xref: /openbmc/linux/mm/vmscan.c (revision 089a49b6)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>	/* for try_to_release_page(),
28 					buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56 
57 struct scan_control {
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Number of pages freed so far during a call to shrink_zones() */
62 	unsigned long nr_reclaimed;
63 
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	unsigned long hibernation_mode;
68 
69 	/* This context's GFP mask */
70 	gfp_t gfp_mask;
71 
72 	int may_writepage;
73 
74 	/* Can mapped pages be reclaimed? */
75 	int may_unmap;
76 
77 	/* Can pages be swapped as part of reclaim? */
78 	int may_swap;
79 
80 	int order;
81 
82 	/* Scan (total_size >> priority) pages at once */
83 	int priority;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 	 * are scanned.
94 	 */
95 	nodemask_t	*nodemask;
96 };
97 
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetch(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)			\
116 	do {								\
117 		if ((_page)->lru.prev != _base) {			\
118 			struct page *prev;				\
119 									\
120 			prev = lru_to_page(&(_page->lru));		\
121 			prefetchw(&prev->_field);			\
122 		}							\
123 	} while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127 
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
133 
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136 
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 	return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 	return true;
146 }
147 #endif
148 
149 unsigned long zone_reclaimable_pages(struct zone *zone)
150 {
151 	int nr;
152 
153 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
154 	     zone_page_state(zone, NR_INACTIVE_FILE);
155 
156 	if (get_nr_swap_pages() > 0)
157 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
158 		      zone_page_state(zone, NR_INACTIVE_ANON);
159 
160 	return nr;
161 }
162 
163 bool zone_reclaimable(struct zone *zone)
164 {
165 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
166 }
167 
168 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
169 {
170 	if (!mem_cgroup_disabled())
171 		return mem_cgroup_get_lru_size(lruvec, lru);
172 
173 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
174 }
175 
176 /*
177  * Add a shrinker callback to be called from the vm.
178  */
179 int register_shrinker(struct shrinker *shrinker)
180 {
181 	size_t size = sizeof(*shrinker->nr_deferred);
182 
183 	/*
184 	 * If we only have one possible node in the system anyway, save
185 	 * ourselves the trouble and disable NUMA aware behavior. This way we
186 	 * will save memory and some small loop time later.
187 	 */
188 	if (nr_node_ids == 1)
189 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
190 
191 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
192 		size *= nr_node_ids;
193 
194 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
195 	if (!shrinker->nr_deferred)
196 		return -ENOMEM;
197 
198 	down_write(&shrinker_rwsem);
199 	list_add_tail(&shrinker->list, &shrinker_list);
200 	up_write(&shrinker_rwsem);
201 	return 0;
202 }
203 EXPORT_SYMBOL(register_shrinker);
204 
205 /*
206  * Remove one
207  */
208 void unregister_shrinker(struct shrinker *shrinker)
209 {
210 	down_write(&shrinker_rwsem);
211 	list_del(&shrinker->list);
212 	up_write(&shrinker_rwsem);
213 }
214 EXPORT_SYMBOL(unregister_shrinker);
215 
216 #define SHRINK_BATCH 128
217 
218 static unsigned long
219 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
220 		 unsigned long nr_pages_scanned, unsigned long lru_pages)
221 {
222 	unsigned long freed = 0;
223 	unsigned long long delta;
224 	long total_scan;
225 	long max_pass;
226 	long nr;
227 	long new_nr;
228 	int nid = shrinkctl->nid;
229 	long batch_size = shrinker->batch ? shrinker->batch
230 					  : SHRINK_BATCH;
231 
232 	max_pass = shrinker->count_objects(shrinker, shrinkctl);
233 	if (max_pass == 0)
234 		return 0;
235 
236 	/*
237 	 * copy the current shrinker scan count into a local variable
238 	 * and zero it so that other concurrent shrinker invocations
239 	 * don't also do this scanning work.
240 	 */
241 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
242 
243 	total_scan = nr;
244 	delta = (4 * nr_pages_scanned) / shrinker->seeks;
245 	delta *= max_pass;
246 	do_div(delta, lru_pages + 1);
247 	total_scan += delta;
248 	if (total_scan < 0) {
249 		printk(KERN_ERR
250 		"shrink_slab: %pF negative objects to delete nr=%ld\n",
251 		       shrinker->scan_objects, total_scan);
252 		total_scan = max_pass;
253 	}
254 
255 	/*
256 	 * We need to avoid excessive windup on filesystem shrinkers
257 	 * due to large numbers of GFP_NOFS allocations causing the
258 	 * shrinkers to return -1 all the time. This results in a large
259 	 * nr being built up so when a shrink that can do some work
260 	 * comes along it empties the entire cache due to nr >>>
261 	 * max_pass.  This is bad for sustaining a working set in
262 	 * memory.
263 	 *
264 	 * Hence only allow the shrinker to scan the entire cache when
265 	 * a large delta change is calculated directly.
266 	 */
267 	if (delta < max_pass / 4)
268 		total_scan = min(total_scan, max_pass / 2);
269 
270 	/*
271 	 * Avoid risking looping forever due to too large nr value:
272 	 * never try to free more than twice the estimate number of
273 	 * freeable entries.
274 	 */
275 	if (total_scan > max_pass * 2)
276 		total_scan = max_pass * 2;
277 
278 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
279 				nr_pages_scanned, lru_pages,
280 				max_pass, delta, total_scan);
281 
282 	while (total_scan >= batch_size) {
283 		unsigned long ret;
284 
285 		shrinkctl->nr_to_scan = batch_size;
286 		ret = shrinker->scan_objects(shrinker, shrinkctl);
287 		if (ret == SHRINK_STOP)
288 			break;
289 		freed += ret;
290 
291 		count_vm_events(SLABS_SCANNED, batch_size);
292 		total_scan -= batch_size;
293 
294 		cond_resched();
295 	}
296 
297 	/*
298 	 * move the unused scan count back into the shrinker in a
299 	 * manner that handles concurrent updates. If we exhausted the
300 	 * scan, there is no need to do an update.
301 	 */
302 	if (total_scan > 0)
303 		new_nr = atomic_long_add_return(total_scan,
304 						&shrinker->nr_deferred[nid]);
305 	else
306 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
307 
308 	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
309 	return freed;
310 }
311 
312 /*
313  * Call the shrink functions to age shrinkable caches
314  *
315  * Here we assume it costs one seek to replace a lru page and that it also
316  * takes a seek to recreate a cache object.  With this in mind we age equal
317  * percentages of the lru and ageable caches.  This should balance the seeks
318  * generated by these structures.
319  *
320  * If the vm encountered mapped pages on the LRU it increase the pressure on
321  * slab to avoid swapping.
322  *
323  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
324  *
325  * `lru_pages' represents the number of on-LRU pages in all the zones which
326  * are eligible for the caller's allocation attempt.  It is used for balancing
327  * slab reclaim versus page reclaim.
328  *
329  * Returns the number of slab objects which we shrunk.
330  */
331 unsigned long shrink_slab(struct shrink_control *shrinkctl,
332 			  unsigned long nr_pages_scanned,
333 			  unsigned long lru_pages)
334 {
335 	struct shrinker *shrinker;
336 	unsigned long freed = 0;
337 
338 	if (nr_pages_scanned == 0)
339 		nr_pages_scanned = SWAP_CLUSTER_MAX;
340 
341 	if (!down_read_trylock(&shrinker_rwsem)) {
342 		/*
343 		 * If we would return 0, our callers would understand that we
344 		 * have nothing else to shrink and give up trying. By returning
345 		 * 1 we keep it going and assume we'll be able to shrink next
346 		 * time.
347 		 */
348 		freed = 1;
349 		goto out;
350 	}
351 
352 	list_for_each_entry(shrinker, &shrinker_list, list) {
353 		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
354 			if (!node_online(shrinkctl->nid))
355 				continue;
356 
357 			if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
358 			    (shrinkctl->nid != 0))
359 				break;
360 
361 			freed += shrink_slab_node(shrinkctl, shrinker,
362 				 nr_pages_scanned, lru_pages);
363 
364 		}
365 	}
366 	up_read(&shrinker_rwsem);
367 out:
368 	cond_resched();
369 	return freed;
370 }
371 
372 static inline int is_page_cache_freeable(struct page *page)
373 {
374 	/*
375 	 * A freeable page cache page is referenced only by the caller
376 	 * that isolated the page, the page cache radix tree and
377 	 * optional buffer heads at page->private.
378 	 */
379 	return page_count(page) - page_has_private(page) == 2;
380 }
381 
382 static int may_write_to_queue(struct backing_dev_info *bdi,
383 			      struct scan_control *sc)
384 {
385 	if (current->flags & PF_SWAPWRITE)
386 		return 1;
387 	if (!bdi_write_congested(bdi))
388 		return 1;
389 	if (bdi == current->backing_dev_info)
390 		return 1;
391 	return 0;
392 }
393 
394 /*
395  * We detected a synchronous write error writing a page out.  Probably
396  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
397  * fsync(), msync() or close().
398  *
399  * The tricky part is that after writepage we cannot touch the mapping: nothing
400  * prevents it from being freed up.  But we have a ref on the page and once
401  * that page is locked, the mapping is pinned.
402  *
403  * We're allowed to run sleeping lock_page() here because we know the caller has
404  * __GFP_FS.
405  */
406 static void handle_write_error(struct address_space *mapping,
407 				struct page *page, int error)
408 {
409 	lock_page(page);
410 	if (page_mapping(page) == mapping)
411 		mapping_set_error(mapping, error);
412 	unlock_page(page);
413 }
414 
415 /* possible outcome of pageout() */
416 typedef enum {
417 	/* failed to write page out, page is locked */
418 	PAGE_KEEP,
419 	/* move page to the active list, page is locked */
420 	PAGE_ACTIVATE,
421 	/* page has been sent to the disk successfully, page is unlocked */
422 	PAGE_SUCCESS,
423 	/* page is clean and locked */
424 	PAGE_CLEAN,
425 } pageout_t;
426 
427 /*
428  * pageout is called by shrink_page_list() for each dirty page.
429  * Calls ->writepage().
430  */
431 static pageout_t pageout(struct page *page, struct address_space *mapping,
432 			 struct scan_control *sc)
433 {
434 	/*
435 	 * If the page is dirty, only perform writeback if that write
436 	 * will be non-blocking.  To prevent this allocation from being
437 	 * stalled by pagecache activity.  But note that there may be
438 	 * stalls if we need to run get_block().  We could test
439 	 * PagePrivate for that.
440 	 *
441 	 * If this process is currently in __generic_file_aio_write() against
442 	 * this page's queue, we can perform writeback even if that
443 	 * will block.
444 	 *
445 	 * If the page is swapcache, write it back even if that would
446 	 * block, for some throttling. This happens by accident, because
447 	 * swap_backing_dev_info is bust: it doesn't reflect the
448 	 * congestion state of the swapdevs.  Easy to fix, if needed.
449 	 */
450 	if (!is_page_cache_freeable(page))
451 		return PAGE_KEEP;
452 	if (!mapping) {
453 		/*
454 		 * Some data journaling orphaned pages can have
455 		 * page->mapping == NULL while being dirty with clean buffers.
456 		 */
457 		if (page_has_private(page)) {
458 			if (try_to_free_buffers(page)) {
459 				ClearPageDirty(page);
460 				printk("%s: orphaned page\n", __func__);
461 				return PAGE_CLEAN;
462 			}
463 		}
464 		return PAGE_KEEP;
465 	}
466 	if (mapping->a_ops->writepage == NULL)
467 		return PAGE_ACTIVATE;
468 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
469 		return PAGE_KEEP;
470 
471 	if (clear_page_dirty_for_io(page)) {
472 		int res;
473 		struct writeback_control wbc = {
474 			.sync_mode = WB_SYNC_NONE,
475 			.nr_to_write = SWAP_CLUSTER_MAX,
476 			.range_start = 0,
477 			.range_end = LLONG_MAX,
478 			.for_reclaim = 1,
479 		};
480 
481 		SetPageReclaim(page);
482 		res = mapping->a_ops->writepage(page, &wbc);
483 		if (res < 0)
484 			handle_write_error(mapping, page, res);
485 		if (res == AOP_WRITEPAGE_ACTIVATE) {
486 			ClearPageReclaim(page);
487 			return PAGE_ACTIVATE;
488 		}
489 
490 		if (!PageWriteback(page)) {
491 			/* synchronous write or broken a_ops? */
492 			ClearPageReclaim(page);
493 		}
494 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
495 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
496 		return PAGE_SUCCESS;
497 	}
498 
499 	return PAGE_CLEAN;
500 }
501 
502 /*
503  * Same as remove_mapping, but if the page is removed from the mapping, it
504  * gets returned with a refcount of 0.
505  */
506 static int __remove_mapping(struct address_space *mapping, struct page *page)
507 {
508 	BUG_ON(!PageLocked(page));
509 	BUG_ON(mapping != page_mapping(page));
510 
511 	spin_lock_irq(&mapping->tree_lock);
512 	/*
513 	 * The non racy check for a busy page.
514 	 *
515 	 * Must be careful with the order of the tests. When someone has
516 	 * a ref to the page, it may be possible that they dirty it then
517 	 * drop the reference. So if PageDirty is tested before page_count
518 	 * here, then the following race may occur:
519 	 *
520 	 * get_user_pages(&page);
521 	 * [user mapping goes away]
522 	 * write_to(page);
523 	 *				!PageDirty(page)    [good]
524 	 * SetPageDirty(page);
525 	 * put_page(page);
526 	 *				!page_count(page)   [good, discard it]
527 	 *
528 	 * [oops, our write_to data is lost]
529 	 *
530 	 * Reversing the order of the tests ensures such a situation cannot
531 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
532 	 * load is not satisfied before that of page->_count.
533 	 *
534 	 * Note that if SetPageDirty is always performed via set_page_dirty,
535 	 * and thus under tree_lock, then this ordering is not required.
536 	 */
537 	if (!page_freeze_refs(page, 2))
538 		goto cannot_free;
539 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
540 	if (unlikely(PageDirty(page))) {
541 		page_unfreeze_refs(page, 2);
542 		goto cannot_free;
543 	}
544 
545 	if (PageSwapCache(page)) {
546 		swp_entry_t swap = { .val = page_private(page) };
547 		__delete_from_swap_cache(page);
548 		spin_unlock_irq(&mapping->tree_lock);
549 		swapcache_free(swap, page);
550 	} else {
551 		void (*freepage)(struct page *);
552 
553 		freepage = mapping->a_ops->freepage;
554 
555 		__delete_from_page_cache(page);
556 		spin_unlock_irq(&mapping->tree_lock);
557 		mem_cgroup_uncharge_cache_page(page);
558 
559 		if (freepage != NULL)
560 			freepage(page);
561 	}
562 
563 	return 1;
564 
565 cannot_free:
566 	spin_unlock_irq(&mapping->tree_lock);
567 	return 0;
568 }
569 
570 /*
571  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
572  * someone else has a ref on the page, abort and return 0.  If it was
573  * successfully detached, return 1.  Assumes the caller has a single ref on
574  * this page.
575  */
576 int remove_mapping(struct address_space *mapping, struct page *page)
577 {
578 	if (__remove_mapping(mapping, page)) {
579 		/*
580 		 * Unfreezing the refcount with 1 rather than 2 effectively
581 		 * drops the pagecache ref for us without requiring another
582 		 * atomic operation.
583 		 */
584 		page_unfreeze_refs(page, 1);
585 		return 1;
586 	}
587 	return 0;
588 }
589 
590 /**
591  * putback_lru_page - put previously isolated page onto appropriate LRU list
592  * @page: page to be put back to appropriate lru list
593  *
594  * Add previously isolated @page to appropriate LRU list.
595  * Page may still be unevictable for other reasons.
596  *
597  * lru_lock must not be held, interrupts must be enabled.
598  */
599 void putback_lru_page(struct page *page)
600 {
601 	bool is_unevictable;
602 	int was_unevictable = PageUnevictable(page);
603 
604 	VM_BUG_ON(PageLRU(page));
605 
606 redo:
607 	ClearPageUnevictable(page);
608 
609 	if (page_evictable(page)) {
610 		/*
611 		 * For evictable pages, we can use the cache.
612 		 * In event of a race, worst case is we end up with an
613 		 * unevictable page on [in]active list.
614 		 * We know how to handle that.
615 		 */
616 		is_unevictable = false;
617 		lru_cache_add(page);
618 	} else {
619 		/*
620 		 * Put unevictable pages directly on zone's unevictable
621 		 * list.
622 		 */
623 		is_unevictable = true;
624 		add_page_to_unevictable_list(page);
625 		/*
626 		 * When racing with an mlock or AS_UNEVICTABLE clearing
627 		 * (page is unlocked) make sure that if the other thread
628 		 * does not observe our setting of PG_lru and fails
629 		 * isolation/check_move_unevictable_pages,
630 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
631 		 * the page back to the evictable list.
632 		 *
633 		 * The other side is TestClearPageMlocked() or shmem_lock().
634 		 */
635 		smp_mb();
636 	}
637 
638 	/*
639 	 * page's status can change while we move it among lru. If an evictable
640 	 * page is on unevictable list, it never be freed. To avoid that,
641 	 * check after we added it to the list, again.
642 	 */
643 	if (is_unevictable && page_evictable(page)) {
644 		if (!isolate_lru_page(page)) {
645 			put_page(page);
646 			goto redo;
647 		}
648 		/* This means someone else dropped this page from LRU
649 		 * So, it will be freed or putback to LRU again. There is
650 		 * nothing to do here.
651 		 */
652 	}
653 
654 	if (was_unevictable && !is_unevictable)
655 		count_vm_event(UNEVICTABLE_PGRESCUED);
656 	else if (!was_unevictable && is_unevictable)
657 		count_vm_event(UNEVICTABLE_PGCULLED);
658 
659 	put_page(page);		/* drop ref from isolate */
660 }
661 
662 enum page_references {
663 	PAGEREF_RECLAIM,
664 	PAGEREF_RECLAIM_CLEAN,
665 	PAGEREF_KEEP,
666 	PAGEREF_ACTIVATE,
667 };
668 
669 static enum page_references page_check_references(struct page *page,
670 						  struct scan_control *sc)
671 {
672 	int referenced_ptes, referenced_page;
673 	unsigned long vm_flags;
674 
675 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
676 					  &vm_flags);
677 	referenced_page = TestClearPageReferenced(page);
678 
679 	/*
680 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
681 	 * move the page to the unevictable list.
682 	 */
683 	if (vm_flags & VM_LOCKED)
684 		return PAGEREF_RECLAIM;
685 
686 	if (referenced_ptes) {
687 		if (PageSwapBacked(page))
688 			return PAGEREF_ACTIVATE;
689 		/*
690 		 * All mapped pages start out with page table
691 		 * references from the instantiating fault, so we need
692 		 * to look twice if a mapped file page is used more
693 		 * than once.
694 		 *
695 		 * Mark it and spare it for another trip around the
696 		 * inactive list.  Another page table reference will
697 		 * lead to its activation.
698 		 *
699 		 * Note: the mark is set for activated pages as well
700 		 * so that recently deactivated but used pages are
701 		 * quickly recovered.
702 		 */
703 		SetPageReferenced(page);
704 
705 		if (referenced_page || referenced_ptes > 1)
706 			return PAGEREF_ACTIVATE;
707 
708 		/*
709 		 * Activate file-backed executable pages after first usage.
710 		 */
711 		if (vm_flags & VM_EXEC)
712 			return PAGEREF_ACTIVATE;
713 
714 		return PAGEREF_KEEP;
715 	}
716 
717 	/* Reclaim if clean, defer dirty pages to writeback */
718 	if (referenced_page && !PageSwapBacked(page))
719 		return PAGEREF_RECLAIM_CLEAN;
720 
721 	return PAGEREF_RECLAIM;
722 }
723 
724 /* Check if a page is dirty or under writeback */
725 static void page_check_dirty_writeback(struct page *page,
726 				       bool *dirty, bool *writeback)
727 {
728 	struct address_space *mapping;
729 
730 	/*
731 	 * Anonymous pages are not handled by flushers and must be written
732 	 * from reclaim context. Do not stall reclaim based on them
733 	 */
734 	if (!page_is_file_cache(page)) {
735 		*dirty = false;
736 		*writeback = false;
737 		return;
738 	}
739 
740 	/* By default assume that the page flags are accurate */
741 	*dirty = PageDirty(page);
742 	*writeback = PageWriteback(page);
743 
744 	/* Verify dirty/writeback state if the filesystem supports it */
745 	if (!page_has_private(page))
746 		return;
747 
748 	mapping = page_mapping(page);
749 	if (mapping && mapping->a_ops->is_dirty_writeback)
750 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
751 }
752 
753 /*
754  * shrink_page_list() returns the number of reclaimed pages
755  */
756 static unsigned long shrink_page_list(struct list_head *page_list,
757 				      struct zone *zone,
758 				      struct scan_control *sc,
759 				      enum ttu_flags ttu_flags,
760 				      unsigned long *ret_nr_dirty,
761 				      unsigned long *ret_nr_unqueued_dirty,
762 				      unsigned long *ret_nr_congested,
763 				      unsigned long *ret_nr_writeback,
764 				      unsigned long *ret_nr_immediate,
765 				      bool force_reclaim)
766 {
767 	LIST_HEAD(ret_pages);
768 	LIST_HEAD(free_pages);
769 	int pgactivate = 0;
770 	unsigned long nr_unqueued_dirty = 0;
771 	unsigned long nr_dirty = 0;
772 	unsigned long nr_congested = 0;
773 	unsigned long nr_reclaimed = 0;
774 	unsigned long nr_writeback = 0;
775 	unsigned long nr_immediate = 0;
776 
777 	cond_resched();
778 
779 	mem_cgroup_uncharge_start();
780 	while (!list_empty(page_list)) {
781 		struct address_space *mapping;
782 		struct page *page;
783 		int may_enter_fs;
784 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
785 		bool dirty, writeback;
786 
787 		cond_resched();
788 
789 		page = lru_to_page(page_list);
790 		list_del(&page->lru);
791 
792 		if (!trylock_page(page))
793 			goto keep;
794 
795 		VM_BUG_ON(PageActive(page));
796 		VM_BUG_ON(page_zone(page) != zone);
797 
798 		sc->nr_scanned++;
799 
800 		if (unlikely(!page_evictable(page)))
801 			goto cull_mlocked;
802 
803 		if (!sc->may_unmap && page_mapped(page))
804 			goto keep_locked;
805 
806 		/* Double the slab pressure for mapped and swapcache pages */
807 		if (page_mapped(page) || PageSwapCache(page))
808 			sc->nr_scanned++;
809 
810 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
811 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
812 
813 		/*
814 		 * The number of dirty pages determines if a zone is marked
815 		 * reclaim_congested which affects wait_iff_congested. kswapd
816 		 * will stall and start writing pages if the tail of the LRU
817 		 * is all dirty unqueued pages.
818 		 */
819 		page_check_dirty_writeback(page, &dirty, &writeback);
820 		if (dirty || writeback)
821 			nr_dirty++;
822 
823 		if (dirty && !writeback)
824 			nr_unqueued_dirty++;
825 
826 		/*
827 		 * Treat this page as congested if the underlying BDI is or if
828 		 * pages are cycling through the LRU so quickly that the
829 		 * pages marked for immediate reclaim are making it to the
830 		 * end of the LRU a second time.
831 		 */
832 		mapping = page_mapping(page);
833 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
834 		    (writeback && PageReclaim(page)))
835 			nr_congested++;
836 
837 		/*
838 		 * If a page at the tail of the LRU is under writeback, there
839 		 * are three cases to consider.
840 		 *
841 		 * 1) If reclaim is encountering an excessive number of pages
842 		 *    under writeback and this page is both under writeback and
843 		 *    PageReclaim then it indicates that pages are being queued
844 		 *    for IO but are being recycled through the LRU before the
845 		 *    IO can complete. Waiting on the page itself risks an
846 		 *    indefinite stall if it is impossible to writeback the
847 		 *    page due to IO error or disconnected storage so instead
848 		 *    note that the LRU is being scanned too quickly and the
849 		 *    caller can stall after page list has been processed.
850 		 *
851 		 * 2) Global reclaim encounters a page, memcg encounters a
852 		 *    page that is not marked for immediate reclaim or
853 		 *    the caller does not have __GFP_IO. In this case mark
854 		 *    the page for immediate reclaim and continue scanning.
855 		 *
856 		 *    __GFP_IO is checked  because a loop driver thread might
857 		 *    enter reclaim, and deadlock if it waits on a page for
858 		 *    which it is needed to do the write (loop masks off
859 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
860 		 *    would probably show more reasons.
861 		 *
862 		 *    Don't require __GFP_FS, since we're not going into the
863 		 *    FS, just waiting on its writeback completion. Worryingly,
864 		 *    ext4 gfs2 and xfs allocate pages with
865 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
866 		 *    may_enter_fs here is liable to OOM on them.
867 		 *
868 		 * 3) memcg encounters a page that is not already marked
869 		 *    PageReclaim. memcg does not have any dirty pages
870 		 *    throttling so we could easily OOM just because too many
871 		 *    pages are in writeback and there is nothing else to
872 		 *    reclaim. Wait for the writeback to complete.
873 		 */
874 		if (PageWriteback(page)) {
875 			/* Case 1 above */
876 			if (current_is_kswapd() &&
877 			    PageReclaim(page) &&
878 			    zone_is_reclaim_writeback(zone)) {
879 				nr_immediate++;
880 				goto keep_locked;
881 
882 			/* Case 2 above */
883 			} else if (global_reclaim(sc) ||
884 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
885 				/*
886 				 * This is slightly racy - end_page_writeback()
887 				 * might have just cleared PageReclaim, then
888 				 * setting PageReclaim here end up interpreted
889 				 * as PageReadahead - but that does not matter
890 				 * enough to care.  What we do want is for this
891 				 * page to have PageReclaim set next time memcg
892 				 * reclaim reaches the tests above, so it will
893 				 * then wait_on_page_writeback() to avoid OOM;
894 				 * and it's also appropriate in global reclaim.
895 				 */
896 				SetPageReclaim(page);
897 				nr_writeback++;
898 
899 				goto keep_locked;
900 
901 			/* Case 3 above */
902 			} else {
903 				wait_on_page_writeback(page);
904 			}
905 		}
906 
907 		if (!force_reclaim)
908 			references = page_check_references(page, sc);
909 
910 		switch (references) {
911 		case PAGEREF_ACTIVATE:
912 			goto activate_locked;
913 		case PAGEREF_KEEP:
914 			goto keep_locked;
915 		case PAGEREF_RECLAIM:
916 		case PAGEREF_RECLAIM_CLEAN:
917 			; /* try to reclaim the page below */
918 		}
919 
920 		/*
921 		 * Anonymous process memory has backing store?
922 		 * Try to allocate it some swap space here.
923 		 */
924 		if (PageAnon(page) && !PageSwapCache(page)) {
925 			if (!(sc->gfp_mask & __GFP_IO))
926 				goto keep_locked;
927 			if (!add_to_swap(page, page_list))
928 				goto activate_locked;
929 			may_enter_fs = 1;
930 
931 			/* Adding to swap updated mapping */
932 			mapping = page_mapping(page);
933 		}
934 
935 		/*
936 		 * The page is mapped into the page tables of one or more
937 		 * processes. Try to unmap it here.
938 		 */
939 		if (page_mapped(page) && mapping) {
940 			switch (try_to_unmap(page, ttu_flags)) {
941 			case SWAP_FAIL:
942 				goto activate_locked;
943 			case SWAP_AGAIN:
944 				goto keep_locked;
945 			case SWAP_MLOCK:
946 				goto cull_mlocked;
947 			case SWAP_SUCCESS:
948 				; /* try to free the page below */
949 			}
950 		}
951 
952 		if (PageDirty(page)) {
953 			/*
954 			 * Only kswapd can writeback filesystem pages to
955 			 * avoid risk of stack overflow but only writeback
956 			 * if many dirty pages have been encountered.
957 			 */
958 			if (page_is_file_cache(page) &&
959 					(!current_is_kswapd() ||
960 					 !zone_is_reclaim_dirty(zone))) {
961 				/*
962 				 * Immediately reclaim when written back.
963 				 * Similar in principal to deactivate_page()
964 				 * except we already have the page isolated
965 				 * and know it's dirty
966 				 */
967 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
968 				SetPageReclaim(page);
969 
970 				goto keep_locked;
971 			}
972 
973 			if (references == PAGEREF_RECLAIM_CLEAN)
974 				goto keep_locked;
975 			if (!may_enter_fs)
976 				goto keep_locked;
977 			if (!sc->may_writepage)
978 				goto keep_locked;
979 
980 			/* Page is dirty, try to write it out here */
981 			switch (pageout(page, mapping, sc)) {
982 			case PAGE_KEEP:
983 				goto keep_locked;
984 			case PAGE_ACTIVATE:
985 				goto activate_locked;
986 			case PAGE_SUCCESS:
987 				if (PageWriteback(page))
988 					goto keep;
989 				if (PageDirty(page))
990 					goto keep;
991 
992 				/*
993 				 * A synchronous write - probably a ramdisk.  Go
994 				 * ahead and try to reclaim the page.
995 				 */
996 				if (!trylock_page(page))
997 					goto keep;
998 				if (PageDirty(page) || PageWriteback(page))
999 					goto keep_locked;
1000 				mapping = page_mapping(page);
1001 			case PAGE_CLEAN:
1002 				; /* try to free the page below */
1003 			}
1004 		}
1005 
1006 		/*
1007 		 * If the page has buffers, try to free the buffer mappings
1008 		 * associated with this page. If we succeed we try to free
1009 		 * the page as well.
1010 		 *
1011 		 * We do this even if the page is PageDirty().
1012 		 * try_to_release_page() does not perform I/O, but it is
1013 		 * possible for a page to have PageDirty set, but it is actually
1014 		 * clean (all its buffers are clean).  This happens if the
1015 		 * buffers were written out directly, with submit_bh(). ext3
1016 		 * will do this, as well as the blockdev mapping.
1017 		 * try_to_release_page() will discover that cleanness and will
1018 		 * drop the buffers and mark the page clean - it can be freed.
1019 		 *
1020 		 * Rarely, pages can have buffers and no ->mapping.  These are
1021 		 * the pages which were not successfully invalidated in
1022 		 * truncate_complete_page().  We try to drop those buffers here
1023 		 * and if that worked, and the page is no longer mapped into
1024 		 * process address space (page_count == 1) it can be freed.
1025 		 * Otherwise, leave the page on the LRU so it is swappable.
1026 		 */
1027 		if (page_has_private(page)) {
1028 			if (!try_to_release_page(page, sc->gfp_mask))
1029 				goto activate_locked;
1030 			if (!mapping && page_count(page) == 1) {
1031 				unlock_page(page);
1032 				if (put_page_testzero(page))
1033 					goto free_it;
1034 				else {
1035 					/*
1036 					 * rare race with speculative reference.
1037 					 * the speculative reference will free
1038 					 * this page shortly, so we may
1039 					 * increment nr_reclaimed here (and
1040 					 * leave it off the LRU).
1041 					 */
1042 					nr_reclaimed++;
1043 					continue;
1044 				}
1045 			}
1046 		}
1047 
1048 		if (!mapping || !__remove_mapping(mapping, page))
1049 			goto keep_locked;
1050 
1051 		/*
1052 		 * At this point, we have no other references and there is
1053 		 * no way to pick any more up (removed from LRU, removed
1054 		 * from pagecache). Can use non-atomic bitops now (and
1055 		 * we obviously don't have to worry about waking up a process
1056 		 * waiting on the page lock, because there are no references.
1057 		 */
1058 		__clear_page_locked(page);
1059 free_it:
1060 		nr_reclaimed++;
1061 
1062 		/*
1063 		 * Is there need to periodically free_page_list? It would
1064 		 * appear not as the counts should be low
1065 		 */
1066 		list_add(&page->lru, &free_pages);
1067 		continue;
1068 
1069 cull_mlocked:
1070 		if (PageSwapCache(page))
1071 			try_to_free_swap(page);
1072 		unlock_page(page);
1073 		putback_lru_page(page);
1074 		continue;
1075 
1076 activate_locked:
1077 		/* Not a candidate for swapping, so reclaim swap space. */
1078 		if (PageSwapCache(page) && vm_swap_full())
1079 			try_to_free_swap(page);
1080 		VM_BUG_ON(PageActive(page));
1081 		SetPageActive(page);
1082 		pgactivate++;
1083 keep_locked:
1084 		unlock_page(page);
1085 keep:
1086 		list_add(&page->lru, &ret_pages);
1087 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1088 	}
1089 
1090 	free_hot_cold_page_list(&free_pages, 1);
1091 
1092 	list_splice(&ret_pages, page_list);
1093 	count_vm_events(PGACTIVATE, pgactivate);
1094 	mem_cgroup_uncharge_end();
1095 	*ret_nr_dirty += nr_dirty;
1096 	*ret_nr_congested += nr_congested;
1097 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1098 	*ret_nr_writeback += nr_writeback;
1099 	*ret_nr_immediate += nr_immediate;
1100 	return nr_reclaimed;
1101 }
1102 
1103 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1104 					    struct list_head *page_list)
1105 {
1106 	struct scan_control sc = {
1107 		.gfp_mask = GFP_KERNEL,
1108 		.priority = DEF_PRIORITY,
1109 		.may_unmap = 1,
1110 	};
1111 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1112 	struct page *page, *next;
1113 	LIST_HEAD(clean_pages);
1114 
1115 	list_for_each_entry_safe(page, next, page_list, lru) {
1116 		if (page_is_file_cache(page) && !PageDirty(page)) {
1117 			ClearPageActive(page);
1118 			list_move(&page->lru, &clean_pages);
1119 		}
1120 	}
1121 
1122 	ret = shrink_page_list(&clean_pages, zone, &sc,
1123 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1124 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1125 	list_splice(&clean_pages, page_list);
1126 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1127 	return ret;
1128 }
1129 
1130 /*
1131  * Attempt to remove the specified page from its LRU.  Only take this page
1132  * if it is of the appropriate PageActive status.  Pages which are being
1133  * freed elsewhere are also ignored.
1134  *
1135  * page:	page to consider
1136  * mode:	one of the LRU isolation modes defined above
1137  *
1138  * returns 0 on success, -ve errno on failure.
1139  */
1140 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1141 {
1142 	int ret = -EINVAL;
1143 
1144 	/* Only take pages on the LRU. */
1145 	if (!PageLRU(page))
1146 		return ret;
1147 
1148 	/* Compaction should not handle unevictable pages but CMA can do so */
1149 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1150 		return ret;
1151 
1152 	ret = -EBUSY;
1153 
1154 	/*
1155 	 * To minimise LRU disruption, the caller can indicate that it only
1156 	 * wants to isolate pages it will be able to operate on without
1157 	 * blocking - clean pages for the most part.
1158 	 *
1159 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1160 	 * is used by reclaim when it is cannot write to backing storage
1161 	 *
1162 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1163 	 * that it is possible to migrate without blocking
1164 	 */
1165 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1166 		/* All the caller can do on PageWriteback is block */
1167 		if (PageWriteback(page))
1168 			return ret;
1169 
1170 		if (PageDirty(page)) {
1171 			struct address_space *mapping;
1172 
1173 			/* ISOLATE_CLEAN means only clean pages */
1174 			if (mode & ISOLATE_CLEAN)
1175 				return ret;
1176 
1177 			/*
1178 			 * Only pages without mappings or that have a
1179 			 * ->migratepage callback are possible to migrate
1180 			 * without blocking
1181 			 */
1182 			mapping = page_mapping(page);
1183 			if (mapping && !mapping->a_ops->migratepage)
1184 				return ret;
1185 		}
1186 	}
1187 
1188 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1189 		return ret;
1190 
1191 	if (likely(get_page_unless_zero(page))) {
1192 		/*
1193 		 * Be careful not to clear PageLRU until after we're
1194 		 * sure the page is not being freed elsewhere -- the
1195 		 * page release code relies on it.
1196 		 */
1197 		ClearPageLRU(page);
1198 		ret = 0;
1199 	}
1200 
1201 	return ret;
1202 }
1203 
1204 /*
1205  * zone->lru_lock is heavily contended.  Some of the functions that
1206  * shrink the lists perform better by taking out a batch of pages
1207  * and working on them outside the LRU lock.
1208  *
1209  * For pagecache intensive workloads, this function is the hottest
1210  * spot in the kernel (apart from copy_*_user functions).
1211  *
1212  * Appropriate locks must be held before calling this function.
1213  *
1214  * @nr_to_scan:	The number of pages to look through on the list.
1215  * @lruvec:	The LRU vector to pull pages from.
1216  * @dst:	The temp list to put pages on to.
1217  * @nr_scanned:	The number of pages that were scanned.
1218  * @sc:		The scan_control struct for this reclaim session
1219  * @mode:	One of the LRU isolation modes
1220  * @lru:	LRU list id for isolating
1221  *
1222  * returns how many pages were moved onto *@dst.
1223  */
1224 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1225 		struct lruvec *lruvec, struct list_head *dst,
1226 		unsigned long *nr_scanned, struct scan_control *sc,
1227 		isolate_mode_t mode, enum lru_list lru)
1228 {
1229 	struct list_head *src = &lruvec->lists[lru];
1230 	unsigned long nr_taken = 0;
1231 	unsigned long scan;
1232 
1233 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1234 		struct page *page;
1235 		int nr_pages;
1236 
1237 		page = lru_to_page(src);
1238 		prefetchw_prev_lru_page(page, src, flags);
1239 
1240 		VM_BUG_ON(!PageLRU(page));
1241 
1242 		switch (__isolate_lru_page(page, mode)) {
1243 		case 0:
1244 			nr_pages = hpage_nr_pages(page);
1245 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1246 			list_move(&page->lru, dst);
1247 			nr_taken += nr_pages;
1248 			break;
1249 
1250 		case -EBUSY:
1251 			/* else it is being freed elsewhere */
1252 			list_move(&page->lru, src);
1253 			continue;
1254 
1255 		default:
1256 			BUG();
1257 		}
1258 	}
1259 
1260 	*nr_scanned = scan;
1261 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1262 				    nr_taken, mode, is_file_lru(lru));
1263 	return nr_taken;
1264 }
1265 
1266 /**
1267  * isolate_lru_page - tries to isolate a page from its LRU list
1268  * @page: page to isolate from its LRU list
1269  *
1270  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1271  * vmstat statistic corresponding to whatever LRU list the page was on.
1272  *
1273  * Returns 0 if the page was removed from an LRU list.
1274  * Returns -EBUSY if the page was not on an LRU list.
1275  *
1276  * The returned page will have PageLRU() cleared.  If it was found on
1277  * the active list, it will have PageActive set.  If it was found on
1278  * the unevictable list, it will have the PageUnevictable bit set. That flag
1279  * may need to be cleared by the caller before letting the page go.
1280  *
1281  * The vmstat statistic corresponding to the list on which the page was
1282  * found will be decremented.
1283  *
1284  * Restrictions:
1285  * (1) Must be called with an elevated refcount on the page. This is a
1286  *     fundamentnal difference from isolate_lru_pages (which is called
1287  *     without a stable reference).
1288  * (2) the lru_lock must not be held.
1289  * (3) interrupts must be enabled.
1290  */
1291 int isolate_lru_page(struct page *page)
1292 {
1293 	int ret = -EBUSY;
1294 
1295 	VM_BUG_ON(!page_count(page));
1296 
1297 	if (PageLRU(page)) {
1298 		struct zone *zone = page_zone(page);
1299 		struct lruvec *lruvec;
1300 
1301 		spin_lock_irq(&zone->lru_lock);
1302 		lruvec = mem_cgroup_page_lruvec(page, zone);
1303 		if (PageLRU(page)) {
1304 			int lru = page_lru(page);
1305 			get_page(page);
1306 			ClearPageLRU(page);
1307 			del_page_from_lru_list(page, lruvec, lru);
1308 			ret = 0;
1309 		}
1310 		spin_unlock_irq(&zone->lru_lock);
1311 	}
1312 	return ret;
1313 }
1314 
1315 /*
1316  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1317  * then get resheduled. When there are massive number of tasks doing page
1318  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1319  * the LRU list will go small and be scanned faster than necessary, leading to
1320  * unnecessary swapping, thrashing and OOM.
1321  */
1322 static int too_many_isolated(struct zone *zone, int file,
1323 		struct scan_control *sc)
1324 {
1325 	unsigned long inactive, isolated;
1326 
1327 	if (current_is_kswapd())
1328 		return 0;
1329 
1330 	if (!global_reclaim(sc))
1331 		return 0;
1332 
1333 	if (file) {
1334 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1335 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1336 	} else {
1337 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1338 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1339 	}
1340 
1341 	/*
1342 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1343 	 * won't get blocked by normal direct-reclaimers, forming a circular
1344 	 * deadlock.
1345 	 */
1346 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1347 		inactive >>= 3;
1348 
1349 	return isolated > inactive;
1350 }
1351 
1352 static noinline_for_stack void
1353 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1354 {
1355 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1356 	struct zone *zone = lruvec_zone(lruvec);
1357 	LIST_HEAD(pages_to_free);
1358 
1359 	/*
1360 	 * Put back any unfreeable pages.
1361 	 */
1362 	while (!list_empty(page_list)) {
1363 		struct page *page = lru_to_page(page_list);
1364 		int lru;
1365 
1366 		VM_BUG_ON(PageLRU(page));
1367 		list_del(&page->lru);
1368 		if (unlikely(!page_evictable(page))) {
1369 			spin_unlock_irq(&zone->lru_lock);
1370 			putback_lru_page(page);
1371 			spin_lock_irq(&zone->lru_lock);
1372 			continue;
1373 		}
1374 
1375 		lruvec = mem_cgroup_page_lruvec(page, zone);
1376 
1377 		SetPageLRU(page);
1378 		lru = page_lru(page);
1379 		add_page_to_lru_list(page, lruvec, lru);
1380 
1381 		if (is_active_lru(lru)) {
1382 			int file = is_file_lru(lru);
1383 			int numpages = hpage_nr_pages(page);
1384 			reclaim_stat->recent_rotated[file] += numpages;
1385 		}
1386 		if (put_page_testzero(page)) {
1387 			__ClearPageLRU(page);
1388 			__ClearPageActive(page);
1389 			del_page_from_lru_list(page, lruvec, lru);
1390 
1391 			if (unlikely(PageCompound(page))) {
1392 				spin_unlock_irq(&zone->lru_lock);
1393 				(*get_compound_page_dtor(page))(page);
1394 				spin_lock_irq(&zone->lru_lock);
1395 			} else
1396 				list_add(&page->lru, &pages_to_free);
1397 		}
1398 	}
1399 
1400 	/*
1401 	 * To save our caller's stack, now use input list for pages to free.
1402 	 */
1403 	list_splice(&pages_to_free, page_list);
1404 }
1405 
1406 /*
1407  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1408  * of reclaimed pages
1409  */
1410 static noinline_for_stack unsigned long
1411 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1412 		     struct scan_control *sc, enum lru_list lru)
1413 {
1414 	LIST_HEAD(page_list);
1415 	unsigned long nr_scanned;
1416 	unsigned long nr_reclaimed = 0;
1417 	unsigned long nr_taken;
1418 	unsigned long nr_dirty = 0;
1419 	unsigned long nr_congested = 0;
1420 	unsigned long nr_unqueued_dirty = 0;
1421 	unsigned long nr_writeback = 0;
1422 	unsigned long nr_immediate = 0;
1423 	isolate_mode_t isolate_mode = 0;
1424 	int file = is_file_lru(lru);
1425 	struct zone *zone = lruvec_zone(lruvec);
1426 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1427 
1428 	while (unlikely(too_many_isolated(zone, file, sc))) {
1429 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1430 
1431 		/* We are about to die and free our memory. Return now. */
1432 		if (fatal_signal_pending(current))
1433 			return SWAP_CLUSTER_MAX;
1434 	}
1435 
1436 	lru_add_drain();
1437 
1438 	if (!sc->may_unmap)
1439 		isolate_mode |= ISOLATE_UNMAPPED;
1440 	if (!sc->may_writepage)
1441 		isolate_mode |= ISOLATE_CLEAN;
1442 
1443 	spin_lock_irq(&zone->lru_lock);
1444 
1445 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1446 				     &nr_scanned, sc, isolate_mode, lru);
1447 
1448 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1449 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1450 
1451 	if (global_reclaim(sc)) {
1452 		zone->pages_scanned += nr_scanned;
1453 		if (current_is_kswapd())
1454 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1455 		else
1456 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1457 	}
1458 	spin_unlock_irq(&zone->lru_lock);
1459 
1460 	if (nr_taken == 0)
1461 		return 0;
1462 
1463 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1464 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1465 				&nr_writeback, &nr_immediate,
1466 				false);
1467 
1468 	spin_lock_irq(&zone->lru_lock);
1469 
1470 	reclaim_stat->recent_scanned[file] += nr_taken;
1471 
1472 	if (global_reclaim(sc)) {
1473 		if (current_is_kswapd())
1474 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1475 					       nr_reclaimed);
1476 		else
1477 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1478 					       nr_reclaimed);
1479 	}
1480 
1481 	putback_inactive_pages(lruvec, &page_list);
1482 
1483 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1484 
1485 	spin_unlock_irq(&zone->lru_lock);
1486 
1487 	free_hot_cold_page_list(&page_list, 1);
1488 
1489 	/*
1490 	 * If reclaim is isolating dirty pages under writeback, it implies
1491 	 * that the long-lived page allocation rate is exceeding the page
1492 	 * laundering rate. Either the global limits are not being effective
1493 	 * at throttling processes due to the page distribution throughout
1494 	 * zones or there is heavy usage of a slow backing device. The
1495 	 * only option is to throttle from reclaim context which is not ideal
1496 	 * as there is no guarantee the dirtying process is throttled in the
1497 	 * same way balance_dirty_pages() manages.
1498 	 *
1499 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1500 	 * of pages under pages flagged for immediate reclaim and stall if any
1501 	 * are encountered in the nr_immediate check below.
1502 	 */
1503 	if (nr_writeback && nr_writeback == nr_taken)
1504 		zone_set_flag(zone, ZONE_WRITEBACK);
1505 
1506 	/*
1507 	 * memcg will stall in page writeback so only consider forcibly
1508 	 * stalling for global reclaim
1509 	 */
1510 	if (global_reclaim(sc)) {
1511 		/*
1512 		 * Tag a zone as congested if all the dirty pages scanned were
1513 		 * backed by a congested BDI and wait_iff_congested will stall.
1514 		 */
1515 		if (nr_dirty && nr_dirty == nr_congested)
1516 			zone_set_flag(zone, ZONE_CONGESTED);
1517 
1518 		/*
1519 		 * If dirty pages are scanned that are not queued for IO, it
1520 		 * implies that flushers are not keeping up. In this case, flag
1521 		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1522 		 * pages from reclaim context. It will forcibly stall in the
1523 		 * next check.
1524 		 */
1525 		if (nr_unqueued_dirty == nr_taken)
1526 			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1527 
1528 		/*
1529 		 * In addition, if kswapd scans pages marked marked for
1530 		 * immediate reclaim and under writeback (nr_immediate), it
1531 		 * implies that pages are cycling through the LRU faster than
1532 		 * they are written so also forcibly stall.
1533 		 */
1534 		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1535 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1536 	}
1537 
1538 	/*
1539 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1540 	 * is congested. Allow kswapd to continue until it starts encountering
1541 	 * unqueued dirty pages or cycling through the LRU too quickly.
1542 	 */
1543 	if (!sc->hibernation_mode && !current_is_kswapd())
1544 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1545 
1546 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1547 		zone_idx(zone),
1548 		nr_scanned, nr_reclaimed,
1549 		sc->priority,
1550 		trace_shrink_flags(file));
1551 	return nr_reclaimed;
1552 }
1553 
1554 /*
1555  * This moves pages from the active list to the inactive list.
1556  *
1557  * We move them the other way if the page is referenced by one or more
1558  * processes, from rmap.
1559  *
1560  * If the pages are mostly unmapped, the processing is fast and it is
1561  * appropriate to hold zone->lru_lock across the whole operation.  But if
1562  * the pages are mapped, the processing is slow (page_referenced()) so we
1563  * should drop zone->lru_lock around each page.  It's impossible to balance
1564  * this, so instead we remove the pages from the LRU while processing them.
1565  * It is safe to rely on PG_active against the non-LRU pages in here because
1566  * nobody will play with that bit on a non-LRU page.
1567  *
1568  * The downside is that we have to touch page->_count against each page.
1569  * But we had to alter page->flags anyway.
1570  */
1571 
1572 static void move_active_pages_to_lru(struct lruvec *lruvec,
1573 				     struct list_head *list,
1574 				     struct list_head *pages_to_free,
1575 				     enum lru_list lru)
1576 {
1577 	struct zone *zone = lruvec_zone(lruvec);
1578 	unsigned long pgmoved = 0;
1579 	struct page *page;
1580 	int nr_pages;
1581 
1582 	while (!list_empty(list)) {
1583 		page = lru_to_page(list);
1584 		lruvec = mem_cgroup_page_lruvec(page, zone);
1585 
1586 		VM_BUG_ON(PageLRU(page));
1587 		SetPageLRU(page);
1588 
1589 		nr_pages = hpage_nr_pages(page);
1590 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1591 		list_move(&page->lru, &lruvec->lists[lru]);
1592 		pgmoved += nr_pages;
1593 
1594 		if (put_page_testzero(page)) {
1595 			__ClearPageLRU(page);
1596 			__ClearPageActive(page);
1597 			del_page_from_lru_list(page, lruvec, lru);
1598 
1599 			if (unlikely(PageCompound(page))) {
1600 				spin_unlock_irq(&zone->lru_lock);
1601 				(*get_compound_page_dtor(page))(page);
1602 				spin_lock_irq(&zone->lru_lock);
1603 			} else
1604 				list_add(&page->lru, pages_to_free);
1605 		}
1606 	}
1607 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1608 	if (!is_active_lru(lru))
1609 		__count_vm_events(PGDEACTIVATE, pgmoved);
1610 }
1611 
1612 static void shrink_active_list(unsigned long nr_to_scan,
1613 			       struct lruvec *lruvec,
1614 			       struct scan_control *sc,
1615 			       enum lru_list lru)
1616 {
1617 	unsigned long nr_taken;
1618 	unsigned long nr_scanned;
1619 	unsigned long vm_flags;
1620 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1621 	LIST_HEAD(l_active);
1622 	LIST_HEAD(l_inactive);
1623 	struct page *page;
1624 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1625 	unsigned long nr_rotated = 0;
1626 	isolate_mode_t isolate_mode = 0;
1627 	int file = is_file_lru(lru);
1628 	struct zone *zone = lruvec_zone(lruvec);
1629 
1630 	lru_add_drain();
1631 
1632 	if (!sc->may_unmap)
1633 		isolate_mode |= ISOLATE_UNMAPPED;
1634 	if (!sc->may_writepage)
1635 		isolate_mode |= ISOLATE_CLEAN;
1636 
1637 	spin_lock_irq(&zone->lru_lock);
1638 
1639 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1640 				     &nr_scanned, sc, isolate_mode, lru);
1641 	if (global_reclaim(sc))
1642 		zone->pages_scanned += nr_scanned;
1643 
1644 	reclaim_stat->recent_scanned[file] += nr_taken;
1645 
1646 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1647 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1648 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1649 	spin_unlock_irq(&zone->lru_lock);
1650 
1651 	while (!list_empty(&l_hold)) {
1652 		cond_resched();
1653 		page = lru_to_page(&l_hold);
1654 		list_del(&page->lru);
1655 
1656 		if (unlikely(!page_evictable(page))) {
1657 			putback_lru_page(page);
1658 			continue;
1659 		}
1660 
1661 		if (unlikely(buffer_heads_over_limit)) {
1662 			if (page_has_private(page) && trylock_page(page)) {
1663 				if (page_has_private(page))
1664 					try_to_release_page(page, 0);
1665 				unlock_page(page);
1666 			}
1667 		}
1668 
1669 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1670 				    &vm_flags)) {
1671 			nr_rotated += hpage_nr_pages(page);
1672 			/*
1673 			 * Identify referenced, file-backed active pages and
1674 			 * give them one more trip around the active list. So
1675 			 * that executable code get better chances to stay in
1676 			 * memory under moderate memory pressure.  Anon pages
1677 			 * are not likely to be evicted by use-once streaming
1678 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1679 			 * so we ignore them here.
1680 			 */
1681 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1682 				list_add(&page->lru, &l_active);
1683 				continue;
1684 			}
1685 		}
1686 
1687 		ClearPageActive(page);	/* we are de-activating */
1688 		list_add(&page->lru, &l_inactive);
1689 	}
1690 
1691 	/*
1692 	 * Move pages back to the lru list.
1693 	 */
1694 	spin_lock_irq(&zone->lru_lock);
1695 	/*
1696 	 * Count referenced pages from currently used mappings as rotated,
1697 	 * even though only some of them are actually re-activated.  This
1698 	 * helps balance scan pressure between file and anonymous pages in
1699 	 * get_scan_ratio.
1700 	 */
1701 	reclaim_stat->recent_rotated[file] += nr_rotated;
1702 
1703 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1704 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1705 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1706 	spin_unlock_irq(&zone->lru_lock);
1707 
1708 	free_hot_cold_page_list(&l_hold, 1);
1709 }
1710 
1711 #ifdef CONFIG_SWAP
1712 static int inactive_anon_is_low_global(struct zone *zone)
1713 {
1714 	unsigned long active, inactive;
1715 
1716 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1717 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1718 
1719 	if (inactive * zone->inactive_ratio < active)
1720 		return 1;
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1727  * @lruvec: LRU vector to check
1728  *
1729  * Returns true if the zone does not have enough inactive anon pages,
1730  * meaning some active anon pages need to be deactivated.
1731  */
1732 static int inactive_anon_is_low(struct lruvec *lruvec)
1733 {
1734 	/*
1735 	 * If we don't have swap space, anonymous page deactivation
1736 	 * is pointless.
1737 	 */
1738 	if (!total_swap_pages)
1739 		return 0;
1740 
1741 	if (!mem_cgroup_disabled())
1742 		return mem_cgroup_inactive_anon_is_low(lruvec);
1743 
1744 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1745 }
1746 #else
1747 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1748 {
1749 	return 0;
1750 }
1751 #endif
1752 
1753 /**
1754  * inactive_file_is_low - check if file pages need to be deactivated
1755  * @lruvec: LRU vector to check
1756  *
1757  * When the system is doing streaming IO, memory pressure here
1758  * ensures that active file pages get deactivated, until more
1759  * than half of the file pages are on the inactive list.
1760  *
1761  * Once we get to that situation, protect the system's working
1762  * set from being evicted by disabling active file page aging.
1763  *
1764  * This uses a different ratio than the anonymous pages, because
1765  * the page cache uses a use-once replacement algorithm.
1766  */
1767 static int inactive_file_is_low(struct lruvec *lruvec)
1768 {
1769 	unsigned long inactive;
1770 	unsigned long active;
1771 
1772 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1773 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1774 
1775 	return active > inactive;
1776 }
1777 
1778 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1779 {
1780 	if (is_file_lru(lru))
1781 		return inactive_file_is_low(lruvec);
1782 	else
1783 		return inactive_anon_is_low(lruvec);
1784 }
1785 
1786 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1787 				 struct lruvec *lruvec, struct scan_control *sc)
1788 {
1789 	if (is_active_lru(lru)) {
1790 		if (inactive_list_is_low(lruvec, lru))
1791 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1792 		return 0;
1793 	}
1794 
1795 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1796 }
1797 
1798 static int vmscan_swappiness(struct scan_control *sc)
1799 {
1800 	if (global_reclaim(sc))
1801 		return vm_swappiness;
1802 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1803 }
1804 
1805 enum scan_balance {
1806 	SCAN_EQUAL,
1807 	SCAN_FRACT,
1808 	SCAN_ANON,
1809 	SCAN_FILE,
1810 };
1811 
1812 /*
1813  * Determine how aggressively the anon and file LRU lists should be
1814  * scanned.  The relative value of each set of LRU lists is determined
1815  * by looking at the fraction of the pages scanned we did rotate back
1816  * onto the active list instead of evict.
1817  *
1818  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1819  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1820  */
1821 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1822 			   unsigned long *nr)
1823 {
1824 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1825 	u64 fraction[2];
1826 	u64 denominator = 0;	/* gcc */
1827 	struct zone *zone = lruvec_zone(lruvec);
1828 	unsigned long anon_prio, file_prio;
1829 	enum scan_balance scan_balance;
1830 	unsigned long anon, file, free;
1831 	bool force_scan = false;
1832 	unsigned long ap, fp;
1833 	enum lru_list lru;
1834 
1835 	/*
1836 	 * If the zone or memcg is small, nr[l] can be 0.  This
1837 	 * results in no scanning on this priority and a potential
1838 	 * priority drop.  Global direct reclaim can go to the next
1839 	 * zone and tends to have no problems. Global kswapd is for
1840 	 * zone balancing and it needs to scan a minimum amount. When
1841 	 * reclaiming for a memcg, a priority drop can cause high
1842 	 * latencies, so it's better to scan a minimum amount there as
1843 	 * well.
1844 	 */
1845 	if (current_is_kswapd() && !zone_reclaimable(zone))
1846 		force_scan = true;
1847 	if (!global_reclaim(sc))
1848 		force_scan = true;
1849 
1850 	/* If we have no swap space, do not bother scanning anon pages. */
1851 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1852 		scan_balance = SCAN_FILE;
1853 		goto out;
1854 	}
1855 
1856 	/*
1857 	 * Global reclaim will swap to prevent OOM even with no
1858 	 * swappiness, but memcg users want to use this knob to
1859 	 * disable swapping for individual groups completely when
1860 	 * using the memory controller's swap limit feature would be
1861 	 * too expensive.
1862 	 */
1863 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1864 		scan_balance = SCAN_FILE;
1865 		goto out;
1866 	}
1867 
1868 	/*
1869 	 * Do not apply any pressure balancing cleverness when the
1870 	 * system is close to OOM, scan both anon and file equally
1871 	 * (unless the swappiness setting disagrees with swapping).
1872 	 */
1873 	if (!sc->priority && vmscan_swappiness(sc)) {
1874 		scan_balance = SCAN_EQUAL;
1875 		goto out;
1876 	}
1877 
1878 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1879 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1880 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1881 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1882 
1883 	/*
1884 	 * If it's foreseeable that reclaiming the file cache won't be
1885 	 * enough to get the zone back into a desirable shape, we have
1886 	 * to swap.  Better start now and leave the - probably heavily
1887 	 * thrashing - remaining file pages alone.
1888 	 */
1889 	if (global_reclaim(sc)) {
1890 		free = zone_page_state(zone, NR_FREE_PAGES);
1891 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1892 			scan_balance = SCAN_ANON;
1893 			goto out;
1894 		}
1895 	}
1896 
1897 	/*
1898 	 * There is enough inactive page cache, do not reclaim
1899 	 * anything from the anonymous working set right now.
1900 	 */
1901 	if (!inactive_file_is_low(lruvec)) {
1902 		scan_balance = SCAN_FILE;
1903 		goto out;
1904 	}
1905 
1906 	scan_balance = SCAN_FRACT;
1907 
1908 	/*
1909 	 * With swappiness at 100, anonymous and file have the same priority.
1910 	 * This scanning priority is essentially the inverse of IO cost.
1911 	 */
1912 	anon_prio = vmscan_swappiness(sc);
1913 	file_prio = 200 - anon_prio;
1914 
1915 	/*
1916 	 * OK, so we have swap space and a fair amount of page cache
1917 	 * pages.  We use the recently rotated / recently scanned
1918 	 * ratios to determine how valuable each cache is.
1919 	 *
1920 	 * Because workloads change over time (and to avoid overflow)
1921 	 * we keep these statistics as a floating average, which ends
1922 	 * up weighing recent references more than old ones.
1923 	 *
1924 	 * anon in [0], file in [1]
1925 	 */
1926 	spin_lock_irq(&zone->lru_lock);
1927 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1928 		reclaim_stat->recent_scanned[0] /= 2;
1929 		reclaim_stat->recent_rotated[0] /= 2;
1930 	}
1931 
1932 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1933 		reclaim_stat->recent_scanned[1] /= 2;
1934 		reclaim_stat->recent_rotated[1] /= 2;
1935 	}
1936 
1937 	/*
1938 	 * The amount of pressure on anon vs file pages is inversely
1939 	 * proportional to the fraction of recently scanned pages on
1940 	 * each list that were recently referenced and in active use.
1941 	 */
1942 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1943 	ap /= reclaim_stat->recent_rotated[0] + 1;
1944 
1945 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1946 	fp /= reclaim_stat->recent_rotated[1] + 1;
1947 	spin_unlock_irq(&zone->lru_lock);
1948 
1949 	fraction[0] = ap;
1950 	fraction[1] = fp;
1951 	denominator = ap + fp + 1;
1952 out:
1953 	for_each_evictable_lru(lru) {
1954 		int file = is_file_lru(lru);
1955 		unsigned long size;
1956 		unsigned long scan;
1957 
1958 		size = get_lru_size(lruvec, lru);
1959 		scan = size >> sc->priority;
1960 
1961 		if (!scan && force_scan)
1962 			scan = min(size, SWAP_CLUSTER_MAX);
1963 
1964 		switch (scan_balance) {
1965 		case SCAN_EQUAL:
1966 			/* Scan lists relative to size */
1967 			break;
1968 		case SCAN_FRACT:
1969 			/*
1970 			 * Scan types proportional to swappiness and
1971 			 * their relative recent reclaim efficiency.
1972 			 */
1973 			scan = div64_u64(scan * fraction[file], denominator);
1974 			break;
1975 		case SCAN_FILE:
1976 		case SCAN_ANON:
1977 			/* Scan one type exclusively */
1978 			if ((scan_balance == SCAN_FILE) != file)
1979 				scan = 0;
1980 			break;
1981 		default:
1982 			/* Look ma, no brain */
1983 			BUG();
1984 		}
1985 		nr[lru] = scan;
1986 	}
1987 }
1988 
1989 /*
1990  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1991  */
1992 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1993 {
1994 	unsigned long nr[NR_LRU_LISTS];
1995 	unsigned long targets[NR_LRU_LISTS];
1996 	unsigned long nr_to_scan;
1997 	enum lru_list lru;
1998 	unsigned long nr_reclaimed = 0;
1999 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2000 	struct blk_plug plug;
2001 	bool scan_adjusted = false;
2002 
2003 	get_scan_count(lruvec, sc, nr);
2004 
2005 	/* Record the original scan target for proportional adjustments later */
2006 	memcpy(targets, nr, sizeof(nr));
2007 
2008 	blk_start_plug(&plug);
2009 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2010 					nr[LRU_INACTIVE_FILE]) {
2011 		unsigned long nr_anon, nr_file, percentage;
2012 		unsigned long nr_scanned;
2013 
2014 		for_each_evictable_lru(lru) {
2015 			if (nr[lru]) {
2016 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2017 				nr[lru] -= nr_to_scan;
2018 
2019 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2020 							    lruvec, sc);
2021 			}
2022 		}
2023 
2024 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2025 			continue;
2026 
2027 		/*
2028 		 * For global direct reclaim, reclaim only the number of pages
2029 		 * requested. Less care is taken to scan proportionally as it
2030 		 * is more important to minimise direct reclaim stall latency
2031 		 * than it is to properly age the LRU lists.
2032 		 */
2033 		if (global_reclaim(sc) && !current_is_kswapd())
2034 			break;
2035 
2036 		/*
2037 		 * For kswapd and memcg, reclaim at least the number of pages
2038 		 * requested. Ensure that the anon and file LRUs shrink
2039 		 * proportionally what was requested by get_scan_count(). We
2040 		 * stop reclaiming one LRU and reduce the amount scanning
2041 		 * proportional to the original scan target.
2042 		 */
2043 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2044 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2045 
2046 		if (nr_file > nr_anon) {
2047 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2048 						targets[LRU_ACTIVE_ANON] + 1;
2049 			lru = LRU_BASE;
2050 			percentage = nr_anon * 100 / scan_target;
2051 		} else {
2052 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2053 						targets[LRU_ACTIVE_FILE] + 1;
2054 			lru = LRU_FILE;
2055 			percentage = nr_file * 100 / scan_target;
2056 		}
2057 
2058 		/* Stop scanning the smaller of the LRU */
2059 		nr[lru] = 0;
2060 		nr[lru + LRU_ACTIVE] = 0;
2061 
2062 		/*
2063 		 * Recalculate the other LRU scan count based on its original
2064 		 * scan target and the percentage scanning already complete
2065 		 */
2066 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2067 		nr_scanned = targets[lru] - nr[lru];
2068 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2069 		nr[lru] -= min(nr[lru], nr_scanned);
2070 
2071 		lru += LRU_ACTIVE;
2072 		nr_scanned = targets[lru] - nr[lru];
2073 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2074 		nr[lru] -= min(nr[lru], nr_scanned);
2075 
2076 		scan_adjusted = true;
2077 	}
2078 	blk_finish_plug(&plug);
2079 	sc->nr_reclaimed += nr_reclaimed;
2080 
2081 	/*
2082 	 * Even if we did not try to evict anon pages at all, we want to
2083 	 * rebalance the anon lru active/inactive ratio.
2084 	 */
2085 	if (inactive_anon_is_low(lruvec))
2086 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2087 				   sc, LRU_ACTIVE_ANON);
2088 
2089 	throttle_vm_writeout(sc->gfp_mask);
2090 }
2091 
2092 /* Use reclaim/compaction for costly allocs or under memory pressure */
2093 static bool in_reclaim_compaction(struct scan_control *sc)
2094 {
2095 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2096 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2097 			 sc->priority < DEF_PRIORITY - 2))
2098 		return true;
2099 
2100 	return false;
2101 }
2102 
2103 /*
2104  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2105  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2106  * true if more pages should be reclaimed such that when the page allocator
2107  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2108  * It will give up earlier than that if there is difficulty reclaiming pages.
2109  */
2110 static inline bool should_continue_reclaim(struct zone *zone,
2111 					unsigned long nr_reclaimed,
2112 					unsigned long nr_scanned,
2113 					struct scan_control *sc)
2114 {
2115 	unsigned long pages_for_compaction;
2116 	unsigned long inactive_lru_pages;
2117 
2118 	/* If not in reclaim/compaction mode, stop */
2119 	if (!in_reclaim_compaction(sc))
2120 		return false;
2121 
2122 	/* Consider stopping depending on scan and reclaim activity */
2123 	if (sc->gfp_mask & __GFP_REPEAT) {
2124 		/*
2125 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2126 		 * full LRU list has been scanned and we are still failing
2127 		 * to reclaim pages. This full LRU scan is potentially
2128 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2129 		 */
2130 		if (!nr_reclaimed && !nr_scanned)
2131 			return false;
2132 	} else {
2133 		/*
2134 		 * For non-__GFP_REPEAT allocations which can presumably
2135 		 * fail without consequence, stop if we failed to reclaim
2136 		 * any pages from the last SWAP_CLUSTER_MAX number of
2137 		 * pages that were scanned. This will return to the
2138 		 * caller faster at the risk reclaim/compaction and
2139 		 * the resulting allocation attempt fails
2140 		 */
2141 		if (!nr_reclaimed)
2142 			return false;
2143 	}
2144 
2145 	/*
2146 	 * If we have not reclaimed enough pages for compaction and the
2147 	 * inactive lists are large enough, continue reclaiming
2148 	 */
2149 	pages_for_compaction = (2UL << sc->order);
2150 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2151 	if (get_nr_swap_pages() > 0)
2152 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2153 	if (sc->nr_reclaimed < pages_for_compaction &&
2154 			inactive_lru_pages > pages_for_compaction)
2155 		return true;
2156 
2157 	/* If compaction would go ahead or the allocation would succeed, stop */
2158 	switch (compaction_suitable(zone, sc->order)) {
2159 	case COMPACT_PARTIAL:
2160 	case COMPACT_CONTINUE:
2161 		return false;
2162 	default:
2163 		return true;
2164 	}
2165 }
2166 
2167 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2168 {
2169 	unsigned long nr_reclaimed, nr_scanned;
2170 
2171 	do {
2172 		struct mem_cgroup *root = sc->target_mem_cgroup;
2173 		struct mem_cgroup_reclaim_cookie reclaim = {
2174 			.zone = zone,
2175 			.priority = sc->priority,
2176 		};
2177 		struct mem_cgroup *memcg;
2178 
2179 		nr_reclaimed = sc->nr_reclaimed;
2180 		nr_scanned = sc->nr_scanned;
2181 
2182 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2183 		do {
2184 			struct lruvec *lruvec;
2185 
2186 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2187 
2188 			shrink_lruvec(lruvec, sc);
2189 
2190 			/*
2191 			 * Direct reclaim and kswapd have to scan all memory
2192 			 * cgroups to fulfill the overall scan target for the
2193 			 * zone.
2194 			 *
2195 			 * Limit reclaim, on the other hand, only cares about
2196 			 * nr_to_reclaim pages to be reclaimed and it will
2197 			 * retry with decreasing priority if one round over the
2198 			 * whole hierarchy is not sufficient.
2199 			 */
2200 			if (!global_reclaim(sc) &&
2201 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2202 				mem_cgroup_iter_break(root, memcg);
2203 				break;
2204 			}
2205 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2206 		} while (memcg);
2207 
2208 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2209 			   sc->nr_scanned - nr_scanned,
2210 			   sc->nr_reclaimed - nr_reclaimed);
2211 
2212 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2213 					 sc->nr_scanned - nr_scanned, sc));
2214 }
2215 
2216 /* Returns true if compaction should go ahead for a high-order request */
2217 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2218 {
2219 	unsigned long balance_gap, watermark;
2220 	bool watermark_ok;
2221 
2222 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2223 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2224 		return false;
2225 
2226 	/*
2227 	 * Compaction takes time to run and there are potentially other
2228 	 * callers using the pages just freed. Continue reclaiming until
2229 	 * there is a buffer of free pages available to give compaction
2230 	 * a reasonable chance of completing and allocating the page
2231 	 */
2232 	balance_gap = min(low_wmark_pages(zone),
2233 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2234 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2235 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2236 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2237 
2238 	/*
2239 	 * If compaction is deferred, reclaim up to a point where
2240 	 * compaction will have a chance of success when re-enabled
2241 	 */
2242 	if (compaction_deferred(zone, sc->order))
2243 		return watermark_ok;
2244 
2245 	/* If compaction is not ready to start, keep reclaiming */
2246 	if (!compaction_suitable(zone, sc->order))
2247 		return false;
2248 
2249 	return watermark_ok;
2250 }
2251 
2252 /*
2253  * This is the direct reclaim path, for page-allocating processes.  We only
2254  * try to reclaim pages from zones which will satisfy the caller's allocation
2255  * request.
2256  *
2257  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2258  * Because:
2259  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2260  *    allocation or
2261  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2262  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2263  *    zone defense algorithm.
2264  *
2265  * If a zone is deemed to be full of pinned pages then just give it a light
2266  * scan then give up on it.
2267  *
2268  * This function returns true if a zone is being reclaimed for a costly
2269  * high-order allocation and compaction is ready to begin. This indicates to
2270  * the caller that it should consider retrying the allocation instead of
2271  * further reclaim.
2272  */
2273 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2274 {
2275 	struct zoneref *z;
2276 	struct zone *zone;
2277 	unsigned long nr_soft_reclaimed;
2278 	unsigned long nr_soft_scanned;
2279 	bool aborted_reclaim = false;
2280 
2281 	/*
2282 	 * If the number of buffer_heads in the machine exceeds the maximum
2283 	 * allowed level, force direct reclaim to scan the highmem zone as
2284 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2285 	 */
2286 	if (buffer_heads_over_limit)
2287 		sc->gfp_mask |= __GFP_HIGHMEM;
2288 
2289 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2290 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2291 		if (!populated_zone(zone))
2292 			continue;
2293 		/*
2294 		 * Take care memory controller reclaiming has small influence
2295 		 * to global LRU.
2296 		 */
2297 		if (global_reclaim(sc)) {
2298 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2299 				continue;
2300 			if (sc->priority != DEF_PRIORITY &&
2301 			    !zone_reclaimable(zone))
2302 				continue;	/* Let kswapd poll it */
2303 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2304 				/*
2305 				 * If we already have plenty of memory free for
2306 				 * compaction in this zone, don't free any more.
2307 				 * Even though compaction is invoked for any
2308 				 * non-zero order, only frequent costly order
2309 				 * reclamation is disruptive enough to become a
2310 				 * noticeable problem, like transparent huge
2311 				 * page allocations.
2312 				 */
2313 				if (compaction_ready(zone, sc)) {
2314 					aborted_reclaim = true;
2315 					continue;
2316 				}
2317 			}
2318 			/*
2319 			 * This steals pages from memory cgroups over softlimit
2320 			 * and returns the number of reclaimed pages and
2321 			 * scanned pages. This works for global memory pressure
2322 			 * and balancing, not for a memcg's limit.
2323 			 */
2324 			nr_soft_scanned = 0;
2325 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2326 						sc->order, sc->gfp_mask,
2327 						&nr_soft_scanned);
2328 			sc->nr_reclaimed += nr_soft_reclaimed;
2329 			sc->nr_scanned += nr_soft_scanned;
2330 			/* need some check for avoid more shrink_zone() */
2331 		}
2332 
2333 		shrink_zone(zone, sc);
2334 	}
2335 
2336 	return aborted_reclaim;
2337 }
2338 
2339 /* All zones in zonelist are unreclaimable? */
2340 static bool all_unreclaimable(struct zonelist *zonelist,
2341 		struct scan_control *sc)
2342 {
2343 	struct zoneref *z;
2344 	struct zone *zone;
2345 
2346 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2347 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2348 		if (!populated_zone(zone))
2349 			continue;
2350 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2351 			continue;
2352 		if (zone_reclaimable(zone))
2353 			return false;
2354 	}
2355 
2356 	return true;
2357 }
2358 
2359 /*
2360  * This is the main entry point to direct page reclaim.
2361  *
2362  * If a full scan of the inactive list fails to free enough memory then we
2363  * are "out of memory" and something needs to be killed.
2364  *
2365  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2366  * high - the zone may be full of dirty or under-writeback pages, which this
2367  * caller can't do much about.  We kick the writeback threads and take explicit
2368  * naps in the hope that some of these pages can be written.  But if the
2369  * allocating task holds filesystem locks which prevent writeout this might not
2370  * work, and the allocation attempt will fail.
2371  *
2372  * returns:	0, if no pages reclaimed
2373  * 		else, the number of pages reclaimed
2374  */
2375 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2376 					struct scan_control *sc,
2377 					struct shrink_control *shrink)
2378 {
2379 	unsigned long total_scanned = 0;
2380 	struct reclaim_state *reclaim_state = current->reclaim_state;
2381 	struct zoneref *z;
2382 	struct zone *zone;
2383 	unsigned long writeback_threshold;
2384 	bool aborted_reclaim;
2385 
2386 	delayacct_freepages_start();
2387 
2388 	if (global_reclaim(sc))
2389 		count_vm_event(ALLOCSTALL);
2390 
2391 	do {
2392 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2393 				sc->priority);
2394 		sc->nr_scanned = 0;
2395 		aborted_reclaim = shrink_zones(zonelist, sc);
2396 
2397 		/*
2398 		 * Don't shrink slabs when reclaiming memory from over limit
2399 		 * cgroups but do shrink slab at least once when aborting
2400 		 * reclaim for compaction to avoid unevenly scanning file/anon
2401 		 * LRU pages over slab pages.
2402 		 */
2403 		if (global_reclaim(sc)) {
2404 			unsigned long lru_pages = 0;
2405 
2406 			nodes_clear(shrink->nodes_to_scan);
2407 			for_each_zone_zonelist(zone, z, zonelist,
2408 					gfp_zone(sc->gfp_mask)) {
2409 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2410 					continue;
2411 
2412 				lru_pages += zone_reclaimable_pages(zone);
2413 				node_set(zone_to_nid(zone),
2414 					 shrink->nodes_to_scan);
2415 			}
2416 
2417 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2418 			if (reclaim_state) {
2419 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2420 				reclaim_state->reclaimed_slab = 0;
2421 			}
2422 		}
2423 		total_scanned += sc->nr_scanned;
2424 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2425 			goto out;
2426 
2427 		/*
2428 		 * If we're getting trouble reclaiming, start doing
2429 		 * writepage even in laptop mode.
2430 		 */
2431 		if (sc->priority < DEF_PRIORITY - 2)
2432 			sc->may_writepage = 1;
2433 
2434 		/*
2435 		 * Try to write back as many pages as we just scanned.  This
2436 		 * tends to cause slow streaming writers to write data to the
2437 		 * disk smoothly, at the dirtying rate, which is nice.   But
2438 		 * that's undesirable in laptop mode, where we *want* lumpy
2439 		 * writeout.  So in laptop mode, write out the whole world.
2440 		 */
2441 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2442 		if (total_scanned > writeback_threshold) {
2443 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2444 						WB_REASON_TRY_TO_FREE_PAGES);
2445 			sc->may_writepage = 1;
2446 		}
2447 	} while (--sc->priority >= 0 && !aborted_reclaim);
2448 
2449 out:
2450 	delayacct_freepages_end();
2451 
2452 	if (sc->nr_reclaimed)
2453 		return sc->nr_reclaimed;
2454 
2455 	/*
2456 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2457 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2458 	 * check.
2459 	 */
2460 	if (oom_killer_disabled)
2461 		return 0;
2462 
2463 	/* Aborted reclaim to try compaction? don't OOM, then */
2464 	if (aborted_reclaim)
2465 		return 1;
2466 
2467 	/* top priority shrink_zones still had more to do? don't OOM, then */
2468 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2469 		return 1;
2470 
2471 	return 0;
2472 }
2473 
2474 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2475 {
2476 	struct zone *zone;
2477 	unsigned long pfmemalloc_reserve = 0;
2478 	unsigned long free_pages = 0;
2479 	int i;
2480 	bool wmark_ok;
2481 
2482 	for (i = 0; i <= ZONE_NORMAL; i++) {
2483 		zone = &pgdat->node_zones[i];
2484 		pfmemalloc_reserve += min_wmark_pages(zone);
2485 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2486 	}
2487 
2488 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2489 
2490 	/* kswapd must be awake if processes are being throttled */
2491 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2492 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2493 						(enum zone_type)ZONE_NORMAL);
2494 		wake_up_interruptible(&pgdat->kswapd_wait);
2495 	}
2496 
2497 	return wmark_ok;
2498 }
2499 
2500 /*
2501  * Throttle direct reclaimers if backing storage is backed by the network
2502  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2503  * depleted. kswapd will continue to make progress and wake the processes
2504  * when the low watermark is reached.
2505  *
2506  * Returns true if a fatal signal was delivered during throttling. If this
2507  * happens, the page allocator should not consider triggering the OOM killer.
2508  */
2509 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2510 					nodemask_t *nodemask)
2511 {
2512 	struct zone *zone;
2513 	int high_zoneidx = gfp_zone(gfp_mask);
2514 	pg_data_t *pgdat;
2515 
2516 	/*
2517 	 * Kernel threads should not be throttled as they may be indirectly
2518 	 * responsible for cleaning pages necessary for reclaim to make forward
2519 	 * progress. kjournald for example may enter direct reclaim while
2520 	 * committing a transaction where throttling it could forcing other
2521 	 * processes to block on log_wait_commit().
2522 	 */
2523 	if (current->flags & PF_KTHREAD)
2524 		goto out;
2525 
2526 	/*
2527 	 * If a fatal signal is pending, this process should not throttle.
2528 	 * It should return quickly so it can exit and free its memory
2529 	 */
2530 	if (fatal_signal_pending(current))
2531 		goto out;
2532 
2533 	/* Check if the pfmemalloc reserves are ok */
2534 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2535 	pgdat = zone->zone_pgdat;
2536 	if (pfmemalloc_watermark_ok(pgdat))
2537 		goto out;
2538 
2539 	/* Account for the throttling */
2540 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2541 
2542 	/*
2543 	 * If the caller cannot enter the filesystem, it's possible that it
2544 	 * is due to the caller holding an FS lock or performing a journal
2545 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2546 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2547 	 * blocked waiting on the same lock. Instead, throttle for up to a
2548 	 * second before continuing.
2549 	 */
2550 	if (!(gfp_mask & __GFP_FS)) {
2551 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2552 			pfmemalloc_watermark_ok(pgdat), HZ);
2553 
2554 		goto check_pending;
2555 	}
2556 
2557 	/* Throttle until kswapd wakes the process */
2558 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2559 		pfmemalloc_watermark_ok(pgdat));
2560 
2561 check_pending:
2562 	if (fatal_signal_pending(current))
2563 		return true;
2564 
2565 out:
2566 	return false;
2567 }
2568 
2569 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2570 				gfp_t gfp_mask, nodemask_t *nodemask)
2571 {
2572 	unsigned long nr_reclaimed;
2573 	struct scan_control sc = {
2574 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2575 		.may_writepage = !laptop_mode,
2576 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2577 		.may_unmap = 1,
2578 		.may_swap = 1,
2579 		.order = order,
2580 		.priority = DEF_PRIORITY,
2581 		.target_mem_cgroup = NULL,
2582 		.nodemask = nodemask,
2583 	};
2584 	struct shrink_control shrink = {
2585 		.gfp_mask = sc.gfp_mask,
2586 	};
2587 
2588 	/*
2589 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2590 	 * 1 is returned so that the page allocator does not OOM kill at this
2591 	 * point.
2592 	 */
2593 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2594 		return 1;
2595 
2596 	trace_mm_vmscan_direct_reclaim_begin(order,
2597 				sc.may_writepage,
2598 				gfp_mask);
2599 
2600 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2601 
2602 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2603 
2604 	return nr_reclaimed;
2605 }
2606 
2607 #ifdef CONFIG_MEMCG
2608 
2609 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2610 						gfp_t gfp_mask, bool noswap,
2611 						struct zone *zone,
2612 						unsigned long *nr_scanned)
2613 {
2614 	struct scan_control sc = {
2615 		.nr_scanned = 0,
2616 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2617 		.may_writepage = !laptop_mode,
2618 		.may_unmap = 1,
2619 		.may_swap = !noswap,
2620 		.order = 0,
2621 		.priority = 0,
2622 		.target_mem_cgroup = memcg,
2623 	};
2624 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2625 
2626 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2627 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2628 
2629 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2630 						      sc.may_writepage,
2631 						      sc.gfp_mask);
2632 
2633 	/*
2634 	 * NOTE: Although we can get the priority field, using it
2635 	 * here is not a good idea, since it limits the pages we can scan.
2636 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2637 	 * will pick up pages from other mem cgroup's as well. We hack
2638 	 * the priority and make it zero.
2639 	 */
2640 	shrink_lruvec(lruvec, &sc);
2641 
2642 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2643 
2644 	*nr_scanned = sc.nr_scanned;
2645 	return sc.nr_reclaimed;
2646 }
2647 
2648 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2649 					   gfp_t gfp_mask,
2650 					   bool noswap)
2651 {
2652 	struct zonelist *zonelist;
2653 	unsigned long nr_reclaimed;
2654 	int nid;
2655 	struct scan_control sc = {
2656 		.may_writepage = !laptop_mode,
2657 		.may_unmap = 1,
2658 		.may_swap = !noswap,
2659 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2660 		.order = 0,
2661 		.priority = DEF_PRIORITY,
2662 		.target_mem_cgroup = memcg,
2663 		.nodemask = NULL, /* we don't care the placement */
2664 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2665 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2666 	};
2667 	struct shrink_control shrink = {
2668 		.gfp_mask = sc.gfp_mask,
2669 	};
2670 
2671 	/*
2672 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2673 	 * take care of from where we get pages. So the node where we start the
2674 	 * scan does not need to be the current node.
2675 	 */
2676 	nid = mem_cgroup_select_victim_node(memcg);
2677 
2678 	zonelist = NODE_DATA(nid)->node_zonelists;
2679 
2680 	trace_mm_vmscan_memcg_reclaim_begin(0,
2681 					    sc.may_writepage,
2682 					    sc.gfp_mask);
2683 
2684 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2685 
2686 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2687 
2688 	return nr_reclaimed;
2689 }
2690 #endif
2691 
2692 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2693 {
2694 	struct mem_cgroup *memcg;
2695 
2696 	if (!total_swap_pages)
2697 		return;
2698 
2699 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2700 	do {
2701 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2702 
2703 		if (inactive_anon_is_low(lruvec))
2704 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2705 					   sc, LRU_ACTIVE_ANON);
2706 
2707 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2708 	} while (memcg);
2709 }
2710 
2711 static bool zone_balanced(struct zone *zone, int order,
2712 			  unsigned long balance_gap, int classzone_idx)
2713 {
2714 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2715 				    balance_gap, classzone_idx, 0))
2716 		return false;
2717 
2718 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2719 	    !compaction_suitable(zone, order))
2720 		return false;
2721 
2722 	return true;
2723 }
2724 
2725 /*
2726  * pgdat_balanced() is used when checking if a node is balanced.
2727  *
2728  * For order-0, all zones must be balanced!
2729  *
2730  * For high-order allocations only zones that meet watermarks and are in a
2731  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2732  * total of balanced pages must be at least 25% of the zones allowed by
2733  * classzone_idx for the node to be considered balanced. Forcing all zones to
2734  * be balanced for high orders can cause excessive reclaim when there are
2735  * imbalanced zones.
2736  * The choice of 25% is due to
2737  *   o a 16M DMA zone that is balanced will not balance a zone on any
2738  *     reasonable sized machine
2739  *   o On all other machines, the top zone must be at least a reasonable
2740  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2741  *     would need to be at least 256M for it to be balance a whole node.
2742  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2743  *     to balance a node on its own. These seemed like reasonable ratios.
2744  */
2745 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2746 {
2747 	unsigned long managed_pages = 0;
2748 	unsigned long balanced_pages = 0;
2749 	int i;
2750 
2751 	/* Check the watermark levels */
2752 	for (i = 0; i <= classzone_idx; i++) {
2753 		struct zone *zone = pgdat->node_zones + i;
2754 
2755 		if (!populated_zone(zone))
2756 			continue;
2757 
2758 		managed_pages += zone->managed_pages;
2759 
2760 		/*
2761 		 * A special case here:
2762 		 *
2763 		 * balance_pgdat() skips over all_unreclaimable after
2764 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2765 		 * they must be considered balanced here as well!
2766 		 */
2767 		if (!zone_reclaimable(zone)) {
2768 			balanced_pages += zone->managed_pages;
2769 			continue;
2770 		}
2771 
2772 		if (zone_balanced(zone, order, 0, i))
2773 			balanced_pages += zone->managed_pages;
2774 		else if (!order)
2775 			return false;
2776 	}
2777 
2778 	if (order)
2779 		return balanced_pages >= (managed_pages >> 2);
2780 	else
2781 		return true;
2782 }
2783 
2784 /*
2785  * Prepare kswapd for sleeping. This verifies that there are no processes
2786  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2787  *
2788  * Returns true if kswapd is ready to sleep
2789  */
2790 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2791 					int classzone_idx)
2792 {
2793 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2794 	if (remaining)
2795 		return false;
2796 
2797 	/*
2798 	 * There is a potential race between when kswapd checks its watermarks
2799 	 * and a process gets throttled. There is also a potential race if
2800 	 * processes get throttled, kswapd wakes, a large process exits therby
2801 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2802 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2803 	 * so wake them now if necessary. If necessary, processes will wake
2804 	 * kswapd and get throttled again
2805 	 */
2806 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2807 		wake_up(&pgdat->pfmemalloc_wait);
2808 		return false;
2809 	}
2810 
2811 	return pgdat_balanced(pgdat, order, classzone_idx);
2812 }
2813 
2814 /*
2815  * kswapd shrinks the zone by the number of pages required to reach
2816  * the high watermark.
2817  *
2818  * Returns true if kswapd scanned at least the requested number of pages to
2819  * reclaim or if the lack of progress was due to pages under writeback.
2820  * This is used to determine if the scanning priority needs to be raised.
2821  */
2822 static bool kswapd_shrink_zone(struct zone *zone,
2823 			       int classzone_idx,
2824 			       struct scan_control *sc,
2825 			       unsigned long lru_pages,
2826 			       unsigned long *nr_attempted)
2827 {
2828 	int testorder = sc->order;
2829 	unsigned long balance_gap;
2830 	struct reclaim_state *reclaim_state = current->reclaim_state;
2831 	struct shrink_control shrink = {
2832 		.gfp_mask = sc->gfp_mask,
2833 	};
2834 	bool lowmem_pressure;
2835 
2836 	/* Reclaim above the high watermark. */
2837 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2838 
2839 	/*
2840 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2841 	 * too hard to reclaim until contiguous free pages have become
2842 	 * available can hurt performance by evicting too much useful data
2843 	 * from memory. Do not reclaim more than needed for compaction.
2844 	 */
2845 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2846 			compaction_suitable(zone, sc->order) !=
2847 				COMPACT_SKIPPED)
2848 		testorder = 0;
2849 
2850 	/*
2851 	 * We put equal pressure on every zone, unless one zone has way too
2852 	 * many pages free already. The "too many pages" is defined as the
2853 	 * high wmark plus a "gap" where the gap is either the low
2854 	 * watermark or 1% of the zone, whichever is smaller.
2855 	 */
2856 	balance_gap = min(low_wmark_pages(zone),
2857 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2858 		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2859 
2860 	/*
2861 	 * If there is no low memory pressure or the zone is balanced then no
2862 	 * reclaim is necessary
2863 	 */
2864 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2865 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2866 						balance_gap, classzone_idx))
2867 		return true;
2868 
2869 	shrink_zone(zone, sc);
2870 	nodes_clear(shrink.nodes_to_scan);
2871 	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2872 
2873 	reclaim_state->reclaimed_slab = 0;
2874 	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2875 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2876 
2877 	/* Account for the number of pages attempted to reclaim */
2878 	*nr_attempted += sc->nr_to_reclaim;
2879 
2880 	zone_clear_flag(zone, ZONE_WRITEBACK);
2881 
2882 	/*
2883 	 * If a zone reaches its high watermark, consider it to be no longer
2884 	 * congested. It's possible there are dirty pages backed by congested
2885 	 * BDIs but as pressure is relieved, speculatively avoid congestion
2886 	 * waits.
2887 	 */
2888 	if (zone_reclaimable(zone) &&
2889 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2890 		zone_clear_flag(zone, ZONE_CONGESTED);
2891 		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2892 	}
2893 
2894 	return sc->nr_scanned >= sc->nr_to_reclaim;
2895 }
2896 
2897 /*
2898  * For kswapd, balance_pgdat() will work across all this node's zones until
2899  * they are all at high_wmark_pages(zone).
2900  *
2901  * Returns the final order kswapd was reclaiming at
2902  *
2903  * There is special handling here for zones which are full of pinned pages.
2904  * This can happen if the pages are all mlocked, or if they are all used by
2905  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2906  * What we do is to detect the case where all pages in the zone have been
2907  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2908  * dead and from now on, only perform a short scan.  Basically we're polling
2909  * the zone for when the problem goes away.
2910  *
2911  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2912  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2913  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2914  * lower zones regardless of the number of free pages in the lower zones. This
2915  * interoperates with the page allocator fallback scheme to ensure that aging
2916  * of pages is balanced across the zones.
2917  */
2918 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2919 							int *classzone_idx)
2920 {
2921 	int i;
2922 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2923 	unsigned long nr_soft_reclaimed;
2924 	unsigned long nr_soft_scanned;
2925 	struct scan_control sc = {
2926 		.gfp_mask = GFP_KERNEL,
2927 		.priority = DEF_PRIORITY,
2928 		.may_unmap = 1,
2929 		.may_swap = 1,
2930 		.may_writepage = !laptop_mode,
2931 		.order = order,
2932 		.target_mem_cgroup = NULL,
2933 	};
2934 	count_vm_event(PAGEOUTRUN);
2935 
2936 	do {
2937 		unsigned long lru_pages = 0;
2938 		unsigned long nr_attempted = 0;
2939 		bool raise_priority = true;
2940 		bool pgdat_needs_compaction = (order > 0);
2941 
2942 		sc.nr_reclaimed = 0;
2943 
2944 		/*
2945 		 * Scan in the highmem->dma direction for the highest
2946 		 * zone which needs scanning
2947 		 */
2948 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2949 			struct zone *zone = pgdat->node_zones + i;
2950 
2951 			if (!populated_zone(zone))
2952 				continue;
2953 
2954 			if (sc.priority != DEF_PRIORITY &&
2955 			    !zone_reclaimable(zone))
2956 				continue;
2957 
2958 			/*
2959 			 * Do some background aging of the anon list, to give
2960 			 * pages a chance to be referenced before reclaiming.
2961 			 */
2962 			age_active_anon(zone, &sc);
2963 
2964 			/*
2965 			 * If the number of buffer_heads in the machine
2966 			 * exceeds the maximum allowed level and this node
2967 			 * has a highmem zone, force kswapd to reclaim from
2968 			 * it to relieve lowmem pressure.
2969 			 */
2970 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2971 				end_zone = i;
2972 				break;
2973 			}
2974 
2975 			if (!zone_balanced(zone, order, 0, 0)) {
2976 				end_zone = i;
2977 				break;
2978 			} else {
2979 				/*
2980 				 * If balanced, clear the dirty and congested
2981 				 * flags
2982 				 */
2983 				zone_clear_flag(zone, ZONE_CONGESTED);
2984 				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2985 			}
2986 		}
2987 
2988 		if (i < 0)
2989 			goto out;
2990 
2991 		for (i = 0; i <= end_zone; i++) {
2992 			struct zone *zone = pgdat->node_zones + i;
2993 
2994 			if (!populated_zone(zone))
2995 				continue;
2996 
2997 			lru_pages += zone_reclaimable_pages(zone);
2998 
2999 			/*
3000 			 * If any zone is currently balanced then kswapd will
3001 			 * not call compaction as it is expected that the
3002 			 * necessary pages are already available.
3003 			 */
3004 			if (pgdat_needs_compaction &&
3005 					zone_watermark_ok(zone, order,
3006 						low_wmark_pages(zone),
3007 						*classzone_idx, 0))
3008 				pgdat_needs_compaction = false;
3009 		}
3010 
3011 		/*
3012 		 * If we're getting trouble reclaiming, start doing writepage
3013 		 * even in laptop mode.
3014 		 */
3015 		if (sc.priority < DEF_PRIORITY - 2)
3016 			sc.may_writepage = 1;
3017 
3018 		/*
3019 		 * Now scan the zone in the dma->highmem direction, stopping
3020 		 * at the last zone which needs scanning.
3021 		 *
3022 		 * We do this because the page allocator works in the opposite
3023 		 * direction.  This prevents the page allocator from allocating
3024 		 * pages behind kswapd's direction of progress, which would
3025 		 * cause too much scanning of the lower zones.
3026 		 */
3027 		for (i = 0; i <= end_zone; i++) {
3028 			struct zone *zone = pgdat->node_zones + i;
3029 
3030 			if (!populated_zone(zone))
3031 				continue;
3032 
3033 			if (sc.priority != DEF_PRIORITY &&
3034 			    !zone_reclaimable(zone))
3035 				continue;
3036 
3037 			sc.nr_scanned = 0;
3038 
3039 			nr_soft_scanned = 0;
3040 			/*
3041 			 * Call soft limit reclaim before calling shrink_zone.
3042 			 */
3043 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3044 							order, sc.gfp_mask,
3045 							&nr_soft_scanned);
3046 			sc.nr_reclaimed += nr_soft_reclaimed;
3047 
3048 			/*
3049 			 * There should be no need to raise the scanning
3050 			 * priority if enough pages are already being scanned
3051 			 * that that high watermark would be met at 100%
3052 			 * efficiency.
3053 			 */
3054 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3055 					lru_pages, &nr_attempted))
3056 				raise_priority = false;
3057 		}
3058 
3059 		/*
3060 		 * If the low watermark is met there is no need for processes
3061 		 * to be throttled on pfmemalloc_wait as they should not be
3062 		 * able to safely make forward progress. Wake them
3063 		 */
3064 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3065 				pfmemalloc_watermark_ok(pgdat))
3066 			wake_up(&pgdat->pfmemalloc_wait);
3067 
3068 		/*
3069 		 * Fragmentation may mean that the system cannot be rebalanced
3070 		 * for high-order allocations in all zones. If twice the
3071 		 * allocation size has been reclaimed and the zones are still
3072 		 * not balanced then recheck the watermarks at order-0 to
3073 		 * prevent kswapd reclaiming excessively. Assume that a
3074 		 * process requested a high-order can direct reclaim/compact.
3075 		 */
3076 		if (order && sc.nr_reclaimed >= 2UL << order)
3077 			order = sc.order = 0;
3078 
3079 		/* Check if kswapd should be suspending */
3080 		if (try_to_freeze() || kthread_should_stop())
3081 			break;
3082 
3083 		/*
3084 		 * Compact if necessary and kswapd is reclaiming at least the
3085 		 * high watermark number of pages as requsted
3086 		 */
3087 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3088 			compact_pgdat(pgdat, order);
3089 
3090 		/*
3091 		 * Raise priority if scanning rate is too low or there was no
3092 		 * progress in reclaiming pages
3093 		 */
3094 		if (raise_priority || !sc.nr_reclaimed)
3095 			sc.priority--;
3096 	} while (sc.priority >= 1 &&
3097 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3098 
3099 out:
3100 	/*
3101 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3102 	 * makes a decision on the order we were last reclaiming at. However,
3103 	 * if another caller entered the allocator slow path while kswapd
3104 	 * was awake, order will remain at the higher level
3105 	 */
3106 	*classzone_idx = end_zone;
3107 	return order;
3108 }
3109 
3110 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3111 {
3112 	long remaining = 0;
3113 	DEFINE_WAIT(wait);
3114 
3115 	if (freezing(current) || kthread_should_stop())
3116 		return;
3117 
3118 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3119 
3120 	/* Try to sleep for a short interval */
3121 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3122 		remaining = schedule_timeout(HZ/10);
3123 		finish_wait(&pgdat->kswapd_wait, &wait);
3124 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3125 	}
3126 
3127 	/*
3128 	 * After a short sleep, check if it was a premature sleep. If not, then
3129 	 * go fully to sleep until explicitly woken up.
3130 	 */
3131 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3132 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3133 
3134 		/*
3135 		 * vmstat counters are not perfectly accurate and the estimated
3136 		 * value for counters such as NR_FREE_PAGES can deviate from the
3137 		 * true value by nr_online_cpus * threshold. To avoid the zone
3138 		 * watermarks being breached while under pressure, we reduce the
3139 		 * per-cpu vmstat threshold while kswapd is awake and restore
3140 		 * them before going back to sleep.
3141 		 */
3142 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3143 
3144 		/*
3145 		 * Compaction records what page blocks it recently failed to
3146 		 * isolate pages from and skips them in the future scanning.
3147 		 * When kswapd is going to sleep, it is reasonable to assume
3148 		 * that pages and compaction may succeed so reset the cache.
3149 		 */
3150 		reset_isolation_suitable(pgdat);
3151 
3152 		if (!kthread_should_stop())
3153 			schedule();
3154 
3155 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3156 	} else {
3157 		if (remaining)
3158 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3159 		else
3160 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3161 	}
3162 	finish_wait(&pgdat->kswapd_wait, &wait);
3163 }
3164 
3165 /*
3166  * The background pageout daemon, started as a kernel thread
3167  * from the init process.
3168  *
3169  * This basically trickles out pages so that we have _some_
3170  * free memory available even if there is no other activity
3171  * that frees anything up. This is needed for things like routing
3172  * etc, where we otherwise might have all activity going on in
3173  * asynchronous contexts that cannot page things out.
3174  *
3175  * If there are applications that are active memory-allocators
3176  * (most normal use), this basically shouldn't matter.
3177  */
3178 static int kswapd(void *p)
3179 {
3180 	unsigned long order, new_order;
3181 	unsigned balanced_order;
3182 	int classzone_idx, new_classzone_idx;
3183 	int balanced_classzone_idx;
3184 	pg_data_t *pgdat = (pg_data_t*)p;
3185 	struct task_struct *tsk = current;
3186 
3187 	struct reclaim_state reclaim_state = {
3188 		.reclaimed_slab = 0,
3189 	};
3190 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3191 
3192 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3193 
3194 	if (!cpumask_empty(cpumask))
3195 		set_cpus_allowed_ptr(tsk, cpumask);
3196 	current->reclaim_state = &reclaim_state;
3197 
3198 	/*
3199 	 * Tell the memory management that we're a "memory allocator",
3200 	 * and that if we need more memory we should get access to it
3201 	 * regardless (see "__alloc_pages()"). "kswapd" should
3202 	 * never get caught in the normal page freeing logic.
3203 	 *
3204 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3205 	 * you need a small amount of memory in order to be able to
3206 	 * page out something else, and this flag essentially protects
3207 	 * us from recursively trying to free more memory as we're
3208 	 * trying to free the first piece of memory in the first place).
3209 	 */
3210 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3211 	set_freezable();
3212 
3213 	order = new_order = 0;
3214 	balanced_order = 0;
3215 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3216 	balanced_classzone_idx = classzone_idx;
3217 	for ( ; ; ) {
3218 		bool ret;
3219 
3220 		/*
3221 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3222 		 * new request of a similar or harder type will succeed soon
3223 		 * so consider going to sleep on the basis we reclaimed at
3224 		 */
3225 		if (balanced_classzone_idx >= new_classzone_idx &&
3226 					balanced_order == new_order) {
3227 			new_order = pgdat->kswapd_max_order;
3228 			new_classzone_idx = pgdat->classzone_idx;
3229 			pgdat->kswapd_max_order =  0;
3230 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3231 		}
3232 
3233 		if (order < new_order || classzone_idx > new_classzone_idx) {
3234 			/*
3235 			 * Don't sleep if someone wants a larger 'order'
3236 			 * allocation or has tigher zone constraints
3237 			 */
3238 			order = new_order;
3239 			classzone_idx = new_classzone_idx;
3240 		} else {
3241 			kswapd_try_to_sleep(pgdat, balanced_order,
3242 						balanced_classzone_idx);
3243 			order = pgdat->kswapd_max_order;
3244 			classzone_idx = pgdat->classzone_idx;
3245 			new_order = order;
3246 			new_classzone_idx = classzone_idx;
3247 			pgdat->kswapd_max_order = 0;
3248 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3249 		}
3250 
3251 		ret = try_to_freeze();
3252 		if (kthread_should_stop())
3253 			break;
3254 
3255 		/*
3256 		 * We can speed up thawing tasks if we don't call balance_pgdat
3257 		 * after returning from the refrigerator
3258 		 */
3259 		if (!ret) {
3260 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3261 			balanced_classzone_idx = classzone_idx;
3262 			balanced_order = balance_pgdat(pgdat, order,
3263 						&balanced_classzone_idx);
3264 		}
3265 	}
3266 
3267 	current->reclaim_state = NULL;
3268 	return 0;
3269 }
3270 
3271 /*
3272  * A zone is low on free memory, so wake its kswapd task to service it.
3273  */
3274 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3275 {
3276 	pg_data_t *pgdat;
3277 
3278 	if (!populated_zone(zone))
3279 		return;
3280 
3281 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3282 		return;
3283 	pgdat = zone->zone_pgdat;
3284 	if (pgdat->kswapd_max_order < order) {
3285 		pgdat->kswapd_max_order = order;
3286 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3287 	}
3288 	if (!waitqueue_active(&pgdat->kswapd_wait))
3289 		return;
3290 	if (zone_balanced(zone, order, 0, 0))
3291 		return;
3292 
3293 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3294 	wake_up_interruptible(&pgdat->kswapd_wait);
3295 }
3296 
3297 /*
3298  * The reclaimable count would be mostly accurate.
3299  * The less reclaimable pages may be
3300  * - mlocked pages, which will be moved to unevictable list when encountered
3301  * - mapped pages, which may require several travels to be reclaimed
3302  * - dirty pages, which is not "instantly" reclaimable
3303  */
3304 unsigned long global_reclaimable_pages(void)
3305 {
3306 	int nr;
3307 
3308 	nr = global_page_state(NR_ACTIVE_FILE) +
3309 	     global_page_state(NR_INACTIVE_FILE);
3310 
3311 	if (get_nr_swap_pages() > 0)
3312 		nr += global_page_state(NR_ACTIVE_ANON) +
3313 		      global_page_state(NR_INACTIVE_ANON);
3314 
3315 	return nr;
3316 }
3317 
3318 #ifdef CONFIG_HIBERNATION
3319 /*
3320  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3321  * freed pages.
3322  *
3323  * Rather than trying to age LRUs the aim is to preserve the overall
3324  * LRU order by reclaiming preferentially
3325  * inactive > active > active referenced > active mapped
3326  */
3327 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3328 {
3329 	struct reclaim_state reclaim_state;
3330 	struct scan_control sc = {
3331 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3332 		.may_swap = 1,
3333 		.may_unmap = 1,
3334 		.may_writepage = 1,
3335 		.nr_to_reclaim = nr_to_reclaim,
3336 		.hibernation_mode = 1,
3337 		.order = 0,
3338 		.priority = DEF_PRIORITY,
3339 	};
3340 	struct shrink_control shrink = {
3341 		.gfp_mask = sc.gfp_mask,
3342 	};
3343 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3344 	struct task_struct *p = current;
3345 	unsigned long nr_reclaimed;
3346 
3347 	p->flags |= PF_MEMALLOC;
3348 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3349 	reclaim_state.reclaimed_slab = 0;
3350 	p->reclaim_state = &reclaim_state;
3351 
3352 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3353 
3354 	p->reclaim_state = NULL;
3355 	lockdep_clear_current_reclaim_state();
3356 	p->flags &= ~PF_MEMALLOC;
3357 
3358 	return nr_reclaimed;
3359 }
3360 #endif /* CONFIG_HIBERNATION */
3361 
3362 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3363    not required for correctness.  So if the last cpu in a node goes
3364    away, we get changed to run anywhere: as the first one comes back,
3365    restore their cpu bindings. */
3366 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3367 			void *hcpu)
3368 {
3369 	int nid;
3370 
3371 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3372 		for_each_node_state(nid, N_MEMORY) {
3373 			pg_data_t *pgdat = NODE_DATA(nid);
3374 			const struct cpumask *mask;
3375 
3376 			mask = cpumask_of_node(pgdat->node_id);
3377 
3378 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3379 				/* One of our CPUs online: restore mask */
3380 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3381 		}
3382 	}
3383 	return NOTIFY_OK;
3384 }
3385 
3386 /*
3387  * This kswapd start function will be called by init and node-hot-add.
3388  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3389  */
3390 int kswapd_run(int nid)
3391 {
3392 	pg_data_t *pgdat = NODE_DATA(nid);
3393 	int ret = 0;
3394 
3395 	if (pgdat->kswapd)
3396 		return 0;
3397 
3398 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3399 	if (IS_ERR(pgdat->kswapd)) {
3400 		/* failure at boot is fatal */
3401 		BUG_ON(system_state == SYSTEM_BOOTING);
3402 		pr_err("Failed to start kswapd on node %d\n", nid);
3403 		ret = PTR_ERR(pgdat->kswapd);
3404 		pgdat->kswapd = NULL;
3405 	}
3406 	return ret;
3407 }
3408 
3409 /*
3410  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3411  * hold lock_memory_hotplug().
3412  */
3413 void kswapd_stop(int nid)
3414 {
3415 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3416 
3417 	if (kswapd) {
3418 		kthread_stop(kswapd);
3419 		NODE_DATA(nid)->kswapd = NULL;
3420 	}
3421 }
3422 
3423 static int __init kswapd_init(void)
3424 {
3425 	int nid;
3426 
3427 	swap_setup();
3428 	for_each_node_state(nid, N_MEMORY)
3429  		kswapd_run(nid);
3430 	hotcpu_notifier(cpu_callback, 0);
3431 	return 0;
3432 }
3433 
3434 module_init(kswapd_init)
3435 
3436 #ifdef CONFIG_NUMA
3437 /*
3438  * Zone reclaim mode
3439  *
3440  * If non-zero call zone_reclaim when the number of free pages falls below
3441  * the watermarks.
3442  */
3443 int zone_reclaim_mode __read_mostly;
3444 
3445 #define RECLAIM_OFF 0
3446 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3447 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3448 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3449 
3450 /*
3451  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3452  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3453  * a zone.
3454  */
3455 #define ZONE_RECLAIM_PRIORITY 4
3456 
3457 /*
3458  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3459  * occur.
3460  */
3461 int sysctl_min_unmapped_ratio = 1;
3462 
3463 /*
3464  * If the number of slab pages in a zone grows beyond this percentage then
3465  * slab reclaim needs to occur.
3466  */
3467 int sysctl_min_slab_ratio = 5;
3468 
3469 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3470 {
3471 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3472 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3473 		zone_page_state(zone, NR_ACTIVE_FILE);
3474 
3475 	/*
3476 	 * It's possible for there to be more file mapped pages than
3477 	 * accounted for by the pages on the file LRU lists because
3478 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3479 	 */
3480 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3481 }
3482 
3483 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3484 static long zone_pagecache_reclaimable(struct zone *zone)
3485 {
3486 	long nr_pagecache_reclaimable;
3487 	long delta = 0;
3488 
3489 	/*
3490 	 * If RECLAIM_SWAP is set, then all file pages are considered
3491 	 * potentially reclaimable. Otherwise, we have to worry about
3492 	 * pages like swapcache and zone_unmapped_file_pages() provides
3493 	 * a better estimate
3494 	 */
3495 	if (zone_reclaim_mode & RECLAIM_SWAP)
3496 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3497 	else
3498 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3499 
3500 	/* If we can't clean pages, remove dirty pages from consideration */
3501 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3502 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3503 
3504 	/* Watch for any possible underflows due to delta */
3505 	if (unlikely(delta > nr_pagecache_reclaimable))
3506 		delta = nr_pagecache_reclaimable;
3507 
3508 	return nr_pagecache_reclaimable - delta;
3509 }
3510 
3511 /*
3512  * Try to free up some pages from this zone through reclaim.
3513  */
3514 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3515 {
3516 	/* Minimum pages needed in order to stay on node */
3517 	const unsigned long nr_pages = 1 << order;
3518 	struct task_struct *p = current;
3519 	struct reclaim_state reclaim_state;
3520 	struct scan_control sc = {
3521 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3522 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3523 		.may_swap = 1,
3524 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3525 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3526 		.order = order,
3527 		.priority = ZONE_RECLAIM_PRIORITY,
3528 	};
3529 	struct shrink_control shrink = {
3530 		.gfp_mask = sc.gfp_mask,
3531 	};
3532 	unsigned long nr_slab_pages0, nr_slab_pages1;
3533 
3534 	cond_resched();
3535 	/*
3536 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3537 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3538 	 * and RECLAIM_SWAP.
3539 	 */
3540 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3541 	lockdep_set_current_reclaim_state(gfp_mask);
3542 	reclaim_state.reclaimed_slab = 0;
3543 	p->reclaim_state = &reclaim_state;
3544 
3545 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3546 		/*
3547 		 * Free memory by calling shrink zone with increasing
3548 		 * priorities until we have enough memory freed.
3549 		 */
3550 		do {
3551 			shrink_zone(zone, &sc);
3552 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3553 	}
3554 
3555 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3556 	if (nr_slab_pages0 > zone->min_slab_pages) {
3557 		/*
3558 		 * shrink_slab() does not currently allow us to determine how
3559 		 * many pages were freed in this zone. So we take the current
3560 		 * number of slab pages and shake the slab until it is reduced
3561 		 * by the same nr_pages that we used for reclaiming unmapped
3562 		 * pages.
3563 		 */
3564 		nodes_clear(shrink.nodes_to_scan);
3565 		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3566 		for (;;) {
3567 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3568 
3569 			/* No reclaimable slab or very low memory pressure */
3570 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3571 				break;
3572 
3573 			/* Freed enough memory */
3574 			nr_slab_pages1 = zone_page_state(zone,
3575 							NR_SLAB_RECLAIMABLE);
3576 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3577 				break;
3578 		}
3579 
3580 		/*
3581 		 * Update nr_reclaimed by the number of slab pages we
3582 		 * reclaimed from this zone.
3583 		 */
3584 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3585 		if (nr_slab_pages1 < nr_slab_pages0)
3586 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3587 	}
3588 
3589 	p->reclaim_state = NULL;
3590 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3591 	lockdep_clear_current_reclaim_state();
3592 	return sc.nr_reclaimed >= nr_pages;
3593 }
3594 
3595 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3596 {
3597 	int node_id;
3598 	int ret;
3599 
3600 	/*
3601 	 * Zone reclaim reclaims unmapped file backed pages and
3602 	 * slab pages if we are over the defined limits.
3603 	 *
3604 	 * A small portion of unmapped file backed pages is needed for
3605 	 * file I/O otherwise pages read by file I/O will be immediately
3606 	 * thrown out if the zone is overallocated. So we do not reclaim
3607 	 * if less than a specified percentage of the zone is used by
3608 	 * unmapped file backed pages.
3609 	 */
3610 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3611 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3612 		return ZONE_RECLAIM_FULL;
3613 
3614 	if (!zone_reclaimable(zone))
3615 		return ZONE_RECLAIM_FULL;
3616 
3617 	/*
3618 	 * Do not scan if the allocation should not be delayed.
3619 	 */
3620 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3621 		return ZONE_RECLAIM_NOSCAN;
3622 
3623 	/*
3624 	 * Only run zone reclaim on the local zone or on zones that do not
3625 	 * have associated processors. This will favor the local processor
3626 	 * over remote processors and spread off node memory allocations
3627 	 * as wide as possible.
3628 	 */
3629 	node_id = zone_to_nid(zone);
3630 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3631 		return ZONE_RECLAIM_NOSCAN;
3632 
3633 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3634 		return ZONE_RECLAIM_NOSCAN;
3635 
3636 	ret = __zone_reclaim(zone, gfp_mask, order);
3637 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3638 
3639 	if (!ret)
3640 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3641 
3642 	return ret;
3643 }
3644 #endif
3645 
3646 /*
3647  * page_evictable - test whether a page is evictable
3648  * @page: the page to test
3649  *
3650  * Test whether page is evictable--i.e., should be placed on active/inactive
3651  * lists vs unevictable list.
3652  *
3653  * Reasons page might not be evictable:
3654  * (1) page's mapping marked unevictable
3655  * (2) page is part of an mlocked VMA
3656  *
3657  */
3658 int page_evictable(struct page *page)
3659 {
3660 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3661 }
3662 
3663 #ifdef CONFIG_SHMEM
3664 /**
3665  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3666  * @pages:	array of pages to check
3667  * @nr_pages:	number of pages to check
3668  *
3669  * Checks pages for evictability and moves them to the appropriate lru list.
3670  *
3671  * This function is only used for SysV IPC SHM_UNLOCK.
3672  */
3673 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3674 {
3675 	struct lruvec *lruvec;
3676 	struct zone *zone = NULL;
3677 	int pgscanned = 0;
3678 	int pgrescued = 0;
3679 	int i;
3680 
3681 	for (i = 0; i < nr_pages; i++) {
3682 		struct page *page = pages[i];
3683 		struct zone *pagezone;
3684 
3685 		pgscanned++;
3686 		pagezone = page_zone(page);
3687 		if (pagezone != zone) {
3688 			if (zone)
3689 				spin_unlock_irq(&zone->lru_lock);
3690 			zone = pagezone;
3691 			spin_lock_irq(&zone->lru_lock);
3692 		}
3693 		lruvec = mem_cgroup_page_lruvec(page, zone);
3694 
3695 		if (!PageLRU(page) || !PageUnevictable(page))
3696 			continue;
3697 
3698 		if (page_evictable(page)) {
3699 			enum lru_list lru = page_lru_base_type(page);
3700 
3701 			VM_BUG_ON(PageActive(page));
3702 			ClearPageUnevictable(page);
3703 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3704 			add_page_to_lru_list(page, lruvec, lru);
3705 			pgrescued++;
3706 		}
3707 	}
3708 
3709 	if (zone) {
3710 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3711 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3712 		spin_unlock_irq(&zone->lru_lock);
3713 	}
3714 }
3715 #endif /* CONFIG_SHMEM */
3716 
3717 static void warn_scan_unevictable_pages(void)
3718 {
3719 	printk_once(KERN_WARNING
3720 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3721 		    "disabled for lack of a legitimate use case.  If you have "
3722 		    "one, please send an email to linux-mm@kvack.org.\n",
3723 		    current->comm);
3724 }
3725 
3726 /*
3727  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3728  * all nodes' unevictable lists for evictable pages
3729  */
3730 unsigned long scan_unevictable_pages;
3731 
3732 int scan_unevictable_handler(struct ctl_table *table, int write,
3733 			   void __user *buffer,
3734 			   size_t *length, loff_t *ppos)
3735 {
3736 	warn_scan_unevictable_pages();
3737 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3738 	scan_unevictable_pages = 0;
3739 	return 0;
3740 }
3741 
3742 #ifdef CONFIG_NUMA
3743 /*
3744  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3745  * a specified node's per zone unevictable lists for evictable pages.
3746  */
3747 
3748 static ssize_t read_scan_unevictable_node(struct device *dev,
3749 					  struct device_attribute *attr,
3750 					  char *buf)
3751 {
3752 	warn_scan_unevictable_pages();
3753 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3754 }
3755 
3756 static ssize_t write_scan_unevictable_node(struct device *dev,
3757 					   struct device_attribute *attr,
3758 					const char *buf, size_t count)
3759 {
3760 	warn_scan_unevictable_pages();
3761 	return 1;
3762 }
3763 
3764 
3765 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3766 			read_scan_unevictable_node,
3767 			write_scan_unevictable_node);
3768 
3769 int scan_unevictable_register_node(struct node *node)
3770 {
3771 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3772 }
3773 
3774 void scan_unevictable_unregister_node(struct node *node)
3775 {
3776 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3777 }
3778 #endif
3779