1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmpressure.h> 23 #include <linux/vmstat.h> 24 #include <linux/file.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> /* for try_to_release_page(), 28 buffer_heads_over_limit */ 29 #include <linux/mm_inline.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/compaction.h> 36 #include <linux/notifier.h> 37 #include <linux/rwsem.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/delayacct.h> 43 #include <linux/sysctl.h> 44 #include <linux/oom.h> 45 #include <linux/prefetch.h> 46 47 #include <asm/tlbflush.h> 48 #include <asm/div64.h> 49 50 #include <linux/swapops.h> 51 52 #include "internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/vmscan.h> 56 57 struct scan_control { 58 /* Incremented by the number of inactive pages that were scanned */ 59 unsigned long nr_scanned; 60 61 /* Number of pages freed so far during a call to shrink_zones() */ 62 unsigned long nr_reclaimed; 63 64 /* How many pages shrink_list() should reclaim */ 65 unsigned long nr_to_reclaim; 66 67 unsigned long hibernation_mode; 68 69 /* This context's GFP mask */ 70 gfp_t gfp_mask; 71 72 int may_writepage; 73 74 /* Can mapped pages be reclaimed? */ 75 int may_unmap; 76 77 /* Can pages be swapped as part of reclaim? */ 78 int may_swap; 79 80 int order; 81 82 /* Scan (total_size >> priority) pages at once */ 83 int priority; 84 85 /* 86 * The memory cgroup that hit its limit and as a result is the 87 * primary target of this reclaim invocation. 88 */ 89 struct mem_cgroup *target_mem_cgroup; 90 91 /* 92 * Nodemask of nodes allowed by the caller. If NULL, all nodes 93 * are scanned. 94 */ 95 nodemask_t *nodemask; 96 }; 97 98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 99 100 #ifdef ARCH_HAS_PREFETCH 101 #define prefetch_prev_lru_page(_page, _base, _field) \ 102 do { \ 103 if ((_page)->lru.prev != _base) { \ 104 struct page *prev; \ 105 \ 106 prev = lru_to_page(&(_page->lru)); \ 107 prefetch(&prev->_field); \ 108 } \ 109 } while (0) 110 #else 111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 112 #endif 113 114 #ifdef ARCH_HAS_PREFETCHW 115 #define prefetchw_prev_lru_page(_page, _base, _field) \ 116 do { \ 117 if ((_page)->lru.prev != _base) { \ 118 struct page *prev; \ 119 \ 120 prev = lru_to_page(&(_page->lru)); \ 121 prefetchw(&prev->_field); \ 122 } \ 123 } while (0) 124 #else 125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 126 #endif 127 128 /* 129 * From 0 .. 100. Higher means more swappy. 130 */ 131 int vm_swappiness = 60; 132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */ 133 134 static LIST_HEAD(shrinker_list); 135 static DECLARE_RWSEM(shrinker_rwsem); 136 137 #ifdef CONFIG_MEMCG 138 static bool global_reclaim(struct scan_control *sc) 139 { 140 return !sc->target_mem_cgroup; 141 } 142 #else 143 static bool global_reclaim(struct scan_control *sc) 144 { 145 return true; 146 } 147 #endif 148 149 unsigned long zone_reclaimable_pages(struct zone *zone) 150 { 151 int nr; 152 153 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 154 zone_page_state(zone, NR_INACTIVE_FILE); 155 156 if (get_nr_swap_pages() > 0) 157 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 158 zone_page_state(zone, NR_INACTIVE_ANON); 159 160 return nr; 161 } 162 163 bool zone_reclaimable(struct zone *zone) 164 { 165 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 166 } 167 168 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 169 { 170 if (!mem_cgroup_disabled()) 171 return mem_cgroup_get_lru_size(lruvec, lru); 172 173 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 174 } 175 176 /* 177 * Add a shrinker callback to be called from the vm. 178 */ 179 int register_shrinker(struct shrinker *shrinker) 180 { 181 size_t size = sizeof(*shrinker->nr_deferred); 182 183 /* 184 * If we only have one possible node in the system anyway, save 185 * ourselves the trouble and disable NUMA aware behavior. This way we 186 * will save memory and some small loop time later. 187 */ 188 if (nr_node_ids == 1) 189 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 190 191 if (shrinker->flags & SHRINKER_NUMA_AWARE) 192 size *= nr_node_ids; 193 194 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 195 if (!shrinker->nr_deferred) 196 return -ENOMEM; 197 198 down_write(&shrinker_rwsem); 199 list_add_tail(&shrinker->list, &shrinker_list); 200 up_write(&shrinker_rwsem); 201 return 0; 202 } 203 EXPORT_SYMBOL(register_shrinker); 204 205 /* 206 * Remove one 207 */ 208 void unregister_shrinker(struct shrinker *shrinker) 209 { 210 down_write(&shrinker_rwsem); 211 list_del(&shrinker->list); 212 up_write(&shrinker_rwsem); 213 } 214 EXPORT_SYMBOL(unregister_shrinker); 215 216 #define SHRINK_BATCH 128 217 218 static unsigned long 219 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, 220 unsigned long nr_pages_scanned, unsigned long lru_pages) 221 { 222 unsigned long freed = 0; 223 unsigned long long delta; 224 long total_scan; 225 long max_pass; 226 long nr; 227 long new_nr; 228 int nid = shrinkctl->nid; 229 long batch_size = shrinker->batch ? shrinker->batch 230 : SHRINK_BATCH; 231 232 max_pass = shrinker->count_objects(shrinker, shrinkctl); 233 if (max_pass == 0) 234 return 0; 235 236 /* 237 * copy the current shrinker scan count into a local variable 238 * and zero it so that other concurrent shrinker invocations 239 * don't also do this scanning work. 240 */ 241 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 242 243 total_scan = nr; 244 delta = (4 * nr_pages_scanned) / shrinker->seeks; 245 delta *= max_pass; 246 do_div(delta, lru_pages + 1); 247 total_scan += delta; 248 if (total_scan < 0) { 249 printk(KERN_ERR 250 "shrink_slab: %pF negative objects to delete nr=%ld\n", 251 shrinker->scan_objects, total_scan); 252 total_scan = max_pass; 253 } 254 255 /* 256 * We need to avoid excessive windup on filesystem shrinkers 257 * due to large numbers of GFP_NOFS allocations causing the 258 * shrinkers to return -1 all the time. This results in a large 259 * nr being built up so when a shrink that can do some work 260 * comes along it empties the entire cache due to nr >>> 261 * max_pass. This is bad for sustaining a working set in 262 * memory. 263 * 264 * Hence only allow the shrinker to scan the entire cache when 265 * a large delta change is calculated directly. 266 */ 267 if (delta < max_pass / 4) 268 total_scan = min(total_scan, max_pass / 2); 269 270 /* 271 * Avoid risking looping forever due to too large nr value: 272 * never try to free more than twice the estimate number of 273 * freeable entries. 274 */ 275 if (total_scan > max_pass * 2) 276 total_scan = max_pass * 2; 277 278 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 279 nr_pages_scanned, lru_pages, 280 max_pass, delta, total_scan); 281 282 while (total_scan >= batch_size) { 283 unsigned long ret; 284 285 shrinkctl->nr_to_scan = batch_size; 286 ret = shrinker->scan_objects(shrinker, shrinkctl); 287 if (ret == SHRINK_STOP) 288 break; 289 freed += ret; 290 291 count_vm_events(SLABS_SCANNED, batch_size); 292 total_scan -= batch_size; 293 294 cond_resched(); 295 } 296 297 /* 298 * move the unused scan count back into the shrinker in a 299 * manner that handles concurrent updates. If we exhausted the 300 * scan, there is no need to do an update. 301 */ 302 if (total_scan > 0) 303 new_nr = atomic_long_add_return(total_scan, 304 &shrinker->nr_deferred[nid]); 305 else 306 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 307 308 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr); 309 return freed; 310 } 311 312 /* 313 * Call the shrink functions to age shrinkable caches 314 * 315 * Here we assume it costs one seek to replace a lru page and that it also 316 * takes a seek to recreate a cache object. With this in mind we age equal 317 * percentages of the lru and ageable caches. This should balance the seeks 318 * generated by these structures. 319 * 320 * If the vm encountered mapped pages on the LRU it increase the pressure on 321 * slab to avoid swapping. 322 * 323 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 324 * 325 * `lru_pages' represents the number of on-LRU pages in all the zones which 326 * are eligible for the caller's allocation attempt. It is used for balancing 327 * slab reclaim versus page reclaim. 328 * 329 * Returns the number of slab objects which we shrunk. 330 */ 331 unsigned long shrink_slab(struct shrink_control *shrinkctl, 332 unsigned long nr_pages_scanned, 333 unsigned long lru_pages) 334 { 335 struct shrinker *shrinker; 336 unsigned long freed = 0; 337 338 if (nr_pages_scanned == 0) 339 nr_pages_scanned = SWAP_CLUSTER_MAX; 340 341 if (!down_read_trylock(&shrinker_rwsem)) { 342 /* 343 * If we would return 0, our callers would understand that we 344 * have nothing else to shrink and give up trying. By returning 345 * 1 we keep it going and assume we'll be able to shrink next 346 * time. 347 */ 348 freed = 1; 349 goto out; 350 } 351 352 list_for_each_entry(shrinker, &shrinker_list, list) { 353 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { 354 if (!node_online(shrinkctl->nid)) 355 continue; 356 357 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) && 358 (shrinkctl->nid != 0)) 359 break; 360 361 freed += shrink_slab_node(shrinkctl, shrinker, 362 nr_pages_scanned, lru_pages); 363 364 } 365 } 366 up_read(&shrinker_rwsem); 367 out: 368 cond_resched(); 369 return freed; 370 } 371 372 static inline int is_page_cache_freeable(struct page *page) 373 { 374 /* 375 * A freeable page cache page is referenced only by the caller 376 * that isolated the page, the page cache radix tree and 377 * optional buffer heads at page->private. 378 */ 379 return page_count(page) - page_has_private(page) == 2; 380 } 381 382 static int may_write_to_queue(struct backing_dev_info *bdi, 383 struct scan_control *sc) 384 { 385 if (current->flags & PF_SWAPWRITE) 386 return 1; 387 if (!bdi_write_congested(bdi)) 388 return 1; 389 if (bdi == current->backing_dev_info) 390 return 1; 391 return 0; 392 } 393 394 /* 395 * We detected a synchronous write error writing a page out. Probably 396 * -ENOSPC. We need to propagate that into the address_space for a subsequent 397 * fsync(), msync() or close(). 398 * 399 * The tricky part is that after writepage we cannot touch the mapping: nothing 400 * prevents it from being freed up. But we have a ref on the page and once 401 * that page is locked, the mapping is pinned. 402 * 403 * We're allowed to run sleeping lock_page() here because we know the caller has 404 * __GFP_FS. 405 */ 406 static void handle_write_error(struct address_space *mapping, 407 struct page *page, int error) 408 { 409 lock_page(page); 410 if (page_mapping(page) == mapping) 411 mapping_set_error(mapping, error); 412 unlock_page(page); 413 } 414 415 /* possible outcome of pageout() */ 416 typedef enum { 417 /* failed to write page out, page is locked */ 418 PAGE_KEEP, 419 /* move page to the active list, page is locked */ 420 PAGE_ACTIVATE, 421 /* page has been sent to the disk successfully, page is unlocked */ 422 PAGE_SUCCESS, 423 /* page is clean and locked */ 424 PAGE_CLEAN, 425 } pageout_t; 426 427 /* 428 * pageout is called by shrink_page_list() for each dirty page. 429 * Calls ->writepage(). 430 */ 431 static pageout_t pageout(struct page *page, struct address_space *mapping, 432 struct scan_control *sc) 433 { 434 /* 435 * If the page is dirty, only perform writeback if that write 436 * will be non-blocking. To prevent this allocation from being 437 * stalled by pagecache activity. But note that there may be 438 * stalls if we need to run get_block(). We could test 439 * PagePrivate for that. 440 * 441 * If this process is currently in __generic_file_aio_write() against 442 * this page's queue, we can perform writeback even if that 443 * will block. 444 * 445 * If the page is swapcache, write it back even if that would 446 * block, for some throttling. This happens by accident, because 447 * swap_backing_dev_info is bust: it doesn't reflect the 448 * congestion state of the swapdevs. Easy to fix, if needed. 449 */ 450 if (!is_page_cache_freeable(page)) 451 return PAGE_KEEP; 452 if (!mapping) { 453 /* 454 * Some data journaling orphaned pages can have 455 * page->mapping == NULL while being dirty with clean buffers. 456 */ 457 if (page_has_private(page)) { 458 if (try_to_free_buffers(page)) { 459 ClearPageDirty(page); 460 printk("%s: orphaned page\n", __func__); 461 return PAGE_CLEAN; 462 } 463 } 464 return PAGE_KEEP; 465 } 466 if (mapping->a_ops->writepage == NULL) 467 return PAGE_ACTIVATE; 468 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 469 return PAGE_KEEP; 470 471 if (clear_page_dirty_for_io(page)) { 472 int res; 473 struct writeback_control wbc = { 474 .sync_mode = WB_SYNC_NONE, 475 .nr_to_write = SWAP_CLUSTER_MAX, 476 .range_start = 0, 477 .range_end = LLONG_MAX, 478 .for_reclaim = 1, 479 }; 480 481 SetPageReclaim(page); 482 res = mapping->a_ops->writepage(page, &wbc); 483 if (res < 0) 484 handle_write_error(mapping, page, res); 485 if (res == AOP_WRITEPAGE_ACTIVATE) { 486 ClearPageReclaim(page); 487 return PAGE_ACTIVATE; 488 } 489 490 if (!PageWriteback(page)) { 491 /* synchronous write or broken a_ops? */ 492 ClearPageReclaim(page); 493 } 494 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 495 inc_zone_page_state(page, NR_VMSCAN_WRITE); 496 return PAGE_SUCCESS; 497 } 498 499 return PAGE_CLEAN; 500 } 501 502 /* 503 * Same as remove_mapping, but if the page is removed from the mapping, it 504 * gets returned with a refcount of 0. 505 */ 506 static int __remove_mapping(struct address_space *mapping, struct page *page) 507 { 508 BUG_ON(!PageLocked(page)); 509 BUG_ON(mapping != page_mapping(page)); 510 511 spin_lock_irq(&mapping->tree_lock); 512 /* 513 * The non racy check for a busy page. 514 * 515 * Must be careful with the order of the tests. When someone has 516 * a ref to the page, it may be possible that they dirty it then 517 * drop the reference. So if PageDirty is tested before page_count 518 * here, then the following race may occur: 519 * 520 * get_user_pages(&page); 521 * [user mapping goes away] 522 * write_to(page); 523 * !PageDirty(page) [good] 524 * SetPageDirty(page); 525 * put_page(page); 526 * !page_count(page) [good, discard it] 527 * 528 * [oops, our write_to data is lost] 529 * 530 * Reversing the order of the tests ensures such a situation cannot 531 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 532 * load is not satisfied before that of page->_count. 533 * 534 * Note that if SetPageDirty is always performed via set_page_dirty, 535 * and thus under tree_lock, then this ordering is not required. 536 */ 537 if (!page_freeze_refs(page, 2)) 538 goto cannot_free; 539 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 540 if (unlikely(PageDirty(page))) { 541 page_unfreeze_refs(page, 2); 542 goto cannot_free; 543 } 544 545 if (PageSwapCache(page)) { 546 swp_entry_t swap = { .val = page_private(page) }; 547 __delete_from_swap_cache(page); 548 spin_unlock_irq(&mapping->tree_lock); 549 swapcache_free(swap, page); 550 } else { 551 void (*freepage)(struct page *); 552 553 freepage = mapping->a_ops->freepage; 554 555 __delete_from_page_cache(page); 556 spin_unlock_irq(&mapping->tree_lock); 557 mem_cgroup_uncharge_cache_page(page); 558 559 if (freepage != NULL) 560 freepage(page); 561 } 562 563 return 1; 564 565 cannot_free: 566 spin_unlock_irq(&mapping->tree_lock); 567 return 0; 568 } 569 570 /* 571 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 572 * someone else has a ref on the page, abort and return 0. If it was 573 * successfully detached, return 1. Assumes the caller has a single ref on 574 * this page. 575 */ 576 int remove_mapping(struct address_space *mapping, struct page *page) 577 { 578 if (__remove_mapping(mapping, page)) { 579 /* 580 * Unfreezing the refcount with 1 rather than 2 effectively 581 * drops the pagecache ref for us without requiring another 582 * atomic operation. 583 */ 584 page_unfreeze_refs(page, 1); 585 return 1; 586 } 587 return 0; 588 } 589 590 /** 591 * putback_lru_page - put previously isolated page onto appropriate LRU list 592 * @page: page to be put back to appropriate lru list 593 * 594 * Add previously isolated @page to appropriate LRU list. 595 * Page may still be unevictable for other reasons. 596 * 597 * lru_lock must not be held, interrupts must be enabled. 598 */ 599 void putback_lru_page(struct page *page) 600 { 601 bool is_unevictable; 602 int was_unevictable = PageUnevictable(page); 603 604 VM_BUG_ON(PageLRU(page)); 605 606 redo: 607 ClearPageUnevictable(page); 608 609 if (page_evictable(page)) { 610 /* 611 * For evictable pages, we can use the cache. 612 * In event of a race, worst case is we end up with an 613 * unevictable page on [in]active list. 614 * We know how to handle that. 615 */ 616 is_unevictable = false; 617 lru_cache_add(page); 618 } else { 619 /* 620 * Put unevictable pages directly on zone's unevictable 621 * list. 622 */ 623 is_unevictable = true; 624 add_page_to_unevictable_list(page); 625 /* 626 * When racing with an mlock or AS_UNEVICTABLE clearing 627 * (page is unlocked) make sure that if the other thread 628 * does not observe our setting of PG_lru and fails 629 * isolation/check_move_unevictable_pages, 630 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 631 * the page back to the evictable list. 632 * 633 * The other side is TestClearPageMlocked() or shmem_lock(). 634 */ 635 smp_mb(); 636 } 637 638 /* 639 * page's status can change while we move it among lru. If an evictable 640 * page is on unevictable list, it never be freed. To avoid that, 641 * check after we added it to the list, again. 642 */ 643 if (is_unevictable && page_evictable(page)) { 644 if (!isolate_lru_page(page)) { 645 put_page(page); 646 goto redo; 647 } 648 /* This means someone else dropped this page from LRU 649 * So, it will be freed or putback to LRU again. There is 650 * nothing to do here. 651 */ 652 } 653 654 if (was_unevictable && !is_unevictable) 655 count_vm_event(UNEVICTABLE_PGRESCUED); 656 else if (!was_unevictable && is_unevictable) 657 count_vm_event(UNEVICTABLE_PGCULLED); 658 659 put_page(page); /* drop ref from isolate */ 660 } 661 662 enum page_references { 663 PAGEREF_RECLAIM, 664 PAGEREF_RECLAIM_CLEAN, 665 PAGEREF_KEEP, 666 PAGEREF_ACTIVATE, 667 }; 668 669 static enum page_references page_check_references(struct page *page, 670 struct scan_control *sc) 671 { 672 int referenced_ptes, referenced_page; 673 unsigned long vm_flags; 674 675 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 676 &vm_flags); 677 referenced_page = TestClearPageReferenced(page); 678 679 /* 680 * Mlock lost the isolation race with us. Let try_to_unmap() 681 * move the page to the unevictable list. 682 */ 683 if (vm_flags & VM_LOCKED) 684 return PAGEREF_RECLAIM; 685 686 if (referenced_ptes) { 687 if (PageSwapBacked(page)) 688 return PAGEREF_ACTIVATE; 689 /* 690 * All mapped pages start out with page table 691 * references from the instantiating fault, so we need 692 * to look twice if a mapped file page is used more 693 * than once. 694 * 695 * Mark it and spare it for another trip around the 696 * inactive list. Another page table reference will 697 * lead to its activation. 698 * 699 * Note: the mark is set for activated pages as well 700 * so that recently deactivated but used pages are 701 * quickly recovered. 702 */ 703 SetPageReferenced(page); 704 705 if (referenced_page || referenced_ptes > 1) 706 return PAGEREF_ACTIVATE; 707 708 /* 709 * Activate file-backed executable pages after first usage. 710 */ 711 if (vm_flags & VM_EXEC) 712 return PAGEREF_ACTIVATE; 713 714 return PAGEREF_KEEP; 715 } 716 717 /* Reclaim if clean, defer dirty pages to writeback */ 718 if (referenced_page && !PageSwapBacked(page)) 719 return PAGEREF_RECLAIM_CLEAN; 720 721 return PAGEREF_RECLAIM; 722 } 723 724 /* Check if a page is dirty or under writeback */ 725 static void page_check_dirty_writeback(struct page *page, 726 bool *dirty, bool *writeback) 727 { 728 struct address_space *mapping; 729 730 /* 731 * Anonymous pages are not handled by flushers and must be written 732 * from reclaim context. Do not stall reclaim based on them 733 */ 734 if (!page_is_file_cache(page)) { 735 *dirty = false; 736 *writeback = false; 737 return; 738 } 739 740 /* By default assume that the page flags are accurate */ 741 *dirty = PageDirty(page); 742 *writeback = PageWriteback(page); 743 744 /* Verify dirty/writeback state if the filesystem supports it */ 745 if (!page_has_private(page)) 746 return; 747 748 mapping = page_mapping(page); 749 if (mapping && mapping->a_ops->is_dirty_writeback) 750 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 751 } 752 753 /* 754 * shrink_page_list() returns the number of reclaimed pages 755 */ 756 static unsigned long shrink_page_list(struct list_head *page_list, 757 struct zone *zone, 758 struct scan_control *sc, 759 enum ttu_flags ttu_flags, 760 unsigned long *ret_nr_dirty, 761 unsigned long *ret_nr_unqueued_dirty, 762 unsigned long *ret_nr_congested, 763 unsigned long *ret_nr_writeback, 764 unsigned long *ret_nr_immediate, 765 bool force_reclaim) 766 { 767 LIST_HEAD(ret_pages); 768 LIST_HEAD(free_pages); 769 int pgactivate = 0; 770 unsigned long nr_unqueued_dirty = 0; 771 unsigned long nr_dirty = 0; 772 unsigned long nr_congested = 0; 773 unsigned long nr_reclaimed = 0; 774 unsigned long nr_writeback = 0; 775 unsigned long nr_immediate = 0; 776 777 cond_resched(); 778 779 mem_cgroup_uncharge_start(); 780 while (!list_empty(page_list)) { 781 struct address_space *mapping; 782 struct page *page; 783 int may_enter_fs; 784 enum page_references references = PAGEREF_RECLAIM_CLEAN; 785 bool dirty, writeback; 786 787 cond_resched(); 788 789 page = lru_to_page(page_list); 790 list_del(&page->lru); 791 792 if (!trylock_page(page)) 793 goto keep; 794 795 VM_BUG_ON(PageActive(page)); 796 VM_BUG_ON(page_zone(page) != zone); 797 798 sc->nr_scanned++; 799 800 if (unlikely(!page_evictable(page))) 801 goto cull_mlocked; 802 803 if (!sc->may_unmap && page_mapped(page)) 804 goto keep_locked; 805 806 /* Double the slab pressure for mapped and swapcache pages */ 807 if (page_mapped(page) || PageSwapCache(page)) 808 sc->nr_scanned++; 809 810 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 811 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 812 813 /* 814 * The number of dirty pages determines if a zone is marked 815 * reclaim_congested which affects wait_iff_congested. kswapd 816 * will stall and start writing pages if the tail of the LRU 817 * is all dirty unqueued pages. 818 */ 819 page_check_dirty_writeback(page, &dirty, &writeback); 820 if (dirty || writeback) 821 nr_dirty++; 822 823 if (dirty && !writeback) 824 nr_unqueued_dirty++; 825 826 /* 827 * Treat this page as congested if the underlying BDI is or if 828 * pages are cycling through the LRU so quickly that the 829 * pages marked for immediate reclaim are making it to the 830 * end of the LRU a second time. 831 */ 832 mapping = page_mapping(page); 833 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || 834 (writeback && PageReclaim(page))) 835 nr_congested++; 836 837 /* 838 * If a page at the tail of the LRU is under writeback, there 839 * are three cases to consider. 840 * 841 * 1) If reclaim is encountering an excessive number of pages 842 * under writeback and this page is both under writeback and 843 * PageReclaim then it indicates that pages are being queued 844 * for IO but are being recycled through the LRU before the 845 * IO can complete. Waiting on the page itself risks an 846 * indefinite stall if it is impossible to writeback the 847 * page due to IO error or disconnected storage so instead 848 * note that the LRU is being scanned too quickly and the 849 * caller can stall after page list has been processed. 850 * 851 * 2) Global reclaim encounters a page, memcg encounters a 852 * page that is not marked for immediate reclaim or 853 * the caller does not have __GFP_IO. In this case mark 854 * the page for immediate reclaim and continue scanning. 855 * 856 * __GFP_IO is checked because a loop driver thread might 857 * enter reclaim, and deadlock if it waits on a page for 858 * which it is needed to do the write (loop masks off 859 * __GFP_IO|__GFP_FS for this reason); but more thought 860 * would probably show more reasons. 861 * 862 * Don't require __GFP_FS, since we're not going into the 863 * FS, just waiting on its writeback completion. Worryingly, 864 * ext4 gfs2 and xfs allocate pages with 865 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 866 * may_enter_fs here is liable to OOM on them. 867 * 868 * 3) memcg encounters a page that is not already marked 869 * PageReclaim. memcg does not have any dirty pages 870 * throttling so we could easily OOM just because too many 871 * pages are in writeback and there is nothing else to 872 * reclaim. Wait for the writeback to complete. 873 */ 874 if (PageWriteback(page)) { 875 /* Case 1 above */ 876 if (current_is_kswapd() && 877 PageReclaim(page) && 878 zone_is_reclaim_writeback(zone)) { 879 nr_immediate++; 880 goto keep_locked; 881 882 /* Case 2 above */ 883 } else if (global_reclaim(sc) || 884 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 885 /* 886 * This is slightly racy - end_page_writeback() 887 * might have just cleared PageReclaim, then 888 * setting PageReclaim here end up interpreted 889 * as PageReadahead - but that does not matter 890 * enough to care. What we do want is for this 891 * page to have PageReclaim set next time memcg 892 * reclaim reaches the tests above, so it will 893 * then wait_on_page_writeback() to avoid OOM; 894 * and it's also appropriate in global reclaim. 895 */ 896 SetPageReclaim(page); 897 nr_writeback++; 898 899 goto keep_locked; 900 901 /* Case 3 above */ 902 } else { 903 wait_on_page_writeback(page); 904 } 905 } 906 907 if (!force_reclaim) 908 references = page_check_references(page, sc); 909 910 switch (references) { 911 case PAGEREF_ACTIVATE: 912 goto activate_locked; 913 case PAGEREF_KEEP: 914 goto keep_locked; 915 case PAGEREF_RECLAIM: 916 case PAGEREF_RECLAIM_CLEAN: 917 ; /* try to reclaim the page below */ 918 } 919 920 /* 921 * Anonymous process memory has backing store? 922 * Try to allocate it some swap space here. 923 */ 924 if (PageAnon(page) && !PageSwapCache(page)) { 925 if (!(sc->gfp_mask & __GFP_IO)) 926 goto keep_locked; 927 if (!add_to_swap(page, page_list)) 928 goto activate_locked; 929 may_enter_fs = 1; 930 931 /* Adding to swap updated mapping */ 932 mapping = page_mapping(page); 933 } 934 935 /* 936 * The page is mapped into the page tables of one or more 937 * processes. Try to unmap it here. 938 */ 939 if (page_mapped(page) && mapping) { 940 switch (try_to_unmap(page, ttu_flags)) { 941 case SWAP_FAIL: 942 goto activate_locked; 943 case SWAP_AGAIN: 944 goto keep_locked; 945 case SWAP_MLOCK: 946 goto cull_mlocked; 947 case SWAP_SUCCESS: 948 ; /* try to free the page below */ 949 } 950 } 951 952 if (PageDirty(page)) { 953 /* 954 * Only kswapd can writeback filesystem pages to 955 * avoid risk of stack overflow but only writeback 956 * if many dirty pages have been encountered. 957 */ 958 if (page_is_file_cache(page) && 959 (!current_is_kswapd() || 960 !zone_is_reclaim_dirty(zone))) { 961 /* 962 * Immediately reclaim when written back. 963 * Similar in principal to deactivate_page() 964 * except we already have the page isolated 965 * and know it's dirty 966 */ 967 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 968 SetPageReclaim(page); 969 970 goto keep_locked; 971 } 972 973 if (references == PAGEREF_RECLAIM_CLEAN) 974 goto keep_locked; 975 if (!may_enter_fs) 976 goto keep_locked; 977 if (!sc->may_writepage) 978 goto keep_locked; 979 980 /* Page is dirty, try to write it out here */ 981 switch (pageout(page, mapping, sc)) { 982 case PAGE_KEEP: 983 goto keep_locked; 984 case PAGE_ACTIVATE: 985 goto activate_locked; 986 case PAGE_SUCCESS: 987 if (PageWriteback(page)) 988 goto keep; 989 if (PageDirty(page)) 990 goto keep; 991 992 /* 993 * A synchronous write - probably a ramdisk. Go 994 * ahead and try to reclaim the page. 995 */ 996 if (!trylock_page(page)) 997 goto keep; 998 if (PageDirty(page) || PageWriteback(page)) 999 goto keep_locked; 1000 mapping = page_mapping(page); 1001 case PAGE_CLEAN: 1002 ; /* try to free the page below */ 1003 } 1004 } 1005 1006 /* 1007 * If the page has buffers, try to free the buffer mappings 1008 * associated with this page. If we succeed we try to free 1009 * the page as well. 1010 * 1011 * We do this even if the page is PageDirty(). 1012 * try_to_release_page() does not perform I/O, but it is 1013 * possible for a page to have PageDirty set, but it is actually 1014 * clean (all its buffers are clean). This happens if the 1015 * buffers were written out directly, with submit_bh(). ext3 1016 * will do this, as well as the blockdev mapping. 1017 * try_to_release_page() will discover that cleanness and will 1018 * drop the buffers and mark the page clean - it can be freed. 1019 * 1020 * Rarely, pages can have buffers and no ->mapping. These are 1021 * the pages which were not successfully invalidated in 1022 * truncate_complete_page(). We try to drop those buffers here 1023 * and if that worked, and the page is no longer mapped into 1024 * process address space (page_count == 1) it can be freed. 1025 * Otherwise, leave the page on the LRU so it is swappable. 1026 */ 1027 if (page_has_private(page)) { 1028 if (!try_to_release_page(page, sc->gfp_mask)) 1029 goto activate_locked; 1030 if (!mapping && page_count(page) == 1) { 1031 unlock_page(page); 1032 if (put_page_testzero(page)) 1033 goto free_it; 1034 else { 1035 /* 1036 * rare race with speculative reference. 1037 * the speculative reference will free 1038 * this page shortly, so we may 1039 * increment nr_reclaimed here (and 1040 * leave it off the LRU). 1041 */ 1042 nr_reclaimed++; 1043 continue; 1044 } 1045 } 1046 } 1047 1048 if (!mapping || !__remove_mapping(mapping, page)) 1049 goto keep_locked; 1050 1051 /* 1052 * At this point, we have no other references and there is 1053 * no way to pick any more up (removed from LRU, removed 1054 * from pagecache). Can use non-atomic bitops now (and 1055 * we obviously don't have to worry about waking up a process 1056 * waiting on the page lock, because there are no references. 1057 */ 1058 __clear_page_locked(page); 1059 free_it: 1060 nr_reclaimed++; 1061 1062 /* 1063 * Is there need to periodically free_page_list? It would 1064 * appear not as the counts should be low 1065 */ 1066 list_add(&page->lru, &free_pages); 1067 continue; 1068 1069 cull_mlocked: 1070 if (PageSwapCache(page)) 1071 try_to_free_swap(page); 1072 unlock_page(page); 1073 putback_lru_page(page); 1074 continue; 1075 1076 activate_locked: 1077 /* Not a candidate for swapping, so reclaim swap space. */ 1078 if (PageSwapCache(page) && vm_swap_full()) 1079 try_to_free_swap(page); 1080 VM_BUG_ON(PageActive(page)); 1081 SetPageActive(page); 1082 pgactivate++; 1083 keep_locked: 1084 unlock_page(page); 1085 keep: 1086 list_add(&page->lru, &ret_pages); 1087 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 1088 } 1089 1090 free_hot_cold_page_list(&free_pages, 1); 1091 1092 list_splice(&ret_pages, page_list); 1093 count_vm_events(PGACTIVATE, pgactivate); 1094 mem_cgroup_uncharge_end(); 1095 *ret_nr_dirty += nr_dirty; 1096 *ret_nr_congested += nr_congested; 1097 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1098 *ret_nr_writeback += nr_writeback; 1099 *ret_nr_immediate += nr_immediate; 1100 return nr_reclaimed; 1101 } 1102 1103 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1104 struct list_head *page_list) 1105 { 1106 struct scan_control sc = { 1107 .gfp_mask = GFP_KERNEL, 1108 .priority = DEF_PRIORITY, 1109 .may_unmap = 1, 1110 }; 1111 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1112 struct page *page, *next; 1113 LIST_HEAD(clean_pages); 1114 1115 list_for_each_entry_safe(page, next, page_list, lru) { 1116 if (page_is_file_cache(page) && !PageDirty(page)) { 1117 ClearPageActive(page); 1118 list_move(&page->lru, &clean_pages); 1119 } 1120 } 1121 1122 ret = shrink_page_list(&clean_pages, zone, &sc, 1123 TTU_UNMAP|TTU_IGNORE_ACCESS, 1124 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1125 list_splice(&clean_pages, page_list); 1126 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1127 return ret; 1128 } 1129 1130 /* 1131 * Attempt to remove the specified page from its LRU. Only take this page 1132 * if it is of the appropriate PageActive status. Pages which are being 1133 * freed elsewhere are also ignored. 1134 * 1135 * page: page to consider 1136 * mode: one of the LRU isolation modes defined above 1137 * 1138 * returns 0 on success, -ve errno on failure. 1139 */ 1140 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1141 { 1142 int ret = -EINVAL; 1143 1144 /* Only take pages on the LRU. */ 1145 if (!PageLRU(page)) 1146 return ret; 1147 1148 /* Compaction should not handle unevictable pages but CMA can do so */ 1149 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1150 return ret; 1151 1152 ret = -EBUSY; 1153 1154 /* 1155 * To minimise LRU disruption, the caller can indicate that it only 1156 * wants to isolate pages it will be able to operate on without 1157 * blocking - clean pages for the most part. 1158 * 1159 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1160 * is used by reclaim when it is cannot write to backing storage 1161 * 1162 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1163 * that it is possible to migrate without blocking 1164 */ 1165 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1166 /* All the caller can do on PageWriteback is block */ 1167 if (PageWriteback(page)) 1168 return ret; 1169 1170 if (PageDirty(page)) { 1171 struct address_space *mapping; 1172 1173 /* ISOLATE_CLEAN means only clean pages */ 1174 if (mode & ISOLATE_CLEAN) 1175 return ret; 1176 1177 /* 1178 * Only pages without mappings or that have a 1179 * ->migratepage callback are possible to migrate 1180 * without blocking 1181 */ 1182 mapping = page_mapping(page); 1183 if (mapping && !mapping->a_ops->migratepage) 1184 return ret; 1185 } 1186 } 1187 1188 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1189 return ret; 1190 1191 if (likely(get_page_unless_zero(page))) { 1192 /* 1193 * Be careful not to clear PageLRU until after we're 1194 * sure the page is not being freed elsewhere -- the 1195 * page release code relies on it. 1196 */ 1197 ClearPageLRU(page); 1198 ret = 0; 1199 } 1200 1201 return ret; 1202 } 1203 1204 /* 1205 * zone->lru_lock is heavily contended. Some of the functions that 1206 * shrink the lists perform better by taking out a batch of pages 1207 * and working on them outside the LRU lock. 1208 * 1209 * For pagecache intensive workloads, this function is the hottest 1210 * spot in the kernel (apart from copy_*_user functions). 1211 * 1212 * Appropriate locks must be held before calling this function. 1213 * 1214 * @nr_to_scan: The number of pages to look through on the list. 1215 * @lruvec: The LRU vector to pull pages from. 1216 * @dst: The temp list to put pages on to. 1217 * @nr_scanned: The number of pages that were scanned. 1218 * @sc: The scan_control struct for this reclaim session 1219 * @mode: One of the LRU isolation modes 1220 * @lru: LRU list id for isolating 1221 * 1222 * returns how many pages were moved onto *@dst. 1223 */ 1224 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1225 struct lruvec *lruvec, struct list_head *dst, 1226 unsigned long *nr_scanned, struct scan_control *sc, 1227 isolate_mode_t mode, enum lru_list lru) 1228 { 1229 struct list_head *src = &lruvec->lists[lru]; 1230 unsigned long nr_taken = 0; 1231 unsigned long scan; 1232 1233 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1234 struct page *page; 1235 int nr_pages; 1236 1237 page = lru_to_page(src); 1238 prefetchw_prev_lru_page(page, src, flags); 1239 1240 VM_BUG_ON(!PageLRU(page)); 1241 1242 switch (__isolate_lru_page(page, mode)) { 1243 case 0: 1244 nr_pages = hpage_nr_pages(page); 1245 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1246 list_move(&page->lru, dst); 1247 nr_taken += nr_pages; 1248 break; 1249 1250 case -EBUSY: 1251 /* else it is being freed elsewhere */ 1252 list_move(&page->lru, src); 1253 continue; 1254 1255 default: 1256 BUG(); 1257 } 1258 } 1259 1260 *nr_scanned = scan; 1261 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1262 nr_taken, mode, is_file_lru(lru)); 1263 return nr_taken; 1264 } 1265 1266 /** 1267 * isolate_lru_page - tries to isolate a page from its LRU list 1268 * @page: page to isolate from its LRU list 1269 * 1270 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1271 * vmstat statistic corresponding to whatever LRU list the page was on. 1272 * 1273 * Returns 0 if the page was removed from an LRU list. 1274 * Returns -EBUSY if the page was not on an LRU list. 1275 * 1276 * The returned page will have PageLRU() cleared. If it was found on 1277 * the active list, it will have PageActive set. If it was found on 1278 * the unevictable list, it will have the PageUnevictable bit set. That flag 1279 * may need to be cleared by the caller before letting the page go. 1280 * 1281 * The vmstat statistic corresponding to the list on which the page was 1282 * found will be decremented. 1283 * 1284 * Restrictions: 1285 * (1) Must be called with an elevated refcount on the page. This is a 1286 * fundamentnal difference from isolate_lru_pages (which is called 1287 * without a stable reference). 1288 * (2) the lru_lock must not be held. 1289 * (3) interrupts must be enabled. 1290 */ 1291 int isolate_lru_page(struct page *page) 1292 { 1293 int ret = -EBUSY; 1294 1295 VM_BUG_ON(!page_count(page)); 1296 1297 if (PageLRU(page)) { 1298 struct zone *zone = page_zone(page); 1299 struct lruvec *lruvec; 1300 1301 spin_lock_irq(&zone->lru_lock); 1302 lruvec = mem_cgroup_page_lruvec(page, zone); 1303 if (PageLRU(page)) { 1304 int lru = page_lru(page); 1305 get_page(page); 1306 ClearPageLRU(page); 1307 del_page_from_lru_list(page, lruvec, lru); 1308 ret = 0; 1309 } 1310 spin_unlock_irq(&zone->lru_lock); 1311 } 1312 return ret; 1313 } 1314 1315 /* 1316 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1317 * then get resheduled. When there are massive number of tasks doing page 1318 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1319 * the LRU list will go small and be scanned faster than necessary, leading to 1320 * unnecessary swapping, thrashing and OOM. 1321 */ 1322 static int too_many_isolated(struct zone *zone, int file, 1323 struct scan_control *sc) 1324 { 1325 unsigned long inactive, isolated; 1326 1327 if (current_is_kswapd()) 1328 return 0; 1329 1330 if (!global_reclaim(sc)) 1331 return 0; 1332 1333 if (file) { 1334 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1335 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1336 } else { 1337 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1338 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1339 } 1340 1341 /* 1342 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1343 * won't get blocked by normal direct-reclaimers, forming a circular 1344 * deadlock. 1345 */ 1346 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1347 inactive >>= 3; 1348 1349 return isolated > inactive; 1350 } 1351 1352 static noinline_for_stack void 1353 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1354 { 1355 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1356 struct zone *zone = lruvec_zone(lruvec); 1357 LIST_HEAD(pages_to_free); 1358 1359 /* 1360 * Put back any unfreeable pages. 1361 */ 1362 while (!list_empty(page_list)) { 1363 struct page *page = lru_to_page(page_list); 1364 int lru; 1365 1366 VM_BUG_ON(PageLRU(page)); 1367 list_del(&page->lru); 1368 if (unlikely(!page_evictable(page))) { 1369 spin_unlock_irq(&zone->lru_lock); 1370 putback_lru_page(page); 1371 spin_lock_irq(&zone->lru_lock); 1372 continue; 1373 } 1374 1375 lruvec = mem_cgroup_page_lruvec(page, zone); 1376 1377 SetPageLRU(page); 1378 lru = page_lru(page); 1379 add_page_to_lru_list(page, lruvec, lru); 1380 1381 if (is_active_lru(lru)) { 1382 int file = is_file_lru(lru); 1383 int numpages = hpage_nr_pages(page); 1384 reclaim_stat->recent_rotated[file] += numpages; 1385 } 1386 if (put_page_testzero(page)) { 1387 __ClearPageLRU(page); 1388 __ClearPageActive(page); 1389 del_page_from_lru_list(page, lruvec, lru); 1390 1391 if (unlikely(PageCompound(page))) { 1392 spin_unlock_irq(&zone->lru_lock); 1393 (*get_compound_page_dtor(page))(page); 1394 spin_lock_irq(&zone->lru_lock); 1395 } else 1396 list_add(&page->lru, &pages_to_free); 1397 } 1398 } 1399 1400 /* 1401 * To save our caller's stack, now use input list for pages to free. 1402 */ 1403 list_splice(&pages_to_free, page_list); 1404 } 1405 1406 /* 1407 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1408 * of reclaimed pages 1409 */ 1410 static noinline_for_stack unsigned long 1411 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1412 struct scan_control *sc, enum lru_list lru) 1413 { 1414 LIST_HEAD(page_list); 1415 unsigned long nr_scanned; 1416 unsigned long nr_reclaimed = 0; 1417 unsigned long nr_taken; 1418 unsigned long nr_dirty = 0; 1419 unsigned long nr_congested = 0; 1420 unsigned long nr_unqueued_dirty = 0; 1421 unsigned long nr_writeback = 0; 1422 unsigned long nr_immediate = 0; 1423 isolate_mode_t isolate_mode = 0; 1424 int file = is_file_lru(lru); 1425 struct zone *zone = lruvec_zone(lruvec); 1426 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1427 1428 while (unlikely(too_many_isolated(zone, file, sc))) { 1429 congestion_wait(BLK_RW_ASYNC, HZ/10); 1430 1431 /* We are about to die and free our memory. Return now. */ 1432 if (fatal_signal_pending(current)) 1433 return SWAP_CLUSTER_MAX; 1434 } 1435 1436 lru_add_drain(); 1437 1438 if (!sc->may_unmap) 1439 isolate_mode |= ISOLATE_UNMAPPED; 1440 if (!sc->may_writepage) 1441 isolate_mode |= ISOLATE_CLEAN; 1442 1443 spin_lock_irq(&zone->lru_lock); 1444 1445 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1446 &nr_scanned, sc, isolate_mode, lru); 1447 1448 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1449 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1450 1451 if (global_reclaim(sc)) { 1452 zone->pages_scanned += nr_scanned; 1453 if (current_is_kswapd()) 1454 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1455 else 1456 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1457 } 1458 spin_unlock_irq(&zone->lru_lock); 1459 1460 if (nr_taken == 0) 1461 return 0; 1462 1463 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1464 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1465 &nr_writeback, &nr_immediate, 1466 false); 1467 1468 spin_lock_irq(&zone->lru_lock); 1469 1470 reclaim_stat->recent_scanned[file] += nr_taken; 1471 1472 if (global_reclaim(sc)) { 1473 if (current_is_kswapd()) 1474 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1475 nr_reclaimed); 1476 else 1477 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1478 nr_reclaimed); 1479 } 1480 1481 putback_inactive_pages(lruvec, &page_list); 1482 1483 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1484 1485 spin_unlock_irq(&zone->lru_lock); 1486 1487 free_hot_cold_page_list(&page_list, 1); 1488 1489 /* 1490 * If reclaim is isolating dirty pages under writeback, it implies 1491 * that the long-lived page allocation rate is exceeding the page 1492 * laundering rate. Either the global limits are not being effective 1493 * at throttling processes due to the page distribution throughout 1494 * zones or there is heavy usage of a slow backing device. The 1495 * only option is to throttle from reclaim context which is not ideal 1496 * as there is no guarantee the dirtying process is throttled in the 1497 * same way balance_dirty_pages() manages. 1498 * 1499 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1500 * of pages under pages flagged for immediate reclaim and stall if any 1501 * are encountered in the nr_immediate check below. 1502 */ 1503 if (nr_writeback && nr_writeback == nr_taken) 1504 zone_set_flag(zone, ZONE_WRITEBACK); 1505 1506 /* 1507 * memcg will stall in page writeback so only consider forcibly 1508 * stalling for global reclaim 1509 */ 1510 if (global_reclaim(sc)) { 1511 /* 1512 * Tag a zone as congested if all the dirty pages scanned were 1513 * backed by a congested BDI and wait_iff_congested will stall. 1514 */ 1515 if (nr_dirty && nr_dirty == nr_congested) 1516 zone_set_flag(zone, ZONE_CONGESTED); 1517 1518 /* 1519 * If dirty pages are scanned that are not queued for IO, it 1520 * implies that flushers are not keeping up. In this case, flag 1521 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing 1522 * pages from reclaim context. It will forcibly stall in the 1523 * next check. 1524 */ 1525 if (nr_unqueued_dirty == nr_taken) 1526 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); 1527 1528 /* 1529 * In addition, if kswapd scans pages marked marked for 1530 * immediate reclaim and under writeback (nr_immediate), it 1531 * implies that pages are cycling through the LRU faster than 1532 * they are written so also forcibly stall. 1533 */ 1534 if (nr_unqueued_dirty == nr_taken || nr_immediate) 1535 congestion_wait(BLK_RW_ASYNC, HZ/10); 1536 } 1537 1538 /* 1539 * Stall direct reclaim for IO completions if underlying BDIs or zone 1540 * is congested. Allow kswapd to continue until it starts encountering 1541 * unqueued dirty pages or cycling through the LRU too quickly. 1542 */ 1543 if (!sc->hibernation_mode && !current_is_kswapd()) 1544 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1545 1546 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1547 zone_idx(zone), 1548 nr_scanned, nr_reclaimed, 1549 sc->priority, 1550 trace_shrink_flags(file)); 1551 return nr_reclaimed; 1552 } 1553 1554 /* 1555 * This moves pages from the active list to the inactive list. 1556 * 1557 * We move them the other way if the page is referenced by one or more 1558 * processes, from rmap. 1559 * 1560 * If the pages are mostly unmapped, the processing is fast and it is 1561 * appropriate to hold zone->lru_lock across the whole operation. But if 1562 * the pages are mapped, the processing is slow (page_referenced()) so we 1563 * should drop zone->lru_lock around each page. It's impossible to balance 1564 * this, so instead we remove the pages from the LRU while processing them. 1565 * It is safe to rely on PG_active against the non-LRU pages in here because 1566 * nobody will play with that bit on a non-LRU page. 1567 * 1568 * The downside is that we have to touch page->_count against each page. 1569 * But we had to alter page->flags anyway. 1570 */ 1571 1572 static void move_active_pages_to_lru(struct lruvec *lruvec, 1573 struct list_head *list, 1574 struct list_head *pages_to_free, 1575 enum lru_list lru) 1576 { 1577 struct zone *zone = lruvec_zone(lruvec); 1578 unsigned long pgmoved = 0; 1579 struct page *page; 1580 int nr_pages; 1581 1582 while (!list_empty(list)) { 1583 page = lru_to_page(list); 1584 lruvec = mem_cgroup_page_lruvec(page, zone); 1585 1586 VM_BUG_ON(PageLRU(page)); 1587 SetPageLRU(page); 1588 1589 nr_pages = hpage_nr_pages(page); 1590 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1591 list_move(&page->lru, &lruvec->lists[lru]); 1592 pgmoved += nr_pages; 1593 1594 if (put_page_testzero(page)) { 1595 __ClearPageLRU(page); 1596 __ClearPageActive(page); 1597 del_page_from_lru_list(page, lruvec, lru); 1598 1599 if (unlikely(PageCompound(page))) { 1600 spin_unlock_irq(&zone->lru_lock); 1601 (*get_compound_page_dtor(page))(page); 1602 spin_lock_irq(&zone->lru_lock); 1603 } else 1604 list_add(&page->lru, pages_to_free); 1605 } 1606 } 1607 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1608 if (!is_active_lru(lru)) 1609 __count_vm_events(PGDEACTIVATE, pgmoved); 1610 } 1611 1612 static void shrink_active_list(unsigned long nr_to_scan, 1613 struct lruvec *lruvec, 1614 struct scan_control *sc, 1615 enum lru_list lru) 1616 { 1617 unsigned long nr_taken; 1618 unsigned long nr_scanned; 1619 unsigned long vm_flags; 1620 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1621 LIST_HEAD(l_active); 1622 LIST_HEAD(l_inactive); 1623 struct page *page; 1624 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1625 unsigned long nr_rotated = 0; 1626 isolate_mode_t isolate_mode = 0; 1627 int file = is_file_lru(lru); 1628 struct zone *zone = lruvec_zone(lruvec); 1629 1630 lru_add_drain(); 1631 1632 if (!sc->may_unmap) 1633 isolate_mode |= ISOLATE_UNMAPPED; 1634 if (!sc->may_writepage) 1635 isolate_mode |= ISOLATE_CLEAN; 1636 1637 spin_lock_irq(&zone->lru_lock); 1638 1639 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1640 &nr_scanned, sc, isolate_mode, lru); 1641 if (global_reclaim(sc)) 1642 zone->pages_scanned += nr_scanned; 1643 1644 reclaim_stat->recent_scanned[file] += nr_taken; 1645 1646 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1647 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1648 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1649 spin_unlock_irq(&zone->lru_lock); 1650 1651 while (!list_empty(&l_hold)) { 1652 cond_resched(); 1653 page = lru_to_page(&l_hold); 1654 list_del(&page->lru); 1655 1656 if (unlikely(!page_evictable(page))) { 1657 putback_lru_page(page); 1658 continue; 1659 } 1660 1661 if (unlikely(buffer_heads_over_limit)) { 1662 if (page_has_private(page) && trylock_page(page)) { 1663 if (page_has_private(page)) 1664 try_to_release_page(page, 0); 1665 unlock_page(page); 1666 } 1667 } 1668 1669 if (page_referenced(page, 0, sc->target_mem_cgroup, 1670 &vm_flags)) { 1671 nr_rotated += hpage_nr_pages(page); 1672 /* 1673 * Identify referenced, file-backed active pages and 1674 * give them one more trip around the active list. So 1675 * that executable code get better chances to stay in 1676 * memory under moderate memory pressure. Anon pages 1677 * are not likely to be evicted by use-once streaming 1678 * IO, plus JVM can create lots of anon VM_EXEC pages, 1679 * so we ignore them here. 1680 */ 1681 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1682 list_add(&page->lru, &l_active); 1683 continue; 1684 } 1685 } 1686 1687 ClearPageActive(page); /* we are de-activating */ 1688 list_add(&page->lru, &l_inactive); 1689 } 1690 1691 /* 1692 * Move pages back to the lru list. 1693 */ 1694 spin_lock_irq(&zone->lru_lock); 1695 /* 1696 * Count referenced pages from currently used mappings as rotated, 1697 * even though only some of them are actually re-activated. This 1698 * helps balance scan pressure between file and anonymous pages in 1699 * get_scan_ratio. 1700 */ 1701 reclaim_stat->recent_rotated[file] += nr_rotated; 1702 1703 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1704 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1705 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1706 spin_unlock_irq(&zone->lru_lock); 1707 1708 free_hot_cold_page_list(&l_hold, 1); 1709 } 1710 1711 #ifdef CONFIG_SWAP 1712 static int inactive_anon_is_low_global(struct zone *zone) 1713 { 1714 unsigned long active, inactive; 1715 1716 active = zone_page_state(zone, NR_ACTIVE_ANON); 1717 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1718 1719 if (inactive * zone->inactive_ratio < active) 1720 return 1; 1721 1722 return 0; 1723 } 1724 1725 /** 1726 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1727 * @lruvec: LRU vector to check 1728 * 1729 * Returns true if the zone does not have enough inactive anon pages, 1730 * meaning some active anon pages need to be deactivated. 1731 */ 1732 static int inactive_anon_is_low(struct lruvec *lruvec) 1733 { 1734 /* 1735 * If we don't have swap space, anonymous page deactivation 1736 * is pointless. 1737 */ 1738 if (!total_swap_pages) 1739 return 0; 1740 1741 if (!mem_cgroup_disabled()) 1742 return mem_cgroup_inactive_anon_is_low(lruvec); 1743 1744 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1745 } 1746 #else 1747 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1748 { 1749 return 0; 1750 } 1751 #endif 1752 1753 /** 1754 * inactive_file_is_low - check if file pages need to be deactivated 1755 * @lruvec: LRU vector to check 1756 * 1757 * When the system is doing streaming IO, memory pressure here 1758 * ensures that active file pages get deactivated, until more 1759 * than half of the file pages are on the inactive list. 1760 * 1761 * Once we get to that situation, protect the system's working 1762 * set from being evicted by disabling active file page aging. 1763 * 1764 * This uses a different ratio than the anonymous pages, because 1765 * the page cache uses a use-once replacement algorithm. 1766 */ 1767 static int inactive_file_is_low(struct lruvec *lruvec) 1768 { 1769 unsigned long inactive; 1770 unsigned long active; 1771 1772 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1773 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1774 1775 return active > inactive; 1776 } 1777 1778 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1779 { 1780 if (is_file_lru(lru)) 1781 return inactive_file_is_low(lruvec); 1782 else 1783 return inactive_anon_is_low(lruvec); 1784 } 1785 1786 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1787 struct lruvec *lruvec, struct scan_control *sc) 1788 { 1789 if (is_active_lru(lru)) { 1790 if (inactive_list_is_low(lruvec, lru)) 1791 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1792 return 0; 1793 } 1794 1795 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1796 } 1797 1798 static int vmscan_swappiness(struct scan_control *sc) 1799 { 1800 if (global_reclaim(sc)) 1801 return vm_swappiness; 1802 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1803 } 1804 1805 enum scan_balance { 1806 SCAN_EQUAL, 1807 SCAN_FRACT, 1808 SCAN_ANON, 1809 SCAN_FILE, 1810 }; 1811 1812 /* 1813 * Determine how aggressively the anon and file LRU lists should be 1814 * scanned. The relative value of each set of LRU lists is determined 1815 * by looking at the fraction of the pages scanned we did rotate back 1816 * onto the active list instead of evict. 1817 * 1818 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1819 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1820 */ 1821 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1822 unsigned long *nr) 1823 { 1824 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1825 u64 fraction[2]; 1826 u64 denominator = 0; /* gcc */ 1827 struct zone *zone = lruvec_zone(lruvec); 1828 unsigned long anon_prio, file_prio; 1829 enum scan_balance scan_balance; 1830 unsigned long anon, file, free; 1831 bool force_scan = false; 1832 unsigned long ap, fp; 1833 enum lru_list lru; 1834 1835 /* 1836 * If the zone or memcg is small, nr[l] can be 0. This 1837 * results in no scanning on this priority and a potential 1838 * priority drop. Global direct reclaim can go to the next 1839 * zone and tends to have no problems. Global kswapd is for 1840 * zone balancing and it needs to scan a minimum amount. When 1841 * reclaiming for a memcg, a priority drop can cause high 1842 * latencies, so it's better to scan a minimum amount there as 1843 * well. 1844 */ 1845 if (current_is_kswapd() && !zone_reclaimable(zone)) 1846 force_scan = true; 1847 if (!global_reclaim(sc)) 1848 force_scan = true; 1849 1850 /* If we have no swap space, do not bother scanning anon pages. */ 1851 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1852 scan_balance = SCAN_FILE; 1853 goto out; 1854 } 1855 1856 /* 1857 * Global reclaim will swap to prevent OOM even with no 1858 * swappiness, but memcg users want to use this knob to 1859 * disable swapping for individual groups completely when 1860 * using the memory controller's swap limit feature would be 1861 * too expensive. 1862 */ 1863 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { 1864 scan_balance = SCAN_FILE; 1865 goto out; 1866 } 1867 1868 /* 1869 * Do not apply any pressure balancing cleverness when the 1870 * system is close to OOM, scan both anon and file equally 1871 * (unless the swappiness setting disagrees with swapping). 1872 */ 1873 if (!sc->priority && vmscan_swappiness(sc)) { 1874 scan_balance = SCAN_EQUAL; 1875 goto out; 1876 } 1877 1878 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1879 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1880 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1881 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1882 1883 /* 1884 * If it's foreseeable that reclaiming the file cache won't be 1885 * enough to get the zone back into a desirable shape, we have 1886 * to swap. Better start now and leave the - probably heavily 1887 * thrashing - remaining file pages alone. 1888 */ 1889 if (global_reclaim(sc)) { 1890 free = zone_page_state(zone, NR_FREE_PAGES); 1891 if (unlikely(file + free <= high_wmark_pages(zone))) { 1892 scan_balance = SCAN_ANON; 1893 goto out; 1894 } 1895 } 1896 1897 /* 1898 * There is enough inactive page cache, do not reclaim 1899 * anything from the anonymous working set right now. 1900 */ 1901 if (!inactive_file_is_low(lruvec)) { 1902 scan_balance = SCAN_FILE; 1903 goto out; 1904 } 1905 1906 scan_balance = SCAN_FRACT; 1907 1908 /* 1909 * With swappiness at 100, anonymous and file have the same priority. 1910 * This scanning priority is essentially the inverse of IO cost. 1911 */ 1912 anon_prio = vmscan_swappiness(sc); 1913 file_prio = 200 - anon_prio; 1914 1915 /* 1916 * OK, so we have swap space and a fair amount of page cache 1917 * pages. We use the recently rotated / recently scanned 1918 * ratios to determine how valuable each cache is. 1919 * 1920 * Because workloads change over time (and to avoid overflow) 1921 * we keep these statistics as a floating average, which ends 1922 * up weighing recent references more than old ones. 1923 * 1924 * anon in [0], file in [1] 1925 */ 1926 spin_lock_irq(&zone->lru_lock); 1927 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1928 reclaim_stat->recent_scanned[0] /= 2; 1929 reclaim_stat->recent_rotated[0] /= 2; 1930 } 1931 1932 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1933 reclaim_stat->recent_scanned[1] /= 2; 1934 reclaim_stat->recent_rotated[1] /= 2; 1935 } 1936 1937 /* 1938 * The amount of pressure on anon vs file pages is inversely 1939 * proportional to the fraction of recently scanned pages on 1940 * each list that were recently referenced and in active use. 1941 */ 1942 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1943 ap /= reclaim_stat->recent_rotated[0] + 1; 1944 1945 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1946 fp /= reclaim_stat->recent_rotated[1] + 1; 1947 spin_unlock_irq(&zone->lru_lock); 1948 1949 fraction[0] = ap; 1950 fraction[1] = fp; 1951 denominator = ap + fp + 1; 1952 out: 1953 for_each_evictable_lru(lru) { 1954 int file = is_file_lru(lru); 1955 unsigned long size; 1956 unsigned long scan; 1957 1958 size = get_lru_size(lruvec, lru); 1959 scan = size >> sc->priority; 1960 1961 if (!scan && force_scan) 1962 scan = min(size, SWAP_CLUSTER_MAX); 1963 1964 switch (scan_balance) { 1965 case SCAN_EQUAL: 1966 /* Scan lists relative to size */ 1967 break; 1968 case SCAN_FRACT: 1969 /* 1970 * Scan types proportional to swappiness and 1971 * their relative recent reclaim efficiency. 1972 */ 1973 scan = div64_u64(scan * fraction[file], denominator); 1974 break; 1975 case SCAN_FILE: 1976 case SCAN_ANON: 1977 /* Scan one type exclusively */ 1978 if ((scan_balance == SCAN_FILE) != file) 1979 scan = 0; 1980 break; 1981 default: 1982 /* Look ma, no brain */ 1983 BUG(); 1984 } 1985 nr[lru] = scan; 1986 } 1987 } 1988 1989 /* 1990 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1991 */ 1992 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 1993 { 1994 unsigned long nr[NR_LRU_LISTS]; 1995 unsigned long targets[NR_LRU_LISTS]; 1996 unsigned long nr_to_scan; 1997 enum lru_list lru; 1998 unsigned long nr_reclaimed = 0; 1999 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2000 struct blk_plug plug; 2001 bool scan_adjusted = false; 2002 2003 get_scan_count(lruvec, sc, nr); 2004 2005 /* Record the original scan target for proportional adjustments later */ 2006 memcpy(targets, nr, sizeof(nr)); 2007 2008 blk_start_plug(&plug); 2009 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2010 nr[LRU_INACTIVE_FILE]) { 2011 unsigned long nr_anon, nr_file, percentage; 2012 unsigned long nr_scanned; 2013 2014 for_each_evictable_lru(lru) { 2015 if (nr[lru]) { 2016 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2017 nr[lru] -= nr_to_scan; 2018 2019 nr_reclaimed += shrink_list(lru, nr_to_scan, 2020 lruvec, sc); 2021 } 2022 } 2023 2024 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2025 continue; 2026 2027 /* 2028 * For global direct reclaim, reclaim only the number of pages 2029 * requested. Less care is taken to scan proportionally as it 2030 * is more important to minimise direct reclaim stall latency 2031 * than it is to properly age the LRU lists. 2032 */ 2033 if (global_reclaim(sc) && !current_is_kswapd()) 2034 break; 2035 2036 /* 2037 * For kswapd and memcg, reclaim at least the number of pages 2038 * requested. Ensure that the anon and file LRUs shrink 2039 * proportionally what was requested by get_scan_count(). We 2040 * stop reclaiming one LRU and reduce the amount scanning 2041 * proportional to the original scan target. 2042 */ 2043 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2044 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2045 2046 if (nr_file > nr_anon) { 2047 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2048 targets[LRU_ACTIVE_ANON] + 1; 2049 lru = LRU_BASE; 2050 percentage = nr_anon * 100 / scan_target; 2051 } else { 2052 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2053 targets[LRU_ACTIVE_FILE] + 1; 2054 lru = LRU_FILE; 2055 percentage = nr_file * 100 / scan_target; 2056 } 2057 2058 /* Stop scanning the smaller of the LRU */ 2059 nr[lru] = 0; 2060 nr[lru + LRU_ACTIVE] = 0; 2061 2062 /* 2063 * Recalculate the other LRU scan count based on its original 2064 * scan target and the percentage scanning already complete 2065 */ 2066 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2067 nr_scanned = targets[lru] - nr[lru]; 2068 nr[lru] = targets[lru] * (100 - percentage) / 100; 2069 nr[lru] -= min(nr[lru], nr_scanned); 2070 2071 lru += LRU_ACTIVE; 2072 nr_scanned = targets[lru] - nr[lru]; 2073 nr[lru] = targets[lru] * (100 - percentage) / 100; 2074 nr[lru] -= min(nr[lru], nr_scanned); 2075 2076 scan_adjusted = true; 2077 } 2078 blk_finish_plug(&plug); 2079 sc->nr_reclaimed += nr_reclaimed; 2080 2081 /* 2082 * Even if we did not try to evict anon pages at all, we want to 2083 * rebalance the anon lru active/inactive ratio. 2084 */ 2085 if (inactive_anon_is_low(lruvec)) 2086 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2087 sc, LRU_ACTIVE_ANON); 2088 2089 throttle_vm_writeout(sc->gfp_mask); 2090 } 2091 2092 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2093 static bool in_reclaim_compaction(struct scan_control *sc) 2094 { 2095 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2096 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2097 sc->priority < DEF_PRIORITY - 2)) 2098 return true; 2099 2100 return false; 2101 } 2102 2103 /* 2104 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2105 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2106 * true if more pages should be reclaimed such that when the page allocator 2107 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2108 * It will give up earlier than that if there is difficulty reclaiming pages. 2109 */ 2110 static inline bool should_continue_reclaim(struct zone *zone, 2111 unsigned long nr_reclaimed, 2112 unsigned long nr_scanned, 2113 struct scan_control *sc) 2114 { 2115 unsigned long pages_for_compaction; 2116 unsigned long inactive_lru_pages; 2117 2118 /* If not in reclaim/compaction mode, stop */ 2119 if (!in_reclaim_compaction(sc)) 2120 return false; 2121 2122 /* Consider stopping depending on scan and reclaim activity */ 2123 if (sc->gfp_mask & __GFP_REPEAT) { 2124 /* 2125 * For __GFP_REPEAT allocations, stop reclaiming if the 2126 * full LRU list has been scanned and we are still failing 2127 * to reclaim pages. This full LRU scan is potentially 2128 * expensive but a __GFP_REPEAT caller really wants to succeed 2129 */ 2130 if (!nr_reclaimed && !nr_scanned) 2131 return false; 2132 } else { 2133 /* 2134 * For non-__GFP_REPEAT allocations which can presumably 2135 * fail without consequence, stop if we failed to reclaim 2136 * any pages from the last SWAP_CLUSTER_MAX number of 2137 * pages that were scanned. This will return to the 2138 * caller faster at the risk reclaim/compaction and 2139 * the resulting allocation attempt fails 2140 */ 2141 if (!nr_reclaimed) 2142 return false; 2143 } 2144 2145 /* 2146 * If we have not reclaimed enough pages for compaction and the 2147 * inactive lists are large enough, continue reclaiming 2148 */ 2149 pages_for_compaction = (2UL << sc->order); 2150 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2151 if (get_nr_swap_pages() > 0) 2152 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2153 if (sc->nr_reclaimed < pages_for_compaction && 2154 inactive_lru_pages > pages_for_compaction) 2155 return true; 2156 2157 /* If compaction would go ahead or the allocation would succeed, stop */ 2158 switch (compaction_suitable(zone, sc->order)) { 2159 case COMPACT_PARTIAL: 2160 case COMPACT_CONTINUE: 2161 return false; 2162 default: 2163 return true; 2164 } 2165 } 2166 2167 static void shrink_zone(struct zone *zone, struct scan_control *sc) 2168 { 2169 unsigned long nr_reclaimed, nr_scanned; 2170 2171 do { 2172 struct mem_cgroup *root = sc->target_mem_cgroup; 2173 struct mem_cgroup_reclaim_cookie reclaim = { 2174 .zone = zone, 2175 .priority = sc->priority, 2176 }; 2177 struct mem_cgroup *memcg; 2178 2179 nr_reclaimed = sc->nr_reclaimed; 2180 nr_scanned = sc->nr_scanned; 2181 2182 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2183 do { 2184 struct lruvec *lruvec; 2185 2186 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2187 2188 shrink_lruvec(lruvec, sc); 2189 2190 /* 2191 * Direct reclaim and kswapd have to scan all memory 2192 * cgroups to fulfill the overall scan target for the 2193 * zone. 2194 * 2195 * Limit reclaim, on the other hand, only cares about 2196 * nr_to_reclaim pages to be reclaimed and it will 2197 * retry with decreasing priority if one round over the 2198 * whole hierarchy is not sufficient. 2199 */ 2200 if (!global_reclaim(sc) && 2201 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2202 mem_cgroup_iter_break(root, memcg); 2203 break; 2204 } 2205 memcg = mem_cgroup_iter(root, memcg, &reclaim); 2206 } while (memcg); 2207 2208 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2209 sc->nr_scanned - nr_scanned, 2210 sc->nr_reclaimed - nr_reclaimed); 2211 2212 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2213 sc->nr_scanned - nr_scanned, sc)); 2214 } 2215 2216 /* Returns true if compaction should go ahead for a high-order request */ 2217 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2218 { 2219 unsigned long balance_gap, watermark; 2220 bool watermark_ok; 2221 2222 /* Do not consider compaction for orders reclaim is meant to satisfy */ 2223 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 2224 return false; 2225 2226 /* 2227 * Compaction takes time to run and there are potentially other 2228 * callers using the pages just freed. Continue reclaiming until 2229 * there is a buffer of free pages available to give compaction 2230 * a reasonable chance of completing and allocating the page 2231 */ 2232 balance_gap = min(low_wmark_pages(zone), 2233 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2234 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2235 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 2236 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2237 2238 /* 2239 * If compaction is deferred, reclaim up to a point where 2240 * compaction will have a chance of success when re-enabled 2241 */ 2242 if (compaction_deferred(zone, sc->order)) 2243 return watermark_ok; 2244 2245 /* If compaction is not ready to start, keep reclaiming */ 2246 if (!compaction_suitable(zone, sc->order)) 2247 return false; 2248 2249 return watermark_ok; 2250 } 2251 2252 /* 2253 * This is the direct reclaim path, for page-allocating processes. We only 2254 * try to reclaim pages from zones which will satisfy the caller's allocation 2255 * request. 2256 * 2257 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2258 * Because: 2259 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2260 * allocation or 2261 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2262 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2263 * zone defense algorithm. 2264 * 2265 * If a zone is deemed to be full of pinned pages then just give it a light 2266 * scan then give up on it. 2267 * 2268 * This function returns true if a zone is being reclaimed for a costly 2269 * high-order allocation and compaction is ready to begin. This indicates to 2270 * the caller that it should consider retrying the allocation instead of 2271 * further reclaim. 2272 */ 2273 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2274 { 2275 struct zoneref *z; 2276 struct zone *zone; 2277 unsigned long nr_soft_reclaimed; 2278 unsigned long nr_soft_scanned; 2279 bool aborted_reclaim = false; 2280 2281 /* 2282 * If the number of buffer_heads in the machine exceeds the maximum 2283 * allowed level, force direct reclaim to scan the highmem zone as 2284 * highmem pages could be pinning lowmem pages storing buffer_heads 2285 */ 2286 if (buffer_heads_over_limit) 2287 sc->gfp_mask |= __GFP_HIGHMEM; 2288 2289 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2290 gfp_zone(sc->gfp_mask), sc->nodemask) { 2291 if (!populated_zone(zone)) 2292 continue; 2293 /* 2294 * Take care memory controller reclaiming has small influence 2295 * to global LRU. 2296 */ 2297 if (global_reclaim(sc)) { 2298 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2299 continue; 2300 if (sc->priority != DEF_PRIORITY && 2301 !zone_reclaimable(zone)) 2302 continue; /* Let kswapd poll it */ 2303 if (IS_ENABLED(CONFIG_COMPACTION)) { 2304 /* 2305 * If we already have plenty of memory free for 2306 * compaction in this zone, don't free any more. 2307 * Even though compaction is invoked for any 2308 * non-zero order, only frequent costly order 2309 * reclamation is disruptive enough to become a 2310 * noticeable problem, like transparent huge 2311 * page allocations. 2312 */ 2313 if (compaction_ready(zone, sc)) { 2314 aborted_reclaim = true; 2315 continue; 2316 } 2317 } 2318 /* 2319 * This steals pages from memory cgroups over softlimit 2320 * and returns the number of reclaimed pages and 2321 * scanned pages. This works for global memory pressure 2322 * and balancing, not for a memcg's limit. 2323 */ 2324 nr_soft_scanned = 0; 2325 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2326 sc->order, sc->gfp_mask, 2327 &nr_soft_scanned); 2328 sc->nr_reclaimed += nr_soft_reclaimed; 2329 sc->nr_scanned += nr_soft_scanned; 2330 /* need some check for avoid more shrink_zone() */ 2331 } 2332 2333 shrink_zone(zone, sc); 2334 } 2335 2336 return aborted_reclaim; 2337 } 2338 2339 /* All zones in zonelist are unreclaimable? */ 2340 static bool all_unreclaimable(struct zonelist *zonelist, 2341 struct scan_control *sc) 2342 { 2343 struct zoneref *z; 2344 struct zone *zone; 2345 2346 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2347 gfp_zone(sc->gfp_mask), sc->nodemask) { 2348 if (!populated_zone(zone)) 2349 continue; 2350 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2351 continue; 2352 if (zone_reclaimable(zone)) 2353 return false; 2354 } 2355 2356 return true; 2357 } 2358 2359 /* 2360 * This is the main entry point to direct page reclaim. 2361 * 2362 * If a full scan of the inactive list fails to free enough memory then we 2363 * are "out of memory" and something needs to be killed. 2364 * 2365 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2366 * high - the zone may be full of dirty or under-writeback pages, which this 2367 * caller can't do much about. We kick the writeback threads and take explicit 2368 * naps in the hope that some of these pages can be written. But if the 2369 * allocating task holds filesystem locks which prevent writeout this might not 2370 * work, and the allocation attempt will fail. 2371 * 2372 * returns: 0, if no pages reclaimed 2373 * else, the number of pages reclaimed 2374 */ 2375 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2376 struct scan_control *sc, 2377 struct shrink_control *shrink) 2378 { 2379 unsigned long total_scanned = 0; 2380 struct reclaim_state *reclaim_state = current->reclaim_state; 2381 struct zoneref *z; 2382 struct zone *zone; 2383 unsigned long writeback_threshold; 2384 bool aborted_reclaim; 2385 2386 delayacct_freepages_start(); 2387 2388 if (global_reclaim(sc)) 2389 count_vm_event(ALLOCSTALL); 2390 2391 do { 2392 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2393 sc->priority); 2394 sc->nr_scanned = 0; 2395 aborted_reclaim = shrink_zones(zonelist, sc); 2396 2397 /* 2398 * Don't shrink slabs when reclaiming memory from over limit 2399 * cgroups but do shrink slab at least once when aborting 2400 * reclaim for compaction to avoid unevenly scanning file/anon 2401 * LRU pages over slab pages. 2402 */ 2403 if (global_reclaim(sc)) { 2404 unsigned long lru_pages = 0; 2405 2406 nodes_clear(shrink->nodes_to_scan); 2407 for_each_zone_zonelist(zone, z, zonelist, 2408 gfp_zone(sc->gfp_mask)) { 2409 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2410 continue; 2411 2412 lru_pages += zone_reclaimable_pages(zone); 2413 node_set(zone_to_nid(zone), 2414 shrink->nodes_to_scan); 2415 } 2416 2417 shrink_slab(shrink, sc->nr_scanned, lru_pages); 2418 if (reclaim_state) { 2419 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2420 reclaim_state->reclaimed_slab = 0; 2421 } 2422 } 2423 total_scanned += sc->nr_scanned; 2424 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2425 goto out; 2426 2427 /* 2428 * If we're getting trouble reclaiming, start doing 2429 * writepage even in laptop mode. 2430 */ 2431 if (sc->priority < DEF_PRIORITY - 2) 2432 sc->may_writepage = 1; 2433 2434 /* 2435 * Try to write back as many pages as we just scanned. This 2436 * tends to cause slow streaming writers to write data to the 2437 * disk smoothly, at the dirtying rate, which is nice. But 2438 * that's undesirable in laptop mode, where we *want* lumpy 2439 * writeout. So in laptop mode, write out the whole world. 2440 */ 2441 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2442 if (total_scanned > writeback_threshold) { 2443 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2444 WB_REASON_TRY_TO_FREE_PAGES); 2445 sc->may_writepage = 1; 2446 } 2447 } while (--sc->priority >= 0 && !aborted_reclaim); 2448 2449 out: 2450 delayacct_freepages_end(); 2451 2452 if (sc->nr_reclaimed) 2453 return sc->nr_reclaimed; 2454 2455 /* 2456 * As hibernation is going on, kswapd is freezed so that it can't mark 2457 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2458 * check. 2459 */ 2460 if (oom_killer_disabled) 2461 return 0; 2462 2463 /* Aborted reclaim to try compaction? don't OOM, then */ 2464 if (aborted_reclaim) 2465 return 1; 2466 2467 /* top priority shrink_zones still had more to do? don't OOM, then */ 2468 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2469 return 1; 2470 2471 return 0; 2472 } 2473 2474 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2475 { 2476 struct zone *zone; 2477 unsigned long pfmemalloc_reserve = 0; 2478 unsigned long free_pages = 0; 2479 int i; 2480 bool wmark_ok; 2481 2482 for (i = 0; i <= ZONE_NORMAL; i++) { 2483 zone = &pgdat->node_zones[i]; 2484 pfmemalloc_reserve += min_wmark_pages(zone); 2485 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2486 } 2487 2488 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2489 2490 /* kswapd must be awake if processes are being throttled */ 2491 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2492 pgdat->classzone_idx = min(pgdat->classzone_idx, 2493 (enum zone_type)ZONE_NORMAL); 2494 wake_up_interruptible(&pgdat->kswapd_wait); 2495 } 2496 2497 return wmark_ok; 2498 } 2499 2500 /* 2501 * Throttle direct reclaimers if backing storage is backed by the network 2502 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2503 * depleted. kswapd will continue to make progress and wake the processes 2504 * when the low watermark is reached. 2505 * 2506 * Returns true if a fatal signal was delivered during throttling. If this 2507 * happens, the page allocator should not consider triggering the OOM killer. 2508 */ 2509 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2510 nodemask_t *nodemask) 2511 { 2512 struct zone *zone; 2513 int high_zoneidx = gfp_zone(gfp_mask); 2514 pg_data_t *pgdat; 2515 2516 /* 2517 * Kernel threads should not be throttled as they may be indirectly 2518 * responsible for cleaning pages necessary for reclaim to make forward 2519 * progress. kjournald for example may enter direct reclaim while 2520 * committing a transaction where throttling it could forcing other 2521 * processes to block on log_wait_commit(). 2522 */ 2523 if (current->flags & PF_KTHREAD) 2524 goto out; 2525 2526 /* 2527 * If a fatal signal is pending, this process should not throttle. 2528 * It should return quickly so it can exit and free its memory 2529 */ 2530 if (fatal_signal_pending(current)) 2531 goto out; 2532 2533 /* Check if the pfmemalloc reserves are ok */ 2534 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2535 pgdat = zone->zone_pgdat; 2536 if (pfmemalloc_watermark_ok(pgdat)) 2537 goto out; 2538 2539 /* Account for the throttling */ 2540 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2541 2542 /* 2543 * If the caller cannot enter the filesystem, it's possible that it 2544 * is due to the caller holding an FS lock or performing a journal 2545 * transaction in the case of a filesystem like ext[3|4]. In this case, 2546 * it is not safe to block on pfmemalloc_wait as kswapd could be 2547 * blocked waiting on the same lock. Instead, throttle for up to a 2548 * second before continuing. 2549 */ 2550 if (!(gfp_mask & __GFP_FS)) { 2551 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2552 pfmemalloc_watermark_ok(pgdat), HZ); 2553 2554 goto check_pending; 2555 } 2556 2557 /* Throttle until kswapd wakes the process */ 2558 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2559 pfmemalloc_watermark_ok(pgdat)); 2560 2561 check_pending: 2562 if (fatal_signal_pending(current)) 2563 return true; 2564 2565 out: 2566 return false; 2567 } 2568 2569 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2570 gfp_t gfp_mask, nodemask_t *nodemask) 2571 { 2572 unsigned long nr_reclaimed; 2573 struct scan_control sc = { 2574 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2575 .may_writepage = !laptop_mode, 2576 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2577 .may_unmap = 1, 2578 .may_swap = 1, 2579 .order = order, 2580 .priority = DEF_PRIORITY, 2581 .target_mem_cgroup = NULL, 2582 .nodemask = nodemask, 2583 }; 2584 struct shrink_control shrink = { 2585 .gfp_mask = sc.gfp_mask, 2586 }; 2587 2588 /* 2589 * Do not enter reclaim if fatal signal was delivered while throttled. 2590 * 1 is returned so that the page allocator does not OOM kill at this 2591 * point. 2592 */ 2593 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2594 return 1; 2595 2596 trace_mm_vmscan_direct_reclaim_begin(order, 2597 sc.may_writepage, 2598 gfp_mask); 2599 2600 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2601 2602 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2603 2604 return nr_reclaimed; 2605 } 2606 2607 #ifdef CONFIG_MEMCG 2608 2609 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2610 gfp_t gfp_mask, bool noswap, 2611 struct zone *zone, 2612 unsigned long *nr_scanned) 2613 { 2614 struct scan_control sc = { 2615 .nr_scanned = 0, 2616 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2617 .may_writepage = !laptop_mode, 2618 .may_unmap = 1, 2619 .may_swap = !noswap, 2620 .order = 0, 2621 .priority = 0, 2622 .target_mem_cgroup = memcg, 2623 }; 2624 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2625 2626 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2627 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2628 2629 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2630 sc.may_writepage, 2631 sc.gfp_mask); 2632 2633 /* 2634 * NOTE: Although we can get the priority field, using it 2635 * here is not a good idea, since it limits the pages we can scan. 2636 * if we don't reclaim here, the shrink_zone from balance_pgdat 2637 * will pick up pages from other mem cgroup's as well. We hack 2638 * the priority and make it zero. 2639 */ 2640 shrink_lruvec(lruvec, &sc); 2641 2642 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2643 2644 *nr_scanned = sc.nr_scanned; 2645 return sc.nr_reclaimed; 2646 } 2647 2648 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2649 gfp_t gfp_mask, 2650 bool noswap) 2651 { 2652 struct zonelist *zonelist; 2653 unsigned long nr_reclaimed; 2654 int nid; 2655 struct scan_control sc = { 2656 .may_writepage = !laptop_mode, 2657 .may_unmap = 1, 2658 .may_swap = !noswap, 2659 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2660 .order = 0, 2661 .priority = DEF_PRIORITY, 2662 .target_mem_cgroup = memcg, 2663 .nodemask = NULL, /* we don't care the placement */ 2664 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2665 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2666 }; 2667 struct shrink_control shrink = { 2668 .gfp_mask = sc.gfp_mask, 2669 }; 2670 2671 /* 2672 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2673 * take care of from where we get pages. So the node where we start the 2674 * scan does not need to be the current node. 2675 */ 2676 nid = mem_cgroup_select_victim_node(memcg); 2677 2678 zonelist = NODE_DATA(nid)->node_zonelists; 2679 2680 trace_mm_vmscan_memcg_reclaim_begin(0, 2681 sc.may_writepage, 2682 sc.gfp_mask); 2683 2684 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2685 2686 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2687 2688 return nr_reclaimed; 2689 } 2690 #endif 2691 2692 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2693 { 2694 struct mem_cgroup *memcg; 2695 2696 if (!total_swap_pages) 2697 return; 2698 2699 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2700 do { 2701 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2702 2703 if (inactive_anon_is_low(lruvec)) 2704 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2705 sc, LRU_ACTIVE_ANON); 2706 2707 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2708 } while (memcg); 2709 } 2710 2711 static bool zone_balanced(struct zone *zone, int order, 2712 unsigned long balance_gap, int classzone_idx) 2713 { 2714 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2715 balance_gap, classzone_idx, 0)) 2716 return false; 2717 2718 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2719 !compaction_suitable(zone, order)) 2720 return false; 2721 2722 return true; 2723 } 2724 2725 /* 2726 * pgdat_balanced() is used when checking if a node is balanced. 2727 * 2728 * For order-0, all zones must be balanced! 2729 * 2730 * For high-order allocations only zones that meet watermarks and are in a 2731 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2732 * total of balanced pages must be at least 25% of the zones allowed by 2733 * classzone_idx for the node to be considered balanced. Forcing all zones to 2734 * be balanced for high orders can cause excessive reclaim when there are 2735 * imbalanced zones. 2736 * The choice of 25% is due to 2737 * o a 16M DMA zone that is balanced will not balance a zone on any 2738 * reasonable sized machine 2739 * o On all other machines, the top zone must be at least a reasonable 2740 * percentage of the middle zones. For example, on 32-bit x86, highmem 2741 * would need to be at least 256M for it to be balance a whole node. 2742 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2743 * to balance a node on its own. These seemed like reasonable ratios. 2744 */ 2745 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2746 { 2747 unsigned long managed_pages = 0; 2748 unsigned long balanced_pages = 0; 2749 int i; 2750 2751 /* Check the watermark levels */ 2752 for (i = 0; i <= classzone_idx; i++) { 2753 struct zone *zone = pgdat->node_zones + i; 2754 2755 if (!populated_zone(zone)) 2756 continue; 2757 2758 managed_pages += zone->managed_pages; 2759 2760 /* 2761 * A special case here: 2762 * 2763 * balance_pgdat() skips over all_unreclaimable after 2764 * DEF_PRIORITY. Effectively, it considers them balanced so 2765 * they must be considered balanced here as well! 2766 */ 2767 if (!zone_reclaimable(zone)) { 2768 balanced_pages += zone->managed_pages; 2769 continue; 2770 } 2771 2772 if (zone_balanced(zone, order, 0, i)) 2773 balanced_pages += zone->managed_pages; 2774 else if (!order) 2775 return false; 2776 } 2777 2778 if (order) 2779 return balanced_pages >= (managed_pages >> 2); 2780 else 2781 return true; 2782 } 2783 2784 /* 2785 * Prepare kswapd for sleeping. This verifies that there are no processes 2786 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2787 * 2788 * Returns true if kswapd is ready to sleep 2789 */ 2790 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2791 int classzone_idx) 2792 { 2793 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2794 if (remaining) 2795 return false; 2796 2797 /* 2798 * There is a potential race between when kswapd checks its watermarks 2799 * and a process gets throttled. There is also a potential race if 2800 * processes get throttled, kswapd wakes, a large process exits therby 2801 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2802 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2803 * so wake them now if necessary. If necessary, processes will wake 2804 * kswapd and get throttled again 2805 */ 2806 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2807 wake_up(&pgdat->pfmemalloc_wait); 2808 return false; 2809 } 2810 2811 return pgdat_balanced(pgdat, order, classzone_idx); 2812 } 2813 2814 /* 2815 * kswapd shrinks the zone by the number of pages required to reach 2816 * the high watermark. 2817 * 2818 * Returns true if kswapd scanned at least the requested number of pages to 2819 * reclaim or if the lack of progress was due to pages under writeback. 2820 * This is used to determine if the scanning priority needs to be raised. 2821 */ 2822 static bool kswapd_shrink_zone(struct zone *zone, 2823 int classzone_idx, 2824 struct scan_control *sc, 2825 unsigned long lru_pages, 2826 unsigned long *nr_attempted) 2827 { 2828 int testorder = sc->order; 2829 unsigned long balance_gap; 2830 struct reclaim_state *reclaim_state = current->reclaim_state; 2831 struct shrink_control shrink = { 2832 .gfp_mask = sc->gfp_mask, 2833 }; 2834 bool lowmem_pressure; 2835 2836 /* Reclaim above the high watermark. */ 2837 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2838 2839 /* 2840 * Kswapd reclaims only single pages with compaction enabled. Trying 2841 * too hard to reclaim until contiguous free pages have become 2842 * available can hurt performance by evicting too much useful data 2843 * from memory. Do not reclaim more than needed for compaction. 2844 */ 2845 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2846 compaction_suitable(zone, sc->order) != 2847 COMPACT_SKIPPED) 2848 testorder = 0; 2849 2850 /* 2851 * We put equal pressure on every zone, unless one zone has way too 2852 * many pages free already. The "too many pages" is defined as the 2853 * high wmark plus a "gap" where the gap is either the low 2854 * watermark or 1% of the zone, whichever is smaller. 2855 */ 2856 balance_gap = min(low_wmark_pages(zone), 2857 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2858 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2859 2860 /* 2861 * If there is no low memory pressure or the zone is balanced then no 2862 * reclaim is necessary 2863 */ 2864 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2865 if (!lowmem_pressure && zone_balanced(zone, testorder, 2866 balance_gap, classzone_idx)) 2867 return true; 2868 2869 shrink_zone(zone, sc); 2870 nodes_clear(shrink.nodes_to_scan); 2871 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2872 2873 reclaim_state->reclaimed_slab = 0; 2874 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2875 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2876 2877 /* Account for the number of pages attempted to reclaim */ 2878 *nr_attempted += sc->nr_to_reclaim; 2879 2880 zone_clear_flag(zone, ZONE_WRITEBACK); 2881 2882 /* 2883 * If a zone reaches its high watermark, consider it to be no longer 2884 * congested. It's possible there are dirty pages backed by congested 2885 * BDIs but as pressure is relieved, speculatively avoid congestion 2886 * waits. 2887 */ 2888 if (zone_reclaimable(zone) && 2889 zone_balanced(zone, testorder, 0, classzone_idx)) { 2890 zone_clear_flag(zone, ZONE_CONGESTED); 2891 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2892 } 2893 2894 return sc->nr_scanned >= sc->nr_to_reclaim; 2895 } 2896 2897 /* 2898 * For kswapd, balance_pgdat() will work across all this node's zones until 2899 * they are all at high_wmark_pages(zone). 2900 * 2901 * Returns the final order kswapd was reclaiming at 2902 * 2903 * There is special handling here for zones which are full of pinned pages. 2904 * This can happen if the pages are all mlocked, or if they are all used by 2905 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2906 * What we do is to detect the case where all pages in the zone have been 2907 * scanned twice and there has been zero successful reclaim. Mark the zone as 2908 * dead and from now on, only perform a short scan. Basically we're polling 2909 * the zone for when the problem goes away. 2910 * 2911 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2912 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2913 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2914 * lower zones regardless of the number of free pages in the lower zones. This 2915 * interoperates with the page allocator fallback scheme to ensure that aging 2916 * of pages is balanced across the zones. 2917 */ 2918 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2919 int *classzone_idx) 2920 { 2921 int i; 2922 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2923 unsigned long nr_soft_reclaimed; 2924 unsigned long nr_soft_scanned; 2925 struct scan_control sc = { 2926 .gfp_mask = GFP_KERNEL, 2927 .priority = DEF_PRIORITY, 2928 .may_unmap = 1, 2929 .may_swap = 1, 2930 .may_writepage = !laptop_mode, 2931 .order = order, 2932 .target_mem_cgroup = NULL, 2933 }; 2934 count_vm_event(PAGEOUTRUN); 2935 2936 do { 2937 unsigned long lru_pages = 0; 2938 unsigned long nr_attempted = 0; 2939 bool raise_priority = true; 2940 bool pgdat_needs_compaction = (order > 0); 2941 2942 sc.nr_reclaimed = 0; 2943 2944 /* 2945 * Scan in the highmem->dma direction for the highest 2946 * zone which needs scanning 2947 */ 2948 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2949 struct zone *zone = pgdat->node_zones + i; 2950 2951 if (!populated_zone(zone)) 2952 continue; 2953 2954 if (sc.priority != DEF_PRIORITY && 2955 !zone_reclaimable(zone)) 2956 continue; 2957 2958 /* 2959 * Do some background aging of the anon list, to give 2960 * pages a chance to be referenced before reclaiming. 2961 */ 2962 age_active_anon(zone, &sc); 2963 2964 /* 2965 * If the number of buffer_heads in the machine 2966 * exceeds the maximum allowed level and this node 2967 * has a highmem zone, force kswapd to reclaim from 2968 * it to relieve lowmem pressure. 2969 */ 2970 if (buffer_heads_over_limit && is_highmem_idx(i)) { 2971 end_zone = i; 2972 break; 2973 } 2974 2975 if (!zone_balanced(zone, order, 0, 0)) { 2976 end_zone = i; 2977 break; 2978 } else { 2979 /* 2980 * If balanced, clear the dirty and congested 2981 * flags 2982 */ 2983 zone_clear_flag(zone, ZONE_CONGESTED); 2984 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2985 } 2986 } 2987 2988 if (i < 0) 2989 goto out; 2990 2991 for (i = 0; i <= end_zone; i++) { 2992 struct zone *zone = pgdat->node_zones + i; 2993 2994 if (!populated_zone(zone)) 2995 continue; 2996 2997 lru_pages += zone_reclaimable_pages(zone); 2998 2999 /* 3000 * If any zone is currently balanced then kswapd will 3001 * not call compaction as it is expected that the 3002 * necessary pages are already available. 3003 */ 3004 if (pgdat_needs_compaction && 3005 zone_watermark_ok(zone, order, 3006 low_wmark_pages(zone), 3007 *classzone_idx, 0)) 3008 pgdat_needs_compaction = false; 3009 } 3010 3011 /* 3012 * If we're getting trouble reclaiming, start doing writepage 3013 * even in laptop mode. 3014 */ 3015 if (sc.priority < DEF_PRIORITY - 2) 3016 sc.may_writepage = 1; 3017 3018 /* 3019 * Now scan the zone in the dma->highmem direction, stopping 3020 * at the last zone which needs scanning. 3021 * 3022 * We do this because the page allocator works in the opposite 3023 * direction. This prevents the page allocator from allocating 3024 * pages behind kswapd's direction of progress, which would 3025 * cause too much scanning of the lower zones. 3026 */ 3027 for (i = 0; i <= end_zone; i++) { 3028 struct zone *zone = pgdat->node_zones + i; 3029 3030 if (!populated_zone(zone)) 3031 continue; 3032 3033 if (sc.priority != DEF_PRIORITY && 3034 !zone_reclaimable(zone)) 3035 continue; 3036 3037 sc.nr_scanned = 0; 3038 3039 nr_soft_scanned = 0; 3040 /* 3041 * Call soft limit reclaim before calling shrink_zone. 3042 */ 3043 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3044 order, sc.gfp_mask, 3045 &nr_soft_scanned); 3046 sc.nr_reclaimed += nr_soft_reclaimed; 3047 3048 /* 3049 * There should be no need to raise the scanning 3050 * priority if enough pages are already being scanned 3051 * that that high watermark would be met at 100% 3052 * efficiency. 3053 */ 3054 if (kswapd_shrink_zone(zone, end_zone, &sc, 3055 lru_pages, &nr_attempted)) 3056 raise_priority = false; 3057 } 3058 3059 /* 3060 * If the low watermark is met there is no need for processes 3061 * to be throttled on pfmemalloc_wait as they should not be 3062 * able to safely make forward progress. Wake them 3063 */ 3064 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3065 pfmemalloc_watermark_ok(pgdat)) 3066 wake_up(&pgdat->pfmemalloc_wait); 3067 3068 /* 3069 * Fragmentation may mean that the system cannot be rebalanced 3070 * for high-order allocations in all zones. If twice the 3071 * allocation size has been reclaimed and the zones are still 3072 * not balanced then recheck the watermarks at order-0 to 3073 * prevent kswapd reclaiming excessively. Assume that a 3074 * process requested a high-order can direct reclaim/compact. 3075 */ 3076 if (order && sc.nr_reclaimed >= 2UL << order) 3077 order = sc.order = 0; 3078 3079 /* Check if kswapd should be suspending */ 3080 if (try_to_freeze() || kthread_should_stop()) 3081 break; 3082 3083 /* 3084 * Compact if necessary and kswapd is reclaiming at least the 3085 * high watermark number of pages as requsted 3086 */ 3087 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3088 compact_pgdat(pgdat, order); 3089 3090 /* 3091 * Raise priority if scanning rate is too low or there was no 3092 * progress in reclaiming pages 3093 */ 3094 if (raise_priority || !sc.nr_reclaimed) 3095 sc.priority--; 3096 } while (sc.priority >= 1 && 3097 !pgdat_balanced(pgdat, order, *classzone_idx)); 3098 3099 out: 3100 /* 3101 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3102 * makes a decision on the order we were last reclaiming at. However, 3103 * if another caller entered the allocator slow path while kswapd 3104 * was awake, order will remain at the higher level 3105 */ 3106 *classzone_idx = end_zone; 3107 return order; 3108 } 3109 3110 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3111 { 3112 long remaining = 0; 3113 DEFINE_WAIT(wait); 3114 3115 if (freezing(current) || kthread_should_stop()) 3116 return; 3117 3118 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3119 3120 /* Try to sleep for a short interval */ 3121 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3122 remaining = schedule_timeout(HZ/10); 3123 finish_wait(&pgdat->kswapd_wait, &wait); 3124 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3125 } 3126 3127 /* 3128 * After a short sleep, check if it was a premature sleep. If not, then 3129 * go fully to sleep until explicitly woken up. 3130 */ 3131 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3132 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3133 3134 /* 3135 * vmstat counters are not perfectly accurate and the estimated 3136 * value for counters such as NR_FREE_PAGES can deviate from the 3137 * true value by nr_online_cpus * threshold. To avoid the zone 3138 * watermarks being breached while under pressure, we reduce the 3139 * per-cpu vmstat threshold while kswapd is awake and restore 3140 * them before going back to sleep. 3141 */ 3142 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3143 3144 /* 3145 * Compaction records what page blocks it recently failed to 3146 * isolate pages from and skips them in the future scanning. 3147 * When kswapd is going to sleep, it is reasonable to assume 3148 * that pages and compaction may succeed so reset the cache. 3149 */ 3150 reset_isolation_suitable(pgdat); 3151 3152 if (!kthread_should_stop()) 3153 schedule(); 3154 3155 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3156 } else { 3157 if (remaining) 3158 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3159 else 3160 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3161 } 3162 finish_wait(&pgdat->kswapd_wait, &wait); 3163 } 3164 3165 /* 3166 * The background pageout daemon, started as a kernel thread 3167 * from the init process. 3168 * 3169 * This basically trickles out pages so that we have _some_ 3170 * free memory available even if there is no other activity 3171 * that frees anything up. This is needed for things like routing 3172 * etc, where we otherwise might have all activity going on in 3173 * asynchronous contexts that cannot page things out. 3174 * 3175 * If there are applications that are active memory-allocators 3176 * (most normal use), this basically shouldn't matter. 3177 */ 3178 static int kswapd(void *p) 3179 { 3180 unsigned long order, new_order; 3181 unsigned balanced_order; 3182 int classzone_idx, new_classzone_idx; 3183 int balanced_classzone_idx; 3184 pg_data_t *pgdat = (pg_data_t*)p; 3185 struct task_struct *tsk = current; 3186 3187 struct reclaim_state reclaim_state = { 3188 .reclaimed_slab = 0, 3189 }; 3190 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3191 3192 lockdep_set_current_reclaim_state(GFP_KERNEL); 3193 3194 if (!cpumask_empty(cpumask)) 3195 set_cpus_allowed_ptr(tsk, cpumask); 3196 current->reclaim_state = &reclaim_state; 3197 3198 /* 3199 * Tell the memory management that we're a "memory allocator", 3200 * and that if we need more memory we should get access to it 3201 * regardless (see "__alloc_pages()"). "kswapd" should 3202 * never get caught in the normal page freeing logic. 3203 * 3204 * (Kswapd normally doesn't need memory anyway, but sometimes 3205 * you need a small amount of memory in order to be able to 3206 * page out something else, and this flag essentially protects 3207 * us from recursively trying to free more memory as we're 3208 * trying to free the first piece of memory in the first place). 3209 */ 3210 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3211 set_freezable(); 3212 3213 order = new_order = 0; 3214 balanced_order = 0; 3215 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3216 balanced_classzone_idx = classzone_idx; 3217 for ( ; ; ) { 3218 bool ret; 3219 3220 /* 3221 * If the last balance_pgdat was unsuccessful it's unlikely a 3222 * new request of a similar or harder type will succeed soon 3223 * so consider going to sleep on the basis we reclaimed at 3224 */ 3225 if (balanced_classzone_idx >= new_classzone_idx && 3226 balanced_order == new_order) { 3227 new_order = pgdat->kswapd_max_order; 3228 new_classzone_idx = pgdat->classzone_idx; 3229 pgdat->kswapd_max_order = 0; 3230 pgdat->classzone_idx = pgdat->nr_zones - 1; 3231 } 3232 3233 if (order < new_order || classzone_idx > new_classzone_idx) { 3234 /* 3235 * Don't sleep if someone wants a larger 'order' 3236 * allocation or has tigher zone constraints 3237 */ 3238 order = new_order; 3239 classzone_idx = new_classzone_idx; 3240 } else { 3241 kswapd_try_to_sleep(pgdat, balanced_order, 3242 balanced_classzone_idx); 3243 order = pgdat->kswapd_max_order; 3244 classzone_idx = pgdat->classzone_idx; 3245 new_order = order; 3246 new_classzone_idx = classzone_idx; 3247 pgdat->kswapd_max_order = 0; 3248 pgdat->classzone_idx = pgdat->nr_zones - 1; 3249 } 3250 3251 ret = try_to_freeze(); 3252 if (kthread_should_stop()) 3253 break; 3254 3255 /* 3256 * We can speed up thawing tasks if we don't call balance_pgdat 3257 * after returning from the refrigerator 3258 */ 3259 if (!ret) { 3260 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3261 balanced_classzone_idx = classzone_idx; 3262 balanced_order = balance_pgdat(pgdat, order, 3263 &balanced_classzone_idx); 3264 } 3265 } 3266 3267 current->reclaim_state = NULL; 3268 return 0; 3269 } 3270 3271 /* 3272 * A zone is low on free memory, so wake its kswapd task to service it. 3273 */ 3274 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3275 { 3276 pg_data_t *pgdat; 3277 3278 if (!populated_zone(zone)) 3279 return; 3280 3281 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3282 return; 3283 pgdat = zone->zone_pgdat; 3284 if (pgdat->kswapd_max_order < order) { 3285 pgdat->kswapd_max_order = order; 3286 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3287 } 3288 if (!waitqueue_active(&pgdat->kswapd_wait)) 3289 return; 3290 if (zone_balanced(zone, order, 0, 0)) 3291 return; 3292 3293 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3294 wake_up_interruptible(&pgdat->kswapd_wait); 3295 } 3296 3297 /* 3298 * The reclaimable count would be mostly accurate. 3299 * The less reclaimable pages may be 3300 * - mlocked pages, which will be moved to unevictable list when encountered 3301 * - mapped pages, which may require several travels to be reclaimed 3302 * - dirty pages, which is not "instantly" reclaimable 3303 */ 3304 unsigned long global_reclaimable_pages(void) 3305 { 3306 int nr; 3307 3308 nr = global_page_state(NR_ACTIVE_FILE) + 3309 global_page_state(NR_INACTIVE_FILE); 3310 3311 if (get_nr_swap_pages() > 0) 3312 nr += global_page_state(NR_ACTIVE_ANON) + 3313 global_page_state(NR_INACTIVE_ANON); 3314 3315 return nr; 3316 } 3317 3318 #ifdef CONFIG_HIBERNATION 3319 /* 3320 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3321 * freed pages. 3322 * 3323 * Rather than trying to age LRUs the aim is to preserve the overall 3324 * LRU order by reclaiming preferentially 3325 * inactive > active > active referenced > active mapped 3326 */ 3327 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3328 { 3329 struct reclaim_state reclaim_state; 3330 struct scan_control sc = { 3331 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3332 .may_swap = 1, 3333 .may_unmap = 1, 3334 .may_writepage = 1, 3335 .nr_to_reclaim = nr_to_reclaim, 3336 .hibernation_mode = 1, 3337 .order = 0, 3338 .priority = DEF_PRIORITY, 3339 }; 3340 struct shrink_control shrink = { 3341 .gfp_mask = sc.gfp_mask, 3342 }; 3343 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3344 struct task_struct *p = current; 3345 unsigned long nr_reclaimed; 3346 3347 p->flags |= PF_MEMALLOC; 3348 lockdep_set_current_reclaim_state(sc.gfp_mask); 3349 reclaim_state.reclaimed_slab = 0; 3350 p->reclaim_state = &reclaim_state; 3351 3352 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 3353 3354 p->reclaim_state = NULL; 3355 lockdep_clear_current_reclaim_state(); 3356 p->flags &= ~PF_MEMALLOC; 3357 3358 return nr_reclaimed; 3359 } 3360 #endif /* CONFIG_HIBERNATION */ 3361 3362 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3363 not required for correctness. So if the last cpu in a node goes 3364 away, we get changed to run anywhere: as the first one comes back, 3365 restore their cpu bindings. */ 3366 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3367 void *hcpu) 3368 { 3369 int nid; 3370 3371 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3372 for_each_node_state(nid, N_MEMORY) { 3373 pg_data_t *pgdat = NODE_DATA(nid); 3374 const struct cpumask *mask; 3375 3376 mask = cpumask_of_node(pgdat->node_id); 3377 3378 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3379 /* One of our CPUs online: restore mask */ 3380 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3381 } 3382 } 3383 return NOTIFY_OK; 3384 } 3385 3386 /* 3387 * This kswapd start function will be called by init and node-hot-add. 3388 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3389 */ 3390 int kswapd_run(int nid) 3391 { 3392 pg_data_t *pgdat = NODE_DATA(nid); 3393 int ret = 0; 3394 3395 if (pgdat->kswapd) 3396 return 0; 3397 3398 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3399 if (IS_ERR(pgdat->kswapd)) { 3400 /* failure at boot is fatal */ 3401 BUG_ON(system_state == SYSTEM_BOOTING); 3402 pr_err("Failed to start kswapd on node %d\n", nid); 3403 ret = PTR_ERR(pgdat->kswapd); 3404 pgdat->kswapd = NULL; 3405 } 3406 return ret; 3407 } 3408 3409 /* 3410 * Called by memory hotplug when all memory in a node is offlined. Caller must 3411 * hold lock_memory_hotplug(). 3412 */ 3413 void kswapd_stop(int nid) 3414 { 3415 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3416 3417 if (kswapd) { 3418 kthread_stop(kswapd); 3419 NODE_DATA(nid)->kswapd = NULL; 3420 } 3421 } 3422 3423 static int __init kswapd_init(void) 3424 { 3425 int nid; 3426 3427 swap_setup(); 3428 for_each_node_state(nid, N_MEMORY) 3429 kswapd_run(nid); 3430 hotcpu_notifier(cpu_callback, 0); 3431 return 0; 3432 } 3433 3434 module_init(kswapd_init) 3435 3436 #ifdef CONFIG_NUMA 3437 /* 3438 * Zone reclaim mode 3439 * 3440 * If non-zero call zone_reclaim when the number of free pages falls below 3441 * the watermarks. 3442 */ 3443 int zone_reclaim_mode __read_mostly; 3444 3445 #define RECLAIM_OFF 0 3446 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3447 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3448 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3449 3450 /* 3451 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3452 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3453 * a zone. 3454 */ 3455 #define ZONE_RECLAIM_PRIORITY 4 3456 3457 /* 3458 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3459 * occur. 3460 */ 3461 int sysctl_min_unmapped_ratio = 1; 3462 3463 /* 3464 * If the number of slab pages in a zone grows beyond this percentage then 3465 * slab reclaim needs to occur. 3466 */ 3467 int sysctl_min_slab_ratio = 5; 3468 3469 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3470 { 3471 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3472 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3473 zone_page_state(zone, NR_ACTIVE_FILE); 3474 3475 /* 3476 * It's possible for there to be more file mapped pages than 3477 * accounted for by the pages on the file LRU lists because 3478 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3479 */ 3480 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3481 } 3482 3483 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3484 static long zone_pagecache_reclaimable(struct zone *zone) 3485 { 3486 long nr_pagecache_reclaimable; 3487 long delta = 0; 3488 3489 /* 3490 * If RECLAIM_SWAP is set, then all file pages are considered 3491 * potentially reclaimable. Otherwise, we have to worry about 3492 * pages like swapcache and zone_unmapped_file_pages() provides 3493 * a better estimate 3494 */ 3495 if (zone_reclaim_mode & RECLAIM_SWAP) 3496 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3497 else 3498 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3499 3500 /* If we can't clean pages, remove dirty pages from consideration */ 3501 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3502 delta += zone_page_state(zone, NR_FILE_DIRTY); 3503 3504 /* Watch for any possible underflows due to delta */ 3505 if (unlikely(delta > nr_pagecache_reclaimable)) 3506 delta = nr_pagecache_reclaimable; 3507 3508 return nr_pagecache_reclaimable - delta; 3509 } 3510 3511 /* 3512 * Try to free up some pages from this zone through reclaim. 3513 */ 3514 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3515 { 3516 /* Minimum pages needed in order to stay on node */ 3517 const unsigned long nr_pages = 1 << order; 3518 struct task_struct *p = current; 3519 struct reclaim_state reclaim_state; 3520 struct scan_control sc = { 3521 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3522 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3523 .may_swap = 1, 3524 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3525 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3526 .order = order, 3527 .priority = ZONE_RECLAIM_PRIORITY, 3528 }; 3529 struct shrink_control shrink = { 3530 .gfp_mask = sc.gfp_mask, 3531 }; 3532 unsigned long nr_slab_pages0, nr_slab_pages1; 3533 3534 cond_resched(); 3535 /* 3536 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3537 * and we also need to be able to write out pages for RECLAIM_WRITE 3538 * and RECLAIM_SWAP. 3539 */ 3540 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3541 lockdep_set_current_reclaim_state(gfp_mask); 3542 reclaim_state.reclaimed_slab = 0; 3543 p->reclaim_state = &reclaim_state; 3544 3545 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3546 /* 3547 * Free memory by calling shrink zone with increasing 3548 * priorities until we have enough memory freed. 3549 */ 3550 do { 3551 shrink_zone(zone, &sc); 3552 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3553 } 3554 3555 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3556 if (nr_slab_pages0 > zone->min_slab_pages) { 3557 /* 3558 * shrink_slab() does not currently allow us to determine how 3559 * many pages were freed in this zone. So we take the current 3560 * number of slab pages and shake the slab until it is reduced 3561 * by the same nr_pages that we used for reclaiming unmapped 3562 * pages. 3563 */ 3564 nodes_clear(shrink.nodes_to_scan); 3565 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 3566 for (;;) { 3567 unsigned long lru_pages = zone_reclaimable_pages(zone); 3568 3569 /* No reclaimable slab or very low memory pressure */ 3570 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3571 break; 3572 3573 /* Freed enough memory */ 3574 nr_slab_pages1 = zone_page_state(zone, 3575 NR_SLAB_RECLAIMABLE); 3576 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3577 break; 3578 } 3579 3580 /* 3581 * Update nr_reclaimed by the number of slab pages we 3582 * reclaimed from this zone. 3583 */ 3584 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3585 if (nr_slab_pages1 < nr_slab_pages0) 3586 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3587 } 3588 3589 p->reclaim_state = NULL; 3590 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3591 lockdep_clear_current_reclaim_state(); 3592 return sc.nr_reclaimed >= nr_pages; 3593 } 3594 3595 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3596 { 3597 int node_id; 3598 int ret; 3599 3600 /* 3601 * Zone reclaim reclaims unmapped file backed pages and 3602 * slab pages if we are over the defined limits. 3603 * 3604 * A small portion of unmapped file backed pages is needed for 3605 * file I/O otherwise pages read by file I/O will be immediately 3606 * thrown out if the zone is overallocated. So we do not reclaim 3607 * if less than a specified percentage of the zone is used by 3608 * unmapped file backed pages. 3609 */ 3610 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3611 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3612 return ZONE_RECLAIM_FULL; 3613 3614 if (!zone_reclaimable(zone)) 3615 return ZONE_RECLAIM_FULL; 3616 3617 /* 3618 * Do not scan if the allocation should not be delayed. 3619 */ 3620 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3621 return ZONE_RECLAIM_NOSCAN; 3622 3623 /* 3624 * Only run zone reclaim on the local zone or on zones that do not 3625 * have associated processors. This will favor the local processor 3626 * over remote processors and spread off node memory allocations 3627 * as wide as possible. 3628 */ 3629 node_id = zone_to_nid(zone); 3630 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3631 return ZONE_RECLAIM_NOSCAN; 3632 3633 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3634 return ZONE_RECLAIM_NOSCAN; 3635 3636 ret = __zone_reclaim(zone, gfp_mask, order); 3637 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3638 3639 if (!ret) 3640 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3641 3642 return ret; 3643 } 3644 #endif 3645 3646 /* 3647 * page_evictable - test whether a page is evictable 3648 * @page: the page to test 3649 * 3650 * Test whether page is evictable--i.e., should be placed on active/inactive 3651 * lists vs unevictable list. 3652 * 3653 * Reasons page might not be evictable: 3654 * (1) page's mapping marked unevictable 3655 * (2) page is part of an mlocked VMA 3656 * 3657 */ 3658 int page_evictable(struct page *page) 3659 { 3660 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3661 } 3662 3663 #ifdef CONFIG_SHMEM 3664 /** 3665 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3666 * @pages: array of pages to check 3667 * @nr_pages: number of pages to check 3668 * 3669 * Checks pages for evictability and moves them to the appropriate lru list. 3670 * 3671 * This function is only used for SysV IPC SHM_UNLOCK. 3672 */ 3673 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3674 { 3675 struct lruvec *lruvec; 3676 struct zone *zone = NULL; 3677 int pgscanned = 0; 3678 int pgrescued = 0; 3679 int i; 3680 3681 for (i = 0; i < nr_pages; i++) { 3682 struct page *page = pages[i]; 3683 struct zone *pagezone; 3684 3685 pgscanned++; 3686 pagezone = page_zone(page); 3687 if (pagezone != zone) { 3688 if (zone) 3689 spin_unlock_irq(&zone->lru_lock); 3690 zone = pagezone; 3691 spin_lock_irq(&zone->lru_lock); 3692 } 3693 lruvec = mem_cgroup_page_lruvec(page, zone); 3694 3695 if (!PageLRU(page) || !PageUnevictable(page)) 3696 continue; 3697 3698 if (page_evictable(page)) { 3699 enum lru_list lru = page_lru_base_type(page); 3700 3701 VM_BUG_ON(PageActive(page)); 3702 ClearPageUnevictable(page); 3703 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3704 add_page_to_lru_list(page, lruvec, lru); 3705 pgrescued++; 3706 } 3707 } 3708 3709 if (zone) { 3710 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3711 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3712 spin_unlock_irq(&zone->lru_lock); 3713 } 3714 } 3715 #endif /* CONFIG_SHMEM */ 3716 3717 static void warn_scan_unevictable_pages(void) 3718 { 3719 printk_once(KERN_WARNING 3720 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3721 "disabled for lack of a legitimate use case. If you have " 3722 "one, please send an email to linux-mm@kvack.org.\n", 3723 current->comm); 3724 } 3725 3726 /* 3727 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3728 * all nodes' unevictable lists for evictable pages 3729 */ 3730 unsigned long scan_unevictable_pages; 3731 3732 int scan_unevictable_handler(struct ctl_table *table, int write, 3733 void __user *buffer, 3734 size_t *length, loff_t *ppos) 3735 { 3736 warn_scan_unevictable_pages(); 3737 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3738 scan_unevictable_pages = 0; 3739 return 0; 3740 } 3741 3742 #ifdef CONFIG_NUMA 3743 /* 3744 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3745 * a specified node's per zone unevictable lists for evictable pages. 3746 */ 3747 3748 static ssize_t read_scan_unevictable_node(struct device *dev, 3749 struct device_attribute *attr, 3750 char *buf) 3751 { 3752 warn_scan_unevictable_pages(); 3753 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3754 } 3755 3756 static ssize_t write_scan_unevictable_node(struct device *dev, 3757 struct device_attribute *attr, 3758 const char *buf, size_t count) 3759 { 3760 warn_scan_unevictable_pages(); 3761 return 1; 3762 } 3763 3764 3765 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3766 read_scan_unevictable_node, 3767 write_scan_unevictable_node); 3768 3769 int scan_unevictable_register_node(struct node *node) 3770 { 3771 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3772 } 3773 3774 void scan_unevictable_unregister_node(struct node *node) 3775 { 3776 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3777 } 3778 #endif 3779