xref: /openbmc/linux/mm/vmscan.c (revision 03638e62)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/* e.g. boosted watermark reclaim leaves slabs alone */
92 	unsigned int may_shrinkslab:1;
93 
94 	/*
95 	 * Cgroups are not reclaimed below their configured memory.low,
96 	 * unless we threaten to OOM. If any cgroups are skipped due to
97 	 * memory.low and nothing was reclaimed, go back for memory.low.
98 	 */
99 	unsigned int memcg_low_reclaim:1;
100 	unsigned int memcg_low_skipped:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Allocation order */
108 	s8 order;
109 
110 	/* Scan (total_size >> priority) pages at once */
111 	s8 priority;
112 
113 	/* The highest zone to isolate pages for reclaim from */
114 	s8 reclaim_idx;
115 
116 	/* This context's GFP mask */
117 	gfp_t gfp_mask;
118 
119 	/* Incremented by the number of inactive pages that were scanned */
120 	unsigned long nr_scanned;
121 
122 	/* Number of pages freed so far during a call to shrink_zones() */
123 	unsigned long nr_reclaimed;
124 
125 	struct {
126 		unsigned int dirty;
127 		unsigned int unqueued_dirty;
128 		unsigned int congested;
129 		unsigned int writeback;
130 		unsigned int immediate;
131 		unsigned int file_taken;
132 		unsigned int taken;
133 	} nr;
134 };
135 
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetch(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field)			\
152 	do {								\
153 		if ((_page)->lru.prev != _base) {			\
154 			struct page *prev;				\
155 									\
156 			prev = lru_to_page(&(_page->lru));		\
157 			prefetchw(&prev->_field);			\
158 		}							\
159 	} while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163 
164 /*
165  * From 0 .. 100.  Higher means more swappy.
166  */
167 int vm_swappiness = 60;
168 /*
169  * The total number of pages which are beyond the high watermark within all
170  * zones.
171  */
172 unsigned long vm_total_pages;
173 
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
176 
177 #ifdef CONFIG_MEMCG_KMEM
178 
179 /*
180  * We allow subsystems to populate their shrinker-related
181  * LRU lists before register_shrinker_prepared() is called
182  * for the shrinker, since we don't want to impose
183  * restrictions on their internal registration order.
184  * In this case shrink_slab_memcg() may find corresponding
185  * bit is set in the shrinkers map.
186  *
187  * This value is used by the function to detect registering
188  * shrinkers and to skip do_shrink_slab() calls for them.
189  */
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191 
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
194 
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196 {
197 	int id, ret = -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	/* This may call shrinker, so it must use down_read_trylock() */
201 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 	if (id < 0)
203 		goto unlock;
204 
205 	if (id >= shrinker_nr_max) {
206 		if (memcg_expand_shrinker_maps(id)) {
207 			idr_remove(&shrinker_idr, id);
208 			goto unlock;
209 		}
210 
211 		shrinker_nr_max = id + 1;
212 	}
213 	shrinker->id = id;
214 	ret = 0;
215 unlock:
216 	up_write(&shrinker_rwsem);
217 	return ret;
218 }
219 
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
221 {
222 	int id = shrinker->id;
223 
224 	BUG_ON(id < 0);
225 
226 	down_write(&shrinker_rwsem);
227 	idr_remove(&shrinker_idr, id);
228 	up_write(&shrinker_rwsem);
229 }
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	return 0;
234 }
235 
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 }
239 #endif /* CONFIG_MEMCG_KMEM */
240 
241 #ifdef CONFIG_MEMCG
242 static bool global_reclaim(struct scan_control *sc)
243 {
244 	return !sc->target_mem_cgroup;
245 }
246 
247 /**
248  * sane_reclaim - is the usual dirty throttling mechanism operational?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool sane_reclaim(struct scan_control *sc)
261 {
262 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
263 
264 	if (!memcg)
265 		return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 		return true;
269 #endif
270 	return false;
271 }
272 
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 				struct mem_cgroup *memcg,
275 				bool congested)
276 {
277 	struct mem_cgroup_per_node *mn;
278 
279 	if (!memcg)
280 		return;
281 
282 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 	WRITE_ONCE(mn->congested, congested);
284 }
285 
286 static bool memcg_congested(pg_data_t *pgdat,
287 			struct mem_cgroup *memcg)
288 {
289 	struct mem_cgroup_per_node *mn;
290 
291 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 	return READ_ONCE(mn->congested);
293 
294 }
295 #else
296 static bool global_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
301 static bool sane_reclaim(struct scan_control *sc)
302 {
303 	return true;
304 }
305 
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 				struct mem_cgroup *memcg, bool congested)
308 {
309 }
310 
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 			struct mem_cgroup *memcg)
313 {
314 	return false;
315 
316 }
317 #endif
318 
319 /*
320  * This misses isolated pages which are not accounted for to save counters.
321  * As the data only determines if reclaim or compaction continues, it is
322  * not expected that isolated pages will be a dominating factor.
323  */
324 unsigned long zone_reclaimable_pages(struct zone *zone)
325 {
326 	unsigned long nr;
327 
328 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 	if (get_nr_swap_pages() > 0)
331 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333 
334 	return nr;
335 }
336 
337 /**
338  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
339  * @lruvec: lru vector
340  * @lru: lru to use
341  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
342  */
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344 {
345 	unsigned long lru_size;
346 	int zid;
347 
348 	if (!mem_cgroup_disabled())
349 		lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
350 	else
351 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352 
353 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 		unsigned long size;
356 
357 		if (!managed_zone(zone))
358 			continue;
359 
360 		if (!mem_cgroup_disabled())
361 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 		else
363 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 				       NR_ZONE_LRU_BASE + lru);
365 		lru_size -= min(size, lru_size);
366 	}
367 
368 	return lru_size;
369 
370 }
371 
372 /*
373  * Add a shrinker callback to be called from the vm.
374  */
375 int prealloc_shrinker(struct shrinker *shrinker)
376 {
377 	unsigned int size = sizeof(*shrinker->nr_deferred);
378 
379 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 		size *= nr_node_ids;
381 
382 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 	if (!shrinker->nr_deferred)
384 		return -ENOMEM;
385 
386 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 		if (prealloc_memcg_shrinker(shrinker))
388 			goto free_deferred;
389 	}
390 
391 	return 0;
392 
393 free_deferred:
394 	kfree(shrinker->nr_deferred);
395 	shrinker->nr_deferred = NULL;
396 	return -ENOMEM;
397 }
398 
399 void free_prealloced_shrinker(struct shrinker *shrinker)
400 {
401 	if (!shrinker->nr_deferred)
402 		return;
403 
404 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 		unregister_memcg_shrinker(shrinker);
406 
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 }
410 
411 void register_shrinker_prepared(struct shrinker *shrinker)
412 {
413 	down_write(&shrinker_rwsem);
414 	list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418 #endif
419 	up_write(&shrinker_rwsem);
420 }
421 
422 int register_shrinker(struct shrinker *shrinker)
423 {
424 	int err = prealloc_shrinker(shrinker);
425 
426 	if (err)
427 		return err;
428 	register_shrinker_prepared(shrinker);
429 	return 0;
430 }
431 EXPORT_SYMBOL(register_shrinker);
432 
433 /*
434  * Remove one
435  */
436 void unregister_shrinker(struct shrinker *shrinker)
437 {
438 	if (!shrinker->nr_deferred)
439 		return;
440 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 		unregister_memcg_shrinker(shrinker);
442 	down_write(&shrinker_rwsem);
443 	list_del(&shrinker->list);
444 	up_write(&shrinker_rwsem);
445 	kfree(shrinker->nr_deferred);
446 	shrinker->nr_deferred = NULL;
447 }
448 EXPORT_SYMBOL(unregister_shrinker);
449 
450 #define SHRINK_BATCH 128
451 
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 				    struct shrinker *shrinker, int priority)
454 {
455 	unsigned long freed = 0;
456 	unsigned long long delta;
457 	long total_scan;
458 	long freeable;
459 	long nr;
460 	long new_nr;
461 	int nid = shrinkctl->nid;
462 	long batch_size = shrinker->batch ? shrinker->batch
463 					  : SHRINK_BATCH;
464 	long scanned = 0, next_deferred;
465 
466 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 		nid = 0;
468 
469 	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 	if (freeable == 0 || freeable == SHRINK_EMPTY)
471 		return freeable;
472 
473 	/*
474 	 * copy the current shrinker scan count into a local variable
475 	 * and zero it so that other concurrent shrinker invocations
476 	 * don't also do this scanning work.
477 	 */
478 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
479 
480 	total_scan = nr;
481 	if (shrinker->seeks) {
482 		delta = freeable >> priority;
483 		delta *= 4;
484 		do_div(delta, shrinker->seeks);
485 	} else {
486 		/*
487 		 * These objects don't require any IO to create. Trim
488 		 * them aggressively under memory pressure to keep
489 		 * them from causing refetches in the IO caches.
490 		 */
491 		delta = freeable / 2;
492 	}
493 
494 	total_scan += delta;
495 	if (total_scan < 0) {
496 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
497 		       shrinker->scan_objects, total_scan);
498 		total_scan = freeable;
499 		next_deferred = nr;
500 	} else
501 		next_deferred = total_scan;
502 
503 	/*
504 	 * We need to avoid excessive windup on filesystem shrinkers
505 	 * due to large numbers of GFP_NOFS allocations causing the
506 	 * shrinkers to return -1 all the time. This results in a large
507 	 * nr being built up so when a shrink that can do some work
508 	 * comes along it empties the entire cache due to nr >>>
509 	 * freeable. This is bad for sustaining a working set in
510 	 * memory.
511 	 *
512 	 * Hence only allow the shrinker to scan the entire cache when
513 	 * a large delta change is calculated directly.
514 	 */
515 	if (delta < freeable / 4)
516 		total_scan = min(total_scan, freeable / 2);
517 
518 	/*
519 	 * Avoid risking looping forever due to too large nr value:
520 	 * never try to free more than twice the estimate number of
521 	 * freeable entries.
522 	 */
523 	if (total_scan > freeable * 2)
524 		total_scan = freeable * 2;
525 
526 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527 				   freeable, delta, total_scan, priority);
528 
529 	/*
530 	 * Normally, we should not scan less than batch_size objects in one
531 	 * pass to avoid too frequent shrinker calls, but if the slab has less
532 	 * than batch_size objects in total and we are really tight on memory,
533 	 * we will try to reclaim all available objects, otherwise we can end
534 	 * up failing allocations although there are plenty of reclaimable
535 	 * objects spread over several slabs with usage less than the
536 	 * batch_size.
537 	 *
538 	 * We detect the "tight on memory" situations by looking at the total
539 	 * number of objects we want to scan (total_scan). If it is greater
540 	 * than the total number of objects on slab (freeable), we must be
541 	 * scanning at high prio and therefore should try to reclaim as much as
542 	 * possible.
543 	 */
544 	while (total_scan >= batch_size ||
545 	       total_scan >= freeable) {
546 		unsigned long ret;
547 		unsigned long nr_to_scan = min(batch_size, total_scan);
548 
549 		shrinkctl->nr_to_scan = nr_to_scan;
550 		shrinkctl->nr_scanned = nr_to_scan;
551 		ret = shrinker->scan_objects(shrinker, shrinkctl);
552 		if (ret == SHRINK_STOP)
553 			break;
554 		freed += ret;
555 
556 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 		total_scan -= shrinkctl->nr_scanned;
558 		scanned += shrinkctl->nr_scanned;
559 
560 		cond_resched();
561 	}
562 
563 	if (next_deferred >= scanned)
564 		next_deferred -= scanned;
565 	else
566 		next_deferred = 0;
567 	/*
568 	 * move the unused scan count back into the shrinker in a
569 	 * manner that handles concurrent updates. If we exhausted the
570 	 * scan, there is no need to do an update.
571 	 */
572 	if (next_deferred > 0)
573 		new_nr = atomic_long_add_return(next_deferred,
574 						&shrinker->nr_deferred[nid]);
575 	else
576 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
577 
578 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
579 	return freed;
580 }
581 
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 			struct mem_cgroup *memcg, int priority)
585 {
586 	struct memcg_shrinker_map *map;
587 	unsigned long ret, freed = 0;
588 	int i;
589 
590 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
591 		return 0;
592 
593 	if (!down_read_trylock(&shrinker_rwsem))
594 		return 0;
595 
596 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 					true);
598 	if (unlikely(!map))
599 		goto unlock;
600 
601 	for_each_set_bit(i, map->map, shrinker_nr_max) {
602 		struct shrink_control sc = {
603 			.gfp_mask = gfp_mask,
604 			.nid = nid,
605 			.memcg = memcg,
606 		};
607 		struct shrinker *shrinker;
608 
609 		shrinker = idr_find(&shrinker_idr, i);
610 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
611 			if (!shrinker)
612 				clear_bit(i, map->map);
613 			continue;
614 		}
615 
616 		ret = do_shrink_slab(&sc, shrinker, priority);
617 		if (ret == SHRINK_EMPTY) {
618 			clear_bit(i, map->map);
619 			/*
620 			 * After the shrinker reported that it had no objects to
621 			 * free, but before we cleared the corresponding bit in
622 			 * the memcg shrinker map, a new object might have been
623 			 * added. To make sure, we have the bit set in this
624 			 * case, we invoke the shrinker one more time and reset
625 			 * the bit if it reports that it is not empty anymore.
626 			 * The memory barrier here pairs with the barrier in
627 			 * memcg_set_shrinker_bit():
628 			 *
629 			 * list_lru_add()     shrink_slab_memcg()
630 			 *   list_add_tail()    clear_bit()
631 			 *   <MB>               <MB>
632 			 *   set_bit()          do_shrink_slab()
633 			 */
634 			smp_mb__after_atomic();
635 			ret = do_shrink_slab(&sc, shrinker, priority);
636 			if (ret == SHRINK_EMPTY)
637 				ret = 0;
638 			else
639 				memcg_set_shrinker_bit(memcg, nid, i);
640 		}
641 		freed += ret;
642 
643 		if (rwsem_is_contended(&shrinker_rwsem)) {
644 			freed = freed ? : 1;
645 			break;
646 		}
647 	}
648 unlock:
649 	up_read(&shrinker_rwsem);
650 	return freed;
651 }
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 			struct mem_cgroup *memcg, int priority)
655 {
656 	return 0;
657 }
658 #endif /* CONFIG_MEMCG_KMEM */
659 
660 /**
661  * shrink_slab - shrink slab caches
662  * @gfp_mask: allocation context
663  * @nid: node whose slab caches to target
664  * @memcg: memory cgroup whose slab caches to target
665  * @priority: the reclaim priority
666  *
667  * Call the shrink functions to age shrinkable caches.
668  *
669  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670  * unaware shrinkers will receive a node id of 0 instead.
671  *
672  * @memcg specifies the memory cgroup to target. Unaware shrinkers
673  * are called only if it is the root cgroup.
674  *
675  * @priority is sc->priority, we take the number of objects and >> by priority
676  * in order to get the scan target.
677  *
678  * Returns the number of reclaimed slab objects.
679  */
680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 				 struct mem_cgroup *memcg,
682 				 int priority)
683 {
684 	unsigned long ret, freed = 0;
685 	struct shrinker *shrinker;
686 
687 	if (!mem_cgroup_is_root(memcg))
688 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
689 
690 	if (!down_read_trylock(&shrinker_rwsem))
691 		goto out;
692 
693 	list_for_each_entry(shrinker, &shrinker_list, list) {
694 		struct shrink_control sc = {
695 			.gfp_mask = gfp_mask,
696 			.nid = nid,
697 			.memcg = memcg,
698 		};
699 
700 		ret = do_shrink_slab(&sc, shrinker, priority);
701 		if (ret == SHRINK_EMPTY)
702 			ret = 0;
703 		freed += ret;
704 		/*
705 		 * Bail out if someone want to register a new shrinker to
706 		 * prevent the regsitration from being stalled for long periods
707 		 * by parallel ongoing shrinking.
708 		 */
709 		if (rwsem_is_contended(&shrinker_rwsem)) {
710 			freed = freed ? : 1;
711 			break;
712 		}
713 	}
714 
715 	up_read(&shrinker_rwsem);
716 out:
717 	cond_resched();
718 	return freed;
719 }
720 
721 void drop_slab_node(int nid)
722 {
723 	unsigned long freed;
724 
725 	do {
726 		struct mem_cgroup *memcg = NULL;
727 
728 		freed = 0;
729 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
730 		do {
731 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 	} while (freed > 10);
734 }
735 
736 void drop_slab(void)
737 {
738 	int nid;
739 
740 	for_each_online_node(nid)
741 		drop_slab_node(nid);
742 }
743 
744 static inline int is_page_cache_freeable(struct page *page)
745 {
746 	/*
747 	 * A freeable page cache page is referenced only by the caller
748 	 * that isolated the page, the page cache and optional buffer
749 	 * heads at page->private.
750 	 */
751 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752 		HPAGE_PMD_NR : 1;
753 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
754 }
755 
756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
757 {
758 	if (current->flags & PF_SWAPWRITE)
759 		return 1;
760 	if (!inode_write_congested(inode))
761 		return 1;
762 	if (inode_to_bdi(inode) == current->backing_dev_info)
763 		return 1;
764 	return 0;
765 }
766 
767 /*
768  * We detected a synchronous write error writing a page out.  Probably
769  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
770  * fsync(), msync() or close().
771  *
772  * The tricky part is that after writepage we cannot touch the mapping: nothing
773  * prevents it from being freed up.  But we have a ref on the page and once
774  * that page is locked, the mapping is pinned.
775  *
776  * We're allowed to run sleeping lock_page() here because we know the caller has
777  * __GFP_FS.
778  */
779 static void handle_write_error(struct address_space *mapping,
780 				struct page *page, int error)
781 {
782 	lock_page(page);
783 	if (page_mapping(page) == mapping)
784 		mapping_set_error(mapping, error);
785 	unlock_page(page);
786 }
787 
788 /* possible outcome of pageout() */
789 typedef enum {
790 	/* failed to write page out, page is locked */
791 	PAGE_KEEP,
792 	/* move page to the active list, page is locked */
793 	PAGE_ACTIVATE,
794 	/* page has been sent to the disk successfully, page is unlocked */
795 	PAGE_SUCCESS,
796 	/* page is clean and locked */
797 	PAGE_CLEAN,
798 } pageout_t;
799 
800 /*
801  * pageout is called by shrink_page_list() for each dirty page.
802  * Calls ->writepage().
803  */
804 static pageout_t pageout(struct page *page, struct address_space *mapping,
805 			 struct scan_control *sc)
806 {
807 	/*
808 	 * If the page is dirty, only perform writeback if that write
809 	 * will be non-blocking.  To prevent this allocation from being
810 	 * stalled by pagecache activity.  But note that there may be
811 	 * stalls if we need to run get_block().  We could test
812 	 * PagePrivate for that.
813 	 *
814 	 * If this process is currently in __generic_file_write_iter() against
815 	 * this page's queue, we can perform writeback even if that
816 	 * will block.
817 	 *
818 	 * If the page is swapcache, write it back even if that would
819 	 * block, for some throttling. This happens by accident, because
820 	 * swap_backing_dev_info is bust: it doesn't reflect the
821 	 * congestion state of the swapdevs.  Easy to fix, if needed.
822 	 */
823 	if (!is_page_cache_freeable(page))
824 		return PAGE_KEEP;
825 	if (!mapping) {
826 		/*
827 		 * Some data journaling orphaned pages can have
828 		 * page->mapping == NULL while being dirty with clean buffers.
829 		 */
830 		if (page_has_private(page)) {
831 			if (try_to_free_buffers(page)) {
832 				ClearPageDirty(page);
833 				pr_info("%s: orphaned page\n", __func__);
834 				return PAGE_CLEAN;
835 			}
836 		}
837 		return PAGE_KEEP;
838 	}
839 	if (mapping->a_ops->writepage == NULL)
840 		return PAGE_ACTIVATE;
841 	if (!may_write_to_inode(mapping->host, sc))
842 		return PAGE_KEEP;
843 
844 	if (clear_page_dirty_for_io(page)) {
845 		int res;
846 		struct writeback_control wbc = {
847 			.sync_mode = WB_SYNC_NONE,
848 			.nr_to_write = SWAP_CLUSTER_MAX,
849 			.range_start = 0,
850 			.range_end = LLONG_MAX,
851 			.for_reclaim = 1,
852 		};
853 
854 		SetPageReclaim(page);
855 		res = mapping->a_ops->writepage(page, &wbc);
856 		if (res < 0)
857 			handle_write_error(mapping, page, res);
858 		if (res == AOP_WRITEPAGE_ACTIVATE) {
859 			ClearPageReclaim(page);
860 			return PAGE_ACTIVATE;
861 		}
862 
863 		if (!PageWriteback(page)) {
864 			/* synchronous write or broken a_ops? */
865 			ClearPageReclaim(page);
866 		}
867 		trace_mm_vmscan_writepage(page);
868 		inc_node_page_state(page, NR_VMSCAN_WRITE);
869 		return PAGE_SUCCESS;
870 	}
871 
872 	return PAGE_CLEAN;
873 }
874 
875 /*
876  * Same as remove_mapping, but if the page is removed from the mapping, it
877  * gets returned with a refcount of 0.
878  */
879 static int __remove_mapping(struct address_space *mapping, struct page *page,
880 			    bool reclaimed)
881 {
882 	unsigned long flags;
883 	int refcount;
884 
885 	BUG_ON(!PageLocked(page));
886 	BUG_ON(mapping != page_mapping(page));
887 
888 	xa_lock_irqsave(&mapping->i_pages, flags);
889 	/*
890 	 * The non racy check for a busy page.
891 	 *
892 	 * Must be careful with the order of the tests. When someone has
893 	 * a ref to the page, it may be possible that they dirty it then
894 	 * drop the reference. So if PageDirty is tested before page_count
895 	 * here, then the following race may occur:
896 	 *
897 	 * get_user_pages(&page);
898 	 * [user mapping goes away]
899 	 * write_to(page);
900 	 *				!PageDirty(page)    [good]
901 	 * SetPageDirty(page);
902 	 * put_page(page);
903 	 *				!page_count(page)   [good, discard it]
904 	 *
905 	 * [oops, our write_to data is lost]
906 	 *
907 	 * Reversing the order of the tests ensures such a situation cannot
908 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 	 * load is not satisfied before that of page->_refcount.
910 	 *
911 	 * Note that if SetPageDirty is always performed via set_page_dirty,
912 	 * and thus under the i_pages lock, then this ordering is not required.
913 	 */
914 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 		refcount = 1 + HPAGE_PMD_NR;
916 	else
917 		refcount = 2;
918 	if (!page_ref_freeze(page, refcount))
919 		goto cannot_free;
920 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 	if (unlikely(PageDirty(page))) {
922 		page_ref_unfreeze(page, refcount);
923 		goto cannot_free;
924 	}
925 
926 	if (PageSwapCache(page)) {
927 		swp_entry_t swap = { .val = page_private(page) };
928 		mem_cgroup_swapout(page, swap);
929 		__delete_from_swap_cache(page, swap);
930 		xa_unlock_irqrestore(&mapping->i_pages, flags);
931 		put_swap_page(page, swap);
932 	} else {
933 		void (*freepage)(struct page *);
934 		void *shadow = NULL;
935 
936 		freepage = mapping->a_ops->freepage;
937 		/*
938 		 * Remember a shadow entry for reclaimed file cache in
939 		 * order to detect refaults, thus thrashing, later on.
940 		 *
941 		 * But don't store shadows in an address space that is
942 		 * already exiting.  This is not just an optizimation,
943 		 * inode reclaim needs to empty out the radix tree or
944 		 * the nodes are lost.  Don't plant shadows behind its
945 		 * back.
946 		 *
947 		 * We also don't store shadows for DAX mappings because the
948 		 * only page cache pages found in these are zero pages
949 		 * covering holes, and because we don't want to mix DAX
950 		 * exceptional entries and shadow exceptional entries in the
951 		 * same address_space.
952 		 */
953 		if (reclaimed && page_is_file_cache(page) &&
954 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
955 			shadow = workingset_eviction(page);
956 		__delete_from_page_cache(page, shadow);
957 		xa_unlock_irqrestore(&mapping->i_pages, flags);
958 
959 		if (freepage != NULL)
960 			freepage(page);
961 	}
962 
963 	return 1;
964 
965 cannot_free:
966 	xa_unlock_irqrestore(&mapping->i_pages, flags);
967 	return 0;
968 }
969 
970 /*
971  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
972  * someone else has a ref on the page, abort and return 0.  If it was
973  * successfully detached, return 1.  Assumes the caller has a single ref on
974  * this page.
975  */
976 int remove_mapping(struct address_space *mapping, struct page *page)
977 {
978 	if (__remove_mapping(mapping, page, false)) {
979 		/*
980 		 * Unfreezing the refcount with 1 rather than 2 effectively
981 		 * drops the pagecache ref for us without requiring another
982 		 * atomic operation.
983 		 */
984 		page_ref_unfreeze(page, 1);
985 		return 1;
986 	}
987 	return 0;
988 }
989 
990 /**
991  * putback_lru_page - put previously isolated page onto appropriate LRU list
992  * @page: page to be put back to appropriate lru list
993  *
994  * Add previously isolated @page to appropriate LRU list.
995  * Page may still be unevictable for other reasons.
996  *
997  * lru_lock must not be held, interrupts must be enabled.
998  */
999 void putback_lru_page(struct page *page)
1000 {
1001 	lru_cache_add(page);
1002 	put_page(page);		/* drop ref from isolate */
1003 }
1004 
1005 enum page_references {
1006 	PAGEREF_RECLAIM,
1007 	PAGEREF_RECLAIM_CLEAN,
1008 	PAGEREF_KEEP,
1009 	PAGEREF_ACTIVATE,
1010 };
1011 
1012 static enum page_references page_check_references(struct page *page,
1013 						  struct scan_control *sc)
1014 {
1015 	int referenced_ptes, referenced_page;
1016 	unsigned long vm_flags;
1017 
1018 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1019 					  &vm_flags);
1020 	referenced_page = TestClearPageReferenced(page);
1021 
1022 	/*
1023 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1024 	 * move the page to the unevictable list.
1025 	 */
1026 	if (vm_flags & VM_LOCKED)
1027 		return PAGEREF_RECLAIM;
1028 
1029 	if (referenced_ptes) {
1030 		if (PageSwapBacked(page))
1031 			return PAGEREF_ACTIVATE;
1032 		/*
1033 		 * All mapped pages start out with page table
1034 		 * references from the instantiating fault, so we need
1035 		 * to look twice if a mapped file page is used more
1036 		 * than once.
1037 		 *
1038 		 * Mark it and spare it for another trip around the
1039 		 * inactive list.  Another page table reference will
1040 		 * lead to its activation.
1041 		 *
1042 		 * Note: the mark is set for activated pages as well
1043 		 * so that recently deactivated but used pages are
1044 		 * quickly recovered.
1045 		 */
1046 		SetPageReferenced(page);
1047 
1048 		if (referenced_page || referenced_ptes > 1)
1049 			return PAGEREF_ACTIVATE;
1050 
1051 		/*
1052 		 * Activate file-backed executable pages after first usage.
1053 		 */
1054 		if (vm_flags & VM_EXEC)
1055 			return PAGEREF_ACTIVATE;
1056 
1057 		return PAGEREF_KEEP;
1058 	}
1059 
1060 	/* Reclaim if clean, defer dirty pages to writeback */
1061 	if (referenced_page && !PageSwapBacked(page))
1062 		return PAGEREF_RECLAIM_CLEAN;
1063 
1064 	return PAGEREF_RECLAIM;
1065 }
1066 
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page *page,
1069 				       bool *dirty, bool *writeback)
1070 {
1071 	struct address_space *mapping;
1072 
1073 	/*
1074 	 * Anonymous pages are not handled by flushers and must be written
1075 	 * from reclaim context. Do not stall reclaim based on them
1076 	 */
1077 	if (!page_is_file_cache(page) ||
1078 	    (PageAnon(page) && !PageSwapBacked(page))) {
1079 		*dirty = false;
1080 		*writeback = false;
1081 		return;
1082 	}
1083 
1084 	/* By default assume that the page flags are accurate */
1085 	*dirty = PageDirty(page);
1086 	*writeback = PageWriteback(page);
1087 
1088 	/* Verify dirty/writeback state if the filesystem supports it */
1089 	if (!page_has_private(page))
1090 		return;
1091 
1092 	mapping = page_mapping(page);
1093 	if (mapping && mapping->a_ops->is_dirty_writeback)
1094 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 }
1096 
1097 /*
1098  * shrink_page_list() returns the number of reclaimed pages
1099  */
1100 static unsigned long shrink_page_list(struct list_head *page_list,
1101 				      struct pglist_data *pgdat,
1102 				      struct scan_control *sc,
1103 				      enum ttu_flags ttu_flags,
1104 				      struct reclaim_stat *stat,
1105 				      bool force_reclaim)
1106 {
1107 	LIST_HEAD(ret_pages);
1108 	LIST_HEAD(free_pages);
1109 	unsigned nr_reclaimed = 0;
1110 	unsigned pgactivate = 0;
1111 
1112 	memset(stat, 0, sizeof(*stat));
1113 	cond_resched();
1114 
1115 	while (!list_empty(page_list)) {
1116 		struct address_space *mapping;
1117 		struct page *page;
1118 		int may_enter_fs;
1119 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1120 		bool dirty, writeback;
1121 		unsigned int nr_pages;
1122 
1123 		cond_resched();
1124 
1125 		page = lru_to_page(page_list);
1126 		list_del(&page->lru);
1127 
1128 		if (!trylock_page(page))
1129 			goto keep;
1130 
1131 		VM_BUG_ON_PAGE(PageActive(page), page);
1132 
1133 		nr_pages = 1 << compound_order(page);
1134 
1135 		/* Account the number of base pages even though THP */
1136 		sc->nr_scanned += nr_pages;
1137 
1138 		if (unlikely(!page_evictable(page)))
1139 			goto activate_locked;
1140 
1141 		if (!sc->may_unmap && page_mapped(page))
1142 			goto keep_locked;
1143 
1144 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1145 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1146 
1147 		/*
1148 		 * The number of dirty pages determines if a node is marked
1149 		 * reclaim_congested which affects wait_iff_congested. kswapd
1150 		 * will stall and start writing pages if the tail of the LRU
1151 		 * is all dirty unqueued pages.
1152 		 */
1153 		page_check_dirty_writeback(page, &dirty, &writeback);
1154 		if (dirty || writeback)
1155 			stat->nr_dirty++;
1156 
1157 		if (dirty && !writeback)
1158 			stat->nr_unqueued_dirty++;
1159 
1160 		/*
1161 		 * Treat this page as congested if the underlying BDI is or if
1162 		 * pages are cycling through the LRU so quickly that the
1163 		 * pages marked for immediate reclaim are making it to the
1164 		 * end of the LRU a second time.
1165 		 */
1166 		mapping = page_mapping(page);
1167 		if (((dirty || writeback) && mapping &&
1168 		     inode_write_congested(mapping->host)) ||
1169 		    (writeback && PageReclaim(page)))
1170 			stat->nr_congested++;
1171 
1172 		/*
1173 		 * If a page at the tail of the LRU is under writeback, there
1174 		 * are three cases to consider.
1175 		 *
1176 		 * 1) If reclaim is encountering an excessive number of pages
1177 		 *    under writeback and this page is both under writeback and
1178 		 *    PageReclaim then it indicates that pages are being queued
1179 		 *    for IO but are being recycled through the LRU before the
1180 		 *    IO can complete. Waiting on the page itself risks an
1181 		 *    indefinite stall if it is impossible to writeback the
1182 		 *    page due to IO error or disconnected storage so instead
1183 		 *    note that the LRU is being scanned too quickly and the
1184 		 *    caller can stall after page list has been processed.
1185 		 *
1186 		 * 2) Global or new memcg reclaim encounters a page that is
1187 		 *    not marked for immediate reclaim, or the caller does not
1188 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1189 		 *    not to fs). In this case mark the page for immediate
1190 		 *    reclaim and continue scanning.
1191 		 *
1192 		 *    Require may_enter_fs because we would wait on fs, which
1193 		 *    may not have submitted IO yet. And the loop driver might
1194 		 *    enter reclaim, and deadlock if it waits on a page for
1195 		 *    which it is needed to do the write (loop masks off
1196 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1197 		 *    would probably show more reasons.
1198 		 *
1199 		 * 3) Legacy memcg encounters a page that is already marked
1200 		 *    PageReclaim. memcg does not have any dirty pages
1201 		 *    throttling so we could easily OOM just because too many
1202 		 *    pages are in writeback and there is nothing else to
1203 		 *    reclaim. Wait for the writeback to complete.
1204 		 *
1205 		 * In cases 1) and 2) we activate the pages to get them out of
1206 		 * the way while we continue scanning for clean pages on the
1207 		 * inactive list and refilling from the active list. The
1208 		 * observation here is that waiting for disk writes is more
1209 		 * expensive than potentially causing reloads down the line.
1210 		 * Since they're marked for immediate reclaim, they won't put
1211 		 * memory pressure on the cache working set any longer than it
1212 		 * takes to write them to disk.
1213 		 */
1214 		if (PageWriteback(page)) {
1215 			/* Case 1 above */
1216 			if (current_is_kswapd() &&
1217 			    PageReclaim(page) &&
1218 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1219 				stat->nr_immediate++;
1220 				goto activate_locked;
1221 
1222 			/* Case 2 above */
1223 			} else if (sane_reclaim(sc) ||
1224 			    !PageReclaim(page) || !may_enter_fs) {
1225 				/*
1226 				 * This is slightly racy - end_page_writeback()
1227 				 * might have just cleared PageReclaim, then
1228 				 * setting PageReclaim here end up interpreted
1229 				 * as PageReadahead - but that does not matter
1230 				 * enough to care.  What we do want is for this
1231 				 * page to have PageReclaim set next time memcg
1232 				 * reclaim reaches the tests above, so it will
1233 				 * then wait_on_page_writeback() to avoid OOM;
1234 				 * and it's also appropriate in global reclaim.
1235 				 */
1236 				SetPageReclaim(page);
1237 				stat->nr_writeback++;
1238 				goto activate_locked;
1239 
1240 			/* Case 3 above */
1241 			} else {
1242 				unlock_page(page);
1243 				wait_on_page_writeback(page);
1244 				/* then go back and try same page again */
1245 				list_add_tail(&page->lru, page_list);
1246 				continue;
1247 			}
1248 		}
1249 
1250 		if (!force_reclaim)
1251 			references = page_check_references(page, sc);
1252 
1253 		switch (references) {
1254 		case PAGEREF_ACTIVATE:
1255 			goto activate_locked;
1256 		case PAGEREF_KEEP:
1257 			stat->nr_ref_keep += nr_pages;
1258 			goto keep_locked;
1259 		case PAGEREF_RECLAIM:
1260 		case PAGEREF_RECLAIM_CLEAN:
1261 			; /* try to reclaim the page below */
1262 		}
1263 
1264 		/*
1265 		 * Anonymous process memory has backing store?
1266 		 * Try to allocate it some swap space here.
1267 		 * Lazyfree page could be freed directly
1268 		 */
1269 		if (PageAnon(page) && PageSwapBacked(page)) {
1270 			if (!PageSwapCache(page)) {
1271 				if (!(sc->gfp_mask & __GFP_IO))
1272 					goto keep_locked;
1273 				if (PageTransHuge(page)) {
1274 					/* cannot split THP, skip it */
1275 					if (!can_split_huge_page(page, NULL))
1276 						goto activate_locked;
1277 					/*
1278 					 * Split pages without a PMD map right
1279 					 * away. Chances are some or all of the
1280 					 * tail pages can be freed without IO.
1281 					 */
1282 					if (!compound_mapcount(page) &&
1283 					    split_huge_page_to_list(page,
1284 								    page_list))
1285 						goto activate_locked;
1286 				}
1287 				if (!add_to_swap(page)) {
1288 					if (!PageTransHuge(page))
1289 						goto activate_locked_split;
1290 					/* Fallback to swap normal pages */
1291 					if (split_huge_page_to_list(page,
1292 								    page_list))
1293 						goto activate_locked;
1294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1295 					count_vm_event(THP_SWPOUT_FALLBACK);
1296 #endif
1297 					if (!add_to_swap(page))
1298 						goto activate_locked_split;
1299 				}
1300 
1301 				may_enter_fs = 1;
1302 
1303 				/* Adding to swap updated mapping */
1304 				mapping = page_mapping(page);
1305 			}
1306 		} else if (unlikely(PageTransHuge(page))) {
1307 			/* Split file THP */
1308 			if (split_huge_page_to_list(page, page_list))
1309 				goto keep_locked;
1310 		}
1311 
1312 		/*
1313 		 * THP may get split above, need minus tail pages and update
1314 		 * nr_pages to avoid accounting tail pages twice.
1315 		 *
1316 		 * The tail pages that are added into swap cache successfully
1317 		 * reach here.
1318 		 */
1319 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1320 			sc->nr_scanned -= (nr_pages - 1);
1321 			nr_pages = 1;
1322 		}
1323 
1324 		/*
1325 		 * The page is mapped into the page tables of one or more
1326 		 * processes. Try to unmap it here.
1327 		 */
1328 		if (page_mapped(page)) {
1329 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1330 
1331 			if (unlikely(PageTransHuge(page)))
1332 				flags |= TTU_SPLIT_HUGE_PMD;
1333 			if (!try_to_unmap(page, flags)) {
1334 				stat->nr_unmap_fail += nr_pages;
1335 				goto activate_locked;
1336 			}
1337 		}
1338 
1339 		if (PageDirty(page)) {
1340 			/*
1341 			 * Only kswapd can writeback filesystem pages
1342 			 * to avoid risk of stack overflow. But avoid
1343 			 * injecting inefficient single-page IO into
1344 			 * flusher writeback as much as possible: only
1345 			 * write pages when we've encountered many
1346 			 * dirty pages, and when we've already scanned
1347 			 * the rest of the LRU for clean pages and see
1348 			 * the same dirty pages again (PageReclaim).
1349 			 */
1350 			if (page_is_file_cache(page) &&
1351 			    (!current_is_kswapd() || !PageReclaim(page) ||
1352 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1353 				/*
1354 				 * Immediately reclaim when written back.
1355 				 * Similar in principal to deactivate_page()
1356 				 * except we already have the page isolated
1357 				 * and know it's dirty
1358 				 */
1359 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1360 				SetPageReclaim(page);
1361 
1362 				goto activate_locked;
1363 			}
1364 
1365 			if (references == PAGEREF_RECLAIM_CLEAN)
1366 				goto keep_locked;
1367 			if (!may_enter_fs)
1368 				goto keep_locked;
1369 			if (!sc->may_writepage)
1370 				goto keep_locked;
1371 
1372 			/*
1373 			 * Page is dirty. Flush the TLB if a writable entry
1374 			 * potentially exists to avoid CPU writes after IO
1375 			 * starts and then write it out here.
1376 			 */
1377 			try_to_unmap_flush_dirty();
1378 			switch (pageout(page, mapping, sc)) {
1379 			case PAGE_KEEP:
1380 				goto keep_locked;
1381 			case PAGE_ACTIVATE:
1382 				goto activate_locked;
1383 			case PAGE_SUCCESS:
1384 				if (PageWriteback(page))
1385 					goto keep;
1386 				if (PageDirty(page))
1387 					goto keep;
1388 
1389 				/*
1390 				 * A synchronous write - probably a ramdisk.  Go
1391 				 * ahead and try to reclaim the page.
1392 				 */
1393 				if (!trylock_page(page))
1394 					goto keep;
1395 				if (PageDirty(page) || PageWriteback(page))
1396 					goto keep_locked;
1397 				mapping = page_mapping(page);
1398 			case PAGE_CLEAN:
1399 				; /* try to free the page below */
1400 			}
1401 		}
1402 
1403 		/*
1404 		 * If the page has buffers, try to free the buffer mappings
1405 		 * associated with this page. If we succeed we try to free
1406 		 * the page as well.
1407 		 *
1408 		 * We do this even if the page is PageDirty().
1409 		 * try_to_release_page() does not perform I/O, but it is
1410 		 * possible for a page to have PageDirty set, but it is actually
1411 		 * clean (all its buffers are clean).  This happens if the
1412 		 * buffers were written out directly, with submit_bh(). ext3
1413 		 * will do this, as well as the blockdev mapping.
1414 		 * try_to_release_page() will discover that cleanness and will
1415 		 * drop the buffers and mark the page clean - it can be freed.
1416 		 *
1417 		 * Rarely, pages can have buffers and no ->mapping.  These are
1418 		 * the pages which were not successfully invalidated in
1419 		 * truncate_complete_page().  We try to drop those buffers here
1420 		 * and if that worked, and the page is no longer mapped into
1421 		 * process address space (page_count == 1) it can be freed.
1422 		 * Otherwise, leave the page on the LRU so it is swappable.
1423 		 */
1424 		if (page_has_private(page)) {
1425 			if (!try_to_release_page(page, sc->gfp_mask))
1426 				goto activate_locked;
1427 			if (!mapping && page_count(page) == 1) {
1428 				unlock_page(page);
1429 				if (put_page_testzero(page))
1430 					goto free_it;
1431 				else {
1432 					/*
1433 					 * rare race with speculative reference.
1434 					 * the speculative reference will free
1435 					 * this page shortly, so we may
1436 					 * increment nr_reclaimed here (and
1437 					 * leave it off the LRU).
1438 					 */
1439 					nr_reclaimed++;
1440 					continue;
1441 				}
1442 			}
1443 		}
1444 
1445 		if (PageAnon(page) && !PageSwapBacked(page)) {
1446 			/* follow __remove_mapping for reference */
1447 			if (!page_ref_freeze(page, 1))
1448 				goto keep_locked;
1449 			if (PageDirty(page)) {
1450 				page_ref_unfreeze(page, 1);
1451 				goto keep_locked;
1452 			}
1453 
1454 			count_vm_event(PGLAZYFREED);
1455 			count_memcg_page_event(page, PGLAZYFREED);
1456 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1457 			goto keep_locked;
1458 
1459 		unlock_page(page);
1460 free_it:
1461 		/*
1462 		 * THP may get swapped out in a whole, need account
1463 		 * all base pages.
1464 		 */
1465 		nr_reclaimed += nr_pages;
1466 
1467 		/*
1468 		 * Is there need to periodically free_page_list? It would
1469 		 * appear not as the counts should be low
1470 		 */
1471 		if (unlikely(PageTransHuge(page))) {
1472 			mem_cgroup_uncharge(page);
1473 			(*get_compound_page_dtor(page))(page);
1474 		} else
1475 			list_add(&page->lru, &free_pages);
1476 		continue;
1477 
1478 activate_locked_split:
1479 		/*
1480 		 * The tail pages that are failed to add into swap cache
1481 		 * reach here.  Fixup nr_scanned and nr_pages.
1482 		 */
1483 		if (nr_pages > 1) {
1484 			sc->nr_scanned -= (nr_pages - 1);
1485 			nr_pages = 1;
1486 		}
1487 activate_locked:
1488 		/* Not a candidate for swapping, so reclaim swap space. */
1489 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1490 						PageMlocked(page)))
1491 			try_to_free_swap(page);
1492 		VM_BUG_ON_PAGE(PageActive(page), page);
1493 		if (!PageMlocked(page)) {
1494 			int type = page_is_file_cache(page);
1495 			SetPageActive(page);
1496 			stat->nr_activate[type] += nr_pages;
1497 			count_memcg_page_event(page, PGACTIVATE);
1498 		}
1499 keep_locked:
1500 		unlock_page(page);
1501 keep:
1502 		list_add(&page->lru, &ret_pages);
1503 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1504 	}
1505 
1506 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1507 
1508 	mem_cgroup_uncharge_list(&free_pages);
1509 	try_to_unmap_flush();
1510 	free_unref_page_list(&free_pages);
1511 
1512 	list_splice(&ret_pages, page_list);
1513 	count_vm_events(PGACTIVATE, pgactivate);
1514 
1515 	return nr_reclaimed;
1516 }
1517 
1518 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1519 					    struct list_head *page_list)
1520 {
1521 	struct scan_control sc = {
1522 		.gfp_mask = GFP_KERNEL,
1523 		.priority = DEF_PRIORITY,
1524 		.may_unmap = 1,
1525 	};
1526 	struct reclaim_stat dummy_stat;
1527 	unsigned long ret;
1528 	struct page *page, *next;
1529 	LIST_HEAD(clean_pages);
1530 
1531 	list_for_each_entry_safe(page, next, page_list, lru) {
1532 		if (page_is_file_cache(page) && !PageDirty(page) &&
1533 		    !__PageMovable(page) && !PageUnevictable(page)) {
1534 			ClearPageActive(page);
1535 			list_move(&page->lru, &clean_pages);
1536 		}
1537 	}
1538 
1539 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1540 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1541 	list_splice(&clean_pages, page_list);
1542 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1543 	return ret;
1544 }
1545 
1546 /*
1547  * Attempt to remove the specified page from its LRU.  Only take this page
1548  * if it is of the appropriate PageActive status.  Pages which are being
1549  * freed elsewhere are also ignored.
1550  *
1551  * page:	page to consider
1552  * mode:	one of the LRU isolation modes defined above
1553  *
1554  * returns 0 on success, -ve errno on failure.
1555  */
1556 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1557 {
1558 	int ret = -EINVAL;
1559 
1560 	/* Only take pages on the LRU. */
1561 	if (!PageLRU(page))
1562 		return ret;
1563 
1564 	/* Compaction should not handle unevictable pages but CMA can do so */
1565 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1566 		return ret;
1567 
1568 	ret = -EBUSY;
1569 
1570 	/*
1571 	 * To minimise LRU disruption, the caller can indicate that it only
1572 	 * wants to isolate pages it will be able to operate on without
1573 	 * blocking - clean pages for the most part.
1574 	 *
1575 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1576 	 * that it is possible to migrate without blocking
1577 	 */
1578 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1579 		/* All the caller can do on PageWriteback is block */
1580 		if (PageWriteback(page))
1581 			return ret;
1582 
1583 		if (PageDirty(page)) {
1584 			struct address_space *mapping;
1585 			bool migrate_dirty;
1586 
1587 			/*
1588 			 * Only pages without mappings or that have a
1589 			 * ->migratepage callback are possible to migrate
1590 			 * without blocking. However, we can be racing with
1591 			 * truncation so it's necessary to lock the page
1592 			 * to stabilise the mapping as truncation holds
1593 			 * the page lock until after the page is removed
1594 			 * from the page cache.
1595 			 */
1596 			if (!trylock_page(page))
1597 				return ret;
1598 
1599 			mapping = page_mapping(page);
1600 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1601 			unlock_page(page);
1602 			if (!migrate_dirty)
1603 				return ret;
1604 		}
1605 	}
1606 
1607 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1608 		return ret;
1609 
1610 	if (likely(get_page_unless_zero(page))) {
1611 		/*
1612 		 * Be careful not to clear PageLRU until after we're
1613 		 * sure the page is not being freed elsewhere -- the
1614 		 * page release code relies on it.
1615 		 */
1616 		ClearPageLRU(page);
1617 		ret = 0;
1618 	}
1619 
1620 	return ret;
1621 }
1622 
1623 
1624 /*
1625  * Update LRU sizes after isolating pages. The LRU size updates must
1626  * be complete before mem_cgroup_update_lru_size due to a santity check.
1627  */
1628 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1629 			enum lru_list lru, unsigned long *nr_zone_taken)
1630 {
1631 	int zid;
1632 
1633 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1634 		if (!nr_zone_taken[zid])
1635 			continue;
1636 
1637 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1638 #ifdef CONFIG_MEMCG
1639 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1640 #endif
1641 	}
1642 
1643 }
1644 
1645 /**
1646  * pgdat->lru_lock is heavily contended.  Some of the functions that
1647  * shrink the lists perform better by taking out a batch of pages
1648  * and working on them outside the LRU lock.
1649  *
1650  * For pagecache intensive workloads, this function is the hottest
1651  * spot in the kernel (apart from copy_*_user functions).
1652  *
1653  * Appropriate locks must be held before calling this function.
1654  *
1655  * @nr_to_scan:	The number of eligible pages to look through on the list.
1656  * @lruvec:	The LRU vector to pull pages from.
1657  * @dst:	The temp list to put pages on to.
1658  * @nr_scanned:	The number of pages that were scanned.
1659  * @sc:		The scan_control struct for this reclaim session
1660  * @mode:	One of the LRU isolation modes
1661  * @lru:	LRU list id for isolating
1662  *
1663  * returns how many pages were moved onto *@dst.
1664  */
1665 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1666 		struct lruvec *lruvec, struct list_head *dst,
1667 		unsigned long *nr_scanned, struct scan_control *sc,
1668 		enum lru_list lru)
1669 {
1670 	struct list_head *src = &lruvec->lists[lru];
1671 	unsigned long nr_taken = 0;
1672 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1673 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1674 	unsigned long skipped = 0;
1675 	unsigned long scan, total_scan, nr_pages;
1676 	LIST_HEAD(pages_skipped);
1677 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1678 
1679 	total_scan = 0;
1680 	scan = 0;
1681 	while (scan < nr_to_scan && !list_empty(src)) {
1682 		struct page *page;
1683 
1684 		page = lru_to_page(src);
1685 		prefetchw_prev_lru_page(page, src, flags);
1686 
1687 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1688 
1689 		nr_pages = 1 << compound_order(page);
1690 		total_scan += nr_pages;
1691 
1692 		if (page_zonenum(page) > sc->reclaim_idx) {
1693 			list_move(&page->lru, &pages_skipped);
1694 			nr_skipped[page_zonenum(page)] += nr_pages;
1695 			continue;
1696 		}
1697 
1698 		/*
1699 		 * Do not count skipped pages because that makes the function
1700 		 * return with no isolated pages if the LRU mostly contains
1701 		 * ineligible pages.  This causes the VM to not reclaim any
1702 		 * pages, triggering a premature OOM.
1703 		 *
1704 		 * Account all tail pages of THP.  This would not cause
1705 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1706 		 * only when the page is being freed somewhere else.
1707 		 */
1708 		scan += nr_pages;
1709 		switch (__isolate_lru_page(page, mode)) {
1710 		case 0:
1711 			nr_taken += nr_pages;
1712 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1713 			list_move(&page->lru, dst);
1714 			break;
1715 
1716 		case -EBUSY:
1717 			/* else it is being freed elsewhere */
1718 			list_move(&page->lru, src);
1719 			continue;
1720 
1721 		default:
1722 			BUG();
1723 		}
1724 	}
1725 
1726 	/*
1727 	 * Splice any skipped pages to the start of the LRU list. Note that
1728 	 * this disrupts the LRU order when reclaiming for lower zones but
1729 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1730 	 * scanning would soon rescan the same pages to skip and put the
1731 	 * system at risk of premature OOM.
1732 	 */
1733 	if (!list_empty(&pages_skipped)) {
1734 		int zid;
1735 
1736 		list_splice(&pages_skipped, src);
1737 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1738 			if (!nr_skipped[zid])
1739 				continue;
1740 
1741 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1742 			skipped += nr_skipped[zid];
1743 		}
1744 	}
1745 	*nr_scanned = total_scan;
1746 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1747 				    total_scan, skipped, nr_taken, mode, lru);
1748 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1749 	return nr_taken;
1750 }
1751 
1752 /**
1753  * isolate_lru_page - tries to isolate a page from its LRU list
1754  * @page: page to isolate from its LRU list
1755  *
1756  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1757  * vmstat statistic corresponding to whatever LRU list the page was on.
1758  *
1759  * Returns 0 if the page was removed from an LRU list.
1760  * Returns -EBUSY if the page was not on an LRU list.
1761  *
1762  * The returned page will have PageLRU() cleared.  If it was found on
1763  * the active list, it will have PageActive set.  If it was found on
1764  * the unevictable list, it will have the PageUnevictable bit set. That flag
1765  * may need to be cleared by the caller before letting the page go.
1766  *
1767  * The vmstat statistic corresponding to the list on which the page was
1768  * found will be decremented.
1769  *
1770  * Restrictions:
1771  *
1772  * (1) Must be called with an elevated refcount on the page. This is a
1773  *     fundamentnal difference from isolate_lru_pages (which is called
1774  *     without a stable reference).
1775  * (2) the lru_lock must not be held.
1776  * (3) interrupts must be enabled.
1777  */
1778 int isolate_lru_page(struct page *page)
1779 {
1780 	int ret = -EBUSY;
1781 
1782 	VM_BUG_ON_PAGE(!page_count(page), page);
1783 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1784 
1785 	if (PageLRU(page)) {
1786 		pg_data_t *pgdat = page_pgdat(page);
1787 		struct lruvec *lruvec;
1788 
1789 		spin_lock_irq(&pgdat->lru_lock);
1790 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1791 		if (PageLRU(page)) {
1792 			int lru = page_lru(page);
1793 			get_page(page);
1794 			ClearPageLRU(page);
1795 			del_page_from_lru_list(page, lruvec, lru);
1796 			ret = 0;
1797 		}
1798 		spin_unlock_irq(&pgdat->lru_lock);
1799 	}
1800 	return ret;
1801 }
1802 
1803 /*
1804  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1805  * then get resheduled. When there are massive number of tasks doing page
1806  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1807  * the LRU list will go small and be scanned faster than necessary, leading to
1808  * unnecessary swapping, thrashing and OOM.
1809  */
1810 static int too_many_isolated(struct pglist_data *pgdat, int file,
1811 		struct scan_control *sc)
1812 {
1813 	unsigned long inactive, isolated;
1814 
1815 	if (current_is_kswapd())
1816 		return 0;
1817 
1818 	if (!sane_reclaim(sc))
1819 		return 0;
1820 
1821 	if (file) {
1822 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1823 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1824 	} else {
1825 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1826 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1827 	}
1828 
1829 	/*
1830 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1831 	 * won't get blocked by normal direct-reclaimers, forming a circular
1832 	 * deadlock.
1833 	 */
1834 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1835 		inactive >>= 3;
1836 
1837 	return isolated > inactive;
1838 }
1839 
1840 /*
1841  * This moves pages from @list to corresponding LRU list.
1842  *
1843  * We move them the other way if the page is referenced by one or more
1844  * processes, from rmap.
1845  *
1846  * If the pages are mostly unmapped, the processing is fast and it is
1847  * appropriate to hold zone_lru_lock across the whole operation.  But if
1848  * the pages are mapped, the processing is slow (page_referenced()) so we
1849  * should drop zone_lru_lock around each page.  It's impossible to balance
1850  * this, so instead we remove the pages from the LRU while processing them.
1851  * It is safe to rely on PG_active against the non-LRU pages in here because
1852  * nobody will play with that bit on a non-LRU page.
1853  *
1854  * The downside is that we have to touch page->_refcount against each page.
1855  * But we had to alter page->flags anyway.
1856  *
1857  * Returns the number of pages moved to the given lruvec.
1858  */
1859 
1860 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1861 						     struct list_head *list)
1862 {
1863 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1864 	int nr_pages, nr_moved = 0;
1865 	LIST_HEAD(pages_to_free);
1866 	struct page *page;
1867 	enum lru_list lru;
1868 
1869 	while (!list_empty(list)) {
1870 		page = lru_to_page(list);
1871 		VM_BUG_ON_PAGE(PageLRU(page), page);
1872 		if (unlikely(!page_evictable(page))) {
1873 			list_del(&page->lru);
1874 			spin_unlock_irq(&pgdat->lru_lock);
1875 			putback_lru_page(page);
1876 			spin_lock_irq(&pgdat->lru_lock);
1877 			continue;
1878 		}
1879 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1880 
1881 		SetPageLRU(page);
1882 		lru = page_lru(page);
1883 
1884 		nr_pages = hpage_nr_pages(page);
1885 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1886 		list_move(&page->lru, &lruvec->lists[lru]);
1887 
1888 		if (put_page_testzero(page)) {
1889 			__ClearPageLRU(page);
1890 			__ClearPageActive(page);
1891 			del_page_from_lru_list(page, lruvec, lru);
1892 
1893 			if (unlikely(PageCompound(page))) {
1894 				spin_unlock_irq(&pgdat->lru_lock);
1895 				mem_cgroup_uncharge(page);
1896 				(*get_compound_page_dtor(page))(page);
1897 				spin_lock_irq(&pgdat->lru_lock);
1898 			} else
1899 				list_add(&page->lru, &pages_to_free);
1900 		} else {
1901 			nr_moved += nr_pages;
1902 		}
1903 	}
1904 
1905 	/*
1906 	 * To save our caller's stack, now use input list for pages to free.
1907 	 */
1908 	list_splice(&pages_to_free, list);
1909 
1910 	return nr_moved;
1911 }
1912 
1913 /*
1914  * If a kernel thread (such as nfsd for loop-back mounts) services
1915  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1916  * In that case we should only throttle if the backing device it is
1917  * writing to is congested.  In other cases it is safe to throttle.
1918  */
1919 static int current_may_throttle(void)
1920 {
1921 	return !(current->flags & PF_LESS_THROTTLE) ||
1922 		current->backing_dev_info == NULL ||
1923 		bdi_write_congested(current->backing_dev_info);
1924 }
1925 
1926 /*
1927  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1928  * of reclaimed pages
1929  */
1930 static noinline_for_stack unsigned long
1931 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1932 		     struct scan_control *sc, enum lru_list lru)
1933 {
1934 	LIST_HEAD(page_list);
1935 	unsigned long nr_scanned;
1936 	unsigned long nr_reclaimed = 0;
1937 	unsigned long nr_taken;
1938 	struct reclaim_stat stat;
1939 	int file = is_file_lru(lru);
1940 	enum vm_event_item item;
1941 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1942 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1943 	bool stalled = false;
1944 
1945 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1946 		if (stalled)
1947 			return 0;
1948 
1949 		/* wait a bit for the reclaimer. */
1950 		msleep(100);
1951 		stalled = true;
1952 
1953 		/* We are about to die and free our memory. Return now. */
1954 		if (fatal_signal_pending(current))
1955 			return SWAP_CLUSTER_MAX;
1956 	}
1957 
1958 	lru_add_drain();
1959 
1960 	spin_lock_irq(&pgdat->lru_lock);
1961 
1962 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1963 				     &nr_scanned, sc, lru);
1964 
1965 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1966 	reclaim_stat->recent_scanned[file] += nr_taken;
1967 
1968 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1969 	if (global_reclaim(sc))
1970 		__count_vm_events(item, nr_scanned);
1971 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1972 	spin_unlock_irq(&pgdat->lru_lock);
1973 
1974 	if (nr_taken == 0)
1975 		return 0;
1976 
1977 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1978 				&stat, false);
1979 
1980 	spin_lock_irq(&pgdat->lru_lock);
1981 
1982 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1983 	if (global_reclaim(sc))
1984 		__count_vm_events(item, nr_reclaimed);
1985 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1986 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1987 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
1988 
1989 	move_pages_to_lru(lruvec, &page_list);
1990 
1991 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1992 
1993 	spin_unlock_irq(&pgdat->lru_lock);
1994 
1995 	mem_cgroup_uncharge_list(&page_list);
1996 	free_unref_page_list(&page_list);
1997 
1998 	/*
1999 	 * If dirty pages are scanned that are not queued for IO, it
2000 	 * implies that flushers are not doing their job. This can
2001 	 * happen when memory pressure pushes dirty pages to the end of
2002 	 * the LRU before the dirty limits are breached and the dirty
2003 	 * data has expired. It can also happen when the proportion of
2004 	 * dirty pages grows not through writes but through memory
2005 	 * pressure reclaiming all the clean cache. And in some cases,
2006 	 * the flushers simply cannot keep up with the allocation
2007 	 * rate. Nudge the flusher threads in case they are asleep.
2008 	 */
2009 	if (stat.nr_unqueued_dirty == nr_taken)
2010 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2011 
2012 	sc->nr.dirty += stat.nr_dirty;
2013 	sc->nr.congested += stat.nr_congested;
2014 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2015 	sc->nr.writeback += stat.nr_writeback;
2016 	sc->nr.immediate += stat.nr_immediate;
2017 	sc->nr.taken += nr_taken;
2018 	if (file)
2019 		sc->nr.file_taken += nr_taken;
2020 
2021 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2022 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2023 	return nr_reclaimed;
2024 }
2025 
2026 static void shrink_active_list(unsigned long nr_to_scan,
2027 			       struct lruvec *lruvec,
2028 			       struct scan_control *sc,
2029 			       enum lru_list lru)
2030 {
2031 	unsigned long nr_taken;
2032 	unsigned long nr_scanned;
2033 	unsigned long vm_flags;
2034 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2035 	LIST_HEAD(l_active);
2036 	LIST_HEAD(l_inactive);
2037 	struct page *page;
2038 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2039 	unsigned nr_deactivate, nr_activate;
2040 	unsigned nr_rotated = 0;
2041 	int file = is_file_lru(lru);
2042 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2043 
2044 	lru_add_drain();
2045 
2046 	spin_lock_irq(&pgdat->lru_lock);
2047 
2048 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2049 				     &nr_scanned, sc, lru);
2050 
2051 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2052 	reclaim_stat->recent_scanned[file] += nr_taken;
2053 
2054 	__count_vm_events(PGREFILL, nr_scanned);
2055 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2056 
2057 	spin_unlock_irq(&pgdat->lru_lock);
2058 
2059 	while (!list_empty(&l_hold)) {
2060 		cond_resched();
2061 		page = lru_to_page(&l_hold);
2062 		list_del(&page->lru);
2063 
2064 		if (unlikely(!page_evictable(page))) {
2065 			putback_lru_page(page);
2066 			continue;
2067 		}
2068 
2069 		if (unlikely(buffer_heads_over_limit)) {
2070 			if (page_has_private(page) && trylock_page(page)) {
2071 				if (page_has_private(page))
2072 					try_to_release_page(page, 0);
2073 				unlock_page(page);
2074 			}
2075 		}
2076 
2077 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2078 				    &vm_flags)) {
2079 			nr_rotated += hpage_nr_pages(page);
2080 			/*
2081 			 * Identify referenced, file-backed active pages and
2082 			 * give them one more trip around the active list. So
2083 			 * that executable code get better chances to stay in
2084 			 * memory under moderate memory pressure.  Anon pages
2085 			 * are not likely to be evicted by use-once streaming
2086 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2087 			 * so we ignore them here.
2088 			 */
2089 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2090 				list_add(&page->lru, &l_active);
2091 				continue;
2092 			}
2093 		}
2094 
2095 		ClearPageActive(page);	/* we are de-activating */
2096 		SetPageWorkingset(page);
2097 		list_add(&page->lru, &l_inactive);
2098 	}
2099 
2100 	/*
2101 	 * Move pages back to the lru list.
2102 	 */
2103 	spin_lock_irq(&pgdat->lru_lock);
2104 	/*
2105 	 * Count referenced pages from currently used mappings as rotated,
2106 	 * even though only some of them are actually re-activated.  This
2107 	 * helps balance scan pressure between file and anonymous pages in
2108 	 * get_scan_count.
2109 	 */
2110 	reclaim_stat->recent_rotated[file] += nr_rotated;
2111 
2112 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2113 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2114 	/* Keep all free pages in l_active list */
2115 	list_splice(&l_inactive, &l_active);
2116 
2117 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2118 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2119 
2120 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2121 	spin_unlock_irq(&pgdat->lru_lock);
2122 
2123 	mem_cgroup_uncharge_list(&l_active);
2124 	free_unref_page_list(&l_active);
2125 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2126 			nr_deactivate, nr_rotated, sc->priority, file);
2127 }
2128 
2129 /*
2130  * The inactive anon list should be small enough that the VM never has
2131  * to do too much work.
2132  *
2133  * The inactive file list should be small enough to leave most memory
2134  * to the established workingset on the scan-resistant active list,
2135  * but large enough to avoid thrashing the aggregate readahead window.
2136  *
2137  * Both inactive lists should also be large enough that each inactive
2138  * page has a chance to be referenced again before it is reclaimed.
2139  *
2140  * If that fails and refaulting is observed, the inactive list grows.
2141  *
2142  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2143  * on this LRU, maintained by the pageout code. An inactive_ratio
2144  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2145  *
2146  * total     target    max
2147  * memory    ratio     inactive
2148  * -------------------------------------
2149  *   10MB       1         5MB
2150  *  100MB       1        50MB
2151  *    1GB       3       250MB
2152  *   10GB      10       0.9GB
2153  *  100GB      31         3GB
2154  *    1TB     101        10GB
2155  *   10TB     320        32GB
2156  */
2157 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2158 				 struct scan_control *sc, bool trace)
2159 {
2160 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2161 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2162 	enum lru_list inactive_lru = file * LRU_FILE;
2163 	unsigned long inactive, active;
2164 	unsigned long inactive_ratio;
2165 	unsigned long refaults;
2166 	unsigned long gb;
2167 
2168 	/*
2169 	 * If we don't have swap space, anonymous page deactivation
2170 	 * is pointless.
2171 	 */
2172 	if (!file && !total_swap_pages)
2173 		return false;
2174 
2175 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2176 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2177 
2178 	/*
2179 	 * When refaults are being observed, it means a new workingset
2180 	 * is being established. Disable active list protection to get
2181 	 * rid of the stale workingset quickly.
2182 	 */
2183 	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2184 	if (file && lruvec->refaults != refaults) {
2185 		inactive_ratio = 0;
2186 	} else {
2187 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2188 		if (gb)
2189 			inactive_ratio = int_sqrt(10 * gb);
2190 		else
2191 			inactive_ratio = 1;
2192 	}
2193 
2194 	if (trace)
2195 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2196 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2197 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2198 			inactive_ratio, file);
2199 
2200 	return inactive * inactive_ratio < active;
2201 }
2202 
2203 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2204 				 struct lruvec *lruvec, struct scan_control *sc)
2205 {
2206 	if (is_active_lru(lru)) {
2207 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2208 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2209 		return 0;
2210 	}
2211 
2212 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2213 }
2214 
2215 enum scan_balance {
2216 	SCAN_EQUAL,
2217 	SCAN_FRACT,
2218 	SCAN_ANON,
2219 	SCAN_FILE,
2220 };
2221 
2222 /*
2223  * Determine how aggressively the anon and file LRU lists should be
2224  * scanned.  The relative value of each set of LRU lists is determined
2225  * by looking at the fraction of the pages scanned we did rotate back
2226  * onto the active list instead of evict.
2227  *
2228  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2229  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2230  */
2231 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2232 			   struct scan_control *sc, unsigned long *nr,
2233 			   unsigned long *lru_pages)
2234 {
2235 	int swappiness = mem_cgroup_swappiness(memcg);
2236 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2237 	u64 fraction[2];
2238 	u64 denominator = 0;	/* gcc */
2239 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2240 	unsigned long anon_prio, file_prio;
2241 	enum scan_balance scan_balance;
2242 	unsigned long anon, file;
2243 	unsigned long ap, fp;
2244 	enum lru_list lru;
2245 
2246 	/* If we have no swap space, do not bother scanning anon pages. */
2247 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2248 		scan_balance = SCAN_FILE;
2249 		goto out;
2250 	}
2251 
2252 	/*
2253 	 * Global reclaim will swap to prevent OOM even with no
2254 	 * swappiness, but memcg users want to use this knob to
2255 	 * disable swapping for individual groups completely when
2256 	 * using the memory controller's swap limit feature would be
2257 	 * too expensive.
2258 	 */
2259 	if (!global_reclaim(sc) && !swappiness) {
2260 		scan_balance = SCAN_FILE;
2261 		goto out;
2262 	}
2263 
2264 	/*
2265 	 * Do not apply any pressure balancing cleverness when the
2266 	 * system is close to OOM, scan both anon and file equally
2267 	 * (unless the swappiness setting disagrees with swapping).
2268 	 */
2269 	if (!sc->priority && swappiness) {
2270 		scan_balance = SCAN_EQUAL;
2271 		goto out;
2272 	}
2273 
2274 	/*
2275 	 * Prevent the reclaimer from falling into the cache trap: as
2276 	 * cache pages start out inactive, every cache fault will tip
2277 	 * the scan balance towards the file LRU.  And as the file LRU
2278 	 * shrinks, so does the window for rotation from references.
2279 	 * This means we have a runaway feedback loop where a tiny
2280 	 * thrashing file LRU becomes infinitely more attractive than
2281 	 * anon pages.  Try to detect this based on file LRU size.
2282 	 */
2283 	if (global_reclaim(sc)) {
2284 		unsigned long pgdatfile;
2285 		unsigned long pgdatfree;
2286 		int z;
2287 		unsigned long total_high_wmark = 0;
2288 
2289 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2290 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2291 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2292 
2293 		for (z = 0; z < MAX_NR_ZONES; z++) {
2294 			struct zone *zone = &pgdat->node_zones[z];
2295 			if (!managed_zone(zone))
2296 				continue;
2297 
2298 			total_high_wmark += high_wmark_pages(zone);
2299 		}
2300 
2301 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2302 			/*
2303 			 * Force SCAN_ANON if there are enough inactive
2304 			 * anonymous pages on the LRU in eligible zones.
2305 			 * Otherwise, the small LRU gets thrashed.
2306 			 */
2307 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2308 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2309 					>> sc->priority) {
2310 				scan_balance = SCAN_ANON;
2311 				goto out;
2312 			}
2313 		}
2314 	}
2315 
2316 	/*
2317 	 * If there is enough inactive page cache, i.e. if the size of the
2318 	 * inactive list is greater than that of the active list *and* the
2319 	 * inactive list actually has some pages to scan on this priority, we
2320 	 * do not reclaim anything from the anonymous working set right now.
2321 	 * Without the second condition we could end up never scanning an
2322 	 * lruvec even if it has plenty of old anonymous pages unless the
2323 	 * system is under heavy pressure.
2324 	 */
2325 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2326 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2327 		scan_balance = SCAN_FILE;
2328 		goto out;
2329 	}
2330 
2331 	scan_balance = SCAN_FRACT;
2332 
2333 	/*
2334 	 * With swappiness at 100, anonymous and file have the same priority.
2335 	 * This scanning priority is essentially the inverse of IO cost.
2336 	 */
2337 	anon_prio = swappiness;
2338 	file_prio = 200 - anon_prio;
2339 
2340 	/*
2341 	 * OK, so we have swap space and a fair amount of page cache
2342 	 * pages.  We use the recently rotated / recently scanned
2343 	 * ratios to determine how valuable each cache is.
2344 	 *
2345 	 * Because workloads change over time (and to avoid overflow)
2346 	 * we keep these statistics as a floating average, which ends
2347 	 * up weighing recent references more than old ones.
2348 	 *
2349 	 * anon in [0], file in [1]
2350 	 */
2351 
2352 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2353 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2354 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2355 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2356 
2357 	spin_lock_irq(&pgdat->lru_lock);
2358 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2359 		reclaim_stat->recent_scanned[0] /= 2;
2360 		reclaim_stat->recent_rotated[0] /= 2;
2361 	}
2362 
2363 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2364 		reclaim_stat->recent_scanned[1] /= 2;
2365 		reclaim_stat->recent_rotated[1] /= 2;
2366 	}
2367 
2368 	/*
2369 	 * The amount of pressure on anon vs file pages is inversely
2370 	 * proportional to the fraction of recently scanned pages on
2371 	 * each list that were recently referenced and in active use.
2372 	 */
2373 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2374 	ap /= reclaim_stat->recent_rotated[0] + 1;
2375 
2376 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2377 	fp /= reclaim_stat->recent_rotated[1] + 1;
2378 	spin_unlock_irq(&pgdat->lru_lock);
2379 
2380 	fraction[0] = ap;
2381 	fraction[1] = fp;
2382 	denominator = ap + fp + 1;
2383 out:
2384 	*lru_pages = 0;
2385 	for_each_evictable_lru(lru) {
2386 		int file = is_file_lru(lru);
2387 		unsigned long size;
2388 		unsigned long scan;
2389 
2390 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2391 		scan = size >> sc->priority;
2392 		/*
2393 		 * If the cgroup's already been deleted, make sure to
2394 		 * scrape out the remaining cache.
2395 		 */
2396 		if (!scan && !mem_cgroup_online(memcg))
2397 			scan = min(size, SWAP_CLUSTER_MAX);
2398 
2399 		switch (scan_balance) {
2400 		case SCAN_EQUAL:
2401 			/* Scan lists relative to size */
2402 			break;
2403 		case SCAN_FRACT:
2404 			/*
2405 			 * Scan types proportional to swappiness and
2406 			 * their relative recent reclaim efficiency.
2407 			 * Make sure we don't miss the last page
2408 			 * because of a round-off error.
2409 			 */
2410 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2411 						  denominator);
2412 			break;
2413 		case SCAN_FILE:
2414 		case SCAN_ANON:
2415 			/* Scan one type exclusively */
2416 			if ((scan_balance == SCAN_FILE) != file) {
2417 				size = 0;
2418 				scan = 0;
2419 			}
2420 			break;
2421 		default:
2422 			/* Look ma, no brain */
2423 			BUG();
2424 		}
2425 
2426 		*lru_pages += size;
2427 		nr[lru] = scan;
2428 	}
2429 }
2430 
2431 /*
2432  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2433  */
2434 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2435 			      struct scan_control *sc, unsigned long *lru_pages)
2436 {
2437 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2438 	unsigned long nr[NR_LRU_LISTS];
2439 	unsigned long targets[NR_LRU_LISTS];
2440 	unsigned long nr_to_scan;
2441 	enum lru_list lru;
2442 	unsigned long nr_reclaimed = 0;
2443 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2444 	struct blk_plug plug;
2445 	bool scan_adjusted;
2446 
2447 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2448 
2449 	/* Record the original scan target for proportional adjustments later */
2450 	memcpy(targets, nr, sizeof(nr));
2451 
2452 	/*
2453 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2454 	 * event that can occur when there is little memory pressure e.g.
2455 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2456 	 * when the requested number of pages are reclaimed when scanning at
2457 	 * DEF_PRIORITY on the assumption that the fact we are direct
2458 	 * reclaiming implies that kswapd is not keeping up and it is best to
2459 	 * do a batch of work at once. For memcg reclaim one check is made to
2460 	 * abort proportional reclaim if either the file or anon lru has already
2461 	 * dropped to zero at the first pass.
2462 	 */
2463 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2464 			 sc->priority == DEF_PRIORITY);
2465 
2466 	blk_start_plug(&plug);
2467 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2468 					nr[LRU_INACTIVE_FILE]) {
2469 		unsigned long nr_anon, nr_file, percentage;
2470 		unsigned long nr_scanned;
2471 
2472 		for_each_evictable_lru(lru) {
2473 			if (nr[lru]) {
2474 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2475 				nr[lru] -= nr_to_scan;
2476 
2477 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2478 							    lruvec, sc);
2479 			}
2480 		}
2481 
2482 		cond_resched();
2483 
2484 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2485 			continue;
2486 
2487 		/*
2488 		 * For kswapd and memcg, reclaim at least the number of pages
2489 		 * requested. Ensure that the anon and file LRUs are scanned
2490 		 * proportionally what was requested by get_scan_count(). We
2491 		 * stop reclaiming one LRU and reduce the amount scanning
2492 		 * proportional to the original scan target.
2493 		 */
2494 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2495 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2496 
2497 		/*
2498 		 * It's just vindictive to attack the larger once the smaller
2499 		 * has gone to zero.  And given the way we stop scanning the
2500 		 * smaller below, this makes sure that we only make one nudge
2501 		 * towards proportionality once we've got nr_to_reclaim.
2502 		 */
2503 		if (!nr_file || !nr_anon)
2504 			break;
2505 
2506 		if (nr_file > nr_anon) {
2507 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2508 						targets[LRU_ACTIVE_ANON] + 1;
2509 			lru = LRU_BASE;
2510 			percentage = nr_anon * 100 / scan_target;
2511 		} else {
2512 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2513 						targets[LRU_ACTIVE_FILE] + 1;
2514 			lru = LRU_FILE;
2515 			percentage = nr_file * 100 / scan_target;
2516 		}
2517 
2518 		/* Stop scanning the smaller of the LRU */
2519 		nr[lru] = 0;
2520 		nr[lru + LRU_ACTIVE] = 0;
2521 
2522 		/*
2523 		 * Recalculate the other LRU scan count based on its original
2524 		 * scan target and the percentage scanning already complete
2525 		 */
2526 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2527 		nr_scanned = targets[lru] - nr[lru];
2528 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2529 		nr[lru] -= min(nr[lru], nr_scanned);
2530 
2531 		lru += LRU_ACTIVE;
2532 		nr_scanned = targets[lru] - nr[lru];
2533 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2534 		nr[lru] -= min(nr[lru], nr_scanned);
2535 
2536 		scan_adjusted = true;
2537 	}
2538 	blk_finish_plug(&plug);
2539 	sc->nr_reclaimed += nr_reclaimed;
2540 
2541 	/*
2542 	 * Even if we did not try to evict anon pages at all, we want to
2543 	 * rebalance the anon lru active/inactive ratio.
2544 	 */
2545 	if (inactive_list_is_low(lruvec, false, sc, true))
2546 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2547 				   sc, LRU_ACTIVE_ANON);
2548 }
2549 
2550 /* Use reclaim/compaction for costly allocs or under memory pressure */
2551 static bool in_reclaim_compaction(struct scan_control *sc)
2552 {
2553 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2554 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2555 			 sc->priority < DEF_PRIORITY - 2))
2556 		return true;
2557 
2558 	return false;
2559 }
2560 
2561 /*
2562  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2563  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2564  * true if more pages should be reclaimed such that when the page allocator
2565  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2566  * It will give up earlier than that if there is difficulty reclaiming pages.
2567  */
2568 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2569 					unsigned long nr_reclaimed,
2570 					unsigned long nr_scanned,
2571 					struct scan_control *sc)
2572 {
2573 	unsigned long pages_for_compaction;
2574 	unsigned long inactive_lru_pages;
2575 	int z;
2576 
2577 	/* If not in reclaim/compaction mode, stop */
2578 	if (!in_reclaim_compaction(sc))
2579 		return false;
2580 
2581 	/* Consider stopping depending on scan and reclaim activity */
2582 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2583 		/*
2584 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2585 		 * full LRU list has been scanned and we are still failing
2586 		 * to reclaim pages. This full LRU scan is potentially
2587 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2588 		 */
2589 		if (!nr_reclaimed && !nr_scanned)
2590 			return false;
2591 	} else {
2592 		/*
2593 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2594 		 * fail without consequence, stop if we failed to reclaim
2595 		 * any pages from the last SWAP_CLUSTER_MAX number of
2596 		 * pages that were scanned. This will return to the
2597 		 * caller faster at the risk reclaim/compaction and
2598 		 * the resulting allocation attempt fails
2599 		 */
2600 		if (!nr_reclaimed)
2601 			return false;
2602 	}
2603 
2604 	/*
2605 	 * If we have not reclaimed enough pages for compaction and the
2606 	 * inactive lists are large enough, continue reclaiming
2607 	 */
2608 	pages_for_compaction = compact_gap(sc->order);
2609 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2610 	if (get_nr_swap_pages() > 0)
2611 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2612 	if (sc->nr_reclaimed < pages_for_compaction &&
2613 			inactive_lru_pages > pages_for_compaction)
2614 		return true;
2615 
2616 	/* If compaction would go ahead or the allocation would succeed, stop */
2617 	for (z = 0; z <= sc->reclaim_idx; z++) {
2618 		struct zone *zone = &pgdat->node_zones[z];
2619 		if (!managed_zone(zone))
2620 			continue;
2621 
2622 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2623 		case COMPACT_SUCCESS:
2624 		case COMPACT_CONTINUE:
2625 			return false;
2626 		default:
2627 			/* check next zone */
2628 			;
2629 		}
2630 	}
2631 	return true;
2632 }
2633 
2634 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2635 {
2636 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2637 		(memcg && memcg_congested(pgdat, memcg));
2638 }
2639 
2640 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2641 {
2642 	struct reclaim_state *reclaim_state = current->reclaim_state;
2643 	unsigned long nr_reclaimed, nr_scanned;
2644 	bool reclaimable = false;
2645 
2646 	do {
2647 		struct mem_cgroup *root = sc->target_mem_cgroup;
2648 		struct mem_cgroup_reclaim_cookie reclaim = {
2649 			.pgdat = pgdat,
2650 			.priority = sc->priority,
2651 		};
2652 		unsigned long node_lru_pages = 0;
2653 		struct mem_cgroup *memcg;
2654 
2655 		memset(&sc->nr, 0, sizeof(sc->nr));
2656 
2657 		nr_reclaimed = sc->nr_reclaimed;
2658 		nr_scanned = sc->nr_scanned;
2659 
2660 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2661 		do {
2662 			unsigned long lru_pages;
2663 			unsigned long reclaimed;
2664 			unsigned long scanned;
2665 
2666 			switch (mem_cgroup_protected(root, memcg)) {
2667 			case MEMCG_PROT_MIN:
2668 				/*
2669 				 * Hard protection.
2670 				 * If there is no reclaimable memory, OOM.
2671 				 */
2672 				continue;
2673 			case MEMCG_PROT_LOW:
2674 				/*
2675 				 * Soft protection.
2676 				 * Respect the protection only as long as
2677 				 * there is an unprotected supply
2678 				 * of reclaimable memory from other cgroups.
2679 				 */
2680 				if (!sc->memcg_low_reclaim) {
2681 					sc->memcg_low_skipped = 1;
2682 					continue;
2683 				}
2684 				memcg_memory_event(memcg, MEMCG_LOW);
2685 				break;
2686 			case MEMCG_PROT_NONE:
2687 				break;
2688 			}
2689 
2690 			reclaimed = sc->nr_reclaimed;
2691 			scanned = sc->nr_scanned;
2692 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2693 			node_lru_pages += lru_pages;
2694 
2695 			if (sc->may_shrinkslab) {
2696 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2697 				    memcg, sc->priority);
2698 			}
2699 
2700 			/* Record the group's reclaim efficiency */
2701 			vmpressure(sc->gfp_mask, memcg, false,
2702 				   sc->nr_scanned - scanned,
2703 				   sc->nr_reclaimed - reclaimed);
2704 
2705 			/*
2706 			 * Kswapd have to scan all memory cgroups to fulfill
2707 			 * the overall scan target for the node.
2708 			 *
2709 			 * Limit reclaim, on the other hand, only cares about
2710 			 * nr_to_reclaim pages to be reclaimed and it will
2711 			 * retry with decreasing priority if one round over the
2712 			 * whole hierarchy is not sufficient.
2713 			 */
2714 			if (!current_is_kswapd() &&
2715 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2716 				mem_cgroup_iter_break(root, memcg);
2717 				break;
2718 			}
2719 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2720 
2721 		if (reclaim_state) {
2722 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2723 			reclaim_state->reclaimed_slab = 0;
2724 		}
2725 
2726 		/* Record the subtree's reclaim efficiency */
2727 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2728 			   sc->nr_scanned - nr_scanned,
2729 			   sc->nr_reclaimed - nr_reclaimed);
2730 
2731 		if (sc->nr_reclaimed - nr_reclaimed)
2732 			reclaimable = true;
2733 
2734 		if (current_is_kswapd()) {
2735 			/*
2736 			 * If reclaim is isolating dirty pages under writeback,
2737 			 * it implies that the long-lived page allocation rate
2738 			 * is exceeding the page laundering rate. Either the
2739 			 * global limits are not being effective at throttling
2740 			 * processes due to the page distribution throughout
2741 			 * zones or there is heavy usage of a slow backing
2742 			 * device. The only option is to throttle from reclaim
2743 			 * context which is not ideal as there is no guarantee
2744 			 * the dirtying process is throttled in the same way
2745 			 * balance_dirty_pages() manages.
2746 			 *
2747 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2748 			 * count the number of pages under pages flagged for
2749 			 * immediate reclaim and stall if any are encountered
2750 			 * in the nr_immediate check below.
2751 			 */
2752 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2753 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2754 
2755 			/*
2756 			 * Tag a node as congested if all the dirty pages
2757 			 * scanned were backed by a congested BDI and
2758 			 * wait_iff_congested will stall.
2759 			 */
2760 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2761 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2762 
2763 			/* Allow kswapd to start writing pages during reclaim.*/
2764 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2765 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2766 
2767 			/*
2768 			 * If kswapd scans pages marked marked for immediate
2769 			 * reclaim and under writeback (nr_immediate), it
2770 			 * implies that pages are cycling through the LRU
2771 			 * faster than they are written so also forcibly stall.
2772 			 */
2773 			if (sc->nr.immediate)
2774 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2775 		}
2776 
2777 		/*
2778 		 * Legacy memcg will stall in page writeback so avoid forcibly
2779 		 * stalling in wait_iff_congested().
2780 		 */
2781 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2782 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2783 			set_memcg_congestion(pgdat, root, true);
2784 
2785 		/*
2786 		 * Stall direct reclaim for IO completions if underlying BDIs
2787 		 * and node is congested. Allow kswapd to continue until it
2788 		 * starts encountering unqueued dirty pages or cycling through
2789 		 * the LRU too quickly.
2790 		 */
2791 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2792 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2793 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2794 
2795 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2796 					 sc->nr_scanned - nr_scanned, sc));
2797 
2798 	/*
2799 	 * Kswapd gives up on balancing particular nodes after too
2800 	 * many failures to reclaim anything from them and goes to
2801 	 * sleep. On reclaim progress, reset the failure counter. A
2802 	 * successful direct reclaim run will revive a dormant kswapd.
2803 	 */
2804 	if (reclaimable)
2805 		pgdat->kswapd_failures = 0;
2806 
2807 	return reclaimable;
2808 }
2809 
2810 /*
2811  * Returns true if compaction should go ahead for a costly-order request, or
2812  * the allocation would already succeed without compaction. Return false if we
2813  * should reclaim first.
2814  */
2815 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2816 {
2817 	unsigned long watermark;
2818 	enum compact_result suitable;
2819 
2820 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2821 	if (suitable == COMPACT_SUCCESS)
2822 		/* Allocation should succeed already. Don't reclaim. */
2823 		return true;
2824 	if (suitable == COMPACT_SKIPPED)
2825 		/* Compaction cannot yet proceed. Do reclaim. */
2826 		return false;
2827 
2828 	/*
2829 	 * Compaction is already possible, but it takes time to run and there
2830 	 * are potentially other callers using the pages just freed. So proceed
2831 	 * with reclaim to make a buffer of free pages available to give
2832 	 * compaction a reasonable chance of completing and allocating the page.
2833 	 * Note that we won't actually reclaim the whole buffer in one attempt
2834 	 * as the target watermark in should_continue_reclaim() is lower. But if
2835 	 * we are already above the high+gap watermark, don't reclaim at all.
2836 	 */
2837 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2838 
2839 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2840 }
2841 
2842 /*
2843  * This is the direct reclaim path, for page-allocating processes.  We only
2844  * try to reclaim pages from zones which will satisfy the caller's allocation
2845  * request.
2846  *
2847  * If a zone is deemed to be full of pinned pages then just give it a light
2848  * scan then give up on it.
2849  */
2850 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2851 {
2852 	struct zoneref *z;
2853 	struct zone *zone;
2854 	unsigned long nr_soft_reclaimed;
2855 	unsigned long nr_soft_scanned;
2856 	gfp_t orig_mask;
2857 	pg_data_t *last_pgdat = NULL;
2858 
2859 	/*
2860 	 * If the number of buffer_heads in the machine exceeds the maximum
2861 	 * allowed level, force direct reclaim to scan the highmem zone as
2862 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2863 	 */
2864 	orig_mask = sc->gfp_mask;
2865 	if (buffer_heads_over_limit) {
2866 		sc->gfp_mask |= __GFP_HIGHMEM;
2867 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2868 	}
2869 
2870 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2871 					sc->reclaim_idx, sc->nodemask) {
2872 		/*
2873 		 * Take care memory controller reclaiming has small influence
2874 		 * to global LRU.
2875 		 */
2876 		if (global_reclaim(sc)) {
2877 			if (!cpuset_zone_allowed(zone,
2878 						 GFP_KERNEL | __GFP_HARDWALL))
2879 				continue;
2880 
2881 			/*
2882 			 * If we already have plenty of memory free for
2883 			 * compaction in this zone, don't free any more.
2884 			 * Even though compaction is invoked for any
2885 			 * non-zero order, only frequent costly order
2886 			 * reclamation is disruptive enough to become a
2887 			 * noticeable problem, like transparent huge
2888 			 * page allocations.
2889 			 */
2890 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2891 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2892 			    compaction_ready(zone, sc)) {
2893 				sc->compaction_ready = true;
2894 				continue;
2895 			}
2896 
2897 			/*
2898 			 * Shrink each node in the zonelist once. If the
2899 			 * zonelist is ordered by zone (not the default) then a
2900 			 * node may be shrunk multiple times but in that case
2901 			 * the user prefers lower zones being preserved.
2902 			 */
2903 			if (zone->zone_pgdat == last_pgdat)
2904 				continue;
2905 
2906 			/*
2907 			 * This steals pages from memory cgroups over softlimit
2908 			 * and returns the number of reclaimed pages and
2909 			 * scanned pages. This works for global memory pressure
2910 			 * and balancing, not for a memcg's limit.
2911 			 */
2912 			nr_soft_scanned = 0;
2913 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2914 						sc->order, sc->gfp_mask,
2915 						&nr_soft_scanned);
2916 			sc->nr_reclaimed += nr_soft_reclaimed;
2917 			sc->nr_scanned += nr_soft_scanned;
2918 			/* need some check for avoid more shrink_zone() */
2919 		}
2920 
2921 		/* See comment about same check for global reclaim above */
2922 		if (zone->zone_pgdat == last_pgdat)
2923 			continue;
2924 		last_pgdat = zone->zone_pgdat;
2925 		shrink_node(zone->zone_pgdat, sc);
2926 	}
2927 
2928 	/*
2929 	 * Restore to original mask to avoid the impact on the caller if we
2930 	 * promoted it to __GFP_HIGHMEM.
2931 	 */
2932 	sc->gfp_mask = orig_mask;
2933 }
2934 
2935 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2936 {
2937 	struct mem_cgroup *memcg;
2938 
2939 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2940 	do {
2941 		unsigned long refaults;
2942 		struct lruvec *lruvec;
2943 
2944 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2945 		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2946 		lruvec->refaults = refaults;
2947 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2948 }
2949 
2950 /*
2951  * This is the main entry point to direct page reclaim.
2952  *
2953  * If a full scan of the inactive list fails to free enough memory then we
2954  * are "out of memory" and something needs to be killed.
2955  *
2956  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2957  * high - the zone may be full of dirty or under-writeback pages, which this
2958  * caller can't do much about.  We kick the writeback threads and take explicit
2959  * naps in the hope that some of these pages can be written.  But if the
2960  * allocating task holds filesystem locks which prevent writeout this might not
2961  * work, and the allocation attempt will fail.
2962  *
2963  * returns:	0, if no pages reclaimed
2964  * 		else, the number of pages reclaimed
2965  */
2966 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2967 					  struct scan_control *sc)
2968 {
2969 	int initial_priority = sc->priority;
2970 	pg_data_t *last_pgdat;
2971 	struct zoneref *z;
2972 	struct zone *zone;
2973 retry:
2974 	delayacct_freepages_start();
2975 
2976 	if (global_reclaim(sc))
2977 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2978 
2979 	do {
2980 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2981 				sc->priority);
2982 		sc->nr_scanned = 0;
2983 		shrink_zones(zonelist, sc);
2984 
2985 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2986 			break;
2987 
2988 		if (sc->compaction_ready)
2989 			break;
2990 
2991 		/*
2992 		 * If we're getting trouble reclaiming, start doing
2993 		 * writepage even in laptop mode.
2994 		 */
2995 		if (sc->priority < DEF_PRIORITY - 2)
2996 			sc->may_writepage = 1;
2997 	} while (--sc->priority >= 0);
2998 
2999 	last_pgdat = NULL;
3000 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3001 					sc->nodemask) {
3002 		if (zone->zone_pgdat == last_pgdat)
3003 			continue;
3004 		last_pgdat = zone->zone_pgdat;
3005 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3006 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3007 	}
3008 
3009 	delayacct_freepages_end();
3010 
3011 	if (sc->nr_reclaimed)
3012 		return sc->nr_reclaimed;
3013 
3014 	/* Aborted reclaim to try compaction? don't OOM, then */
3015 	if (sc->compaction_ready)
3016 		return 1;
3017 
3018 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3019 	if (sc->memcg_low_skipped) {
3020 		sc->priority = initial_priority;
3021 		sc->memcg_low_reclaim = 1;
3022 		sc->memcg_low_skipped = 0;
3023 		goto retry;
3024 	}
3025 
3026 	return 0;
3027 }
3028 
3029 static bool allow_direct_reclaim(pg_data_t *pgdat)
3030 {
3031 	struct zone *zone;
3032 	unsigned long pfmemalloc_reserve = 0;
3033 	unsigned long free_pages = 0;
3034 	int i;
3035 	bool wmark_ok;
3036 
3037 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3038 		return true;
3039 
3040 	for (i = 0; i <= ZONE_NORMAL; i++) {
3041 		zone = &pgdat->node_zones[i];
3042 		if (!managed_zone(zone))
3043 			continue;
3044 
3045 		if (!zone_reclaimable_pages(zone))
3046 			continue;
3047 
3048 		pfmemalloc_reserve += min_wmark_pages(zone);
3049 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3050 	}
3051 
3052 	/* If there are no reserves (unexpected config) then do not throttle */
3053 	if (!pfmemalloc_reserve)
3054 		return true;
3055 
3056 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3057 
3058 	/* kswapd must be awake if processes are being throttled */
3059 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3060 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3061 						(enum zone_type)ZONE_NORMAL);
3062 		wake_up_interruptible(&pgdat->kswapd_wait);
3063 	}
3064 
3065 	return wmark_ok;
3066 }
3067 
3068 /*
3069  * Throttle direct reclaimers if backing storage is backed by the network
3070  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3071  * depleted. kswapd will continue to make progress and wake the processes
3072  * when the low watermark is reached.
3073  *
3074  * Returns true if a fatal signal was delivered during throttling. If this
3075  * happens, the page allocator should not consider triggering the OOM killer.
3076  */
3077 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3078 					nodemask_t *nodemask)
3079 {
3080 	struct zoneref *z;
3081 	struct zone *zone;
3082 	pg_data_t *pgdat = NULL;
3083 
3084 	/*
3085 	 * Kernel threads should not be throttled as they may be indirectly
3086 	 * responsible for cleaning pages necessary for reclaim to make forward
3087 	 * progress. kjournald for example may enter direct reclaim while
3088 	 * committing a transaction where throttling it could forcing other
3089 	 * processes to block on log_wait_commit().
3090 	 */
3091 	if (current->flags & PF_KTHREAD)
3092 		goto out;
3093 
3094 	/*
3095 	 * If a fatal signal is pending, this process should not throttle.
3096 	 * It should return quickly so it can exit and free its memory
3097 	 */
3098 	if (fatal_signal_pending(current))
3099 		goto out;
3100 
3101 	/*
3102 	 * Check if the pfmemalloc reserves are ok by finding the first node
3103 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3104 	 * GFP_KERNEL will be required for allocating network buffers when
3105 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3106 	 *
3107 	 * Throttling is based on the first usable node and throttled processes
3108 	 * wait on a queue until kswapd makes progress and wakes them. There
3109 	 * is an affinity then between processes waking up and where reclaim
3110 	 * progress has been made assuming the process wakes on the same node.
3111 	 * More importantly, processes running on remote nodes will not compete
3112 	 * for remote pfmemalloc reserves and processes on different nodes
3113 	 * should make reasonable progress.
3114 	 */
3115 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3116 					gfp_zone(gfp_mask), nodemask) {
3117 		if (zone_idx(zone) > ZONE_NORMAL)
3118 			continue;
3119 
3120 		/* Throttle based on the first usable node */
3121 		pgdat = zone->zone_pgdat;
3122 		if (allow_direct_reclaim(pgdat))
3123 			goto out;
3124 		break;
3125 	}
3126 
3127 	/* If no zone was usable by the allocation flags then do not throttle */
3128 	if (!pgdat)
3129 		goto out;
3130 
3131 	/* Account for the throttling */
3132 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3133 
3134 	/*
3135 	 * If the caller cannot enter the filesystem, it's possible that it
3136 	 * is due to the caller holding an FS lock or performing a journal
3137 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3138 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3139 	 * blocked waiting on the same lock. Instead, throttle for up to a
3140 	 * second before continuing.
3141 	 */
3142 	if (!(gfp_mask & __GFP_FS)) {
3143 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3144 			allow_direct_reclaim(pgdat), HZ);
3145 
3146 		goto check_pending;
3147 	}
3148 
3149 	/* Throttle until kswapd wakes the process */
3150 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3151 		allow_direct_reclaim(pgdat));
3152 
3153 check_pending:
3154 	if (fatal_signal_pending(current))
3155 		return true;
3156 
3157 out:
3158 	return false;
3159 }
3160 
3161 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3162 				gfp_t gfp_mask, nodemask_t *nodemask)
3163 {
3164 	unsigned long nr_reclaimed;
3165 	struct scan_control sc = {
3166 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3167 		.gfp_mask = current_gfp_context(gfp_mask),
3168 		.reclaim_idx = gfp_zone(gfp_mask),
3169 		.order = order,
3170 		.nodemask = nodemask,
3171 		.priority = DEF_PRIORITY,
3172 		.may_writepage = !laptop_mode,
3173 		.may_unmap = 1,
3174 		.may_swap = 1,
3175 		.may_shrinkslab = 1,
3176 	};
3177 
3178 	/*
3179 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3180 	 * Confirm they are large enough for max values.
3181 	 */
3182 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3183 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3184 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3185 
3186 	/*
3187 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3188 	 * 1 is returned so that the page allocator does not OOM kill at this
3189 	 * point.
3190 	 */
3191 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3192 		return 1;
3193 
3194 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3195 
3196 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3197 
3198 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3199 
3200 	return nr_reclaimed;
3201 }
3202 
3203 #ifdef CONFIG_MEMCG
3204 
3205 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3206 						gfp_t gfp_mask, bool noswap,
3207 						pg_data_t *pgdat,
3208 						unsigned long *nr_scanned)
3209 {
3210 	struct scan_control sc = {
3211 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3212 		.target_mem_cgroup = memcg,
3213 		.may_writepage = !laptop_mode,
3214 		.may_unmap = 1,
3215 		.reclaim_idx = MAX_NR_ZONES - 1,
3216 		.may_swap = !noswap,
3217 		.may_shrinkslab = 1,
3218 	};
3219 	unsigned long lru_pages;
3220 
3221 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3222 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3223 
3224 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3225 						      sc.gfp_mask);
3226 
3227 	/*
3228 	 * NOTE: Although we can get the priority field, using it
3229 	 * here is not a good idea, since it limits the pages we can scan.
3230 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3231 	 * will pick up pages from other mem cgroup's as well. We hack
3232 	 * the priority and make it zero.
3233 	 */
3234 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3235 
3236 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3237 
3238 	*nr_scanned = sc.nr_scanned;
3239 	return sc.nr_reclaimed;
3240 }
3241 
3242 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3243 					   unsigned long nr_pages,
3244 					   gfp_t gfp_mask,
3245 					   bool may_swap)
3246 {
3247 	struct zonelist *zonelist;
3248 	unsigned long nr_reclaimed;
3249 	unsigned long pflags;
3250 	int nid;
3251 	unsigned int noreclaim_flag;
3252 	struct scan_control sc = {
3253 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3254 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3255 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3256 		.reclaim_idx = MAX_NR_ZONES - 1,
3257 		.target_mem_cgroup = memcg,
3258 		.priority = DEF_PRIORITY,
3259 		.may_writepage = !laptop_mode,
3260 		.may_unmap = 1,
3261 		.may_swap = may_swap,
3262 		.may_shrinkslab = 1,
3263 	};
3264 
3265 	/*
3266 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3267 	 * take care of from where we get pages. So the node where we start the
3268 	 * scan does not need to be the current node.
3269 	 */
3270 	nid = mem_cgroup_select_victim_node(memcg);
3271 
3272 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3273 
3274 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3275 
3276 	psi_memstall_enter(&pflags);
3277 	noreclaim_flag = memalloc_noreclaim_save();
3278 
3279 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3280 
3281 	memalloc_noreclaim_restore(noreclaim_flag);
3282 	psi_memstall_leave(&pflags);
3283 
3284 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3285 
3286 	return nr_reclaimed;
3287 }
3288 #endif
3289 
3290 static void age_active_anon(struct pglist_data *pgdat,
3291 				struct scan_control *sc)
3292 {
3293 	struct mem_cgroup *memcg;
3294 
3295 	if (!total_swap_pages)
3296 		return;
3297 
3298 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3299 	do {
3300 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3301 
3302 		if (inactive_list_is_low(lruvec, false, sc, true))
3303 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3304 					   sc, LRU_ACTIVE_ANON);
3305 
3306 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3307 	} while (memcg);
3308 }
3309 
3310 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3311 {
3312 	int i;
3313 	struct zone *zone;
3314 
3315 	/*
3316 	 * Check for watermark boosts top-down as the higher zones
3317 	 * are more likely to be boosted. Both watermarks and boosts
3318 	 * should not be checked at the time time as reclaim would
3319 	 * start prematurely when there is no boosting and a lower
3320 	 * zone is balanced.
3321 	 */
3322 	for (i = classzone_idx; i >= 0; i--) {
3323 		zone = pgdat->node_zones + i;
3324 		if (!managed_zone(zone))
3325 			continue;
3326 
3327 		if (zone->watermark_boost)
3328 			return true;
3329 	}
3330 
3331 	return false;
3332 }
3333 
3334 /*
3335  * Returns true if there is an eligible zone balanced for the request order
3336  * and classzone_idx
3337  */
3338 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3339 {
3340 	int i;
3341 	unsigned long mark = -1;
3342 	struct zone *zone;
3343 
3344 	/*
3345 	 * Check watermarks bottom-up as lower zones are more likely to
3346 	 * meet watermarks.
3347 	 */
3348 	for (i = 0; i <= classzone_idx; i++) {
3349 		zone = pgdat->node_zones + i;
3350 
3351 		if (!managed_zone(zone))
3352 			continue;
3353 
3354 		mark = high_wmark_pages(zone);
3355 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3356 			return true;
3357 	}
3358 
3359 	/*
3360 	 * If a node has no populated zone within classzone_idx, it does not
3361 	 * need balancing by definition. This can happen if a zone-restricted
3362 	 * allocation tries to wake a remote kswapd.
3363 	 */
3364 	if (mark == -1)
3365 		return true;
3366 
3367 	return false;
3368 }
3369 
3370 /* Clear pgdat state for congested, dirty or under writeback. */
3371 static void clear_pgdat_congested(pg_data_t *pgdat)
3372 {
3373 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3374 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3375 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3376 }
3377 
3378 /*
3379  * Prepare kswapd for sleeping. This verifies that there are no processes
3380  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3381  *
3382  * Returns true if kswapd is ready to sleep
3383  */
3384 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3385 {
3386 	/*
3387 	 * The throttled processes are normally woken up in balance_pgdat() as
3388 	 * soon as allow_direct_reclaim() is true. But there is a potential
3389 	 * race between when kswapd checks the watermarks and a process gets
3390 	 * throttled. There is also a potential race if processes get
3391 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3392 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3393 	 * the wake up checks. If kswapd is going to sleep, no process should
3394 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3395 	 * the wake up is premature, processes will wake kswapd and get
3396 	 * throttled again. The difference from wake ups in balance_pgdat() is
3397 	 * that here we are under prepare_to_wait().
3398 	 */
3399 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3400 		wake_up_all(&pgdat->pfmemalloc_wait);
3401 
3402 	/* Hopeless node, leave it to direct reclaim */
3403 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3404 		return true;
3405 
3406 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3407 		clear_pgdat_congested(pgdat);
3408 		return true;
3409 	}
3410 
3411 	return false;
3412 }
3413 
3414 /*
3415  * kswapd shrinks a node of pages that are at or below the highest usable
3416  * zone that is currently unbalanced.
3417  *
3418  * Returns true if kswapd scanned at least the requested number of pages to
3419  * reclaim or if the lack of progress was due to pages under writeback.
3420  * This is used to determine if the scanning priority needs to be raised.
3421  */
3422 static bool kswapd_shrink_node(pg_data_t *pgdat,
3423 			       struct scan_control *sc)
3424 {
3425 	struct zone *zone;
3426 	int z;
3427 
3428 	/* Reclaim a number of pages proportional to the number of zones */
3429 	sc->nr_to_reclaim = 0;
3430 	for (z = 0; z <= sc->reclaim_idx; z++) {
3431 		zone = pgdat->node_zones + z;
3432 		if (!managed_zone(zone))
3433 			continue;
3434 
3435 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3436 	}
3437 
3438 	/*
3439 	 * Historically care was taken to put equal pressure on all zones but
3440 	 * now pressure is applied based on node LRU order.
3441 	 */
3442 	shrink_node(pgdat, sc);
3443 
3444 	/*
3445 	 * Fragmentation may mean that the system cannot be rebalanced for
3446 	 * high-order allocations. If twice the allocation size has been
3447 	 * reclaimed then recheck watermarks only at order-0 to prevent
3448 	 * excessive reclaim. Assume that a process requested a high-order
3449 	 * can direct reclaim/compact.
3450 	 */
3451 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3452 		sc->order = 0;
3453 
3454 	return sc->nr_scanned >= sc->nr_to_reclaim;
3455 }
3456 
3457 /*
3458  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3459  * that are eligible for use by the caller until at least one zone is
3460  * balanced.
3461  *
3462  * Returns the order kswapd finished reclaiming at.
3463  *
3464  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3465  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3466  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3467  * or lower is eligible for reclaim until at least one usable zone is
3468  * balanced.
3469  */
3470 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3471 {
3472 	int i;
3473 	unsigned long nr_soft_reclaimed;
3474 	unsigned long nr_soft_scanned;
3475 	unsigned long pflags;
3476 	unsigned long nr_boost_reclaim;
3477 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3478 	bool boosted;
3479 	struct zone *zone;
3480 	struct scan_control sc = {
3481 		.gfp_mask = GFP_KERNEL,
3482 		.order = order,
3483 		.may_unmap = 1,
3484 	};
3485 
3486 	psi_memstall_enter(&pflags);
3487 	__fs_reclaim_acquire();
3488 
3489 	count_vm_event(PAGEOUTRUN);
3490 
3491 	/*
3492 	 * Account for the reclaim boost. Note that the zone boost is left in
3493 	 * place so that parallel allocations that are near the watermark will
3494 	 * stall or direct reclaim until kswapd is finished.
3495 	 */
3496 	nr_boost_reclaim = 0;
3497 	for (i = 0; i <= classzone_idx; i++) {
3498 		zone = pgdat->node_zones + i;
3499 		if (!managed_zone(zone))
3500 			continue;
3501 
3502 		nr_boost_reclaim += zone->watermark_boost;
3503 		zone_boosts[i] = zone->watermark_boost;
3504 	}
3505 	boosted = nr_boost_reclaim;
3506 
3507 restart:
3508 	sc.priority = DEF_PRIORITY;
3509 	do {
3510 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3511 		bool raise_priority = true;
3512 		bool balanced;
3513 		bool ret;
3514 
3515 		sc.reclaim_idx = classzone_idx;
3516 
3517 		/*
3518 		 * If the number of buffer_heads exceeds the maximum allowed
3519 		 * then consider reclaiming from all zones. This has a dual
3520 		 * purpose -- on 64-bit systems it is expected that
3521 		 * buffer_heads are stripped during active rotation. On 32-bit
3522 		 * systems, highmem pages can pin lowmem memory and shrinking
3523 		 * buffers can relieve lowmem pressure. Reclaim may still not
3524 		 * go ahead if all eligible zones for the original allocation
3525 		 * request are balanced to avoid excessive reclaim from kswapd.
3526 		 */
3527 		if (buffer_heads_over_limit) {
3528 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3529 				zone = pgdat->node_zones + i;
3530 				if (!managed_zone(zone))
3531 					continue;
3532 
3533 				sc.reclaim_idx = i;
3534 				break;
3535 			}
3536 		}
3537 
3538 		/*
3539 		 * If the pgdat is imbalanced then ignore boosting and preserve
3540 		 * the watermarks for a later time and restart. Note that the
3541 		 * zone watermarks will be still reset at the end of balancing
3542 		 * on the grounds that the normal reclaim should be enough to
3543 		 * re-evaluate if boosting is required when kswapd next wakes.
3544 		 */
3545 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3546 		if (!balanced && nr_boost_reclaim) {
3547 			nr_boost_reclaim = 0;
3548 			goto restart;
3549 		}
3550 
3551 		/*
3552 		 * If boosting is not active then only reclaim if there are no
3553 		 * eligible zones. Note that sc.reclaim_idx is not used as
3554 		 * buffer_heads_over_limit may have adjusted it.
3555 		 */
3556 		if (!nr_boost_reclaim && balanced)
3557 			goto out;
3558 
3559 		/* Limit the priority of boosting to avoid reclaim writeback */
3560 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3561 			raise_priority = false;
3562 
3563 		/*
3564 		 * Do not writeback or swap pages for boosted reclaim. The
3565 		 * intent is to relieve pressure not issue sub-optimal IO
3566 		 * from reclaim context. If no pages are reclaimed, the
3567 		 * reclaim will be aborted.
3568 		 */
3569 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3570 		sc.may_swap = !nr_boost_reclaim;
3571 		sc.may_shrinkslab = !nr_boost_reclaim;
3572 
3573 		/*
3574 		 * Do some background aging of the anon list, to give
3575 		 * pages a chance to be referenced before reclaiming. All
3576 		 * pages are rotated regardless of classzone as this is
3577 		 * about consistent aging.
3578 		 */
3579 		age_active_anon(pgdat, &sc);
3580 
3581 		/*
3582 		 * If we're getting trouble reclaiming, start doing writepage
3583 		 * even in laptop mode.
3584 		 */
3585 		if (sc.priority < DEF_PRIORITY - 2)
3586 			sc.may_writepage = 1;
3587 
3588 		/* Call soft limit reclaim before calling shrink_node. */
3589 		sc.nr_scanned = 0;
3590 		nr_soft_scanned = 0;
3591 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3592 						sc.gfp_mask, &nr_soft_scanned);
3593 		sc.nr_reclaimed += nr_soft_reclaimed;
3594 
3595 		/*
3596 		 * There should be no need to raise the scanning priority if
3597 		 * enough pages are already being scanned that that high
3598 		 * watermark would be met at 100% efficiency.
3599 		 */
3600 		if (kswapd_shrink_node(pgdat, &sc))
3601 			raise_priority = false;
3602 
3603 		/*
3604 		 * If the low watermark is met there is no need for processes
3605 		 * to be throttled on pfmemalloc_wait as they should not be
3606 		 * able to safely make forward progress. Wake them
3607 		 */
3608 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3609 				allow_direct_reclaim(pgdat))
3610 			wake_up_all(&pgdat->pfmemalloc_wait);
3611 
3612 		/* Check if kswapd should be suspending */
3613 		__fs_reclaim_release();
3614 		ret = try_to_freeze();
3615 		__fs_reclaim_acquire();
3616 		if (ret || kthread_should_stop())
3617 			break;
3618 
3619 		/*
3620 		 * Raise priority if scanning rate is too low or there was no
3621 		 * progress in reclaiming pages
3622 		 */
3623 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3624 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3625 
3626 		/*
3627 		 * If reclaim made no progress for a boost, stop reclaim as
3628 		 * IO cannot be queued and it could be an infinite loop in
3629 		 * extreme circumstances.
3630 		 */
3631 		if (nr_boost_reclaim && !nr_reclaimed)
3632 			break;
3633 
3634 		if (raise_priority || !nr_reclaimed)
3635 			sc.priority--;
3636 	} while (sc.priority >= 1);
3637 
3638 	if (!sc.nr_reclaimed)
3639 		pgdat->kswapd_failures++;
3640 
3641 out:
3642 	/* If reclaim was boosted, account for the reclaim done in this pass */
3643 	if (boosted) {
3644 		unsigned long flags;
3645 
3646 		for (i = 0; i <= classzone_idx; i++) {
3647 			if (!zone_boosts[i])
3648 				continue;
3649 
3650 			/* Increments are under the zone lock */
3651 			zone = pgdat->node_zones + i;
3652 			spin_lock_irqsave(&zone->lock, flags);
3653 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3654 			spin_unlock_irqrestore(&zone->lock, flags);
3655 		}
3656 
3657 		/*
3658 		 * As there is now likely space, wakeup kcompact to defragment
3659 		 * pageblocks.
3660 		 */
3661 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3662 	}
3663 
3664 	snapshot_refaults(NULL, pgdat);
3665 	__fs_reclaim_release();
3666 	psi_memstall_leave(&pflags);
3667 	/*
3668 	 * Return the order kswapd stopped reclaiming at as
3669 	 * prepare_kswapd_sleep() takes it into account. If another caller
3670 	 * entered the allocator slow path while kswapd was awake, order will
3671 	 * remain at the higher level.
3672 	 */
3673 	return sc.order;
3674 }
3675 
3676 /*
3677  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3678  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3679  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3680  * after previous reclaim attempt (node is still unbalanced). In that case
3681  * return the zone index of the previous kswapd reclaim cycle.
3682  */
3683 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3684 					   enum zone_type prev_classzone_idx)
3685 {
3686 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3687 		return prev_classzone_idx;
3688 	return pgdat->kswapd_classzone_idx;
3689 }
3690 
3691 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3692 				unsigned int classzone_idx)
3693 {
3694 	long remaining = 0;
3695 	DEFINE_WAIT(wait);
3696 
3697 	if (freezing(current) || kthread_should_stop())
3698 		return;
3699 
3700 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3701 
3702 	/*
3703 	 * Try to sleep for a short interval. Note that kcompactd will only be
3704 	 * woken if it is possible to sleep for a short interval. This is
3705 	 * deliberate on the assumption that if reclaim cannot keep an
3706 	 * eligible zone balanced that it's also unlikely that compaction will
3707 	 * succeed.
3708 	 */
3709 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3710 		/*
3711 		 * Compaction records what page blocks it recently failed to
3712 		 * isolate pages from and skips them in the future scanning.
3713 		 * When kswapd is going to sleep, it is reasonable to assume
3714 		 * that pages and compaction may succeed so reset the cache.
3715 		 */
3716 		reset_isolation_suitable(pgdat);
3717 
3718 		/*
3719 		 * We have freed the memory, now we should compact it to make
3720 		 * allocation of the requested order possible.
3721 		 */
3722 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3723 
3724 		remaining = schedule_timeout(HZ/10);
3725 
3726 		/*
3727 		 * If woken prematurely then reset kswapd_classzone_idx and
3728 		 * order. The values will either be from a wakeup request or
3729 		 * the previous request that slept prematurely.
3730 		 */
3731 		if (remaining) {
3732 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3733 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3734 		}
3735 
3736 		finish_wait(&pgdat->kswapd_wait, &wait);
3737 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3738 	}
3739 
3740 	/*
3741 	 * After a short sleep, check if it was a premature sleep. If not, then
3742 	 * go fully to sleep until explicitly woken up.
3743 	 */
3744 	if (!remaining &&
3745 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3746 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3747 
3748 		/*
3749 		 * vmstat counters are not perfectly accurate and the estimated
3750 		 * value for counters such as NR_FREE_PAGES can deviate from the
3751 		 * true value by nr_online_cpus * threshold. To avoid the zone
3752 		 * watermarks being breached while under pressure, we reduce the
3753 		 * per-cpu vmstat threshold while kswapd is awake and restore
3754 		 * them before going back to sleep.
3755 		 */
3756 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3757 
3758 		if (!kthread_should_stop())
3759 			schedule();
3760 
3761 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3762 	} else {
3763 		if (remaining)
3764 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3765 		else
3766 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3767 	}
3768 	finish_wait(&pgdat->kswapd_wait, &wait);
3769 }
3770 
3771 /*
3772  * The background pageout daemon, started as a kernel thread
3773  * from the init process.
3774  *
3775  * This basically trickles out pages so that we have _some_
3776  * free memory available even if there is no other activity
3777  * that frees anything up. This is needed for things like routing
3778  * etc, where we otherwise might have all activity going on in
3779  * asynchronous contexts that cannot page things out.
3780  *
3781  * If there are applications that are active memory-allocators
3782  * (most normal use), this basically shouldn't matter.
3783  */
3784 static int kswapd(void *p)
3785 {
3786 	unsigned int alloc_order, reclaim_order;
3787 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3788 	pg_data_t *pgdat = (pg_data_t*)p;
3789 	struct task_struct *tsk = current;
3790 
3791 	struct reclaim_state reclaim_state = {
3792 		.reclaimed_slab = 0,
3793 	};
3794 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3795 
3796 	if (!cpumask_empty(cpumask))
3797 		set_cpus_allowed_ptr(tsk, cpumask);
3798 	current->reclaim_state = &reclaim_state;
3799 
3800 	/*
3801 	 * Tell the memory management that we're a "memory allocator",
3802 	 * and that if we need more memory we should get access to it
3803 	 * regardless (see "__alloc_pages()"). "kswapd" should
3804 	 * never get caught in the normal page freeing logic.
3805 	 *
3806 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3807 	 * you need a small amount of memory in order to be able to
3808 	 * page out something else, and this flag essentially protects
3809 	 * us from recursively trying to free more memory as we're
3810 	 * trying to free the first piece of memory in the first place).
3811 	 */
3812 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3813 	set_freezable();
3814 
3815 	pgdat->kswapd_order = 0;
3816 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3817 	for ( ; ; ) {
3818 		bool ret;
3819 
3820 		alloc_order = reclaim_order = pgdat->kswapd_order;
3821 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3822 
3823 kswapd_try_sleep:
3824 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3825 					classzone_idx);
3826 
3827 		/* Read the new order and classzone_idx */
3828 		alloc_order = reclaim_order = pgdat->kswapd_order;
3829 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3830 		pgdat->kswapd_order = 0;
3831 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3832 
3833 		ret = try_to_freeze();
3834 		if (kthread_should_stop())
3835 			break;
3836 
3837 		/*
3838 		 * We can speed up thawing tasks if we don't call balance_pgdat
3839 		 * after returning from the refrigerator
3840 		 */
3841 		if (ret)
3842 			continue;
3843 
3844 		/*
3845 		 * Reclaim begins at the requested order but if a high-order
3846 		 * reclaim fails then kswapd falls back to reclaiming for
3847 		 * order-0. If that happens, kswapd will consider sleeping
3848 		 * for the order it finished reclaiming at (reclaim_order)
3849 		 * but kcompactd is woken to compact for the original
3850 		 * request (alloc_order).
3851 		 */
3852 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3853 						alloc_order);
3854 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3855 		if (reclaim_order < alloc_order)
3856 			goto kswapd_try_sleep;
3857 	}
3858 
3859 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3860 	current->reclaim_state = NULL;
3861 
3862 	return 0;
3863 }
3864 
3865 /*
3866  * A zone is low on free memory or too fragmented for high-order memory.  If
3867  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3868  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3869  * has failed or is not needed, still wake up kcompactd if only compaction is
3870  * needed.
3871  */
3872 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3873 		   enum zone_type classzone_idx)
3874 {
3875 	pg_data_t *pgdat;
3876 
3877 	if (!managed_zone(zone))
3878 		return;
3879 
3880 	if (!cpuset_zone_allowed(zone, gfp_flags))
3881 		return;
3882 	pgdat = zone->zone_pgdat;
3883 
3884 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3885 		pgdat->kswapd_classzone_idx = classzone_idx;
3886 	else
3887 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3888 						  classzone_idx);
3889 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3890 	if (!waitqueue_active(&pgdat->kswapd_wait))
3891 		return;
3892 
3893 	/* Hopeless node, leave it to direct reclaim if possible */
3894 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3895 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3896 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3897 		/*
3898 		 * There may be plenty of free memory available, but it's too
3899 		 * fragmented for high-order allocations.  Wake up kcompactd
3900 		 * and rely on compaction_suitable() to determine if it's
3901 		 * needed.  If it fails, it will defer subsequent attempts to
3902 		 * ratelimit its work.
3903 		 */
3904 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3905 			wakeup_kcompactd(pgdat, order, classzone_idx);
3906 		return;
3907 	}
3908 
3909 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3910 				      gfp_flags);
3911 	wake_up_interruptible(&pgdat->kswapd_wait);
3912 }
3913 
3914 #ifdef CONFIG_HIBERNATION
3915 /*
3916  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3917  * freed pages.
3918  *
3919  * Rather than trying to age LRUs the aim is to preserve the overall
3920  * LRU order by reclaiming preferentially
3921  * inactive > active > active referenced > active mapped
3922  */
3923 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3924 {
3925 	struct reclaim_state reclaim_state;
3926 	struct scan_control sc = {
3927 		.nr_to_reclaim = nr_to_reclaim,
3928 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3929 		.reclaim_idx = MAX_NR_ZONES - 1,
3930 		.priority = DEF_PRIORITY,
3931 		.may_writepage = 1,
3932 		.may_unmap = 1,
3933 		.may_swap = 1,
3934 		.hibernation_mode = 1,
3935 	};
3936 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3937 	struct task_struct *p = current;
3938 	unsigned long nr_reclaimed;
3939 	unsigned int noreclaim_flag;
3940 
3941 	fs_reclaim_acquire(sc.gfp_mask);
3942 	noreclaim_flag = memalloc_noreclaim_save();
3943 	reclaim_state.reclaimed_slab = 0;
3944 	p->reclaim_state = &reclaim_state;
3945 
3946 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3947 
3948 	p->reclaim_state = NULL;
3949 	memalloc_noreclaim_restore(noreclaim_flag);
3950 	fs_reclaim_release(sc.gfp_mask);
3951 
3952 	return nr_reclaimed;
3953 }
3954 #endif /* CONFIG_HIBERNATION */
3955 
3956 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3957    not required for correctness.  So if the last cpu in a node goes
3958    away, we get changed to run anywhere: as the first one comes back,
3959    restore their cpu bindings. */
3960 static int kswapd_cpu_online(unsigned int cpu)
3961 {
3962 	int nid;
3963 
3964 	for_each_node_state(nid, N_MEMORY) {
3965 		pg_data_t *pgdat = NODE_DATA(nid);
3966 		const struct cpumask *mask;
3967 
3968 		mask = cpumask_of_node(pgdat->node_id);
3969 
3970 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3971 			/* One of our CPUs online: restore mask */
3972 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3973 	}
3974 	return 0;
3975 }
3976 
3977 /*
3978  * This kswapd start function will be called by init and node-hot-add.
3979  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3980  */
3981 int kswapd_run(int nid)
3982 {
3983 	pg_data_t *pgdat = NODE_DATA(nid);
3984 	int ret = 0;
3985 
3986 	if (pgdat->kswapd)
3987 		return 0;
3988 
3989 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3990 	if (IS_ERR(pgdat->kswapd)) {
3991 		/* failure at boot is fatal */
3992 		BUG_ON(system_state < SYSTEM_RUNNING);
3993 		pr_err("Failed to start kswapd on node %d\n", nid);
3994 		ret = PTR_ERR(pgdat->kswapd);
3995 		pgdat->kswapd = NULL;
3996 	}
3997 	return ret;
3998 }
3999 
4000 /*
4001  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4002  * hold mem_hotplug_begin/end().
4003  */
4004 void kswapd_stop(int nid)
4005 {
4006 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4007 
4008 	if (kswapd) {
4009 		kthread_stop(kswapd);
4010 		NODE_DATA(nid)->kswapd = NULL;
4011 	}
4012 }
4013 
4014 static int __init kswapd_init(void)
4015 {
4016 	int nid, ret;
4017 
4018 	swap_setup();
4019 	for_each_node_state(nid, N_MEMORY)
4020  		kswapd_run(nid);
4021 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4022 					"mm/vmscan:online", kswapd_cpu_online,
4023 					NULL);
4024 	WARN_ON(ret < 0);
4025 	return 0;
4026 }
4027 
4028 module_init(kswapd_init)
4029 
4030 #ifdef CONFIG_NUMA
4031 /*
4032  * Node reclaim mode
4033  *
4034  * If non-zero call node_reclaim when the number of free pages falls below
4035  * the watermarks.
4036  */
4037 int node_reclaim_mode __read_mostly;
4038 
4039 #define RECLAIM_OFF 0
4040 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4041 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4042 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4043 
4044 /*
4045  * Priority for NODE_RECLAIM. This determines the fraction of pages
4046  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4047  * a zone.
4048  */
4049 #define NODE_RECLAIM_PRIORITY 4
4050 
4051 /*
4052  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4053  * occur.
4054  */
4055 int sysctl_min_unmapped_ratio = 1;
4056 
4057 /*
4058  * If the number of slab pages in a zone grows beyond this percentage then
4059  * slab reclaim needs to occur.
4060  */
4061 int sysctl_min_slab_ratio = 5;
4062 
4063 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4064 {
4065 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4066 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4067 		node_page_state(pgdat, NR_ACTIVE_FILE);
4068 
4069 	/*
4070 	 * It's possible for there to be more file mapped pages than
4071 	 * accounted for by the pages on the file LRU lists because
4072 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4073 	 */
4074 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4075 }
4076 
4077 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4078 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4079 {
4080 	unsigned long nr_pagecache_reclaimable;
4081 	unsigned long delta = 0;
4082 
4083 	/*
4084 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4085 	 * potentially reclaimable. Otherwise, we have to worry about
4086 	 * pages like swapcache and node_unmapped_file_pages() provides
4087 	 * a better estimate
4088 	 */
4089 	if (node_reclaim_mode & RECLAIM_UNMAP)
4090 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4091 	else
4092 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4093 
4094 	/* If we can't clean pages, remove dirty pages from consideration */
4095 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4096 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4097 
4098 	/* Watch for any possible underflows due to delta */
4099 	if (unlikely(delta > nr_pagecache_reclaimable))
4100 		delta = nr_pagecache_reclaimable;
4101 
4102 	return nr_pagecache_reclaimable - delta;
4103 }
4104 
4105 /*
4106  * Try to free up some pages from this node through reclaim.
4107  */
4108 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4109 {
4110 	/* Minimum pages needed in order to stay on node */
4111 	const unsigned long nr_pages = 1 << order;
4112 	struct task_struct *p = current;
4113 	struct reclaim_state reclaim_state;
4114 	unsigned int noreclaim_flag;
4115 	struct scan_control sc = {
4116 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4117 		.gfp_mask = current_gfp_context(gfp_mask),
4118 		.order = order,
4119 		.priority = NODE_RECLAIM_PRIORITY,
4120 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4121 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4122 		.may_swap = 1,
4123 		.reclaim_idx = gfp_zone(gfp_mask),
4124 	};
4125 
4126 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4127 					   sc.gfp_mask);
4128 
4129 	cond_resched();
4130 	fs_reclaim_acquire(sc.gfp_mask);
4131 	/*
4132 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4133 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4134 	 * and RECLAIM_UNMAP.
4135 	 */
4136 	noreclaim_flag = memalloc_noreclaim_save();
4137 	p->flags |= PF_SWAPWRITE;
4138 	reclaim_state.reclaimed_slab = 0;
4139 	p->reclaim_state = &reclaim_state;
4140 
4141 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4142 		/*
4143 		 * Free memory by calling shrink node with increasing
4144 		 * priorities until we have enough memory freed.
4145 		 */
4146 		do {
4147 			shrink_node(pgdat, &sc);
4148 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4149 	}
4150 
4151 	p->reclaim_state = NULL;
4152 	current->flags &= ~PF_SWAPWRITE;
4153 	memalloc_noreclaim_restore(noreclaim_flag);
4154 	fs_reclaim_release(sc.gfp_mask);
4155 
4156 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4157 
4158 	return sc.nr_reclaimed >= nr_pages;
4159 }
4160 
4161 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4162 {
4163 	int ret;
4164 
4165 	/*
4166 	 * Node reclaim reclaims unmapped file backed pages and
4167 	 * slab pages if we are over the defined limits.
4168 	 *
4169 	 * A small portion of unmapped file backed pages is needed for
4170 	 * file I/O otherwise pages read by file I/O will be immediately
4171 	 * thrown out if the node is overallocated. So we do not reclaim
4172 	 * if less than a specified percentage of the node is used by
4173 	 * unmapped file backed pages.
4174 	 */
4175 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4176 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4177 		return NODE_RECLAIM_FULL;
4178 
4179 	/*
4180 	 * Do not scan if the allocation should not be delayed.
4181 	 */
4182 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4183 		return NODE_RECLAIM_NOSCAN;
4184 
4185 	/*
4186 	 * Only run node reclaim on the local node or on nodes that do not
4187 	 * have associated processors. This will favor the local processor
4188 	 * over remote processors and spread off node memory allocations
4189 	 * as wide as possible.
4190 	 */
4191 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4192 		return NODE_RECLAIM_NOSCAN;
4193 
4194 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4195 		return NODE_RECLAIM_NOSCAN;
4196 
4197 	ret = __node_reclaim(pgdat, gfp_mask, order);
4198 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4199 
4200 	if (!ret)
4201 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4202 
4203 	return ret;
4204 }
4205 #endif
4206 
4207 /*
4208  * page_evictable - test whether a page is evictable
4209  * @page: the page to test
4210  *
4211  * Test whether page is evictable--i.e., should be placed on active/inactive
4212  * lists vs unevictable list.
4213  *
4214  * Reasons page might not be evictable:
4215  * (1) page's mapping marked unevictable
4216  * (2) page is part of an mlocked VMA
4217  *
4218  */
4219 int page_evictable(struct page *page)
4220 {
4221 	int ret;
4222 
4223 	/* Prevent address_space of inode and swap cache from being freed */
4224 	rcu_read_lock();
4225 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4226 	rcu_read_unlock();
4227 	return ret;
4228 }
4229 
4230 /**
4231  * check_move_unevictable_pages - check pages for evictability and move to
4232  * appropriate zone lru list
4233  * @pvec: pagevec with lru pages to check
4234  *
4235  * Checks pages for evictability, if an evictable page is in the unevictable
4236  * lru list, moves it to the appropriate evictable lru list. This function
4237  * should be only used for lru pages.
4238  */
4239 void check_move_unevictable_pages(struct pagevec *pvec)
4240 {
4241 	struct lruvec *lruvec;
4242 	struct pglist_data *pgdat = NULL;
4243 	int pgscanned = 0;
4244 	int pgrescued = 0;
4245 	int i;
4246 
4247 	for (i = 0; i < pvec->nr; i++) {
4248 		struct page *page = pvec->pages[i];
4249 		struct pglist_data *pagepgdat = page_pgdat(page);
4250 
4251 		pgscanned++;
4252 		if (pagepgdat != pgdat) {
4253 			if (pgdat)
4254 				spin_unlock_irq(&pgdat->lru_lock);
4255 			pgdat = pagepgdat;
4256 			spin_lock_irq(&pgdat->lru_lock);
4257 		}
4258 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4259 
4260 		if (!PageLRU(page) || !PageUnevictable(page))
4261 			continue;
4262 
4263 		if (page_evictable(page)) {
4264 			enum lru_list lru = page_lru_base_type(page);
4265 
4266 			VM_BUG_ON_PAGE(PageActive(page), page);
4267 			ClearPageUnevictable(page);
4268 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4269 			add_page_to_lru_list(page, lruvec, lru);
4270 			pgrescued++;
4271 		}
4272 	}
4273 
4274 	if (pgdat) {
4275 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4276 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4277 		spin_unlock_irq(&pgdat->lru_lock);
4278 	}
4279 }
4280 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4281