round over the
2571 			 * whole hierarchy is not sufficient.
2572 			 */
2573 			if (!global_reclaim(sc) &&
2574 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2575 				mem_cgroup_iter_break(root, memcg);
2576 				break;
2577 			}
2578 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2579 
2580 		if (global_reclaim(sc))
2581 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2582 				    sc->priority);
2583 
2584 		if (reclaim_state) {
2585 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2586 			reclaim_state->reclaimed_slab = 0;
2587 		}
2588 
2589 		/* Record the subtree's reclaim efficiency */
2590 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2591 			   sc->nr_scanned - nr_scanned,
2592 			   sc->nr_reclaimed - nr_reclaimed);
2593 
2594 		if (sc->nr_reclaimed - nr_reclaimed)
2595 			reclaimable = true;
2596 
2597 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2598 					 sc->nr_scanned - nr_scanned, sc));
2599 
2600 	/*
2601 	 * Kswapd gives up on balancing particular nodes after too
2602 	 * many failures to reclaim anything from them and goes to
2603 	 * sleep. On reclaim progress, reset the failure counter. A
2604 	 * successful direct reclaim run will revive a dormant kswapd.
2605 	 */
2606 	if (reclaimable)
2607 		pgdat->kswapd_failures = 0;
2608 
2609 	return reclaimable;
2610 }
2611 
2612 /*
2613  * Returns true if compaction should go ahead for a costly-order request, or
2614  * the allocation would already succeed without compaction. Return false if we
2615  * should reclaim first.
2616  */
2617 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2618 {
2619 	unsigned long watermark;
2620 	enum compact_result suitable;
2621 
2622 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2623 	if (suitable == COMPACT_SUCCESS)
2624 		/* Allocation should succeed already. Don't reclaim. */
2625 		return true;
2626 	if (suitable == COMPACT_SKIPPED)
2627 		/* Compaction cannot yet proceed. Do reclaim. */
2628 		return false;
2629 
2630 	/*
2631 	 * Compaction is already possible, but it takes time to run and there
2632 	 * are potentially other callers using the pages just freed. So proceed
2633 	 * with reclaim to make a buffer of free pages available to give
2634 	 * compaction a reasonable chance of completing and allocating the page.
2635 	 * Note that we won't actually reclaim the whole buffer in one attempt
2636 	 * as the target watermark in should_continue_reclaim() is lower. But if
2637 	 * we are already above the high+gap watermark, don't reclaim at all.
2638 	 */
2639 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2640 
2641 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2642 }
2643 
2644 /*
2645  * This is the direct reclaim path, for page-allocating processes.  We only
2646  * try to reclaim pages from zones which will satisfy the caller's allocation
2647  * request.
2648  *
2649  * If a zone is deemed to be full of pinned pages then just give it a light
2650  * scan then give up on it.
2651  */
2652 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2653 {
2654 	struct zoneref *z;
2655 	struct zone *zone;
2656 	unsigned long nr_soft_reclaimed;
2657 	unsigned long nr_soft_scanned;
2658 	gfp_t orig_mask;
2659 	pg_data_t *last_pgdat = NULL;
2660 
2661 	/*
2662 	 * If the number of buffer_heads in the machine exceeds the maximum
2663 	 * allowed level, force direct reclaim to scan the highmem zone as
2664 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2665 	 */
2666 	orig_mask = sc->gfp_mask;
2667 	if (buffer_heads_over_limit) {
2668 		sc->gfp_mask |= __GFP_HIGHMEM;
2669 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2670 	}
2671 
2672 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2673 					sc->reclaim_idx, sc->nodemask) {
2674 		/*
2675 		 * Take care memory controller reclaiming has small influence
2676 		 * to global LRU.
2677 		 */
2678 		if (global_reclaim(sc)) {
2679 			if (!cpuset_zone_allowed(zone,
2680 						 GFP_KERNEL | __GFP_HARDWALL))
2681 				continue;
2682 
2683 			/*
2684 			 * If we already have plenty of memory free for
2685 			 * compaction in this zone, don't free any more.
2686 			 * Even though compaction is invoked for any
2687 			 * non-zero order, only frequent costly order
2688 			 * reclamation is disruptive enough to become a
2689 			 * noticeable problem, like transparent huge
2690 			 * page allocations.
2691 			 */
2692 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2693 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2694 			    compaction_ready(zone, sc)) {
2695 				sc->compaction_ready = true;
2696 				continue;
2697 			}
2698 
2699 			/*
2700 			 * Shrink each node in the zonelist once. If the
2701 			 * zonelist is ordered by zone (not the default) then a
2702 			 * node may be shrunk multiple times but in that case
2703 			 * the user prefers lower zones being preserved.
2704 			 */
2705 			if (zone->zone_pgdat == last_pgdat)
2706 				continue;
2707 
2708 			/*
2709 			 * This steals pages from memory cgroups over softlimit
2710 			 * and returns the number of reclaimed pages and
2711 			 * scanned pages. This works for global memory pressure
2712 			 * and balancing, not for a memcg's limit.
2713 			 */
2714 			nr_soft_scanned = 0;
2715 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2716 						sc->order, sc->gfp_mask,
2717 						&nr_soft_scanned);
2718 			sc->nr_reclaimed += nr_soft_reclaimed;
2719 			sc->nr_scanned += nr_soft_scanned;
2720 			/* need some check for avoid more shrink_zone() */
2721 		}
2722 
2723 		/* See comment about same check for global reclaim above */
2724 		if (zone->zone_pgdat == last_pgdat)
2725 			continue;
2726 		last_pgdat = zone->zone_pgdat;
2727 		shrink_node(zone->zone_pgdat, sc);
2728 	}
2729 
2730 	/*
2731 	 * Restore to original mask to avoid the impact on the caller if we
2732 	 * promoted it to __GFP_HIGHMEM.
2733 	 */
2734 	sc->gfp_mask = orig_mask;
2735 }
2736 
2737 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2738 {
2739 	struct mem_cgroup *memcg;
2740 
2741 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2742 	do {
2743 		unsigned long refaults;
2744 		struct lruvec *lruvec;
2745 
2746 		if (memcg)
2747 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2748 		else
2749 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2750 
2751 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2752 		lruvec->refaults = refaults;
2753 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2754 }
2755 
2756 /*
2757  * This is the main entry point to direct page reclaim.
2758  *
2759  * If a full scan of the inactive list fails to free enough memory then we
2760  * are "out of memory" and something needs to be killed.
2761  *
2762  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2763  * high - the zone may be full of dirty or under-writeback pages, which this
2764  * caller can't do much about.  We kick the writeback threads and take explicit
2765  * naps in the hope that some of these pages can be written.  But if the
2766  * allocating task holds filesystem locks which prevent writeout this might not
2767  * work, and the allocation attempt will fail.
2768  *
2769  * returns:	0, if no pages reclaimed
2770  * 		else, the number of pages reclaimed
2771  */
2772 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2773 					  struct scan_control *sc)
2774 {
2775 	int initial_priority = sc->priority;
2776 	pg_data_t *last_pgdat;
2777 	struct zoneref *z;
2778 	struct zone *zone;
2779 retry:
2780 	delayacct_freepages_start();
2781 
2782 	if (global_reclaim(sc))
2783 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2784 
2785 	do {
2786 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2787 				sc->priority);
2788 		sc->nr_scanned = 0;
2789 		shrink_zones(zonelist, sc);
2790 
2791 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2792 			break;
2793 
2794 		if (sc->compaction_ready)
2795 			break;
2796 
2797 		/*
2798 		 * If we're getting trouble reclaiming, start doing
2799 		 * writepage even in laptop mode.
2800 		 */
2801 		if (sc->priority < DEF_PRIORITY - 2)
2802 			sc->may_writepage = 1;
2803 	} while (--sc->priority >= 0);
2804 
2805 	last_pgdat = NULL;
2806 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2807 					sc->nodemask) {
2808 		if (zone->zone_pgdat == last_pgdat)
2809 			continue;
2810 		last_pgdat = zone->zone_pgdat;
2811 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2812 	}
2813 
2814 	delayacct_freepages_end();
2815 
2816 	if (sc->nr_reclaimed)
2817 		return sc->nr_reclaimed;
2818 
2819 	/* Aborted reclaim to try compaction? don't OOM, then */
2820 	if (sc->compaction_ready)
2821 		return 1;
2822 
2823 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2824 	if (sc->memcg_low_skipped) {
2825 		sc->priority = initial_priority;
2826 		sc->memcg_low_reclaim = 1;
2827 		sc->memcg_low_skipped = 0;
2828 		goto retry;
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 static bool allow_direct_reclaim(pg_data_t *pgdat)
2835 {
2836 	struct zone *zone;
2837 	unsigned long pfmemalloc_reserve = 0;
2838 	unsigned long free_pages = 0;
2839 	int i;
2840 	bool wmark_ok;
2841 
2842 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2843 		return true;
2844 
2845 	for (i = 0; i <= ZONE_NORMAL; i++) {
2846 		zone = &pgdat->node_zones[i];
2847 		if (!managed_zone(zone))
2848 			continue;
2849 
2850 		if (!zone_reclaimable_pages(zone))
2851 			continue;
2852 
2853 		pfmemalloc_reserve += min_wmark_pages(zone);
2854 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2855 	}
2856 
2857 	/* If there are no reserves (unexpected config) then do not throttle */
2858 	if (!pfmemalloc_reserve)
2859 		return true;
2860 
2861 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2862 
2863 	/* kswapd must be awake if processes are being throttled */
2864 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2865 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2866 						(enum zone_type)ZONE_NORMAL);
2867 		wake_up_interruptible(&pgdat->kswapd_wait);
2868 	}
2869 
2870 	return wmark_ok;
2871 }
2872 
2873 /*
2874  * Throttle direct reclaimers if backing storage is backed by the network
2875  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2876  * depleted. kswapd will continue to make progress and wake the processes
2877  * when the low watermark is reached.
2878  *
2879  * Returns true if a fatal signal was delivered during throttling. If this
2880  * happens, the page allocator should not consider triggering the OOM killer.
2881  */
2882 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2883 					nodemask_t *nodemask)
2884 {
2885 	struct zoneref *z;
2886 	struct zone *zone;
2887 	pg_data_t *pgdat = NULL;
2888 
2889 	/*
2890 	 * Kernel threads should not be throttled as they may be indirectly
2891 	 * responsible for cleaning pages necessary for reclaim to make forward
2892 	 * progress. kjournald for example may enter direct reclaim while
2893 	 * committing a transaction where throttling it could forcing other
2894 	 * processes to block on log_wait_commit().
2895 	 */
2896 	if (current->flags & PF_KTHREAD)
2897 		goto out;
2898 
2899 	/*
2900 	 * If a fatal signal is pending, this process should not throttle.
2901 	 * It should return quickly so it can exit and free its memory
2902 	 */
2903 	if (fatal_signal_pending(current))
2904 		goto out;
2905 
2906 	/*
2907 	 * Check if the pfmemalloc reserves are ok by finding the first node
2908 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2909 	 * GFP_KERNEL will be required for allocating network buffers when
2910 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2911 	 *
2912 	 * Throttling is based on the first usable node and throttled processes
2913 	 * wait on a queue until kswapd makes progress and wakes them. There
2914 	 * is an affinity then between processes waking up and where reclaim
2915 	 * progress has been made assuming the process wakes on the same node.
2916 	 * More importantly, processes running on remote nodes will not compete
2917 	 * for remote pfmemalloc reserves and processes on different nodes
2918 	 * should make reasonable progress.
2919 	 */
2920 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2921 					gfp_zone(gfp_mask), nodemask) {
2922 		if (zone_idx(zone) > ZONE_NORMAL)
2923 			continue;
2924 
2925 		/* Throttle based on the first usable node */
2926 		pgdat = zone->zone_pgdat;
2927 		if (allow_direct_reclaim(pgdat))
2928 			goto out;
2929 		break;
2930 	}
2931 
2932 	/* If no zone was usable by the allocation flags then do not throttle */
2933 	if (!pgdat)
2934 		goto out;
2935 
2936 	/* Account for the throttling */
2937 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2938 
2939 	/*
2940 	 * If the caller cannot enter the filesystem, it's possible that it
2941 	 * is due to the caller holding an FS lock or performing a journal
2942 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2943 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2944 	 * blocked waiting on the same lock. Instead, throttle for up to a
2945 	 * second before continuing.
2946 	 */
2947 	if (!(gfp_mask & __GFP_FS)) {
2948 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2949 			allow_direct_reclaim(pgdat), HZ);
2950 
2951 		goto check_pending;
2952 	}
2953 
2954 	/* Throttle until kswapd wakes the process */
2955 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2956 		allow_direct_reclaim(pgdat));
2957 
2958 check_pending:
2959 	if (fatal_signal_pending(current))
2960 		return true;
2961 
2962 out:
2963 	return false;
2964 }
2965 
2966 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2967 				gfp_t gfp_mask, nodemask_t *nodemask)
2968 {
2969 	unsigned long nr_reclaimed;
2970 	struct scan_control sc = {
2971 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2972 		.gfp_mask = current_gfp_context(gfp_mask),
2973 		.reclaim_idx = gfp_zone(gfp_mask),
2974 		.order = order,
2975 		.nodemask = nodemask,
2976 		.priority = DEF_PRIORITY,
2977 		.may_writepage = !laptop_mode,
2978 		.may_unmap = 1,
2979 		.may_swap = 1,
2980 	};
2981 
2982 	/*
2983 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2984 	 * 1 is returned so that the page allocator does not OOM kill at this
2985 	 * point.
2986 	 */
2987 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
2988 		return 1;
2989 
2990 	trace_mm_vmscan_direct_reclaim_begin(order,
2991 				sc.may_writepage,
2992 				sc.gfp_mask,
2993 				sc.reclaim_idx);
2994 
2995 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2996 
2997 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2998 
2999 	return nr_reclaimed;
3000 }
3001 
3002 #ifdef CONFIG_MEMCG
3003 
3004 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3005 						gfp_t gfp_mask, bool noswap,
3006 						pg_data_t *pgdat,
3007 						unsigned long *nr_scanned)
3008 {
3009 	struct scan_control sc = {
3010 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3011 		.target_mem_cgroup = memcg,
3012 		.may_writepage = !laptop_mode,
3013 		.may_unmap = 1,
3014 		.reclaim_idx = MAX_NR_ZONES - 1,
3015 		.may_swap = !noswap,
3016 	};
3017 	unsigned long lru_pages;
3018 
3019 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3020 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3021 
3022 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3023 						      sc.may_writepage,
3024 						      sc.gfp_mask,
3025 						      sc.reclaim_idx);
3026 
3027 	/*
3028 	 * NOTE: Although we can get the priority field, using it
3029 	 * here is not a good idea, since it limits the pages we can scan.
3030 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3031 	 * will pick up pages from other mem cgroup's as well. We hack
3032 	 * the priority and make it zero.
3033 	 */
3034 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3035 
3036 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3037 
3038 	*nr_scanned = sc.nr_scanned;
3039 	return sc.nr_reclaimed;
3040 }
3041 
3042 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3043 					   unsigned long nr_pages,
3044 					   gfp_t gfp_mask,
3045 					   bool may_swap)
3046 {
3047 	struct zonelist *zonelist;
3048 	unsigned long nr_reclaimed;
3049 	int nid;
3050 	unsigned int noreclaim_flag;
3051 	struct scan_control sc = {
3052 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3053 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3054 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3055 		.reclaim_idx = MAX_NR_ZONES - 1,
3056 		.target_mem_cgroup = memcg,
3057 		.priority = DEF_PRIORITY,
3058 		.may_writepage = !laptop_mode,
3059 		.may_unmap = 1,
3060 		.may_swap = may_swap,
3061 	};
3062 
3063 	/*
3064 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3065 	 * take care of from where we get pages. So the node where we start the
3066 	 * scan does not need to be the current node.
3067 	 */
3068 	nid = mem_cgroup_select_victim_node(memcg);
3069 
3070 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3071 
3072 	trace_mm_vmscan_memcg_reclaim_begin(0,
3073 					    sc.may_writepage,
3074 					    sc.gfp_mask,
3075 					    sc.reclaim_idx);
3076 
3077 	noreclaim_flag = memalloc_noreclaim_save();
3078 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3079 	memalloc_noreclaim_restore(noreclaim_flag);
3080 
3081 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3082 
3083 	return nr_reclaimed;
3084 }
3085 #endif
3086 
3087 static void age_active_anon(struct pglist_data *pgdat,
3088 				struct scan_control *sc)
3089 {
3090 	struct mem_cgroup *memcg;
3091 
3092 	if (!total_swap_pages)
3093 		return;
3094 
3095 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3096 	do {
3097 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3098 
3099 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3100 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3101 					   sc, LRU_ACTIVE_ANON);
3102 
3103 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3104 	} while (memcg);
3105 }
3106 
3107 /*
3108  * Returns true if there is an eligible zone balanced for the request order
3109  * and classzone_idx
3110  */
3111 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3112 {
3113 	int i;
3114 	unsigned long mark = -1;
3115 	struct zone *zone;
3116 
3117 	for (i = 0; i <= classzone_idx; i++) {
3118 		zone = pgdat->node_zones + i;
3119 
3120 		if (!managed_zone(zone))
3121 			continue;
3122 
3123 		mark = high_wmark_pages(zone);
3124 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3125 			return true;
3126 	}
3127 
3128 	/*
3129 	 * If a node has no populated zone within classzone_idx, it does not
3130 	 * need balancing by definition. This can happen if a zone-restricted
3131 	 * allocation tries to wake a remote kswapd.
3132 	 */
3133 	if (mark == -1)
3134 		return true;
3135 
3136 	return false;
3137 }
3138 
3139 /* Clear pgdat state for congested, dirty or under writeback. */
3140 static void clear_pgdat_congested(pg_data_t *pgdat)
3141 {
3142 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3143 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3144 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3145 }
3146 
3147 /*
3148  * Prepare kswapd for sleeping. This verifies that there are no processes
3149  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3150  *
3151  * Returns true if kswapd is ready to sleep
3152  */
3153 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3154 {
3155 	/*
3156 	 * The throttled processes are normally woken up in balance_pgdat() as
3157 	 * soon as allow_direct_reclaim() is true. But there is a potential
3158 	 * race between when kswapd checks the watermarks and a process gets
3159 	 * throttled. There is also a potential race if processes get
3160 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3161 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3162 	 * the wake up checks. If kswapd is going to sleep, no process should
3163 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3164 	 * the wake up is premature, processes will wake kswapd and get
3165 	 * throttled again. The difference from wake ups in balance_pgdat() is
3166 	 * that here we are under prepare_to_wait().
3167 	 */
3168 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3169 		wake_up_all(&pgdat->pfmemalloc_wait);
3170 
3171 	/* Hopeless node, leave it to direct reclaim */
3172 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3173 		return true;
3174 
3175 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3176 		clear_pgdat_congested(pgdat);
3177 		return true;
3178 	}
3179 
3180 	return false;
3181 }
3182 
3183 /*
3184  * kswapd shrinks a node of pages that are at or below the highest usable
3185  * zone that is currently unbalanced.
3186  *
3187  * Returns true if kswapd scanned at least the requested number of pages to
3188  * reclaim or if the lack of progress was due to pages under writeback.
3189  * This is used to determine if the scanning priority needs to be raised.
3190  */
3191 static bool kswapd_shrink_node(pg_data_t *pgdat,
3192 			       struct scan_control *sc)
3193 {
3194 	struct zone *zone;
3195 	int z;
3196 
3197 	/* Reclaim a number of pages proportional to the number of zones */
3198 	sc->nr_to_reclaim = 0;
3199 	for (z = 0; z <= sc->reclaim_idx; z++) {
3200 		zone = pgdat->node_zones + z;
3201 		if (!managed_zone(zone))
3202 			continue;
3203 
3204 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3205 	}
3206 
3207 	/*
3208 	 * Historically care was taken to put equal pressure on all zones but
3209 	 * now pressure is applied based on node LRU order.
3210 	 */
3211 	shrink_node(pgdat, sc);
3212 
3213 	/*
3214 	 * Fragmentation may mean that the system cannot be rebalanced for
3215 	 * high-order allocations. If twice the allocation size has been
3216 	 * reclaimed then recheck watermarks only at order-0 to prevent
3217 	 * excessive reclaim. Assume that a process requested a high-order
3218 	 * can direct reclaim/compact.
3219 	 */
3220 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3221 		sc->order = 0;
3222 
3223 	return sc->nr_scanned >= sc->nr_to_reclaim;
3224 }
3225 
3226 /*
3227  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3228  * that are eligible for use by the caller until at least one zone is
3229  * balanced.
3230  *
3231  * Returns the order kswapd finished reclaiming at.
3232  *
3233  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3234  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3235  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3236  * or lower is eligible for reclaim until at least one usable zone is
3237  * balanced.
3238  */
3239 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3240 {
3241 	int i;
3242 	unsigned long nr_soft_reclaimed;
3243 	unsigned long nr_soft_scanned;
3244 	struct zone *zone;
3245 	struct scan_control sc = {
3246 		.gfp_mask = GFP_KERNEL,
3247 		.order = order,
3248 		.priority = DEF_PRIORITY,
3249 		.may_writepage = !laptop_mode,
3250 		.may_unmap = 1,
3251 		.may_swap = 1,
3252 	};
3253 	count_vm_event(PAGEOUTRUN);
3254 
3255 	do {
3256 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3257 		bool raise_priority = true;
3258 
3259 		sc.reclaim_idx = classzone_idx;
3260 
3261 		/*
3262 		 * If the number of buffer_heads exceeds the maximum allowed
3263 		 * then consider reclaiming from all zones. This has a dual
3264 		 * purpose -- on 64-bit systems it is expected that
3265 		 * buffer_heads are stripped during active rotation. On 32-bit
3266 		 * systems, highmem pages can pin lowmem memory and shrinking
3267 		 * buffers can relieve lowmem pressure. Reclaim may still not
3268 		 * go ahead if all eligible zones for the original allocation
3269 		 * request are balanced to avoid excessive reclaim from kswapd.
3270 		 */
3271 		if (buffer_heads_over_limit) {
3272 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3273 				zone = pgdat->node_zones + i;
3274 				if (!managed_zone(zone))
3275 					continue;
3276 
3277 				sc.reclaim_idx = i;
3278 				break;
3279 			}
3280 		}
3281 
3282 		/*
3283 		 * Only reclaim if there are no eligible zones. Note that
3284 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3285 		 * have adjusted it.
3286 		 */
3287 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3288 			goto out;
3289 
3290 		/*
3291 		 * Do some background aging of the anon list, to give
3292 		 * pages a chance to be referenced before reclaiming. All
3293 		 * pages are rotated regardless of classzone as this is
3294 		 * about consistent aging.
3295 		 */
3296 		age_active_anon(pgdat, &sc);
3297 
3298 		/*
3299 		 * If we're getting trouble reclaiming, start doing writepage
3300 		 * even in laptop mode.
3301 		 */
3302 		if (sc.priority < DEF_PRIORITY - 2)
3303 			sc.may_writepage = 1;
3304 
3305 		/* Call soft limit reclaim before calling shrink_node. */
3306 		sc.nr_scanned = 0;
3307 		nr_soft_scanned = 0;
3308 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3309 						sc.gfp_mask, &nr_soft_scanned);
3310 		sc.nr_reclaimed += nr_soft_reclaimed;
3311 
3312 		/*
3313 		 * There should be no need to raise the scanning priority if
3314 		 * enough pages are already being scanned that that high
3315 		 * watermark would be met at 100% efficiency.
3316 		 */
3317 		if (kswapd_shrink_node(pgdat, &sc))
3318 			raise_priority = false;
3319 
3320 		/*
3321 		 * If the low watermark is met there is no need for processes
3322 		 * to be throttled on pfmemalloc_wait as they should not be
3323 		 * able to safely make forward progress. Wake them
3324 		 */
3325 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3326 				allow_direct_reclaim(pgdat))
3327 			wake_up_all(&pgdat->pfmemalloc_wait);
3328 
3329 		/* Check if kswapd should be suspending */
3330 		if (try_to_freeze() || kthread_should_stop())
3331 			break;
3332 
3333 		/*
3334 		 * Raise priority if scanning rate is too low or there was no
3335 		 * progress in reclaiming pages
3336 		 */
3337 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3338 		if (raise_priority || !nr_reclaimed)
3339 			sc.priority--;
3340 	} while (sc.priority >= 1);
3341 
3342 	if (!sc.nr_reclaimed)
3343 		pgdat->kswapd_failures++;
3344 
3345 out:
3346 	snapshot_refaults(NULL, pgdat);
3347 	/*
3348 	 * Return the order kswapd stopped reclaiming at as
3349 	 * prepare_kswapd_sleep() takes it into account. If another caller
3350 	 * entered the allocator slow path while kswapd was awake, order will
3351 	 * remain at the higher level.
3352 	 */
3353 	return sc.order;
3354 }
3355 
3356 /*
3357  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3358  * allocation request woke kswapd for. When kswapd has not woken recently,
3359  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3360  * given classzone and returns it or the highest classzone index kswapd
3361  * was recently woke for.
3362  */
3363 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3364 					   enum zone_type classzone_idx)
3365 {
3366 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3367 		return classzone_idx;
3368 
3369 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3370 }
3371 
3372 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3373 				unsigned int classzone_idx)
3374 {
3375 	long remaining = 0;
3376 	DEFINE_WAIT(wait);
3377 
3378 	if (freezing(current) || kthread_should_stop())
3379 		return;
3380 
3381 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3382 
3383 	/*
3384 	 * Try to sleep for a short interval. Note that kcompactd will only be
3385 	 * woken if it is possible to sleep for a short interval. This is
3386 	 * deliberate on the assumption that if reclaim cannot keep an
3387 	 * eligible zone balanced that it's also unlikely that compaction will
3388 	 * succeed.
3389 	 */
3390 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3391 		/*
3392 		 * Compaction records what page blocks it recently failed to
3393 		 * isolate pages from and skips them in the future scanning.
3394 		 * When kswapd is going to sleep, it is reasonable to assume
3395 		 * that pages and compaction may succeed so reset the cache.
3396 		 */
3397 		reset_isolation_suitable(pgdat);
3398 
3399 		/*
3400 		 * We have freed the memory, now we should compact it to make
3401 		 * allocation of the requested order possible.
3402 		 */
3403 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3404 
3405 		remaining = schedule_timeout(HZ/10);
3406 
3407 		/*
3408 		 * If woken prematurely then reset kswapd_classzone_idx and
3409 		 * order. The values will either be from a wakeup request or
3410 		 * the previous request that slept prematurely.
3411 		 */
3412 		if (remaining) {
3413 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3414 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3415 		}
3416 
3417 		finish_wait(&pgdat->kswapd_wait, &wait);
3418 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3419 	}
3420 
3421 	/*
3422 	 * After a short sleep, check if it was a premature sleep. If not, then
3423 	 * go fully to sleep until explicitly woken up.
3424 	 */
3425 	if (!remaining &&
3426 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3427 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3428 
3429 		/*
3430 		 * vmstat counters are not perfectly accurate and the estimated
3431 		 * value for counters such as NR_FREE_PAGES can deviate from the
3432 		 * true value by nr_online_cpus * threshold. To avoid the zone
3433 		 * watermarks being breached while under pressure, we reduce the
3434 		 * per-cpu vmstat threshold while kswapd is awake and restore
3435 		 * them before going back to sleep.
3436 		 */
3437 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3438 
3439 		if (!kthread_should_stop())
3440 			schedule();
3441 
3442 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3443 	} else {
3444 		if (remaining)
3445 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3446 		else
3447 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3448 	}
3449 	finish_wait(&pgdat->kswapd_wait, &wait);
3450 }
3451 
3452 /*
3453  * The background pageout daemon, started as a kernel thread
3454  * from the init process.
3455  *
3456  * This basically trickles out pages so that we have _some_
3457  * free memory available even if there is no other activity
3458  * that frees anything up. This is needed for things like routing
3459  * etc, where we otherwise might have all activity going on in
3460  * asynchronous contexts that cannot page things out.
3461  *
3462  * If there are applications that are active memory-allocators
3463  * (most normal use), this basically shouldn't matter.
3464  */
3465 static int kswapd(void *p)
3466 {
3467 	unsigned int alloc_order, reclaim_order;
3468 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3469 	pg_data_t *pgdat = (pg_data_t*)p;
3470 	struct task_struct *tsk = current;
3471 
3472 	struct reclaim_state reclaim_state = {
3473 		.reclaimed_slab = 0,
3474 	};
3475 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3476 
3477 	if (!cpumask_empty(cpumask))
3478 		set_cpus_allowed_ptr(tsk, cpumask);
3479 	current->reclaim_state = &reclaim_state;
3480 
3481 	/*
3482 	 * Tell the memory management that we're a "memory allocator",
3483 	 * and that if we need more memory we should get access to it
3484 	 * regardless (see "__alloc_pages()"). "kswapd" should
3485 	 * never get caught in the normal page freeing logic.
3486 	 *
3487 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3488 	 * you need a small amount of memory in order to be able to
3489 	 * page out something else, and this flag essentially protects
3490 	 * us from recursively trying to free more memory as we're
3491 	 * trying to free the first piece of memory in the first place).
3492 	 */
3493 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3494 	set_freezable();
3495 
3496 	pgdat->kswapd_order = 0;
3497 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3498 	for ( ; ; ) {
3499 		bool ret;
3500 
3501 		alloc_order = reclaim_order = pgdat->kswapd_order;
3502 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3503 
3504 kswapd_try_sleep:
3505 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3506 					classzone_idx);
3507 
3508 		/* Read the new order and classzone_idx */
3509 		alloc_order = reclaim_order = pgdat->kswapd_order;
3510 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3511 		pgdat->kswapd_order = 0;
3512 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3513 
3514 		ret = try_to_freeze();
3515 		if (kthread_should_stop())
3516 			break;
3517 
3518 		/*
3519 		 * We can speed up thawing tasks if we don't call balance_pgdat
3520 		 * after returning from the refrigerator
3521 		 */
3522 		if (ret)
3523 			continue;
3524 
3525 		/*
3526 		 * Reclaim begins at the requested order but if a high-order
3527 		 * reclaim fails then kswapd falls back to reclaiming for
3528 		 * order-0. If that happens, kswapd will consider sleeping
3529 		 * for the order it finished reclaiming at (reclaim_order)
3530 		 * but kcompactd is woken to compact for the original
3531 		 * request (alloc_order).
3532 		 */
3533 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3534 						alloc_order);
3535 		fs_reclaim_acquire(GFP_KERNEL);
3536 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3537 		fs_reclaim_release(GFP_KERNEL);
3538 		if (reclaim_order < alloc_order)
3539 			goto kswapd_try_sleep;
3540 	}
3541 
3542 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3543 	current->reclaim_state = NULL;
3544 
3545 	return 0;
3546 }
3547 
3548 /*
3549  * A zone is low on free memory, so wake its kswapd task to service it.
3550  */
3551 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3552 {
3553 	pg_data_t *pgdat;
3554 
3555 	if (!managed_zone(zone))
3556 		return;
3557 
3558 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3559 		return;
3560 	pgdat = zone->zone_pgdat;
3561 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3562 							   classzone_idx);
3563 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3564 	if (!waitqueue_active(&pgdat->kswapd_wait))
3565 		return;
3566 
3567 	/* Hopeless node, leave it to direct reclaim */
3568 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3569 		return;
3570 
3571 	if (pgdat_balanced(pgdat, order, classzone_idx))
3572 		return;
3573 
3574 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3575 	wake_up_interruptible(&pgdat->kswapd_wait);
3576 }
3577 
3578 #ifdef CONFIG_HIBERNATION
3579 /*
3580  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3581  * freed pages.
3582  *
3583  * Rather than trying to age LRUs the aim is to preserve the overall
3584  * LRU order by reclaiming preferentially
3585  * inactive > active > active referenced > active mapped
3586  */
3587 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3588 {
3589 	struct reclaim_state reclaim_state;
3590 	struct scan_control sc = {
3591 		.nr_to_reclaim = nr_to_reclaim,
3592 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3593 		.reclaim_idx = MAX_NR_ZONES - 1,
3594 		.priority = DEF_PRIORITY,
3595 		.may_writepage = 1,
3596 		.may_unmap = 1,
3597 		.may_swap = 1,
3598 		.hibernation_mode = 1,
3599 	};
3600 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3601 	struct task_struct *p = current;
3602 	unsigned long nr_reclaimed;
3603 	unsigned int noreclaim_flag;
3604 
3605 	noreclaim_flag = memalloc_noreclaim_save();
3606 	fs_reclaim_acquire(sc.gfp_mask);
3607 	reclaim_state.reclaimed_slab = 0;
3608 	p->reclaim_state = &reclaim_state;
3609 
3610 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3611 
3612 	p->reclaim_state = NULL;
3613 	fs_reclaim_release(sc.gfp_mask);
3614 	memalloc_noreclaim_restore(noreclaim_flag);
3615 
3616 	return nr_reclaimed;
3617 }
3618 #endif /* CONFIG_HIBERNATION */
3619 
3620 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3621    not required for correctness.  So if the last cpu in a node goes
3622    away, we get changed to run anywhere: as the first one comes back,
3623    restore their cpu bindings. */
3624 static int kswapd_cpu_online(unsigned int cpu)
3625 {
3626 	int nid;
3627 
3628 	for_each_node_state(nid, N_MEMORY) {
3629 		pg_data_t *pgdat = NODE_DATA(nid);
3630 		const struct cpumask *mask;
3631 
3632 		mask = cpumask_of_node(pgdat->node_id);
3633 
3634 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3635 			/* One of our CPUs online: restore mask */
3636 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3637 	}
3638 	return 0;
3639 }
3640 
3641 /*
3642  * This kswapd start function will be called by init and node-hot-add.
3643  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3644  */
3645 int kswapd_run(int nid)
3646 {
3647 	pg_data_t *pgdat = NODE_DATA(nid);
3648 	int ret = 0;
3649 
3650 	if (pgdat->kswapd)
3651 		return 0;
3652 
3653 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3654 	if (IS_ERR(pgdat->kswapd)) {
3655 		/* failure at boot is fatal */
3656 		BUG_ON(system_state < SYSTEM_RUNNING);
3657 		pr_err("Failed to start kswapd on node %d\n", nid);
3658 		ret = PTR_ERR(pgdat->kswapd);
3659 		pgdat->kswapd = NULL;
3660 	}
3661 	return ret;
3662 }
3663 
3664 /*
3665  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3666  * hold mem_hotplug_begin/end().
3667  */
3668 void kswapd_stop(int nid)
3669 {
3670 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3671 
3672 	if (kswapd) {
3673 		kthread_stop(kswapd);
3674 		NODE_DATA(nid)->kswapd = NULL;
3675 	}
3676 }
3677 
3678 static int __init kswapd_init(void)
3679 {
3680 	int nid, ret;
3681 
3682 	swap_setup();
3683 	for_each_node_state(nid, N_MEMORY)
3684  		kswapd_run(nid);
3685 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3686 					"mm/vmscan:online", kswapd_cpu_online,
3687 					NULL);
3688 	WARN_ON(ret < 0);
3689 	return 0;
3690 }
3691 
3692 module_init(kswapd_init)
3693 
3694 #ifdef CONFIG_NUMA
3695 /*
3696  * Node reclaim mode
3697  *
3698  * If non-zero call node_reclaim when the number of free pages falls below
3699  * the watermarks.
3700  */
3701 int node_reclaim_mode __read_mostly;
3702 
3703 #define RECLAIM_OFF 0
3704 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3705 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3706 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3707 
3708 /*
3709  * Priority for NODE_RECLAIM. This determines the fraction of pages
3710  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3711  * a zone.
3712  */
3713 #define NODE_RECLAIM_PRIORITY 4
3714 
3715 /*
3716  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3717  * occur.
3718  */
3719 int sysctl_min_unmapped_ratio = 1;
3720 
3721 /*
3722  * If the number of slab pages in a zone grows beyond this percentage then
3723  * slab reclaim needs to occur.
3724  */
3725 int sysctl_min_slab_ratio = 5;
3726 
3727 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3728 {
3729 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3730 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3731 		node_page_state(pgdat, NR_ACTIVE_FILE);
3732 
3733 	/*
3734 	 * It's possible for there to be more file mapped pages than
3735 	 * accounted for by the pages on the file LRU lists because
3736 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3737 	 */
3738 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3739 }
3740 
3741 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3742 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3743 {
3744 	unsigned long nr_pagecache_reclaimable;
3745 	unsigned long delta = 0;
3746 
3747 	/*
3748 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3749 	 * potentially reclaimable. Otherwise, we have to worry about
3750 	 * pages like swapcache and node_unmapped_file_pages() provides
3751 	 * a better estimate
3752 	 */
3753 	if (node_reclaim_mode & RECLAIM_UNMAP)
3754 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3755 	else
3756 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3757 
3758 	/* If we can't clean pages, remove dirty pages from consideration */
3759 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3760 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3761 
3762 	/* Watch for any possible underflows due to delta */
3763 	if (unlikely(delta > nr_pagecache_reclaimable))
3764 		delta = nr_pagecache_reclaimable;
3765 
3766 	return nr_pagecache_reclaimable - delta;
3767 }
3768 
3769 /*
3770  * Try to free up some pages from this node through reclaim.
3771  */
3772 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3773 {
3774 	/* Minimum pages needed in order to stay on node */
3775 	const unsigned long nr_pages = 1 << order;
3776 	struct task_struct *p = current;
3777 	struct reclaim_state reclaim_state;
3778 	unsigned int noreclaim_flag;
3779 	struct scan_control sc = {
3780 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3781 		.gfp_mask = current_gfp_context(gfp_mask),
3782 		.order = order,
3783 		.priority = NODE_RECLAIM_PRIORITY,
3784 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3785 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3786 		.may_swap = 1,
3787 		.reclaim_idx = gfp_zone(gfp_mask),
3788 	};
3789 
3790 	cond_resched();
3791 	/*
3792 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3793 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3794 	 * and RECLAIM_UNMAP.
3795 	 */
3796 	noreclaim_flag = memalloc_noreclaim_save();
3797 	p->flags |= PF_SWAPWRITE;
3798 	fs_reclaim_acquire(sc.gfp_mask);
3799 	reclaim_state.reclaimed_slab = 0;
3800 	p->reclaim_state = &reclaim_state;
3801 
3802 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3803 		/*
3804 		 * Free memory by calling shrink zone with increasing
3805 		 * priorities until we have enough memory freed.
3806 		 */
3807 		do {
3808 			shrink_node(pgdat, &sc);
3809 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3810 	}
3811 
3812 	p->reclaim_state = NULL;
3813 	fs_reclaim_release(gfp_mask);
3814 	current->flags &= ~PF_SWAPWRITE;
3815 	memalloc_noreclaim_restore(noreclaim_flag);
3816 	return sc.nr_reclaimed >= nr_pages;
3817 }
3818 
3819 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3820 {
3821 	int ret;
3822 
3823 	/*
3824 	 * Node reclaim reclaims unmapped file backed pages and
3825 	 * slab pages if we are over the defined limits.
3826 	 *
3827 	 * A small portion of unmapped file backed pages is needed for
3828 	 * file I/O otherwise pages read by file I/O will be immediately
3829 	 * thrown out if the node is overallocated. So we do not reclaim
3830 	 * if less than a specified percentage of the node is used by
3831 	 * unmapped file backed pages.
3832 	 */
3833 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3834 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3835 		return NODE_RECLAIM_FULL;
3836 
3837 	/*
3838 	 * Do not scan if the allocation should not be delayed.
3839 	 */
3840 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3841 		return NODE_RECLAIM_NOSCAN;
3842 
3843 	/*
3844 	 * Only run node reclaim on the local node or on nodes that do not
3845 	 * have associated processors. This will favor the local processor
3846 	 * over remote processors and spread off node memory allocations
3847 	 * as wide as possible.
3848 	 */
3849 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3850 		return NODE_RECLAIM_NOSCAN;
3851 
3852 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3853 		return NODE_RECLAIM_NOSCAN;
3854 
3855 	ret = __node_reclaim(pgdat, gfp_mask, order);
3856 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3857 
3858 	if (!ret)
3859 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3860 
3861 	return ret;
3862 }
3863 #endif
3864 
3865 /*
3866  * page_evictable - test whether a page is evictable
3867  * @page: the page to test
3868  *
3869  * Test whether page is evictable--i.e., should be placed on active/inactive
3870  * lists vs unevictable list.
3871  *
3872  * Reasons page might not be evictable:
3873  * (1) page's mapping marked unevictable
3874  * (2) page is part of an mlocked VMA
3875  *
3876  */
3877 int page_evictable(struct page *page)
3878 {
3879 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3880 }
3881 
3882 #ifdef CONFIG_SHMEM
3883 /**
3884  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3885  * @pages:	array of pages to check
3886  * @nr_pages:	number of pages to check
3887  *
3888  * Checks pages for evictability and moves them to the appropriate lru list.
3889  *
3890  * This function is only used for SysV IPC SHM_UNLOCK.
3891  */
3892 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3893 {
3894 	struct lruvec *lruvec;
3895 	struct pglist_data *pgdat = NULL;
3896 	int pgscanned = 0;
3897 	int pgrescued = 0;
3898 	int i;
3899 
3900 	for (i = 0; i < nr_pages; i++) {
3901 		struct page *page = pages[i];
3902 		struct pglist_data *pagepgdat = page_pgdat(page);
3903 
3904 		pgscanned++;
3905 		if (pagepgdat != pgdat) {
3906 			if (pgdat)
3907 				spin_unlock_irq(&pgdat->lru_lock);
3908 			pgdat = pagepgdat;
3909 			spin_lock_irq(&pgdat->lru_lock);
3910 		}
3911 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3912 
3913 		if (!PageLRU(page) || !PageUnevictable(page))
3914 			continue;
3915 
3916 		if (page_evictable(page)) {
3917 			enum lru_list lru = page_lru_base_type(page);
3918 
3919 			VM_BUG_ON_PAGE(PageActive(page), page);
3920 			ClearPageUnevictable(page);
3921 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3922 			add_page_to_lru_list(page, lruvec, lru);
3923 			pgrescued++;
3924 		}
3925 	}
3926 
3927 	if (pgdat) {
3928 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3929 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3930 		spin_unlock_irq(&pgdat->lru_lock);
3931 	}
3932 }
3933 #endif /* CONFIG_SHMEM */
3934