1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* e.g. boosted watermark reclaim leaves slabs alone */ 92 unsigned int may_shrinkslab:1; 93 94 /* 95 * Cgroups are not reclaimed below their configured memory.low, 96 * unless we threaten to OOM. If any cgroups are skipped due to 97 * memory.low and nothing was reclaimed, go back for memory.low. 98 */ 99 unsigned int memcg_low_reclaim:1; 100 unsigned int memcg_low_skipped:1; 101 102 unsigned int hibernation_mode:1; 103 104 /* One of the zones is ready for compaction */ 105 unsigned int compaction_ready:1; 106 107 /* Allocation order */ 108 s8 order; 109 110 /* Scan (total_size >> priority) pages at once */ 111 s8 priority; 112 113 /* The highest zone to isolate pages for reclaim from */ 114 s8 reclaim_idx; 115 116 /* This context's GFP mask */ 117 gfp_t gfp_mask; 118 119 /* Incremented by the number of inactive pages that were scanned */ 120 unsigned long nr_scanned; 121 122 /* Number of pages freed so far during a call to shrink_zones() */ 123 unsigned long nr_reclaimed; 124 125 struct { 126 unsigned int dirty; 127 unsigned int unqueued_dirty; 128 unsigned int congested; 129 unsigned int writeback; 130 unsigned int immediate; 131 unsigned int file_taken; 132 unsigned int taken; 133 } nr; 134 }; 135 136 #ifdef ARCH_HAS_PREFETCH 137 #define prefetch_prev_lru_page(_page, _base, _field) \ 138 do { \ 139 if ((_page)->lru.prev != _base) { \ 140 struct page *prev; \ 141 \ 142 prev = lru_to_page(&(_page->lru)); \ 143 prefetch(&prev->_field); \ 144 } \ 145 } while (0) 146 #else 147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 148 #endif 149 150 #ifdef ARCH_HAS_PREFETCHW 151 #define prefetchw_prev_lru_page(_page, _base, _field) \ 152 do { \ 153 if ((_page)->lru.prev != _base) { \ 154 struct page *prev; \ 155 \ 156 prev = lru_to_page(&(_page->lru)); \ 157 prefetchw(&prev->_field); \ 158 } \ 159 } while (0) 160 #else 161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 162 #endif 163 164 /* 165 * From 0 .. 100. Higher means more swappy. 166 */ 167 int vm_swappiness = 60; 168 /* 169 * The total number of pages which are beyond the high watermark within all 170 * zones. 171 */ 172 unsigned long vm_total_pages; 173 174 static LIST_HEAD(shrinker_list); 175 static DECLARE_RWSEM(shrinker_rwsem); 176 177 #ifdef CONFIG_MEMCG_KMEM 178 179 /* 180 * We allow subsystems to populate their shrinker-related 181 * LRU lists before register_shrinker_prepared() is called 182 * for the shrinker, since we don't want to impose 183 * restrictions on their internal registration order. 184 * In this case shrink_slab_memcg() may find corresponding 185 * bit is set in the shrinkers map. 186 * 187 * This value is used by the function to detect registering 188 * shrinkers and to skip do_shrink_slab() calls for them. 189 */ 190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 191 192 static DEFINE_IDR(shrinker_idr); 193 static int shrinker_nr_max; 194 195 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 196 { 197 int id, ret = -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 /* This may call shrinker, so it must use down_read_trylock() */ 201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 202 if (id < 0) 203 goto unlock; 204 205 if (id >= shrinker_nr_max) { 206 if (memcg_expand_shrinker_maps(id)) { 207 idr_remove(&shrinker_idr, id); 208 goto unlock; 209 } 210 211 shrinker_nr_max = id + 1; 212 } 213 shrinker->id = id; 214 ret = 0; 215 unlock: 216 up_write(&shrinker_rwsem); 217 return ret; 218 } 219 220 static void unregister_memcg_shrinker(struct shrinker *shrinker) 221 { 222 int id = shrinker->id; 223 224 BUG_ON(id < 0); 225 226 down_write(&shrinker_rwsem); 227 idr_remove(&shrinker_idr, id); 228 up_write(&shrinker_rwsem); 229 } 230 #else /* CONFIG_MEMCG_KMEM */ 231 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 232 { 233 return 0; 234 } 235 236 static void unregister_memcg_shrinker(struct shrinker *shrinker) 237 { 238 } 239 #endif /* CONFIG_MEMCG_KMEM */ 240 241 #ifdef CONFIG_MEMCG 242 static bool global_reclaim(struct scan_control *sc) 243 { 244 return !sc->target_mem_cgroup; 245 } 246 247 /** 248 * sane_reclaim - is the usual dirty throttling mechanism operational? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool sane_reclaim(struct scan_control *sc) 261 { 262 struct mem_cgroup *memcg = sc->target_mem_cgroup; 263 264 if (!memcg) 265 return true; 266 #ifdef CONFIG_CGROUP_WRITEBACK 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 268 return true; 269 #endif 270 return false; 271 } 272 273 static void set_memcg_congestion(pg_data_t *pgdat, 274 struct mem_cgroup *memcg, 275 bool congested) 276 { 277 struct mem_cgroup_per_node *mn; 278 279 if (!memcg) 280 return; 281 282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 283 WRITE_ONCE(mn->congested, congested); 284 } 285 286 static bool memcg_congested(pg_data_t *pgdat, 287 struct mem_cgroup *memcg) 288 { 289 struct mem_cgroup_per_node *mn; 290 291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 292 return READ_ONCE(mn->congested); 293 294 } 295 #else 296 static bool global_reclaim(struct scan_control *sc) 297 { 298 return true; 299 } 300 301 static bool sane_reclaim(struct scan_control *sc) 302 { 303 return true; 304 } 305 306 static inline void set_memcg_congestion(struct pglist_data *pgdat, 307 struct mem_cgroup *memcg, bool congested) 308 { 309 } 310 311 static inline bool memcg_congested(struct pglist_data *pgdat, 312 struct mem_cgroup *memcg) 313 { 314 return false; 315 316 } 317 #endif 318 319 /* 320 * This misses isolated pages which are not accounted for to save counters. 321 * As the data only determines if reclaim or compaction continues, it is 322 * not expected that isolated pages will be a dominating factor. 323 */ 324 unsigned long zone_reclaimable_pages(struct zone *zone) 325 { 326 unsigned long nr; 327 328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 330 if (get_nr_swap_pages() > 0) 331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 333 334 return nr; 335 } 336 337 /** 338 * lruvec_lru_size - Returns the number of pages on the given LRU list. 339 * @lruvec: lru vector 340 * @lru: lru to use 341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 342 */ 343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 344 { 345 unsigned long lru_size; 346 int zid; 347 348 if (!mem_cgroup_disabled()) 349 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 350 else 351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 352 353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 355 unsigned long size; 356 357 if (!managed_zone(zone)) 358 continue; 359 360 if (!mem_cgroup_disabled()) 361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 362 else 363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 364 NR_ZONE_LRU_BASE + lru); 365 lru_size -= min(size, lru_size); 366 } 367 368 return lru_size; 369 370 } 371 372 /* 373 * Add a shrinker callback to be called from the vm. 374 */ 375 int prealloc_shrinker(struct shrinker *shrinker) 376 { 377 unsigned int size = sizeof(*shrinker->nr_deferred); 378 379 if (shrinker->flags & SHRINKER_NUMA_AWARE) 380 size *= nr_node_ids; 381 382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 383 if (!shrinker->nr_deferred) 384 return -ENOMEM; 385 386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 387 if (prealloc_memcg_shrinker(shrinker)) 388 goto free_deferred; 389 } 390 391 return 0; 392 393 free_deferred: 394 kfree(shrinker->nr_deferred); 395 shrinker->nr_deferred = NULL; 396 return -ENOMEM; 397 } 398 399 void free_prealloced_shrinker(struct shrinker *shrinker) 400 { 401 if (!shrinker->nr_deferred) 402 return; 403 404 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 405 unregister_memcg_shrinker(shrinker); 406 407 kfree(shrinker->nr_deferred); 408 shrinker->nr_deferred = NULL; 409 } 410 411 void register_shrinker_prepared(struct shrinker *shrinker) 412 { 413 down_write(&shrinker_rwsem); 414 list_add_tail(&shrinker->list, &shrinker_list); 415 #ifdef CONFIG_MEMCG_KMEM 416 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 417 idr_replace(&shrinker_idr, shrinker, shrinker->id); 418 #endif 419 up_write(&shrinker_rwsem); 420 } 421 422 int register_shrinker(struct shrinker *shrinker) 423 { 424 int err = prealloc_shrinker(shrinker); 425 426 if (err) 427 return err; 428 register_shrinker_prepared(shrinker); 429 return 0; 430 } 431 EXPORT_SYMBOL(register_shrinker); 432 433 /* 434 * Remove one 435 */ 436 void unregister_shrinker(struct shrinker *shrinker) 437 { 438 if (!shrinker->nr_deferred) 439 return; 440 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 441 unregister_memcg_shrinker(shrinker); 442 down_write(&shrinker_rwsem); 443 list_del(&shrinker->list); 444 up_write(&shrinker_rwsem); 445 kfree(shrinker->nr_deferred); 446 shrinker->nr_deferred = NULL; 447 } 448 EXPORT_SYMBOL(unregister_shrinker); 449 450 #define SHRINK_BATCH 128 451 452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 453 struct shrinker *shrinker, int priority) 454 { 455 unsigned long freed = 0; 456 unsigned long long delta; 457 long total_scan; 458 long freeable; 459 long nr; 460 long new_nr; 461 int nid = shrinkctl->nid; 462 long batch_size = shrinker->batch ? shrinker->batch 463 : SHRINK_BATCH; 464 long scanned = 0, next_deferred; 465 466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 467 nid = 0; 468 469 freeable = shrinker->count_objects(shrinker, shrinkctl); 470 if (freeable == 0 || freeable == SHRINK_EMPTY) 471 return freeable; 472 473 /* 474 * copy the current shrinker scan count into a local variable 475 * and zero it so that other concurrent shrinker invocations 476 * don't also do this scanning work. 477 */ 478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 479 480 total_scan = nr; 481 if (shrinker->seeks) { 482 delta = freeable >> priority; 483 delta *= 4; 484 do_div(delta, shrinker->seeks); 485 } else { 486 /* 487 * These objects don't require any IO to create. Trim 488 * them aggressively under memory pressure to keep 489 * them from causing refetches in the IO caches. 490 */ 491 delta = freeable / 2; 492 } 493 494 total_scan += delta; 495 if (total_scan < 0) { 496 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 497 shrinker->scan_objects, total_scan); 498 total_scan = freeable; 499 next_deferred = nr; 500 } else 501 next_deferred = total_scan; 502 503 /* 504 * We need to avoid excessive windup on filesystem shrinkers 505 * due to large numbers of GFP_NOFS allocations causing the 506 * shrinkers to return -1 all the time. This results in a large 507 * nr being built up so when a shrink that can do some work 508 * comes along it empties the entire cache due to nr >>> 509 * freeable. This is bad for sustaining a working set in 510 * memory. 511 * 512 * Hence only allow the shrinker to scan the entire cache when 513 * a large delta change is calculated directly. 514 */ 515 if (delta < freeable / 4) 516 total_scan = min(total_scan, freeable / 2); 517 518 /* 519 * Avoid risking looping forever due to too large nr value: 520 * never try to free more than twice the estimate number of 521 * freeable entries. 522 */ 523 if (total_scan > freeable * 2) 524 total_scan = freeable * 2; 525 526 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 527 freeable, delta, total_scan, priority); 528 529 /* 530 * Normally, we should not scan less than batch_size objects in one 531 * pass to avoid too frequent shrinker calls, but if the slab has less 532 * than batch_size objects in total and we are really tight on memory, 533 * we will try to reclaim all available objects, otherwise we can end 534 * up failing allocations although there are plenty of reclaimable 535 * objects spread over several slabs with usage less than the 536 * batch_size. 537 * 538 * We detect the "tight on memory" situations by looking at the total 539 * number of objects we want to scan (total_scan). If it is greater 540 * than the total number of objects on slab (freeable), we must be 541 * scanning at high prio and therefore should try to reclaim as much as 542 * possible. 543 */ 544 while (total_scan >= batch_size || 545 total_scan >= freeable) { 546 unsigned long ret; 547 unsigned long nr_to_scan = min(batch_size, total_scan); 548 549 shrinkctl->nr_to_scan = nr_to_scan; 550 shrinkctl->nr_scanned = nr_to_scan; 551 ret = shrinker->scan_objects(shrinker, shrinkctl); 552 if (ret == SHRINK_STOP) 553 break; 554 freed += ret; 555 556 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 557 total_scan -= shrinkctl->nr_scanned; 558 scanned += shrinkctl->nr_scanned; 559 560 cond_resched(); 561 } 562 563 if (next_deferred >= scanned) 564 next_deferred -= scanned; 565 else 566 next_deferred = 0; 567 /* 568 * move the unused scan count back into the shrinker in a 569 * manner that handles concurrent updates. If we exhausted the 570 * scan, there is no need to do an update. 571 */ 572 if (next_deferred > 0) 573 new_nr = atomic_long_add_return(next_deferred, 574 &shrinker->nr_deferred[nid]); 575 else 576 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 577 578 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 579 return freed; 580 } 581 582 #ifdef CONFIG_MEMCG_KMEM 583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 584 struct mem_cgroup *memcg, int priority) 585 { 586 struct memcg_shrinker_map *map; 587 unsigned long ret, freed = 0; 588 int i; 589 590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 591 return 0; 592 593 if (!down_read_trylock(&shrinker_rwsem)) 594 return 0; 595 596 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 597 true); 598 if (unlikely(!map)) 599 goto unlock; 600 601 for_each_set_bit(i, map->map, shrinker_nr_max) { 602 struct shrink_control sc = { 603 .gfp_mask = gfp_mask, 604 .nid = nid, 605 .memcg = memcg, 606 }; 607 struct shrinker *shrinker; 608 609 shrinker = idr_find(&shrinker_idr, i); 610 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 611 if (!shrinker) 612 clear_bit(i, map->map); 613 continue; 614 } 615 616 ret = do_shrink_slab(&sc, shrinker, priority); 617 if (ret == SHRINK_EMPTY) { 618 clear_bit(i, map->map); 619 /* 620 * After the shrinker reported that it had no objects to 621 * free, but before we cleared the corresponding bit in 622 * the memcg shrinker map, a new object might have been 623 * added. To make sure, we have the bit set in this 624 * case, we invoke the shrinker one more time and reset 625 * the bit if it reports that it is not empty anymore. 626 * The memory barrier here pairs with the barrier in 627 * memcg_set_shrinker_bit(): 628 * 629 * list_lru_add() shrink_slab_memcg() 630 * list_add_tail() clear_bit() 631 * <MB> <MB> 632 * set_bit() do_shrink_slab() 633 */ 634 smp_mb__after_atomic(); 635 ret = do_shrink_slab(&sc, shrinker, priority); 636 if (ret == SHRINK_EMPTY) 637 ret = 0; 638 else 639 memcg_set_shrinker_bit(memcg, nid, i); 640 } 641 freed += ret; 642 643 if (rwsem_is_contended(&shrinker_rwsem)) { 644 freed = freed ? : 1; 645 break; 646 } 647 } 648 unlock: 649 up_read(&shrinker_rwsem); 650 return freed; 651 } 652 #else /* CONFIG_MEMCG_KMEM */ 653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 654 struct mem_cgroup *memcg, int priority) 655 { 656 return 0; 657 } 658 #endif /* CONFIG_MEMCG_KMEM */ 659 660 /** 661 * shrink_slab - shrink slab caches 662 * @gfp_mask: allocation context 663 * @nid: node whose slab caches to target 664 * @memcg: memory cgroup whose slab caches to target 665 * @priority: the reclaim priority 666 * 667 * Call the shrink functions to age shrinkable caches. 668 * 669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 670 * unaware shrinkers will receive a node id of 0 instead. 671 * 672 * @memcg specifies the memory cgroup to target. Unaware shrinkers 673 * are called only if it is the root cgroup. 674 * 675 * @priority is sc->priority, we take the number of objects and >> by priority 676 * in order to get the scan target. 677 * 678 * Returns the number of reclaimed slab objects. 679 */ 680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 681 struct mem_cgroup *memcg, 682 int priority) 683 { 684 unsigned long ret, freed = 0; 685 struct shrinker *shrinker; 686 687 if (!mem_cgroup_is_root(memcg)) 688 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 689 690 if (!down_read_trylock(&shrinker_rwsem)) 691 goto out; 692 693 list_for_each_entry(shrinker, &shrinker_list, list) { 694 struct shrink_control sc = { 695 .gfp_mask = gfp_mask, 696 .nid = nid, 697 .memcg = memcg, 698 }; 699 700 ret = do_shrink_slab(&sc, shrinker, priority); 701 if (ret == SHRINK_EMPTY) 702 ret = 0; 703 freed += ret; 704 /* 705 * Bail out if someone want to register a new shrinker to 706 * prevent the regsitration from being stalled for long periods 707 * by parallel ongoing shrinking. 708 */ 709 if (rwsem_is_contended(&shrinker_rwsem)) { 710 freed = freed ? : 1; 711 break; 712 } 713 } 714 715 up_read(&shrinker_rwsem); 716 out: 717 cond_resched(); 718 return freed; 719 } 720 721 void drop_slab_node(int nid) 722 { 723 unsigned long freed; 724 725 do { 726 struct mem_cgroup *memcg = NULL; 727 728 freed = 0; 729 memcg = mem_cgroup_iter(NULL, NULL, NULL); 730 do { 731 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 732 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 733 } while (freed > 10); 734 } 735 736 void drop_slab(void) 737 { 738 int nid; 739 740 for_each_online_node(nid) 741 drop_slab_node(nid); 742 } 743 744 static inline int is_page_cache_freeable(struct page *page) 745 { 746 /* 747 * A freeable page cache page is referenced only by the caller 748 * that isolated the page, the page cache and optional buffer 749 * heads at page->private. 750 */ 751 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 752 HPAGE_PMD_NR : 1; 753 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 754 } 755 756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 757 { 758 if (current->flags & PF_SWAPWRITE) 759 return 1; 760 if (!inode_write_congested(inode)) 761 return 1; 762 if (inode_to_bdi(inode) == current->backing_dev_info) 763 return 1; 764 return 0; 765 } 766 767 /* 768 * We detected a synchronous write error writing a page out. Probably 769 * -ENOSPC. We need to propagate that into the address_space for a subsequent 770 * fsync(), msync() or close(). 771 * 772 * The tricky part is that after writepage we cannot touch the mapping: nothing 773 * prevents it from being freed up. But we have a ref on the page and once 774 * that page is locked, the mapping is pinned. 775 * 776 * We're allowed to run sleeping lock_page() here because we know the caller has 777 * __GFP_FS. 778 */ 779 static void handle_write_error(struct address_space *mapping, 780 struct page *page, int error) 781 { 782 lock_page(page); 783 if (page_mapping(page) == mapping) 784 mapping_set_error(mapping, error); 785 unlock_page(page); 786 } 787 788 /* possible outcome of pageout() */ 789 typedef enum { 790 /* failed to write page out, page is locked */ 791 PAGE_KEEP, 792 /* move page to the active list, page is locked */ 793 PAGE_ACTIVATE, 794 /* page has been sent to the disk successfully, page is unlocked */ 795 PAGE_SUCCESS, 796 /* page is clean and locked */ 797 PAGE_CLEAN, 798 } pageout_t; 799 800 /* 801 * pageout is called by shrink_page_list() for each dirty page. 802 * Calls ->writepage(). 803 */ 804 static pageout_t pageout(struct page *page, struct address_space *mapping, 805 struct scan_control *sc) 806 { 807 /* 808 * If the page is dirty, only perform writeback if that write 809 * will be non-blocking. To prevent this allocation from being 810 * stalled by pagecache activity. But note that there may be 811 * stalls if we need to run get_block(). We could test 812 * PagePrivate for that. 813 * 814 * If this process is currently in __generic_file_write_iter() against 815 * this page's queue, we can perform writeback even if that 816 * will block. 817 * 818 * If the page is swapcache, write it back even if that would 819 * block, for some throttling. This happens by accident, because 820 * swap_backing_dev_info is bust: it doesn't reflect the 821 * congestion state of the swapdevs. Easy to fix, if needed. 822 */ 823 if (!is_page_cache_freeable(page)) 824 return PAGE_KEEP; 825 if (!mapping) { 826 /* 827 * Some data journaling orphaned pages can have 828 * page->mapping == NULL while being dirty with clean buffers. 829 */ 830 if (page_has_private(page)) { 831 if (try_to_free_buffers(page)) { 832 ClearPageDirty(page); 833 pr_info("%s: orphaned page\n", __func__); 834 return PAGE_CLEAN; 835 } 836 } 837 return PAGE_KEEP; 838 } 839 if (mapping->a_ops->writepage == NULL) 840 return PAGE_ACTIVATE; 841 if (!may_write_to_inode(mapping->host, sc)) 842 return PAGE_KEEP; 843 844 if (clear_page_dirty_for_io(page)) { 845 int res; 846 struct writeback_control wbc = { 847 .sync_mode = WB_SYNC_NONE, 848 .nr_to_write = SWAP_CLUSTER_MAX, 849 .range_start = 0, 850 .range_end = LLONG_MAX, 851 .for_reclaim = 1, 852 }; 853 854 SetPageReclaim(page); 855 res = mapping->a_ops->writepage(page, &wbc); 856 if (res < 0) 857 handle_write_error(mapping, page, res); 858 if (res == AOP_WRITEPAGE_ACTIVATE) { 859 ClearPageReclaim(page); 860 return PAGE_ACTIVATE; 861 } 862 863 if (!PageWriteback(page)) { 864 /* synchronous write or broken a_ops? */ 865 ClearPageReclaim(page); 866 } 867 trace_mm_vmscan_writepage(page); 868 inc_node_page_state(page, NR_VMSCAN_WRITE); 869 return PAGE_SUCCESS; 870 } 871 872 return PAGE_CLEAN; 873 } 874 875 /* 876 * Same as remove_mapping, but if the page is removed from the mapping, it 877 * gets returned with a refcount of 0. 878 */ 879 static int __remove_mapping(struct address_space *mapping, struct page *page, 880 bool reclaimed) 881 { 882 unsigned long flags; 883 int refcount; 884 885 BUG_ON(!PageLocked(page)); 886 BUG_ON(mapping != page_mapping(page)); 887 888 xa_lock_irqsave(&mapping->i_pages, flags); 889 /* 890 * The non racy check for a busy page. 891 * 892 * Must be careful with the order of the tests. When someone has 893 * a ref to the page, it may be possible that they dirty it then 894 * drop the reference. So if PageDirty is tested before page_count 895 * here, then the following race may occur: 896 * 897 * get_user_pages(&page); 898 * [user mapping goes away] 899 * write_to(page); 900 * !PageDirty(page) [good] 901 * SetPageDirty(page); 902 * put_page(page); 903 * !page_count(page) [good, discard it] 904 * 905 * [oops, our write_to data is lost] 906 * 907 * Reversing the order of the tests ensures such a situation cannot 908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 909 * load is not satisfied before that of page->_refcount. 910 * 911 * Note that if SetPageDirty is always performed via set_page_dirty, 912 * and thus under the i_pages lock, then this ordering is not required. 913 */ 914 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 915 refcount = 1 + HPAGE_PMD_NR; 916 else 917 refcount = 2; 918 if (!page_ref_freeze(page, refcount)) 919 goto cannot_free; 920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 921 if (unlikely(PageDirty(page))) { 922 page_ref_unfreeze(page, refcount); 923 goto cannot_free; 924 } 925 926 if (PageSwapCache(page)) { 927 swp_entry_t swap = { .val = page_private(page) }; 928 mem_cgroup_swapout(page, swap); 929 __delete_from_swap_cache(page, swap); 930 xa_unlock_irqrestore(&mapping->i_pages, flags); 931 put_swap_page(page, swap); 932 } else { 933 void (*freepage)(struct page *); 934 void *shadow = NULL; 935 936 freepage = mapping->a_ops->freepage; 937 /* 938 * Remember a shadow entry for reclaimed file cache in 939 * order to detect refaults, thus thrashing, later on. 940 * 941 * But don't store shadows in an address space that is 942 * already exiting. This is not just an optizimation, 943 * inode reclaim needs to empty out the radix tree or 944 * the nodes are lost. Don't plant shadows behind its 945 * back. 946 * 947 * We also don't store shadows for DAX mappings because the 948 * only page cache pages found in these are zero pages 949 * covering holes, and because we don't want to mix DAX 950 * exceptional entries and shadow exceptional entries in the 951 * same address_space. 952 */ 953 if (reclaimed && page_is_file_cache(page) && 954 !mapping_exiting(mapping) && !dax_mapping(mapping)) 955 shadow = workingset_eviction(page); 956 __delete_from_page_cache(page, shadow); 957 xa_unlock_irqrestore(&mapping->i_pages, flags); 958 959 if (freepage != NULL) 960 freepage(page); 961 } 962 963 return 1; 964 965 cannot_free: 966 xa_unlock_irqrestore(&mapping->i_pages, flags); 967 return 0; 968 } 969 970 /* 971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 972 * someone else has a ref on the page, abort and return 0. If it was 973 * successfully detached, return 1. Assumes the caller has a single ref on 974 * this page. 975 */ 976 int remove_mapping(struct address_space *mapping, struct page *page) 977 { 978 if (__remove_mapping(mapping, page, false)) { 979 /* 980 * Unfreezing the refcount with 1 rather than 2 effectively 981 * drops the pagecache ref for us without requiring another 982 * atomic operation. 983 */ 984 page_ref_unfreeze(page, 1); 985 return 1; 986 } 987 return 0; 988 } 989 990 /** 991 * putback_lru_page - put previously isolated page onto appropriate LRU list 992 * @page: page to be put back to appropriate lru list 993 * 994 * Add previously isolated @page to appropriate LRU list. 995 * Page may still be unevictable for other reasons. 996 * 997 * lru_lock must not be held, interrupts must be enabled. 998 */ 999 void putback_lru_page(struct page *page) 1000 { 1001 lru_cache_add(page); 1002 put_page(page); /* drop ref from isolate */ 1003 } 1004 1005 enum page_references { 1006 PAGEREF_RECLAIM, 1007 PAGEREF_RECLAIM_CLEAN, 1008 PAGEREF_KEEP, 1009 PAGEREF_ACTIVATE, 1010 }; 1011 1012 static enum page_references page_check_references(struct page *page, 1013 struct scan_control *sc) 1014 { 1015 int referenced_ptes, referenced_page; 1016 unsigned long vm_flags; 1017 1018 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1019 &vm_flags); 1020 referenced_page = TestClearPageReferenced(page); 1021 1022 /* 1023 * Mlock lost the isolation race with us. Let try_to_unmap() 1024 * move the page to the unevictable list. 1025 */ 1026 if (vm_flags & VM_LOCKED) 1027 return PAGEREF_RECLAIM; 1028 1029 if (referenced_ptes) { 1030 if (PageSwapBacked(page)) 1031 return PAGEREF_ACTIVATE; 1032 /* 1033 * All mapped pages start out with page table 1034 * references from the instantiating fault, so we need 1035 * to look twice if a mapped file page is used more 1036 * than once. 1037 * 1038 * Mark it and spare it for another trip around the 1039 * inactive list. Another page table reference will 1040 * lead to its activation. 1041 * 1042 * Note: the mark is set for activated pages as well 1043 * so that recently deactivated but used pages are 1044 * quickly recovered. 1045 */ 1046 SetPageReferenced(page); 1047 1048 if (referenced_page || referenced_ptes > 1) 1049 return PAGEREF_ACTIVATE; 1050 1051 /* 1052 * Activate file-backed executable pages after first usage. 1053 */ 1054 if (vm_flags & VM_EXEC) 1055 return PAGEREF_ACTIVATE; 1056 1057 return PAGEREF_KEEP; 1058 } 1059 1060 /* Reclaim if clean, defer dirty pages to writeback */ 1061 if (referenced_page && !PageSwapBacked(page)) 1062 return PAGEREF_RECLAIM_CLEAN; 1063 1064 return PAGEREF_RECLAIM; 1065 } 1066 1067 /* Check if a page is dirty or under writeback */ 1068 static void page_check_dirty_writeback(struct page *page, 1069 bool *dirty, bool *writeback) 1070 { 1071 struct address_space *mapping; 1072 1073 /* 1074 * Anonymous pages are not handled by flushers and must be written 1075 * from reclaim context. Do not stall reclaim based on them 1076 */ 1077 if (!page_is_file_cache(page) || 1078 (PageAnon(page) && !PageSwapBacked(page))) { 1079 *dirty = false; 1080 *writeback = false; 1081 return; 1082 } 1083 1084 /* By default assume that the page flags are accurate */ 1085 *dirty = PageDirty(page); 1086 *writeback = PageWriteback(page); 1087 1088 /* Verify dirty/writeback state if the filesystem supports it */ 1089 if (!page_has_private(page)) 1090 return; 1091 1092 mapping = page_mapping(page); 1093 if (mapping && mapping->a_ops->is_dirty_writeback) 1094 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1095 } 1096 1097 /* 1098 * shrink_page_list() returns the number of reclaimed pages 1099 */ 1100 static unsigned long shrink_page_list(struct list_head *page_list, 1101 struct pglist_data *pgdat, 1102 struct scan_control *sc, 1103 enum ttu_flags ttu_flags, 1104 struct reclaim_stat *stat, 1105 bool force_reclaim) 1106 { 1107 LIST_HEAD(ret_pages); 1108 LIST_HEAD(free_pages); 1109 unsigned nr_reclaimed = 0; 1110 unsigned pgactivate = 0; 1111 1112 memset(stat, 0, sizeof(*stat)); 1113 cond_resched(); 1114 1115 while (!list_empty(page_list)) { 1116 struct address_space *mapping; 1117 struct page *page; 1118 int may_enter_fs; 1119 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1120 bool dirty, writeback; 1121 unsigned int nr_pages; 1122 1123 cond_resched(); 1124 1125 page = lru_to_page(page_list); 1126 list_del(&page->lru); 1127 1128 if (!trylock_page(page)) 1129 goto keep; 1130 1131 VM_BUG_ON_PAGE(PageActive(page), page); 1132 1133 nr_pages = 1 << compound_order(page); 1134 1135 /* Account the number of base pages even though THP */ 1136 sc->nr_scanned += nr_pages; 1137 1138 if (unlikely(!page_evictable(page))) 1139 goto activate_locked; 1140 1141 if (!sc->may_unmap && page_mapped(page)) 1142 goto keep_locked; 1143 1144 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1145 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1146 1147 /* 1148 * The number of dirty pages determines if a node is marked 1149 * reclaim_congested which affects wait_iff_congested. kswapd 1150 * will stall and start writing pages if the tail of the LRU 1151 * is all dirty unqueued pages. 1152 */ 1153 page_check_dirty_writeback(page, &dirty, &writeback); 1154 if (dirty || writeback) 1155 stat->nr_dirty++; 1156 1157 if (dirty && !writeback) 1158 stat->nr_unqueued_dirty++; 1159 1160 /* 1161 * Treat this page as congested if the underlying BDI is or if 1162 * pages are cycling through the LRU so quickly that the 1163 * pages marked for immediate reclaim are making it to the 1164 * end of the LRU a second time. 1165 */ 1166 mapping = page_mapping(page); 1167 if (((dirty || writeback) && mapping && 1168 inode_write_congested(mapping->host)) || 1169 (writeback && PageReclaim(page))) 1170 stat->nr_congested++; 1171 1172 /* 1173 * If a page at the tail of the LRU is under writeback, there 1174 * are three cases to consider. 1175 * 1176 * 1) If reclaim is encountering an excessive number of pages 1177 * under writeback and this page is both under writeback and 1178 * PageReclaim then it indicates that pages are being queued 1179 * for IO but are being recycled through the LRU before the 1180 * IO can complete. Waiting on the page itself risks an 1181 * indefinite stall if it is impossible to writeback the 1182 * page due to IO error or disconnected storage so instead 1183 * note that the LRU is being scanned too quickly and the 1184 * caller can stall after page list has been processed. 1185 * 1186 * 2) Global or new memcg reclaim encounters a page that is 1187 * not marked for immediate reclaim, or the caller does not 1188 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1189 * not to fs). In this case mark the page for immediate 1190 * reclaim and continue scanning. 1191 * 1192 * Require may_enter_fs because we would wait on fs, which 1193 * may not have submitted IO yet. And the loop driver might 1194 * enter reclaim, and deadlock if it waits on a page for 1195 * which it is needed to do the write (loop masks off 1196 * __GFP_IO|__GFP_FS for this reason); but more thought 1197 * would probably show more reasons. 1198 * 1199 * 3) Legacy memcg encounters a page that is already marked 1200 * PageReclaim. memcg does not have any dirty pages 1201 * throttling so we could easily OOM just because too many 1202 * pages are in writeback and there is nothing else to 1203 * reclaim. Wait for the writeback to complete. 1204 * 1205 * In cases 1) and 2) we activate the pages to get them out of 1206 * the way while we continue scanning for clean pages on the 1207 * inactive list and refilling from the active list. The 1208 * observation here is that waiting for disk writes is more 1209 * expensive than potentially causing reloads down the line. 1210 * Since they're marked for immediate reclaim, they won't put 1211 * memory pressure on the cache working set any longer than it 1212 * takes to write them to disk. 1213 */ 1214 if (PageWriteback(page)) { 1215 /* Case 1 above */ 1216 if (current_is_kswapd() && 1217 PageReclaim(page) && 1218 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1219 stat->nr_immediate++; 1220 goto activate_locked; 1221 1222 /* Case 2 above */ 1223 } else if (sane_reclaim(sc) || 1224 !PageReclaim(page) || !may_enter_fs) { 1225 /* 1226 * This is slightly racy - end_page_writeback() 1227 * might have just cleared PageReclaim, then 1228 * setting PageReclaim here end up interpreted 1229 * as PageReadahead - but that does not matter 1230 * enough to care. What we do want is for this 1231 * page to have PageReclaim set next time memcg 1232 * reclaim reaches the tests above, so it will 1233 * then wait_on_page_writeback() to avoid OOM; 1234 * and it's also appropriate in global reclaim. 1235 */ 1236 SetPageReclaim(page); 1237 stat->nr_writeback++; 1238 goto activate_locked; 1239 1240 /* Case 3 above */ 1241 } else { 1242 unlock_page(page); 1243 wait_on_page_writeback(page); 1244 /* then go back and try same page again */ 1245 list_add_tail(&page->lru, page_list); 1246 continue; 1247 } 1248 } 1249 1250 if (!force_reclaim) 1251 references = page_check_references(page, sc); 1252 1253 switch (references) { 1254 case PAGEREF_ACTIVATE: 1255 goto activate_locked; 1256 case PAGEREF_KEEP: 1257 stat->nr_ref_keep += nr_pages; 1258 goto keep_locked; 1259 case PAGEREF_RECLAIM: 1260 case PAGEREF_RECLAIM_CLEAN: 1261 ; /* try to reclaim the page below */ 1262 } 1263 1264 /* 1265 * Anonymous process memory has backing store? 1266 * Try to allocate it some swap space here. 1267 * Lazyfree page could be freed directly 1268 */ 1269 if (PageAnon(page) && PageSwapBacked(page)) { 1270 if (!PageSwapCache(page)) { 1271 if (!(sc->gfp_mask & __GFP_IO)) 1272 goto keep_locked; 1273 if (PageTransHuge(page)) { 1274 /* cannot split THP, skip it */ 1275 if (!can_split_huge_page(page, NULL)) 1276 goto activate_locked; 1277 /* 1278 * Split pages without a PMD map right 1279 * away. Chances are some or all of the 1280 * tail pages can be freed without IO. 1281 */ 1282 if (!compound_mapcount(page) && 1283 split_huge_page_to_list(page, 1284 page_list)) 1285 goto activate_locked; 1286 } 1287 if (!add_to_swap(page)) { 1288 if (!PageTransHuge(page)) 1289 goto activate_locked_split; 1290 /* Fallback to swap normal pages */ 1291 if (split_huge_page_to_list(page, 1292 page_list)) 1293 goto activate_locked; 1294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1295 count_vm_event(THP_SWPOUT_FALLBACK); 1296 #endif 1297 if (!add_to_swap(page)) 1298 goto activate_locked_split; 1299 } 1300 1301 may_enter_fs = 1; 1302 1303 /* Adding to swap updated mapping */ 1304 mapping = page_mapping(page); 1305 } 1306 } else if (unlikely(PageTransHuge(page))) { 1307 /* Split file THP */ 1308 if (split_huge_page_to_list(page, page_list)) 1309 goto keep_locked; 1310 } 1311 1312 /* 1313 * THP may get split above, need minus tail pages and update 1314 * nr_pages to avoid accounting tail pages twice. 1315 * 1316 * The tail pages that are added into swap cache successfully 1317 * reach here. 1318 */ 1319 if ((nr_pages > 1) && !PageTransHuge(page)) { 1320 sc->nr_scanned -= (nr_pages - 1); 1321 nr_pages = 1; 1322 } 1323 1324 /* 1325 * The page is mapped into the page tables of one or more 1326 * processes. Try to unmap it here. 1327 */ 1328 if (page_mapped(page)) { 1329 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1330 1331 if (unlikely(PageTransHuge(page))) 1332 flags |= TTU_SPLIT_HUGE_PMD; 1333 if (!try_to_unmap(page, flags)) { 1334 stat->nr_unmap_fail += nr_pages; 1335 goto activate_locked; 1336 } 1337 } 1338 1339 if (PageDirty(page)) { 1340 /* 1341 * Only kswapd can writeback filesystem pages 1342 * to avoid risk of stack overflow. But avoid 1343 * injecting inefficient single-page IO into 1344 * flusher writeback as much as possible: only 1345 * write pages when we've encountered many 1346 * dirty pages, and when we've already scanned 1347 * the rest of the LRU for clean pages and see 1348 * the same dirty pages again (PageReclaim). 1349 */ 1350 if (page_is_file_cache(page) && 1351 (!current_is_kswapd() || !PageReclaim(page) || 1352 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1353 /* 1354 * Immediately reclaim when written back. 1355 * Similar in principal to deactivate_page() 1356 * except we already have the page isolated 1357 * and know it's dirty 1358 */ 1359 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1360 SetPageReclaim(page); 1361 1362 goto activate_locked; 1363 } 1364 1365 if (references == PAGEREF_RECLAIM_CLEAN) 1366 goto keep_locked; 1367 if (!may_enter_fs) 1368 goto keep_locked; 1369 if (!sc->may_writepage) 1370 goto keep_locked; 1371 1372 /* 1373 * Page is dirty. Flush the TLB if a writable entry 1374 * potentially exists to avoid CPU writes after IO 1375 * starts and then write it out here. 1376 */ 1377 try_to_unmap_flush_dirty(); 1378 switch (pageout(page, mapping, sc)) { 1379 case PAGE_KEEP: 1380 goto keep_locked; 1381 case PAGE_ACTIVATE: 1382 goto activate_locked; 1383 case PAGE_SUCCESS: 1384 if (PageWriteback(page)) 1385 goto keep; 1386 if (PageDirty(page)) 1387 goto keep; 1388 1389 /* 1390 * A synchronous write - probably a ramdisk. Go 1391 * ahead and try to reclaim the page. 1392 */ 1393 if (!trylock_page(page)) 1394 goto keep; 1395 if (PageDirty(page) || PageWriteback(page)) 1396 goto keep_locked; 1397 mapping = page_mapping(page); 1398 case PAGE_CLEAN: 1399 ; /* try to free the page below */ 1400 } 1401 } 1402 1403 /* 1404 * If the page has buffers, try to free the buffer mappings 1405 * associated with this page. If we succeed we try to free 1406 * the page as well. 1407 * 1408 * We do this even if the page is PageDirty(). 1409 * try_to_release_page() does not perform I/O, but it is 1410 * possible for a page to have PageDirty set, but it is actually 1411 * clean (all its buffers are clean). This happens if the 1412 * buffers were written out directly, with submit_bh(). ext3 1413 * will do this, as well as the blockdev mapping. 1414 * try_to_release_page() will discover that cleanness and will 1415 * drop the buffers and mark the page clean - it can be freed. 1416 * 1417 * Rarely, pages can have buffers and no ->mapping. These are 1418 * the pages which were not successfully invalidated in 1419 * truncate_complete_page(). We try to drop those buffers here 1420 * and if that worked, and the page is no longer mapped into 1421 * process address space (page_count == 1) it can be freed. 1422 * Otherwise, leave the page on the LRU so it is swappable. 1423 */ 1424 if (page_has_private(page)) { 1425 if (!try_to_release_page(page, sc->gfp_mask)) 1426 goto activate_locked; 1427 if (!mapping && page_count(page) == 1) { 1428 unlock_page(page); 1429 if (put_page_testzero(page)) 1430 goto free_it; 1431 else { 1432 /* 1433 * rare race with speculative reference. 1434 * the speculative reference will free 1435 * this page shortly, so we may 1436 * increment nr_reclaimed here (and 1437 * leave it off the LRU). 1438 */ 1439 nr_reclaimed++; 1440 continue; 1441 } 1442 } 1443 } 1444 1445 if (PageAnon(page) && !PageSwapBacked(page)) { 1446 /* follow __remove_mapping for reference */ 1447 if (!page_ref_freeze(page, 1)) 1448 goto keep_locked; 1449 if (PageDirty(page)) { 1450 page_ref_unfreeze(page, 1); 1451 goto keep_locked; 1452 } 1453 1454 count_vm_event(PGLAZYFREED); 1455 count_memcg_page_event(page, PGLAZYFREED); 1456 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1457 goto keep_locked; 1458 1459 unlock_page(page); 1460 free_it: 1461 /* 1462 * THP may get swapped out in a whole, need account 1463 * all base pages. 1464 */ 1465 nr_reclaimed += nr_pages; 1466 1467 /* 1468 * Is there need to periodically free_page_list? It would 1469 * appear not as the counts should be low 1470 */ 1471 if (unlikely(PageTransHuge(page))) { 1472 mem_cgroup_uncharge(page); 1473 (*get_compound_page_dtor(page))(page); 1474 } else 1475 list_add(&page->lru, &free_pages); 1476 continue; 1477 1478 activate_locked_split: 1479 /* 1480 * The tail pages that are failed to add into swap cache 1481 * reach here. Fixup nr_scanned and nr_pages. 1482 */ 1483 if (nr_pages > 1) { 1484 sc->nr_scanned -= (nr_pages - 1); 1485 nr_pages = 1; 1486 } 1487 activate_locked: 1488 /* Not a candidate for swapping, so reclaim swap space. */ 1489 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1490 PageMlocked(page))) 1491 try_to_free_swap(page); 1492 VM_BUG_ON_PAGE(PageActive(page), page); 1493 if (!PageMlocked(page)) { 1494 int type = page_is_file_cache(page); 1495 SetPageActive(page); 1496 stat->nr_activate[type] += nr_pages; 1497 count_memcg_page_event(page, PGACTIVATE); 1498 } 1499 keep_locked: 1500 unlock_page(page); 1501 keep: 1502 list_add(&page->lru, &ret_pages); 1503 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1504 } 1505 1506 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1507 1508 mem_cgroup_uncharge_list(&free_pages); 1509 try_to_unmap_flush(); 1510 free_unref_page_list(&free_pages); 1511 1512 list_splice(&ret_pages, page_list); 1513 count_vm_events(PGACTIVATE, pgactivate); 1514 1515 return nr_reclaimed; 1516 } 1517 1518 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1519 struct list_head *page_list) 1520 { 1521 struct scan_control sc = { 1522 .gfp_mask = GFP_KERNEL, 1523 .priority = DEF_PRIORITY, 1524 .may_unmap = 1, 1525 }; 1526 struct reclaim_stat dummy_stat; 1527 unsigned long ret; 1528 struct page *page, *next; 1529 LIST_HEAD(clean_pages); 1530 1531 list_for_each_entry_safe(page, next, page_list, lru) { 1532 if (page_is_file_cache(page) && !PageDirty(page) && 1533 !__PageMovable(page) && !PageUnevictable(page)) { 1534 ClearPageActive(page); 1535 list_move(&page->lru, &clean_pages); 1536 } 1537 } 1538 1539 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1540 TTU_IGNORE_ACCESS, &dummy_stat, true); 1541 list_splice(&clean_pages, page_list); 1542 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1543 return ret; 1544 } 1545 1546 /* 1547 * Attempt to remove the specified page from its LRU. Only take this page 1548 * if it is of the appropriate PageActive status. Pages which are being 1549 * freed elsewhere are also ignored. 1550 * 1551 * page: page to consider 1552 * mode: one of the LRU isolation modes defined above 1553 * 1554 * returns 0 on success, -ve errno on failure. 1555 */ 1556 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1557 { 1558 int ret = -EINVAL; 1559 1560 /* Only take pages on the LRU. */ 1561 if (!PageLRU(page)) 1562 return ret; 1563 1564 /* Compaction should not handle unevictable pages but CMA can do so */ 1565 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1566 return ret; 1567 1568 ret = -EBUSY; 1569 1570 /* 1571 * To minimise LRU disruption, the caller can indicate that it only 1572 * wants to isolate pages it will be able to operate on without 1573 * blocking - clean pages for the most part. 1574 * 1575 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1576 * that it is possible to migrate without blocking 1577 */ 1578 if (mode & ISOLATE_ASYNC_MIGRATE) { 1579 /* All the caller can do on PageWriteback is block */ 1580 if (PageWriteback(page)) 1581 return ret; 1582 1583 if (PageDirty(page)) { 1584 struct address_space *mapping; 1585 bool migrate_dirty; 1586 1587 /* 1588 * Only pages without mappings or that have a 1589 * ->migratepage callback are possible to migrate 1590 * without blocking. However, we can be racing with 1591 * truncation so it's necessary to lock the page 1592 * to stabilise the mapping as truncation holds 1593 * the page lock until after the page is removed 1594 * from the page cache. 1595 */ 1596 if (!trylock_page(page)) 1597 return ret; 1598 1599 mapping = page_mapping(page); 1600 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1601 unlock_page(page); 1602 if (!migrate_dirty) 1603 return ret; 1604 } 1605 } 1606 1607 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1608 return ret; 1609 1610 if (likely(get_page_unless_zero(page))) { 1611 /* 1612 * Be careful not to clear PageLRU until after we're 1613 * sure the page is not being freed elsewhere -- the 1614 * page release code relies on it. 1615 */ 1616 ClearPageLRU(page); 1617 ret = 0; 1618 } 1619 1620 return ret; 1621 } 1622 1623 1624 /* 1625 * Update LRU sizes after isolating pages. The LRU size updates must 1626 * be complete before mem_cgroup_update_lru_size due to a santity check. 1627 */ 1628 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1629 enum lru_list lru, unsigned long *nr_zone_taken) 1630 { 1631 int zid; 1632 1633 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1634 if (!nr_zone_taken[zid]) 1635 continue; 1636 1637 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1638 #ifdef CONFIG_MEMCG 1639 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1640 #endif 1641 } 1642 1643 } 1644 1645 /** 1646 * pgdat->lru_lock is heavily contended. Some of the functions that 1647 * shrink the lists perform better by taking out a batch of pages 1648 * and working on them outside the LRU lock. 1649 * 1650 * For pagecache intensive workloads, this function is the hottest 1651 * spot in the kernel (apart from copy_*_user functions). 1652 * 1653 * Appropriate locks must be held before calling this function. 1654 * 1655 * @nr_to_scan: The number of eligible pages to look through on the list. 1656 * @lruvec: The LRU vector to pull pages from. 1657 * @dst: The temp list to put pages on to. 1658 * @nr_scanned: The number of pages that were scanned. 1659 * @sc: The scan_control struct for this reclaim session 1660 * @mode: One of the LRU isolation modes 1661 * @lru: LRU list id for isolating 1662 * 1663 * returns how many pages were moved onto *@dst. 1664 */ 1665 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1666 struct lruvec *lruvec, struct list_head *dst, 1667 unsigned long *nr_scanned, struct scan_control *sc, 1668 enum lru_list lru) 1669 { 1670 struct list_head *src = &lruvec->lists[lru]; 1671 unsigned long nr_taken = 0; 1672 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1673 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1674 unsigned long skipped = 0; 1675 unsigned long scan, total_scan, nr_pages; 1676 LIST_HEAD(pages_skipped); 1677 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1678 1679 total_scan = 0; 1680 scan = 0; 1681 while (scan < nr_to_scan && !list_empty(src)) { 1682 struct page *page; 1683 1684 page = lru_to_page(src); 1685 prefetchw_prev_lru_page(page, src, flags); 1686 1687 VM_BUG_ON_PAGE(!PageLRU(page), page); 1688 1689 nr_pages = 1 << compound_order(page); 1690 total_scan += nr_pages; 1691 1692 if (page_zonenum(page) > sc->reclaim_idx) { 1693 list_move(&page->lru, &pages_skipped); 1694 nr_skipped[page_zonenum(page)] += nr_pages; 1695 continue; 1696 } 1697 1698 /* 1699 * Do not count skipped pages because that makes the function 1700 * return with no isolated pages if the LRU mostly contains 1701 * ineligible pages. This causes the VM to not reclaim any 1702 * pages, triggering a premature OOM. 1703 * 1704 * Account all tail pages of THP. This would not cause 1705 * premature OOM since __isolate_lru_page() returns -EBUSY 1706 * only when the page is being freed somewhere else. 1707 */ 1708 scan += nr_pages; 1709 switch (__isolate_lru_page(page, mode)) { 1710 case 0: 1711 nr_taken += nr_pages; 1712 nr_zone_taken[page_zonenum(page)] += nr_pages; 1713 list_move(&page->lru, dst); 1714 break; 1715 1716 case -EBUSY: 1717 /* else it is being freed elsewhere */ 1718 list_move(&page->lru, src); 1719 continue; 1720 1721 default: 1722 BUG(); 1723 } 1724 } 1725 1726 /* 1727 * Splice any skipped pages to the start of the LRU list. Note that 1728 * this disrupts the LRU order when reclaiming for lower zones but 1729 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1730 * scanning would soon rescan the same pages to skip and put the 1731 * system at risk of premature OOM. 1732 */ 1733 if (!list_empty(&pages_skipped)) { 1734 int zid; 1735 1736 list_splice(&pages_skipped, src); 1737 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1738 if (!nr_skipped[zid]) 1739 continue; 1740 1741 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1742 skipped += nr_skipped[zid]; 1743 } 1744 } 1745 *nr_scanned = total_scan; 1746 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1747 total_scan, skipped, nr_taken, mode, lru); 1748 update_lru_sizes(lruvec, lru, nr_zone_taken); 1749 return nr_taken; 1750 } 1751 1752 /** 1753 * isolate_lru_page - tries to isolate a page from its LRU list 1754 * @page: page to isolate from its LRU list 1755 * 1756 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1757 * vmstat statistic corresponding to whatever LRU list the page was on. 1758 * 1759 * Returns 0 if the page was removed from an LRU list. 1760 * Returns -EBUSY if the page was not on an LRU list. 1761 * 1762 * The returned page will have PageLRU() cleared. If it was found on 1763 * the active list, it will have PageActive set. If it was found on 1764 * the unevictable list, it will have the PageUnevictable bit set. That flag 1765 * may need to be cleared by the caller before letting the page go. 1766 * 1767 * The vmstat statistic corresponding to the list on which the page was 1768 * found will be decremented. 1769 * 1770 * Restrictions: 1771 * 1772 * (1) Must be called with an elevated refcount on the page. This is a 1773 * fundamentnal difference from isolate_lru_pages (which is called 1774 * without a stable reference). 1775 * (2) the lru_lock must not be held. 1776 * (3) interrupts must be enabled. 1777 */ 1778 int isolate_lru_page(struct page *page) 1779 { 1780 int ret = -EBUSY; 1781 1782 VM_BUG_ON_PAGE(!page_count(page), page); 1783 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1784 1785 if (PageLRU(page)) { 1786 pg_data_t *pgdat = page_pgdat(page); 1787 struct lruvec *lruvec; 1788 1789 spin_lock_irq(&pgdat->lru_lock); 1790 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1791 if (PageLRU(page)) { 1792 int lru = page_lru(page); 1793 get_page(page); 1794 ClearPageLRU(page); 1795 del_page_from_lru_list(page, lruvec, lru); 1796 ret = 0; 1797 } 1798 spin_unlock_irq(&pgdat->lru_lock); 1799 } 1800 return ret; 1801 } 1802 1803 /* 1804 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1805 * then get resheduled. When there are massive number of tasks doing page 1806 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1807 * the LRU list will go small and be scanned faster than necessary, leading to 1808 * unnecessary swapping, thrashing and OOM. 1809 */ 1810 static int too_many_isolated(struct pglist_data *pgdat, int file, 1811 struct scan_control *sc) 1812 { 1813 unsigned long inactive, isolated; 1814 1815 if (current_is_kswapd()) 1816 return 0; 1817 1818 if (!sane_reclaim(sc)) 1819 return 0; 1820 1821 if (file) { 1822 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1823 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1824 } else { 1825 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1826 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1827 } 1828 1829 /* 1830 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1831 * won't get blocked by normal direct-reclaimers, forming a circular 1832 * deadlock. 1833 */ 1834 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1835 inactive >>= 3; 1836 1837 return isolated > inactive; 1838 } 1839 1840 /* 1841 * This moves pages from @list to corresponding LRU list. 1842 * 1843 * We move them the other way if the page is referenced by one or more 1844 * processes, from rmap. 1845 * 1846 * If the pages are mostly unmapped, the processing is fast and it is 1847 * appropriate to hold zone_lru_lock across the whole operation. But if 1848 * the pages are mapped, the processing is slow (page_referenced()) so we 1849 * should drop zone_lru_lock around each page. It's impossible to balance 1850 * this, so instead we remove the pages from the LRU while processing them. 1851 * It is safe to rely on PG_active against the non-LRU pages in here because 1852 * nobody will play with that bit on a non-LRU page. 1853 * 1854 * The downside is that we have to touch page->_refcount against each page. 1855 * But we had to alter page->flags anyway. 1856 * 1857 * Returns the number of pages moved to the given lruvec. 1858 */ 1859 1860 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1861 struct list_head *list) 1862 { 1863 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1864 int nr_pages, nr_moved = 0; 1865 LIST_HEAD(pages_to_free); 1866 struct page *page; 1867 enum lru_list lru; 1868 1869 while (!list_empty(list)) { 1870 page = lru_to_page(list); 1871 VM_BUG_ON_PAGE(PageLRU(page), page); 1872 if (unlikely(!page_evictable(page))) { 1873 list_del(&page->lru); 1874 spin_unlock_irq(&pgdat->lru_lock); 1875 putback_lru_page(page); 1876 spin_lock_irq(&pgdat->lru_lock); 1877 continue; 1878 } 1879 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1880 1881 SetPageLRU(page); 1882 lru = page_lru(page); 1883 1884 nr_pages = hpage_nr_pages(page); 1885 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1886 list_move(&page->lru, &lruvec->lists[lru]); 1887 1888 if (put_page_testzero(page)) { 1889 __ClearPageLRU(page); 1890 __ClearPageActive(page); 1891 del_page_from_lru_list(page, lruvec, lru); 1892 1893 if (unlikely(PageCompound(page))) { 1894 spin_unlock_irq(&pgdat->lru_lock); 1895 mem_cgroup_uncharge(page); 1896 (*get_compound_page_dtor(page))(page); 1897 spin_lock_irq(&pgdat->lru_lock); 1898 } else 1899 list_add(&page->lru, &pages_to_free); 1900 } else { 1901 nr_moved += nr_pages; 1902 } 1903 } 1904 1905 /* 1906 * To save our caller's stack, now use input list for pages to free. 1907 */ 1908 list_splice(&pages_to_free, list); 1909 1910 return nr_moved; 1911 } 1912 1913 /* 1914 * If a kernel thread (such as nfsd for loop-back mounts) services 1915 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1916 * In that case we should only throttle if the backing device it is 1917 * writing to is congested. In other cases it is safe to throttle. 1918 */ 1919 static int current_may_throttle(void) 1920 { 1921 return !(current->flags & PF_LESS_THROTTLE) || 1922 current->backing_dev_info == NULL || 1923 bdi_write_congested(current->backing_dev_info); 1924 } 1925 1926 /* 1927 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1928 * of reclaimed pages 1929 */ 1930 static noinline_for_stack unsigned long 1931 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1932 struct scan_control *sc, enum lru_list lru) 1933 { 1934 LIST_HEAD(page_list); 1935 unsigned long nr_scanned; 1936 unsigned long nr_reclaimed = 0; 1937 unsigned long nr_taken; 1938 struct reclaim_stat stat; 1939 int file = is_file_lru(lru); 1940 enum vm_event_item item; 1941 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1942 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1943 bool stalled = false; 1944 1945 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1946 if (stalled) 1947 return 0; 1948 1949 /* wait a bit for the reclaimer. */ 1950 msleep(100); 1951 stalled = true; 1952 1953 /* We are about to die and free our memory. Return now. */ 1954 if (fatal_signal_pending(current)) 1955 return SWAP_CLUSTER_MAX; 1956 } 1957 1958 lru_add_drain(); 1959 1960 spin_lock_irq(&pgdat->lru_lock); 1961 1962 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1963 &nr_scanned, sc, lru); 1964 1965 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1966 reclaim_stat->recent_scanned[file] += nr_taken; 1967 1968 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1969 if (global_reclaim(sc)) 1970 __count_vm_events(item, nr_scanned); 1971 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1972 spin_unlock_irq(&pgdat->lru_lock); 1973 1974 if (nr_taken == 0) 1975 return 0; 1976 1977 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1978 &stat, false); 1979 1980 spin_lock_irq(&pgdat->lru_lock); 1981 1982 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1983 if (global_reclaim(sc)) 1984 __count_vm_events(item, nr_reclaimed); 1985 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1986 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 1987 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 1988 1989 move_pages_to_lru(lruvec, &page_list); 1990 1991 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1992 1993 spin_unlock_irq(&pgdat->lru_lock); 1994 1995 mem_cgroup_uncharge_list(&page_list); 1996 free_unref_page_list(&page_list); 1997 1998 /* 1999 * If dirty pages are scanned that are not queued for IO, it 2000 * implies that flushers are not doing their job. This can 2001 * happen when memory pressure pushes dirty pages to the end of 2002 * the LRU before the dirty limits are breached and the dirty 2003 * data has expired. It can also happen when the proportion of 2004 * dirty pages grows not through writes but through memory 2005 * pressure reclaiming all the clean cache. And in some cases, 2006 * the flushers simply cannot keep up with the allocation 2007 * rate. Nudge the flusher threads in case they are asleep. 2008 */ 2009 if (stat.nr_unqueued_dirty == nr_taken) 2010 wakeup_flusher_threads(WB_REASON_VMSCAN); 2011 2012 sc->nr.dirty += stat.nr_dirty; 2013 sc->nr.congested += stat.nr_congested; 2014 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2015 sc->nr.writeback += stat.nr_writeback; 2016 sc->nr.immediate += stat.nr_immediate; 2017 sc->nr.taken += nr_taken; 2018 if (file) 2019 sc->nr.file_taken += nr_taken; 2020 2021 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2022 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2023 return nr_reclaimed; 2024 } 2025 2026 static void shrink_active_list(unsigned long nr_to_scan, 2027 struct lruvec *lruvec, 2028 struct scan_control *sc, 2029 enum lru_list lru) 2030 { 2031 unsigned long nr_taken; 2032 unsigned long nr_scanned; 2033 unsigned long vm_flags; 2034 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2035 LIST_HEAD(l_active); 2036 LIST_HEAD(l_inactive); 2037 struct page *page; 2038 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2039 unsigned nr_deactivate, nr_activate; 2040 unsigned nr_rotated = 0; 2041 int file = is_file_lru(lru); 2042 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2043 2044 lru_add_drain(); 2045 2046 spin_lock_irq(&pgdat->lru_lock); 2047 2048 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2049 &nr_scanned, sc, lru); 2050 2051 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2052 reclaim_stat->recent_scanned[file] += nr_taken; 2053 2054 __count_vm_events(PGREFILL, nr_scanned); 2055 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2056 2057 spin_unlock_irq(&pgdat->lru_lock); 2058 2059 while (!list_empty(&l_hold)) { 2060 cond_resched(); 2061 page = lru_to_page(&l_hold); 2062 list_del(&page->lru); 2063 2064 if (unlikely(!page_evictable(page))) { 2065 putback_lru_page(page); 2066 continue; 2067 } 2068 2069 if (unlikely(buffer_heads_over_limit)) { 2070 if (page_has_private(page) && trylock_page(page)) { 2071 if (page_has_private(page)) 2072 try_to_release_page(page, 0); 2073 unlock_page(page); 2074 } 2075 } 2076 2077 if (page_referenced(page, 0, sc->target_mem_cgroup, 2078 &vm_flags)) { 2079 nr_rotated += hpage_nr_pages(page); 2080 /* 2081 * Identify referenced, file-backed active pages and 2082 * give them one more trip around the active list. So 2083 * that executable code get better chances to stay in 2084 * memory under moderate memory pressure. Anon pages 2085 * are not likely to be evicted by use-once streaming 2086 * IO, plus JVM can create lots of anon VM_EXEC pages, 2087 * so we ignore them here. 2088 */ 2089 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2090 list_add(&page->lru, &l_active); 2091 continue; 2092 } 2093 } 2094 2095 ClearPageActive(page); /* we are de-activating */ 2096 SetPageWorkingset(page); 2097 list_add(&page->lru, &l_inactive); 2098 } 2099 2100 /* 2101 * Move pages back to the lru list. 2102 */ 2103 spin_lock_irq(&pgdat->lru_lock); 2104 /* 2105 * Count referenced pages from currently used mappings as rotated, 2106 * even though only some of them are actually re-activated. This 2107 * helps balance scan pressure between file and anonymous pages in 2108 * get_scan_count. 2109 */ 2110 reclaim_stat->recent_rotated[file] += nr_rotated; 2111 2112 nr_activate = move_pages_to_lru(lruvec, &l_active); 2113 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2114 /* Keep all free pages in l_active list */ 2115 list_splice(&l_inactive, &l_active); 2116 2117 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2118 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2119 2120 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2121 spin_unlock_irq(&pgdat->lru_lock); 2122 2123 mem_cgroup_uncharge_list(&l_active); 2124 free_unref_page_list(&l_active); 2125 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2126 nr_deactivate, nr_rotated, sc->priority, file); 2127 } 2128 2129 /* 2130 * The inactive anon list should be small enough that the VM never has 2131 * to do too much work. 2132 * 2133 * The inactive file list should be small enough to leave most memory 2134 * to the established workingset on the scan-resistant active list, 2135 * but large enough to avoid thrashing the aggregate readahead window. 2136 * 2137 * Both inactive lists should also be large enough that each inactive 2138 * page has a chance to be referenced again before it is reclaimed. 2139 * 2140 * If that fails and refaulting is observed, the inactive list grows. 2141 * 2142 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2143 * on this LRU, maintained by the pageout code. An inactive_ratio 2144 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2145 * 2146 * total target max 2147 * memory ratio inactive 2148 * ------------------------------------- 2149 * 10MB 1 5MB 2150 * 100MB 1 50MB 2151 * 1GB 3 250MB 2152 * 10GB 10 0.9GB 2153 * 100GB 31 3GB 2154 * 1TB 101 10GB 2155 * 10TB 320 32GB 2156 */ 2157 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2158 struct scan_control *sc, bool trace) 2159 { 2160 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2161 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2162 enum lru_list inactive_lru = file * LRU_FILE; 2163 unsigned long inactive, active; 2164 unsigned long inactive_ratio; 2165 unsigned long refaults; 2166 unsigned long gb; 2167 2168 /* 2169 * If we don't have swap space, anonymous page deactivation 2170 * is pointless. 2171 */ 2172 if (!file && !total_swap_pages) 2173 return false; 2174 2175 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2176 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2177 2178 /* 2179 * When refaults are being observed, it means a new workingset 2180 * is being established. Disable active list protection to get 2181 * rid of the stale workingset quickly. 2182 */ 2183 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2184 if (file && lruvec->refaults != refaults) { 2185 inactive_ratio = 0; 2186 } else { 2187 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2188 if (gb) 2189 inactive_ratio = int_sqrt(10 * gb); 2190 else 2191 inactive_ratio = 1; 2192 } 2193 2194 if (trace) 2195 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2196 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2197 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2198 inactive_ratio, file); 2199 2200 return inactive * inactive_ratio < active; 2201 } 2202 2203 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2204 struct lruvec *lruvec, struct scan_control *sc) 2205 { 2206 if (is_active_lru(lru)) { 2207 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2208 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2209 return 0; 2210 } 2211 2212 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2213 } 2214 2215 enum scan_balance { 2216 SCAN_EQUAL, 2217 SCAN_FRACT, 2218 SCAN_ANON, 2219 SCAN_FILE, 2220 }; 2221 2222 /* 2223 * Determine how aggressively the anon and file LRU lists should be 2224 * scanned. The relative value of each set of LRU lists is determined 2225 * by looking at the fraction of the pages scanned we did rotate back 2226 * onto the active list instead of evict. 2227 * 2228 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2229 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2230 */ 2231 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2232 struct scan_control *sc, unsigned long *nr, 2233 unsigned long *lru_pages) 2234 { 2235 int swappiness = mem_cgroup_swappiness(memcg); 2236 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2237 u64 fraction[2]; 2238 u64 denominator = 0; /* gcc */ 2239 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2240 unsigned long anon_prio, file_prio; 2241 enum scan_balance scan_balance; 2242 unsigned long anon, file; 2243 unsigned long ap, fp; 2244 enum lru_list lru; 2245 2246 /* If we have no swap space, do not bother scanning anon pages. */ 2247 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2248 scan_balance = SCAN_FILE; 2249 goto out; 2250 } 2251 2252 /* 2253 * Global reclaim will swap to prevent OOM even with no 2254 * swappiness, but memcg users want to use this knob to 2255 * disable swapping for individual groups completely when 2256 * using the memory controller's swap limit feature would be 2257 * too expensive. 2258 */ 2259 if (!global_reclaim(sc) && !swappiness) { 2260 scan_balance = SCAN_FILE; 2261 goto out; 2262 } 2263 2264 /* 2265 * Do not apply any pressure balancing cleverness when the 2266 * system is close to OOM, scan both anon and file equally 2267 * (unless the swappiness setting disagrees with swapping). 2268 */ 2269 if (!sc->priority && swappiness) { 2270 scan_balance = SCAN_EQUAL; 2271 goto out; 2272 } 2273 2274 /* 2275 * Prevent the reclaimer from falling into the cache trap: as 2276 * cache pages start out inactive, every cache fault will tip 2277 * the scan balance towards the file LRU. And as the file LRU 2278 * shrinks, so does the window for rotation from references. 2279 * This means we have a runaway feedback loop where a tiny 2280 * thrashing file LRU becomes infinitely more attractive than 2281 * anon pages. Try to detect this based on file LRU size. 2282 */ 2283 if (global_reclaim(sc)) { 2284 unsigned long pgdatfile; 2285 unsigned long pgdatfree; 2286 int z; 2287 unsigned long total_high_wmark = 0; 2288 2289 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2290 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2291 node_page_state(pgdat, NR_INACTIVE_FILE); 2292 2293 for (z = 0; z < MAX_NR_ZONES; z++) { 2294 struct zone *zone = &pgdat->node_zones[z]; 2295 if (!managed_zone(zone)) 2296 continue; 2297 2298 total_high_wmark += high_wmark_pages(zone); 2299 } 2300 2301 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2302 /* 2303 * Force SCAN_ANON if there are enough inactive 2304 * anonymous pages on the LRU in eligible zones. 2305 * Otherwise, the small LRU gets thrashed. 2306 */ 2307 if (!inactive_list_is_low(lruvec, false, sc, false) && 2308 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2309 >> sc->priority) { 2310 scan_balance = SCAN_ANON; 2311 goto out; 2312 } 2313 } 2314 } 2315 2316 /* 2317 * If there is enough inactive page cache, i.e. if the size of the 2318 * inactive list is greater than that of the active list *and* the 2319 * inactive list actually has some pages to scan on this priority, we 2320 * do not reclaim anything from the anonymous working set right now. 2321 * Without the second condition we could end up never scanning an 2322 * lruvec even if it has plenty of old anonymous pages unless the 2323 * system is under heavy pressure. 2324 */ 2325 if (!inactive_list_is_low(lruvec, true, sc, false) && 2326 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2327 scan_balance = SCAN_FILE; 2328 goto out; 2329 } 2330 2331 scan_balance = SCAN_FRACT; 2332 2333 /* 2334 * With swappiness at 100, anonymous and file have the same priority. 2335 * This scanning priority is essentially the inverse of IO cost. 2336 */ 2337 anon_prio = swappiness; 2338 file_prio = 200 - anon_prio; 2339 2340 /* 2341 * OK, so we have swap space and a fair amount of page cache 2342 * pages. We use the recently rotated / recently scanned 2343 * ratios to determine how valuable each cache is. 2344 * 2345 * Because workloads change over time (and to avoid overflow) 2346 * we keep these statistics as a floating average, which ends 2347 * up weighing recent references more than old ones. 2348 * 2349 * anon in [0], file in [1] 2350 */ 2351 2352 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2353 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2354 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2355 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2356 2357 spin_lock_irq(&pgdat->lru_lock); 2358 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2359 reclaim_stat->recent_scanned[0] /= 2; 2360 reclaim_stat->recent_rotated[0] /= 2; 2361 } 2362 2363 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2364 reclaim_stat->recent_scanned[1] /= 2; 2365 reclaim_stat->recent_rotated[1] /= 2; 2366 } 2367 2368 /* 2369 * The amount of pressure on anon vs file pages is inversely 2370 * proportional to the fraction of recently scanned pages on 2371 * each list that were recently referenced and in active use. 2372 */ 2373 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2374 ap /= reclaim_stat->recent_rotated[0] + 1; 2375 2376 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2377 fp /= reclaim_stat->recent_rotated[1] + 1; 2378 spin_unlock_irq(&pgdat->lru_lock); 2379 2380 fraction[0] = ap; 2381 fraction[1] = fp; 2382 denominator = ap + fp + 1; 2383 out: 2384 *lru_pages = 0; 2385 for_each_evictable_lru(lru) { 2386 int file = is_file_lru(lru); 2387 unsigned long size; 2388 unsigned long scan; 2389 2390 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2391 scan = size >> sc->priority; 2392 /* 2393 * If the cgroup's already been deleted, make sure to 2394 * scrape out the remaining cache. 2395 */ 2396 if (!scan && !mem_cgroup_online(memcg)) 2397 scan = min(size, SWAP_CLUSTER_MAX); 2398 2399 switch (scan_balance) { 2400 case SCAN_EQUAL: 2401 /* Scan lists relative to size */ 2402 break; 2403 case SCAN_FRACT: 2404 /* 2405 * Scan types proportional to swappiness and 2406 * their relative recent reclaim efficiency. 2407 * Make sure we don't miss the last page 2408 * because of a round-off error. 2409 */ 2410 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2411 denominator); 2412 break; 2413 case SCAN_FILE: 2414 case SCAN_ANON: 2415 /* Scan one type exclusively */ 2416 if ((scan_balance == SCAN_FILE) != file) { 2417 size = 0; 2418 scan = 0; 2419 } 2420 break; 2421 default: 2422 /* Look ma, no brain */ 2423 BUG(); 2424 } 2425 2426 *lru_pages += size; 2427 nr[lru] = scan; 2428 } 2429 } 2430 2431 /* 2432 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2433 */ 2434 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2435 struct scan_control *sc, unsigned long *lru_pages) 2436 { 2437 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2438 unsigned long nr[NR_LRU_LISTS]; 2439 unsigned long targets[NR_LRU_LISTS]; 2440 unsigned long nr_to_scan; 2441 enum lru_list lru; 2442 unsigned long nr_reclaimed = 0; 2443 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2444 struct blk_plug plug; 2445 bool scan_adjusted; 2446 2447 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2448 2449 /* Record the original scan target for proportional adjustments later */ 2450 memcpy(targets, nr, sizeof(nr)); 2451 2452 /* 2453 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2454 * event that can occur when there is little memory pressure e.g. 2455 * multiple streaming readers/writers. Hence, we do not abort scanning 2456 * when the requested number of pages are reclaimed when scanning at 2457 * DEF_PRIORITY on the assumption that the fact we are direct 2458 * reclaiming implies that kswapd is not keeping up and it is best to 2459 * do a batch of work at once. For memcg reclaim one check is made to 2460 * abort proportional reclaim if either the file or anon lru has already 2461 * dropped to zero at the first pass. 2462 */ 2463 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2464 sc->priority == DEF_PRIORITY); 2465 2466 blk_start_plug(&plug); 2467 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2468 nr[LRU_INACTIVE_FILE]) { 2469 unsigned long nr_anon, nr_file, percentage; 2470 unsigned long nr_scanned; 2471 2472 for_each_evictable_lru(lru) { 2473 if (nr[lru]) { 2474 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2475 nr[lru] -= nr_to_scan; 2476 2477 nr_reclaimed += shrink_list(lru, nr_to_scan, 2478 lruvec, sc); 2479 } 2480 } 2481 2482 cond_resched(); 2483 2484 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2485 continue; 2486 2487 /* 2488 * For kswapd and memcg, reclaim at least the number of pages 2489 * requested. Ensure that the anon and file LRUs are scanned 2490 * proportionally what was requested by get_scan_count(). We 2491 * stop reclaiming one LRU and reduce the amount scanning 2492 * proportional to the original scan target. 2493 */ 2494 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2495 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2496 2497 /* 2498 * It's just vindictive to attack the larger once the smaller 2499 * has gone to zero. And given the way we stop scanning the 2500 * smaller below, this makes sure that we only make one nudge 2501 * towards proportionality once we've got nr_to_reclaim. 2502 */ 2503 if (!nr_file || !nr_anon) 2504 break; 2505 2506 if (nr_file > nr_anon) { 2507 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2508 targets[LRU_ACTIVE_ANON] + 1; 2509 lru = LRU_BASE; 2510 percentage = nr_anon * 100 / scan_target; 2511 } else { 2512 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2513 targets[LRU_ACTIVE_FILE] + 1; 2514 lru = LRU_FILE; 2515 percentage = nr_file * 100 / scan_target; 2516 } 2517 2518 /* Stop scanning the smaller of the LRU */ 2519 nr[lru] = 0; 2520 nr[lru + LRU_ACTIVE] = 0; 2521 2522 /* 2523 * Recalculate the other LRU scan count based on its original 2524 * scan target and the percentage scanning already complete 2525 */ 2526 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2527 nr_scanned = targets[lru] - nr[lru]; 2528 nr[lru] = targets[lru] * (100 - percentage) / 100; 2529 nr[lru] -= min(nr[lru], nr_scanned); 2530 2531 lru += LRU_ACTIVE; 2532 nr_scanned = targets[lru] - nr[lru]; 2533 nr[lru] = targets[lru] * (100 - percentage) / 100; 2534 nr[lru] -= min(nr[lru], nr_scanned); 2535 2536 scan_adjusted = true; 2537 } 2538 blk_finish_plug(&plug); 2539 sc->nr_reclaimed += nr_reclaimed; 2540 2541 /* 2542 * Even if we did not try to evict anon pages at all, we want to 2543 * rebalance the anon lru active/inactive ratio. 2544 */ 2545 if (inactive_list_is_low(lruvec, false, sc, true)) 2546 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2547 sc, LRU_ACTIVE_ANON); 2548 } 2549 2550 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2551 static bool in_reclaim_compaction(struct scan_control *sc) 2552 { 2553 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2554 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2555 sc->priority < DEF_PRIORITY - 2)) 2556 return true; 2557 2558 return false; 2559 } 2560 2561 /* 2562 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2563 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2564 * true if more pages should be reclaimed such that when the page allocator 2565 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2566 * It will give up earlier than that if there is difficulty reclaiming pages. 2567 */ 2568 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2569 unsigned long nr_reclaimed, 2570 unsigned long nr_scanned, 2571 struct scan_control *sc) 2572 { 2573 unsigned long pages_for_compaction; 2574 unsigned long inactive_lru_pages; 2575 int z; 2576 2577 /* If not in reclaim/compaction mode, stop */ 2578 if (!in_reclaim_compaction(sc)) 2579 return false; 2580 2581 /* Consider stopping depending on scan and reclaim activity */ 2582 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2583 /* 2584 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2585 * full LRU list has been scanned and we are still failing 2586 * to reclaim pages. This full LRU scan is potentially 2587 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2588 */ 2589 if (!nr_reclaimed && !nr_scanned) 2590 return false; 2591 } else { 2592 /* 2593 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2594 * fail without consequence, stop if we failed to reclaim 2595 * any pages from the last SWAP_CLUSTER_MAX number of 2596 * pages that were scanned. This will return to the 2597 * caller faster at the risk reclaim/compaction and 2598 * the resulting allocation attempt fails 2599 */ 2600 if (!nr_reclaimed) 2601 return false; 2602 } 2603 2604 /* 2605 * If we have not reclaimed enough pages for compaction and the 2606 * inactive lists are large enough, continue reclaiming 2607 */ 2608 pages_for_compaction = compact_gap(sc->order); 2609 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2610 if (get_nr_swap_pages() > 0) 2611 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2612 if (sc->nr_reclaimed < pages_for_compaction && 2613 inactive_lru_pages > pages_for_compaction) 2614 return true; 2615 2616 /* If compaction would go ahead or the allocation would succeed, stop */ 2617 for (z = 0; z <= sc->reclaim_idx; z++) { 2618 struct zone *zone = &pgdat->node_zones[z]; 2619 if (!managed_zone(zone)) 2620 continue; 2621 2622 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2623 case COMPACT_SUCCESS: 2624 case COMPACT_CONTINUE: 2625 return false; 2626 default: 2627 /* check next zone */ 2628 ; 2629 } 2630 } 2631 return true; 2632 } 2633 2634 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2635 { 2636 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2637 (memcg && memcg_congested(pgdat, memcg)); 2638 } 2639 2640 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2641 { 2642 struct reclaim_state *reclaim_state = current->reclaim_state; 2643 unsigned long nr_reclaimed, nr_scanned; 2644 bool reclaimable = false; 2645 2646 do { 2647 struct mem_cgroup *root = sc->target_mem_cgroup; 2648 struct mem_cgroup_reclaim_cookie reclaim = { 2649 .pgdat = pgdat, 2650 .priority = sc->priority, 2651 }; 2652 unsigned long node_lru_pages = 0; 2653 struct mem_cgroup *memcg; 2654 2655 memset(&sc->nr, 0, sizeof(sc->nr)); 2656 2657 nr_reclaimed = sc->nr_reclaimed; 2658 nr_scanned = sc->nr_scanned; 2659 2660 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2661 do { 2662 unsigned long lru_pages; 2663 unsigned long reclaimed; 2664 unsigned long scanned; 2665 2666 switch (mem_cgroup_protected(root, memcg)) { 2667 case MEMCG_PROT_MIN: 2668 /* 2669 * Hard protection. 2670 * If there is no reclaimable memory, OOM. 2671 */ 2672 continue; 2673 case MEMCG_PROT_LOW: 2674 /* 2675 * Soft protection. 2676 * Respect the protection only as long as 2677 * there is an unprotected supply 2678 * of reclaimable memory from other cgroups. 2679 */ 2680 if (!sc->memcg_low_reclaim) { 2681 sc->memcg_low_skipped = 1; 2682 continue; 2683 } 2684 memcg_memory_event(memcg, MEMCG_LOW); 2685 break; 2686 case MEMCG_PROT_NONE: 2687 break; 2688 } 2689 2690 reclaimed = sc->nr_reclaimed; 2691 scanned = sc->nr_scanned; 2692 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2693 node_lru_pages += lru_pages; 2694 2695 if (sc->may_shrinkslab) { 2696 shrink_slab(sc->gfp_mask, pgdat->node_id, 2697 memcg, sc->priority); 2698 } 2699 2700 /* Record the group's reclaim efficiency */ 2701 vmpressure(sc->gfp_mask, memcg, false, 2702 sc->nr_scanned - scanned, 2703 sc->nr_reclaimed - reclaimed); 2704 2705 /* 2706 * Kswapd have to scan all memory cgroups to fulfill 2707 * the overall scan target for the node. 2708 * 2709 * Limit reclaim, on the other hand, only cares about 2710 * nr_to_reclaim pages to be reclaimed and it will 2711 * retry with decreasing priority if one round over the 2712 * whole hierarchy is not sufficient. 2713 */ 2714 if (!current_is_kswapd() && 2715 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2716 mem_cgroup_iter_break(root, memcg); 2717 break; 2718 } 2719 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2720 2721 if (reclaim_state) { 2722 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2723 reclaim_state->reclaimed_slab = 0; 2724 } 2725 2726 /* Record the subtree's reclaim efficiency */ 2727 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2728 sc->nr_scanned - nr_scanned, 2729 sc->nr_reclaimed - nr_reclaimed); 2730 2731 if (sc->nr_reclaimed - nr_reclaimed) 2732 reclaimable = true; 2733 2734 if (current_is_kswapd()) { 2735 /* 2736 * If reclaim is isolating dirty pages under writeback, 2737 * it implies that the long-lived page allocation rate 2738 * is exceeding the page laundering rate. Either the 2739 * global limits are not being effective at throttling 2740 * processes due to the page distribution throughout 2741 * zones or there is heavy usage of a slow backing 2742 * device. The only option is to throttle from reclaim 2743 * context which is not ideal as there is no guarantee 2744 * the dirtying process is throttled in the same way 2745 * balance_dirty_pages() manages. 2746 * 2747 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2748 * count the number of pages under pages flagged for 2749 * immediate reclaim and stall if any are encountered 2750 * in the nr_immediate check below. 2751 */ 2752 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2753 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2754 2755 /* 2756 * Tag a node as congested if all the dirty pages 2757 * scanned were backed by a congested BDI and 2758 * wait_iff_congested will stall. 2759 */ 2760 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2761 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2762 2763 /* Allow kswapd to start writing pages during reclaim.*/ 2764 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2765 set_bit(PGDAT_DIRTY, &pgdat->flags); 2766 2767 /* 2768 * If kswapd scans pages marked marked for immediate 2769 * reclaim and under writeback (nr_immediate), it 2770 * implies that pages are cycling through the LRU 2771 * faster than they are written so also forcibly stall. 2772 */ 2773 if (sc->nr.immediate) 2774 congestion_wait(BLK_RW_ASYNC, HZ/10); 2775 } 2776 2777 /* 2778 * Legacy memcg will stall in page writeback so avoid forcibly 2779 * stalling in wait_iff_congested(). 2780 */ 2781 if (!global_reclaim(sc) && sane_reclaim(sc) && 2782 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2783 set_memcg_congestion(pgdat, root, true); 2784 2785 /* 2786 * Stall direct reclaim for IO completions if underlying BDIs 2787 * and node is congested. Allow kswapd to continue until it 2788 * starts encountering unqueued dirty pages or cycling through 2789 * the LRU too quickly. 2790 */ 2791 if (!sc->hibernation_mode && !current_is_kswapd() && 2792 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2793 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2794 2795 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2796 sc->nr_scanned - nr_scanned, sc)); 2797 2798 /* 2799 * Kswapd gives up on balancing particular nodes after too 2800 * many failures to reclaim anything from them and goes to 2801 * sleep. On reclaim progress, reset the failure counter. A 2802 * successful direct reclaim run will revive a dormant kswapd. 2803 */ 2804 if (reclaimable) 2805 pgdat->kswapd_failures = 0; 2806 2807 return reclaimable; 2808 } 2809 2810 /* 2811 * Returns true if compaction should go ahead for a costly-order request, or 2812 * the allocation would already succeed without compaction. Return false if we 2813 * should reclaim first. 2814 */ 2815 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2816 { 2817 unsigned long watermark; 2818 enum compact_result suitable; 2819 2820 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2821 if (suitable == COMPACT_SUCCESS) 2822 /* Allocation should succeed already. Don't reclaim. */ 2823 return true; 2824 if (suitable == COMPACT_SKIPPED) 2825 /* Compaction cannot yet proceed. Do reclaim. */ 2826 return false; 2827 2828 /* 2829 * Compaction is already possible, but it takes time to run and there 2830 * are potentially other callers using the pages just freed. So proceed 2831 * with reclaim to make a buffer of free pages available to give 2832 * compaction a reasonable chance of completing and allocating the page. 2833 * Note that we won't actually reclaim the whole buffer in one attempt 2834 * as the target watermark in should_continue_reclaim() is lower. But if 2835 * we are already above the high+gap watermark, don't reclaim at all. 2836 */ 2837 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2838 2839 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2840 } 2841 2842 /* 2843 * This is the direct reclaim path, for page-allocating processes. We only 2844 * try to reclaim pages from zones which will satisfy the caller's allocation 2845 * request. 2846 * 2847 * If a zone is deemed to be full of pinned pages then just give it a light 2848 * scan then give up on it. 2849 */ 2850 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2851 { 2852 struct zoneref *z; 2853 struct zone *zone; 2854 unsigned long nr_soft_reclaimed; 2855 unsigned long nr_soft_scanned; 2856 gfp_t orig_mask; 2857 pg_data_t *last_pgdat = NULL; 2858 2859 /* 2860 * If the number of buffer_heads in the machine exceeds the maximum 2861 * allowed level, force direct reclaim to scan the highmem zone as 2862 * highmem pages could be pinning lowmem pages storing buffer_heads 2863 */ 2864 orig_mask = sc->gfp_mask; 2865 if (buffer_heads_over_limit) { 2866 sc->gfp_mask |= __GFP_HIGHMEM; 2867 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2868 } 2869 2870 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2871 sc->reclaim_idx, sc->nodemask) { 2872 /* 2873 * Take care memory controller reclaiming has small influence 2874 * to global LRU. 2875 */ 2876 if (global_reclaim(sc)) { 2877 if (!cpuset_zone_allowed(zone, 2878 GFP_KERNEL | __GFP_HARDWALL)) 2879 continue; 2880 2881 /* 2882 * If we already have plenty of memory free for 2883 * compaction in this zone, don't free any more. 2884 * Even though compaction is invoked for any 2885 * non-zero order, only frequent costly order 2886 * reclamation is disruptive enough to become a 2887 * noticeable problem, like transparent huge 2888 * page allocations. 2889 */ 2890 if (IS_ENABLED(CONFIG_COMPACTION) && 2891 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2892 compaction_ready(zone, sc)) { 2893 sc->compaction_ready = true; 2894 continue; 2895 } 2896 2897 /* 2898 * Shrink each node in the zonelist once. If the 2899 * zonelist is ordered by zone (not the default) then a 2900 * node may be shrunk multiple times but in that case 2901 * the user prefers lower zones being preserved. 2902 */ 2903 if (zone->zone_pgdat == last_pgdat) 2904 continue; 2905 2906 /* 2907 * This steals pages from memory cgroups over softlimit 2908 * and returns the number of reclaimed pages and 2909 * scanned pages. This works for global memory pressure 2910 * and balancing, not for a memcg's limit. 2911 */ 2912 nr_soft_scanned = 0; 2913 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2914 sc->order, sc->gfp_mask, 2915 &nr_soft_scanned); 2916 sc->nr_reclaimed += nr_soft_reclaimed; 2917 sc->nr_scanned += nr_soft_scanned; 2918 /* need some check for avoid more shrink_zone() */ 2919 } 2920 2921 /* See comment about same check for global reclaim above */ 2922 if (zone->zone_pgdat == last_pgdat) 2923 continue; 2924 last_pgdat = zone->zone_pgdat; 2925 shrink_node(zone->zone_pgdat, sc); 2926 } 2927 2928 /* 2929 * Restore to original mask to avoid the impact on the caller if we 2930 * promoted it to __GFP_HIGHMEM. 2931 */ 2932 sc->gfp_mask = orig_mask; 2933 } 2934 2935 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2936 { 2937 struct mem_cgroup *memcg; 2938 2939 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2940 do { 2941 unsigned long refaults; 2942 struct lruvec *lruvec; 2943 2944 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2945 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2946 lruvec->refaults = refaults; 2947 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2948 } 2949 2950 /* 2951 * This is the main entry point to direct page reclaim. 2952 * 2953 * If a full scan of the inactive list fails to free enough memory then we 2954 * are "out of memory" and something needs to be killed. 2955 * 2956 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2957 * high - the zone may be full of dirty or under-writeback pages, which this 2958 * caller can't do much about. We kick the writeback threads and take explicit 2959 * naps in the hope that some of these pages can be written. But if the 2960 * allocating task holds filesystem locks which prevent writeout this might not 2961 * work, and the allocation attempt will fail. 2962 * 2963 * returns: 0, if no pages reclaimed 2964 * else, the number of pages reclaimed 2965 */ 2966 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2967 struct scan_control *sc) 2968 { 2969 int initial_priority = sc->priority; 2970 pg_data_t *last_pgdat; 2971 struct zoneref *z; 2972 struct zone *zone; 2973 retry: 2974 delayacct_freepages_start(); 2975 2976 if (global_reclaim(sc)) 2977 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2978 2979 do { 2980 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2981 sc->priority); 2982 sc->nr_scanned = 0; 2983 shrink_zones(zonelist, sc); 2984 2985 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2986 break; 2987 2988 if (sc->compaction_ready) 2989 break; 2990 2991 /* 2992 * If we're getting trouble reclaiming, start doing 2993 * writepage even in laptop mode. 2994 */ 2995 if (sc->priority < DEF_PRIORITY - 2) 2996 sc->may_writepage = 1; 2997 } while (--sc->priority >= 0); 2998 2999 last_pgdat = NULL; 3000 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3001 sc->nodemask) { 3002 if (zone->zone_pgdat == last_pgdat) 3003 continue; 3004 last_pgdat = zone->zone_pgdat; 3005 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3006 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3007 } 3008 3009 delayacct_freepages_end(); 3010 3011 if (sc->nr_reclaimed) 3012 return sc->nr_reclaimed; 3013 3014 /* Aborted reclaim to try compaction? don't OOM, then */ 3015 if (sc->compaction_ready) 3016 return 1; 3017 3018 /* Untapped cgroup reserves? Don't OOM, retry. */ 3019 if (sc->memcg_low_skipped) { 3020 sc->priority = initial_priority; 3021 sc->memcg_low_reclaim = 1; 3022 sc->memcg_low_skipped = 0; 3023 goto retry; 3024 } 3025 3026 return 0; 3027 } 3028 3029 static bool allow_direct_reclaim(pg_data_t *pgdat) 3030 { 3031 struct zone *zone; 3032 unsigned long pfmemalloc_reserve = 0; 3033 unsigned long free_pages = 0; 3034 int i; 3035 bool wmark_ok; 3036 3037 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3038 return true; 3039 3040 for (i = 0; i <= ZONE_NORMAL; i++) { 3041 zone = &pgdat->node_zones[i]; 3042 if (!managed_zone(zone)) 3043 continue; 3044 3045 if (!zone_reclaimable_pages(zone)) 3046 continue; 3047 3048 pfmemalloc_reserve += min_wmark_pages(zone); 3049 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3050 } 3051 3052 /* If there are no reserves (unexpected config) then do not throttle */ 3053 if (!pfmemalloc_reserve) 3054 return true; 3055 3056 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3057 3058 /* kswapd must be awake if processes are being throttled */ 3059 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3060 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3061 (enum zone_type)ZONE_NORMAL); 3062 wake_up_interruptible(&pgdat->kswapd_wait); 3063 } 3064 3065 return wmark_ok; 3066 } 3067 3068 /* 3069 * Throttle direct reclaimers if backing storage is backed by the network 3070 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3071 * depleted. kswapd will continue to make progress and wake the processes 3072 * when the low watermark is reached. 3073 * 3074 * Returns true if a fatal signal was delivered during throttling. If this 3075 * happens, the page allocator should not consider triggering the OOM killer. 3076 */ 3077 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3078 nodemask_t *nodemask) 3079 { 3080 struct zoneref *z; 3081 struct zone *zone; 3082 pg_data_t *pgdat = NULL; 3083 3084 /* 3085 * Kernel threads should not be throttled as they may be indirectly 3086 * responsible for cleaning pages necessary for reclaim to make forward 3087 * progress. kjournald for example may enter direct reclaim while 3088 * committing a transaction where throttling it could forcing other 3089 * processes to block on log_wait_commit(). 3090 */ 3091 if (current->flags & PF_KTHREAD) 3092 goto out; 3093 3094 /* 3095 * If a fatal signal is pending, this process should not throttle. 3096 * It should return quickly so it can exit and free its memory 3097 */ 3098 if (fatal_signal_pending(current)) 3099 goto out; 3100 3101 /* 3102 * Check if the pfmemalloc reserves are ok by finding the first node 3103 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3104 * GFP_KERNEL will be required for allocating network buffers when 3105 * swapping over the network so ZONE_HIGHMEM is unusable. 3106 * 3107 * Throttling is based on the first usable node and throttled processes 3108 * wait on a queue until kswapd makes progress and wakes them. There 3109 * is an affinity then between processes waking up and where reclaim 3110 * progress has been made assuming the process wakes on the same node. 3111 * More importantly, processes running on remote nodes will not compete 3112 * for remote pfmemalloc reserves and processes on different nodes 3113 * should make reasonable progress. 3114 */ 3115 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3116 gfp_zone(gfp_mask), nodemask) { 3117 if (zone_idx(zone) > ZONE_NORMAL) 3118 continue; 3119 3120 /* Throttle based on the first usable node */ 3121 pgdat = zone->zone_pgdat; 3122 if (allow_direct_reclaim(pgdat)) 3123 goto out; 3124 break; 3125 } 3126 3127 /* If no zone was usable by the allocation flags then do not throttle */ 3128 if (!pgdat) 3129 goto out; 3130 3131 /* Account for the throttling */ 3132 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3133 3134 /* 3135 * If the caller cannot enter the filesystem, it's possible that it 3136 * is due to the caller holding an FS lock or performing a journal 3137 * transaction in the case of a filesystem like ext[3|4]. In this case, 3138 * it is not safe to block on pfmemalloc_wait as kswapd could be 3139 * blocked waiting on the same lock. Instead, throttle for up to a 3140 * second before continuing. 3141 */ 3142 if (!(gfp_mask & __GFP_FS)) { 3143 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3144 allow_direct_reclaim(pgdat), HZ); 3145 3146 goto check_pending; 3147 } 3148 3149 /* Throttle until kswapd wakes the process */ 3150 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3151 allow_direct_reclaim(pgdat)); 3152 3153 check_pending: 3154 if (fatal_signal_pending(current)) 3155 return true; 3156 3157 out: 3158 return false; 3159 } 3160 3161 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3162 gfp_t gfp_mask, nodemask_t *nodemask) 3163 { 3164 unsigned long nr_reclaimed; 3165 struct scan_control sc = { 3166 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3167 .gfp_mask = current_gfp_context(gfp_mask), 3168 .reclaim_idx = gfp_zone(gfp_mask), 3169 .order = order, 3170 .nodemask = nodemask, 3171 .priority = DEF_PRIORITY, 3172 .may_writepage = !laptop_mode, 3173 .may_unmap = 1, 3174 .may_swap = 1, 3175 .may_shrinkslab = 1, 3176 }; 3177 3178 /* 3179 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3180 * Confirm they are large enough for max values. 3181 */ 3182 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3183 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3184 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3185 3186 /* 3187 * Do not enter reclaim if fatal signal was delivered while throttled. 3188 * 1 is returned so that the page allocator does not OOM kill at this 3189 * point. 3190 */ 3191 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3192 return 1; 3193 3194 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3195 3196 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3197 3198 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3199 3200 return nr_reclaimed; 3201 } 3202 3203 #ifdef CONFIG_MEMCG 3204 3205 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3206 gfp_t gfp_mask, bool noswap, 3207 pg_data_t *pgdat, 3208 unsigned long *nr_scanned) 3209 { 3210 struct scan_control sc = { 3211 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3212 .target_mem_cgroup = memcg, 3213 .may_writepage = !laptop_mode, 3214 .may_unmap = 1, 3215 .reclaim_idx = MAX_NR_ZONES - 1, 3216 .may_swap = !noswap, 3217 .may_shrinkslab = 1, 3218 }; 3219 unsigned long lru_pages; 3220 3221 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3222 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3223 3224 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3225 sc.gfp_mask); 3226 3227 /* 3228 * NOTE: Although we can get the priority field, using it 3229 * here is not a good idea, since it limits the pages we can scan. 3230 * if we don't reclaim here, the shrink_node from balance_pgdat 3231 * will pick up pages from other mem cgroup's as well. We hack 3232 * the priority and make it zero. 3233 */ 3234 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3235 3236 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3237 3238 *nr_scanned = sc.nr_scanned; 3239 return sc.nr_reclaimed; 3240 } 3241 3242 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3243 unsigned long nr_pages, 3244 gfp_t gfp_mask, 3245 bool may_swap) 3246 { 3247 struct zonelist *zonelist; 3248 unsigned long nr_reclaimed; 3249 unsigned long pflags; 3250 int nid; 3251 unsigned int noreclaim_flag; 3252 struct scan_control sc = { 3253 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3254 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3255 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3256 .reclaim_idx = MAX_NR_ZONES - 1, 3257 .target_mem_cgroup = memcg, 3258 .priority = DEF_PRIORITY, 3259 .may_writepage = !laptop_mode, 3260 .may_unmap = 1, 3261 .may_swap = may_swap, 3262 .may_shrinkslab = 1, 3263 }; 3264 3265 /* 3266 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3267 * take care of from where we get pages. So the node where we start the 3268 * scan does not need to be the current node. 3269 */ 3270 nid = mem_cgroup_select_victim_node(memcg); 3271 3272 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3273 3274 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3275 3276 psi_memstall_enter(&pflags); 3277 noreclaim_flag = memalloc_noreclaim_save(); 3278 3279 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3280 3281 memalloc_noreclaim_restore(noreclaim_flag); 3282 psi_memstall_leave(&pflags); 3283 3284 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3285 3286 return nr_reclaimed; 3287 } 3288 #endif 3289 3290 static void age_active_anon(struct pglist_data *pgdat, 3291 struct scan_control *sc) 3292 { 3293 struct mem_cgroup *memcg; 3294 3295 if (!total_swap_pages) 3296 return; 3297 3298 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3299 do { 3300 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3301 3302 if (inactive_list_is_low(lruvec, false, sc, true)) 3303 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3304 sc, LRU_ACTIVE_ANON); 3305 3306 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3307 } while (memcg); 3308 } 3309 3310 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3311 { 3312 int i; 3313 struct zone *zone; 3314 3315 /* 3316 * Check for watermark boosts top-down as the higher zones 3317 * are more likely to be boosted. Both watermarks and boosts 3318 * should not be checked at the time time as reclaim would 3319 * start prematurely when there is no boosting and a lower 3320 * zone is balanced. 3321 */ 3322 for (i = classzone_idx; i >= 0; i--) { 3323 zone = pgdat->node_zones + i; 3324 if (!managed_zone(zone)) 3325 continue; 3326 3327 if (zone->watermark_boost) 3328 return true; 3329 } 3330 3331 return false; 3332 } 3333 3334 /* 3335 * Returns true if there is an eligible zone balanced for the request order 3336 * and classzone_idx 3337 */ 3338 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3339 { 3340 int i; 3341 unsigned long mark = -1; 3342 struct zone *zone; 3343 3344 /* 3345 * Check watermarks bottom-up as lower zones are more likely to 3346 * meet watermarks. 3347 */ 3348 for (i = 0; i <= classzone_idx; i++) { 3349 zone = pgdat->node_zones + i; 3350 3351 if (!managed_zone(zone)) 3352 continue; 3353 3354 mark = high_wmark_pages(zone); 3355 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3356 return true; 3357 } 3358 3359 /* 3360 * If a node has no populated zone within classzone_idx, it does not 3361 * need balancing by definition. This can happen if a zone-restricted 3362 * allocation tries to wake a remote kswapd. 3363 */ 3364 if (mark == -1) 3365 return true; 3366 3367 return false; 3368 } 3369 3370 /* Clear pgdat state for congested, dirty or under writeback. */ 3371 static void clear_pgdat_congested(pg_data_t *pgdat) 3372 { 3373 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3374 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3375 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3376 } 3377 3378 /* 3379 * Prepare kswapd for sleeping. This verifies that there are no processes 3380 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3381 * 3382 * Returns true if kswapd is ready to sleep 3383 */ 3384 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3385 { 3386 /* 3387 * The throttled processes are normally woken up in balance_pgdat() as 3388 * soon as allow_direct_reclaim() is true. But there is a potential 3389 * race between when kswapd checks the watermarks and a process gets 3390 * throttled. There is also a potential race if processes get 3391 * throttled, kswapd wakes, a large process exits thereby balancing the 3392 * zones, which causes kswapd to exit balance_pgdat() before reaching 3393 * the wake up checks. If kswapd is going to sleep, no process should 3394 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3395 * the wake up is premature, processes will wake kswapd and get 3396 * throttled again. The difference from wake ups in balance_pgdat() is 3397 * that here we are under prepare_to_wait(). 3398 */ 3399 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3400 wake_up_all(&pgdat->pfmemalloc_wait); 3401 3402 /* Hopeless node, leave it to direct reclaim */ 3403 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3404 return true; 3405 3406 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3407 clear_pgdat_congested(pgdat); 3408 return true; 3409 } 3410 3411 return false; 3412 } 3413 3414 /* 3415 * kswapd shrinks a node of pages that are at or below the highest usable 3416 * zone that is currently unbalanced. 3417 * 3418 * Returns true if kswapd scanned at least the requested number of pages to 3419 * reclaim or if the lack of progress was due to pages under writeback. 3420 * This is used to determine if the scanning priority needs to be raised. 3421 */ 3422 static bool kswapd_shrink_node(pg_data_t *pgdat, 3423 struct scan_control *sc) 3424 { 3425 struct zone *zone; 3426 int z; 3427 3428 /* Reclaim a number of pages proportional to the number of zones */ 3429 sc->nr_to_reclaim = 0; 3430 for (z = 0; z <= sc->reclaim_idx; z++) { 3431 zone = pgdat->node_zones + z; 3432 if (!managed_zone(zone)) 3433 continue; 3434 3435 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3436 } 3437 3438 /* 3439 * Historically care was taken to put equal pressure on all zones but 3440 * now pressure is applied based on node LRU order. 3441 */ 3442 shrink_node(pgdat, sc); 3443 3444 /* 3445 * Fragmentation may mean that the system cannot be rebalanced for 3446 * high-order allocations. If twice the allocation size has been 3447 * reclaimed then recheck watermarks only at order-0 to prevent 3448 * excessive reclaim. Assume that a process requested a high-order 3449 * can direct reclaim/compact. 3450 */ 3451 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3452 sc->order = 0; 3453 3454 return sc->nr_scanned >= sc->nr_to_reclaim; 3455 } 3456 3457 /* 3458 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3459 * that are eligible for use by the caller until at least one zone is 3460 * balanced. 3461 * 3462 * Returns the order kswapd finished reclaiming at. 3463 * 3464 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3465 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3466 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3467 * or lower is eligible for reclaim until at least one usable zone is 3468 * balanced. 3469 */ 3470 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3471 { 3472 int i; 3473 unsigned long nr_soft_reclaimed; 3474 unsigned long nr_soft_scanned; 3475 unsigned long pflags; 3476 unsigned long nr_boost_reclaim; 3477 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3478 bool boosted; 3479 struct zone *zone; 3480 struct scan_control sc = { 3481 .gfp_mask = GFP_KERNEL, 3482 .order = order, 3483 .may_unmap = 1, 3484 }; 3485 3486 psi_memstall_enter(&pflags); 3487 __fs_reclaim_acquire(); 3488 3489 count_vm_event(PAGEOUTRUN); 3490 3491 /* 3492 * Account for the reclaim boost. Note that the zone boost is left in 3493 * place so that parallel allocations that are near the watermark will 3494 * stall or direct reclaim until kswapd is finished. 3495 */ 3496 nr_boost_reclaim = 0; 3497 for (i = 0; i <= classzone_idx; i++) { 3498 zone = pgdat->node_zones + i; 3499 if (!managed_zone(zone)) 3500 continue; 3501 3502 nr_boost_reclaim += zone->watermark_boost; 3503 zone_boosts[i] = zone->watermark_boost; 3504 } 3505 boosted = nr_boost_reclaim; 3506 3507 restart: 3508 sc.priority = DEF_PRIORITY; 3509 do { 3510 unsigned long nr_reclaimed = sc.nr_reclaimed; 3511 bool raise_priority = true; 3512 bool balanced; 3513 bool ret; 3514 3515 sc.reclaim_idx = classzone_idx; 3516 3517 /* 3518 * If the number of buffer_heads exceeds the maximum allowed 3519 * then consider reclaiming from all zones. This has a dual 3520 * purpose -- on 64-bit systems it is expected that 3521 * buffer_heads are stripped during active rotation. On 32-bit 3522 * systems, highmem pages can pin lowmem memory and shrinking 3523 * buffers can relieve lowmem pressure. Reclaim may still not 3524 * go ahead if all eligible zones for the original allocation 3525 * request are balanced to avoid excessive reclaim from kswapd. 3526 */ 3527 if (buffer_heads_over_limit) { 3528 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3529 zone = pgdat->node_zones + i; 3530 if (!managed_zone(zone)) 3531 continue; 3532 3533 sc.reclaim_idx = i; 3534 break; 3535 } 3536 } 3537 3538 /* 3539 * If the pgdat is imbalanced then ignore boosting and preserve 3540 * the watermarks for a later time and restart. Note that the 3541 * zone watermarks will be still reset at the end of balancing 3542 * on the grounds that the normal reclaim should be enough to 3543 * re-evaluate if boosting is required when kswapd next wakes. 3544 */ 3545 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3546 if (!balanced && nr_boost_reclaim) { 3547 nr_boost_reclaim = 0; 3548 goto restart; 3549 } 3550 3551 /* 3552 * If boosting is not active then only reclaim if there are no 3553 * eligible zones. Note that sc.reclaim_idx is not used as 3554 * buffer_heads_over_limit may have adjusted it. 3555 */ 3556 if (!nr_boost_reclaim && balanced) 3557 goto out; 3558 3559 /* Limit the priority of boosting to avoid reclaim writeback */ 3560 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3561 raise_priority = false; 3562 3563 /* 3564 * Do not writeback or swap pages for boosted reclaim. The 3565 * intent is to relieve pressure not issue sub-optimal IO 3566 * from reclaim context. If no pages are reclaimed, the 3567 * reclaim will be aborted. 3568 */ 3569 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3570 sc.may_swap = !nr_boost_reclaim; 3571 sc.may_shrinkslab = !nr_boost_reclaim; 3572 3573 /* 3574 * Do some background aging of the anon list, to give 3575 * pages a chance to be referenced before reclaiming. All 3576 * pages are rotated regardless of classzone as this is 3577 * about consistent aging. 3578 */ 3579 age_active_anon(pgdat, &sc); 3580 3581 /* 3582 * If we're getting trouble reclaiming, start doing writepage 3583 * even in laptop mode. 3584 */ 3585 if (sc.priority < DEF_PRIORITY - 2) 3586 sc.may_writepage = 1; 3587 3588 /* Call soft limit reclaim before calling shrink_node. */ 3589 sc.nr_scanned = 0; 3590 nr_soft_scanned = 0; 3591 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3592 sc.gfp_mask, &nr_soft_scanned); 3593 sc.nr_reclaimed += nr_soft_reclaimed; 3594 3595 /* 3596 * There should be no need to raise the scanning priority if 3597 * enough pages are already being scanned that that high 3598 * watermark would be met at 100% efficiency. 3599 */ 3600 if (kswapd_shrink_node(pgdat, &sc)) 3601 raise_priority = false; 3602 3603 /* 3604 * If the low watermark is met there is no need for processes 3605 * to be throttled on pfmemalloc_wait as they should not be 3606 * able to safely make forward progress. Wake them 3607 */ 3608 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3609 allow_direct_reclaim(pgdat)) 3610 wake_up_all(&pgdat->pfmemalloc_wait); 3611 3612 /* Check if kswapd should be suspending */ 3613 __fs_reclaim_release(); 3614 ret = try_to_freeze(); 3615 __fs_reclaim_acquire(); 3616 if (ret || kthread_should_stop()) 3617 break; 3618 3619 /* 3620 * Raise priority if scanning rate is too low or there was no 3621 * progress in reclaiming pages 3622 */ 3623 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3624 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3625 3626 /* 3627 * If reclaim made no progress for a boost, stop reclaim as 3628 * IO cannot be queued and it could be an infinite loop in 3629 * extreme circumstances. 3630 */ 3631 if (nr_boost_reclaim && !nr_reclaimed) 3632 break; 3633 3634 if (raise_priority || !nr_reclaimed) 3635 sc.priority--; 3636 } while (sc.priority >= 1); 3637 3638 if (!sc.nr_reclaimed) 3639 pgdat->kswapd_failures++; 3640 3641 out: 3642 /* If reclaim was boosted, account for the reclaim done in this pass */ 3643 if (boosted) { 3644 unsigned long flags; 3645 3646 for (i = 0; i <= classzone_idx; i++) { 3647 if (!zone_boosts[i]) 3648 continue; 3649 3650 /* Increments are under the zone lock */ 3651 zone = pgdat->node_zones + i; 3652 spin_lock_irqsave(&zone->lock, flags); 3653 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3654 spin_unlock_irqrestore(&zone->lock, flags); 3655 } 3656 3657 /* 3658 * As there is now likely space, wakeup kcompact to defragment 3659 * pageblocks. 3660 */ 3661 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3662 } 3663 3664 snapshot_refaults(NULL, pgdat); 3665 __fs_reclaim_release(); 3666 psi_memstall_leave(&pflags); 3667 /* 3668 * Return the order kswapd stopped reclaiming at as 3669 * prepare_kswapd_sleep() takes it into account. If another caller 3670 * entered the allocator slow path while kswapd was awake, order will 3671 * remain at the higher level. 3672 */ 3673 return sc.order; 3674 } 3675 3676 /* 3677 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3678 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3679 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3680 * after previous reclaim attempt (node is still unbalanced). In that case 3681 * return the zone index of the previous kswapd reclaim cycle. 3682 */ 3683 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3684 enum zone_type prev_classzone_idx) 3685 { 3686 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3687 return prev_classzone_idx; 3688 return pgdat->kswapd_classzone_idx; 3689 } 3690 3691 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3692 unsigned int classzone_idx) 3693 { 3694 long remaining = 0; 3695 DEFINE_WAIT(wait); 3696 3697 if (freezing(current) || kthread_should_stop()) 3698 return; 3699 3700 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3701 3702 /* 3703 * Try to sleep for a short interval. Note that kcompactd will only be 3704 * woken if it is possible to sleep for a short interval. This is 3705 * deliberate on the assumption that if reclaim cannot keep an 3706 * eligible zone balanced that it's also unlikely that compaction will 3707 * succeed. 3708 */ 3709 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3710 /* 3711 * Compaction records what page blocks it recently failed to 3712 * isolate pages from and skips them in the future scanning. 3713 * When kswapd is going to sleep, it is reasonable to assume 3714 * that pages and compaction may succeed so reset the cache. 3715 */ 3716 reset_isolation_suitable(pgdat); 3717 3718 /* 3719 * We have freed the memory, now we should compact it to make 3720 * allocation of the requested order possible. 3721 */ 3722 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3723 3724 remaining = schedule_timeout(HZ/10); 3725 3726 /* 3727 * If woken prematurely then reset kswapd_classzone_idx and 3728 * order. The values will either be from a wakeup request or 3729 * the previous request that slept prematurely. 3730 */ 3731 if (remaining) { 3732 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3733 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3734 } 3735 3736 finish_wait(&pgdat->kswapd_wait, &wait); 3737 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3738 } 3739 3740 /* 3741 * After a short sleep, check if it was a premature sleep. If not, then 3742 * go fully to sleep until explicitly woken up. 3743 */ 3744 if (!remaining && 3745 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3746 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3747 3748 /* 3749 * vmstat counters are not perfectly accurate and the estimated 3750 * value for counters such as NR_FREE_PAGES can deviate from the 3751 * true value by nr_online_cpus * threshold. To avoid the zone 3752 * watermarks being breached while under pressure, we reduce the 3753 * per-cpu vmstat threshold while kswapd is awake and restore 3754 * them before going back to sleep. 3755 */ 3756 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3757 3758 if (!kthread_should_stop()) 3759 schedule(); 3760 3761 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3762 } else { 3763 if (remaining) 3764 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3765 else 3766 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3767 } 3768 finish_wait(&pgdat->kswapd_wait, &wait); 3769 } 3770 3771 /* 3772 * The background pageout daemon, started as a kernel thread 3773 * from the init process. 3774 * 3775 * This basically trickles out pages so that we have _some_ 3776 * free memory available even if there is no other activity 3777 * that frees anything up. This is needed for things like routing 3778 * etc, where we otherwise might have all activity going on in 3779 * asynchronous contexts that cannot page things out. 3780 * 3781 * If there are applications that are active memory-allocators 3782 * (most normal use), this basically shouldn't matter. 3783 */ 3784 static int kswapd(void *p) 3785 { 3786 unsigned int alloc_order, reclaim_order; 3787 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3788 pg_data_t *pgdat = (pg_data_t*)p; 3789 struct task_struct *tsk = current; 3790 3791 struct reclaim_state reclaim_state = { 3792 .reclaimed_slab = 0, 3793 }; 3794 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3795 3796 if (!cpumask_empty(cpumask)) 3797 set_cpus_allowed_ptr(tsk, cpumask); 3798 current->reclaim_state = &reclaim_state; 3799 3800 /* 3801 * Tell the memory management that we're a "memory allocator", 3802 * and that if we need more memory we should get access to it 3803 * regardless (see "__alloc_pages()"). "kswapd" should 3804 * never get caught in the normal page freeing logic. 3805 * 3806 * (Kswapd normally doesn't need memory anyway, but sometimes 3807 * you need a small amount of memory in order to be able to 3808 * page out something else, and this flag essentially protects 3809 * us from recursively trying to free more memory as we're 3810 * trying to free the first piece of memory in the first place). 3811 */ 3812 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3813 set_freezable(); 3814 3815 pgdat->kswapd_order = 0; 3816 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3817 for ( ; ; ) { 3818 bool ret; 3819 3820 alloc_order = reclaim_order = pgdat->kswapd_order; 3821 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3822 3823 kswapd_try_sleep: 3824 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3825 classzone_idx); 3826 3827 /* Read the new order and classzone_idx */ 3828 alloc_order = reclaim_order = pgdat->kswapd_order; 3829 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3830 pgdat->kswapd_order = 0; 3831 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3832 3833 ret = try_to_freeze(); 3834 if (kthread_should_stop()) 3835 break; 3836 3837 /* 3838 * We can speed up thawing tasks if we don't call balance_pgdat 3839 * after returning from the refrigerator 3840 */ 3841 if (ret) 3842 continue; 3843 3844 /* 3845 * Reclaim begins at the requested order but if a high-order 3846 * reclaim fails then kswapd falls back to reclaiming for 3847 * order-0. If that happens, kswapd will consider sleeping 3848 * for the order it finished reclaiming at (reclaim_order) 3849 * but kcompactd is woken to compact for the original 3850 * request (alloc_order). 3851 */ 3852 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3853 alloc_order); 3854 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3855 if (reclaim_order < alloc_order) 3856 goto kswapd_try_sleep; 3857 } 3858 3859 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3860 current->reclaim_state = NULL; 3861 3862 return 0; 3863 } 3864 3865 /* 3866 * A zone is low on free memory or too fragmented for high-order memory. If 3867 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3868 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3869 * has failed or is not needed, still wake up kcompactd if only compaction is 3870 * needed. 3871 */ 3872 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3873 enum zone_type classzone_idx) 3874 { 3875 pg_data_t *pgdat; 3876 3877 if (!managed_zone(zone)) 3878 return; 3879 3880 if (!cpuset_zone_allowed(zone, gfp_flags)) 3881 return; 3882 pgdat = zone->zone_pgdat; 3883 3884 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3885 pgdat->kswapd_classzone_idx = classzone_idx; 3886 else 3887 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3888 classzone_idx); 3889 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3890 if (!waitqueue_active(&pgdat->kswapd_wait)) 3891 return; 3892 3893 /* Hopeless node, leave it to direct reclaim if possible */ 3894 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3895 (pgdat_balanced(pgdat, order, classzone_idx) && 3896 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3897 /* 3898 * There may be plenty of free memory available, but it's too 3899 * fragmented for high-order allocations. Wake up kcompactd 3900 * and rely on compaction_suitable() to determine if it's 3901 * needed. If it fails, it will defer subsequent attempts to 3902 * ratelimit its work. 3903 */ 3904 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3905 wakeup_kcompactd(pgdat, order, classzone_idx); 3906 return; 3907 } 3908 3909 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3910 gfp_flags); 3911 wake_up_interruptible(&pgdat->kswapd_wait); 3912 } 3913 3914 #ifdef CONFIG_HIBERNATION 3915 /* 3916 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3917 * freed pages. 3918 * 3919 * Rather than trying to age LRUs the aim is to preserve the overall 3920 * LRU order by reclaiming preferentially 3921 * inactive > active > active referenced > active mapped 3922 */ 3923 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3924 { 3925 struct reclaim_state reclaim_state; 3926 struct scan_control sc = { 3927 .nr_to_reclaim = nr_to_reclaim, 3928 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3929 .reclaim_idx = MAX_NR_ZONES - 1, 3930 .priority = DEF_PRIORITY, 3931 .may_writepage = 1, 3932 .may_unmap = 1, 3933 .may_swap = 1, 3934 .hibernation_mode = 1, 3935 }; 3936 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3937 struct task_struct *p = current; 3938 unsigned long nr_reclaimed; 3939 unsigned int noreclaim_flag; 3940 3941 fs_reclaim_acquire(sc.gfp_mask); 3942 noreclaim_flag = memalloc_noreclaim_save(); 3943 reclaim_state.reclaimed_slab = 0; 3944 p->reclaim_state = &reclaim_state; 3945 3946 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3947 3948 p->reclaim_state = NULL; 3949 memalloc_noreclaim_restore(noreclaim_flag); 3950 fs_reclaim_release(sc.gfp_mask); 3951 3952 return nr_reclaimed; 3953 } 3954 #endif /* CONFIG_HIBERNATION */ 3955 3956 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3957 not required for correctness. So if the last cpu in a node goes 3958 away, we get changed to run anywhere: as the first one comes back, 3959 restore their cpu bindings. */ 3960 static int kswapd_cpu_online(unsigned int cpu) 3961 { 3962 int nid; 3963 3964 for_each_node_state(nid, N_MEMORY) { 3965 pg_data_t *pgdat = NODE_DATA(nid); 3966 const struct cpumask *mask; 3967 3968 mask = cpumask_of_node(pgdat->node_id); 3969 3970 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3971 /* One of our CPUs online: restore mask */ 3972 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3973 } 3974 return 0; 3975 } 3976 3977 /* 3978 * This kswapd start function will be called by init and node-hot-add. 3979 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3980 */ 3981 int kswapd_run(int nid) 3982 { 3983 pg_data_t *pgdat = NODE_DATA(nid); 3984 int ret = 0; 3985 3986 if (pgdat->kswapd) 3987 return 0; 3988 3989 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3990 if (IS_ERR(pgdat->kswapd)) { 3991 /* failure at boot is fatal */ 3992 BUG_ON(system_state < SYSTEM_RUNNING); 3993 pr_err("Failed to start kswapd on node %d\n", nid); 3994 ret = PTR_ERR(pgdat->kswapd); 3995 pgdat->kswapd = NULL; 3996 } 3997 return ret; 3998 } 3999 4000 /* 4001 * Called by memory hotplug when all memory in a node is offlined. Caller must 4002 * hold mem_hotplug_begin/end(). 4003 */ 4004 void kswapd_stop(int nid) 4005 { 4006 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4007 4008 if (kswapd) { 4009 kthread_stop(kswapd); 4010 NODE_DATA(nid)->kswapd = NULL; 4011 } 4012 } 4013 4014 static int __init kswapd_init(void) 4015 { 4016 int nid, ret; 4017 4018 swap_setup(); 4019 for_each_node_state(nid, N_MEMORY) 4020 kswapd_run(nid); 4021 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4022 "mm/vmscan:online", kswapd_cpu_online, 4023 NULL); 4024 WARN_ON(ret < 0); 4025 return 0; 4026 } 4027 4028 module_init(kswapd_init) 4029 4030 #ifdef CONFIG_NUMA 4031 /* 4032 * Node reclaim mode 4033 * 4034 * If non-zero call node_reclaim when the number of free pages falls below 4035 * the watermarks. 4036 */ 4037 int node_reclaim_mode __read_mostly; 4038 4039 #define RECLAIM_OFF 0 4040 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4041 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4042 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4043 4044 /* 4045 * Priority for NODE_RECLAIM. This determines the fraction of pages 4046 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4047 * a zone. 4048 */ 4049 #define NODE_RECLAIM_PRIORITY 4 4050 4051 /* 4052 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4053 * occur. 4054 */ 4055 int sysctl_min_unmapped_ratio = 1; 4056 4057 /* 4058 * If the number of slab pages in a zone grows beyond this percentage then 4059 * slab reclaim needs to occur. 4060 */ 4061 int sysctl_min_slab_ratio = 5; 4062 4063 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4064 { 4065 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4066 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4067 node_page_state(pgdat, NR_ACTIVE_FILE); 4068 4069 /* 4070 * It's possible for there to be more file mapped pages than 4071 * accounted for by the pages on the file LRU lists because 4072 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4073 */ 4074 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4075 } 4076 4077 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4078 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4079 { 4080 unsigned long nr_pagecache_reclaimable; 4081 unsigned long delta = 0; 4082 4083 /* 4084 * If RECLAIM_UNMAP is set, then all file pages are considered 4085 * potentially reclaimable. Otherwise, we have to worry about 4086 * pages like swapcache and node_unmapped_file_pages() provides 4087 * a better estimate 4088 */ 4089 if (node_reclaim_mode & RECLAIM_UNMAP) 4090 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4091 else 4092 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4093 4094 /* If we can't clean pages, remove dirty pages from consideration */ 4095 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4096 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4097 4098 /* Watch for any possible underflows due to delta */ 4099 if (unlikely(delta > nr_pagecache_reclaimable)) 4100 delta = nr_pagecache_reclaimable; 4101 4102 return nr_pagecache_reclaimable - delta; 4103 } 4104 4105 /* 4106 * Try to free up some pages from this node through reclaim. 4107 */ 4108 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4109 { 4110 /* Minimum pages needed in order to stay on node */ 4111 const unsigned long nr_pages = 1 << order; 4112 struct task_struct *p = current; 4113 struct reclaim_state reclaim_state; 4114 unsigned int noreclaim_flag; 4115 struct scan_control sc = { 4116 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4117 .gfp_mask = current_gfp_context(gfp_mask), 4118 .order = order, 4119 .priority = NODE_RECLAIM_PRIORITY, 4120 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4121 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4122 .may_swap = 1, 4123 .reclaim_idx = gfp_zone(gfp_mask), 4124 }; 4125 4126 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4127 sc.gfp_mask); 4128 4129 cond_resched(); 4130 fs_reclaim_acquire(sc.gfp_mask); 4131 /* 4132 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4133 * and we also need to be able to write out pages for RECLAIM_WRITE 4134 * and RECLAIM_UNMAP. 4135 */ 4136 noreclaim_flag = memalloc_noreclaim_save(); 4137 p->flags |= PF_SWAPWRITE; 4138 reclaim_state.reclaimed_slab = 0; 4139 p->reclaim_state = &reclaim_state; 4140 4141 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4142 /* 4143 * Free memory by calling shrink node with increasing 4144 * priorities until we have enough memory freed. 4145 */ 4146 do { 4147 shrink_node(pgdat, &sc); 4148 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4149 } 4150 4151 p->reclaim_state = NULL; 4152 current->flags &= ~PF_SWAPWRITE; 4153 memalloc_noreclaim_restore(noreclaim_flag); 4154 fs_reclaim_release(sc.gfp_mask); 4155 4156 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4157 4158 return sc.nr_reclaimed >= nr_pages; 4159 } 4160 4161 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4162 { 4163 int ret; 4164 4165 /* 4166 * Node reclaim reclaims unmapped file backed pages and 4167 * slab pages if we are over the defined limits. 4168 * 4169 * A small portion of unmapped file backed pages is needed for 4170 * file I/O otherwise pages read by file I/O will be immediately 4171 * thrown out if the node is overallocated. So we do not reclaim 4172 * if less than a specified percentage of the node is used by 4173 * unmapped file backed pages. 4174 */ 4175 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4176 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4177 return NODE_RECLAIM_FULL; 4178 4179 /* 4180 * Do not scan if the allocation should not be delayed. 4181 */ 4182 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4183 return NODE_RECLAIM_NOSCAN; 4184 4185 /* 4186 * Only run node reclaim on the local node or on nodes that do not 4187 * have associated processors. This will favor the local processor 4188 * over remote processors and spread off node memory allocations 4189 * as wide as possible. 4190 */ 4191 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4192 return NODE_RECLAIM_NOSCAN; 4193 4194 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4195 return NODE_RECLAIM_NOSCAN; 4196 4197 ret = __node_reclaim(pgdat, gfp_mask, order); 4198 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4199 4200 if (!ret) 4201 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4202 4203 return ret; 4204 } 4205 #endif 4206 4207 /* 4208 * page_evictable - test whether a page is evictable 4209 * @page: the page to test 4210 * 4211 * Test whether page is evictable--i.e., should be placed on active/inactive 4212 * lists vs unevictable list. 4213 * 4214 * Reasons page might not be evictable: 4215 * (1) page's mapping marked unevictable 4216 * (2) page is part of an mlocked VMA 4217 * 4218 */ 4219 int page_evictable(struct page *page) 4220 { 4221 int ret; 4222 4223 /* Prevent address_space of inode and swap cache from being freed */ 4224 rcu_read_lock(); 4225 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4226 rcu_read_unlock(); 4227 return ret; 4228 } 4229 4230 /** 4231 * check_move_unevictable_pages - check pages for evictability and move to 4232 * appropriate zone lru list 4233 * @pvec: pagevec with lru pages to check 4234 * 4235 * Checks pages for evictability, if an evictable page is in the unevictable 4236 * lru list, moves it to the appropriate evictable lru list. This function 4237 * should be only used for lru pages. 4238 */ 4239 void check_move_unevictable_pages(struct pagevec *pvec) 4240 { 4241 struct lruvec *lruvec; 4242 struct pglist_data *pgdat = NULL; 4243 int pgscanned = 0; 4244 int pgrescued = 0; 4245 int i; 4246 4247 for (i = 0; i < pvec->nr; i++) { 4248 struct page *page = pvec->pages[i]; 4249 struct pglist_data *pagepgdat = page_pgdat(page); 4250 4251 pgscanned++; 4252 if (pagepgdat != pgdat) { 4253 if (pgdat) 4254 spin_unlock_irq(&pgdat->lru_lock); 4255 pgdat = pagepgdat; 4256 spin_lock_irq(&pgdat->lru_lock); 4257 } 4258 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4259 4260 if (!PageLRU(page) || !PageUnevictable(page)) 4261 continue; 4262 4263 if (page_evictable(page)) { 4264 enum lru_list lru = page_lru_base_type(page); 4265 4266 VM_BUG_ON_PAGE(PageActive(page), page); 4267 ClearPageUnevictable(page); 4268 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4269 add_page_to_lru_list(page, lruvec, lru); 4270 pgrescued++; 4271 } 4272 } 4273 4274 if (pgdat) { 4275 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4276 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4277 spin_unlock_irq(&pgdat->lru_lock); 4278 } 4279 } 4280 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4281