xref: /openbmc/linux/mm/vmscan.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/*
83 	 * Scan pressure balancing between anon and file LRUs
84 	 */
85 	unsigned long	anon_cost;
86 	unsigned long	file_cost;
87 
88 	/* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 	unsigned int may_deactivate:2;
92 	unsigned int force_deactivate:1;
93 	unsigned int skipped_deactivate:1;
94 
95 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
96 	unsigned int may_writepage:1;
97 
98 	/* Can mapped pages be reclaimed? */
99 	unsigned int may_unmap:1;
100 
101 	/* Can pages be swapped as part of reclaim? */
102 	unsigned int may_swap:1;
103 
104 	/*
105 	 * Cgroups are not reclaimed below their configured memory.low,
106 	 * unless we threaten to OOM. If any cgroups are skipped due to
107 	 * memory.low and nothing was reclaimed, go back for memory.low.
108 	 */
109 	unsigned int memcg_low_reclaim:1;
110 	unsigned int memcg_low_skipped:1;
111 
112 	unsigned int hibernation_mode:1;
113 
114 	/* One of the zones is ready for compaction */
115 	unsigned int compaction_ready:1;
116 
117 	/* There is easily reclaimable cold cache in the current node */
118 	unsigned int cache_trim_mode:1;
119 
120 	/* The file pages on the current node are dangerously low */
121 	unsigned int file_is_tiny:1;
122 
123 	/* Allocation order */
124 	s8 order;
125 
126 	/* Scan (total_size >> priority) pages at once */
127 	s8 priority;
128 
129 	/* The highest zone to isolate pages for reclaim from */
130 	s8 reclaim_idx;
131 
132 	/* This context's GFP mask */
133 	gfp_t gfp_mask;
134 
135 	/* Incremented by the number of inactive pages that were scanned */
136 	unsigned long nr_scanned;
137 
138 	/* Number of pages freed so far during a call to shrink_zones() */
139 	unsigned long nr_reclaimed;
140 
141 	struct {
142 		unsigned int dirty;
143 		unsigned int unqueued_dirty;
144 		unsigned int congested;
145 		unsigned int writeback;
146 		unsigned int immediate;
147 		unsigned int file_taken;
148 		unsigned int taken;
149 	} nr;
150 
151 	/* for recording the reclaimed slab by now */
152 	struct reclaim_state reclaim_state;
153 };
154 
155 #ifdef ARCH_HAS_PREFETCHW
156 #define prefetchw_prev_lru_page(_page, _base, _field)			\
157 	do {								\
158 		if ((_page)->lru.prev != _base) {			\
159 			struct page *prev;				\
160 									\
161 			prev = lru_to_page(&(_page->lru));		\
162 			prefetchw(&prev->_field);			\
163 		}							\
164 	} while (0)
165 #else
166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
167 #endif
168 
169 /*
170  * From 0 .. 200.  Higher means more swappy.
171  */
172 int vm_swappiness = 60;
173 
174 static void set_task_reclaim_state(struct task_struct *task,
175 				   struct reclaim_state *rs)
176 {
177 	/* Check for an overwrite */
178 	WARN_ON_ONCE(rs && task->reclaim_state);
179 
180 	/* Check for the nulling of an already-nulled member */
181 	WARN_ON_ONCE(!rs && !task->reclaim_state);
182 
183 	task->reclaim_state = rs;
184 }
185 
186 static LIST_HEAD(shrinker_list);
187 static DECLARE_RWSEM(shrinker_rwsem);
188 
189 #ifdef CONFIG_MEMCG
190 /*
191  * We allow subsystems to populate their shrinker-related
192  * LRU lists before register_shrinker_prepared() is called
193  * for the shrinker, since we don't want to impose
194  * restrictions on their internal registration order.
195  * In this case shrink_slab_memcg() may find corresponding
196  * bit is set in the shrinkers map.
197  *
198  * This value is used by the function to detect registering
199  * shrinkers and to skip do_shrink_slab() calls for them.
200  */
201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202 
203 static DEFINE_IDR(shrinker_idr);
204 static int shrinker_nr_max;
205 
206 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207 {
208 	int id, ret = -ENOMEM;
209 
210 	down_write(&shrinker_rwsem);
211 	/* This may call shrinker, so it must use down_read_trylock() */
212 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 	if (id < 0)
214 		goto unlock;
215 
216 	if (id >= shrinker_nr_max) {
217 		if (memcg_expand_shrinker_maps(id)) {
218 			idr_remove(&shrinker_idr, id);
219 			goto unlock;
220 		}
221 
222 		shrinker_nr_max = id + 1;
223 	}
224 	shrinker->id = id;
225 	ret = 0;
226 unlock:
227 	up_write(&shrinker_rwsem);
228 	return ret;
229 }
230 
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	int id = shrinker->id;
234 
235 	BUG_ON(id < 0);
236 
237 	down_write(&shrinker_rwsem);
238 	idr_remove(&shrinker_idr, id);
239 	up_write(&shrinker_rwsem);
240 }
241 
242 static bool cgroup_reclaim(struct scan_control *sc)
243 {
244 	return sc->target_mem_cgroup;
245 }
246 
247 /**
248  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool writeback_throttling_sane(struct scan_control *sc)
261 {
262 	if (!cgroup_reclaim(sc))
263 		return true;
264 #ifdef CONFIG_CGROUP_WRITEBACK
265 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
266 		return true;
267 #endif
268 	return false;
269 }
270 #else
271 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
272 {
273 	return 0;
274 }
275 
276 static void unregister_memcg_shrinker(struct shrinker *shrinker)
277 {
278 }
279 
280 static bool cgroup_reclaim(struct scan_control *sc)
281 {
282 	return false;
283 }
284 
285 static bool writeback_throttling_sane(struct scan_control *sc)
286 {
287 	return true;
288 }
289 #endif
290 
291 /*
292  * This misses isolated pages which are not accounted for to save counters.
293  * As the data only determines if reclaim or compaction continues, it is
294  * not expected that isolated pages will be a dominating factor.
295  */
296 unsigned long zone_reclaimable_pages(struct zone *zone)
297 {
298 	unsigned long nr;
299 
300 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
301 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
302 	if (get_nr_swap_pages() > 0)
303 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
304 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
305 
306 	return nr;
307 }
308 
309 /**
310  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
311  * @lruvec: lru vector
312  * @lru: lru to use
313  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
314  */
315 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
316 {
317 	unsigned long size = 0;
318 	int zid;
319 
320 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
321 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
322 
323 		if (!managed_zone(zone))
324 			continue;
325 
326 		if (!mem_cgroup_disabled())
327 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
328 		else
329 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
330 	}
331 	return size;
332 }
333 
334 /*
335  * Add a shrinker callback to be called from the vm.
336  */
337 int prealloc_shrinker(struct shrinker *shrinker)
338 {
339 	unsigned int size = sizeof(*shrinker->nr_deferred);
340 
341 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
342 		size *= nr_node_ids;
343 
344 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
345 	if (!shrinker->nr_deferred)
346 		return -ENOMEM;
347 
348 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
349 		if (prealloc_memcg_shrinker(shrinker))
350 			goto free_deferred;
351 	}
352 
353 	return 0;
354 
355 free_deferred:
356 	kfree(shrinker->nr_deferred);
357 	shrinker->nr_deferred = NULL;
358 	return -ENOMEM;
359 }
360 
361 void free_prealloced_shrinker(struct shrinker *shrinker)
362 {
363 	if (!shrinker->nr_deferred)
364 		return;
365 
366 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
367 		unregister_memcg_shrinker(shrinker);
368 
369 	kfree(shrinker->nr_deferred);
370 	shrinker->nr_deferred = NULL;
371 }
372 
373 void register_shrinker_prepared(struct shrinker *shrinker)
374 {
375 	down_write(&shrinker_rwsem);
376 	list_add_tail(&shrinker->list, &shrinker_list);
377 #ifdef CONFIG_MEMCG
378 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
379 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
380 #endif
381 	up_write(&shrinker_rwsem);
382 }
383 
384 int register_shrinker(struct shrinker *shrinker)
385 {
386 	int err = prealloc_shrinker(shrinker);
387 
388 	if (err)
389 		return err;
390 	register_shrinker_prepared(shrinker);
391 	return 0;
392 }
393 EXPORT_SYMBOL(register_shrinker);
394 
395 /*
396  * Remove one
397  */
398 void unregister_shrinker(struct shrinker *shrinker)
399 {
400 	if (!shrinker->nr_deferred)
401 		return;
402 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
403 		unregister_memcg_shrinker(shrinker);
404 	down_write(&shrinker_rwsem);
405 	list_del(&shrinker->list);
406 	up_write(&shrinker_rwsem);
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 }
410 EXPORT_SYMBOL(unregister_shrinker);
411 
412 #define SHRINK_BATCH 128
413 
414 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
415 				    struct shrinker *shrinker, int priority)
416 {
417 	unsigned long freed = 0;
418 	unsigned long long delta;
419 	long total_scan;
420 	long freeable;
421 	long nr;
422 	long new_nr;
423 	int nid = shrinkctl->nid;
424 	long batch_size = shrinker->batch ? shrinker->batch
425 					  : SHRINK_BATCH;
426 	long scanned = 0, next_deferred;
427 
428 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
429 		nid = 0;
430 
431 	freeable = shrinker->count_objects(shrinker, shrinkctl);
432 	if (freeable == 0 || freeable == SHRINK_EMPTY)
433 		return freeable;
434 
435 	/*
436 	 * copy the current shrinker scan count into a local variable
437 	 * and zero it so that other concurrent shrinker invocations
438 	 * don't also do this scanning work.
439 	 */
440 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
441 
442 	total_scan = nr;
443 	if (shrinker->seeks) {
444 		delta = freeable >> priority;
445 		delta *= 4;
446 		do_div(delta, shrinker->seeks);
447 	} else {
448 		/*
449 		 * These objects don't require any IO to create. Trim
450 		 * them aggressively under memory pressure to keep
451 		 * them from causing refetches in the IO caches.
452 		 */
453 		delta = freeable / 2;
454 	}
455 
456 	total_scan += delta;
457 	if (total_scan < 0) {
458 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
459 		       shrinker->scan_objects, total_scan);
460 		total_scan = freeable;
461 		next_deferred = nr;
462 	} else
463 		next_deferred = total_scan;
464 
465 	/*
466 	 * We need to avoid excessive windup on filesystem shrinkers
467 	 * due to large numbers of GFP_NOFS allocations causing the
468 	 * shrinkers to return -1 all the time. This results in a large
469 	 * nr being built up so when a shrink that can do some work
470 	 * comes along it empties the entire cache due to nr >>>
471 	 * freeable. This is bad for sustaining a working set in
472 	 * memory.
473 	 *
474 	 * Hence only allow the shrinker to scan the entire cache when
475 	 * a large delta change is calculated directly.
476 	 */
477 	if (delta < freeable / 4)
478 		total_scan = min(total_scan, freeable / 2);
479 
480 	/*
481 	 * Avoid risking looping forever due to too large nr value:
482 	 * never try to free more than twice the estimate number of
483 	 * freeable entries.
484 	 */
485 	if (total_scan > freeable * 2)
486 		total_scan = freeable * 2;
487 
488 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
489 				   freeable, delta, total_scan, priority);
490 
491 	/*
492 	 * Normally, we should not scan less than batch_size objects in one
493 	 * pass to avoid too frequent shrinker calls, but if the slab has less
494 	 * than batch_size objects in total and we are really tight on memory,
495 	 * we will try to reclaim all available objects, otherwise we can end
496 	 * up failing allocations although there are plenty of reclaimable
497 	 * objects spread over several slabs with usage less than the
498 	 * batch_size.
499 	 *
500 	 * We detect the "tight on memory" situations by looking at the total
501 	 * number of objects we want to scan (total_scan). If it is greater
502 	 * than the total number of objects on slab (freeable), we must be
503 	 * scanning at high prio and therefore should try to reclaim as much as
504 	 * possible.
505 	 */
506 	while (total_scan >= batch_size ||
507 	       total_scan >= freeable) {
508 		unsigned long ret;
509 		unsigned long nr_to_scan = min(batch_size, total_scan);
510 
511 		shrinkctl->nr_to_scan = nr_to_scan;
512 		shrinkctl->nr_scanned = nr_to_scan;
513 		ret = shrinker->scan_objects(shrinker, shrinkctl);
514 		if (ret == SHRINK_STOP)
515 			break;
516 		freed += ret;
517 
518 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
519 		total_scan -= shrinkctl->nr_scanned;
520 		scanned += shrinkctl->nr_scanned;
521 
522 		cond_resched();
523 	}
524 
525 	if (next_deferred >= scanned)
526 		next_deferred -= scanned;
527 	else
528 		next_deferred = 0;
529 	/*
530 	 * move the unused scan count back into the shrinker in a
531 	 * manner that handles concurrent updates. If we exhausted the
532 	 * scan, there is no need to do an update.
533 	 */
534 	if (next_deferred > 0)
535 		new_nr = atomic_long_add_return(next_deferred,
536 						&shrinker->nr_deferred[nid]);
537 	else
538 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
539 
540 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
541 	return freed;
542 }
543 
544 #ifdef CONFIG_MEMCG
545 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
546 			struct mem_cgroup *memcg, int priority)
547 {
548 	struct memcg_shrinker_map *map;
549 	unsigned long ret, freed = 0;
550 	int i;
551 
552 	if (!mem_cgroup_online(memcg))
553 		return 0;
554 
555 	if (!down_read_trylock(&shrinker_rwsem))
556 		return 0;
557 
558 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
559 					true);
560 	if (unlikely(!map))
561 		goto unlock;
562 
563 	for_each_set_bit(i, map->map, shrinker_nr_max) {
564 		struct shrink_control sc = {
565 			.gfp_mask = gfp_mask,
566 			.nid = nid,
567 			.memcg = memcg,
568 		};
569 		struct shrinker *shrinker;
570 
571 		shrinker = idr_find(&shrinker_idr, i);
572 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
573 			if (!shrinker)
574 				clear_bit(i, map->map);
575 			continue;
576 		}
577 
578 		/* Call non-slab shrinkers even though kmem is disabled */
579 		if (!memcg_kmem_enabled() &&
580 		    !(shrinker->flags & SHRINKER_NONSLAB))
581 			continue;
582 
583 		ret = do_shrink_slab(&sc, shrinker, priority);
584 		if (ret == SHRINK_EMPTY) {
585 			clear_bit(i, map->map);
586 			/*
587 			 * After the shrinker reported that it had no objects to
588 			 * free, but before we cleared the corresponding bit in
589 			 * the memcg shrinker map, a new object might have been
590 			 * added. To make sure, we have the bit set in this
591 			 * case, we invoke the shrinker one more time and reset
592 			 * the bit if it reports that it is not empty anymore.
593 			 * The memory barrier here pairs with the barrier in
594 			 * memcg_set_shrinker_bit():
595 			 *
596 			 * list_lru_add()     shrink_slab_memcg()
597 			 *   list_add_tail()    clear_bit()
598 			 *   <MB>               <MB>
599 			 *   set_bit()          do_shrink_slab()
600 			 */
601 			smp_mb__after_atomic();
602 			ret = do_shrink_slab(&sc, shrinker, priority);
603 			if (ret == SHRINK_EMPTY)
604 				ret = 0;
605 			else
606 				memcg_set_shrinker_bit(memcg, nid, i);
607 		}
608 		freed += ret;
609 
610 		if (rwsem_is_contended(&shrinker_rwsem)) {
611 			freed = freed ? : 1;
612 			break;
613 		}
614 	}
615 unlock:
616 	up_read(&shrinker_rwsem);
617 	return freed;
618 }
619 #else /* CONFIG_MEMCG */
620 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
621 			struct mem_cgroup *memcg, int priority)
622 {
623 	return 0;
624 }
625 #endif /* CONFIG_MEMCG */
626 
627 /**
628  * shrink_slab - shrink slab caches
629  * @gfp_mask: allocation context
630  * @nid: node whose slab caches to target
631  * @memcg: memory cgroup whose slab caches to target
632  * @priority: the reclaim priority
633  *
634  * Call the shrink functions to age shrinkable caches.
635  *
636  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
637  * unaware shrinkers will receive a node id of 0 instead.
638  *
639  * @memcg specifies the memory cgroup to target. Unaware shrinkers
640  * are called only if it is the root cgroup.
641  *
642  * @priority is sc->priority, we take the number of objects and >> by priority
643  * in order to get the scan target.
644  *
645  * Returns the number of reclaimed slab objects.
646  */
647 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
648 				 struct mem_cgroup *memcg,
649 				 int priority)
650 {
651 	unsigned long ret, freed = 0;
652 	struct shrinker *shrinker;
653 
654 	/*
655 	 * The root memcg might be allocated even though memcg is disabled
656 	 * via "cgroup_disable=memory" boot parameter.  This could make
657 	 * mem_cgroup_is_root() return false, then just run memcg slab
658 	 * shrink, but skip global shrink.  This may result in premature
659 	 * oom.
660 	 */
661 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
662 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
663 
664 	if (!down_read_trylock(&shrinker_rwsem))
665 		goto out;
666 
667 	list_for_each_entry(shrinker, &shrinker_list, list) {
668 		struct shrink_control sc = {
669 			.gfp_mask = gfp_mask,
670 			.nid = nid,
671 			.memcg = memcg,
672 		};
673 
674 		ret = do_shrink_slab(&sc, shrinker, priority);
675 		if (ret == SHRINK_EMPTY)
676 			ret = 0;
677 		freed += ret;
678 		/*
679 		 * Bail out if someone want to register a new shrinker to
680 		 * prevent the registration from being stalled for long periods
681 		 * by parallel ongoing shrinking.
682 		 */
683 		if (rwsem_is_contended(&shrinker_rwsem)) {
684 			freed = freed ? : 1;
685 			break;
686 		}
687 	}
688 
689 	up_read(&shrinker_rwsem);
690 out:
691 	cond_resched();
692 	return freed;
693 }
694 
695 void drop_slab_node(int nid)
696 {
697 	unsigned long freed;
698 
699 	do {
700 		struct mem_cgroup *memcg = NULL;
701 
702 		freed = 0;
703 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
704 		do {
705 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
706 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
707 	} while (freed > 10);
708 }
709 
710 void drop_slab(void)
711 {
712 	int nid;
713 
714 	for_each_online_node(nid)
715 		drop_slab_node(nid);
716 }
717 
718 static inline int is_page_cache_freeable(struct page *page)
719 {
720 	/*
721 	 * A freeable page cache page is referenced only by the caller
722 	 * that isolated the page, the page cache and optional buffer
723 	 * heads at page->private.
724 	 */
725 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
726 		HPAGE_PMD_NR : 1;
727 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
728 }
729 
730 static int may_write_to_inode(struct inode *inode)
731 {
732 	if (current->flags & PF_SWAPWRITE)
733 		return 1;
734 	if (!inode_write_congested(inode))
735 		return 1;
736 	if (inode_to_bdi(inode) == current->backing_dev_info)
737 		return 1;
738 	return 0;
739 }
740 
741 /*
742  * We detected a synchronous write error writing a page out.  Probably
743  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
744  * fsync(), msync() or close().
745  *
746  * The tricky part is that after writepage we cannot touch the mapping: nothing
747  * prevents it from being freed up.  But we have a ref on the page and once
748  * that page is locked, the mapping is pinned.
749  *
750  * We're allowed to run sleeping lock_page() here because we know the caller has
751  * __GFP_FS.
752  */
753 static void handle_write_error(struct address_space *mapping,
754 				struct page *page, int error)
755 {
756 	lock_page(page);
757 	if (page_mapping(page) == mapping)
758 		mapping_set_error(mapping, error);
759 	unlock_page(page);
760 }
761 
762 /* possible outcome of pageout() */
763 typedef enum {
764 	/* failed to write page out, page is locked */
765 	PAGE_KEEP,
766 	/* move page to the active list, page is locked */
767 	PAGE_ACTIVATE,
768 	/* page has been sent to the disk successfully, page is unlocked */
769 	PAGE_SUCCESS,
770 	/* page is clean and locked */
771 	PAGE_CLEAN,
772 } pageout_t;
773 
774 /*
775  * pageout is called by shrink_page_list() for each dirty page.
776  * Calls ->writepage().
777  */
778 static pageout_t pageout(struct page *page, struct address_space *mapping)
779 {
780 	/*
781 	 * If the page is dirty, only perform writeback if that write
782 	 * will be non-blocking.  To prevent this allocation from being
783 	 * stalled by pagecache activity.  But note that there may be
784 	 * stalls if we need to run get_block().  We could test
785 	 * PagePrivate for that.
786 	 *
787 	 * If this process is currently in __generic_file_write_iter() against
788 	 * this page's queue, we can perform writeback even if that
789 	 * will block.
790 	 *
791 	 * If the page is swapcache, write it back even if that would
792 	 * block, for some throttling. This happens by accident, because
793 	 * swap_backing_dev_info is bust: it doesn't reflect the
794 	 * congestion state of the swapdevs.  Easy to fix, if needed.
795 	 */
796 	if (!is_page_cache_freeable(page))
797 		return PAGE_KEEP;
798 	if (!mapping) {
799 		/*
800 		 * Some data journaling orphaned pages can have
801 		 * page->mapping == NULL while being dirty with clean buffers.
802 		 */
803 		if (page_has_private(page)) {
804 			if (try_to_free_buffers(page)) {
805 				ClearPageDirty(page);
806 				pr_info("%s: orphaned page\n", __func__);
807 				return PAGE_CLEAN;
808 			}
809 		}
810 		return PAGE_KEEP;
811 	}
812 	if (mapping->a_ops->writepage == NULL)
813 		return PAGE_ACTIVATE;
814 	if (!may_write_to_inode(mapping->host))
815 		return PAGE_KEEP;
816 
817 	if (clear_page_dirty_for_io(page)) {
818 		int res;
819 		struct writeback_control wbc = {
820 			.sync_mode = WB_SYNC_NONE,
821 			.nr_to_write = SWAP_CLUSTER_MAX,
822 			.range_start = 0,
823 			.range_end = LLONG_MAX,
824 			.for_reclaim = 1,
825 		};
826 
827 		SetPageReclaim(page);
828 		res = mapping->a_ops->writepage(page, &wbc);
829 		if (res < 0)
830 			handle_write_error(mapping, page, res);
831 		if (res == AOP_WRITEPAGE_ACTIVATE) {
832 			ClearPageReclaim(page);
833 			return PAGE_ACTIVATE;
834 		}
835 
836 		if (!PageWriteback(page)) {
837 			/* synchronous write or broken a_ops? */
838 			ClearPageReclaim(page);
839 		}
840 		trace_mm_vmscan_writepage(page);
841 		inc_node_page_state(page, NR_VMSCAN_WRITE);
842 		return PAGE_SUCCESS;
843 	}
844 
845 	return PAGE_CLEAN;
846 }
847 
848 /*
849  * Same as remove_mapping, but if the page is removed from the mapping, it
850  * gets returned with a refcount of 0.
851  */
852 static int __remove_mapping(struct address_space *mapping, struct page *page,
853 			    bool reclaimed, struct mem_cgroup *target_memcg)
854 {
855 	unsigned long flags;
856 	int refcount;
857 	void *shadow = NULL;
858 
859 	BUG_ON(!PageLocked(page));
860 	BUG_ON(mapping != page_mapping(page));
861 
862 	xa_lock_irqsave(&mapping->i_pages, flags);
863 	/*
864 	 * The non racy check for a busy page.
865 	 *
866 	 * Must be careful with the order of the tests. When someone has
867 	 * a ref to the page, it may be possible that they dirty it then
868 	 * drop the reference. So if PageDirty is tested before page_count
869 	 * here, then the following race may occur:
870 	 *
871 	 * get_user_pages(&page);
872 	 * [user mapping goes away]
873 	 * write_to(page);
874 	 *				!PageDirty(page)    [good]
875 	 * SetPageDirty(page);
876 	 * put_page(page);
877 	 *				!page_count(page)   [good, discard it]
878 	 *
879 	 * [oops, our write_to data is lost]
880 	 *
881 	 * Reversing the order of the tests ensures such a situation cannot
882 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
883 	 * load is not satisfied before that of page->_refcount.
884 	 *
885 	 * Note that if SetPageDirty is always performed via set_page_dirty,
886 	 * and thus under the i_pages lock, then this ordering is not required.
887 	 */
888 	refcount = 1 + compound_nr(page);
889 	if (!page_ref_freeze(page, refcount))
890 		goto cannot_free;
891 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
892 	if (unlikely(PageDirty(page))) {
893 		page_ref_unfreeze(page, refcount);
894 		goto cannot_free;
895 	}
896 
897 	if (PageSwapCache(page)) {
898 		swp_entry_t swap = { .val = page_private(page) };
899 		mem_cgroup_swapout(page, swap);
900 		if (reclaimed && !mapping_exiting(mapping))
901 			shadow = workingset_eviction(page, target_memcg);
902 		__delete_from_swap_cache(page, swap, shadow);
903 		xa_unlock_irqrestore(&mapping->i_pages, flags);
904 		put_swap_page(page, swap);
905 	} else {
906 		void (*freepage)(struct page *);
907 
908 		freepage = mapping->a_ops->freepage;
909 		/*
910 		 * Remember a shadow entry for reclaimed file cache in
911 		 * order to detect refaults, thus thrashing, later on.
912 		 *
913 		 * But don't store shadows in an address space that is
914 		 * already exiting.  This is not just an optimization,
915 		 * inode reclaim needs to empty out the radix tree or
916 		 * the nodes are lost.  Don't plant shadows behind its
917 		 * back.
918 		 *
919 		 * We also don't store shadows for DAX mappings because the
920 		 * only page cache pages found in these are zero pages
921 		 * covering holes, and because we don't want to mix DAX
922 		 * exceptional entries and shadow exceptional entries in the
923 		 * same address_space.
924 		 */
925 		if (reclaimed && page_is_file_lru(page) &&
926 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
927 			shadow = workingset_eviction(page, target_memcg);
928 		__delete_from_page_cache(page, shadow);
929 		xa_unlock_irqrestore(&mapping->i_pages, flags);
930 
931 		if (freepage != NULL)
932 			freepage(page);
933 	}
934 
935 	return 1;
936 
937 cannot_free:
938 	xa_unlock_irqrestore(&mapping->i_pages, flags);
939 	return 0;
940 }
941 
942 /*
943  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
944  * someone else has a ref on the page, abort and return 0.  If it was
945  * successfully detached, return 1.  Assumes the caller has a single ref on
946  * this page.
947  */
948 int remove_mapping(struct address_space *mapping, struct page *page)
949 {
950 	if (__remove_mapping(mapping, page, false, NULL)) {
951 		/*
952 		 * Unfreezing the refcount with 1 rather than 2 effectively
953 		 * drops the pagecache ref for us without requiring another
954 		 * atomic operation.
955 		 */
956 		page_ref_unfreeze(page, 1);
957 		return 1;
958 	}
959 	return 0;
960 }
961 
962 /**
963  * putback_lru_page - put previously isolated page onto appropriate LRU list
964  * @page: page to be put back to appropriate lru list
965  *
966  * Add previously isolated @page to appropriate LRU list.
967  * Page may still be unevictable for other reasons.
968  *
969  * lru_lock must not be held, interrupts must be enabled.
970  */
971 void putback_lru_page(struct page *page)
972 {
973 	lru_cache_add(page);
974 	put_page(page);		/* drop ref from isolate */
975 }
976 
977 enum page_references {
978 	PAGEREF_RECLAIM,
979 	PAGEREF_RECLAIM_CLEAN,
980 	PAGEREF_KEEP,
981 	PAGEREF_ACTIVATE,
982 };
983 
984 static enum page_references page_check_references(struct page *page,
985 						  struct scan_control *sc)
986 {
987 	int referenced_ptes, referenced_page;
988 	unsigned long vm_flags;
989 
990 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
991 					  &vm_flags);
992 	referenced_page = TestClearPageReferenced(page);
993 
994 	/*
995 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
996 	 * move the page to the unevictable list.
997 	 */
998 	if (vm_flags & VM_LOCKED)
999 		return PAGEREF_RECLAIM;
1000 
1001 	if (referenced_ptes) {
1002 		/*
1003 		 * All mapped pages start out with page table
1004 		 * references from the instantiating fault, so we need
1005 		 * to look twice if a mapped file page is used more
1006 		 * than once.
1007 		 *
1008 		 * Mark it and spare it for another trip around the
1009 		 * inactive list.  Another page table reference will
1010 		 * lead to its activation.
1011 		 *
1012 		 * Note: the mark is set for activated pages as well
1013 		 * so that recently deactivated but used pages are
1014 		 * quickly recovered.
1015 		 */
1016 		SetPageReferenced(page);
1017 
1018 		if (referenced_page || referenced_ptes > 1)
1019 			return PAGEREF_ACTIVATE;
1020 
1021 		/*
1022 		 * Activate file-backed executable pages after first usage.
1023 		 */
1024 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1025 			return PAGEREF_ACTIVATE;
1026 
1027 		return PAGEREF_KEEP;
1028 	}
1029 
1030 	/* Reclaim if clean, defer dirty pages to writeback */
1031 	if (referenced_page && !PageSwapBacked(page))
1032 		return PAGEREF_RECLAIM_CLEAN;
1033 
1034 	return PAGEREF_RECLAIM;
1035 }
1036 
1037 /* Check if a page is dirty or under writeback */
1038 static void page_check_dirty_writeback(struct page *page,
1039 				       bool *dirty, bool *writeback)
1040 {
1041 	struct address_space *mapping;
1042 
1043 	/*
1044 	 * Anonymous pages are not handled by flushers and must be written
1045 	 * from reclaim context. Do not stall reclaim based on them
1046 	 */
1047 	if (!page_is_file_lru(page) ||
1048 	    (PageAnon(page) && !PageSwapBacked(page))) {
1049 		*dirty = false;
1050 		*writeback = false;
1051 		return;
1052 	}
1053 
1054 	/* By default assume that the page flags are accurate */
1055 	*dirty = PageDirty(page);
1056 	*writeback = PageWriteback(page);
1057 
1058 	/* Verify dirty/writeback state if the filesystem supports it */
1059 	if (!page_has_private(page))
1060 		return;
1061 
1062 	mapping = page_mapping(page);
1063 	if (mapping && mapping->a_ops->is_dirty_writeback)
1064 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1065 }
1066 
1067 /*
1068  * shrink_page_list() returns the number of reclaimed pages
1069  */
1070 static unsigned int shrink_page_list(struct list_head *page_list,
1071 				     struct pglist_data *pgdat,
1072 				     struct scan_control *sc,
1073 				     enum ttu_flags ttu_flags,
1074 				     struct reclaim_stat *stat,
1075 				     bool ignore_references)
1076 {
1077 	LIST_HEAD(ret_pages);
1078 	LIST_HEAD(free_pages);
1079 	unsigned int nr_reclaimed = 0;
1080 	unsigned int pgactivate = 0;
1081 
1082 	memset(stat, 0, sizeof(*stat));
1083 	cond_resched();
1084 
1085 	while (!list_empty(page_list)) {
1086 		struct address_space *mapping;
1087 		struct page *page;
1088 		enum page_references references = PAGEREF_RECLAIM;
1089 		bool dirty, writeback, may_enter_fs;
1090 		unsigned int nr_pages;
1091 
1092 		cond_resched();
1093 
1094 		page = lru_to_page(page_list);
1095 		list_del(&page->lru);
1096 
1097 		if (!trylock_page(page))
1098 			goto keep;
1099 
1100 		VM_BUG_ON_PAGE(PageActive(page), page);
1101 
1102 		nr_pages = compound_nr(page);
1103 
1104 		/* Account the number of base pages even though THP */
1105 		sc->nr_scanned += nr_pages;
1106 
1107 		if (unlikely(!page_evictable(page)))
1108 			goto activate_locked;
1109 
1110 		if (!sc->may_unmap && page_mapped(page))
1111 			goto keep_locked;
1112 
1113 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1114 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1115 
1116 		/*
1117 		 * The number of dirty pages determines if a node is marked
1118 		 * reclaim_congested which affects wait_iff_congested. kswapd
1119 		 * will stall and start writing pages if the tail of the LRU
1120 		 * is all dirty unqueued pages.
1121 		 */
1122 		page_check_dirty_writeback(page, &dirty, &writeback);
1123 		if (dirty || writeback)
1124 			stat->nr_dirty++;
1125 
1126 		if (dirty && !writeback)
1127 			stat->nr_unqueued_dirty++;
1128 
1129 		/*
1130 		 * Treat this page as congested if the underlying BDI is or if
1131 		 * pages are cycling through the LRU so quickly that the
1132 		 * pages marked for immediate reclaim are making it to the
1133 		 * end of the LRU a second time.
1134 		 */
1135 		mapping = page_mapping(page);
1136 		if (((dirty || writeback) && mapping &&
1137 		     inode_write_congested(mapping->host)) ||
1138 		    (writeback && PageReclaim(page)))
1139 			stat->nr_congested++;
1140 
1141 		/*
1142 		 * If a page at the tail of the LRU is under writeback, there
1143 		 * are three cases to consider.
1144 		 *
1145 		 * 1) If reclaim is encountering an excessive number of pages
1146 		 *    under writeback and this page is both under writeback and
1147 		 *    PageReclaim then it indicates that pages are being queued
1148 		 *    for IO but are being recycled through the LRU before the
1149 		 *    IO can complete. Waiting on the page itself risks an
1150 		 *    indefinite stall if it is impossible to writeback the
1151 		 *    page due to IO error or disconnected storage so instead
1152 		 *    note that the LRU is being scanned too quickly and the
1153 		 *    caller can stall after page list has been processed.
1154 		 *
1155 		 * 2) Global or new memcg reclaim encounters a page that is
1156 		 *    not marked for immediate reclaim, or the caller does not
1157 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1158 		 *    not to fs). In this case mark the page for immediate
1159 		 *    reclaim and continue scanning.
1160 		 *
1161 		 *    Require may_enter_fs because we would wait on fs, which
1162 		 *    may not have submitted IO yet. And the loop driver might
1163 		 *    enter reclaim, and deadlock if it waits on a page for
1164 		 *    which it is needed to do the write (loop masks off
1165 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1166 		 *    would probably show more reasons.
1167 		 *
1168 		 * 3) Legacy memcg encounters a page that is already marked
1169 		 *    PageReclaim. memcg does not have any dirty pages
1170 		 *    throttling so we could easily OOM just because too many
1171 		 *    pages are in writeback and there is nothing else to
1172 		 *    reclaim. Wait for the writeback to complete.
1173 		 *
1174 		 * In cases 1) and 2) we activate the pages to get them out of
1175 		 * the way while we continue scanning for clean pages on the
1176 		 * inactive list and refilling from the active list. The
1177 		 * observation here is that waiting for disk writes is more
1178 		 * expensive than potentially causing reloads down the line.
1179 		 * Since they're marked for immediate reclaim, they won't put
1180 		 * memory pressure on the cache working set any longer than it
1181 		 * takes to write them to disk.
1182 		 */
1183 		if (PageWriteback(page)) {
1184 			/* Case 1 above */
1185 			if (current_is_kswapd() &&
1186 			    PageReclaim(page) &&
1187 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1188 				stat->nr_immediate++;
1189 				goto activate_locked;
1190 
1191 			/* Case 2 above */
1192 			} else if (writeback_throttling_sane(sc) ||
1193 			    !PageReclaim(page) || !may_enter_fs) {
1194 				/*
1195 				 * This is slightly racy - end_page_writeback()
1196 				 * might have just cleared PageReclaim, then
1197 				 * setting PageReclaim here end up interpreted
1198 				 * as PageReadahead - but that does not matter
1199 				 * enough to care.  What we do want is for this
1200 				 * page to have PageReclaim set next time memcg
1201 				 * reclaim reaches the tests above, so it will
1202 				 * then wait_on_page_writeback() to avoid OOM;
1203 				 * and it's also appropriate in global reclaim.
1204 				 */
1205 				SetPageReclaim(page);
1206 				stat->nr_writeback++;
1207 				goto activate_locked;
1208 
1209 			/* Case 3 above */
1210 			} else {
1211 				unlock_page(page);
1212 				wait_on_page_writeback(page);
1213 				/* then go back and try same page again */
1214 				list_add_tail(&page->lru, page_list);
1215 				continue;
1216 			}
1217 		}
1218 
1219 		if (!ignore_references)
1220 			references = page_check_references(page, sc);
1221 
1222 		switch (references) {
1223 		case PAGEREF_ACTIVATE:
1224 			goto activate_locked;
1225 		case PAGEREF_KEEP:
1226 			stat->nr_ref_keep += nr_pages;
1227 			goto keep_locked;
1228 		case PAGEREF_RECLAIM:
1229 		case PAGEREF_RECLAIM_CLEAN:
1230 			; /* try to reclaim the page below */
1231 		}
1232 
1233 		/*
1234 		 * Anonymous process memory has backing store?
1235 		 * Try to allocate it some swap space here.
1236 		 * Lazyfree page could be freed directly
1237 		 */
1238 		if (PageAnon(page) && PageSwapBacked(page)) {
1239 			if (!PageSwapCache(page)) {
1240 				if (!(sc->gfp_mask & __GFP_IO))
1241 					goto keep_locked;
1242 				if (PageTransHuge(page)) {
1243 					/* cannot split THP, skip it */
1244 					if (!can_split_huge_page(page, NULL))
1245 						goto activate_locked;
1246 					/*
1247 					 * Split pages without a PMD map right
1248 					 * away. Chances are some or all of the
1249 					 * tail pages can be freed without IO.
1250 					 */
1251 					if (!compound_mapcount(page) &&
1252 					    split_huge_page_to_list(page,
1253 								    page_list))
1254 						goto activate_locked;
1255 				}
1256 				if (!add_to_swap(page)) {
1257 					if (!PageTransHuge(page))
1258 						goto activate_locked_split;
1259 					/* Fallback to swap normal pages */
1260 					if (split_huge_page_to_list(page,
1261 								    page_list))
1262 						goto activate_locked;
1263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1264 					count_vm_event(THP_SWPOUT_FALLBACK);
1265 #endif
1266 					if (!add_to_swap(page))
1267 						goto activate_locked_split;
1268 				}
1269 
1270 				may_enter_fs = true;
1271 
1272 				/* Adding to swap updated mapping */
1273 				mapping = page_mapping(page);
1274 			}
1275 		} else if (unlikely(PageTransHuge(page))) {
1276 			/* Split file THP */
1277 			if (split_huge_page_to_list(page, page_list))
1278 				goto keep_locked;
1279 		}
1280 
1281 		/*
1282 		 * THP may get split above, need minus tail pages and update
1283 		 * nr_pages to avoid accounting tail pages twice.
1284 		 *
1285 		 * The tail pages that are added into swap cache successfully
1286 		 * reach here.
1287 		 */
1288 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1289 			sc->nr_scanned -= (nr_pages - 1);
1290 			nr_pages = 1;
1291 		}
1292 
1293 		/*
1294 		 * The page is mapped into the page tables of one or more
1295 		 * processes. Try to unmap it here.
1296 		 */
1297 		if (page_mapped(page)) {
1298 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1299 			bool was_swapbacked = PageSwapBacked(page);
1300 
1301 			if (unlikely(PageTransHuge(page)))
1302 				flags |= TTU_SPLIT_HUGE_PMD;
1303 
1304 			if (!try_to_unmap(page, flags)) {
1305 				stat->nr_unmap_fail += nr_pages;
1306 				if (!was_swapbacked && PageSwapBacked(page))
1307 					stat->nr_lazyfree_fail += nr_pages;
1308 				goto activate_locked;
1309 			}
1310 		}
1311 
1312 		if (PageDirty(page)) {
1313 			/*
1314 			 * Only kswapd can writeback filesystem pages
1315 			 * to avoid risk of stack overflow. But avoid
1316 			 * injecting inefficient single-page IO into
1317 			 * flusher writeback as much as possible: only
1318 			 * write pages when we've encountered many
1319 			 * dirty pages, and when we've already scanned
1320 			 * the rest of the LRU for clean pages and see
1321 			 * the same dirty pages again (PageReclaim).
1322 			 */
1323 			if (page_is_file_lru(page) &&
1324 			    (!current_is_kswapd() || !PageReclaim(page) ||
1325 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1326 				/*
1327 				 * Immediately reclaim when written back.
1328 				 * Similar in principal to deactivate_page()
1329 				 * except we already have the page isolated
1330 				 * and know it's dirty
1331 				 */
1332 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1333 				SetPageReclaim(page);
1334 
1335 				goto activate_locked;
1336 			}
1337 
1338 			if (references == PAGEREF_RECLAIM_CLEAN)
1339 				goto keep_locked;
1340 			if (!may_enter_fs)
1341 				goto keep_locked;
1342 			if (!sc->may_writepage)
1343 				goto keep_locked;
1344 
1345 			/*
1346 			 * Page is dirty. Flush the TLB if a writable entry
1347 			 * potentially exists to avoid CPU writes after IO
1348 			 * starts and then write it out here.
1349 			 */
1350 			try_to_unmap_flush_dirty();
1351 			switch (pageout(page, mapping)) {
1352 			case PAGE_KEEP:
1353 				goto keep_locked;
1354 			case PAGE_ACTIVATE:
1355 				goto activate_locked;
1356 			case PAGE_SUCCESS:
1357 				stat->nr_pageout += thp_nr_pages(page);
1358 
1359 				if (PageWriteback(page))
1360 					goto keep;
1361 				if (PageDirty(page))
1362 					goto keep;
1363 
1364 				/*
1365 				 * A synchronous write - probably a ramdisk.  Go
1366 				 * ahead and try to reclaim the page.
1367 				 */
1368 				if (!trylock_page(page))
1369 					goto keep;
1370 				if (PageDirty(page) || PageWriteback(page))
1371 					goto keep_locked;
1372 				mapping = page_mapping(page);
1373 			case PAGE_CLEAN:
1374 				; /* try to free the page below */
1375 			}
1376 		}
1377 
1378 		/*
1379 		 * If the page has buffers, try to free the buffer mappings
1380 		 * associated with this page. If we succeed we try to free
1381 		 * the page as well.
1382 		 *
1383 		 * We do this even if the page is PageDirty().
1384 		 * try_to_release_page() does not perform I/O, but it is
1385 		 * possible for a page to have PageDirty set, but it is actually
1386 		 * clean (all its buffers are clean).  This happens if the
1387 		 * buffers were written out directly, with submit_bh(). ext3
1388 		 * will do this, as well as the blockdev mapping.
1389 		 * try_to_release_page() will discover that cleanness and will
1390 		 * drop the buffers and mark the page clean - it can be freed.
1391 		 *
1392 		 * Rarely, pages can have buffers and no ->mapping.  These are
1393 		 * the pages which were not successfully invalidated in
1394 		 * truncate_complete_page().  We try to drop those buffers here
1395 		 * and if that worked, and the page is no longer mapped into
1396 		 * process address space (page_count == 1) it can be freed.
1397 		 * Otherwise, leave the page on the LRU so it is swappable.
1398 		 */
1399 		if (page_has_private(page)) {
1400 			if (!try_to_release_page(page, sc->gfp_mask))
1401 				goto activate_locked;
1402 			if (!mapping && page_count(page) == 1) {
1403 				unlock_page(page);
1404 				if (put_page_testzero(page))
1405 					goto free_it;
1406 				else {
1407 					/*
1408 					 * rare race with speculative reference.
1409 					 * the speculative reference will free
1410 					 * this page shortly, so we may
1411 					 * increment nr_reclaimed here (and
1412 					 * leave it off the LRU).
1413 					 */
1414 					nr_reclaimed++;
1415 					continue;
1416 				}
1417 			}
1418 		}
1419 
1420 		if (PageAnon(page) && !PageSwapBacked(page)) {
1421 			/* follow __remove_mapping for reference */
1422 			if (!page_ref_freeze(page, 1))
1423 				goto keep_locked;
1424 			if (PageDirty(page)) {
1425 				page_ref_unfreeze(page, 1);
1426 				goto keep_locked;
1427 			}
1428 
1429 			count_vm_event(PGLAZYFREED);
1430 			count_memcg_page_event(page, PGLAZYFREED);
1431 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1432 							 sc->target_mem_cgroup))
1433 			goto keep_locked;
1434 
1435 		unlock_page(page);
1436 free_it:
1437 		/*
1438 		 * THP may get swapped out in a whole, need account
1439 		 * all base pages.
1440 		 */
1441 		nr_reclaimed += nr_pages;
1442 
1443 		/*
1444 		 * Is there need to periodically free_page_list? It would
1445 		 * appear not as the counts should be low
1446 		 */
1447 		if (unlikely(PageTransHuge(page)))
1448 			destroy_compound_page(page);
1449 		else
1450 			list_add(&page->lru, &free_pages);
1451 		continue;
1452 
1453 activate_locked_split:
1454 		/*
1455 		 * The tail pages that are failed to add into swap cache
1456 		 * reach here.  Fixup nr_scanned and nr_pages.
1457 		 */
1458 		if (nr_pages > 1) {
1459 			sc->nr_scanned -= (nr_pages - 1);
1460 			nr_pages = 1;
1461 		}
1462 activate_locked:
1463 		/* Not a candidate for swapping, so reclaim swap space. */
1464 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1465 						PageMlocked(page)))
1466 			try_to_free_swap(page);
1467 		VM_BUG_ON_PAGE(PageActive(page), page);
1468 		if (!PageMlocked(page)) {
1469 			int type = page_is_file_lru(page);
1470 			SetPageActive(page);
1471 			stat->nr_activate[type] += nr_pages;
1472 			count_memcg_page_event(page, PGACTIVATE);
1473 		}
1474 keep_locked:
1475 		unlock_page(page);
1476 keep:
1477 		list_add(&page->lru, &ret_pages);
1478 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1479 	}
1480 
1481 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1482 
1483 	mem_cgroup_uncharge_list(&free_pages);
1484 	try_to_unmap_flush();
1485 	free_unref_page_list(&free_pages);
1486 
1487 	list_splice(&ret_pages, page_list);
1488 	count_vm_events(PGACTIVATE, pgactivate);
1489 
1490 	return nr_reclaimed;
1491 }
1492 
1493 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1494 					    struct list_head *page_list)
1495 {
1496 	struct scan_control sc = {
1497 		.gfp_mask = GFP_KERNEL,
1498 		.priority = DEF_PRIORITY,
1499 		.may_unmap = 1,
1500 	};
1501 	struct reclaim_stat stat;
1502 	unsigned int nr_reclaimed;
1503 	struct page *page, *next;
1504 	LIST_HEAD(clean_pages);
1505 
1506 	list_for_each_entry_safe(page, next, page_list, lru) {
1507 		if (page_is_file_lru(page) && !PageDirty(page) &&
1508 		    !__PageMovable(page) && !PageUnevictable(page)) {
1509 			ClearPageActive(page);
1510 			list_move(&page->lru, &clean_pages);
1511 		}
1512 	}
1513 
1514 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515 			TTU_IGNORE_ACCESS, &stat, true);
1516 	list_splice(&clean_pages, page_list);
1517 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
1518 	/*
1519 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1520 	 * they will rotate back to anonymous LRU in the end if it failed to
1521 	 * discard so isolated count will be mismatched.
1522 	 * Compensate the isolated count for both LRU lists.
1523 	 */
1524 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1525 			    stat.nr_lazyfree_fail);
1526 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1527 			    -stat.nr_lazyfree_fail);
1528 	return nr_reclaimed;
1529 }
1530 
1531 /*
1532  * Attempt to remove the specified page from its LRU.  Only take this page
1533  * if it is of the appropriate PageActive status.  Pages which are being
1534  * freed elsewhere are also ignored.
1535  *
1536  * page:	page to consider
1537  * mode:	one of the LRU isolation modes defined above
1538  *
1539  * returns 0 on success, -ve errno on failure.
1540  */
1541 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1542 {
1543 	int ret = -EINVAL;
1544 
1545 	/* Only take pages on the LRU. */
1546 	if (!PageLRU(page))
1547 		return ret;
1548 
1549 	/* Compaction should not handle unevictable pages but CMA can do so */
1550 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1551 		return ret;
1552 
1553 	ret = -EBUSY;
1554 
1555 	/*
1556 	 * To minimise LRU disruption, the caller can indicate that it only
1557 	 * wants to isolate pages it will be able to operate on without
1558 	 * blocking - clean pages for the most part.
1559 	 *
1560 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1561 	 * that it is possible to migrate without blocking
1562 	 */
1563 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1564 		/* All the caller can do on PageWriteback is block */
1565 		if (PageWriteback(page))
1566 			return ret;
1567 
1568 		if (PageDirty(page)) {
1569 			struct address_space *mapping;
1570 			bool migrate_dirty;
1571 
1572 			/*
1573 			 * Only pages without mappings or that have a
1574 			 * ->migratepage callback are possible to migrate
1575 			 * without blocking. However, we can be racing with
1576 			 * truncation so it's necessary to lock the page
1577 			 * to stabilise the mapping as truncation holds
1578 			 * the page lock until after the page is removed
1579 			 * from the page cache.
1580 			 */
1581 			if (!trylock_page(page))
1582 				return ret;
1583 
1584 			mapping = page_mapping(page);
1585 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1586 			unlock_page(page);
1587 			if (!migrate_dirty)
1588 				return ret;
1589 		}
1590 	}
1591 
1592 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1593 		return ret;
1594 
1595 	if (likely(get_page_unless_zero(page))) {
1596 		/*
1597 		 * Be careful not to clear PageLRU until after we're
1598 		 * sure the page is not being freed elsewhere -- the
1599 		 * page release code relies on it.
1600 		 */
1601 		ClearPageLRU(page);
1602 		ret = 0;
1603 	}
1604 
1605 	return ret;
1606 }
1607 
1608 
1609 /*
1610  * Update LRU sizes after isolating pages. The LRU size updates must
1611  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1612  */
1613 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1614 			enum lru_list lru, unsigned long *nr_zone_taken)
1615 {
1616 	int zid;
1617 
1618 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1619 		if (!nr_zone_taken[zid])
1620 			continue;
1621 
1622 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1623 	}
1624 
1625 }
1626 
1627 /**
1628  * pgdat->lru_lock is heavily contended.  Some of the functions that
1629  * shrink the lists perform better by taking out a batch of pages
1630  * and working on them outside the LRU lock.
1631  *
1632  * For pagecache intensive workloads, this function is the hottest
1633  * spot in the kernel (apart from copy_*_user functions).
1634  *
1635  * Appropriate locks must be held before calling this function.
1636  *
1637  * @nr_to_scan:	The number of eligible pages to look through on the list.
1638  * @lruvec:	The LRU vector to pull pages from.
1639  * @dst:	The temp list to put pages on to.
1640  * @nr_scanned:	The number of pages that were scanned.
1641  * @sc:		The scan_control struct for this reclaim session
1642  * @lru:	LRU list id for isolating
1643  *
1644  * returns how many pages were moved onto *@dst.
1645  */
1646 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1647 		struct lruvec *lruvec, struct list_head *dst,
1648 		unsigned long *nr_scanned, struct scan_control *sc,
1649 		enum lru_list lru)
1650 {
1651 	struct list_head *src = &lruvec->lists[lru];
1652 	unsigned long nr_taken = 0;
1653 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1654 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1655 	unsigned long skipped = 0;
1656 	unsigned long scan, total_scan, nr_pages;
1657 	LIST_HEAD(pages_skipped);
1658 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1659 
1660 	total_scan = 0;
1661 	scan = 0;
1662 	while (scan < nr_to_scan && !list_empty(src)) {
1663 		struct page *page;
1664 
1665 		page = lru_to_page(src);
1666 		prefetchw_prev_lru_page(page, src, flags);
1667 
1668 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1669 
1670 		nr_pages = compound_nr(page);
1671 		total_scan += nr_pages;
1672 
1673 		if (page_zonenum(page) > sc->reclaim_idx) {
1674 			list_move(&page->lru, &pages_skipped);
1675 			nr_skipped[page_zonenum(page)] += nr_pages;
1676 			continue;
1677 		}
1678 
1679 		/*
1680 		 * Do not count skipped pages because that makes the function
1681 		 * return with no isolated pages if the LRU mostly contains
1682 		 * ineligible pages.  This causes the VM to not reclaim any
1683 		 * pages, triggering a premature OOM.
1684 		 *
1685 		 * Account all tail pages of THP.  This would not cause
1686 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1687 		 * only when the page is being freed somewhere else.
1688 		 */
1689 		scan += nr_pages;
1690 		switch (__isolate_lru_page(page, mode)) {
1691 		case 0:
1692 			nr_taken += nr_pages;
1693 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1694 			list_move(&page->lru, dst);
1695 			break;
1696 
1697 		case -EBUSY:
1698 			/* else it is being freed elsewhere */
1699 			list_move(&page->lru, src);
1700 			continue;
1701 
1702 		default:
1703 			BUG();
1704 		}
1705 	}
1706 
1707 	/*
1708 	 * Splice any skipped pages to the start of the LRU list. Note that
1709 	 * this disrupts the LRU order when reclaiming for lower zones but
1710 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1711 	 * scanning would soon rescan the same pages to skip and put the
1712 	 * system at risk of premature OOM.
1713 	 */
1714 	if (!list_empty(&pages_skipped)) {
1715 		int zid;
1716 
1717 		list_splice(&pages_skipped, src);
1718 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1719 			if (!nr_skipped[zid])
1720 				continue;
1721 
1722 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1723 			skipped += nr_skipped[zid];
1724 		}
1725 	}
1726 	*nr_scanned = total_scan;
1727 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1728 				    total_scan, skipped, nr_taken, mode, lru);
1729 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1730 	return nr_taken;
1731 }
1732 
1733 /**
1734  * isolate_lru_page - tries to isolate a page from its LRU list
1735  * @page: page to isolate from its LRU list
1736  *
1737  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1738  * vmstat statistic corresponding to whatever LRU list the page was on.
1739  *
1740  * Returns 0 if the page was removed from an LRU list.
1741  * Returns -EBUSY if the page was not on an LRU list.
1742  *
1743  * The returned page will have PageLRU() cleared.  If it was found on
1744  * the active list, it will have PageActive set.  If it was found on
1745  * the unevictable list, it will have the PageUnevictable bit set. That flag
1746  * may need to be cleared by the caller before letting the page go.
1747  *
1748  * The vmstat statistic corresponding to the list on which the page was
1749  * found will be decremented.
1750  *
1751  * Restrictions:
1752  *
1753  * (1) Must be called with an elevated refcount on the page. This is a
1754  *     fundamentnal difference from isolate_lru_pages (which is called
1755  *     without a stable reference).
1756  * (2) the lru_lock must not be held.
1757  * (3) interrupts must be enabled.
1758  */
1759 int isolate_lru_page(struct page *page)
1760 {
1761 	int ret = -EBUSY;
1762 
1763 	VM_BUG_ON_PAGE(!page_count(page), page);
1764 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1765 
1766 	if (PageLRU(page)) {
1767 		pg_data_t *pgdat = page_pgdat(page);
1768 		struct lruvec *lruvec;
1769 
1770 		spin_lock_irq(&pgdat->lru_lock);
1771 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1772 		if (PageLRU(page)) {
1773 			int lru = page_lru(page);
1774 			get_page(page);
1775 			ClearPageLRU(page);
1776 			del_page_from_lru_list(page, lruvec, lru);
1777 			ret = 0;
1778 		}
1779 		spin_unlock_irq(&pgdat->lru_lock);
1780 	}
1781 	return ret;
1782 }
1783 
1784 /*
1785  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1786  * then get rescheduled. When there are massive number of tasks doing page
1787  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1788  * the LRU list will go small and be scanned faster than necessary, leading to
1789  * unnecessary swapping, thrashing and OOM.
1790  */
1791 static int too_many_isolated(struct pglist_data *pgdat, int file,
1792 		struct scan_control *sc)
1793 {
1794 	unsigned long inactive, isolated;
1795 
1796 	if (current_is_kswapd())
1797 		return 0;
1798 
1799 	if (!writeback_throttling_sane(sc))
1800 		return 0;
1801 
1802 	if (file) {
1803 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805 	} else {
1806 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808 	}
1809 
1810 	/*
1811 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812 	 * won't get blocked by normal direct-reclaimers, forming a circular
1813 	 * deadlock.
1814 	 */
1815 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1816 		inactive >>= 3;
1817 
1818 	return isolated > inactive;
1819 }
1820 
1821 /*
1822  * This moves pages from @list to corresponding LRU list.
1823  *
1824  * We move them the other way if the page is referenced by one or more
1825  * processes, from rmap.
1826  *
1827  * If the pages are mostly unmapped, the processing is fast and it is
1828  * appropriate to hold zone_lru_lock across the whole operation.  But if
1829  * the pages are mapped, the processing is slow (page_referenced()) so we
1830  * should drop zone_lru_lock around each page.  It's impossible to balance
1831  * this, so instead we remove the pages from the LRU while processing them.
1832  * It is safe to rely on PG_active against the non-LRU pages in here because
1833  * nobody will play with that bit on a non-LRU page.
1834  *
1835  * The downside is that we have to touch page->_refcount against each page.
1836  * But we had to alter page->flags anyway.
1837  *
1838  * Returns the number of pages moved to the given lruvec.
1839  */
1840 
1841 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1842 						     struct list_head *list)
1843 {
1844 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1845 	int nr_pages, nr_moved = 0;
1846 	LIST_HEAD(pages_to_free);
1847 	struct page *page;
1848 	enum lru_list lru;
1849 
1850 	while (!list_empty(list)) {
1851 		page = lru_to_page(list);
1852 		VM_BUG_ON_PAGE(PageLRU(page), page);
1853 		if (unlikely(!page_evictable(page))) {
1854 			list_del(&page->lru);
1855 			spin_unlock_irq(&pgdat->lru_lock);
1856 			putback_lru_page(page);
1857 			spin_lock_irq(&pgdat->lru_lock);
1858 			continue;
1859 		}
1860 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1861 
1862 		SetPageLRU(page);
1863 		lru = page_lru(page);
1864 
1865 		nr_pages = thp_nr_pages(page);
1866 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1867 		list_move(&page->lru, &lruvec->lists[lru]);
1868 
1869 		if (put_page_testzero(page)) {
1870 			__ClearPageLRU(page);
1871 			__ClearPageActive(page);
1872 			del_page_from_lru_list(page, lruvec, lru);
1873 
1874 			if (unlikely(PageCompound(page))) {
1875 				spin_unlock_irq(&pgdat->lru_lock);
1876 				destroy_compound_page(page);
1877 				spin_lock_irq(&pgdat->lru_lock);
1878 			} else
1879 				list_add(&page->lru, &pages_to_free);
1880 		} else {
1881 			nr_moved += nr_pages;
1882 			if (PageActive(page))
1883 				workingset_age_nonresident(lruvec, nr_pages);
1884 		}
1885 	}
1886 
1887 	/*
1888 	 * To save our caller's stack, now use input list for pages to free.
1889 	 */
1890 	list_splice(&pages_to_free, list);
1891 
1892 	return nr_moved;
1893 }
1894 
1895 /*
1896  * If a kernel thread (such as nfsd for loop-back mounts) services
1897  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1898  * In that case we should only throttle if the backing device it is
1899  * writing to is congested.  In other cases it is safe to throttle.
1900  */
1901 static int current_may_throttle(void)
1902 {
1903 	return !(current->flags & PF_LOCAL_THROTTLE) ||
1904 		current->backing_dev_info == NULL ||
1905 		bdi_write_congested(current->backing_dev_info);
1906 }
1907 
1908 /*
1909  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1910  * of reclaimed pages
1911  */
1912 static noinline_for_stack unsigned long
1913 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1914 		     struct scan_control *sc, enum lru_list lru)
1915 {
1916 	LIST_HEAD(page_list);
1917 	unsigned long nr_scanned;
1918 	unsigned int nr_reclaimed = 0;
1919 	unsigned long nr_taken;
1920 	struct reclaim_stat stat;
1921 	bool file = is_file_lru(lru);
1922 	enum vm_event_item item;
1923 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924 	bool stalled = false;
1925 
1926 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1927 		if (stalled)
1928 			return 0;
1929 
1930 		/* wait a bit for the reclaimer. */
1931 		msleep(100);
1932 		stalled = true;
1933 
1934 		/* We are about to die and free our memory. Return now. */
1935 		if (fatal_signal_pending(current))
1936 			return SWAP_CLUSTER_MAX;
1937 	}
1938 
1939 	lru_add_drain();
1940 
1941 	spin_lock_irq(&pgdat->lru_lock);
1942 
1943 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1944 				     &nr_scanned, sc, lru);
1945 
1946 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1947 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1948 	if (!cgroup_reclaim(sc))
1949 		__count_vm_events(item, nr_scanned);
1950 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1951 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1952 
1953 	spin_unlock_irq(&pgdat->lru_lock);
1954 
1955 	if (nr_taken == 0)
1956 		return 0;
1957 
1958 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1959 				&stat, false);
1960 
1961 	spin_lock_irq(&pgdat->lru_lock);
1962 
1963 	move_pages_to_lru(lruvec, &page_list);
1964 
1965 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1966 	lru_note_cost(lruvec, file, stat.nr_pageout);
1967 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1968 	if (!cgroup_reclaim(sc))
1969 		__count_vm_events(item, nr_reclaimed);
1970 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1971 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1972 
1973 	spin_unlock_irq(&pgdat->lru_lock);
1974 
1975 	mem_cgroup_uncharge_list(&page_list);
1976 	free_unref_page_list(&page_list);
1977 
1978 	/*
1979 	 * If dirty pages are scanned that are not queued for IO, it
1980 	 * implies that flushers are not doing their job. This can
1981 	 * happen when memory pressure pushes dirty pages to the end of
1982 	 * the LRU before the dirty limits are breached and the dirty
1983 	 * data has expired. It can also happen when the proportion of
1984 	 * dirty pages grows not through writes but through memory
1985 	 * pressure reclaiming all the clean cache. And in some cases,
1986 	 * the flushers simply cannot keep up with the allocation
1987 	 * rate. Nudge the flusher threads in case they are asleep.
1988 	 */
1989 	if (stat.nr_unqueued_dirty == nr_taken)
1990 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1991 
1992 	sc->nr.dirty += stat.nr_dirty;
1993 	sc->nr.congested += stat.nr_congested;
1994 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1995 	sc->nr.writeback += stat.nr_writeback;
1996 	sc->nr.immediate += stat.nr_immediate;
1997 	sc->nr.taken += nr_taken;
1998 	if (file)
1999 		sc->nr.file_taken += nr_taken;
2000 
2001 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2002 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2003 	return nr_reclaimed;
2004 }
2005 
2006 static void shrink_active_list(unsigned long nr_to_scan,
2007 			       struct lruvec *lruvec,
2008 			       struct scan_control *sc,
2009 			       enum lru_list lru)
2010 {
2011 	unsigned long nr_taken;
2012 	unsigned long nr_scanned;
2013 	unsigned long vm_flags;
2014 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2015 	LIST_HEAD(l_active);
2016 	LIST_HEAD(l_inactive);
2017 	struct page *page;
2018 	unsigned nr_deactivate, nr_activate;
2019 	unsigned nr_rotated = 0;
2020 	int file = is_file_lru(lru);
2021 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2022 
2023 	lru_add_drain();
2024 
2025 	spin_lock_irq(&pgdat->lru_lock);
2026 
2027 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2028 				     &nr_scanned, sc, lru);
2029 
2030 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2031 
2032 	if (!cgroup_reclaim(sc))
2033 		__count_vm_events(PGREFILL, nr_scanned);
2034 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2035 
2036 	spin_unlock_irq(&pgdat->lru_lock);
2037 
2038 	while (!list_empty(&l_hold)) {
2039 		cond_resched();
2040 		page = lru_to_page(&l_hold);
2041 		list_del(&page->lru);
2042 
2043 		if (unlikely(!page_evictable(page))) {
2044 			putback_lru_page(page);
2045 			continue;
2046 		}
2047 
2048 		if (unlikely(buffer_heads_over_limit)) {
2049 			if (page_has_private(page) && trylock_page(page)) {
2050 				if (page_has_private(page))
2051 					try_to_release_page(page, 0);
2052 				unlock_page(page);
2053 			}
2054 		}
2055 
2056 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2057 				    &vm_flags)) {
2058 			/*
2059 			 * Identify referenced, file-backed active pages and
2060 			 * give them one more trip around the active list. So
2061 			 * that executable code get better chances to stay in
2062 			 * memory under moderate memory pressure.  Anon pages
2063 			 * are not likely to be evicted by use-once streaming
2064 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2065 			 * so we ignore them here.
2066 			 */
2067 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2068 				nr_rotated += thp_nr_pages(page);
2069 				list_add(&page->lru, &l_active);
2070 				continue;
2071 			}
2072 		}
2073 
2074 		ClearPageActive(page);	/* we are de-activating */
2075 		SetPageWorkingset(page);
2076 		list_add(&page->lru, &l_inactive);
2077 	}
2078 
2079 	/*
2080 	 * Move pages back to the lru list.
2081 	 */
2082 	spin_lock_irq(&pgdat->lru_lock);
2083 
2084 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2085 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2086 	/* Keep all free pages in l_active list */
2087 	list_splice(&l_inactive, &l_active);
2088 
2089 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2090 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2091 
2092 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2093 	spin_unlock_irq(&pgdat->lru_lock);
2094 
2095 	mem_cgroup_uncharge_list(&l_active);
2096 	free_unref_page_list(&l_active);
2097 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2098 			nr_deactivate, nr_rotated, sc->priority, file);
2099 }
2100 
2101 unsigned long reclaim_pages(struct list_head *page_list)
2102 {
2103 	int nid = NUMA_NO_NODE;
2104 	unsigned int nr_reclaimed = 0;
2105 	LIST_HEAD(node_page_list);
2106 	struct reclaim_stat dummy_stat;
2107 	struct page *page;
2108 	struct scan_control sc = {
2109 		.gfp_mask = GFP_KERNEL,
2110 		.priority = DEF_PRIORITY,
2111 		.may_writepage = 1,
2112 		.may_unmap = 1,
2113 		.may_swap = 1,
2114 	};
2115 
2116 	while (!list_empty(page_list)) {
2117 		page = lru_to_page(page_list);
2118 		if (nid == NUMA_NO_NODE) {
2119 			nid = page_to_nid(page);
2120 			INIT_LIST_HEAD(&node_page_list);
2121 		}
2122 
2123 		if (nid == page_to_nid(page)) {
2124 			ClearPageActive(page);
2125 			list_move(&page->lru, &node_page_list);
2126 			continue;
2127 		}
2128 
2129 		nr_reclaimed += shrink_page_list(&node_page_list,
2130 						NODE_DATA(nid),
2131 						&sc, 0,
2132 						&dummy_stat, false);
2133 		while (!list_empty(&node_page_list)) {
2134 			page = lru_to_page(&node_page_list);
2135 			list_del(&page->lru);
2136 			putback_lru_page(page);
2137 		}
2138 
2139 		nid = NUMA_NO_NODE;
2140 	}
2141 
2142 	if (!list_empty(&node_page_list)) {
2143 		nr_reclaimed += shrink_page_list(&node_page_list,
2144 						NODE_DATA(nid),
2145 						&sc, 0,
2146 						&dummy_stat, false);
2147 		while (!list_empty(&node_page_list)) {
2148 			page = lru_to_page(&node_page_list);
2149 			list_del(&page->lru);
2150 			putback_lru_page(page);
2151 		}
2152 	}
2153 
2154 	return nr_reclaimed;
2155 }
2156 
2157 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2158 				 struct lruvec *lruvec, struct scan_control *sc)
2159 {
2160 	if (is_active_lru(lru)) {
2161 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2162 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2163 		else
2164 			sc->skipped_deactivate = 1;
2165 		return 0;
2166 	}
2167 
2168 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2169 }
2170 
2171 /*
2172  * The inactive anon list should be small enough that the VM never has
2173  * to do too much work.
2174  *
2175  * The inactive file list should be small enough to leave most memory
2176  * to the established workingset on the scan-resistant active list,
2177  * but large enough to avoid thrashing the aggregate readahead window.
2178  *
2179  * Both inactive lists should also be large enough that each inactive
2180  * page has a chance to be referenced again before it is reclaimed.
2181  *
2182  * If that fails and refaulting is observed, the inactive list grows.
2183  *
2184  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2185  * on this LRU, maintained by the pageout code. An inactive_ratio
2186  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2187  *
2188  * total     target    max
2189  * memory    ratio     inactive
2190  * -------------------------------------
2191  *   10MB       1         5MB
2192  *  100MB       1        50MB
2193  *    1GB       3       250MB
2194  *   10GB      10       0.9GB
2195  *  100GB      31         3GB
2196  *    1TB     101        10GB
2197  *   10TB     320        32GB
2198  */
2199 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2200 {
2201 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2202 	unsigned long inactive, active;
2203 	unsigned long inactive_ratio;
2204 	unsigned long gb;
2205 
2206 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2207 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2208 
2209 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2210 	if (gb)
2211 		inactive_ratio = int_sqrt(10 * gb);
2212 	else
2213 		inactive_ratio = 1;
2214 
2215 	return inactive * inactive_ratio < active;
2216 }
2217 
2218 enum scan_balance {
2219 	SCAN_EQUAL,
2220 	SCAN_FRACT,
2221 	SCAN_ANON,
2222 	SCAN_FILE,
2223 };
2224 
2225 /*
2226  * Determine how aggressively the anon and file LRU lists should be
2227  * scanned.  The relative value of each set of LRU lists is determined
2228  * by looking at the fraction of the pages scanned we did rotate back
2229  * onto the active list instead of evict.
2230  *
2231  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2232  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2233  */
2234 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2235 			   unsigned long *nr)
2236 {
2237 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2238 	unsigned long anon_cost, file_cost, total_cost;
2239 	int swappiness = mem_cgroup_swappiness(memcg);
2240 	u64 fraction[2];
2241 	u64 denominator = 0;	/* gcc */
2242 	enum scan_balance scan_balance;
2243 	unsigned long ap, fp;
2244 	enum lru_list lru;
2245 
2246 	/* If we have no swap space, do not bother scanning anon pages. */
2247 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2248 		scan_balance = SCAN_FILE;
2249 		goto out;
2250 	}
2251 
2252 	/*
2253 	 * Global reclaim will swap to prevent OOM even with no
2254 	 * swappiness, but memcg users want to use this knob to
2255 	 * disable swapping for individual groups completely when
2256 	 * using the memory controller's swap limit feature would be
2257 	 * too expensive.
2258 	 */
2259 	if (cgroup_reclaim(sc) && !swappiness) {
2260 		scan_balance = SCAN_FILE;
2261 		goto out;
2262 	}
2263 
2264 	/*
2265 	 * Do not apply any pressure balancing cleverness when the
2266 	 * system is close to OOM, scan both anon and file equally
2267 	 * (unless the swappiness setting disagrees with swapping).
2268 	 */
2269 	if (!sc->priority && swappiness) {
2270 		scan_balance = SCAN_EQUAL;
2271 		goto out;
2272 	}
2273 
2274 	/*
2275 	 * If the system is almost out of file pages, force-scan anon.
2276 	 */
2277 	if (sc->file_is_tiny) {
2278 		scan_balance = SCAN_ANON;
2279 		goto out;
2280 	}
2281 
2282 	/*
2283 	 * If there is enough inactive page cache, we do not reclaim
2284 	 * anything from the anonymous working right now.
2285 	 */
2286 	if (sc->cache_trim_mode) {
2287 		scan_balance = SCAN_FILE;
2288 		goto out;
2289 	}
2290 
2291 	scan_balance = SCAN_FRACT;
2292 	/*
2293 	 * Calculate the pressure balance between anon and file pages.
2294 	 *
2295 	 * The amount of pressure we put on each LRU is inversely
2296 	 * proportional to the cost of reclaiming each list, as
2297 	 * determined by the share of pages that are refaulting, times
2298 	 * the relative IO cost of bringing back a swapped out
2299 	 * anonymous page vs reloading a filesystem page (swappiness).
2300 	 *
2301 	 * Although we limit that influence to ensure no list gets
2302 	 * left behind completely: at least a third of the pressure is
2303 	 * applied, before swappiness.
2304 	 *
2305 	 * With swappiness at 100, anon and file have equal IO cost.
2306 	 */
2307 	total_cost = sc->anon_cost + sc->file_cost;
2308 	anon_cost = total_cost + sc->anon_cost;
2309 	file_cost = total_cost + sc->file_cost;
2310 	total_cost = anon_cost + file_cost;
2311 
2312 	ap = swappiness * (total_cost + 1);
2313 	ap /= anon_cost + 1;
2314 
2315 	fp = (200 - swappiness) * (total_cost + 1);
2316 	fp /= file_cost + 1;
2317 
2318 	fraction[0] = ap;
2319 	fraction[1] = fp;
2320 	denominator = ap + fp;
2321 out:
2322 	for_each_evictable_lru(lru) {
2323 		int file = is_file_lru(lru);
2324 		unsigned long lruvec_size;
2325 		unsigned long scan;
2326 		unsigned long protection;
2327 
2328 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2329 		protection = mem_cgroup_protection(sc->target_mem_cgroup,
2330 						   memcg,
2331 						   sc->memcg_low_reclaim);
2332 
2333 		if (protection) {
2334 			/*
2335 			 * Scale a cgroup's reclaim pressure by proportioning
2336 			 * its current usage to its memory.low or memory.min
2337 			 * setting.
2338 			 *
2339 			 * This is important, as otherwise scanning aggression
2340 			 * becomes extremely binary -- from nothing as we
2341 			 * approach the memory protection threshold, to totally
2342 			 * nominal as we exceed it.  This results in requiring
2343 			 * setting extremely liberal protection thresholds. It
2344 			 * also means we simply get no protection at all if we
2345 			 * set it too low, which is not ideal.
2346 			 *
2347 			 * If there is any protection in place, we reduce scan
2348 			 * pressure by how much of the total memory used is
2349 			 * within protection thresholds.
2350 			 *
2351 			 * There is one special case: in the first reclaim pass,
2352 			 * we skip over all groups that are within their low
2353 			 * protection. If that fails to reclaim enough pages to
2354 			 * satisfy the reclaim goal, we come back and override
2355 			 * the best-effort low protection. However, we still
2356 			 * ideally want to honor how well-behaved groups are in
2357 			 * that case instead of simply punishing them all
2358 			 * equally. As such, we reclaim them based on how much
2359 			 * memory they are using, reducing the scan pressure
2360 			 * again by how much of the total memory used is under
2361 			 * hard protection.
2362 			 */
2363 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2364 
2365 			/* Avoid TOCTOU with earlier protection check */
2366 			cgroup_size = max(cgroup_size, protection);
2367 
2368 			scan = lruvec_size - lruvec_size * protection /
2369 				cgroup_size;
2370 
2371 			/*
2372 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2373 			 * reclaim moving forwards, avoiding decrementing
2374 			 * sc->priority further than desirable.
2375 			 */
2376 			scan = max(scan, SWAP_CLUSTER_MAX);
2377 		} else {
2378 			scan = lruvec_size;
2379 		}
2380 
2381 		scan >>= sc->priority;
2382 
2383 		/*
2384 		 * If the cgroup's already been deleted, make sure to
2385 		 * scrape out the remaining cache.
2386 		 */
2387 		if (!scan && !mem_cgroup_online(memcg))
2388 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2389 
2390 		switch (scan_balance) {
2391 		case SCAN_EQUAL:
2392 			/* Scan lists relative to size */
2393 			break;
2394 		case SCAN_FRACT:
2395 			/*
2396 			 * Scan types proportional to swappiness and
2397 			 * their relative recent reclaim efficiency.
2398 			 * Make sure we don't miss the last page on
2399 			 * the offlined memory cgroups because of a
2400 			 * round-off error.
2401 			 */
2402 			scan = mem_cgroup_online(memcg) ?
2403 			       div64_u64(scan * fraction[file], denominator) :
2404 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2405 						  denominator);
2406 			break;
2407 		case SCAN_FILE:
2408 		case SCAN_ANON:
2409 			/* Scan one type exclusively */
2410 			if ((scan_balance == SCAN_FILE) != file)
2411 				scan = 0;
2412 			break;
2413 		default:
2414 			/* Look ma, no brain */
2415 			BUG();
2416 		}
2417 
2418 		nr[lru] = scan;
2419 	}
2420 }
2421 
2422 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2423 {
2424 	unsigned long nr[NR_LRU_LISTS];
2425 	unsigned long targets[NR_LRU_LISTS];
2426 	unsigned long nr_to_scan;
2427 	enum lru_list lru;
2428 	unsigned long nr_reclaimed = 0;
2429 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2430 	struct blk_plug plug;
2431 	bool scan_adjusted;
2432 
2433 	get_scan_count(lruvec, sc, nr);
2434 
2435 	/* Record the original scan target for proportional adjustments later */
2436 	memcpy(targets, nr, sizeof(nr));
2437 
2438 	/*
2439 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2440 	 * event that can occur when there is little memory pressure e.g.
2441 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2442 	 * when the requested number of pages are reclaimed when scanning at
2443 	 * DEF_PRIORITY on the assumption that the fact we are direct
2444 	 * reclaiming implies that kswapd is not keeping up and it is best to
2445 	 * do a batch of work at once. For memcg reclaim one check is made to
2446 	 * abort proportional reclaim if either the file or anon lru has already
2447 	 * dropped to zero at the first pass.
2448 	 */
2449 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2450 			 sc->priority == DEF_PRIORITY);
2451 
2452 	blk_start_plug(&plug);
2453 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2454 					nr[LRU_INACTIVE_FILE]) {
2455 		unsigned long nr_anon, nr_file, percentage;
2456 		unsigned long nr_scanned;
2457 
2458 		for_each_evictable_lru(lru) {
2459 			if (nr[lru]) {
2460 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2461 				nr[lru] -= nr_to_scan;
2462 
2463 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2464 							    lruvec, sc);
2465 			}
2466 		}
2467 
2468 		cond_resched();
2469 
2470 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2471 			continue;
2472 
2473 		/*
2474 		 * For kswapd and memcg, reclaim at least the number of pages
2475 		 * requested. Ensure that the anon and file LRUs are scanned
2476 		 * proportionally what was requested by get_scan_count(). We
2477 		 * stop reclaiming one LRU and reduce the amount scanning
2478 		 * proportional to the original scan target.
2479 		 */
2480 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2481 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2482 
2483 		/*
2484 		 * It's just vindictive to attack the larger once the smaller
2485 		 * has gone to zero.  And given the way we stop scanning the
2486 		 * smaller below, this makes sure that we only make one nudge
2487 		 * towards proportionality once we've got nr_to_reclaim.
2488 		 */
2489 		if (!nr_file || !nr_anon)
2490 			break;
2491 
2492 		if (nr_file > nr_anon) {
2493 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2494 						targets[LRU_ACTIVE_ANON] + 1;
2495 			lru = LRU_BASE;
2496 			percentage = nr_anon * 100 / scan_target;
2497 		} else {
2498 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2499 						targets[LRU_ACTIVE_FILE] + 1;
2500 			lru = LRU_FILE;
2501 			percentage = nr_file * 100 / scan_target;
2502 		}
2503 
2504 		/* Stop scanning the smaller of the LRU */
2505 		nr[lru] = 0;
2506 		nr[lru + LRU_ACTIVE] = 0;
2507 
2508 		/*
2509 		 * Recalculate the other LRU scan count based on its original
2510 		 * scan target and the percentage scanning already complete
2511 		 */
2512 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2513 		nr_scanned = targets[lru] - nr[lru];
2514 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2515 		nr[lru] -= min(nr[lru], nr_scanned);
2516 
2517 		lru += LRU_ACTIVE;
2518 		nr_scanned = targets[lru] - nr[lru];
2519 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2520 		nr[lru] -= min(nr[lru], nr_scanned);
2521 
2522 		scan_adjusted = true;
2523 	}
2524 	blk_finish_plug(&plug);
2525 	sc->nr_reclaimed += nr_reclaimed;
2526 
2527 	/*
2528 	 * Even if we did not try to evict anon pages at all, we want to
2529 	 * rebalance the anon lru active/inactive ratio.
2530 	 */
2531 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2532 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2533 				   sc, LRU_ACTIVE_ANON);
2534 }
2535 
2536 /* Use reclaim/compaction for costly allocs or under memory pressure */
2537 static bool in_reclaim_compaction(struct scan_control *sc)
2538 {
2539 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2540 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2541 			 sc->priority < DEF_PRIORITY - 2))
2542 		return true;
2543 
2544 	return false;
2545 }
2546 
2547 /*
2548  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2549  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2550  * true if more pages should be reclaimed such that when the page allocator
2551  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2552  * It will give up earlier than that if there is difficulty reclaiming pages.
2553  */
2554 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2555 					unsigned long nr_reclaimed,
2556 					struct scan_control *sc)
2557 {
2558 	unsigned long pages_for_compaction;
2559 	unsigned long inactive_lru_pages;
2560 	int z;
2561 
2562 	/* If not in reclaim/compaction mode, stop */
2563 	if (!in_reclaim_compaction(sc))
2564 		return false;
2565 
2566 	/*
2567 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2568 	 * number of pages that were scanned. This will return to the caller
2569 	 * with the risk reclaim/compaction and the resulting allocation attempt
2570 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2571 	 * allocations through requiring that the full LRU list has been scanned
2572 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2573 	 * scan, but that approximation was wrong, and there were corner cases
2574 	 * where always a non-zero amount of pages were scanned.
2575 	 */
2576 	if (!nr_reclaimed)
2577 		return false;
2578 
2579 	/* If compaction would go ahead or the allocation would succeed, stop */
2580 	for (z = 0; z <= sc->reclaim_idx; z++) {
2581 		struct zone *zone = &pgdat->node_zones[z];
2582 		if (!managed_zone(zone))
2583 			continue;
2584 
2585 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2586 		case COMPACT_SUCCESS:
2587 		case COMPACT_CONTINUE:
2588 			return false;
2589 		default:
2590 			/* check next zone */
2591 			;
2592 		}
2593 	}
2594 
2595 	/*
2596 	 * If we have not reclaimed enough pages for compaction and the
2597 	 * inactive lists are large enough, continue reclaiming
2598 	 */
2599 	pages_for_compaction = compact_gap(sc->order);
2600 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2601 	if (get_nr_swap_pages() > 0)
2602 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2603 
2604 	return inactive_lru_pages > pages_for_compaction;
2605 }
2606 
2607 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2608 {
2609 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2610 	struct mem_cgroup *memcg;
2611 
2612 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2613 	do {
2614 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2615 		unsigned long reclaimed;
2616 		unsigned long scanned;
2617 
2618 		mem_cgroup_calculate_protection(target_memcg, memcg);
2619 
2620 		if (mem_cgroup_below_min(memcg)) {
2621 			/*
2622 			 * Hard protection.
2623 			 * If there is no reclaimable memory, OOM.
2624 			 */
2625 			continue;
2626 		} else if (mem_cgroup_below_low(memcg)) {
2627 			/*
2628 			 * Soft protection.
2629 			 * Respect the protection only as long as
2630 			 * there is an unprotected supply
2631 			 * of reclaimable memory from other cgroups.
2632 			 */
2633 			if (!sc->memcg_low_reclaim) {
2634 				sc->memcg_low_skipped = 1;
2635 				continue;
2636 			}
2637 			memcg_memory_event(memcg, MEMCG_LOW);
2638 		}
2639 
2640 		reclaimed = sc->nr_reclaimed;
2641 		scanned = sc->nr_scanned;
2642 
2643 		shrink_lruvec(lruvec, sc);
2644 
2645 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2646 			    sc->priority);
2647 
2648 		/* Record the group's reclaim efficiency */
2649 		vmpressure(sc->gfp_mask, memcg, false,
2650 			   sc->nr_scanned - scanned,
2651 			   sc->nr_reclaimed - reclaimed);
2652 
2653 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2654 }
2655 
2656 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2657 {
2658 	struct reclaim_state *reclaim_state = current->reclaim_state;
2659 	unsigned long nr_reclaimed, nr_scanned;
2660 	struct lruvec *target_lruvec;
2661 	bool reclaimable = false;
2662 	unsigned long file;
2663 
2664 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2665 
2666 again:
2667 	memset(&sc->nr, 0, sizeof(sc->nr));
2668 
2669 	nr_reclaimed = sc->nr_reclaimed;
2670 	nr_scanned = sc->nr_scanned;
2671 
2672 	/*
2673 	 * Determine the scan balance between anon and file LRUs.
2674 	 */
2675 	spin_lock_irq(&pgdat->lru_lock);
2676 	sc->anon_cost = target_lruvec->anon_cost;
2677 	sc->file_cost = target_lruvec->file_cost;
2678 	spin_unlock_irq(&pgdat->lru_lock);
2679 
2680 	/*
2681 	 * Target desirable inactive:active list ratios for the anon
2682 	 * and file LRU lists.
2683 	 */
2684 	if (!sc->force_deactivate) {
2685 		unsigned long refaults;
2686 
2687 		refaults = lruvec_page_state(target_lruvec,
2688 				WORKINGSET_ACTIVATE_ANON);
2689 		if (refaults != target_lruvec->refaults[0] ||
2690 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2691 			sc->may_deactivate |= DEACTIVATE_ANON;
2692 		else
2693 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2694 
2695 		/*
2696 		 * When refaults are being observed, it means a new
2697 		 * workingset is being established. Deactivate to get
2698 		 * rid of any stale active pages quickly.
2699 		 */
2700 		refaults = lruvec_page_state(target_lruvec,
2701 				WORKINGSET_ACTIVATE_FILE);
2702 		if (refaults != target_lruvec->refaults[1] ||
2703 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2704 			sc->may_deactivate |= DEACTIVATE_FILE;
2705 		else
2706 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2707 	} else
2708 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2709 
2710 	/*
2711 	 * If we have plenty of inactive file pages that aren't
2712 	 * thrashing, try to reclaim those first before touching
2713 	 * anonymous pages.
2714 	 */
2715 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2716 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2717 		sc->cache_trim_mode = 1;
2718 	else
2719 		sc->cache_trim_mode = 0;
2720 
2721 	/*
2722 	 * Prevent the reclaimer from falling into the cache trap: as
2723 	 * cache pages start out inactive, every cache fault will tip
2724 	 * the scan balance towards the file LRU.  And as the file LRU
2725 	 * shrinks, so does the window for rotation from references.
2726 	 * This means we have a runaway feedback loop where a tiny
2727 	 * thrashing file LRU becomes infinitely more attractive than
2728 	 * anon pages.  Try to detect this based on file LRU size.
2729 	 */
2730 	if (!cgroup_reclaim(sc)) {
2731 		unsigned long total_high_wmark = 0;
2732 		unsigned long free, anon;
2733 		int z;
2734 
2735 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2736 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2737 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2738 
2739 		for (z = 0; z < MAX_NR_ZONES; z++) {
2740 			struct zone *zone = &pgdat->node_zones[z];
2741 			if (!managed_zone(zone))
2742 				continue;
2743 
2744 			total_high_wmark += high_wmark_pages(zone);
2745 		}
2746 
2747 		/*
2748 		 * Consider anon: if that's low too, this isn't a
2749 		 * runaway file reclaim problem, but rather just
2750 		 * extreme pressure. Reclaim as per usual then.
2751 		 */
2752 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2753 
2754 		sc->file_is_tiny =
2755 			file + free <= total_high_wmark &&
2756 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2757 			anon >> sc->priority;
2758 	}
2759 
2760 	shrink_node_memcgs(pgdat, sc);
2761 
2762 	if (reclaim_state) {
2763 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2764 		reclaim_state->reclaimed_slab = 0;
2765 	}
2766 
2767 	/* Record the subtree's reclaim efficiency */
2768 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2769 		   sc->nr_scanned - nr_scanned,
2770 		   sc->nr_reclaimed - nr_reclaimed);
2771 
2772 	if (sc->nr_reclaimed - nr_reclaimed)
2773 		reclaimable = true;
2774 
2775 	if (current_is_kswapd()) {
2776 		/*
2777 		 * If reclaim is isolating dirty pages under writeback,
2778 		 * it implies that the long-lived page allocation rate
2779 		 * is exceeding the page laundering rate. Either the
2780 		 * global limits are not being effective at throttling
2781 		 * processes due to the page distribution throughout
2782 		 * zones or there is heavy usage of a slow backing
2783 		 * device. The only option is to throttle from reclaim
2784 		 * context which is not ideal as there is no guarantee
2785 		 * the dirtying process is throttled in the same way
2786 		 * balance_dirty_pages() manages.
2787 		 *
2788 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2789 		 * count the number of pages under pages flagged for
2790 		 * immediate reclaim and stall if any are encountered
2791 		 * in the nr_immediate check below.
2792 		 */
2793 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2794 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2795 
2796 		/* Allow kswapd to start writing pages during reclaim.*/
2797 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2798 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2799 
2800 		/*
2801 		 * If kswapd scans pages marked for immediate
2802 		 * reclaim and under writeback (nr_immediate), it
2803 		 * implies that pages are cycling through the LRU
2804 		 * faster than they are written so also forcibly stall.
2805 		 */
2806 		if (sc->nr.immediate)
2807 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2808 	}
2809 
2810 	/*
2811 	 * Tag a node/memcg as congested if all the dirty pages
2812 	 * scanned were backed by a congested BDI and
2813 	 * wait_iff_congested will stall.
2814 	 *
2815 	 * Legacy memcg will stall in page writeback so avoid forcibly
2816 	 * stalling in wait_iff_congested().
2817 	 */
2818 	if ((current_is_kswapd() ||
2819 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2820 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2821 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2822 
2823 	/*
2824 	 * Stall direct reclaim for IO completions if underlying BDIs
2825 	 * and node is congested. Allow kswapd to continue until it
2826 	 * starts encountering unqueued dirty pages or cycling through
2827 	 * the LRU too quickly.
2828 	 */
2829 	if (!current_is_kswapd() && current_may_throttle() &&
2830 	    !sc->hibernation_mode &&
2831 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2832 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2833 
2834 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2835 				    sc))
2836 		goto again;
2837 
2838 	/*
2839 	 * Kswapd gives up on balancing particular nodes after too
2840 	 * many failures to reclaim anything from them and goes to
2841 	 * sleep. On reclaim progress, reset the failure counter. A
2842 	 * successful direct reclaim run will revive a dormant kswapd.
2843 	 */
2844 	if (reclaimable)
2845 		pgdat->kswapd_failures = 0;
2846 }
2847 
2848 /*
2849  * Returns true if compaction should go ahead for a costly-order request, or
2850  * the allocation would already succeed without compaction. Return false if we
2851  * should reclaim first.
2852  */
2853 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2854 {
2855 	unsigned long watermark;
2856 	enum compact_result suitable;
2857 
2858 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2859 	if (suitable == COMPACT_SUCCESS)
2860 		/* Allocation should succeed already. Don't reclaim. */
2861 		return true;
2862 	if (suitable == COMPACT_SKIPPED)
2863 		/* Compaction cannot yet proceed. Do reclaim. */
2864 		return false;
2865 
2866 	/*
2867 	 * Compaction is already possible, but it takes time to run and there
2868 	 * are potentially other callers using the pages just freed. So proceed
2869 	 * with reclaim to make a buffer of free pages available to give
2870 	 * compaction a reasonable chance of completing and allocating the page.
2871 	 * Note that we won't actually reclaim the whole buffer in one attempt
2872 	 * as the target watermark in should_continue_reclaim() is lower. But if
2873 	 * we are already above the high+gap watermark, don't reclaim at all.
2874 	 */
2875 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2876 
2877 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2878 }
2879 
2880 /*
2881  * This is the direct reclaim path, for page-allocating processes.  We only
2882  * try to reclaim pages from zones which will satisfy the caller's allocation
2883  * request.
2884  *
2885  * If a zone is deemed to be full of pinned pages then just give it a light
2886  * scan then give up on it.
2887  */
2888 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2889 {
2890 	struct zoneref *z;
2891 	struct zone *zone;
2892 	unsigned long nr_soft_reclaimed;
2893 	unsigned long nr_soft_scanned;
2894 	gfp_t orig_mask;
2895 	pg_data_t *last_pgdat = NULL;
2896 
2897 	/*
2898 	 * If the number of buffer_heads in the machine exceeds the maximum
2899 	 * allowed level, force direct reclaim to scan the highmem zone as
2900 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2901 	 */
2902 	orig_mask = sc->gfp_mask;
2903 	if (buffer_heads_over_limit) {
2904 		sc->gfp_mask |= __GFP_HIGHMEM;
2905 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2906 	}
2907 
2908 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2909 					sc->reclaim_idx, sc->nodemask) {
2910 		/*
2911 		 * Take care memory controller reclaiming has small influence
2912 		 * to global LRU.
2913 		 */
2914 		if (!cgroup_reclaim(sc)) {
2915 			if (!cpuset_zone_allowed(zone,
2916 						 GFP_KERNEL | __GFP_HARDWALL))
2917 				continue;
2918 
2919 			/*
2920 			 * If we already have plenty of memory free for
2921 			 * compaction in this zone, don't free any more.
2922 			 * Even though compaction is invoked for any
2923 			 * non-zero order, only frequent costly order
2924 			 * reclamation is disruptive enough to become a
2925 			 * noticeable problem, like transparent huge
2926 			 * page allocations.
2927 			 */
2928 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2929 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2930 			    compaction_ready(zone, sc)) {
2931 				sc->compaction_ready = true;
2932 				continue;
2933 			}
2934 
2935 			/*
2936 			 * Shrink each node in the zonelist once. If the
2937 			 * zonelist is ordered by zone (not the default) then a
2938 			 * node may be shrunk multiple times but in that case
2939 			 * the user prefers lower zones being preserved.
2940 			 */
2941 			if (zone->zone_pgdat == last_pgdat)
2942 				continue;
2943 
2944 			/*
2945 			 * This steals pages from memory cgroups over softlimit
2946 			 * and returns the number of reclaimed pages and
2947 			 * scanned pages. This works for global memory pressure
2948 			 * and balancing, not for a memcg's limit.
2949 			 */
2950 			nr_soft_scanned = 0;
2951 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2952 						sc->order, sc->gfp_mask,
2953 						&nr_soft_scanned);
2954 			sc->nr_reclaimed += nr_soft_reclaimed;
2955 			sc->nr_scanned += nr_soft_scanned;
2956 			/* need some check for avoid more shrink_zone() */
2957 		}
2958 
2959 		/* See comment about same check for global reclaim above */
2960 		if (zone->zone_pgdat == last_pgdat)
2961 			continue;
2962 		last_pgdat = zone->zone_pgdat;
2963 		shrink_node(zone->zone_pgdat, sc);
2964 	}
2965 
2966 	/*
2967 	 * Restore to original mask to avoid the impact on the caller if we
2968 	 * promoted it to __GFP_HIGHMEM.
2969 	 */
2970 	sc->gfp_mask = orig_mask;
2971 }
2972 
2973 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2974 {
2975 	struct lruvec *target_lruvec;
2976 	unsigned long refaults;
2977 
2978 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2979 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2980 	target_lruvec->refaults[0] = refaults;
2981 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2982 	target_lruvec->refaults[1] = refaults;
2983 }
2984 
2985 /*
2986  * This is the main entry point to direct page reclaim.
2987  *
2988  * If a full scan of the inactive list fails to free enough memory then we
2989  * are "out of memory" and something needs to be killed.
2990  *
2991  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2992  * high - the zone may be full of dirty or under-writeback pages, which this
2993  * caller can't do much about.  We kick the writeback threads and take explicit
2994  * naps in the hope that some of these pages can be written.  But if the
2995  * allocating task holds filesystem locks which prevent writeout this might not
2996  * work, and the allocation attempt will fail.
2997  *
2998  * returns:	0, if no pages reclaimed
2999  * 		else, the number of pages reclaimed
3000  */
3001 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3002 					  struct scan_control *sc)
3003 {
3004 	int initial_priority = sc->priority;
3005 	pg_data_t *last_pgdat;
3006 	struct zoneref *z;
3007 	struct zone *zone;
3008 retry:
3009 	delayacct_freepages_start();
3010 
3011 	if (!cgroup_reclaim(sc))
3012 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3013 
3014 	do {
3015 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3016 				sc->priority);
3017 		sc->nr_scanned = 0;
3018 		shrink_zones(zonelist, sc);
3019 
3020 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3021 			break;
3022 
3023 		if (sc->compaction_ready)
3024 			break;
3025 
3026 		/*
3027 		 * If we're getting trouble reclaiming, start doing
3028 		 * writepage even in laptop mode.
3029 		 */
3030 		if (sc->priority < DEF_PRIORITY - 2)
3031 			sc->may_writepage = 1;
3032 	} while (--sc->priority >= 0);
3033 
3034 	last_pgdat = NULL;
3035 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3036 					sc->nodemask) {
3037 		if (zone->zone_pgdat == last_pgdat)
3038 			continue;
3039 		last_pgdat = zone->zone_pgdat;
3040 
3041 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3042 
3043 		if (cgroup_reclaim(sc)) {
3044 			struct lruvec *lruvec;
3045 
3046 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3047 						   zone->zone_pgdat);
3048 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3049 		}
3050 	}
3051 
3052 	delayacct_freepages_end();
3053 
3054 	if (sc->nr_reclaimed)
3055 		return sc->nr_reclaimed;
3056 
3057 	/* Aborted reclaim to try compaction? don't OOM, then */
3058 	if (sc->compaction_ready)
3059 		return 1;
3060 
3061 	/*
3062 	 * We make inactive:active ratio decisions based on the node's
3063 	 * composition of memory, but a restrictive reclaim_idx or a
3064 	 * memory.low cgroup setting can exempt large amounts of
3065 	 * memory from reclaim. Neither of which are very common, so
3066 	 * instead of doing costly eligibility calculations of the
3067 	 * entire cgroup subtree up front, we assume the estimates are
3068 	 * good, and retry with forcible deactivation if that fails.
3069 	 */
3070 	if (sc->skipped_deactivate) {
3071 		sc->priority = initial_priority;
3072 		sc->force_deactivate = 1;
3073 		sc->skipped_deactivate = 0;
3074 		goto retry;
3075 	}
3076 
3077 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3078 	if (sc->memcg_low_skipped) {
3079 		sc->priority = initial_priority;
3080 		sc->force_deactivate = 0;
3081 		sc->memcg_low_reclaim = 1;
3082 		sc->memcg_low_skipped = 0;
3083 		goto retry;
3084 	}
3085 
3086 	return 0;
3087 }
3088 
3089 static bool allow_direct_reclaim(pg_data_t *pgdat)
3090 {
3091 	struct zone *zone;
3092 	unsigned long pfmemalloc_reserve = 0;
3093 	unsigned long free_pages = 0;
3094 	int i;
3095 	bool wmark_ok;
3096 
3097 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3098 		return true;
3099 
3100 	for (i = 0; i <= ZONE_NORMAL; i++) {
3101 		zone = &pgdat->node_zones[i];
3102 		if (!managed_zone(zone))
3103 			continue;
3104 
3105 		if (!zone_reclaimable_pages(zone))
3106 			continue;
3107 
3108 		pfmemalloc_reserve += min_wmark_pages(zone);
3109 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3110 	}
3111 
3112 	/* If there are no reserves (unexpected config) then do not throttle */
3113 	if (!pfmemalloc_reserve)
3114 		return true;
3115 
3116 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3117 
3118 	/* kswapd must be awake if processes are being throttled */
3119 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3120 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3121 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3122 
3123 		wake_up_interruptible(&pgdat->kswapd_wait);
3124 	}
3125 
3126 	return wmark_ok;
3127 }
3128 
3129 /*
3130  * Throttle direct reclaimers if backing storage is backed by the network
3131  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3132  * depleted. kswapd will continue to make progress and wake the processes
3133  * when the low watermark is reached.
3134  *
3135  * Returns true if a fatal signal was delivered during throttling. If this
3136  * happens, the page allocator should not consider triggering the OOM killer.
3137  */
3138 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3139 					nodemask_t *nodemask)
3140 {
3141 	struct zoneref *z;
3142 	struct zone *zone;
3143 	pg_data_t *pgdat = NULL;
3144 
3145 	/*
3146 	 * Kernel threads should not be throttled as they may be indirectly
3147 	 * responsible for cleaning pages necessary for reclaim to make forward
3148 	 * progress. kjournald for example may enter direct reclaim while
3149 	 * committing a transaction where throttling it could forcing other
3150 	 * processes to block on log_wait_commit().
3151 	 */
3152 	if (current->flags & PF_KTHREAD)
3153 		goto out;
3154 
3155 	/*
3156 	 * If a fatal signal is pending, this process should not throttle.
3157 	 * It should return quickly so it can exit and free its memory
3158 	 */
3159 	if (fatal_signal_pending(current))
3160 		goto out;
3161 
3162 	/*
3163 	 * Check if the pfmemalloc reserves are ok by finding the first node
3164 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3165 	 * GFP_KERNEL will be required for allocating network buffers when
3166 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3167 	 *
3168 	 * Throttling is based on the first usable node and throttled processes
3169 	 * wait on a queue until kswapd makes progress and wakes them. There
3170 	 * is an affinity then between processes waking up and where reclaim
3171 	 * progress has been made assuming the process wakes on the same node.
3172 	 * More importantly, processes running on remote nodes will not compete
3173 	 * for remote pfmemalloc reserves and processes on different nodes
3174 	 * should make reasonable progress.
3175 	 */
3176 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3177 					gfp_zone(gfp_mask), nodemask) {
3178 		if (zone_idx(zone) > ZONE_NORMAL)
3179 			continue;
3180 
3181 		/* Throttle based on the first usable node */
3182 		pgdat = zone->zone_pgdat;
3183 		if (allow_direct_reclaim(pgdat))
3184 			goto out;
3185 		break;
3186 	}
3187 
3188 	/* If no zone was usable by the allocation flags then do not throttle */
3189 	if (!pgdat)
3190 		goto out;
3191 
3192 	/* Account for the throttling */
3193 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3194 
3195 	/*
3196 	 * If the caller cannot enter the filesystem, it's possible that it
3197 	 * is due to the caller holding an FS lock or performing a journal
3198 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3199 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3200 	 * blocked waiting on the same lock. Instead, throttle for up to a
3201 	 * second before continuing.
3202 	 */
3203 	if (!(gfp_mask & __GFP_FS)) {
3204 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3205 			allow_direct_reclaim(pgdat), HZ);
3206 
3207 		goto check_pending;
3208 	}
3209 
3210 	/* Throttle until kswapd wakes the process */
3211 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3212 		allow_direct_reclaim(pgdat));
3213 
3214 check_pending:
3215 	if (fatal_signal_pending(current))
3216 		return true;
3217 
3218 out:
3219 	return false;
3220 }
3221 
3222 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3223 				gfp_t gfp_mask, nodemask_t *nodemask)
3224 {
3225 	unsigned long nr_reclaimed;
3226 	struct scan_control sc = {
3227 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3228 		.gfp_mask = current_gfp_context(gfp_mask),
3229 		.reclaim_idx = gfp_zone(gfp_mask),
3230 		.order = order,
3231 		.nodemask = nodemask,
3232 		.priority = DEF_PRIORITY,
3233 		.may_writepage = !laptop_mode,
3234 		.may_unmap = 1,
3235 		.may_swap = 1,
3236 	};
3237 
3238 	/*
3239 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3240 	 * Confirm they are large enough for max values.
3241 	 */
3242 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3243 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3244 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3245 
3246 	/*
3247 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3248 	 * 1 is returned so that the page allocator does not OOM kill at this
3249 	 * point.
3250 	 */
3251 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3252 		return 1;
3253 
3254 	set_task_reclaim_state(current, &sc.reclaim_state);
3255 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3256 
3257 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3258 
3259 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3260 	set_task_reclaim_state(current, NULL);
3261 
3262 	return nr_reclaimed;
3263 }
3264 
3265 #ifdef CONFIG_MEMCG
3266 
3267 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3268 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3269 						gfp_t gfp_mask, bool noswap,
3270 						pg_data_t *pgdat,
3271 						unsigned long *nr_scanned)
3272 {
3273 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3274 	struct scan_control sc = {
3275 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3276 		.target_mem_cgroup = memcg,
3277 		.may_writepage = !laptop_mode,
3278 		.may_unmap = 1,
3279 		.reclaim_idx = MAX_NR_ZONES - 1,
3280 		.may_swap = !noswap,
3281 	};
3282 
3283 	WARN_ON_ONCE(!current->reclaim_state);
3284 
3285 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3286 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3287 
3288 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3289 						      sc.gfp_mask);
3290 
3291 	/*
3292 	 * NOTE: Although we can get the priority field, using it
3293 	 * here is not a good idea, since it limits the pages we can scan.
3294 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3295 	 * will pick up pages from other mem cgroup's as well. We hack
3296 	 * the priority and make it zero.
3297 	 */
3298 	shrink_lruvec(lruvec, &sc);
3299 
3300 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3301 
3302 	*nr_scanned = sc.nr_scanned;
3303 
3304 	return sc.nr_reclaimed;
3305 }
3306 
3307 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3308 					   unsigned long nr_pages,
3309 					   gfp_t gfp_mask,
3310 					   bool may_swap)
3311 {
3312 	unsigned long nr_reclaimed;
3313 	unsigned int noreclaim_flag;
3314 	struct scan_control sc = {
3315 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3316 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3317 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3318 		.reclaim_idx = MAX_NR_ZONES - 1,
3319 		.target_mem_cgroup = memcg,
3320 		.priority = DEF_PRIORITY,
3321 		.may_writepage = !laptop_mode,
3322 		.may_unmap = 1,
3323 		.may_swap = may_swap,
3324 	};
3325 	/*
3326 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3327 	 * equal pressure on all the nodes. This is based on the assumption that
3328 	 * the reclaim does not bail out early.
3329 	 */
3330 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3331 
3332 	set_task_reclaim_state(current, &sc.reclaim_state);
3333 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3334 	noreclaim_flag = memalloc_noreclaim_save();
3335 
3336 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3337 
3338 	memalloc_noreclaim_restore(noreclaim_flag);
3339 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3340 	set_task_reclaim_state(current, NULL);
3341 
3342 	return nr_reclaimed;
3343 }
3344 #endif
3345 
3346 static void age_active_anon(struct pglist_data *pgdat,
3347 				struct scan_control *sc)
3348 {
3349 	struct mem_cgroup *memcg;
3350 	struct lruvec *lruvec;
3351 
3352 	if (!total_swap_pages)
3353 		return;
3354 
3355 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3356 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3357 		return;
3358 
3359 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3360 	do {
3361 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3362 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3363 				   sc, LRU_ACTIVE_ANON);
3364 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3365 	} while (memcg);
3366 }
3367 
3368 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3369 {
3370 	int i;
3371 	struct zone *zone;
3372 
3373 	/*
3374 	 * Check for watermark boosts top-down as the higher zones
3375 	 * are more likely to be boosted. Both watermarks and boosts
3376 	 * should not be checked at the same time as reclaim would
3377 	 * start prematurely when there is no boosting and a lower
3378 	 * zone is balanced.
3379 	 */
3380 	for (i = highest_zoneidx; i >= 0; i--) {
3381 		zone = pgdat->node_zones + i;
3382 		if (!managed_zone(zone))
3383 			continue;
3384 
3385 		if (zone->watermark_boost)
3386 			return true;
3387 	}
3388 
3389 	return false;
3390 }
3391 
3392 /*
3393  * Returns true if there is an eligible zone balanced for the request order
3394  * and highest_zoneidx
3395  */
3396 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3397 {
3398 	int i;
3399 	unsigned long mark = -1;
3400 	struct zone *zone;
3401 
3402 	/*
3403 	 * Check watermarks bottom-up as lower zones are more likely to
3404 	 * meet watermarks.
3405 	 */
3406 	for (i = 0; i <= highest_zoneidx; i++) {
3407 		zone = pgdat->node_zones + i;
3408 
3409 		if (!managed_zone(zone))
3410 			continue;
3411 
3412 		mark = high_wmark_pages(zone);
3413 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3414 			return true;
3415 	}
3416 
3417 	/*
3418 	 * If a node has no populated zone within highest_zoneidx, it does not
3419 	 * need balancing by definition. This can happen if a zone-restricted
3420 	 * allocation tries to wake a remote kswapd.
3421 	 */
3422 	if (mark == -1)
3423 		return true;
3424 
3425 	return false;
3426 }
3427 
3428 /* Clear pgdat state for congested, dirty or under writeback. */
3429 static void clear_pgdat_congested(pg_data_t *pgdat)
3430 {
3431 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3432 
3433 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3434 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3435 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3436 }
3437 
3438 /*
3439  * Prepare kswapd for sleeping. This verifies that there are no processes
3440  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3441  *
3442  * Returns true if kswapd is ready to sleep
3443  */
3444 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3445 				int highest_zoneidx)
3446 {
3447 	/*
3448 	 * The throttled processes are normally woken up in balance_pgdat() as
3449 	 * soon as allow_direct_reclaim() is true. But there is a potential
3450 	 * race between when kswapd checks the watermarks and a process gets
3451 	 * throttled. There is also a potential race if processes get
3452 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3453 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3454 	 * the wake up checks. If kswapd is going to sleep, no process should
3455 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3456 	 * the wake up is premature, processes will wake kswapd and get
3457 	 * throttled again. The difference from wake ups in balance_pgdat() is
3458 	 * that here we are under prepare_to_wait().
3459 	 */
3460 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3461 		wake_up_all(&pgdat->pfmemalloc_wait);
3462 
3463 	/* Hopeless node, leave it to direct reclaim */
3464 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3465 		return true;
3466 
3467 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3468 		clear_pgdat_congested(pgdat);
3469 		return true;
3470 	}
3471 
3472 	return false;
3473 }
3474 
3475 /*
3476  * kswapd shrinks a node of pages that are at or below the highest usable
3477  * zone that is currently unbalanced.
3478  *
3479  * Returns true if kswapd scanned at least the requested number of pages to
3480  * reclaim or if the lack of progress was due to pages under writeback.
3481  * This is used to determine if the scanning priority needs to be raised.
3482  */
3483 static bool kswapd_shrink_node(pg_data_t *pgdat,
3484 			       struct scan_control *sc)
3485 {
3486 	struct zone *zone;
3487 	int z;
3488 
3489 	/* Reclaim a number of pages proportional to the number of zones */
3490 	sc->nr_to_reclaim = 0;
3491 	for (z = 0; z <= sc->reclaim_idx; z++) {
3492 		zone = pgdat->node_zones + z;
3493 		if (!managed_zone(zone))
3494 			continue;
3495 
3496 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3497 	}
3498 
3499 	/*
3500 	 * Historically care was taken to put equal pressure on all zones but
3501 	 * now pressure is applied based on node LRU order.
3502 	 */
3503 	shrink_node(pgdat, sc);
3504 
3505 	/*
3506 	 * Fragmentation may mean that the system cannot be rebalanced for
3507 	 * high-order allocations. If twice the allocation size has been
3508 	 * reclaimed then recheck watermarks only at order-0 to prevent
3509 	 * excessive reclaim. Assume that a process requested a high-order
3510 	 * can direct reclaim/compact.
3511 	 */
3512 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3513 		sc->order = 0;
3514 
3515 	return sc->nr_scanned >= sc->nr_to_reclaim;
3516 }
3517 
3518 /*
3519  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3520  * that are eligible for use by the caller until at least one zone is
3521  * balanced.
3522  *
3523  * Returns the order kswapd finished reclaiming at.
3524  *
3525  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3526  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3527  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3528  * or lower is eligible for reclaim until at least one usable zone is
3529  * balanced.
3530  */
3531 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3532 {
3533 	int i;
3534 	unsigned long nr_soft_reclaimed;
3535 	unsigned long nr_soft_scanned;
3536 	unsigned long pflags;
3537 	unsigned long nr_boost_reclaim;
3538 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3539 	bool boosted;
3540 	struct zone *zone;
3541 	struct scan_control sc = {
3542 		.gfp_mask = GFP_KERNEL,
3543 		.order = order,
3544 		.may_unmap = 1,
3545 	};
3546 
3547 	set_task_reclaim_state(current, &sc.reclaim_state);
3548 	psi_memstall_enter(&pflags);
3549 	__fs_reclaim_acquire();
3550 
3551 	count_vm_event(PAGEOUTRUN);
3552 
3553 	/*
3554 	 * Account for the reclaim boost. Note that the zone boost is left in
3555 	 * place so that parallel allocations that are near the watermark will
3556 	 * stall or direct reclaim until kswapd is finished.
3557 	 */
3558 	nr_boost_reclaim = 0;
3559 	for (i = 0; i <= highest_zoneidx; i++) {
3560 		zone = pgdat->node_zones + i;
3561 		if (!managed_zone(zone))
3562 			continue;
3563 
3564 		nr_boost_reclaim += zone->watermark_boost;
3565 		zone_boosts[i] = zone->watermark_boost;
3566 	}
3567 	boosted = nr_boost_reclaim;
3568 
3569 restart:
3570 	sc.priority = DEF_PRIORITY;
3571 	do {
3572 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3573 		bool raise_priority = true;
3574 		bool balanced;
3575 		bool ret;
3576 
3577 		sc.reclaim_idx = highest_zoneidx;
3578 
3579 		/*
3580 		 * If the number of buffer_heads exceeds the maximum allowed
3581 		 * then consider reclaiming from all zones. This has a dual
3582 		 * purpose -- on 64-bit systems it is expected that
3583 		 * buffer_heads are stripped during active rotation. On 32-bit
3584 		 * systems, highmem pages can pin lowmem memory and shrinking
3585 		 * buffers can relieve lowmem pressure. Reclaim may still not
3586 		 * go ahead if all eligible zones for the original allocation
3587 		 * request are balanced to avoid excessive reclaim from kswapd.
3588 		 */
3589 		if (buffer_heads_over_limit) {
3590 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3591 				zone = pgdat->node_zones + i;
3592 				if (!managed_zone(zone))
3593 					continue;
3594 
3595 				sc.reclaim_idx = i;
3596 				break;
3597 			}
3598 		}
3599 
3600 		/*
3601 		 * If the pgdat is imbalanced then ignore boosting and preserve
3602 		 * the watermarks for a later time and restart. Note that the
3603 		 * zone watermarks will be still reset at the end of balancing
3604 		 * on the grounds that the normal reclaim should be enough to
3605 		 * re-evaluate if boosting is required when kswapd next wakes.
3606 		 */
3607 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3608 		if (!balanced && nr_boost_reclaim) {
3609 			nr_boost_reclaim = 0;
3610 			goto restart;
3611 		}
3612 
3613 		/*
3614 		 * If boosting is not active then only reclaim if there are no
3615 		 * eligible zones. Note that sc.reclaim_idx is not used as
3616 		 * buffer_heads_over_limit may have adjusted it.
3617 		 */
3618 		if (!nr_boost_reclaim && balanced)
3619 			goto out;
3620 
3621 		/* Limit the priority of boosting to avoid reclaim writeback */
3622 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3623 			raise_priority = false;
3624 
3625 		/*
3626 		 * Do not writeback or swap pages for boosted reclaim. The
3627 		 * intent is to relieve pressure not issue sub-optimal IO
3628 		 * from reclaim context. If no pages are reclaimed, the
3629 		 * reclaim will be aborted.
3630 		 */
3631 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3632 		sc.may_swap = !nr_boost_reclaim;
3633 
3634 		/*
3635 		 * Do some background aging of the anon list, to give
3636 		 * pages a chance to be referenced before reclaiming. All
3637 		 * pages are rotated regardless of classzone as this is
3638 		 * about consistent aging.
3639 		 */
3640 		age_active_anon(pgdat, &sc);
3641 
3642 		/*
3643 		 * If we're getting trouble reclaiming, start doing writepage
3644 		 * even in laptop mode.
3645 		 */
3646 		if (sc.priority < DEF_PRIORITY - 2)
3647 			sc.may_writepage = 1;
3648 
3649 		/* Call soft limit reclaim before calling shrink_node. */
3650 		sc.nr_scanned = 0;
3651 		nr_soft_scanned = 0;
3652 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3653 						sc.gfp_mask, &nr_soft_scanned);
3654 		sc.nr_reclaimed += nr_soft_reclaimed;
3655 
3656 		/*
3657 		 * There should be no need to raise the scanning priority if
3658 		 * enough pages are already being scanned that that high
3659 		 * watermark would be met at 100% efficiency.
3660 		 */
3661 		if (kswapd_shrink_node(pgdat, &sc))
3662 			raise_priority = false;
3663 
3664 		/*
3665 		 * If the low watermark is met there is no need for processes
3666 		 * to be throttled on pfmemalloc_wait as they should not be
3667 		 * able to safely make forward progress. Wake them
3668 		 */
3669 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3670 				allow_direct_reclaim(pgdat))
3671 			wake_up_all(&pgdat->pfmemalloc_wait);
3672 
3673 		/* Check if kswapd should be suspending */
3674 		__fs_reclaim_release();
3675 		ret = try_to_freeze();
3676 		__fs_reclaim_acquire();
3677 		if (ret || kthread_should_stop())
3678 			break;
3679 
3680 		/*
3681 		 * Raise priority if scanning rate is too low or there was no
3682 		 * progress in reclaiming pages
3683 		 */
3684 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3685 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3686 
3687 		/*
3688 		 * If reclaim made no progress for a boost, stop reclaim as
3689 		 * IO cannot be queued and it could be an infinite loop in
3690 		 * extreme circumstances.
3691 		 */
3692 		if (nr_boost_reclaim && !nr_reclaimed)
3693 			break;
3694 
3695 		if (raise_priority || !nr_reclaimed)
3696 			sc.priority--;
3697 	} while (sc.priority >= 1);
3698 
3699 	if (!sc.nr_reclaimed)
3700 		pgdat->kswapd_failures++;
3701 
3702 out:
3703 	/* If reclaim was boosted, account for the reclaim done in this pass */
3704 	if (boosted) {
3705 		unsigned long flags;
3706 
3707 		for (i = 0; i <= highest_zoneidx; i++) {
3708 			if (!zone_boosts[i])
3709 				continue;
3710 
3711 			/* Increments are under the zone lock */
3712 			zone = pgdat->node_zones + i;
3713 			spin_lock_irqsave(&zone->lock, flags);
3714 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3715 			spin_unlock_irqrestore(&zone->lock, flags);
3716 		}
3717 
3718 		/*
3719 		 * As there is now likely space, wakeup kcompact to defragment
3720 		 * pageblocks.
3721 		 */
3722 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3723 	}
3724 
3725 	snapshot_refaults(NULL, pgdat);
3726 	__fs_reclaim_release();
3727 	psi_memstall_leave(&pflags);
3728 	set_task_reclaim_state(current, NULL);
3729 
3730 	/*
3731 	 * Return the order kswapd stopped reclaiming at as
3732 	 * prepare_kswapd_sleep() takes it into account. If another caller
3733 	 * entered the allocator slow path while kswapd was awake, order will
3734 	 * remain at the higher level.
3735 	 */
3736 	return sc.order;
3737 }
3738 
3739 /*
3740  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3741  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3742  * not a valid index then either kswapd runs for first time or kswapd couldn't
3743  * sleep after previous reclaim attempt (node is still unbalanced). In that
3744  * case return the zone index of the previous kswapd reclaim cycle.
3745  */
3746 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3747 					   enum zone_type prev_highest_zoneidx)
3748 {
3749 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3750 
3751 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3752 }
3753 
3754 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3755 				unsigned int highest_zoneidx)
3756 {
3757 	long remaining = 0;
3758 	DEFINE_WAIT(wait);
3759 
3760 	if (freezing(current) || kthread_should_stop())
3761 		return;
3762 
3763 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3764 
3765 	/*
3766 	 * Try to sleep for a short interval. Note that kcompactd will only be
3767 	 * woken if it is possible to sleep for a short interval. This is
3768 	 * deliberate on the assumption that if reclaim cannot keep an
3769 	 * eligible zone balanced that it's also unlikely that compaction will
3770 	 * succeed.
3771 	 */
3772 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3773 		/*
3774 		 * Compaction records what page blocks it recently failed to
3775 		 * isolate pages from and skips them in the future scanning.
3776 		 * When kswapd is going to sleep, it is reasonable to assume
3777 		 * that pages and compaction may succeed so reset the cache.
3778 		 */
3779 		reset_isolation_suitable(pgdat);
3780 
3781 		/*
3782 		 * We have freed the memory, now we should compact it to make
3783 		 * allocation of the requested order possible.
3784 		 */
3785 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3786 
3787 		remaining = schedule_timeout(HZ/10);
3788 
3789 		/*
3790 		 * If woken prematurely then reset kswapd_highest_zoneidx and
3791 		 * order. The values will either be from a wakeup request or
3792 		 * the previous request that slept prematurely.
3793 		 */
3794 		if (remaining) {
3795 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3796 					kswapd_highest_zoneidx(pgdat,
3797 							highest_zoneidx));
3798 
3799 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3800 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3801 		}
3802 
3803 		finish_wait(&pgdat->kswapd_wait, &wait);
3804 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3805 	}
3806 
3807 	/*
3808 	 * After a short sleep, check if it was a premature sleep. If not, then
3809 	 * go fully to sleep until explicitly woken up.
3810 	 */
3811 	if (!remaining &&
3812 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3813 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3814 
3815 		/*
3816 		 * vmstat counters are not perfectly accurate and the estimated
3817 		 * value for counters such as NR_FREE_PAGES can deviate from the
3818 		 * true value by nr_online_cpus * threshold. To avoid the zone
3819 		 * watermarks being breached while under pressure, we reduce the
3820 		 * per-cpu vmstat threshold while kswapd is awake and restore
3821 		 * them before going back to sleep.
3822 		 */
3823 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3824 
3825 		if (!kthread_should_stop())
3826 			schedule();
3827 
3828 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3829 	} else {
3830 		if (remaining)
3831 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3832 		else
3833 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3834 	}
3835 	finish_wait(&pgdat->kswapd_wait, &wait);
3836 }
3837 
3838 /*
3839  * The background pageout daemon, started as a kernel thread
3840  * from the init process.
3841  *
3842  * This basically trickles out pages so that we have _some_
3843  * free memory available even if there is no other activity
3844  * that frees anything up. This is needed for things like routing
3845  * etc, where we otherwise might have all activity going on in
3846  * asynchronous contexts that cannot page things out.
3847  *
3848  * If there are applications that are active memory-allocators
3849  * (most normal use), this basically shouldn't matter.
3850  */
3851 static int kswapd(void *p)
3852 {
3853 	unsigned int alloc_order, reclaim_order;
3854 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3855 	pg_data_t *pgdat = (pg_data_t*)p;
3856 	struct task_struct *tsk = current;
3857 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3858 
3859 	if (!cpumask_empty(cpumask))
3860 		set_cpus_allowed_ptr(tsk, cpumask);
3861 
3862 	/*
3863 	 * Tell the memory management that we're a "memory allocator",
3864 	 * and that if we need more memory we should get access to it
3865 	 * regardless (see "__alloc_pages()"). "kswapd" should
3866 	 * never get caught in the normal page freeing logic.
3867 	 *
3868 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3869 	 * you need a small amount of memory in order to be able to
3870 	 * page out something else, and this flag essentially protects
3871 	 * us from recursively trying to free more memory as we're
3872 	 * trying to free the first piece of memory in the first place).
3873 	 */
3874 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3875 	set_freezable();
3876 
3877 	WRITE_ONCE(pgdat->kswapd_order, 0);
3878 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3879 	for ( ; ; ) {
3880 		bool ret;
3881 
3882 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3883 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3884 							highest_zoneidx);
3885 
3886 kswapd_try_sleep:
3887 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3888 					highest_zoneidx);
3889 
3890 		/* Read the new order and highest_zoneidx */
3891 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3892 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3893 							highest_zoneidx);
3894 		WRITE_ONCE(pgdat->kswapd_order, 0);
3895 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3896 
3897 		ret = try_to_freeze();
3898 		if (kthread_should_stop())
3899 			break;
3900 
3901 		/*
3902 		 * We can speed up thawing tasks if we don't call balance_pgdat
3903 		 * after returning from the refrigerator
3904 		 */
3905 		if (ret)
3906 			continue;
3907 
3908 		/*
3909 		 * Reclaim begins at the requested order but if a high-order
3910 		 * reclaim fails then kswapd falls back to reclaiming for
3911 		 * order-0. If that happens, kswapd will consider sleeping
3912 		 * for the order it finished reclaiming at (reclaim_order)
3913 		 * but kcompactd is woken to compact for the original
3914 		 * request (alloc_order).
3915 		 */
3916 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3917 						alloc_order);
3918 		reclaim_order = balance_pgdat(pgdat, alloc_order,
3919 						highest_zoneidx);
3920 		if (reclaim_order < alloc_order)
3921 			goto kswapd_try_sleep;
3922 	}
3923 
3924 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3925 
3926 	return 0;
3927 }
3928 
3929 /*
3930  * A zone is low on free memory or too fragmented for high-order memory.  If
3931  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3932  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3933  * has failed or is not needed, still wake up kcompactd if only compaction is
3934  * needed.
3935  */
3936 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3937 		   enum zone_type highest_zoneidx)
3938 {
3939 	pg_data_t *pgdat;
3940 	enum zone_type curr_idx;
3941 
3942 	if (!managed_zone(zone))
3943 		return;
3944 
3945 	if (!cpuset_zone_allowed(zone, gfp_flags))
3946 		return;
3947 
3948 	pgdat = zone->zone_pgdat;
3949 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3950 
3951 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3952 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3953 
3954 	if (READ_ONCE(pgdat->kswapd_order) < order)
3955 		WRITE_ONCE(pgdat->kswapd_order, order);
3956 
3957 	if (!waitqueue_active(&pgdat->kswapd_wait))
3958 		return;
3959 
3960 	/* Hopeless node, leave it to direct reclaim if possible */
3961 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3962 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3963 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3964 		/*
3965 		 * There may be plenty of free memory available, but it's too
3966 		 * fragmented for high-order allocations.  Wake up kcompactd
3967 		 * and rely on compaction_suitable() to determine if it's
3968 		 * needed.  If it fails, it will defer subsequent attempts to
3969 		 * ratelimit its work.
3970 		 */
3971 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3972 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3973 		return;
3974 	}
3975 
3976 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3977 				      gfp_flags);
3978 	wake_up_interruptible(&pgdat->kswapd_wait);
3979 }
3980 
3981 #ifdef CONFIG_HIBERNATION
3982 /*
3983  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3984  * freed pages.
3985  *
3986  * Rather than trying to age LRUs the aim is to preserve the overall
3987  * LRU order by reclaiming preferentially
3988  * inactive > active > active referenced > active mapped
3989  */
3990 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3991 {
3992 	struct scan_control sc = {
3993 		.nr_to_reclaim = nr_to_reclaim,
3994 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3995 		.reclaim_idx = MAX_NR_ZONES - 1,
3996 		.priority = DEF_PRIORITY,
3997 		.may_writepage = 1,
3998 		.may_unmap = 1,
3999 		.may_swap = 1,
4000 		.hibernation_mode = 1,
4001 	};
4002 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4003 	unsigned long nr_reclaimed;
4004 	unsigned int noreclaim_flag;
4005 
4006 	fs_reclaim_acquire(sc.gfp_mask);
4007 	noreclaim_flag = memalloc_noreclaim_save();
4008 	set_task_reclaim_state(current, &sc.reclaim_state);
4009 
4010 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4011 
4012 	set_task_reclaim_state(current, NULL);
4013 	memalloc_noreclaim_restore(noreclaim_flag);
4014 	fs_reclaim_release(sc.gfp_mask);
4015 
4016 	return nr_reclaimed;
4017 }
4018 #endif /* CONFIG_HIBERNATION */
4019 
4020 /*
4021  * This kswapd start function will be called by init and node-hot-add.
4022  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4023  */
4024 int kswapd_run(int nid)
4025 {
4026 	pg_data_t *pgdat = NODE_DATA(nid);
4027 	int ret = 0;
4028 
4029 	if (pgdat->kswapd)
4030 		return 0;
4031 
4032 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4033 	if (IS_ERR(pgdat->kswapd)) {
4034 		/* failure at boot is fatal */
4035 		BUG_ON(system_state < SYSTEM_RUNNING);
4036 		pr_err("Failed to start kswapd on node %d\n", nid);
4037 		ret = PTR_ERR(pgdat->kswapd);
4038 		pgdat->kswapd = NULL;
4039 	}
4040 	return ret;
4041 }
4042 
4043 /*
4044  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4045  * hold mem_hotplug_begin/end().
4046  */
4047 void kswapd_stop(int nid)
4048 {
4049 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4050 
4051 	if (kswapd) {
4052 		kthread_stop(kswapd);
4053 		NODE_DATA(nid)->kswapd = NULL;
4054 	}
4055 }
4056 
4057 static int __init kswapd_init(void)
4058 {
4059 	int nid;
4060 
4061 	swap_setup();
4062 	for_each_node_state(nid, N_MEMORY)
4063  		kswapd_run(nid);
4064 	return 0;
4065 }
4066 
4067 module_init(kswapd_init)
4068 
4069 #ifdef CONFIG_NUMA
4070 /*
4071  * Node reclaim mode
4072  *
4073  * If non-zero call node_reclaim when the number of free pages falls below
4074  * the watermarks.
4075  */
4076 int node_reclaim_mode __read_mostly;
4077 
4078 #define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
4079 #define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4080 
4081 /*
4082  * Priority for NODE_RECLAIM. This determines the fraction of pages
4083  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4084  * a zone.
4085  */
4086 #define NODE_RECLAIM_PRIORITY 4
4087 
4088 /*
4089  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4090  * occur.
4091  */
4092 int sysctl_min_unmapped_ratio = 1;
4093 
4094 /*
4095  * If the number of slab pages in a zone grows beyond this percentage then
4096  * slab reclaim needs to occur.
4097  */
4098 int sysctl_min_slab_ratio = 5;
4099 
4100 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4101 {
4102 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4103 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4104 		node_page_state(pgdat, NR_ACTIVE_FILE);
4105 
4106 	/*
4107 	 * It's possible for there to be more file mapped pages than
4108 	 * accounted for by the pages on the file LRU lists because
4109 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4110 	 */
4111 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4112 }
4113 
4114 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4115 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4116 {
4117 	unsigned long nr_pagecache_reclaimable;
4118 	unsigned long delta = 0;
4119 
4120 	/*
4121 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4122 	 * potentially reclaimable. Otherwise, we have to worry about
4123 	 * pages like swapcache and node_unmapped_file_pages() provides
4124 	 * a better estimate
4125 	 */
4126 	if (node_reclaim_mode & RECLAIM_UNMAP)
4127 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4128 	else
4129 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4130 
4131 	/* If we can't clean pages, remove dirty pages from consideration */
4132 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4133 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4134 
4135 	/* Watch for any possible underflows due to delta */
4136 	if (unlikely(delta > nr_pagecache_reclaimable))
4137 		delta = nr_pagecache_reclaimable;
4138 
4139 	return nr_pagecache_reclaimable - delta;
4140 }
4141 
4142 /*
4143  * Try to free up some pages from this node through reclaim.
4144  */
4145 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4146 {
4147 	/* Minimum pages needed in order to stay on node */
4148 	const unsigned long nr_pages = 1 << order;
4149 	struct task_struct *p = current;
4150 	unsigned int noreclaim_flag;
4151 	struct scan_control sc = {
4152 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4153 		.gfp_mask = current_gfp_context(gfp_mask),
4154 		.order = order,
4155 		.priority = NODE_RECLAIM_PRIORITY,
4156 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4157 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4158 		.may_swap = 1,
4159 		.reclaim_idx = gfp_zone(gfp_mask),
4160 	};
4161 
4162 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4163 					   sc.gfp_mask);
4164 
4165 	cond_resched();
4166 	fs_reclaim_acquire(sc.gfp_mask);
4167 	/*
4168 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4169 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4170 	 * and RECLAIM_UNMAP.
4171 	 */
4172 	noreclaim_flag = memalloc_noreclaim_save();
4173 	p->flags |= PF_SWAPWRITE;
4174 	set_task_reclaim_state(p, &sc.reclaim_state);
4175 
4176 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4177 		/*
4178 		 * Free memory by calling shrink node with increasing
4179 		 * priorities until we have enough memory freed.
4180 		 */
4181 		do {
4182 			shrink_node(pgdat, &sc);
4183 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4184 	}
4185 
4186 	set_task_reclaim_state(p, NULL);
4187 	current->flags &= ~PF_SWAPWRITE;
4188 	memalloc_noreclaim_restore(noreclaim_flag);
4189 	fs_reclaim_release(sc.gfp_mask);
4190 
4191 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4192 
4193 	return sc.nr_reclaimed >= nr_pages;
4194 }
4195 
4196 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4197 {
4198 	int ret;
4199 
4200 	/*
4201 	 * Node reclaim reclaims unmapped file backed pages and
4202 	 * slab pages if we are over the defined limits.
4203 	 *
4204 	 * A small portion of unmapped file backed pages is needed for
4205 	 * file I/O otherwise pages read by file I/O will be immediately
4206 	 * thrown out if the node is overallocated. So we do not reclaim
4207 	 * if less than a specified percentage of the node is used by
4208 	 * unmapped file backed pages.
4209 	 */
4210 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4211 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4212 	    pgdat->min_slab_pages)
4213 		return NODE_RECLAIM_FULL;
4214 
4215 	/*
4216 	 * Do not scan if the allocation should not be delayed.
4217 	 */
4218 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4219 		return NODE_RECLAIM_NOSCAN;
4220 
4221 	/*
4222 	 * Only run node reclaim on the local node or on nodes that do not
4223 	 * have associated processors. This will favor the local processor
4224 	 * over remote processors and spread off node memory allocations
4225 	 * as wide as possible.
4226 	 */
4227 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4228 		return NODE_RECLAIM_NOSCAN;
4229 
4230 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4231 		return NODE_RECLAIM_NOSCAN;
4232 
4233 	ret = __node_reclaim(pgdat, gfp_mask, order);
4234 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4235 
4236 	if (!ret)
4237 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4238 
4239 	return ret;
4240 }
4241 #endif
4242 
4243 /**
4244  * check_move_unevictable_pages - check pages for evictability and move to
4245  * appropriate zone lru list
4246  * @pvec: pagevec with lru pages to check
4247  *
4248  * Checks pages for evictability, if an evictable page is in the unevictable
4249  * lru list, moves it to the appropriate evictable lru list. This function
4250  * should be only used for lru pages.
4251  */
4252 void check_move_unevictable_pages(struct pagevec *pvec)
4253 {
4254 	struct lruvec *lruvec;
4255 	struct pglist_data *pgdat = NULL;
4256 	int pgscanned = 0;
4257 	int pgrescued = 0;
4258 	int i;
4259 
4260 	for (i = 0; i < pvec->nr; i++) {
4261 		struct page *page = pvec->pages[i];
4262 		struct pglist_data *pagepgdat = page_pgdat(page);
4263 
4264 		pgscanned++;
4265 		if (pagepgdat != pgdat) {
4266 			if (pgdat)
4267 				spin_unlock_irq(&pgdat->lru_lock);
4268 			pgdat = pagepgdat;
4269 			spin_lock_irq(&pgdat->lru_lock);
4270 		}
4271 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4272 
4273 		if (!PageLRU(page) || !PageUnevictable(page))
4274 			continue;
4275 
4276 		if (page_evictable(page)) {
4277 			enum lru_list lru = page_lru_base_type(page);
4278 
4279 			VM_BUG_ON_PAGE(PageActive(page), page);
4280 			ClearPageUnevictable(page);
4281 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4282 			add_page_to_lru_list(page, lruvec, lru);
4283 			pgrescued++;
4284 		}
4285 	}
4286 
4287 	if (pgdat) {
4288 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4289 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4290 		spin_unlock_irq(&pgdat->lru_lock);
4291 	}
4292 }
4293 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4294