1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* 83 * Scan pressure balancing between anon and file LRUs 84 */ 85 unsigned long anon_cost; 86 unsigned long file_cost; 87 88 /* Can active pages be deactivated as part of reclaim? */ 89 #define DEACTIVATE_ANON 1 90 #define DEACTIVATE_FILE 2 91 unsigned int may_deactivate:2; 92 unsigned int force_deactivate:1; 93 unsigned int skipped_deactivate:1; 94 95 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 96 unsigned int may_writepage:1; 97 98 /* Can mapped pages be reclaimed? */ 99 unsigned int may_unmap:1; 100 101 /* Can pages be swapped as part of reclaim? */ 102 unsigned int may_swap:1; 103 104 /* 105 * Cgroups are not reclaimed below their configured memory.low, 106 * unless we threaten to OOM. If any cgroups are skipped due to 107 * memory.low and nothing was reclaimed, go back for memory.low. 108 */ 109 unsigned int memcg_low_reclaim:1; 110 unsigned int memcg_low_skipped:1; 111 112 unsigned int hibernation_mode:1; 113 114 /* One of the zones is ready for compaction */ 115 unsigned int compaction_ready:1; 116 117 /* There is easily reclaimable cold cache in the current node */ 118 unsigned int cache_trim_mode:1; 119 120 /* The file pages on the current node are dangerously low */ 121 unsigned int file_is_tiny:1; 122 123 /* Allocation order */ 124 s8 order; 125 126 /* Scan (total_size >> priority) pages at once */ 127 s8 priority; 128 129 /* The highest zone to isolate pages for reclaim from */ 130 s8 reclaim_idx; 131 132 /* This context's GFP mask */ 133 gfp_t gfp_mask; 134 135 /* Incremented by the number of inactive pages that were scanned */ 136 unsigned long nr_scanned; 137 138 /* Number of pages freed so far during a call to shrink_zones() */ 139 unsigned long nr_reclaimed; 140 141 struct { 142 unsigned int dirty; 143 unsigned int unqueued_dirty; 144 unsigned int congested; 145 unsigned int writeback; 146 unsigned int immediate; 147 unsigned int file_taken; 148 unsigned int taken; 149 } nr; 150 151 /* for recording the reclaimed slab by now */ 152 struct reclaim_state reclaim_state; 153 }; 154 155 #ifdef ARCH_HAS_PREFETCHW 156 #define prefetchw_prev_lru_page(_page, _base, _field) \ 157 do { \ 158 if ((_page)->lru.prev != _base) { \ 159 struct page *prev; \ 160 \ 161 prev = lru_to_page(&(_page->lru)); \ 162 prefetchw(&prev->_field); \ 163 } \ 164 } while (0) 165 #else 166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 167 #endif 168 169 /* 170 * From 0 .. 200. Higher means more swappy. 171 */ 172 int vm_swappiness = 60; 173 174 static void set_task_reclaim_state(struct task_struct *task, 175 struct reclaim_state *rs) 176 { 177 /* Check for an overwrite */ 178 WARN_ON_ONCE(rs && task->reclaim_state); 179 180 /* Check for the nulling of an already-nulled member */ 181 WARN_ON_ONCE(!rs && !task->reclaim_state); 182 183 task->reclaim_state = rs; 184 } 185 186 static LIST_HEAD(shrinker_list); 187 static DECLARE_RWSEM(shrinker_rwsem); 188 189 #ifdef CONFIG_MEMCG 190 /* 191 * We allow subsystems to populate their shrinker-related 192 * LRU lists before register_shrinker_prepared() is called 193 * for the shrinker, since we don't want to impose 194 * restrictions on their internal registration order. 195 * In this case shrink_slab_memcg() may find corresponding 196 * bit is set in the shrinkers map. 197 * 198 * This value is used by the function to detect registering 199 * shrinkers and to skip do_shrink_slab() calls for them. 200 */ 201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 202 203 static DEFINE_IDR(shrinker_idr); 204 static int shrinker_nr_max; 205 206 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 207 { 208 int id, ret = -ENOMEM; 209 210 down_write(&shrinker_rwsem); 211 /* This may call shrinker, so it must use down_read_trylock() */ 212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 213 if (id < 0) 214 goto unlock; 215 216 if (id >= shrinker_nr_max) { 217 if (memcg_expand_shrinker_maps(id)) { 218 idr_remove(&shrinker_idr, id); 219 goto unlock; 220 } 221 222 shrinker_nr_max = id + 1; 223 } 224 shrinker->id = id; 225 ret = 0; 226 unlock: 227 up_write(&shrinker_rwsem); 228 return ret; 229 } 230 231 static void unregister_memcg_shrinker(struct shrinker *shrinker) 232 { 233 int id = shrinker->id; 234 235 BUG_ON(id < 0); 236 237 down_write(&shrinker_rwsem); 238 idr_remove(&shrinker_idr, id); 239 up_write(&shrinker_rwsem); 240 } 241 242 static bool cgroup_reclaim(struct scan_control *sc) 243 { 244 return sc->target_mem_cgroup; 245 } 246 247 /** 248 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool writeback_throttling_sane(struct scan_control *sc) 261 { 262 if (!cgroup_reclaim(sc)) 263 return true; 264 #ifdef CONFIG_CGROUP_WRITEBACK 265 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 266 return true; 267 #endif 268 return false; 269 } 270 #else 271 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 272 { 273 return 0; 274 } 275 276 static void unregister_memcg_shrinker(struct shrinker *shrinker) 277 { 278 } 279 280 static bool cgroup_reclaim(struct scan_control *sc) 281 { 282 return false; 283 } 284 285 static bool writeback_throttling_sane(struct scan_control *sc) 286 { 287 return true; 288 } 289 #endif 290 291 /* 292 * This misses isolated pages which are not accounted for to save counters. 293 * As the data only determines if reclaim or compaction continues, it is 294 * not expected that isolated pages will be a dominating factor. 295 */ 296 unsigned long zone_reclaimable_pages(struct zone *zone) 297 { 298 unsigned long nr; 299 300 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 301 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 302 if (get_nr_swap_pages() > 0) 303 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 304 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 305 306 return nr; 307 } 308 309 /** 310 * lruvec_lru_size - Returns the number of pages on the given LRU list. 311 * @lruvec: lru vector 312 * @lru: lru to use 313 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 314 */ 315 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 316 { 317 unsigned long size = 0; 318 int zid; 319 320 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 321 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 322 323 if (!managed_zone(zone)) 324 continue; 325 326 if (!mem_cgroup_disabled()) 327 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 328 else 329 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 330 } 331 return size; 332 } 333 334 /* 335 * Add a shrinker callback to be called from the vm. 336 */ 337 int prealloc_shrinker(struct shrinker *shrinker) 338 { 339 unsigned int size = sizeof(*shrinker->nr_deferred); 340 341 if (shrinker->flags & SHRINKER_NUMA_AWARE) 342 size *= nr_node_ids; 343 344 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 345 if (!shrinker->nr_deferred) 346 return -ENOMEM; 347 348 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 349 if (prealloc_memcg_shrinker(shrinker)) 350 goto free_deferred; 351 } 352 353 return 0; 354 355 free_deferred: 356 kfree(shrinker->nr_deferred); 357 shrinker->nr_deferred = NULL; 358 return -ENOMEM; 359 } 360 361 void free_prealloced_shrinker(struct shrinker *shrinker) 362 { 363 if (!shrinker->nr_deferred) 364 return; 365 366 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 367 unregister_memcg_shrinker(shrinker); 368 369 kfree(shrinker->nr_deferred); 370 shrinker->nr_deferred = NULL; 371 } 372 373 void register_shrinker_prepared(struct shrinker *shrinker) 374 { 375 down_write(&shrinker_rwsem); 376 list_add_tail(&shrinker->list, &shrinker_list); 377 #ifdef CONFIG_MEMCG 378 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 379 idr_replace(&shrinker_idr, shrinker, shrinker->id); 380 #endif 381 up_write(&shrinker_rwsem); 382 } 383 384 int register_shrinker(struct shrinker *shrinker) 385 { 386 int err = prealloc_shrinker(shrinker); 387 388 if (err) 389 return err; 390 register_shrinker_prepared(shrinker); 391 return 0; 392 } 393 EXPORT_SYMBOL(register_shrinker); 394 395 /* 396 * Remove one 397 */ 398 void unregister_shrinker(struct shrinker *shrinker) 399 { 400 if (!shrinker->nr_deferred) 401 return; 402 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 403 unregister_memcg_shrinker(shrinker); 404 down_write(&shrinker_rwsem); 405 list_del(&shrinker->list); 406 up_write(&shrinker_rwsem); 407 kfree(shrinker->nr_deferred); 408 shrinker->nr_deferred = NULL; 409 } 410 EXPORT_SYMBOL(unregister_shrinker); 411 412 #define SHRINK_BATCH 128 413 414 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 415 struct shrinker *shrinker, int priority) 416 { 417 unsigned long freed = 0; 418 unsigned long long delta; 419 long total_scan; 420 long freeable; 421 long nr; 422 long new_nr; 423 int nid = shrinkctl->nid; 424 long batch_size = shrinker->batch ? shrinker->batch 425 : SHRINK_BATCH; 426 long scanned = 0, next_deferred; 427 428 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 429 nid = 0; 430 431 freeable = shrinker->count_objects(shrinker, shrinkctl); 432 if (freeable == 0 || freeable == SHRINK_EMPTY) 433 return freeable; 434 435 /* 436 * copy the current shrinker scan count into a local variable 437 * and zero it so that other concurrent shrinker invocations 438 * don't also do this scanning work. 439 */ 440 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 441 442 total_scan = nr; 443 if (shrinker->seeks) { 444 delta = freeable >> priority; 445 delta *= 4; 446 do_div(delta, shrinker->seeks); 447 } else { 448 /* 449 * These objects don't require any IO to create. Trim 450 * them aggressively under memory pressure to keep 451 * them from causing refetches in the IO caches. 452 */ 453 delta = freeable / 2; 454 } 455 456 total_scan += delta; 457 if (total_scan < 0) { 458 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 459 shrinker->scan_objects, total_scan); 460 total_scan = freeable; 461 next_deferred = nr; 462 } else 463 next_deferred = total_scan; 464 465 /* 466 * We need to avoid excessive windup on filesystem shrinkers 467 * due to large numbers of GFP_NOFS allocations causing the 468 * shrinkers to return -1 all the time. This results in a large 469 * nr being built up so when a shrink that can do some work 470 * comes along it empties the entire cache due to nr >>> 471 * freeable. This is bad for sustaining a working set in 472 * memory. 473 * 474 * Hence only allow the shrinker to scan the entire cache when 475 * a large delta change is calculated directly. 476 */ 477 if (delta < freeable / 4) 478 total_scan = min(total_scan, freeable / 2); 479 480 /* 481 * Avoid risking looping forever due to too large nr value: 482 * never try to free more than twice the estimate number of 483 * freeable entries. 484 */ 485 if (total_scan > freeable * 2) 486 total_scan = freeable * 2; 487 488 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 489 freeable, delta, total_scan, priority); 490 491 /* 492 * Normally, we should not scan less than batch_size objects in one 493 * pass to avoid too frequent shrinker calls, but if the slab has less 494 * than batch_size objects in total and we are really tight on memory, 495 * we will try to reclaim all available objects, otherwise we can end 496 * up failing allocations although there are plenty of reclaimable 497 * objects spread over several slabs with usage less than the 498 * batch_size. 499 * 500 * We detect the "tight on memory" situations by looking at the total 501 * number of objects we want to scan (total_scan). If it is greater 502 * than the total number of objects on slab (freeable), we must be 503 * scanning at high prio and therefore should try to reclaim as much as 504 * possible. 505 */ 506 while (total_scan >= batch_size || 507 total_scan >= freeable) { 508 unsigned long ret; 509 unsigned long nr_to_scan = min(batch_size, total_scan); 510 511 shrinkctl->nr_to_scan = nr_to_scan; 512 shrinkctl->nr_scanned = nr_to_scan; 513 ret = shrinker->scan_objects(shrinker, shrinkctl); 514 if (ret == SHRINK_STOP) 515 break; 516 freed += ret; 517 518 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 519 total_scan -= shrinkctl->nr_scanned; 520 scanned += shrinkctl->nr_scanned; 521 522 cond_resched(); 523 } 524 525 if (next_deferred >= scanned) 526 next_deferred -= scanned; 527 else 528 next_deferred = 0; 529 /* 530 * move the unused scan count back into the shrinker in a 531 * manner that handles concurrent updates. If we exhausted the 532 * scan, there is no need to do an update. 533 */ 534 if (next_deferred > 0) 535 new_nr = atomic_long_add_return(next_deferred, 536 &shrinker->nr_deferred[nid]); 537 else 538 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 539 540 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 541 return freed; 542 } 543 544 #ifdef CONFIG_MEMCG 545 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 546 struct mem_cgroup *memcg, int priority) 547 { 548 struct memcg_shrinker_map *map; 549 unsigned long ret, freed = 0; 550 int i; 551 552 if (!mem_cgroup_online(memcg)) 553 return 0; 554 555 if (!down_read_trylock(&shrinker_rwsem)) 556 return 0; 557 558 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 559 true); 560 if (unlikely(!map)) 561 goto unlock; 562 563 for_each_set_bit(i, map->map, shrinker_nr_max) { 564 struct shrink_control sc = { 565 .gfp_mask = gfp_mask, 566 .nid = nid, 567 .memcg = memcg, 568 }; 569 struct shrinker *shrinker; 570 571 shrinker = idr_find(&shrinker_idr, i); 572 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 573 if (!shrinker) 574 clear_bit(i, map->map); 575 continue; 576 } 577 578 /* Call non-slab shrinkers even though kmem is disabled */ 579 if (!memcg_kmem_enabled() && 580 !(shrinker->flags & SHRINKER_NONSLAB)) 581 continue; 582 583 ret = do_shrink_slab(&sc, shrinker, priority); 584 if (ret == SHRINK_EMPTY) { 585 clear_bit(i, map->map); 586 /* 587 * After the shrinker reported that it had no objects to 588 * free, but before we cleared the corresponding bit in 589 * the memcg shrinker map, a new object might have been 590 * added. To make sure, we have the bit set in this 591 * case, we invoke the shrinker one more time and reset 592 * the bit if it reports that it is not empty anymore. 593 * The memory barrier here pairs with the barrier in 594 * memcg_set_shrinker_bit(): 595 * 596 * list_lru_add() shrink_slab_memcg() 597 * list_add_tail() clear_bit() 598 * <MB> <MB> 599 * set_bit() do_shrink_slab() 600 */ 601 smp_mb__after_atomic(); 602 ret = do_shrink_slab(&sc, shrinker, priority); 603 if (ret == SHRINK_EMPTY) 604 ret = 0; 605 else 606 memcg_set_shrinker_bit(memcg, nid, i); 607 } 608 freed += ret; 609 610 if (rwsem_is_contended(&shrinker_rwsem)) { 611 freed = freed ? : 1; 612 break; 613 } 614 } 615 unlock: 616 up_read(&shrinker_rwsem); 617 return freed; 618 } 619 #else /* CONFIG_MEMCG */ 620 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 621 struct mem_cgroup *memcg, int priority) 622 { 623 return 0; 624 } 625 #endif /* CONFIG_MEMCG */ 626 627 /** 628 * shrink_slab - shrink slab caches 629 * @gfp_mask: allocation context 630 * @nid: node whose slab caches to target 631 * @memcg: memory cgroup whose slab caches to target 632 * @priority: the reclaim priority 633 * 634 * Call the shrink functions to age shrinkable caches. 635 * 636 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 637 * unaware shrinkers will receive a node id of 0 instead. 638 * 639 * @memcg specifies the memory cgroup to target. Unaware shrinkers 640 * are called only if it is the root cgroup. 641 * 642 * @priority is sc->priority, we take the number of objects and >> by priority 643 * in order to get the scan target. 644 * 645 * Returns the number of reclaimed slab objects. 646 */ 647 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 648 struct mem_cgroup *memcg, 649 int priority) 650 { 651 unsigned long ret, freed = 0; 652 struct shrinker *shrinker; 653 654 /* 655 * The root memcg might be allocated even though memcg is disabled 656 * via "cgroup_disable=memory" boot parameter. This could make 657 * mem_cgroup_is_root() return false, then just run memcg slab 658 * shrink, but skip global shrink. This may result in premature 659 * oom. 660 */ 661 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 662 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 663 664 if (!down_read_trylock(&shrinker_rwsem)) 665 goto out; 666 667 list_for_each_entry(shrinker, &shrinker_list, list) { 668 struct shrink_control sc = { 669 .gfp_mask = gfp_mask, 670 .nid = nid, 671 .memcg = memcg, 672 }; 673 674 ret = do_shrink_slab(&sc, shrinker, priority); 675 if (ret == SHRINK_EMPTY) 676 ret = 0; 677 freed += ret; 678 /* 679 * Bail out if someone want to register a new shrinker to 680 * prevent the registration from being stalled for long periods 681 * by parallel ongoing shrinking. 682 */ 683 if (rwsem_is_contended(&shrinker_rwsem)) { 684 freed = freed ? : 1; 685 break; 686 } 687 } 688 689 up_read(&shrinker_rwsem); 690 out: 691 cond_resched(); 692 return freed; 693 } 694 695 void drop_slab_node(int nid) 696 { 697 unsigned long freed; 698 699 do { 700 struct mem_cgroup *memcg = NULL; 701 702 if (fatal_signal_pending(current)) 703 return; 704 705 freed = 0; 706 memcg = mem_cgroup_iter(NULL, NULL, NULL); 707 do { 708 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 709 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 710 } while (freed > 10); 711 } 712 713 void drop_slab(void) 714 { 715 int nid; 716 717 for_each_online_node(nid) 718 drop_slab_node(nid); 719 } 720 721 static inline int is_page_cache_freeable(struct page *page) 722 { 723 /* 724 * A freeable page cache page is referenced only by the caller 725 * that isolated the page, the page cache and optional buffer 726 * heads at page->private. 727 */ 728 int page_cache_pins = thp_nr_pages(page); 729 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 730 } 731 732 static int may_write_to_inode(struct inode *inode) 733 { 734 if (current->flags & PF_SWAPWRITE) 735 return 1; 736 if (!inode_write_congested(inode)) 737 return 1; 738 if (inode_to_bdi(inode) == current->backing_dev_info) 739 return 1; 740 return 0; 741 } 742 743 /* 744 * We detected a synchronous write error writing a page out. Probably 745 * -ENOSPC. We need to propagate that into the address_space for a subsequent 746 * fsync(), msync() or close(). 747 * 748 * The tricky part is that after writepage we cannot touch the mapping: nothing 749 * prevents it from being freed up. But we have a ref on the page and once 750 * that page is locked, the mapping is pinned. 751 * 752 * We're allowed to run sleeping lock_page() here because we know the caller has 753 * __GFP_FS. 754 */ 755 static void handle_write_error(struct address_space *mapping, 756 struct page *page, int error) 757 { 758 lock_page(page); 759 if (page_mapping(page) == mapping) 760 mapping_set_error(mapping, error); 761 unlock_page(page); 762 } 763 764 /* possible outcome of pageout() */ 765 typedef enum { 766 /* failed to write page out, page is locked */ 767 PAGE_KEEP, 768 /* move page to the active list, page is locked */ 769 PAGE_ACTIVATE, 770 /* page has been sent to the disk successfully, page is unlocked */ 771 PAGE_SUCCESS, 772 /* page is clean and locked */ 773 PAGE_CLEAN, 774 } pageout_t; 775 776 /* 777 * pageout is called by shrink_page_list() for each dirty page. 778 * Calls ->writepage(). 779 */ 780 static pageout_t pageout(struct page *page, struct address_space *mapping) 781 { 782 /* 783 * If the page is dirty, only perform writeback if that write 784 * will be non-blocking. To prevent this allocation from being 785 * stalled by pagecache activity. But note that there may be 786 * stalls if we need to run get_block(). We could test 787 * PagePrivate for that. 788 * 789 * If this process is currently in __generic_file_write_iter() against 790 * this page's queue, we can perform writeback even if that 791 * will block. 792 * 793 * If the page is swapcache, write it back even if that would 794 * block, for some throttling. This happens by accident, because 795 * swap_backing_dev_info is bust: it doesn't reflect the 796 * congestion state of the swapdevs. Easy to fix, if needed. 797 */ 798 if (!is_page_cache_freeable(page)) 799 return PAGE_KEEP; 800 if (!mapping) { 801 /* 802 * Some data journaling orphaned pages can have 803 * page->mapping == NULL while being dirty with clean buffers. 804 */ 805 if (page_has_private(page)) { 806 if (try_to_free_buffers(page)) { 807 ClearPageDirty(page); 808 pr_info("%s: orphaned page\n", __func__); 809 return PAGE_CLEAN; 810 } 811 } 812 return PAGE_KEEP; 813 } 814 if (mapping->a_ops->writepage == NULL) 815 return PAGE_ACTIVATE; 816 if (!may_write_to_inode(mapping->host)) 817 return PAGE_KEEP; 818 819 if (clear_page_dirty_for_io(page)) { 820 int res; 821 struct writeback_control wbc = { 822 .sync_mode = WB_SYNC_NONE, 823 .nr_to_write = SWAP_CLUSTER_MAX, 824 .range_start = 0, 825 .range_end = LLONG_MAX, 826 .for_reclaim = 1, 827 }; 828 829 SetPageReclaim(page); 830 res = mapping->a_ops->writepage(page, &wbc); 831 if (res < 0) 832 handle_write_error(mapping, page, res); 833 if (res == AOP_WRITEPAGE_ACTIVATE) { 834 ClearPageReclaim(page); 835 return PAGE_ACTIVATE; 836 } 837 838 if (!PageWriteback(page)) { 839 /* synchronous write or broken a_ops? */ 840 ClearPageReclaim(page); 841 } 842 trace_mm_vmscan_writepage(page); 843 inc_node_page_state(page, NR_VMSCAN_WRITE); 844 return PAGE_SUCCESS; 845 } 846 847 return PAGE_CLEAN; 848 } 849 850 /* 851 * Same as remove_mapping, but if the page is removed from the mapping, it 852 * gets returned with a refcount of 0. 853 */ 854 static int __remove_mapping(struct address_space *mapping, struct page *page, 855 bool reclaimed, struct mem_cgroup *target_memcg) 856 { 857 unsigned long flags; 858 int refcount; 859 void *shadow = NULL; 860 861 BUG_ON(!PageLocked(page)); 862 BUG_ON(mapping != page_mapping(page)); 863 864 xa_lock_irqsave(&mapping->i_pages, flags); 865 /* 866 * The non racy check for a busy page. 867 * 868 * Must be careful with the order of the tests. When someone has 869 * a ref to the page, it may be possible that they dirty it then 870 * drop the reference. So if PageDirty is tested before page_count 871 * here, then the following race may occur: 872 * 873 * get_user_pages(&page); 874 * [user mapping goes away] 875 * write_to(page); 876 * !PageDirty(page) [good] 877 * SetPageDirty(page); 878 * put_page(page); 879 * !page_count(page) [good, discard it] 880 * 881 * [oops, our write_to data is lost] 882 * 883 * Reversing the order of the tests ensures such a situation cannot 884 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 885 * load is not satisfied before that of page->_refcount. 886 * 887 * Note that if SetPageDirty is always performed via set_page_dirty, 888 * and thus under the i_pages lock, then this ordering is not required. 889 */ 890 refcount = 1 + compound_nr(page); 891 if (!page_ref_freeze(page, refcount)) 892 goto cannot_free; 893 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 894 if (unlikely(PageDirty(page))) { 895 page_ref_unfreeze(page, refcount); 896 goto cannot_free; 897 } 898 899 if (PageSwapCache(page)) { 900 swp_entry_t swap = { .val = page_private(page) }; 901 mem_cgroup_swapout(page, swap); 902 if (reclaimed && !mapping_exiting(mapping)) 903 shadow = workingset_eviction(page, target_memcg); 904 __delete_from_swap_cache(page, swap, shadow); 905 xa_unlock_irqrestore(&mapping->i_pages, flags); 906 put_swap_page(page, swap); 907 } else { 908 void (*freepage)(struct page *); 909 910 freepage = mapping->a_ops->freepage; 911 /* 912 * Remember a shadow entry for reclaimed file cache in 913 * order to detect refaults, thus thrashing, later on. 914 * 915 * But don't store shadows in an address space that is 916 * already exiting. This is not just an optimization, 917 * inode reclaim needs to empty out the radix tree or 918 * the nodes are lost. Don't plant shadows behind its 919 * back. 920 * 921 * We also don't store shadows for DAX mappings because the 922 * only page cache pages found in these are zero pages 923 * covering holes, and because we don't want to mix DAX 924 * exceptional entries and shadow exceptional entries in the 925 * same address_space. 926 */ 927 if (reclaimed && page_is_file_lru(page) && 928 !mapping_exiting(mapping) && !dax_mapping(mapping)) 929 shadow = workingset_eviction(page, target_memcg); 930 __delete_from_page_cache(page, shadow); 931 xa_unlock_irqrestore(&mapping->i_pages, flags); 932 933 if (freepage != NULL) 934 freepage(page); 935 } 936 937 return 1; 938 939 cannot_free: 940 xa_unlock_irqrestore(&mapping->i_pages, flags); 941 return 0; 942 } 943 944 /* 945 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 946 * someone else has a ref on the page, abort and return 0. If it was 947 * successfully detached, return 1. Assumes the caller has a single ref on 948 * this page. 949 */ 950 int remove_mapping(struct address_space *mapping, struct page *page) 951 { 952 if (__remove_mapping(mapping, page, false, NULL)) { 953 /* 954 * Unfreezing the refcount with 1 rather than 2 effectively 955 * drops the pagecache ref for us without requiring another 956 * atomic operation. 957 */ 958 page_ref_unfreeze(page, 1); 959 return 1; 960 } 961 return 0; 962 } 963 964 /** 965 * putback_lru_page - put previously isolated page onto appropriate LRU list 966 * @page: page to be put back to appropriate lru list 967 * 968 * Add previously isolated @page to appropriate LRU list. 969 * Page may still be unevictable for other reasons. 970 * 971 * lru_lock must not be held, interrupts must be enabled. 972 */ 973 void putback_lru_page(struct page *page) 974 { 975 lru_cache_add(page); 976 put_page(page); /* drop ref from isolate */ 977 } 978 979 enum page_references { 980 PAGEREF_RECLAIM, 981 PAGEREF_RECLAIM_CLEAN, 982 PAGEREF_KEEP, 983 PAGEREF_ACTIVATE, 984 }; 985 986 static enum page_references page_check_references(struct page *page, 987 struct scan_control *sc) 988 { 989 int referenced_ptes, referenced_page; 990 unsigned long vm_flags; 991 992 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 993 &vm_flags); 994 referenced_page = TestClearPageReferenced(page); 995 996 /* 997 * Mlock lost the isolation race with us. Let try_to_unmap() 998 * move the page to the unevictable list. 999 */ 1000 if (vm_flags & VM_LOCKED) 1001 return PAGEREF_RECLAIM; 1002 1003 if (referenced_ptes) { 1004 /* 1005 * All mapped pages start out with page table 1006 * references from the instantiating fault, so we need 1007 * to look twice if a mapped file page is used more 1008 * than once. 1009 * 1010 * Mark it and spare it for another trip around the 1011 * inactive list. Another page table reference will 1012 * lead to its activation. 1013 * 1014 * Note: the mark is set for activated pages as well 1015 * so that recently deactivated but used pages are 1016 * quickly recovered. 1017 */ 1018 SetPageReferenced(page); 1019 1020 if (referenced_page || referenced_ptes > 1) 1021 return PAGEREF_ACTIVATE; 1022 1023 /* 1024 * Activate file-backed executable pages after first usage. 1025 */ 1026 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1027 return PAGEREF_ACTIVATE; 1028 1029 return PAGEREF_KEEP; 1030 } 1031 1032 /* Reclaim if clean, defer dirty pages to writeback */ 1033 if (referenced_page && !PageSwapBacked(page)) 1034 return PAGEREF_RECLAIM_CLEAN; 1035 1036 return PAGEREF_RECLAIM; 1037 } 1038 1039 /* Check if a page is dirty or under writeback */ 1040 static void page_check_dirty_writeback(struct page *page, 1041 bool *dirty, bool *writeback) 1042 { 1043 struct address_space *mapping; 1044 1045 /* 1046 * Anonymous pages are not handled by flushers and must be written 1047 * from reclaim context. Do not stall reclaim based on them 1048 */ 1049 if (!page_is_file_lru(page) || 1050 (PageAnon(page) && !PageSwapBacked(page))) { 1051 *dirty = false; 1052 *writeback = false; 1053 return; 1054 } 1055 1056 /* By default assume that the page flags are accurate */ 1057 *dirty = PageDirty(page); 1058 *writeback = PageWriteback(page); 1059 1060 /* Verify dirty/writeback state if the filesystem supports it */ 1061 if (!page_has_private(page)) 1062 return; 1063 1064 mapping = page_mapping(page); 1065 if (mapping && mapping->a_ops->is_dirty_writeback) 1066 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1067 } 1068 1069 /* 1070 * shrink_page_list() returns the number of reclaimed pages 1071 */ 1072 static unsigned int shrink_page_list(struct list_head *page_list, 1073 struct pglist_data *pgdat, 1074 struct scan_control *sc, 1075 enum ttu_flags ttu_flags, 1076 struct reclaim_stat *stat, 1077 bool ignore_references) 1078 { 1079 LIST_HEAD(ret_pages); 1080 LIST_HEAD(free_pages); 1081 unsigned int nr_reclaimed = 0; 1082 unsigned int pgactivate = 0; 1083 1084 memset(stat, 0, sizeof(*stat)); 1085 cond_resched(); 1086 1087 while (!list_empty(page_list)) { 1088 struct address_space *mapping; 1089 struct page *page; 1090 enum page_references references = PAGEREF_RECLAIM; 1091 bool dirty, writeback, may_enter_fs; 1092 unsigned int nr_pages; 1093 1094 cond_resched(); 1095 1096 page = lru_to_page(page_list); 1097 list_del(&page->lru); 1098 1099 if (!trylock_page(page)) 1100 goto keep; 1101 1102 VM_BUG_ON_PAGE(PageActive(page), page); 1103 1104 nr_pages = compound_nr(page); 1105 1106 /* Account the number of base pages even though THP */ 1107 sc->nr_scanned += nr_pages; 1108 1109 if (unlikely(!page_evictable(page))) 1110 goto activate_locked; 1111 1112 if (!sc->may_unmap && page_mapped(page)) 1113 goto keep_locked; 1114 1115 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1116 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1117 1118 /* 1119 * The number of dirty pages determines if a node is marked 1120 * reclaim_congested which affects wait_iff_congested. kswapd 1121 * will stall and start writing pages if the tail of the LRU 1122 * is all dirty unqueued pages. 1123 */ 1124 page_check_dirty_writeback(page, &dirty, &writeback); 1125 if (dirty || writeback) 1126 stat->nr_dirty++; 1127 1128 if (dirty && !writeback) 1129 stat->nr_unqueued_dirty++; 1130 1131 /* 1132 * Treat this page as congested if the underlying BDI is or if 1133 * pages are cycling through the LRU so quickly that the 1134 * pages marked for immediate reclaim are making it to the 1135 * end of the LRU a second time. 1136 */ 1137 mapping = page_mapping(page); 1138 if (((dirty || writeback) && mapping && 1139 inode_write_congested(mapping->host)) || 1140 (writeback && PageReclaim(page))) 1141 stat->nr_congested++; 1142 1143 /* 1144 * If a page at the tail of the LRU is under writeback, there 1145 * are three cases to consider. 1146 * 1147 * 1) If reclaim is encountering an excessive number of pages 1148 * under writeback and this page is both under writeback and 1149 * PageReclaim then it indicates that pages are being queued 1150 * for IO but are being recycled through the LRU before the 1151 * IO can complete. Waiting on the page itself risks an 1152 * indefinite stall if it is impossible to writeback the 1153 * page due to IO error or disconnected storage so instead 1154 * note that the LRU is being scanned too quickly and the 1155 * caller can stall after page list has been processed. 1156 * 1157 * 2) Global or new memcg reclaim encounters a page that is 1158 * not marked for immediate reclaim, or the caller does not 1159 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1160 * not to fs). In this case mark the page for immediate 1161 * reclaim and continue scanning. 1162 * 1163 * Require may_enter_fs because we would wait on fs, which 1164 * may not have submitted IO yet. And the loop driver might 1165 * enter reclaim, and deadlock if it waits on a page for 1166 * which it is needed to do the write (loop masks off 1167 * __GFP_IO|__GFP_FS for this reason); but more thought 1168 * would probably show more reasons. 1169 * 1170 * 3) Legacy memcg encounters a page that is already marked 1171 * PageReclaim. memcg does not have any dirty pages 1172 * throttling so we could easily OOM just because too many 1173 * pages are in writeback and there is nothing else to 1174 * reclaim. Wait for the writeback to complete. 1175 * 1176 * In cases 1) and 2) we activate the pages to get them out of 1177 * the way while we continue scanning for clean pages on the 1178 * inactive list and refilling from the active list. The 1179 * observation here is that waiting for disk writes is more 1180 * expensive than potentially causing reloads down the line. 1181 * Since they're marked for immediate reclaim, they won't put 1182 * memory pressure on the cache working set any longer than it 1183 * takes to write them to disk. 1184 */ 1185 if (PageWriteback(page)) { 1186 /* Case 1 above */ 1187 if (current_is_kswapd() && 1188 PageReclaim(page) && 1189 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1190 stat->nr_immediate++; 1191 goto activate_locked; 1192 1193 /* Case 2 above */ 1194 } else if (writeback_throttling_sane(sc) || 1195 !PageReclaim(page) || !may_enter_fs) { 1196 /* 1197 * This is slightly racy - end_page_writeback() 1198 * might have just cleared PageReclaim, then 1199 * setting PageReclaim here end up interpreted 1200 * as PageReadahead - but that does not matter 1201 * enough to care. What we do want is for this 1202 * page to have PageReclaim set next time memcg 1203 * reclaim reaches the tests above, so it will 1204 * then wait_on_page_writeback() to avoid OOM; 1205 * and it's also appropriate in global reclaim. 1206 */ 1207 SetPageReclaim(page); 1208 stat->nr_writeback++; 1209 goto activate_locked; 1210 1211 /* Case 3 above */ 1212 } else { 1213 unlock_page(page); 1214 wait_on_page_writeback(page); 1215 /* then go back and try same page again */ 1216 list_add_tail(&page->lru, page_list); 1217 continue; 1218 } 1219 } 1220 1221 if (!ignore_references) 1222 references = page_check_references(page, sc); 1223 1224 switch (references) { 1225 case PAGEREF_ACTIVATE: 1226 goto activate_locked; 1227 case PAGEREF_KEEP: 1228 stat->nr_ref_keep += nr_pages; 1229 goto keep_locked; 1230 case PAGEREF_RECLAIM: 1231 case PAGEREF_RECLAIM_CLEAN: 1232 ; /* try to reclaim the page below */ 1233 } 1234 1235 /* 1236 * Anonymous process memory has backing store? 1237 * Try to allocate it some swap space here. 1238 * Lazyfree page could be freed directly 1239 */ 1240 if (PageAnon(page) && PageSwapBacked(page)) { 1241 if (!PageSwapCache(page)) { 1242 if (!(sc->gfp_mask & __GFP_IO)) 1243 goto keep_locked; 1244 if (PageTransHuge(page)) { 1245 /* cannot split THP, skip it */ 1246 if (!can_split_huge_page(page, NULL)) 1247 goto activate_locked; 1248 /* 1249 * Split pages without a PMD map right 1250 * away. Chances are some or all of the 1251 * tail pages can be freed without IO. 1252 */ 1253 if (!compound_mapcount(page) && 1254 split_huge_page_to_list(page, 1255 page_list)) 1256 goto activate_locked; 1257 } 1258 if (!add_to_swap(page)) { 1259 if (!PageTransHuge(page)) 1260 goto activate_locked_split; 1261 /* Fallback to swap normal pages */ 1262 if (split_huge_page_to_list(page, 1263 page_list)) 1264 goto activate_locked; 1265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1266 count_vm_event(THP_SWPOUT_FALLBACK); 1267 #endif 1268 if (!add_to_swap(page)) 1269 goto activate_locked_split; 1270 } 1271 1272 may_enter_fs = true; 1273 1274 /* Adding to swap updated mapping */ 1275 mapping = page_mapping(page); 1276 } 1277 } else if (unlikely(PageTransHuge(page))) { 1278 /* Split file THP */ 1279 if (split_huge_page_to_list(page, page_list)) 1280 goto keep_locked; 1281 } 1282 1283 /* 1284 * THP may get split above, need minus tail pages and update 1285 * nr_pages to avoid accounting tail pages twice. 1286 * 1287 * The tail pages that are added into swap cache successfully 1288 * reach here. 1289 */ 1290 if ((nr_pages > 1) && !PageTransHuge(page)) { 1291 sc->nr_scanned -= (nr_pages - 1); 1292 nr_pages = 1; 1293 } 1294 1295 /* 1296 * The page is mapped into the page tables of one or more 1297 * processes. Try to unmap it here. 1298 */ 1299 if (page_mapped(page)) { 1300 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1301 bool was_swapbacked = PageSwapBacked(page); 1302 1303 if (unlikely(PageTransHuge(page))) 1304 flags |= TTU_SPLIT_HUGE_PMD; 1305 1306 if (!try_to_unmap(page, flags)) { 1307 stat->nr_unmap_fail += nr_pages; 1308 if (!was_swapbacked && PageSwapBacked(page)) 1309 stat->nr_lazyfree_fail += nr_pages; 1310 goto activate_locked; 1311 } 1312 } 1313 1314 if (PageDirty(page)) { 1315 /* 1316 * Only kswapd can writeback filesystem pages 1317 * to avoid risk of stack overflow. But avoid 1318 * injecting inefficient single-page IO into 1319 * flusher writeback as much as possible: only 1320 * write pages when we've encountered many 1321 * dirty pages, and when we've already scanned 1322 * the rest of the LRU for clean pages and see 1323 * the same dirty pages again (PageReclaim). 1324 */ 1325 if (page_is_file_lru(page) && 1326 (!current_is_kswapd() || !PageReclaim(page) || 1327 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1328 /* 1329 * Immediately reclaim when written back. 1330 * Similar in principal to deactivate_page() 1331 * except we already have the page isolated 1332 * and know it's dirty 1333 */ 1334 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1335 SetPageReclaim(page); 1336 1337 goto activate_locked; 1338 } 1339 1340 if (references == PAGEREF_RECLAIM_CLEAN) 1341 goto keep_locked; 1342 if (!may_enter_fs) 1343 goto keep_locked; 1344 if (!sc->may_writepage) 1345 goto keep_locked; 1346 1347 /* 1348 * Page is dirty. Flush the TLB if a writable entry 1349 * potentially exists to avoid CPU writes after IO 1350 * starts and then write it out here. 1351 */ 1352 try_to_unmap_flush_dirty(); 1353 switch (pageout(page, mapping)) { 1354 case PAGE_KEEP: 1355 goto keep_locked; 1356 case PAGE_ACTIVATE: 1357 goto activate_locked; 1358 case PAGE_SUCCESS: 1359 stat->nr_pageout += thp_nr_pages(page); 1360 1361 if (PageWriteback(page)) 1362 goto keep; 1363 if (PageDirty(page)) 1364 goto keep; 1365 1366 /* 1367 * A synchronous write - probably a ramdisk. Go 1368 * ahead and try to reclaim the page. 1369 */ 1370 if (!trylock_page(page)) 1371 goto keep; 1372 if (PageDirty(page) || PageWriteback(page)) 1373 goto keep_locked; 1374 mapping = page_mapping(page); 1375 case PAGE_CLEAN: 1376 ; /* try to free the page below */ 1377 } 1378 } 1379 1380 /* 1381 * If the page has buffers, try to free the buffer mappings 1382 * associated with this page. If we succeed we try to free 1383 * the page as well. 1384 * 1385 * We do this even if the page is PageDirty(). 1386 * try_to_release_page() does not perform I/O, but it is 1387 * possible for a page to have PageDirty set, but it is actually 1388 * clean (all its buffers are clean). This happens if the 1389 * buffers were written out directly, with submit_bh(). ext3 1390 * will do this, as well as the blockdev mapping. 1391 * try_to_release_page() will discover that cleanness and will 1392 * drop the buffers and mark the page clean - it can be freed. 1393 * 1394 * Rarely, pages can have buffers and no ->mapping. These are 1395 * the pages which were not successfully invalidated in 1396 * truncate_complete_page(). We try to drop those buffers here 1397 * and if that worked, and the page is no longer mapped into 1398 * process address space (page_count == 1) it can be freed. 1399 * Otherwise, leave the page on the LRU so it is swappable. 1400 */ 1401 if (page_has_private(page)) { 1402 if (!try_to_release_page(page, sc->gfp_mask)) 1403 goto activate_locked; 1404 if (!mapping && page_count(page) == 1) { 1405 unlock_page(page); 1406 if (put_page_testzero(page)) 1407 goto free_it; 1408 else { 1409 /* 1410 * rare race with speculative reference. 1411 * the speculative reference will free 1412 * this page shortly, so we may 1413 * increment nr_reclaimed here (and 1414 * leave it off the LRU). 1415 */ 1416 nr_reclaimed++; 1417 continue; 1418 } 1419 } 1420 } 1421 1422 if (PageAnon(page) && !PageSwapBacked(page)) { 1423 /* follow __remove_mapping for reference */ 1424 if (!page_ref_freeze(page, 1)) 1425 goto keep_locked; 1426 if (PageDirty(page)) { 1427 page_ref_unfreeze(page, 1); 1428 goto keep_locked; 1429 } 1430 1431 count_vm_event(PGLAZYFREED); 1432 count_memcg_page_event(page, PGLAZYFREED); 1433 } else if (!mapping || !__remove_mapping(mapping, page, true, 1434 sc->target_mem_cgroup)) 1435 goto keep_locked; 1436 1437 unlock_page(page); 1438 free_it: 1439 /* 1440 * THP may get swapped out in a whole, need account 1441 * all base pages. 1442 */ 1443 nr_reclaimed += nr_pages; 1444 1445 /* 1446 * Is there need to periodically free_page_list? It would 1447 * appear not as the counts should be low 1448 */ 1449 if (unlikely(PageTransHuge(page))) 1450 destroy_compound_page(page); 1451 else 1452 list_add(&page->lru, &free_pages); 1453 continue; 1454 1455 activate_locked_split: 1456 /* 1457 * The tail pages that are failed to add into swap cache 1458 * reach here. Fixup nr_scanned and nr_pages. 1459 */ 1460 if (nr_pages > 1) { 1461 sc->nr_scanned -= (nr_pages - 1); 1462 nr_pages = 1; 1463 } 1464 activate_locked: 1465 /* Not a candidate for swapping, so reclaim swap space. */ 1466 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1467 PageMlocked(page))) 1468 try_to_free_swap(page); 1469 VM_BUG_ON_PAGE(PageActive(page), page); 1470 if (!PageMlocked(page)) { 1471 int type = page_is_file_lru(page); 1472 SetPageActive(page); 1473 stat->nr_activate[type] += nr_pages; 1474 count_memcg_page_event(page, PGACTIVATE); 1475 } 1476 keep_locked: 1477 unlock_page(page); 1478 keep: 1479 list_add(&page->lru, &ret_pages); 1480 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1481 } 1482 1483 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1484 1485 mem_cgroup_uncharge_list(&free_pages); 1486 try_to_unmap_flush(); 1487 free_unref_page_list(&free_pages); 1488 1489 list_splice(&ret_pages, page_list); 1490 count_vm_events(PGACTIVATE, pgactivate); 1491 1492 return nr_reclaimed; 1493 } 1494 1495 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1496 struct list_head *page_list) 1497 { 1498 struct scan_control sc = { 1499 .gfp_mask = GFP_KERNEL, 1500 .priority = DEF_PRIORITY, 1501 .may_unmap = 1, 1502 }; 1503 struct reclaim_stat stat; 1504 unsigned int nr_reclaimed; 1505 struct page *page, *next; 1506 LIST_HEAD(clean_pages); 1507 1508 list_for_each_entry_safe(page, next, page_list, lru) { 1509 if (page_is_file_lru(page) && !PageDirty(page) && 1510 !__PageMovable(page) && !PageUnevictable(page)) { 1511 ClearPageActive(page); 1512 list_move(&page->lru, &clean_pages); 1513 } 1514 } 1515 1516 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1517 TTU_IGNORE_ACCESS, &stat, true); 1518 list_splice(&clean_pages, page_list); 1519 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1520 -(long)nr_reclaimed); 1521 /* 1522 * Since lazyfree pages are isolated from file LRU from the beginning, 1523 * they will rotate back to anonymous LRU in the end if it failed to 1524 * discard so isolated count will be mismatched. 1525 * Compensate the isolated count for both LRU lists. 1526 */ 1527 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1528 stat.nr_lazyfree_fail); 1529 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1530 -(long)stat.nr_lazyfree_fail); 1531 return nr_reclaimed; 1532 } 1533 1534 /* 1535 * Attempt to remove the specified page from its LRU. Only take this page 1536 * if it is of the appropriate PageActive status. Pages which are being 1537 * freed elsewhere are also ignored. 1538 * 1539 * page: page to consider 1540 * mode: one of the LRU isolation modes defined above 1541 * 1542 * returns 0 on success, -ve errno on failure. 1543 */ 1544 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1545 { 1546 int ret = -EINVAL; 1547 1548 /* Only take pages on the LRU. */ 1549 if (!PageLRU(page)) 1550 return ret; 1551 1552 /* Compaction should not handle unevictable pages but CMA can do so */ 1553 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1554 return ret; 1555 1556 ret = -EBUSY; 1557 1558 /* 1559 * To minimise LRU disruption, the caller can indicate that it only 1560 * wants to isolate pages it will be able to operate on without 1561 * blocking - clean pages for the most part. 1562 * 1563 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1564 * that it is possible to migrate without blocking 1565 */ 1566 if (mode & ISOLATE_ASYNC_MIGRATE) { 1567 /* All the caller can do on PageWriteback is block */ 1568 if (PageWriteback(page)) 1569 return ret; 1570 1571 if (PageDirty(page)) { 1572 struct address_space *mapping; 1573 bool migrate_dirty; 1574 1575 /* 1576 * Only pages without mappings or that have a 1577 * ->migratepage callback are possible to migrate 1578 * without blocking. However, we can be racing with 1579 * truncation so it's necessary to lock the page 1580 * to stabilise the mapping as truncation holds 1581 * the page lock until after the page is removed 1582 * from the page cache. 1583 */ 1584 if (!trylock_page(page)) 1585 return ret; 1586 1587 mapping = page_mapping(page); 1588 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1589 unlock_page(page); 1590 if (!migrate_dirty) 1591 return ret; 1592 } 1593 } 1594 1595 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1596 return ret; 1597 1598 if (likely(get_page_unless_zero(page))) { 1599 /* 1600 * Be careful not to clear PageLRU until after we're 1601 * sure the page is not being freed elsewhere -- the 1602 * page release code relies on it. 1603 */ 1604 ClearPageLRU(page); 1605 ret = 0; 1606 } 1607 1608 return ret; 1609 } 1610 1611 1612 /* 1613 * Update LRU sizes after isolating pages. The LRU size updates must 1614 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1615 */ 1616 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1617 enum lru_list lru, unsigned long *nr_zone_taken) 1618 { 1619 int zid; 1620 1621 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1622 if (!nr_zone_taken[zid]) 1623 continue; 1624 1625 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1626 } 1627 1628 } 1629 1630 /** 1631 * pgdat->lru_lock is heavily contended. Some of the functions that 1632 * shrink the lists perform better by taking out a batch of pages 1633 * and working on them outside the LRU lock. 1634 * 1635 * For pagecache intensive workloads, this function is the hottest 1636 * spot in the kernel (apart from copy_*_user functions). 1637 * 1638 * Appropriate locks must be held before calling this function. 1639 * 1640 * @nr_to_scan: The number of eligible pages to look through on the list. 1641 * @lruvec: The LRU vector to pull pages from. 1642 * @dst: The temp list to put pages on to. 1643 * @nr_scanned: The number of pages that were scanned. 1644 * @sc: The scan_control struct for this reclaim session 1645 * @lru: LRU list id for isolating 1646 * 1647 * returns how many pages were moved onto *@dst. 1648 */ 1649 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1650 struct lruvec *lruvec, struct list_head *dst, 1651 unsigned long *nr_scanned, struct scan_control *sc, 1652 enum lru_list lru) 1653 { 1654 struct list_head *src = &lruvec->lists[lru]; 1655 unsigned long nr_taken = 0; 1656 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1657 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1658 unsigned long skipped = 0; 1659 unsigned long scan, total_scan, nr_pages; 1660 LIST_HEAD(pages_skipped); 1661 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1662 1663 total_scan = 0; 1664 scan = 0; 1665 while (scan < nr_to_scan && !list_empty(src)) { 1666 struct page *page; 1667 1668 page = lru_to_page(src); 1669 prefetchw_prev_lru_page(page, src, flags); 1670 1671 VM_BUG_ON_PAGE(!PageLRU(page), page); 1672 1673 nr_pages = compound_nr(page); 1674 total_scan += nr_pages; 1675 1676 if (page_zonenum(page) > sc->reclaim_idx) { 1677 list_move(&page->lru, &pages_skipped); 1678 nr_skipped[page_zonenum(page)] += nr_pages; 1679 continue; 1680 } 1681 1682 /* 1683 * Do not count skipped pages because that makes the function 1684 * return with no isolated pages if the LRU mostly contains 1685 * ineligible pages. This causes the VM to not reclaim any 1686 * pages, triggering a premature OOM. 1687 * 1688 * Account all tail pages of THP. This would not cause 1689 * premature OOM since __isolate_lru_page() returns -EBUSY 1690 * only when the page is being freed somewhere else. 1691 */ 1692 scan += nr_pages; 1693 switch (__isolate_lru_page(page, mode)) { 1694 case 0: 1695 nr_taken += nr_pages; 1696 nr_zone_taken[page_zonenum(page)] += nr_pages; 1697 list_move(&page->lru, dst); 1698 break; 1699 1700 case -EBUSY: 1701 /* else it is being freed elsewhere */ 1702 list_move(&page->lru, src); 1703 continue; 1704 1705 default: 1706 BUG(); 1707 } 1708 } 1709 1710 /* 1711 * Splice any skipped pages to the start of the LRU list. Note that 1712 * this disrupts the LRU order when reclaiming for lower zones but 1713 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1714 * scanning would soon rescan the same pages to skip and put the 1715 * system at risk of premature OOM. 1716 */ 1717 if (!list_empty(&pages_skipped)) { 1718 int zid; 1719 1720 list_splice(&pages_skipped, src); 1721 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1722 if (!nr_skipped[zid]) 1723 continue; 1724 1725 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1726 skipped += nr_skipped[zid]; 1727 } 1728 } 1729 *nr_scanned = total_scan; 1730 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1731 total_scan, skipped, nr_taken, mode, lru); 1732 update_lru_sizes(lruvec, lru, nr_zone_taken); 1733 return nr_taken; 1734 } 1735 1736 /** 1737 * isolate_lru_page - tries to isolate a page from its LRU list 1738 * @page: page to isolate from its LRU list 1739 * 1740 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1741 * vmstat statistic corresponding to whatever LRU list the page was on. 1742 * 1743 * Returns 0 if the page was removed from an LRU list. 1744 * Returns -EBUSY if the page was not on an LRU list. 1745 * 1746 * The returned page will have PageLRU() cleared. If it was found on 1747 * the active list, it will have PageActive set. If it was found on 1748 * the unevictable list, it will have the PageUnevictable bit set. That flag 1749 * may need to be cleared by the caller before letting the page go. 1750 * 1751 * The vmstat statistic corresponding to the list on which the page was 1752 * found will be decremented. 1753 * 1754 * Restrictions: 1755 * 1756 * (1) Must be called with an elevated refcount on the page. This is a 1757 * fundamental difference from isolate_lru_pages (which is called 1758 * without a stable reference). 1759 * (2) the lru_lock must not be held. 1760 * (3) interrupts must be enabled. 1761 */ 1762 int isolate_lru_page(struct page *page) 1763 { 1764 int ret = -EBUSY; 1765 1766 VM_BUG_ON_PAGE(!page_count(page), page); 1767 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1768 1769 if (PageLRU(page)) { 1770 pg_data_t *pgdat = page_pgdat(page); 1771 struct lruvec *lruvec; 1772 1773 spin_lock_irq(&pgdat->lru_lock); 1774 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1775 if (PageLRU(page)) { 1776 int lru = page_lru(page); 1777 get_page(page); 1778 ClearPageLRU(page); 1779 del_page_from_lru_list(page, lruvec, lru); 1780 ret = 0; 1781 } 1782 spin_unlock_irq(&pgdat->lru_lock); 1783 } 1784 return ret; 1785 } 1786 1787 /* 1788 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1789 * then get rescheduled. When there are massive number of tasks doing page 1790 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1791 * the LRU list will go small and be scanned faster than necessary, leading to 1792 * unnecessary swapping, thrashing and OOM. 1793 */ 1794 static int too_many_isolated(struct pglist_data *pgdat, int file, 1795 struct scan_control *sc) 1796 { 1797 unsigned long inactive, isolated; 1798 1799 if (current_is_kswapd()) 1800 return 0; 1801 1802 if (!writeback_throttling_sane(sc)) 1803 return 0; 1804 1805 if (file) { 1806 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1807 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1808 } else { 1809 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1810 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1811 } 1812 1813 /* 1814 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1815 * won't get blocked by normal direct-reclaimers, forming a circular 1816 * deadlock. 1817 */ 1818 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1819 inactive >>= 3; 1820 1821 return isolated > inactive; 1822 } 1823 1824 /* 1825 * This moves pages from @list to corresponding LRU list. 1826 * 1827 * We move them the other way if the page is referenced by one or more 1828 * processes, from rmap. 1829 * 1830 * If the pages are mostly unmapped, the processing is fast and it is 1831 * appropriate to hold zone_lru_lock across the whole operation. But if 1832 * the pages are mapped, the processing is slow (page_referenced()) so we 1833 * should drop zone_lru_lock around each page. It's impossible to balance 1834 * this, so instead we remove the pages from the LRU while processing them. 1835 * It is safe to rely on PG_active against the non-LRU pages in here because 1836 * nobody will play with that bit on a non-LRU page. 1837 * 1838 * The downside is that we have to touch page->_refcount against each page. 1839 * But we had to alter page->flags anyway. 1840 * 1841 * Returns the number of pages moved to the given lruvec. 1842 */ 1843 1844 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1845 struct list_head *list) 1846 { 1847 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1848 int nr_pages, nr_moved = 0; 1849 LIST_HEAD(pages_to_free); 1850 struct page *page; 1851 enum lru_list lru; 1852 1853 while (!list_empty(list)) { 1854 page = lru_to_page(list); 1855 VM_BUG_ON_PAGE(PageLRU(page), page); 1856 if (unlikely(!page_evictable(page))) { 1857 list_del(&page->lru); 1858 spin_unlock_irq(&pgdat->lru_lock); 1859 putback_lru_page(page); 1860 spin_lock_irq(&pgdat->lru_lock); 1861 continue; 1862 } 1863 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1864 1865 SetPageLRU(page); 1866 lru = page_lru(page); 1867 1868 nr_pages = thp_nr_pages(page); 1869 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1870 list_move(&page->lru, &lruvec->lists[lru]); 1871 1872 if (put_page_testzero(page)) { 1873 __ClearPageLRU(page); 1874 __ClearPageActive(page); 1875 del_page_from_lru_list(page, lruvec, lru); 1876 1877 if (unlikely(PageCompound(page))) { 1878 spin_unlock_irq(&pgdat->lru_lock); 1879 destroy_compound_page(page); 1880 spin_lock_irq(&pgdat->lru_lock); 1881 } else 1882 list_add(&page->lru, &pages_to_free); 1883 } else { 1884 nr_moved += nr_pages; 1885 if (PageActive(page)) 1886 workingset_age_nonresident(lruvec, nr_pages); 1887 } 1888 } 1889 1890 /* 1891 * To save our caller's stack, now use input list for pages to free. 1892 */ 1893 list_splice(&pages_to_free, list); 1894 1895 return nr_moved; 1896 } 1897 1898 /* 1899 * If a kernel thread (such as nfsd for loop-back mounts) services 1900 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 1901 * In that case we should only throttle if the backing device it is 1902 * writing to is congested. In other cases it is safe to throttle. 1903 */ 1904 static int current_may_throttle(void) 1905 { 1906 return !(current->flags & PF_LOCAL_THROTTLE) || 1907 current->backing_dev_info == NULL || 1908 bdi_write_congested(current->backing_dev_info); 1909 } 1910 1911 /* 1912 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1913 * of reclaimed pages 1914 */ 1915 static noinline_for_stack unsigned long 1916 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1917 struct scan_control *sc, enum lru_list lru) 1918 { 1919 LIST_HEAD(page_list); 1920 unsigned long nr_scanned; 1921 unsigned int nr_reclaimed = 0; 1922 unsigned long nr_taken; 1923 struct reclaim_stat stat; 1924 bool file = is_file_lru(lru); 1925 enum vm_event_item item; 1926 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1927 bool stalled = false; 1928 1929 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1930 if (stalled) 1931 return 0; 1932 1933 /* wait a bit for the reclaimer. */ 1934 msleep(100); 1935 stalled = true; 1936 1937 /* We are about to die and free our memory. Return now. */ 1938 if (fatal_signal_pending(current)) 1939 return SWAP_CLUSTER_MAX; 1940 } 1941 1942 lru_add_drain(); 1943 1944 spin_lock_irq(&pgdat->lru_lock); 1945 1946 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1947 &nr_scanned, sc, lru); 1948 1949 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1950 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1951 if (!cgroup_reclaim(sc)) 1952 __count_vm_events(item, nr_scanned); 1953 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1954 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1955 1956 spin_unlock_irq(&pgdat->lru_lock); 1957 1958 if (nr_taken == 0) 1959 return 0; 1960 1961 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1962 &stat, false); 1963 1964 spin_lock_irq(&pgdat->lru_lock); 1965 1966 move_pages_to_lru(lruvec, &page_list); 1967 1968 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1969 lru_note_cost(lruvec, file, stat.nr_pageout); 1970 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1971 if (!cgroup_reclaim(sc)) 1972 __count_vm_events(item, nr_reclaimed); 1973 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1974 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1975 1976 spin_unlock_irq(&pgdat->lru_lock); 1977 1978 mem_cgroup_uncharge_list(&page_list); 1979 free_unref_page_list(&page_list); 1980 1981 /* 1982 * If dirty pages are scanned that are not queued for IO, it 1983 * implies that flushers are not doing their job. This can 1984 * happen when memory pressure pushes dirty pages to the end of 1985 * the LRU before the dirty limits are breached and the dirty 1986 * data has expired. It can also happen when the proportion of 1987 * dirty pages grows not through writes but through memory 1988 * pressure reclaiming all the clean cache. And in some cases, 1989 * the flushers simply cannot keep up with the allocation 1990 * rate. Nudge the flusher threads in case they are asleep. 1991 */ 1992 if (stat.nr_unqueued_dirty == nr_taken) 1993 wakeup_flusher_threads(WB_REASON_VMSCAN); 1994 1995 sc->nr.dirty += stat.nr_dirty; 1996 sc->nr.congested += stat.nr_congested; 1997 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1998 sc->nr.writeback += stat.nr_writeback; 1999 sc->nr.immediate += stat.nr_immediate; 2000 sc->nr.taken += nr_taken; 2001 if (file) 2002 sc->nr.file_taken += nr_taken; 2003 2004 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2005 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2006 return nr_reclaimed; 2007 } 2008 2009 static void shrink_active_list(unsigned long nr_to_scan, 2010 struct lruvec *lruvec, 2011 struct scan_control *sc, 2012 enum lru_list lru) 2013 { 2014 unsigned long nr_taken; 2015 unsigned long nr_scanned; 2016 unsigned long vm_flags; 2017 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2018 LIST_HEAD(l_active); 2019 LIST_HEAD(l_inactive); 2020 struct page *page; 2021 unsigned nr_deactivate, nr_activate; 2022 unsigned nr_rotated = 0; 2023 int file = is_file_lru(lru); 2024 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2025 2026 lru_add_drain(); 2027 2028 spin_lock_irq(&pgdat->lru_lock); 2029 2030 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2031 &nr_scanned, sc, lru); 2032 2033 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2034 2035 if (!cgroup_reclaim(sc)) 2036 __count_vm_events(PGREFILL, nr_scanned); 2037 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2038 2039 spin_unlock_irq(&pgdat->lru_lock); 2040 2041 while (!list_empty(&l_hold)) { 2042 cond_resched(); 2043 page = lru_to_page(&l_hold); 2044 list_del(&page->lru); 2045 2046 if (unlikely(!page_evictable(page))) { 2047 putback_lru_page(page); 2048 continue; 2049 } 2050 2051 if (unlikely(buffer_heads_over_limit)) { 2052 if (page_has_private(page) && trylock_page(page)) { 2053 if (page_has_private(page)) 2054 try_to_release_page(page, 0); 2055 unlock_page(page); 2056 } 2057 } 2058 2059 if (page_referenced(page, 0, sc->target_mem_cgroup, 2060 &vm_flags)) { 2061 /* 2062 * Identify referenced, file-backed active pages and 2063 * give them one more trip around the active list. So 2064 * that executable code get better chances to stay in 2065 * memory under moderate memory pressure. Anon pages 2066 * are not likely to be evicted by use-once streaming 2067 * IO, plus JVM can create lots of anon VM_EXEC pages, 2068 * so we ignore them here. 2069 */ 2070 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2071 nr_rotated += thp_nr_pages(page); 2072 list_add(&page->lru, &l_active); 2073 continue; 2074 } 2075 } 2076 2077 ClearPageActive(page); /* we are de-activating */ 2078 SetPageWorkingset(page); 2079 list_add(&page->lru, &l_inactive); 2080 } 2081 2082 /* 2083 * Move pages back to the lru list. 2084 */ 2085 spin_lock_irq(&pgdat->lru_lock); 2086 2087 nr_activate = move_pages_to_lru(lruvec, &l_active); 2088 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2089 /* Keep all free pages in l_active list */ 2090 list_splice(&l_inactive, &l_active); 2091 2092 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2093 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2094 2095 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2096 spin_unlock_irq(&pgdat->lru_lock); 2097 2098 mem_cgroup_uncharge_list(&l_active); 2099 free_unref_page_list(&l_active); 2100 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2101 nr_deactivate, nr_rotated, sc->priority, file); 2102 } 2103 2104 unsigned long reclaim_pages(struct list_head *page_list) 2105 { 2106 int nid = NUMA_NO_NODE; 2107 unsigned int nr_reclaimed = 0; 2108 LIST_HEAD(node_page_list); 2109 struct reclaim_stat dummy_stat; 2110 struct page *page; 2111 struct scan_control sc = { 2112 .gfp_mask = GFP_KERNEL, 2113 .priority = DEF_PRIORITY, 2114 .may_writepage = 1, 2115 .may_unmap = 1, 2116 .may_swap = 1, 2117 }; 2118 2119 while (!list_empty(page_list)) { 2120 page = lru_to_page(page_list); 2121 if (nid == NUMA_NO_NODE) { 2122 nid = page_to_nid(page); 2123 INIT_LIST_HEAD(&node_page_list); 2124 } 2125 2126 if (nid == page_to_nid(page)) { 2127 ClearPageActive(page); 2128 list_move(&page->lru, &node_page_list); 2129 continue; 2130 } 2131 2132 nr_reclaimed += shrink_page_list(&node_page_list, 2133 NODE_DATA(nid), 2134 &sc, 0, 2135 &dummy_stat, false); 2136 while (!list_empty(&node_page_list)) { 2137 page = lru_to_page(&node_page_list); 2138 list_del(&page->lru); 2139 putback_lru_page(page); 2140 } 2141 2142 nid = NUMA_NO_NODE; 2143 } 2144 2145 if (!list_empty(&node_page_list)) { 2146 nr_reclaimed += shrink_page_list(&node_page_list, 2147 NODE_DATA(nid), 2148 &sc, 0, 2149 &dummy_stat, false); 2150 while (!list_empty(&node_page_list)) { 2151 page = lru_to_page(&node_page_list); 2152 list_del(&page->lru); 2153 putback_lru_page(page); 2154 } 2155 } 2156 2157 return nr_reclaimed; 2158 } 2159 2160 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2161 struct lruvec *lruvec, struct scan_control *sc) 2162 { 2163 if (is_active_lru(lru)) { 2164 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2165 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2166 else 2167 sc->skipped_deactivate = 1; 2168 return 0; 2169 } 2170 2171 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2172 } 2173 2174 /* 2175 * The inactive anon list should be small enough that the VM never has 2176 * to do too much work. 2177 * 2178 * The inactive file list should be small enough to leave most memory 2179 * to the established workingset on the scan-resistant active list, 2180 * but large enough to avoid thrashing the aggregate readahead window. 2181 * 2182 * Both inactive lists should also be large enough that each inactive 2183 * page has a chance to be referenced again before it is reclaimed. 2184 * 2185 * If that fails and refaulting is observed, the inactive list grows. 2186 * 2187 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2188 * on this LRU, maintained by the pageout code. An inactive_ratio 2189 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2190 * 2191 * total target max 2192 * memory ratio inactive 2193 * ------------------------------------- 2194 * 10MB 1 5MB 2195 * 100MB 1 50MB 2196 * 1GB 3 250MB 2197 * 10GB 10 0.9GB 2198 * 100GB 31 3GB 2199 * 1TB 101 10GB 2200 * 10TB 320 32GB 2201 */ 2202 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2203 { 2204 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2205 unsigned long inactive, active; 2206 unsigned long inactive_ratio; 2207 unsigned long gb; 2208 2209 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2210 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2211 2212 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2213 if (gb) 2214 inactive_ratio = int_sqrt(10 * gb); 2215 else 2216 inactive_ratio = 1; 2217 2218 return inactive * inactive_ratio < active; 2219 } 2220 2221 enum scan_balance { 2222 SCAN_EQUAL, 2223 SCAN_FRACT, 2224 SCAN_ANON, 2225 SCAN_FILE, 2226 }; 2227 2228 /* 2229 * Determine how aggressively the anon and file LRU lists should be 2230 * scanned. The relative value of each set of LRU lists is determined 2231 * by looking at the fraction of the pages scanned we did rotate back 2232 * onto the active list instead of evict. 2233 * 2234 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2235 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2236 */ 2237 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2238 unsigned long *nr) 2239 { 2240 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2241 unsigned long anon_cost, file_cost, total_cost; 2242 int swappiness = mem_cgroup_swappiness(memcg); 2243 u64 fraction[ANON_AND_FILE]; 2244 u64 denominator = 0; /* gcc */ 2245 enum scan_balance scan_balance; 2246 unsigned long ap, fp; 2247 enum lru_list lru; 2248 2249 /* If we have no swap space, do not bother scanning anon pages. */ 2250 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2251 scan_balance = SCAN_FILE; 2252 goto out; 2253 } 2254 2255 /* 2256 * Global reclaim will swap to prevent OOM even with no 2257 * swappiness, but memcg users want to use this knob to 2258 * disable swapping for individual groups completely when 2259 * using the memory controller's swap limit feature would be 2260 * too expensive. 2261 */ 2262 if (cgroup_reclaim(sc) && !swappiness) { 2263 scan_balance = SCAN_FILE; 2264 goto out; 2265 } 2266 2267 /* 2268 * Do not apply any pressure balancing cleverness when the 2269 * system is close to OOM, scan both anon and file equally 2270 * (unless the swappiness setting disagrees with swapping). 2271 */ 2272 if (!sc->priority && swappiness) { 2273 scan_balance = SCAN_EQUAL; 2274 goto out; 2275 } 2276 2277 /* 2278 * If the system is almost out of file pages, force-scan anon. 2279 */ 2280 if (sc->file_is_tiny) { 2281 scan_balance = SCAN_ANON; 2282 goto out; 2283 } 2284 2285 /* 2286 * If there is enough inactive page cache, we do not reclaim 2287 * anything from the anonymous working right now. 2288 */ 2289 if (sc->cache_trim_mode) { 2290 scan_balance = SCAN_FILE; 2291 goto out; 2292 } 2293 2294 scan_balance = SCAN_FRACT; 2295 /* 2296 * Calculate the pressure balance between anon and file pages. 2297 * 2298 * The amount of pressure we put on each LRU is inversely 2299 * proportional to the cost of reclaiming each list, as 2300 * determined by the share of pages that are refaulting, times 2301 * the relative IO cost of bringing back a swapped out 2302 * anonymous page vs reloading a filesystem page (swappiness). 2303 * 2304 * Although we limit that influence to ensure no list gets 2305 * left behind completely: at least a third of the pressure is 2306 * applied, before swappiness. 2307 * 2308 * With swappiness at 100, anon and file have equal IO cost. 2309 */ 2310 total_cost = sc->anon_cost + sc->file_cost; 2311 anon_cost = total_cost + sc->anon_cost; 2312 file_cost = total_cost + sc->file_cost; 2313 total_cost = anon_cost + file_cost; 2314 2315 ap = swappiness * (total_cost + 1); 2316 ap /= anon_cost + 1; 2317 2318 fp = (200 - swappiness) * (total_cost + 1); 2319 fp /= file_cost + 1; 2320 2321 fraction[0] = ap; 2322 fraction[1] = fp; 2323 denominator = ap + fp; 2324 out: 2325 for_each_evictable_lru(lru) { 2326 int file = is_file_lru(lru); 2327 unsigned long lruvec_size; 2328 unsigned long scan; 2329 unsigned long protection; 2330 2331 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2332 protection = mem_cgroup_protection(sc->target_mem_cgroup, 2333 memcg, 2334 sc->memcg_low_reclaim); 2335 2336 if (protection) { 2337 /* 2338 * Scale a cgroup's reclaim pressure by proportioning 2339 * its current usage to its memory.low or memory.min 2340 * setting. 2341 * 2342 * This is important, as otherwise scanning aggression 2343 * becomes extremely binary -- from nothing as we 2344 * approach the memory protection threshold, to totally 2345 * nominal as we exceed it. This results in requiring 2346 * setting extremely liberal protection thresholds. It 2347 * also means we simply get no protection at all if we 2348 * set it too low, which is not ideal. 2349 * 2350 * If there is any protection in place, we reduce scan 2351 * pressure by how much of the total memory used is 2352 * within protection thresholds. 2353 * 2354 * There is one special case: in the first reclaim pass, 2355 * we skip over all groups that are within their low 2356 * protection. If that fails to reclaim enough pages to 2357 * satisfy the reclaim goal, we come back and override 2358 * the best-effort low protection. However, we still 2359 * ideally want to honor how well-behaved groups are in 2360 * that case instead of simply punishing them all 2361 * equally. As such, we reclaim them based on how much 2362 * memory they are using, reducing the scan pressure 2363 * again by how much of the total memory used is under 2364 * hard protection. 2365 */ 2366 unsigned long cgroup_size = mem_cgroup_size(memcg); 2367 2368 /* Avoid TOCTOU with earlier protection check */ 2369 cgroup_size = max(cgroup_size, protection); 2370 2371 scan = lruvec_size - lruvec_size * protection / 2372 cgroup_size; 2373 2374 /* 2375 * Minimally target SWAP_CLUSTER_MAX pages to keep 2376 * reclaim moving forwards, avoiding decrementing 2377 * sc->priority further than desirable. 2378 */ 2379 scan = max(scan, SWAP_CLUSTER_MAX); 2380 } else { 2381 scan = lruvec_size; 2382 } 2383 2384 scan >>= sc->priority; 2385 2386 /* 2387 * If the cgroup's already been deleted, make sure to 2388 * scrape out the remaining cache. 2389 */ 2390 if (!scan && !mem_cgroup_online(memcg)) 2391 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2392 2393 switch (scan_balance) { 2394 case SCAN_EQUAL: 2395 /* Scan lists relative to size */ 2396 break; 2397 case SCAN_FRACT: 2398 /* 2399 * Scan types proportional to swappiness and 2400 * their relative recent reclaim efficiency. 2401 * Make sure we don't miss the last page on 2402 * the offlined memory cgroups because of a 2403 * round-off error. 2404 */ 2405 scan = mem_cgroup_online(memcg) ? 2406 div64_u64(scan * fraction[file], denominator) : 2407 DIV64_U64_ROUND_UP(scan * fraction[file], 2408 denominator); 2409 break; 2410 case SCAN_FILE: 2411 case SCAN_ANON: 2412 /* Scan one type exclusively */ 2413 if ((scan_balance == SCAN_FILE) != file) 2414 scan = 0; 2415 break; 2416 default: 2417 /* Look ma, no brain */ 2418 BUG(); 2419 } 2420 2421 nr[lru] = scan; 2422 } 2423 } 2424 2425 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2426 { 2427 unsigned long nr[NR_LRU_LISTS]; 2428 unsigned long targets[NR_LRU_LISTS]; 2429 unsigned long nr_to_scan; 2430 enum lru_list lru; 2431 unsigned long nr_reclaimed = 0; 2432 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2433 struct blk_plug plug; 2434 bool scan_adjusted; 2435 2436 get_scan_count(lruvec, sc, nr); 2437 2438 /* Record the original scan target for proportional adjustments later */ 2439 memcpy(targets, nr, sizeof(nr)); 2440 2441 /* 2442 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2443 * event that can occur when there is little memory pressure e.g. 2444 * multiple streaming readers/writers. Hence, we do not abort scanning 2445 * when the requested number of pages are reclaimed when scanning at 2446 * DEF_PRIORITY on the assumption that the fact we are direct 2447 * reclaiming implies that kswapd is not keeping up and it is best to 2448 * do a batch of work at once. For memcg reclaim one check is made to 2449 * abort proportional reclaim if either the file or anon lru has already 2450 * dropped to zero at the first pass. 2451 */ 2452 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2453 sc->priority == DEF_PRIORITY); 2454 2455 blk_start_plug(&plug); 2456 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2457 nr[LRU_INACTIVE_FILE]) { 2458 unsigned long nr_anon, nr_file, percentage; 2459 unsigned long nr_scanned; 2460 2461 for_each_evictable_lru(lru) { 2462 if (nr[lru]) { 2463 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2464 nr[lru] -= nr_to_scan; 2465 2466 nr_reclaimed += shrink_list(lru, nr_to_scan, 2467 lruvec, sc); 2468 } 2469 } 2470 2471 cond_resched(); 2472 2473 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2474 continue; 2475 2476 /* 2477 * For kswapd and memcg, reclaim at least the number of pages 2478 * requested. Ensure that the anon and file LRUs are scanned 2479 * proportionally what was requested by get_scan_count(). We 2480 * stop reclaiming one LRU and reduce the amount scanning 2481 * proportional to the original scan target. 2482 */ 2483 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2484 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2485 2486 /* 2487 * It's just vindictive to attack the larger once the smaller 2488 * has gone to zero. And given the way we stop scanning the 2489 * smaller below, this makes sure that we only make one nudge 2490 * towards proportionality once we've got nr_to_reclaim. 2491 */ 2492 if (!nr_file || !nr_anon) 2493 break; 2494 2495 if (nr_file > nr_anon) { 2496 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2497 targets[LRU_ACTIVE_ANON] + 1; 2498 lru = LRU_BASE; 2499 percentage = nr_anon * 100 / scan_target; 2500 } else { 2501 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2502 targets[LRU_ACTIVE_FILE] + 1; 2503 lru = LRU_FILE; 2504 percentage = nr_file * 100 / scan_target; 2505 } 2506 2507 /* Stop scanning the smaller of the LRU */ 2508 nr[lru] = 0; 2509 nr[lru + LRU_ACTIVE] = 0; 2510 2511 /* 2512 * Recalculate the other LRU scan count based on its original 2513 * scan target and the percentage scanning already complete 2514 */ 2515 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2516 nr_scanned = targets[lru] - nr[lru]; 2517 nr[lru] = targets[lru] * (100 - percentage) / 100; 2518 nr[lru] -= min(nr[lru], nr_scanned); 2519 2520 lru += LRU_ACTIVE; 2521 nr_scanned = targets[lru] - nr[lru]; 2522 nr[lru] = targets[lru] * (100 - percentage) / 100; 2523 nr[lru] -= min(nr[lru], nr_scanned); 2524 2525 scan_adjusted = true; 2526 } 2527 blk_finish_plug(&plug); 2528 sc->nr_reclaimed += nr_reclaimed; 2529 2530 /* 2531 * Even if we did not try to evict anon pages at all, we want to 2532 * rebalance the anon lru active/inactive ratio. 2533 */ 2534 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2535 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2536 sc, LRU_ACTIVE_ANON); 2537 } 2538 2539 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2540 static bool in_reclaim_compaction(struct scan_control *sc) 2541 { 2542 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2543 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2544 sc->priority < DEF_PRIORITY - 2)) 2545 return true; 2546 2547 return false; 2548 } 2549 2550 /* 2551 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2552 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2553 * true if more pages should be reclaimed such that when the page allocator 2554 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2555 * It will give up earlier than that if there is difficulty reclaiming pages. 2556 */ 2557 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2558 unsigned long nr_reclaimed, 2559 struct scan_control *sc) 2560 { 2561 unsigned long pages_for_compaction; 2562 unsigned long inactive_lru_pages; 2563 int z; 2564 2565 /* If not in reclaim/compaction mode, stop */ 2566 if (!in_reclaim_compaction(sc)) 2567 return false; 2568 2569 /* 2570 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2571 * number of pages that were scanned. This will return to the caller 2572 * with the risk reclaim/compaction and the resulting allocation attempt 2573 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2574 * allocations through requiring that the full LRU list has been scanned 2575 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2576 * scan, but that approximation was wrong, and there were corner cases 2577 * where always a non-zero amount of pages were scanned. 2578 */ 2579 if (!nr_reclaimed) 2580 return false; 2581 2582 /* If compaction would go ahead or the allocation would succeed, stop */ 2583 for (z = 0; z <= sc->reclaim_idx; z++) { 2584 struct zone *zone = &pgdat->node_zones[z]; 2585 if (!managed_zone(zone)) 2586 continue; 2587 2588 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2589 case COMPACT_SUCCESS: 2590 case COMPACT_CONTINUE: 2591 return false; 2592 default: 2593 /* check next zone */ 2594 ; 2595 } 2596 } 2597 2598 /* 2599 * If we have not reclaimed enough pages for compaction and the 2600 * inactive lists are large enough, continue reclaiming 2601 */ 2602 pages_for_compaction = compact_gap(sc->order); 2603 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2604 if (get_nr_swap_pages() > 0) 2605 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2606 2607 return inactive_lru_pages > pages_for_compaction; 2608 } 2609 2610 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2611 { 2612 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2613 struct mem_cgroup *memcg; 2614 2615 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2616 do { 2617 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2618 unsigned long reclaimed; 2619 unsigned long scanned; 2620 2621 /* 2622 * This loop can become CPU-bound when target memcgs 2623 * aren't eligible for reclaim - either because they 2624 * don't have any reclaimable pages, or because their 2625 * memory is explicitly protected. Avoid soft lockups. 2626 */ 2627 cond_resched(); 2628 2629 mem_cgroup_calculate_protection(target_memcg, memcg); 2630 2631 if (mem_cgroup_below_min(memcg)) { 2632 /* 2633 * Hard protection. 2634 * If there is no reclaimable memory, OOM. 2635 */ 2636 continue; 2637 } else if (mem_cgroup_below_low(memcg)) { 2638 /* 2639 * Soft protection. 2640 * Respect the protection only as long as 2641 * there is an unprotected supply 2642 * of reclaimable memory from other cgroups. 2643 */ 2644 if (!sc->memcg_low_reclaim) { 2645 sc->memcg_low_skipped = 1; 2646 continue; 2647 } 2648 memcg_memory_event(memcg, MEMCG_LOW); 2649 } 2650 2651 reclaimed = sc->nr_reclaimed; 2652 scanned = sc->nr_scanned; 2653 2654 shrink_lruvec(lruvec, sc); 2655 2656 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2657 sc->priority); 2658 2659 /* Record the group's reclaim efficiency */ 2660 vmpressure(sc->gfp_mask, memcg, false, 2661 sc->nr_scanned - scanned, 2662 sc->nr_reclaimed - reclaimed); 2663 2664 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2665 } 2666 2667 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2668 { 2669 struct reclaim_state *reclaim_state = current->reclaim_state; 2670 unsigned long nr_reclaimed, nr_scanned; 2671 struct lruvec *target_lruvec; 2672 bool reclaimable = false; 2673 unsigned long file; 2674 2675 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2676 2677 again: 2678 memset(&sc->nr, 0, sizeof(sc->nr)); 2679 2680 nr_reclaimed = sc->nr_reclaimed; 2681 nr_scanned = sc->nr_scanned; 2682 2683 /* 2684 * Determine the scan balance between anon and file LRUs. 2685 */ 2686 spin_lock_irq(&pgdat->lru_lock); 2687 sc->anon_cost = target_lruvec->anon_cost; 2688 sc->file_cost = target_lruvec->file_cost; 2689 spin_unlock_irq(&pgdat->lru_lock); 2690 2691 /* 2692 * Target desirable inactive:active list ratios for the anon 2693 * and file LRU lists. 2694 */ 2695 if (!sc->force_deactivate) { 2696 unsigned long refaults; 2697 2698 refaults = lruvec_page_state(target_lruvec, 2699 WORKINGSET_ACTIVATE_ANON); 2700 if (refaults != target_lruvec->refaults[0] || 2701 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2702 sc->may_deactivate |= DEACTIVATE_ANON; 2703 else 2704 sc->may_deactivate &= ~DEACTIVATE_ANON; 2705 2706 /* 2707 * When refaults are being observed, it means a new 2708 * workingset is being established. Deactivate to get 2709 * rid of any stale active pages quickly. 2710 */ 2711 refaults = lruvec_page_state(target_lruvec, 2712 WORKINGSET_ACTIVATE_FILE); 2713 if (refaults != target_lruvec->refaults[1] || 2714 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2715 sc->may_deactivate |= DEACTIVATE_FILE; 2716 else 2717 sc->may_deactivate &= ~DEACTIVATE_FILE; 2718 } else 2719 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2720 2721 /* 2722 * If we have plenty of inactive file pages that aren't 2723 * thrashing, try to reclaim those first before touching 2724 * anonymous pages. 2725 */ 2726 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2727 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2728 sc->cache_trim_mode = 1; 2729 else 2730 sc->cache_trim_mode = 0; 2731 2732 /* 2733 * Prevent the reclaimer from falling into the cache trap: as 2734 * cache pages start out inactive, every cache fault will tip 2735 * the scan balance towards the file LRU. And as the file LRU 2736 * shrinks, so does the window for rotation from references. 2737 * This means we have a runaway feedback loop where a tiny 2738 * thrashing file LRU becomes infinitely more attractive than 2739 * anon pages. Try to detect this based on file LRU size. 2740 */ 2741 if (!cgroup_reclaim(sc)) { 2742 unsigned long total_high_wmark = 0; 2743 unsigned long free, anon; 2744 int z; 2745 2746 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2747 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2748 node_page_state(pgdat, NR_INACTIVE_FILE); 2749 2750 for (z = 0; z < MAX_NR_ZONES; z++) { 2751 struct zone *zone = &pgdat->node_zones[z]; 2752 if (!managed_zone(zone)) 2753 continue; 2754 2755 total_high_wmark += high_wmark_pages(zone); 2756 } 2757 2758 /* 2759 * Consider anon: if that's low too, this isn't a 2760 * runaway file reclaim problem, but rather just 2761 * extreme pressure. Reclaim as per usual then. 2762 */ 2763 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2764 2765 sc->file_is_tiny = 2766 file + free <= total_high_wmark && 2767 !(sc->may_deactivate & DEACTIVATE_ANON) && 2768 anon >> sc->priority; 2769 } 2770 2771 shrink_node_memcgs(pgdat, sc); 2772 2773 if (reclaim_state) { 2774 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2775 reclaim_state->reclaimed_slab = 0; 2776 } 2777 2778 /* Record the subtree's reclaim efficiency */ 2779 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2780 sc->nr_scanned - nr_scanned, 2781 sc->nr_reclaimed - nr_reclaimed); 2782 2783 if (sc->nr_reclaimed - nr_reclaimed) 2784 reclaimable = true; 2785 2786 if (current_is_kswapd()) { 2787 /* 2788 * If reclaim is isolating dirty pages under writeback, 2789 * it implies that the long-lived page allocation rate 2790 * is exceeding the page laundering rate. Either the 2791 * global limits are not being effective at throttling 2792 * processes due to the page distribution throughout 2793 * zones or there is heavy usage of a slow backing 2794 * device. The only option is to throttle from reclaim 2795 * context which is not ideal as there is no guarantee 2796 * the dirtying process is throttled in the same way 2797 * balance_dirty_pages() manages. 2798 * 2799 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2800 * count the number of pages under pages flagged for 2801 * immediate reclaim and stall if any are encountered 2802 * in the nr_immediate check below. 2803 */ 2804 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2805 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2806 2807 /* Allow kswapd to start writing pages during reclaim.*/ 2808 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2809 set_bit(PGDAT_DIRTY, &pgdat->flags); 2810 2811 /* 2812 * If kswapd scans pages marked for immediate 2813 * reclaim and under writeback (nr_immediate), it 2814 * implies that pages are cycling through the LRU 2815 * faster than they are written so also forcibly stall. 2816 */ 2817 if (sc->nr.immediate) 2818 congestion_wait(BLK_RW_ASYNC, HZ/10); 2819 } 2820 2821 /* 2822 * Tag a node/memcg as congested if all the dirty pages 2823 * scanned were backed by a congested BDI and 2824 * wait_iff_congested will stall. 2825 * 2826 * Legacy memcg will stall in page writeback so avoid forcibly 2827 * stalling in wait_iff_congested(). 2828 */ 2829 if ((current_is_kswapd() || 2830 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2831 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2832 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2833 2834 /* 2835 * Stall direct reclaim for IO completions if underlying BDIs 2836 * and node is congested. Allow kswapd to continue until it 2837 * starts encountering unqueued dirty pages or cycling through 2838 * the LRU too quickly. 2839 */ 2840 if (!current_is_kswapd() && current_may_throttle() && 2841 !sc->hibernation_mode && 2842 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2843 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2844 2845 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2846 sc)) 2847 goto again; 2848 2849 /* 2850 * Kswapd gives up on balancing particular nodes after too 2851 * many failures to reclaim anything from them and goes to 2852 * sleep. On reclaim progress, reset the failure counter. A 2853 * successful direct reclaim run will revive a dormant kswapd. 2854 */ 2855 if (reclaimable) 2856 pgdat->kswapd_failures = 0; 2857 } 2858 2859 /* 2860 * Returns true if compaction should go ahead for a costly-order request, or 2861 * the allocation would already succeed without compaction. Return false if we 2862 * should reclaim first. 2863 */ 2864 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2865 { 2866 unsigned long watermark; 2867 enum compact_result suitable; 2868 2869 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2870 if (suitable == COMPACT_SUCCESS) 2871 /* Allocation should succeed already. Don't reclaim. */ 2872 return true; 2873 if (suitable == COMPACT_SKIPPED) 2874 /* Compaction cannot yet proceed. Do reclaim. */ 2875 return false; 2876 2877 /* 2878 * Compaction is already possible, but it takes time to run and there 2879 * are potentially other callers using the pages just freed. So proceed 2880 * with reclaim to make a buffer of free pages available to give 2881 * compaction a reasonable chance of completing and allocating the page. 2882 * Note that we won't actually reclaim the whole buffer in one attempt 2883 * as the target watermark in should_continue_reclaim() is lower. But if 2884 * we are already above the high+gap watermark, don't reclaim at all. 2885 */ 2886 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2887 2888 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2889 } 2890 2891 /* 2892 * This is the direct reclaim path, for page-allocating processes. We only 2893 * try to reclaim pages from zones which will satisfy the caller's allocation 2894 * request. 2895 * 2896 * If a zone is deemed to be full of pinned pages then just give it a light 2897 * scan then give up on it. 2898 */ 2899 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2900 { 2901 struct zoneref *z; 2902 struct zone *zone; 2903 unsigned long nr_soft_reclaimed; 2904 unsigned long nr_soft_scanned; 2905 gfp_t orig_mask; 2906 pg_data_t *last_pgdat = NULL; 2907 2908 /* 2909 * If the number of buffer_heads in the machine exceeds the maximum 2910 * allowed level, force direct reclaim to scan the highmem zone as 2911 * highmem pages could be pinning lowmem pages storing buffer_heads 2912 */ 2913 orig_mask = sc->gfp_mask; 2914 if (buffer_heads_over_limit) { 2915 sc->gfp_mask |= __GFP_HIGHMEM; 2916 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2917 } 2918 2919 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2920 sc->reclaim_idx, sc->nodemask) { 2921 /* 2922 * Take care memory controller reclaiming has small influence 2923 * to global LRU. 2924 */ 2925 if (!cgroup_reclaim(sc)) { 2926 if (!cpuset_zone_allowed(zone, 2927 GFP_KERNEL | __GFP_HARDWALL)) 2928 continue; 2929 2930 /* 2931 * If we already have plenty of memory free for 2932 * compaction in this zone, don't free any more. 2933 * Even though compaction is invoked for any 2934 * non-zero order, only frequent costly order 2935 * reclamation is disruptive enough to become a 2936 * noticeable problem, like transparent huge 2937 * page allocations. 2938 */ 2939 if (IS_ENABLED(CONFIG_COMPACTION) && 2940 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2941 compaction_ready(zone, sc)) { 2942 sc->compaction_ready = true; 2943 continue; 2944 } 2945 2946 /* 2947 * Shrink each node in the zonelist once. If the 2948 * zonelist is ordered by zone (not the default) then a 2949 * node may be shrunk multiple times but in that case 2950 * the user prefers lower zones being preserved. 2951 */ 2952 if (zone->zone_pgdat == last_pgdat) 2953 continue; 2954 2955 /* 2956 * This steals pages from memory cgroups over softlimit 2957 * and returns the number of reclaimed pages and 2958 * scanned pages. This works for global memory pressure 2959 * and balancing, not for a memcg's limit. 2960 */ 2961 nr_soft_scanned = 0; 2962 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2963 sc->order, sc->gfp_mask, 2964 &nr_soft_scanned); 2965 sc->nr_reclaimed += nr_soft_reclaimed; 2966 sc->nr_scanned += nr_soft_scanned; 2967 /* need some check for avoid more shrink_zone() */ 2968 } 2969 2970 /* See comment about same check for global reclaim above */ 2971 if (zone->zone_pgdat == last_pgdat) 2972 continue; 2973 last_pgdat = zone->zone_pgdat; 2974 shrink_node(zone->zone_pgdat, sc); 2975 } 2976 2977 /* 2978 * Restore to original mask to avoid the impact on the caller if we 2979 * promoted it to __GFP_HIGHMEM. 2980 */ 2981 sc->gfp_mask = orig_mask; 2982 } 2983 2984 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2985 { 2986 struct lruvec *target_lruvec; 2987 unsigned long refaults; 2988 2989 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2990 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 2991 target_lruvec->refaults[0] = refaults; 2992 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 2993 target_lruvec->refaults[1] = refaults; 2994 } 2995 2996 /* 2997 * This is the main entry point to direct page reclaim. 2998 * 2999 * If a full scan of the inactive list fails to free enough memory then we 3000 * are "out of memory" and something needs to be killed. 3001 * 3002 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3003 * high - the zone may be full of dirty or under-writeback pages, which this 3004 * caller can't do much about. We kick the writeback threads and take explicit 3005 * naps in the hope that some of these pages can be written. But if the 3006 * allocating task holds filesystem locks which prevent writeout this might not 3007 * work, and the allocation attempt will fail. 3008 * 3009 * returns: 0, if no pages reclaimed 3010 * else, the number of pages reclaimed 3011 */ 3012 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3013 struct scan_control *sc) 3014 { 3015 int initial_priority = sc->priority; 3016 pg_data_t *last_pgdat; 3017 struct zoneref *z; 3018 struct zone *zone; 3019 retry: 3020 delayacct_freepages_start(); 3021 3022 if (!cgroup_reclaim(sc)) 3023 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3024 3025 do { 3026 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3027 sc->priority); 3028 sc->nr_scanned = 0; 3029 shrink_zones(zonelist, sc); 3030 3031 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3032 break; 3033 3034 if (sc->compaction_ready) 3035 break; 3036 3037 /* 3038 * If we're getting trouble reclaiming, start doing 3039 * writepage even in laptop mode. 3040 */ 3041 if (sc->priority < DEF_PRIORITY - 2) 3042 sc->may_writepage = 1; 3043 } while (--sc->priority >= 0); 3044 3045 last_pgdat = NULL; 3046 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3047 sc->nodemask) { 3048 if (zone->zone_pgdat == last_pgdat) 3049 continue; 3050 last_pgdat = zone->zone_pgdat; 3051 3052 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3053 3054 if (cgroup_reclaim(sc)) { 3055 struct lruvec *lruvec; 3056 3057 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3058 zone->zone_pgdat); 3059 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3060 } 3061 } 3062 3063 delayacct_freepages_end(); 3064 3065 if (sc->nr_reclaimed) 3066 return sc->nr_reclaimed; 3067 3068 /* Aborted reclaim to try compaction? don't OOM, then */ 3069 if (sc->compaction_ready) 3070 return 1; 3071 3072 /* 3073 * We make inactive:active ratio decisions based on the node's 3074 * composition of memory, but a restrictive reclaim_idx or a 3075 * memory.low cgroup setting can exempt large amounts of 3076 * memory from reclaim. Neither of which are very common, so 3077 * instead of doing costly eligibility calculations of the 3078 * entire cgroup subtree up front, we assume the estimates are 3079 * good, and retry with forcible deactivation if that fails. 3080 */ 3081 if (sc->skipped_deactivate) { 3082 sc->priority = initial_priority; 3083 sc->force_deactivate = 1; 3084 sc->skipped_deactivate = 0; 3085 goto retry; 3086 } 3087 3088 /* Untapped cgroup reserves? Don't OOM, retry. */ 3089 if (sc->memcg_low_skipped) { 3090 sc->priority = initial_priority; 3091 sc->force_deactivate = 0; 3092 sc->memcg_low_reclaim = 1; 3093 sc->memcg_low_skipped = 0; 3094 goto retry; 3095 } 3096 3097 return 0; 3098 } 3099 3100 static bool allow_direct_reclaim(pg_data_t *pgdat) 3101 { 3102 struct zone *zone; 3103 unsigned long pfmemalloc_reserve = 0; 3104 unsigned long free_pages = 0; 3105 int i; 3106 bool wmark_ok; 3107 3108 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3109 return true; 3110 3111 for (i = 0; i <= ZONE_NORMAL; i++) { 3112 zone = &pgdat->node_zones[i]; 3113 if (!managed_zone(zone)) 3114 continue; 3115 3116 if (!zone_reclaimable_pages(zone)) 3117 continue; 3118 3119 pfmemalloc_reserve += min_wmark_pages(zone); 3120 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3121 } 3122 3123 /* If there are no reserves (unexpected config) then do not throttle */ 3124 if (!pfmemalloc_reserve) 3125 return true; 3126 3127 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3128 3129 /* kswapd must be awake if processes are being throttled */ 3130 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3131 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3132 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3133 3134 wake_up_interruptible(&pgdat->kswapd_wait); 3135 } 3136 3137 return wmark_ok; 3138 } 3139 3140 /* 3141 * Throttle direct reclaimers if backing storage is backed by the network 3142 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3143 * depleted. kswapd will continue to make progress and wake the processes 3144 * when the low watermark is reached. 3145 * 3146 * Returns true if a fatal signal was delivered during throttling. If this 3147 * happens, the page allocator should not consider triggering the OOM killer. 3148 */ 3149 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3150 nodemask_t *nodemask) 3151 { 3152 struct zoneref *z; 3153 struct zone *zone; 3154 pg_data_t *pgdat = NULL; 3155 3156 /* 3157 * Kernel threads should not be throttled as they may be indirectly 3158 * responsible for cleaning pages necessary for reclaim to make forward 3159 * progress. kjournald for example may enter direct reclaim while 3160 * committing a transaction where throttling it could forcing other 3161 * processes to block on log_wait_commit(). 3162 */ 3163 if (current->flags & PF_KTHREAD) 3164 goto out; 3165 3166 /* 3167 * If a fatal signal is pending, this process should not throttle. 3168 * It should return quickly so it can exit and free its memory 3169 */ 3170 if (fatal_signal_pending(current)) 3171 goto out; 3172 3173 /* 3174 * Check if the pfmemalloc reserves are ok by finding the first node 3175 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3176 * GFP_KERNEL will be required for allocating network buffers when 3177 * swapping over the network so ZONE_HIGHMEM is unusable. 3178 * 3179 * Throttling is based on the first usable node and throttled processes 3180 * wait on a queue until kswapd makes progress and wakes them. There 3181 * is an affinity then between processes waking up and where reclaim 3182 * progress has been made assuming the process wakes on the same node. 3183 * More importantly, processes running on remote nodes will not compete 3184 * for remote pfmemalloc reserves and processes on different nodes 3185 * should make reasonable progress. 3186 */ 3187 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3188 gfp_zone(gfp_mask), nodemask) { 3189 if (zone_idx(zone) > ZONE_NORMAL) 3190 continue; 3191 3192 /* Throttle based on the first usable node */ 3193 pgdat = zone->zone_pgdat; 3194 if (allow_direct_reclaim(pgdat)) 3195 goto out; 3196 break; 3197 } 3198 3199 /* If no zone was usable by the allocation flags then do not throttle */ 3200 if (!pgdat) 3201 goto out; 3202 3203 /* Account for the throttling */ 3204 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3205 3206 /* 3207 * If the caller cannot enter the filesystem, it's possible that it 3208 * is due to the caller holding an FS lock or performing a journal 3209 * transaction in the case of a filesystem like ext[3|4]. In this case, 3210 * it is not safe to block on pfmemalloc_wait as kswapd could be 3211 * blocked waiting on the same lock. Instead, throttle for up to a 3212 * second before continuing. 3213 */ 3214 if (!(gfp_mask & __GFP_FS)) { 3215 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3216 allow_direct_reclaim(pgdat), HZ); 3217 3218 goto check_pending; 3219 } 3220 3221 /* Throttle until kswapd wakes the process */ 3222 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3223 allow_direct_reclaim(pgdat)); 3224 3225 check_pending: 3226 if (fatal_signal_pending(current)) 3227 return true; 3228 3229 out: 3230 return false; 3231 } 3232 3233 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3234 gfp_t gfp_mask, nodemask_t *nodemask) 3235 { 3236 unsigned long nr_reclaimed; 3237 struct scan_control sc = { 3238 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3239 .gfp_mask = current_gfp_context(gfp_mask), 3240 .reclaim_idx = gfp_zone(gfp_mask), 3241 .order = order, 3242 .nodemask = nodemask, 3243 .priority = DEF_PRIORITY, 3244 .may_writepage = !laptop_mode, 3245 .may_unmap = 1, 3246 .may_swap = 1, 3247 }; 3248 3249 /* 3250 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3251 * Confirm they are large enough for max values. 3252 */ 3253 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3254 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3255 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3256 3257 /* 3258 * Do not enter reclaim if fatal signal was delivered while throttled. 3259 * 1 is returned so that the page allocator does not OOM kill at this 3260 * point. 3261 */ 3262 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3263 return 1; 3264 3265 set_task_reclaim_state(current, &sc.reclaim_state); 3266 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3267 3268 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3269 3270 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3271 set_task_reclaim_state(current, NULL); 3272 3273 return nr_reclaimed; 3274 } 3275 3276 #ifdef CONFIG_MEMCG 3277 3278 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3279 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3280 gfp_t gfp_mask, bool noswap, 3281 pg_data_t *pgdat, 3282 unsigned long *nr_scanned) 3283 { 3284 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3285 struct scan_control sc = { 3286 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3287 .target_mem_cgroup = memcg, 3288 .may_writepage = !laptop_mode, 3289 .may_unmap = 1, 3290 .reclaim_idx = MAX_NR_ZONES - 1, 3291 .may_swap = !noswap, 3292 }; 3293 3294 WARN_ON_ONCE(!current->reclaim_state); 3295 3296 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3297 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3298 3299 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3300 sc.gfp_mask); 3301 3302 /* 3303 * NOTE: Although we can get the priority field, using it 3304 * here is not a good idea, since it limits the pages we can scan. 3305 * if we don't reclaim here, the shrink_node from balance_pgdat 3306 * will pick up pages from other mem cgroup's as well. We hack 3307 * the priority and make it zero. 3308 */ 3309 shrink_lruvec(lruvec, &sc); 3310 3311 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3312 3313 *nr_scanned = sc.nr_scanned; 3314 3315 return sc.nr_reclaimed; 3316 } 3317 3318 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3319 unsigned long nr_pages, 3320 gfp_t gfp_mask, 3321 bool may_swap) 3322 { 3323 unsigned long nr_reclaimed; 3324 unsigned int noreclaim_flag; 3325 struct scan_control sc = { 3326 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3327 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3328 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3329 .reclaim_idx = MAX_NR_ZONES - 1, 3330 .target_mem_cgroup = memcg, 3331 .priority = DEF_PRIORITY, 3332 .may_writepage = !laptop_mode, 3333 .may_unmap = 1, 3334 .may_swap = may_swap, 3335 }; 3336 /* 3337 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3338 * equal pressure on all the nodes. This is based on the assumption that 3339 * the reclaim does not bail out early. 3340 */ 3341 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3342 3343 set_task_reclaim_state(current, &sc.reclaim_state); 3344 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3345 noreclaim_flag = memalloc_noreclaim_save(); 3346 3347 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3348 3349 memalloc_noreclaim_restore(noreclaim_flag); 3350 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3351 set_task_reclaim_state(current, NULL); 3352 3353 return nr_reclaimed; 3354 } 3355 #endif 3356 3357 static void age_active_anon(struct pglist_data *pgdat, 3358 struct scan_control *sc) 3359 { 3360 struct mem_cgroup *memcg; 3361 struct lruvec *lruvec; 3362 3363 if (!total_swap_pages) 3364 return; 3365 3366 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3367 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3368 return; 3369 3370 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3371 do { 3372 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3373 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3374 sc, LRU_ACTIVE_ANON); 3375 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3376 } while (memcg); 3377 } 3378 3379 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3380 { 3381 int i; 3382 struct zone *zone; 3383 3384 /* 3385 * Check for watermark boosts top-down as the higher zones 3386 * are more likely to be boosted. Both watermarks and boosts 3387 * should not be checked at the same time as reclaim would 3388 * start prematurely when there is no boosting and a lower 3389 * zone is balanced. 3390 */ 3391 for (i = highest_zoneidx; i >= 0; i--) { 3392 zone = pgdat->node_zones + i; 3393 if (!managed_zone(zone)) 3394 continue; 3395 3396 if (zone->watermark_boost) 3397 return true; 3398 } 3399 3400 return false; 3401 } 3402 3403 /* 3404 * Returns true if there is an eligible zone balanced for the request order 3405 * and highest_zoneidx 3406 */ 3407 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3408 { 3409 int i; 3410 unsigned long mark = -1; 3411 struct zone *zone; 3412 3413 /* 3414 * Check watermarks bottom-up as lower zones are more likely to 3415 * meet watermarks. 3416 */ 3417 for (i = 0; i <= highest_zoneidx; i++) { 3418 zone = pgdat->node_zones + i; 3419 3420 if (!managed_zone(zone)) 3421 continue; 3422 3423 mark = high_wmark_pages(zone); 3424 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3425 return true; 3426 } 3427 3428 /* 3429 * If a node has no populated zone within highest_zoneidx, it does not 3430 * need balancing by definition. This can happen if a zone-restricted 3431 * allocation tries to wake a remote kswapd. 3432 */ 3433 if (mark == -1) 3434 return true; 3435 3436 return false; 3437 } 3438 3439 /* Clear pgdat state for congested, dirty or under writeback. */ 3440 static void clear_pgdat_congested(pg_data_t *pgdat) 3441 { 3442 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3443 3444 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3445 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3446 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3447 } 3448 3449 /* 3450 * Prepare kswapd for sleeping. This verifies that there are no processes 3451 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3452 * 3453 * Returns true if kswapd is ready to sleep 3454 */ 3455 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3456 int highest_zoneidx) 3457 { 3458 /* 3459 * The throttled processes are normally woken up in balance_pgdat() as 3460 * soon as allow_direct_reclaim() is true. But there is a potential 3461 * race between when kswapd checks the watermarks and a process gets 3462 * throttled. There is also a potential race if processes get 3463 * throttled, kswapd wakes, a large process exits thereby balancing the 3464 * zones, which causes kswapd to exit balance_pgdat() before reaching 3465 * the wake up checks. If kswapd is going to sleep, no process should 3466 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3467 * the wake up is premature, processes will wake kswapd and get 3468 * throttled again. The difference from wake ups in balance_pgdat() is 3469 * that here we are under prepare_to_wait(). 3470 */ 3471 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3472 wake_up_all(&pgdat->pfmemalloc_wait); 3473 3474 /* Hopeless node, leave it to direct reclaim */ 3475 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3476 return true; 3477 3478 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3479 clear_pgdat_congested(pgdat); 3480 return true; 3481 } 3482 3483 return false; 3484 } 3485 3486 /* 3487 * kswapd shrinks a node of pages that are at or below the highest usable 3488 * zone that is currently unbalanced. 3489 * 3490 * Returns true if kswapd scanned at least the requested number of pages to 3491 * reclaim or if the lack of progress was due to pages under writeback. 3492 * This is used to determine if the scanning priority needs to be raised. 3493 */ 3494 static bool kswapd_shrink_node(pg_data_t *pgdat, 3495 struct scan_control *sc) 3496 { 3497 struct zone *zone; 3498 int z; 3499 3500 /* Reclaim a number of pages proportional to the number of zones */ 3501 sc->nr_to_reclaim = 0; 3502 for (z = 0; z <= sc->reclaim_idx; z++) { 3503 zone = pgdat->node_zones + z; 3504 if (!managed_zone(zone)) 3505 continue; 3506 3507 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3508 } 3509 3510 /* 3511 * Historically care was taken to put equal pressure on all zones but 3512 * now pressure is applied based on node LRU order. 3513 */ 3514 shrink_node(pgdat, sc); 3515 3516 /* 3517 * Fragmentation may mean that the system cannot be rebalanced for 3518 * high-order allocations. If twice the allocation size has been 3519 * reclaimed then recheck watermarks only at order-0 to prevent 3520 * excessive reclaim. Assume that a process requested a high-order 3521 * can direct reclaim/compact. 3522 */ 3523 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3524 sc->order = 0; 3525 3526 return sc->nr_scanned >= sc->nr_to_reclaim; 3527 } 3528 3529 /* 3530 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3531 * that are eligible for use by the caller until at least one zone is 3532 * balanced. 3533 * 3534 * Returns the order kswapd finished reclaiming at. 3535 * 3536 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3537 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3538 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3539 * or lower is eligible for reclaim until at least one usable zone is 3540 * balanced. 3541 */ 3542 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3543 { 3544 int i; 3545 unsigned long nr_soft_reclaimed; 3546 unsigned long nr_soft_scanned; 3547 unsigned long pflags; 3548 unsigned long nr_boost_reclaim; 3549 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3550 bool boosted; 3551 struct zone *zone; 3552 struct scan_control sc = { 3553 .gfp_mask = GFP_KERNEL, 3554 .order = order, 3555 .may_unmap = 1, 3556 }; 3557 3558 set_task_reclaim_state(current, &sc.reclaim_state); 3559 psi_memstall_enter(&pflags); 3560 __fs_reclaim_acquire(); 3561 3562 count_vm_event(PAGEOUTRUN); 3563 3564 /* 3565 * Account for the reclaim boost. Note that the zone boost is left in 3566 * place so that parallel allocations that are near the watermark will 3567 * stall or direct reclaim until kswapd is finished. 3568 */ 3569 nr_boost_reclaim = 0; 3570 for (i = 0; i <= highest_zoneidx; i++) { 3571 zone = pgdat->node_zones + i; 3572 if (!managed_zone(zone)) 3573 continue; 3574 3575 nr_boost_reclaim += zone->watermark_boost; 3576 zone_boosts[i] = zone->watermark_boost; 3577 } 3578 boosted = nr_boost_reclaim; 3579 3580 restart: 3581 sc.priority = DEF_PRIORITY; 3582 do { 3583 unsigned long nr_reclaimed = sc.nr_reclaimed; 3584 bool raise_priority = true; 3585 bool balanced; 3586 bool ret; 3587 3588 sc.reclaim_idx = highest_zoneidx; 3589 3590 /* 3591 * If the number of buffer_heads exceeds the maximum allowed 3592 * then consider reclaiming from all zones. This has a dual 3593 * purpose -- on 64-bit systems it is expected that 3594 * buffer_heads are stripped during active rotation. On 32-bit 3595 * systems, highmem pages can pin lowmem memory and shrinking 3596 * buffers can relieve lowmem pressure. Reclaim may still not 3597 * go ahead if all eligible zones for the original allocation 3598 * request are balanced to avoid excessive reclaim from kswapd. 3599 */ 3600 if (buffer_heads_over_limit) { 3601 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3602 zone = pgdat->node_zones + i; 3603 if (!managed_zone(zone)) 3604 continue; 3605 3606 sc.reclaim_idx = i; 3607 break; 3608 } 3609 } 3610 3611 /* 3612 * If the pgdat is imbalanced then ignore boosting and preserve 3613 * the watermarks for a later time and restart. Note that the 3614 * zone watermarks will be still reset at the end of balancing 3615 * on the grounds that the normal reclaim should be enough to 3616 * re-evaluate if boosting is required when kswapd next wakes. 3617 */ 3618 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3619 if (!balanced && nr_boost_reclaim) { 3620 nr_boost_reclaim = 0; 3621 goto restart; 3622 } 3623 3624 /* 3625 * If boosting is not active then only reclaim if there are no 3626 * eligible zones. Note that sc.reclaim_idx is not used as 3627 * buffer_heads_over_limit may have adjusted it. 3628 */ 3629 if (!nr_boost_reclaim && balanced) 3630 goto out; 3631 3632 /* Limit the priority of boosting to avoid reclaim writeback */ 3633 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3634 raise_priority = false; 3635 3636 /* 3637 * Do not writeback or swap pages for boosted reclaim. The 3638 * intent is to relieve pressure not issue sub-optimal IO 3639 * from reclaim context. If no pages are reclaimed, the 3640 * reclaim will be aborted. 3641 */ 3642 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3643 sc.may_swap = !nr_boost_reclaim; 3644 3645 /* 3646 * Do some background aging of the anon list, to give 3647 * pages a chance to be referenced before reclaiming. All 3648 * pages are rotated regardless of classzone as this is 3649 * about consistent aging. 3650 */ 3651 age_active_anon(pgdat, &sc); 3652 3653 /* 3654 * If we're getting trouble reclaiming, start doing writepage 3655 * even in laptop mode. 3656 */ 3657 if (sc.priority < DEF_PRIORITY - 2) 3658 sc.may_writepage = 1; 3659 3660 /* Call soft limit reclaim before calling shrink_node. */ 3661 sc.nr_scanned = 0; 3662 nr_soft_scanned = 0; 3663 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3664 sc.gfp_mask, &nr_soft_scanned); 3665 sc.nr_reclaimed += nr_soft_reclaimed; 3666 3667 /* 3668 * There should be no need to raise the scanning priority if 3669 * enough pages are already being scanned that that high 3670 * watermark would be met at 100% efficiency. 3671 */ 3672 if (kswapd_shrink_node(pgdat, &sc)) 3673 raise_priority = false; 3674 3675 /* 3676 * If the low watermark is met there is no need for processes 3677 * to be throttled on pfmemalloc_wait as they should not be 3678 * able to safely make forward progress. Wake them 3679 */ 3680 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3681 allow_direct_reclaim(pgdat)) 3682 wake_up_all(&pgdat->pfmemalloc_wait); 3683 3684 /* Check if kswapd should be suspending */ 3685 __fs_reclaim_release(); 3686 ret = try_to_freeze(); 3687 __fs_reclaim_acquire(); 3688 if (ret || kthread_should_stop()) 3689 break; 3690 3691 /* 3692 * Raise priority if scanning rate is too low or there was no 3693 * progress in reclaiming pages 3694 */ 3695 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3696 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3697 3698 /* 3699 * If reclaim made no progress for a boost, stop reclaim as 3700 * IO cannot be queued and it could be an infinite loop in 3701 * extreme circumstances. 3702 */ 3703 if (nr_boost_reclaim && !nr_reclaimed) 3704 break; 3705 3706 if (raise_priority || !nr_reclaimed) 3707 sc.priority--; 3708 } while (sc.priority >= 1); 3709 3710 if (!sc.nr_reclaimed) 3711 pgdat->kswapd_failures++; 3712 3713 out: 3714 /* If reclaim was boosted, account for the reclaim done in this pass */ 3715 if (boosted) { 3716 unsigned long flags; 3717 3718 for (i = 0; i <= highest_zoneidx; i++) { 3719 if (!zone_boosts[i]) 3720 continue; 3721 3722 /* Increments are under the zone lock */ 3723 zone = pgdat->node_zones + i; 3724 spin_lock_irqsave(&zone->lock, flags); 3725 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3726 spin_unlock_irqrestore(&zone->lock, flags); 3727 } 3728 3729 /* 3730 * As there is now likely space, wakeup kcompact to defragment 3731 * pageblocks. 3732 */ 3733 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3734 } 3735 3736 snapshot_refaults(NULL, pgdat); 3737 __fs_reclaim_release(); 3738 psi_memstall_leave(&pflags); 3739 set_task_reclaim_state(current, NULL); 3740 3741 /* 3742 * Return the order kswapd stopped reclaiming at as 3743 * prepare_kswapd_sleep() takes it into account. If another caller 3744 * entered the allocator slow path while kswapd was awake, order will 3745 * remain at the higher level. 3746 */ 3747 return sc.order; 3748 } 3749 3750 /* 3751 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3752 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 3753 * not a valid index then either kswapd runs for first time or kswapd couldn't 3754 * sleep after previous reclaim attempt (node is still unbalanced). In that 3755 * case return the zone index of the previous kswapd reclaim cycle. 3756 */ 3757 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 3758 enum zone_type prev_highest_zoneidx) 3759 { 3760 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3761 3762 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 3763 } 3764 3765 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3766 unsigned int highest_zoneidx) 3767 { 3768 long remaining = 0; 3769 DEFINE_WAIT(wait); 3770 3771 if (freezing(current) || kthread_should_stop()) 3772 return; 3773 3774 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3775 3776 /* 3777 * Try to sleep for a short interval. Note that kcompactd will only be 3778 * woken if it is possible to sleep for a short interval. This is 3779 * deliberate on the assumption that if reclaim cannot keep an 3780 * eligible zone balanced that it's also unlikely that compaction will 3781 * succeed. 3782 */ 3783 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3784 /* 3785 * Compaction records what page blocks it recently failed to 3786 * isolate pages from and skips them in the future scanning. 3787 * When kswapd is going to sleep, it is reasonable to assume 3788 * that pages and compaction may succeed so reset the cache. 3789 */ 3790 reset_isolation_suitable(pgdat); 3791 3792 /* 3793 * We have freed the memory, now we should compact it to make 3794 * allocation of the requested order possible. 3795 */ 3796 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 3797 3798 remaining = schedule_timeout(HZ/10); 3799 3800 /* 3801 * If woken prematurely then reset kswapd_highest_zoneidx and 3802 * order. The values will either be from a wakeup request or 3803 * the previous request that slept prematurely. 3804 */ 3805 if (remaining) { 3806 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 3807 kswapd_highest_zoneidx(pgdat, 3808 highest_zoneidx)); 3809 3810 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 3811 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 3812 } 3813 3814 finish_wait(&pgdat->kswapd_wait, &wait); 3815 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3816 } 3817 3818 /* 3819 * After a short sleep, check if it was a premature sleep. If not, then 3820 * go fully to sleep until explicitly woken up. 3821 */ 3822 if (!remaining && 3823 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3824 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3825 3826 /* 3827 * vmstat counters are not perfectly accurate and the estimated 3828 * value for counters such as NR_FREE_PAGES can deviate from the 3829 * true value by nr_online_cpus * threshold. To avoid the zone 3830 * watermarks being breached while under pressure, we reduce the 3831 * per-cpu vmstat threshold while kswapd is awake and restore 3832 * them before going back to sleep. 3833 */ 3834 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3835 3836 if (!kthread_should_stop()) 3837 schedule(); 3838 3839 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3840 } else { 3841 if (remaining) 3842 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3843 else 3844 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3845 } 3846 finish_wait(&pgdat->kswapd_wait, &wait); 3847 } 3848 3849 /* 3850 * The background pageout daemon, started as a kernel thread 3851 * from the init process. 3852 * 3853 * This basically trickles out pages so that we have _some_ 3854 * free memory available even if there is no other activity 3855 * that frees anything up. This is needed for things like routing 3856 * etc, where we otherwise might have all activity going on in 3857 * asynchronous contexts that cannot page things out. 3858 * 3859 * If there are applications that are active memory-allocators 3860 * (most normal use), this basically shouldn't matter. 3861 */ 3862 static int kswapd(void *p) 3863 { 3864 unsigned int alloc_order, reclaim_order; 3865 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 3866 pg_data_t *pgdat = (pg_data_t*)p; 3867 struct task_struct *tsk = current; 3868 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3869 3870 if (!cpumask_empty(cpumask)) 3871 set_cpus_allowed_ptr(tsk, cpumask); 3872 3873 /* 3874 * Tell the memory management that we're a "memory allocator", 3875 * and that if we need more memory we should get access to it 3876 * regardless (see "__alloc_pages()"). "kswapd" should 3877 * never get caught in the normal page freeing logic. 3878 * 3879 * (Kswapd normally doesn't need memory anyway, but sometimes 3880 * you need a small amount of memory in order to be able to 3881 * page out something else, and this flag essentially protects 3882 * us from recursively trying to free more memory as we're 3883 * trying to free the first piece of memory in the first place). 3884 */ 3885 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3886 set_freezable(); 3887 3888 WRITE_ONCE(pgdat->kswapd_order, 0); 3889 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3890 for ( ; ; ) { 3891 bool ret; 3892 3893 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3894 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3895 highest_zoneidx); 3896 3897 kswapd_try_sleep: 3898 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3899 highest_zoneidx); 3900 3901 /* Read the new order and highest_zoneidx */ 3902 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3903 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3904 highest_zoneidx); 3905 WRITE_ONCE(pgdat->kswapd_order, 0); 3906 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3907 3908 ret = try_to_freeze(); 3909 if (kthread_should_stop()) 3910 break; 3911 3912 /* 3913 * We can speed up thawing tasks if we don't call balance_pgdat 3914 * after returning from the refrigerator 3915 */ 3916 if (ret) 3917 continue; 3918 3919 /* 3920 * Reclaim begins at the requested order but if a high-order 3921 * reclaim fails then kswapd falls back to reclaiming for 3922 * order-0. If that happens, kswapd will consider sleeping 3923 * for the order it finished reclaiming at (reclaim_order) 3924 * but kcompactd is woken to compact for the original 3925 * request (alloc_order). 3926 */ 3927 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 3928 alloc_order); 3929 reclaim_order = balance_pgdat(pgdat, alloc_order, 3930 highest_zoneidx); 3931 if (reclaim_order < alloc_order) 3932 goto kswapd_try_sleep; 3933 } 3934 3935 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3936 3937 return 0; 3938 } 3939 3940 /* 3941 * A zone is low on free memory or too fragmented for high-order memory. If 3942 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3943 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3944 * has failed or is not needed, still wake up kcompactd if only compaction is 3945 * needed. 3946 */ 3947 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3948 enum zone_type highest_zoneidx) 3949 { 3950 pg_data_t *pgdat; 3951 enum zone_type curr_idx; 3952 3953 if (!managed_zone(zone)) 3954 return; 3955 3956 if (!cpuset_zone_allowed(zone, gfp_flags)) 3957 return; 3958 3959 pgdat = zone->zone_pgdat; 3960 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3961 3962 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 3963 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 3964 3965 if (READ_ONCE(pgdat->kswapd_order) < order) 3966 WRITE_ONCE(pgdat->kswapd_order, order); 3967 3968 if (!waitqueue_active(&pgdat->kswapd_wait)) 3969 return; 3970 3971 /* Hopeless node, leave it to direct reclaim if possible */ 3972 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3973 (pgdat_balanced(pgdat, order, highest_zoneidx) && 3974 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 3975 /* 3976 * There may be plenty of free memory available, but it's too 3977 * fragmented for high-order allocations. Wake up kcompactd 3978 * and rely on compaction_suitable() to determine if it's 3979 * needed. If it fails, it will defer subsequent attempts to 3980 * ratelimit its work. 3981 */ 3982 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3983 wakeup_kcompactd(pgdat, order, highest_zoneidx); 3984 return; 3985 } 3986 3987 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 3988 gfp_flags); 3989 wake_up_interruptible(&pgdat->kswapd_wait); 3990 } 3991 3992 #ifdef CONFIG_HIBERNATION 3993 /* 3994 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3995 * freed pages. 3996 * 3997 * Rather than trying to age LRUs the aim is to preserve the overall 3998 * LRU order by reclaiming preferentially 3999 * inactive > active > active referenced > active mapped 4000 */ 4001 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4002 { 4003 struct scan_control sc = { 4004 .nr_to_reclaim = nr_to_reclaim, 4005 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4006 .reclaim_idx = MAX_NR_ZONES - 1, 4007 .priority = DEF_PRIORITY, 4008 .may_writepage = 1, 4009 .may_unmap = 1, 4010 .may_swap = 1, 4011 .hibernation_mode = 1, 4012 }; 4013 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4014 unsigned long nr_reclaimed; 4015 unsigned int noreclaim_flag; 4016 4017 fs_reclaim_acquire(sc.gfp_mask); 4018 noreclaim_flag = memalloc_noreclaim_save(); 4019 set_task_reclaim_state(current, &sc.reclaim_state); 4020 4021 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4022 4023 set_task_reclaim_state(current, NULL); 4024 memalloc_noreclaim_restore(noreclaim_flag); 4025 fs_reclaim_release(sc.gfp_mask); 4026 4027 return nr_reclaimed; 4028 } 4029 #endif /* CONFIG_HIBERNATION */ 4030 4031 /* 4032 * This kswapd start function will be called by init and node-hot-add. 4033 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4034 */ 4035 int kswapd_run(int nid) 4036 { 4037 pg_data_t *pgdat = NODE_DATA(nid); 4038 int ret = 0; 4039 4040 if (pgdat->kswapd) 4041 return 0; 4042 4043 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4044 if (IS_ERR(pgdat->kswapd)) { 4045 /* failure at boot is fatal */ 4046 BUG_ON(system_state < SYSTEM_RUNNING); 4047 pr_err("Failed to start kswapd on node %d\n", nid); 4048 ret = PTR_ERR(pgdat->kswapd); 4049 pgdat->kswapd = NULL; 4050 } 4051 return ret; 4052 } 4053 4054 /* 4055 * Called by memory hotplug when all memory in a node is offlined. Caller must 4056 * hold mem_hotplug_begin/end(). 4057 */ 4058 void kswapd_stop(int nid) 4059 { 4060 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4061 4062 if (kswapd) { 4063 kthread_stop(kswapd); 4064 NODE_DATA(nid)->kswapd = NULL; 4065 } 4066 } 4067 4068 static int __init kswapd_init(void) 4069 { 4070 int nid; 4071 4072 swap_setup(); 4073 for_each_node_state(nid, N_MEMORY) 4074 kswapd_run(nid); 4075 return 0; 4076 } 4077 4078 module_init(kswapd_init) 4079 4080 #ifdef CONFIG_NUMA 4081 /* 4082 * Node reclaim mode 4083 * 4084 * If non-zero call node_reclaim when the number of free pages falls below 4085 * the watermarks. 4086 */ 4087 int node_reclaim_mode __read_mostly; 4088 4089 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */ 4090 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */ 4091 4092 /* 4093 * Priority for NODE_RECLAIM. This determines the fraction of pages 4094 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4095 * a zone. 4096 */ 4097 #define NODE_RECLAIM_PRIORITY 4 4098 4099 /* 4100 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4101 * occur. 4102 */ 4103 int sysctl_min_unmapped_ratio = 1; 4104 4105 /* 4106 * If the number of slab pages in a zone grows beyond this percentage then 4107 * slab reclaim needs to occur. 4108 */ 4109 int sysctl_min_slab_ratio = 5; 4110 4111 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4112 { 4113 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4114 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4115 node_page_state(pgdat, NR_ACTIVE_FILE); 4116 4117 /* 4118 * It's possible for there to be more file mapped pages than 4119 * accounted for by the pages on the file LRU lists because 4120 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4121 */ 4122 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4123 } 4124 4125 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4126 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4127 { 4128 unsigned long nr_pagecache_reclaimable; 4129 unsigned long delta = 0; 4130 4131 /* 4132 * If RECLAIM_UNMAP is set, then all file pages are considered 4133 * potentially reclaimable. Otherwise, we have to worry about 4134 * pages like swapcache and node_unmapped_file_pages() provides 4135 * a better estimate 4136 */ 4137 if (node_reclaim_mode & RECLAIM_UNMAP) 4138 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4139 else 4140 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4141 4142 /* If we can't clean pages, remove dirty pages from consideration */ 4143 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4144 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4145 4146 /* Watch for any possible underflows due to delta */ 4147 if (unlikely(delta > nr_pagecache_reclaimable)) 4148 delta = nr_pagecache_reclaimable; 4149 4150 return nr_pagecache_reclaimable - delta; 4151 } 4152 4153 /* 4154 * Try to free up some pages from this node through reclaim. 4155 */ 4156 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4157 { 4158 /* Minimum pages needed in order to stay on node */ 4159 const unsigned long nr_pages = 1 << order; 4160 struct task_struct *p = current; 4161 unsigned int noreclaim_flag; 4162 struct scan_control sc = { 4163 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4164 .gfp_mask = current_gfp_context(gfp_mask), 4165 .order = order, 4166 .priority = NODE_RECLAIM_PRIORITY, 4167 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4168 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4169 .may_swap = 1, 4170 .reclaim_idx = gfp_zone(gfp_mask), 4171 }; 4172 4173 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4174 sc.gfp_mask); 4175 4176 cond_resched(); 4177 fs_reclaim_acquire(sc.gfp_mask); 4178 /* 4179 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4180 * and we also need to be able to write out pages for RECLAIM_WRITE 4181 * and RECLAIM_UNMAP. 4182 */ 4183 noreclaim_flag = memalloc_noreclaim_save(); 4184 p->flags |= PF_SWAPWRITE; 4185 set_task_reclaim_state(p, &sc.reclaim_state); 4186 4187 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4188 /* 4189 * Free memory by calling shrink node with increasing 4190 * priorities until we have enough memory freed. 4191 */ 4192 do { 4193 shrink_node(pgdat, &sc); 4194 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4195 } 4196 4197 set_task_reclaim_state(p, NULL); 4198 current->flags &= ~PF_SWAPWRITE; 4199 memalloc_noreclaim_restore(noreclaim_flag); 4200 fs_reclaim_release(sc.gfp_mask); 4201 4202 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4203 4204 return sc.nr_reclaimed >= nr_pages; 4205 } 4206 4207 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4208 { 4209 int ret; 4210 4211 /* 4212 * Node reclaim reclaims unmapped file backed pages and 4213 * slab pages if we are over the defined limits. 4214 * 4215 * A small portion of unmapped file backed pages is needed for 4216 * file I/O otherwise pages read by file I/O will be immediately 4217 * thrown out if the node is overallocated. So we do not reclaim 4218 * if less than a specified percentage of the node is used by 4219 * unmapped file backed pages. 4220 */ 4221 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4222 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4223 pgdat->min_slab_pages) 4224 return NODE_RECLAIM_FULL; 4225 4226 /* 4227 * Do not scan if the allocation should not be delayed. 4228 */ 4229 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4230 return NODE_RECLAIM_NOSCAN; 4231 4232 /* 4233 * Only run node reclaim on the local node or on nodes that do not 4234 * have associated processors. This will favor the local processor 4235 * over remote processors and spread off node memory allocations 4236 * as wide as possible. 4237 */ 4238 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4239 return NODE_RECLAIM_NOSCAN; 4240 4241 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4242 return NODE_RECLAIM_NOSCAN; 4243 4244 ret = __node_reclaim(pgdat, gfp_mask, order); 4245 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4246 4247 if (!ret) 4248 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4249 4250 return ret; 4251 } 4252 #endif 4253 4254 /** 4255 * check_move_unevictable_pages - check pages for evictability and move to 4256 * appropriate zone lru list 4257 * @pvec: pagevec with lru pages to check 4258 * 4259 * Checks pages for evictability, if an evictable page is in the unevictable 4260 * lru list, moves it to the appropriate evictable lru list. This function 4261 * should be only used for lru pages. 4262 */ 4263 void check_move_unevictable_pages(struct pagevec *pvec) 4264 { 4265 struct lruvec *lruvec; 4266 struct pglist_data *pgdat = NULL; 4267 int pgscanned = 0; 4268 int pgrescued = 0; 4269 int i; 4270 4271 for (i = 0; i < pvec->nr; i++) { 4272 struct page *page = pvec->pages[i]; 4273 struct pglist_data *pagepgdat = page_pgdat(page); 4274 int nr_pages; 4275 4276 if (PageTransTail(page)) 4277 continue; 4278 4279 nr_pages = thp_nr_pages(page); 4280 pgscanned += nr_pages; 4281 4282 if (pagepgdat != pgdat) { 4283 if (pgdat) 4284 spin_unlock_irq(&pgdat->lru_lock); 4285 pgdat = pagepgdat; 4286 spin_lock_irq(&pgdat->lru_lock); 4287 } 4288 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4289 4290 if (!PageLRU(page) || !PageUnevictable(page)) 4291 continue; 4292 4293 if (page_evictable(page)) { 4294 enum lru_list lru = page_lru_base_type(page); 4295 4296 VM_BUG_ON_PAGE(PageActive(page), page); 4297 ClearPageUnevictable(page); 4298 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4299 add_page_to_lru_list(page, lruvec, lru); 4300 pgrescued += nr_pages; 4301 } 4302 } 4303 4304 if (pgdat) { 4305 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4306 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4307 spin_unlock_irq(&pgdat->lru_lock); 4308 } 4309 } 4310 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4311