xref: /openbmc/linux/mm/vmscan.c (revision 02891844)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/mutex.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 #include <linux/srcu.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68 
69 #include "internal.h"
70 #include "swap.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74 
75 struct scan_control {
76 	/* How many pages shrink_list() should reclaim */
77 	unsigned long nr_to_reclaim;
78 
79 	/*
80 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 	 * are scanned.
82 	 */
83 	nodemask_t	*nodemask;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Scan pressure balancing between anon and file LRUs
93 	 */
94 	unsigned long	anon_cost;
95 	unsigned long	file_cost;
96 
97 	/* Can active folios be deactivated as part of reclaim? */
98 #define DEACTIVATE_ANON 1
99 #define DEACTIVATE_FILE 2
100 	unsigned int may_deactivate:2;
101 	unsigned int force_deactivate:1;
102 	unsigned int skipped_deactivate:1;
103 
104 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
105 	unsigned int may_writepage:1;
106 
107 	/* Can mapped folios be reclaimed? */
108 	unsigned int may_unmap:1;
109 
110 	/* Can folios be swapped as part of reclaim? */
111 	unsigned int may_swap:1;
112 
113 	/* Proactive reclaim invoked by userspace through memory.reclaim */
114 	unsigned int proactive:1;
115 
116 	/*
117 	 * Cgroup memory below memory.low is protected as long as we
118 	 * don't threaten to OOM. If any cgroup is reclaimed at
119 	 * reduced force or passed over entirely due to its memory.low
120 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
121 	 * result, then go back for one more cycle that reclaims the protected
122 	 * memory (memcg_low_reclaim) to avert OOM.
123 	 */
124 	unsigned int memcg_low_reclaim:1;
125 	unsigned int memcg_low_skipped:1;
126 
127 	unsigned int hibernation_mode:1;
128 
129 	/* One of the zones is ready for compaction */
130 	unsigned int compaction_ready:1;
131 
132 	/* There is easily reclaimable cold cache in the current node */
133 	unsigned int cache_trim_mode:1;
134 
135 	/* The file folios on the current node are dangerously low */
136 	unsigned int file_is_tiny:1;
137 
138 	/* Always discard instead of demoting to lower tier memory */
139 	unsigned int no_demotion:1;
140 
141 	/* Allocation order */
142 	s8 order;
143 
144 	/* Scan (total_size >> priority) pages at once */
145 	s8 priority;
146 
147 	/* The highest zone to isolate folios for reclaim from */
148 	s8 reclaim_idx;
149 
150 	/* This context's GFP mask */
151 	gfp_t gfp_mask;
152 
153 	/* Incremented by the number of inactive pages that were scanned */
154 	unsigned long nr_scanned;
155 
156 	/* Number of pages freed so far during a call to shrink_zones() */
157 	unsigned long nr_reclaimed;
158 
159 	struct {
160 		unsigned int dirty;
161 		unsigned int unqueued_dirty;
162 		unsigned int congested;
163 		unsigned int writeback;
164 		unsigned int immediate;
165 		unsigned int file_taken;
166 		unsigned int taken;
167 	} nr;
168 
169 	/* for recording the reclaimed slab by now */
170 	struct reclaim_state reclaim_state;
171 };
172 
173 #ifdef ARCH_HAS_PREFETCHW
174 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
175 	do {								\
176 		if ((_folio)->lru.prev != _base) {			\
177 			struct folio *prev;				\
178 									\
179 			prev = lru_to_folio(&(_folio->lru));		\
180 			prefetchw(&prev->_field);			\
181 		}							\
182 	} while (0)
183 #else
184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
185 #endif
186 
187 /*
188  * From 0 .. 200.  Higher means more swappy.
189  */
190 int vm_swappiness = 60;
191 
192 static void set_task_reclaim_state(struct task_struct *task,
193 				   struct reclaim_state *rs)
194 {
195 	/* Check for an overwrite */
196 	WARN_ON_ONCE(rs && task->reclaim_state);
197 
198 	/* Check for the nulling of an already-nulled member */
199 	WARN_ON_ONCE(!rs && !task->reclaim_state);
200 
201 	task->reclaim_state = rs;
202 }
203 
204 LIST_HEAD(shrinker_list);
205 DEFINE_MUTEX(shrinker_mutex);
206 DEFINE_SRCU(shrinker_srcu);
207 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0);
208 
209 #ifdef CONFIG_MEMCG
210 static int shrinker_nr_max;
211 
212 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
213 static inline int shrinker_map_size(int nr_items)
214 {
215 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
216 }
217 
218 static inline int shrinker_defer_size(int nr_items)
219 {
220 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
221 }
222 
223 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
224 						     int nid)
225 {
226 	return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info,
227 				      &shrinker_srcu,
228 				      lockdep_is_held(&shrinker_mutex));
229 }
230 
231 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg,
232 						     int nid)
233 {
234 	return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info,
235 				&shrinker_srcu);
236 }
237 
238 static void free_shrinker_info_rcu(struct rcu_head *head)
239 {
240 	kvfree(container_of(head, struct shrinker_info, rcu));
241 }
242 
243 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
244 				    int map_size, int defer_size,
245 				    int old_map_size, int old_defer_size,
246 				    int new_nr_max)
247 {
248 	struct shrinker_info *new, *old;
249 	struct mem_cgroup_per_node *pn;
250 	int nid;
251 	int size = map_size + defer_size;
252 
253 	for_each_node(nid) {
254 		pn = memcg->nodeinfo[nid];
255 		old = shrinker_info_protected(memcg, nid);
256 		/* Not yet online memcg */
257 		if (!old)
258 			return 0;
259 
260 		/* Already expanded this shrinker_info */
261 		if (new_nr_max <= old->map_nr_max)
262 			continue;
263 
264 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
265 		if (!new)
266 			return -ENOMEM;
267 
268 		new->nr_deferred = (atomic_long_t *)(new + 1);
269 		new->map = (void *)new->nr_deferred + defer_size;
270 		new->map_nr_max = new_nr_max;
271 
272 		/* map: set all old bits, clear all new bits */
273 		memset(new->map, (int)0xff, old_map_size);
274 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
275 		/* nr_deferred: copy old values, clear all new values */
276 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
277 		memset((void *)new->nr_deferred + old_defer_size, 0,
278 		       defer_size - old_defer_size);
279 
280 		rcu_assign_pointer(pn->shrinker_info, new);
281 		call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu);
282 	}
283 
284 	return 0;
285 }
286 
287 void free_shrinker_info(struct mem_cgroup *memcg)
288 {
289 	struct mem_cgroup_per_node *pn;
290 	struct shrinker_info *info;
291 	int nid;
292 
293 	for_each_node(nid) {
294 		pn = memcg->nodeinfo[nid];
295 		info = rcu_dereference_protected(pn->shrinker_info, true);
296 		kvfree(info);
297 		rcu_assign_pointer(pn->shrinker_info, NULL);
298 	}
299 }
300 
301 int alloc_shrinker_info(struct mem_cgroup *memcg)
302 {
303 	struct shrinker_info *info;
304 	int nid, size, ret = 0;
305 	int map_size, defer_size = 0;
306 
307 	mutex_lock(&shrinker_mutex);
308 	map_size = shrinker_map_size(shrinker_nr_max);
309 	defer_size = shrinker_defer_size(shrinker_nr_max);
310 	size = map_size + defer_size;
311 	for_each_node(nid) {
312 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
313 		if (!info) {
314 			free_shrinker_info(memcg);
315 			ret = -ENOMEM;
316 			break;
317 		}
318 		info->nr_deferred = (atomic_long_t *)(info + 1);
319 		info->map = (void *)info->nr_deferred + defer_size;
320 		info->map_nr_max = shrinker_nr_max;
321 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
322 	}
323 	mutex_unlock(&shrinker_mutex);
324 
325 	return ret;
326 }
327 
328 static int expand_shrinker_info(int new_id)
329 {
330 	int ret = 0;
331 	int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
332 	int map_size, defer_size = 0;
333 	int old_map_size, old_defer_size = 0;
334 	struct mem_cgroup *memcg;
335 
336 	if (!root_mem_cgroup)
337 		goto out;
338 
339 	lockdep_assert_held(&shrinker_mutex);
340 
341 	map_size = shrinker_map_size(new_nr_max);
342 	defer_size = shrinker_defer_size(new_nr_max);
343 	old_map_size = shrinker_map_size(shrinker_nr_max);
344 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
345 
346 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
347 	do {
348 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
349 					       old_map_size, old_defer_size,
350 					       new_nr_max);
351 		if (ret) {
352 			mem_cgroup_iter_break(NULL, memcg);
353 			goto out;
354 		}
355 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
356 out:
357 	if (!ret)
358 		shrinker_nr_max = new_nr_max;
359 
360 	return ret;
361 }
362 
363 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
364 {
365 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
366 		struct shrinker_info *info;
367 		int srcu_idx;
368 
369 		srcu_idx = srcu_read_lock(&shrinker_srcu);
370 		info = shrinker_info_srcu(memcg, nid);
371 		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
372 			/* Pairs with smp mb in shrink_slab() */
373 			smp_mb__before_atomic();
374 			set_bit(shrinker_id, info->map);
375 		}
376 		srcu_read_unlock(&shrinker_srcu, srcu_idx);
377 	}
378 }
379 
380 static DEFINE_IDR(shrinker_idr);
381 
382 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
383 {
384 	int id, ret = -ENOMEM;
385 
386 	if (mem_cgroup_disabled())
387 		return -ENOSYS;
388 
389 	mutex_lock(&shrinker_mutex);
390 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
391 	if (id < 0)
392 		goto unlock;
393 
394 	if (id >= shrinker_nr_max) {
395 		if (expand_shrinker_info(id)) {
396 			idr_remove(&shrinker_idr, id);
397 			goto unlock;
398 		}
399 	}
400 	shrinker->id = id;
401 	ret = 0;
402 unlock:
403 	mutex_unlock(&shrinker_mutex);
404 	return ret;
405 }
406 
407 static void unregister_memcg_shrinker(struct shrinker *shrinker)
408 {
409 	int id = shrinker->id;
410 
411 	BUG_ON(id < 0);
412 
413 	lockdep_assert_held(&shrinker_mutex);
414 
415 	idr_remove(&shrinker_idr, id);
416 }
417 
418 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
419 				   struct mem_cgroup *memcg)
420 {
421 	struct shrinker_info *info;
422 
423 	info = shrinker_info_srcu(memcg, nid);
424 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
425 }
426 
427 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
428 				  struct mem_cgroup *memcg)
429 {
430 	struct shrinker_info *info;
431 
432 	info = shrinker_info_srcu(memcg, nid);
433 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
434 }
435 
436 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
437 {
438 	int i, nid;
439 	long nr;
440 	struct mem_cgroup *parent;
441 	struct shrinker_info *child_info, *parent_info;
442 
443 	parent = parent_mem_cgroup(memcg);
444 	if (!parent)
445 		parent = root_mem_cgroup;
446 
447 	/* Prevent from concurrent shrinker_info expand */
448 	mutex_lock(&shrinker_mutex);
449 	for_each_node(nid) {
450 		child_info = shrinker_info_protected(memcg, nid);
451 		parent_info = shrinker_info_protected(parent, nid);
452 		for (i = 0; i < child_info->map_nr_max; i++) {
453 			nr = atomic_long_read(&child_info->nr_deferred[i]);
454 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
455 		}
456 	}
457 	mutex_unlock(&shrinker_mutex);
458 }
459 
460 static bool cgroup_reclaim(struct scan_control *sc)
461 {
462 	return sc->target_mem_cgroup;
463 }
464 
465 static bool global_reclaim(struct scan_control *sc)
466 {
467 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
468 }
469 
470 /**
471  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
472  * @sc: scan_control in question
473  *
474  * The normal page dirty throttling mechanism in balance_dirty_pages() is
475  * completely broken with the legacy memcg and direct stalling in
476  * shrink_folio_list() is used for throttling instead, which lacks all the
477  * niceties such as fairness, adaptive pausing, bandwidth proportional
478  * allocation and configurability.
479  *
480  * This function tests whether the vmscan currently in progress can assume
481  * that the normal dirty throttling mechanism is operational.
482  */
483 static bool writeback_throttling_sane(struct scan_control *sc)
484 {
485 	if (!cgroup_reclaim(sc))
486 		return true;
487 #ifdef CONFIG_CGROUP_WRITEBACK
488 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
489 		return true;
490 #endif
491 	return false;
492 }
493 #else
494 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
495 {
496 	return -ENOSYS;
497 }
498 
499 static void unregister_memcg_shrinker(struct shrinker *shrinker)
500 {
501 }
502 
503 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
504 				   struct mem_cgroup *memcg)
505 {
506 	return 0;
507 }
508 
509 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
510 				  struct mem_cgroup *memcg)
511 {
512 	return 0;
513 }
514 
515 static bool cgroup_reclaim(struct scan_control *sc)
516 {
517 	return false;
518 }
519 
520 static bool global_reclaim(struct scan_control *sc)
521 {
522 	return true;
523 }
524 
525 static bool writeback_throttling_sane(struct scan_control *sc)
526 {
527 	return true;
528 }
529 #endif
530 
531 static long xchg_nr_deferred(struct shrinker *shrinker,
532 			     struct shrink_control *sc)
533 {
534 	int nid = sc->nid;
535 
536 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
537 		nid = 0;
538 
539 	if (sc->memcg &&
540 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
541 		return xchg_nr_deferred_memcg(nid, shrinker,
542 					      sc->memcg);
543 
544 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
545 }
546 
547 
548 static long add_nr_deferred(long nr, struct shrinker *shrinker,
549 			    struct shrink_control *sc)
550 {
551 	int nid = sc->nid;
552 
553 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
554 		nid = 0;
555 
556 	if (sc->memcg &&
557 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
558 		return add_nr_deferred_memcg(nr, nid, shrinker,
559 					     sc->memcg);
560 
561 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
562 }
563 
564 static bool can_demote(int nid, struct scan_control *sc)
565 {
566 	if (!numa_demotion_enabled)
567 		return false;
568 	if (sc && sc->no_demotion)
569 		return false;
570 	if (next_demotion_node(nid) == NUMA_NO_NODE)
571 		return false;
572 
573 	return true;
574 }
575 
576 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
577 					  int nid,
578 					  struct scan_control *sc)
579 {
580 	if (memcg == NULL) {
581 		/*
582 		 * For non-memcg reclaim, is there
583 		 * space in any swap device?
584 		 */
585 		if (get_nr_swap_pages() > 0)
586 			return true;
587 	} else {
588 		/* Is the memcg below its swap limit? */
589 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
590 			return true;
591 	}
592 
593 	/*
594 	 * The page can not be swapped.
595 	 *
596 	 * Can it be reclaimed from this node via demotion?
597 	 */
598 	return can_demote(nid, sc);
599 }
600 
601 /*
602  * This misses isolated folios which are not accounted for to save counters.
603  * As the data only determines if reclaim or compaction continues, it is
604  * not expected that isolated folios will be a dominating factor.
605  */
606 unsigned long zone_reclaimable_pages(struct zone *zone)
607 {
608 	unsigned long nr;
609 
610 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
611 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
612 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
613 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
614 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
615 
616 	return nr;
617 }
618 
619 /**
620  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
621  * @lruvec: lru vector
622  * @lru: lru to use
623  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
624  */
625 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
626 				     int zone_idx)
627 {
628 	unsigned long size = 0;
629 	int zid;
630 
631 	for (zid = 0; zid <= zone_idx; zid++) {
632 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
633 
634 		if (!managed_zone(zone))
635 			continue;
636 
637 		if (!mem_cgroup_disabled())
638 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
639 		else
640 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
641 	}
642 	return size;
643 }
644 
645 /*
646  * Add a shrinker callback to be called from the vm.
647  */
648 static int __prealloc_shrinker(struct shrinker *shrinker)
649 {
650 	unsigned int size;
651 	int err;
652 
653 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
654 		err = prealloc_memcg_shrinker(shrinker);
655 		if (err != -ENOSYS)
656 			return err;
657 
658 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
659 	}
660 
661 	size = sizeof(*shrinker->nr_deferred);
662 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
663 		size *= nr_node_ids;
664 
665 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
666 	if (!shrinker->nr_deferred)
667 		return -ENOMEM;
668 
669 	return 0;
670 }
671 
672 #ifdef CONFIG_SHRINKER_DEBUG
673 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
674 {
675 	va_list ap;
676 	int err;
677 
678 	va_start(ap, fmt);
679 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
680 	va_end(ap);
681 	if (!shrinker->name)
682 		return -ENOMEM;
683 
684 	err = __prealloc_shrinker(shrinker);
685 	if (err) {
686 		kfree_const(shrinker->name);
687 		shrinker->name = NULL;
688 	}
689 
690 	return err;
691 }
692 #else
693 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
694 {
695 	return __prealloc_shrinker(shrinker);
696 }
697 #endif
698 
699 void free_prealloced_shrinker(struct shrinker *shrinker)
700 {
701 #ifdef CONFIG_SHRINKER_DEBUG
702 	kfree_const(shrinker->name);
703 	shrinker->name = NULL;
704 #endif
705 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
706 		mutex_lock(&shrinker_mutex);
707 		unregister_memcg_shrinker(shrinker);
708 		mutex_unlock(&shrinker_mutex);
709 		return;
710 	}
711 
712 	kfree(shrinker->nr_deferred);
713 	shrinker->nr_deferred = NULL;
714 }
715 
716 void register_shrinker_prepared(struct shrinker *shrinker)
717 {
718 	mutex_lock(&shrinker_mutex);
719 	list_add_tail_rcu(&shrinker->list, &shrinker_list);
720 	shrinker->flags |= SHRINKER_REGISTERED;
721 	shrinker_debugfs_add(shrinker);
722 	mutex_unlock(&shrinker_mutex);
723 }
724 
725 static int __register_shrinker(struct shrinker *shrinker)
726 {
727 	int err = __prealloc_shrinker(shrinker);
728 
729 	if (err)
730 		return err;
731 	register_shrinker_prepared(shrinker);
732 	return 0;
733 }
734 
735 #ifdef CONFIG_SHRINKER_DEBUG
736 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
737 {
738 	va_list ap;
739 	int err;
740 
741 	va_start(ap, fmt);
742 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
743 	va_end(ap);
744 	if (!shrinker->name)
745 		return -ENOMEM;
746 
747 	err = __register_shrinker(shrinker);
748 	if (err) {
749 		kfree_const(shrinker->name);
750 		shrinker->name = NULL;
751 	}
752 	return err;
753 }
754 #else
755 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
756 {
757 	return __register_shrinker(shrinker);
758 }
759 #endif
760 EXPORT_SYMBOL(register_shrinker);
761 
762 /*
763  * Remove one
764  */
765 void unregister_shrinker(struct shrinker *shrinker)
766 {
767 	struct dentry *debugfs_entry;
768 
769 	if (!(shrinker->flags & SHRINKER_REGISTERED))
770 		return;
771 
772 	mutex_lock(&shrinker_mutex);
773 	list_del_rcu(&shrinker->list);
774 	shrinker->flags &= ~SHRINKER_REGISTERED;
775 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
776 		unregister_memcg_shrinker(shrinker);
777 	debugfs_entry = shrinker_debugfs_remove(shrinker);
778 	mutex_unlock(&shrinker_mutex);
779 
780 	atomic_inc(&shrinker_srcu_generation);
781 	synchronize_srcu(&shrinker_srcu);
782 
783 	debugfs_remove_recursive(debugfs_entry);
784 
785 	kfree(shrinker->nr_deferred);
786 	shrinker->nr_deferred = NULL;
787 }
788 EXPORT_SYMBOL(unregister_shrinker);
789 
790 /**
791  * synchronize_shrinkers - Wait for all running shrinkers to complete.
792  *
793  * This is useful to guarantee that all shrinker invocations have seen an
794  * update, before freeing memory.
795  */
796 void synchronize_shrinkers(void)
797 {
798 	atomic_inc(&shrinker_srcu_generation);
799 	synchronize_srcu(&shrinker_srcu);
800 }
801 EXPORT_SYMBOL(synchronize_shrinkers);
802 
803 #define SHRINK_BATCH 128
804 
805 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
806 				    struct shrinker *shrinker, int priority)
807 {
808 	unsigned long freed = 0;
809 	unsigned long long delta;
810 	long total_scan;
811 	long freeable;
812 	long nr;
813 	long new_nr;
814 	long batch_size = shrinker->batch ? shrinker->batch
815 					  : SHRINK_BATCH;
816 	long scanned = 0, next_deferred;
817 
818 	freeable = shrinker->count_objects(shrinker, shrinkctl);
819 	if (freeable == 0 || freeable == SHRINK_EMPTY)
820 		return freeable;
821 
822 	/*
823 	 * copy the current shrinker scan count into a local variable
824 	 * and zero it so that other concurrent shrinker invocations
825 	 * don't also do this scanning work.
826 	 */
827 	nr = xchg_nr_deferred(shrinker, shrinkctl);
828 
829 	if (shrinker->seeks) {
830 		delta = freeable >> priority;
831 		delta *= 4;
832 		do_div(delta, shrinker->seeks);
833 	} else {
834 		/*
835 		 * These objects don't require any IO to create. Trim
836 		 * them aggressively under memory pressure to keep
837 		 * them from causing refetches in the IO caches.
838 		 */
839 		delta = freeable / 2;
840 	}
841 
842 	total_scan = nr >> priority;
843 	total_scan += delta;
844 	total_scan = min(total_scan, (2 * freeable));
845 
846 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
847 				   freeable, delta, total_scan, priority);
848 
849 	/*
850 	 * Normally, we should not scan less than batch_size objects in one
851 	 * pass to avoid too frequent shrinker calls, but if the slab has less
852 	 * than batch_size objects in total and we are really tight on memory,
853 	 * we will try to reclaim all available objects, otherwise we can end
854 	 * up failing allocations although there are plenty of reclaimable
855 	 * objects spread over several slabs with usage less than the
856 	 * batch_size.
857 	 *
858 	 * We detect the "tight on memory" situations by looking at the total
859 	 * number of objects we want to scan (total_scan). If it is greater
860 	 * than the total number of objects on slab (freeable), we must be
861 	 * scanning at high prio and therefore should try to reclaim as much as
862 	 * possible.
863 	 */
864 	while (total_scan >= batch_size ||
865 	       total_scan >= freeable) {
866 		unsigned long ret;
867 		unsigned long nr_to_scan = min(batch_size, total_scan);
868 
869 		shrinkctl->nr_to_scan = nr_to_scan;
870 		shrinkctl->nr_scanned = nr_to_scan;
871 		ret = shrinker->scan_objects(shrinker, shrinkctl);
872 		if (ret == SHRINK_STOP)
873 			break;
874 		freed += ret;
875 
876 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
877 		total_scan -= shrinkctl->nr_scanned;
878 		scanned += shrinkctl->nr_scanned;
879 
880 		cond_resched();
881 	}
882 
883 	/*
884 	 * The deferred work is increased by any new work (delta) that wasn't
885 	 * done, decreased by old deferred work that was done now.
886 	 *
887 	 * And it is capped to two times of the freeable items.
888 	 */
889 	next_deferred = max_t(long, (nr + delta - scanned), 0);
890 	next_deferred = min(next_deferred, (2 * freeable));
891 
892 	/*
893 	 * move the unused scan count back into the shrinker in a
894 	 * manner that handles concurrent updates.
895 	 */
896 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
897 
898 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
899 	return freed;
900 }
901 
902 #ifdef CONFIG_MEMCG
903 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
904 			struct mem_cgroup *memcg, int priority)
905 {
906 	struct shrinker_info *info;
907 	unsigned long ret, freed = 0;
908 	int srcu_idx, generation;
909 	int i = 0;
910 
911 	if (!mem_cgroup_online(memcg))
912 		return 0;
913 
914 again:
915 	srcu_idx = srcu_read_lock(&shrinker_srcu);
916 	info = shrinker_info_srcu(memcg, nid);
917 	if (unlikely(!info))
918 		goto unlock;
919 
920 	generation = atomic_read(&shrinker_srcu_generation);
921 	for_each_set_bit_from(i, info->map, info->map_nr_max) {
922 		struct shrink_control sc = {
923 			.gfp_mask = gfp_mask,
924 			.nid = nid,
925 			.memcg = memcg,
926 		};
927 		struct shrinker *shrinker;
928 
929 		shrinker = idr_find(&shrinker_idr, i);
930 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
931 			if (!shrinker)
932 				clear_bit(i, info->map);
933 			continue;
934 		}
935 
936 		/* Call non-slab shrinkers even though kmem is disabled */
937 		if (!memcg_kmem_online() &&
938 		    !(shrinker->flags & SHRINKER_NONSLAB))
939 			continue;
940 
941 		ret = do_shrink_slab(&sc, shrinker, priority);
942 		if (ret == SHRINK_EMPTY) {
943 			clear_bit(i, info->map);
944 			/*
945 			 * After the shrinker reported that it had no objects to
946 			 * free, but before we cleared the corresponding bit in
947 			 * the memcg shrinker map, a new object might have been
948 			 * added. To make sure, we have the bit set in this
949 			 * case, we invoke the shrinker one more time and reset
950 			 * the bit if it reports that it is not empty anymore.
951 			 * The memory barrier here pairs with the barrier in
952 			 * set_shrinker_bit():
953 			 *
954 			 * list_lru_add()     shrink_slab_memcg()
955 			 *   list_add_tail()    clear_bit()
956 			 *   <MB>               <MB>
957 			 *   set_bit()          do_shrink_slab()
958 			 */
959 			smp_mb__after_atomic();
960 			ret = do_shrink_slab(&sc, shrinker, priority);
961 			if (ret == SHRINK_EMPTY)
962 				ret = 0;
963 			else
964 				set_shrinker_bit(memcg, nid, i);
965 		}
966 		freed += ret;
967 		if (atomic_read(&shrinker_srcu_generation) != generation) {
968 			srcu_read_unlock(&shrinker_srcu, srcu_idx);
969 			i++;
970 			goto again;
971 		}
972 	}
973 unlock:
974 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
975 	return freed;
976 }
977 #else /* CONFIG_MEMCG */
978 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
979 			struct mem_cgroup *memcg, int priority)
980 {
981 	return 0;
982 }
983 #endif /* CONFIG_MEMCG */
984 
985 /**
986  * shrink_slab - shrink slab caches
987  * @gfp_mask: allocation context
988  * @nid: node whose slab caches to target
989  * @memcg: memory cgroup whose slab caches to target
990  * @priority: the reclaim priority
991  *
992  * Call the shrink functions to age shrinkable caches.
993  *
994  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
995  * unaware shrinkers will receive a node id of 0 instead.
996  *
997  * @memcg specifies the memory cgroup to target. Unaware shrinkers
998  * are called only if it is the root cgroup.
999  *
1000  * @priority is sc->priority, we take the number of objects and >> by priority
1001  * in order to get the scan target.
1002  *
1003  * Returns the number of reclaimed slab objects.
1004  */
1005 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1006 				 struct mem_cgroup *memcg,
1007 				 int priority)
1008 {
1009 	unsigned long ret, freed = 0;
1010 	struct shrinker *shrinker;
1011 	int srcu_idx, generation;
1012 
1013 	/*
1014 	 * The root memcg might be allocated even though memcg is disabled
1015 	 * via "cgroup_disable=memory" boot parameter.  This could make
1016 	 * mem_cgroup_is_root() return false, then just run memcg slab
1017 	 * shrink, but skip global shrink.  This may result in premature
1018 	 * oom.
1019 	 */
1020 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1021 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1022 
1023 	srcu_idx = srcu_read_lock(&shrinker_srcu);
1024 
1025 	generation = atomic_read(&shrinker_srcu_generation);
1026 	list_for_each_entry_srcu(shrinker, &shrinker_list, list,
1027 				 srcu_read_lock_held(&shrinker_srcu)) {
1028 		struct shrink_control sc = {
1029 			.gfp_mask = gfp_mask,
1030 			.nid = nid,
1031 			.memcg = memcg,
1032 		};
1033 
1034 		ret = do_shrink_slab(&sc, shrinker, priority);
1035 		if (ret == SHRINK_EMPTY)
1036 			ret = 0;
1037 		freed += ret;
1038 
1039 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1040 			freed = freed ? : 1;
1041 			break;
1042 		}
1043 	}
1044 
1045 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1046 	cond_resched();
1047 	return freed;
1048 }
1049 
1050 static unsigned long drop_slab_node(int nid)
1051 {
1052 	unsigned long freed = 0;
1053 	struct mem_cgroup *memcg = NULL;
1054 
1055 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1056 	do {
1057 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1058 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1059 
1060 	return freed;
1061 }
1062 
1063 void drop_slab(void)
1064 {
1065 	int nid;
1066 	int shift = 0;
1067 	unsigned long freed;
1068 
1069 	do {
1070 		freed = 0;
1071 		for_each_online_node(nid) {
1072 			if (fatal_signal_pending(current))
1073 				return;
1074 
1075 			freed += drop_slab_node(nid);
1076 		}
1077 	} while ((freed >> shift++) > 1);
1078 }
1079 
1080 static int reclaimer_offset(void)
1081 {
1082 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1083 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1084 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1085 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1086 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1087 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1088 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1089 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1090 
1091 	if (current_is_kswapd())
1092 		return 0;
1093 	if (current_is_khugepaged())
1094 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1095 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1096 }
1097 
1098 static inline int is_page_cache_freeable(struct folio *folio)
1099 {
1100 	/*
1101 	 * A freeable page cache folio is referenced only by the caller
1102 	 * that isolated the folio, the page cache and optional filesystem
1103 	 * private data at folio->private.
1104 	 */
1105 	return folio_ref_count(folio) - folio_test_private(folio) ==
1106 		1 + folio_nr_pages(folio);
1107 }
1108 
1109 /*
1110  * We detected a synchronous write error writing a folio out.  Probably
1111  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1112  * fsync(), msync() or close().
1113  *
1114  * The tricky part is that after writepage we cannot touch the mapping: nothing
1115  * prevents it from being freed up.  But we have a ref on the folio and once
1116  * that folio is locked, the mapping is pinned.
1117  *
1118  * We're allowed to run sleeping folio_lock() here because we know the caller has
1119  * __GFP_FS.
1120  */
1121 static void handle_write_error(struct address_space *mapping,
1122 				struct folio *folio, int error)
1123 {
1124 	folio_lock(folio);
1125 	if (folio_mapping(folio) == mapping)
1126 		mapping_set_error(mapping, error);
1127 	folio_unlock(folio);
1128 }
1129 
1130 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1131 {
1132 	int reclaimable = 0, write_pending = 0;
1133 	int i;
1134 
1135 	/*
1136 	 * If kswapd is disabled, reschedule if necessary but do not
1137 	 * throttle as the system is likely near OOM.
1138 	 */
1139 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1140 		return true;
1141 
1142 	/*
1143 	 * If there are a lot of dirty/writeback folios then do not
1144 	 * throttle as throttling will occur when the folios cycle
1145 	 * towards the end of the LRU if still under writeback.
1146 	 */
1147 	for (i = 0; i < MAX_NR_ZONES; i++) {
1148 		struct zone *zone = pgdat->node_zones + i;
1149 
1150 		if (!managed_zone(zone))
1151 			continue;
1152 
1153 		reclaimable += zone_reclaimable_pages(zone);
1154 		write_pending += zone_page_state_snapshot(zone,
1155 						  NR_ZONE_WRITE_PENDING);
1156 	}
1157 	if (2 * write_pending <= reclaimable)
1158 		return true;
1159 
1160 	return false;
1161 }
1162 
1163 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1164 {
1165 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1166 	long timeout, ret;
1167 	DEFINE_WAIT(wait);
1168 
1169 	/*
1170 	 * Do not throttle IO workers, kthreads other than kswapd or
1171 	 * workqueues. They may be required for reclaim to make
1172 	 * forward progress (e.g. journalling workqueues or kthreads).
1173 	 */
1174 	if (!current_is_kswapd() &&
1175 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1176 		cond_resched();
1177 		return;
1178 	}
1179 
1180 	/*
1181 	 * These figures are pulled out of thin air.
1182 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1183 	 * parallel reclaimers which is a short-lived event so the timeout is
1184 	 * short. Failing to make progress or waiting on writeback are
1185 	 * potentially long-lived events so use a longer timeout. This is shaky
1186 	 * logic as a failure to make progress could be due to anything from
1187 	 * writeback to a slow device to excessive referenced folios at the tail
1188 	 * of the inactive LRU.
1189 	 */
1190 	switch(reason) {
1191 	case VMSCAN_THROTTLE_WRITEBACK:
1192 		timeout = HZ/10;
1193 
1194 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1195 			WRITE_ONCE(pgdat->nr_reclaim_start,
1196 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1197 		}
1198 
1199 		break;
1200 	case VMSCAN_THROTTLE_CONGESTED:
1201 		fallthrough;
1202 	case VMSCAN_THROTTLE_NOPROGRESS:
1203 		if (skip_throttle_noprogress(pgdat)) {
1204 			cond_resched();
1205 			return;
1206 		}
1207 
1208 		timeout = 1;
1209 
1210 		break;
1211 	case VMSCAN_THROTTLE_ISOLATED:
1212 		timeout = HZ/50;
1213 		break;
1214 	default:
1215 		WARN_ON_ONCE(1);
1216 		timeout = HZ;
1217 		break;
1218 	}
1219 
1220 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1221 	ret = schedule_timeout(timeout);
1222 	finish_wait(wqh, &wait);
1223 
1224 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1225 		atomic_dec(&pgdat->nr_writeback_throttled);
1226 
1227 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1228 				jiffies_to_usecs(timeout - ret),
1229 				reason);
1230 }
1231 
1232 /*
1233  * Account for folios written if tasks are throttled waiting on dirty
1234  * folios to clean. If enough folios have been cleaned since throttling
1235  * started then wakeup the throttled tasks.
1236  */
1237 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1238 							int nr_throttled)
1239 {
1240 	unsigned long nr_written;
1241 
1242 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1243 
1244 	/*
1245 	 * This is an inaccurate read as the per-cpu deltas may not
1246 	 * be synchronised. However, given that the system is
1247 	 * writeback throttled, it is not worth taking the penalty
1248 	 * of getting an accurate count. At worst, the throttle
1249 	 * timeout guarantees forward progress.
1250 	 */
1251 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1252 		READ_ONCE(pgdat->nr_reclaim_start);
1253 
1254 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1255 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1256 }
1257 
1258 /* possible outcome of pageout() */
1259 typedef enum {
1260 	/* failed to write folio out, folio is locked */
1261 	PAGE_KEEP,
1262 	/* move folio to the active list, folio is locked */
1263 	PAGE_ACTIVATE,
1264 	/* folio has been sent to the disk successfully, folio is unlocked */
1265 	PAGE_SUCCESS,
1266 	/* folio is clean and locked */
1267 	PAGE_CLEAN,
1268 } pageout_t;
1269 
1270 /*
1271  * pageout is called by shrink_folio_list() for each dirty folio.
1272  * Calls ->writepage().
1273  */
1274 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1275 			 struct swap_iocb **plug)
1276 {
1277 	/*
1278 	 * If the folio is dirty, only perform writeback if that write
1279 	 * will be non-blocking.  To prevent this allocation from being
1280 	 * stalled by pagecache activity.  But note that there may be
1281 	 * stalls if we need to run get_block().  We could test
1282 	 * PagePrivate for that.
1283 	 *
1284 	 * If this process is currently in __generic_file_write_iter() against
1285 	 * this folio's queue, we can perform writeback even if that
1286 	 * will block.
1287 	 *
1288 	 * If the folio is swapcache, write it back even if that would
1289 	 * block, for some throttling. This happens by accident, because
1290 	 * swap_backing_dev_info is bust: it doesn't reflect the
1291 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1292 	 */
1293 	if (!is_page_cache_freeable(folio))
1294 		return PAGE_KEEP;
1295 	if (!mapping) {
1296 		/*
1297 		 * Some data journaling orphaned folios can have
1298 		 * folio->mapping == NULL while being dirty with clean buffers.
1299 		 */
1300 		if (folio_test_private(folio)) {
1301 			if (try_to_free_buffers(folio)) {
1302 				folio_clear_dirty(folio);
1303 				pr_info("%s: orphaned folio\n", __func__);
1304 				return PAGE_CLEAN;
1305 			}
1306 		}
1307 		return PAGE_KEEP;
1308 	}
1309 	if (mapping->a_ops->writepage == NULL)
1310 		return PAGE_ACTIVATE;
1311 
1312 	if (folio_clear_dirty_for_io(folio)) {
1313 		int res;
1314 		struct writeback_control wbc = {
1315 			.sync_mode = WB_SYNC_NONE,
1316 			.nr_to_write = SWAP_CLUSTER_MAX,
1317 			.range_start = 0,
1318 			.range_end = LLONG_MAX,
1319 			.for_reclaim = 1,
1320 			.swap_plug = plug,
1321 		};
1322 
1323 		folio_set_reclaim(folio);
1324 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1325 		if (res < 0)
1326 			handle_write_error(mapping, folio, res);
1327 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1328 			folio_clear_reclaim(folio);
1329 			return PAGE_ACTIVATE;
1330 		}
1331 
1332 		if (!folio_test_writeback(folio)) {
1333 			/* synchronous write or broken a_ops? */
1334 			folio_clear_reclaim(folio);
1335 		}
1336 		trace_mm_vmscan_write_folio(folio);
1337 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1338 		return PAGE_SUCCESS;
1339 	}
1340 
1341 	return PAGE_CLEAN;
1342 }
1343 
1344 /*
1345  * Same as remove_mapping, but if the folio is removed from the mapping, it
1346  * gets returned with a refcount of 0.
1347  */
1348 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1349 			    bool reclaimed, struct mem_cgroup *target_memcg)
1350 {
1351 	int refcount;
1352 	void *shadow = NULL;
1353 
1354 	BUG_ON(!folio_test_locked(folio));
1355 	BUG_ON(mapping != folio_mapping(folio));
1356 
1357 	if (!folio_test_swapcache(folio))
1358 		spin_lock(&mapping->host->i_lock);
1359 	xa_lock_irq(&mapping->i_pages);
1360 	/*
1361 	 * The non racy check for a busy folio.
1362 	 *
1363 	 * Must be careful with the order of the tests. When someone has
1364 	 * a ref to the folio, it may be possible that they dirty it then
1365 	 * drop the reference. So if the dirty flag is tested before the
1366 	 * refcount here, then the following race may occur:
1367 	 *
1368 	 * get_user_pages(&page);
1369 	 * [user mapping goes away]
1370 	 * write_to(page);
1371 	 *				!folio_test_dirty(folio)    [good]
1372 	 * folio_set_dirty(folio);
1373 	 * folio_put(folio);
1374 	 *				!refcount(folio)   [good, discard it]
1375 	 *
1376 	 * [oops, our write_to data is lost]
1377 	 *
1378 	 * Reversing the order of the tests ensures such a situation cannot
1379 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1380 	 * load is not satisfied before that of folio->_refcount.
1381 	 *
1382 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1383 	 * and thus under the i_pages lock, then this ordering is not required.
1384 	 */
1385 	refcount = 1 + folio_nr_pages(folio);
1386 	if (!folio_ref_freeze(folio, refcount))
1387 		goto cannot_free;
1388 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1389 	if (unlikely(folio_test_dirty(folio))) {
1390 		folio_ref_unfreeze(folio, refcount);
1391 		goto cannot_free;
1392 	}
1393 
1394 	if (folio_test_swapcache(folio)) {
1395 		swp_entry_t swap = folio_swap_entry(folio);
1396 
1397 		if (reclaimed && !mapping_exiting(mapping))
1398 			shadow = workingset_eviction(folio, target_memcg);
1399 		__delete_from_swap_cache(folio, swap, shadow);
1400 		mem_cgroup_swapout(folio, swap);
1401 		xa_unlock_irq(&mapping->i_pages);
1402 		put_swap_folio(folio, swap);
1403 	} else {
1404 		void (*free_folio)(struct folio *);
1405 
1406 		free_folio = mapping->a_ops->free_folio;
1407 		/*
1408 		 * Remember a shadow entry for reclaimed file cache in
1409 		 * order to detect refaults, thus thrashing, later on.
1410 		 *
1411 		 * But don't store shadows in an address space that is
1412 		 * already exiting.  This is not just an optimization,
1413 		 * inode reclaim needs to empty out the radix tree or
1414 		 * the nodes are lost.  Don't plant shadows behind its
1415 		 * back.
1416 		 *
1417 		 * We also don't store shadows for DAX mappings because the
1418 		 * only page cache folios found in these are zero pages
1419 		 * covering holes, and because we don't want to mix DAX
1420 		 * exceptional entries and shadow exceptional entries in the
1421 		 * same address_space.
1422 		 */
1423 		if (reclaimed && folio_is_file_lru(folio) &&
1424 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1425 			shadow = workingset_eviction(folio, target_memcg);
1426 		__filemap_remove_folio(folio, shadow);
1427 		xa_unlock_irq(&mapping->i_pages);
1428 		if (mapping_shrinkable(mapping))
1429 			inode_add_lru(mapping->host);
1430 		spin_unlock(&mapping->host->i_lock);
1431 
1432 		if (free_folio)
1433 			free_folio(folio);
1434 	}
1435 
1436 	return 1;
1437 
1438 cannot_free:
1439 	xa_unlock_irq(&mapping->i_pages);
1440 	if (!folio_test_swapcache(folio))
1441 		spin_unlock(&mapping->host->i_lock);
1442 	return 0;
1443 }
1444 
1445 /**
1446  * remove_mapping() - Attempt to remove a folio from its mapping.
1447  * @mapping: The address space.
1448  * @folio: The folio to remove.
1449  *
1450  * If the folio is dirty, under writeback or if someone else has a ref
1451  * on it, removal will fail.
1452  * Return: The number of pages removed from the mapping.  0 if the folio
1453  * could not be removed.
1454  * Context: The caller should have a single refcount on the folio and
1455  * hold its lock.
1456  */
1457 long remove_mapping(struct address_space *mapping, struct folio *folio)
1458 {
1459 	if (__remove_mapping(mapping, folio, false, NULL)) {
1460 		/*
1461 		 * Unfreezing the refcount with 1 effectively
1462 		 * drops the pagecache ref for us without requiring another
1463 		 * atomic operation.
1464 		 */
1465 		folio_ref_unfreeze(folio, 1);
1466 		return folio_nr_pages(folio);
1467 	}
1468 	return 0;
1469 }
1470 
1471 /**
1472  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1473  * @folio: Folio to be returned to an LRU list.
1474  *
1475  * Add previously isolated @folio to appropriate LRU list.
1476  * The folio may still be unevictable for other reasons.
1477  *
1478  * Context: lru_lock must not be held, interrupts must be enabled.
1479  */
1480 void folio_putback_lru(struct folio *folio)
1481 {
1482 	folio_add_lru(folio);
1483 	folio_put(folio);		/* drop ref from isolate */
1484 }
1485 
1486 enum folio_references {
1487 	FOLIOREF_RECLAIM,
1488 	FOLIOREF_RECLAIM_CLEAN,
1489 	FOLIOREF_KEEP,
1490 	FOLIOREF_ACTIVATE,
1491 };
1492 
1493 static enum folio_references folio_check_references(struct folio *folio,
1494 						  struct scan_control *sc)
1495 {
1496 	int referenced_ptes, referenced_folio;
1497 	unsigned long vm_flags;
1498 
1499 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1500 					   &vm_flags);
1501 	referenced_folio = folio_test_clear_referenced(folio);
1502 
1503 	/*
1504 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1505 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1506 	 */
1507 	if (vm_flags & VM_LOCKED)
1508 		return FOLIOREF_ACTIVATE;
1509 
1510 	/* rmap lock contention: rotate */
1511 	if (referenced_ptes == -1)
1512 		return FOLIOREF_KEEP;
1513 
1514 	if (referenced_ptes) {
1515 		/*
1516 		 * All mapped folios start out with page table
1517 		 * references from the instantiating fault, so we need
1518 		 * to look twice if a mapped file/anon folio is used more
1519 		 * than once.
1520 		 *
1521 		 * Mark it and spare it for another trip around the
1522 		 * inactive list.  Another page table reference will
1523 		 * lead to its activation.
1524 		 *
1525 		 * Note: the mark is set for activated folios as well
1526 		 * so that recently deactivated but used folios are
1527 		 * quickly recovered.
1528 		 */
1529 		folio_set_referenced(folio);
1530 
1531 		if (referenced_folio || referenced_ptes > 1)
1532 			return FOLIOREF_ACTIVATE;
1533 
1534 		/*
1535 		 * Activate file-backed executable folios after first usage.
1536 		 */
1537 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1538 			return FOLIOREF_ACTIVATE;
1539 
1540 		return FOLIOREF_KEEP;
1541 	}
1542 
1543 	/* Reclaim if clean, defer dirty folios to writeback */
1544 	if (referenced_folio && folio_is_file_lru(folio))
1545 		return FOLIOREF_RECLAIM_CLEAN;
1546 
1547 	return FOLIOREF_RECLAIM;
1548 }
1549 
1550 /* Check if a folio is dirty or under writeback */
1551 static void folio_check_dirty_writeback(struct folio *folio,
1552 				       bool *dirty, bool *writeback)
1553 {
1554 	struct address_space *mapping;
1555 
1556 	/*
1557 	 * Anonymous folios are not handled by flushers and must be written
1558 	 * from reclaim context. Do not stall reclaim based on them.
1559 	 * MADV_FREE anonymous folios are put into inactive file list too.
1560 	 * They could be mistakenly treated as file lru. So further anon
1561 	 * test is needed.
1562 	 */
1563 	if (!folio_is_file_lru(folio) ||
1564 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1565 		*dirty = false;
1566 		*writeback = false;
1567 		return;
1568 	}
1569 
1570 	/* By default assume that the folio flags are accurate */
1571 	*dirty = folio_test_dirty(folio);
1572 	*writeback = folio_test_writeback(folio);
1573 
1574 	/* Verify dirty/writeback state if the filesystem supports it */
1575 	if (!folio_test_private(folio))
1576 		return;
1577 
1578 	mapping = folio_mapping(folio);
1579 	if (mapping && mapping->a_ops->is_dirty_writeback)
1580 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1581 }
1582 
1583 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1584 {
1585 	struct page *target_page;
1586 	nodemask_t *allowed_mask;
1587 	struct migration_target_control *mtc;
1588 
1589 	mtc = (struct migration_target_control *)private;
1590 
1591 	allowed_mask = mtc->nmask;
1592 	/*
1593 	 * make sure we allocate from the target node first also trying to
1594 	 * demote or reclaim pages from the target node via kswapd if we are
1595 	 * low on free memory on target node. If we don't do this and if
1596 	 * we have free memory on the slower(lower) memtier, we would start
1597 	 * allocating pages from slower(lower) memory tiers without even forcing
1598 	 * a demotion of cold pages from the target memtier. This can result
1599 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1600 	 */
1601 	mtc->nmask = NULL;
1602 	mtc->gfp_mask |= __GFP_THISNODE;
1603 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1604 	if (target_page)
1605 		return target_page;
1606 
1607 	mtc->gfp_mask &= ~__GFP_THISNODE;
1608 	mtc->nmask = allowed_mask;
1609 
1610 	return alloc_migration_target(page, (unsigned long)mtc);
1611 }
1612 
1613 /*
1614  * Take folios on @demote_folios and attempt to demote them to another node.
1615  * Folios which are not demoted are left on @demote_folios.
1616  */
1617 static unsigned int demote_folio_list(struct list_head *demote_folios,
1618 				     struct pglist_data *pgdat)
1619 {
1620 	int target_nid = next_demotion_node(pgdat->node_id);
1621 	unsigned int nr_succeeded;
1622 	nodemask_t allowed_mask;
1623 
1624 	struct migration_target_control mtc = {
1625 		/*
1626 		 * Allocate from 'node', or fail quickly and quietly.
1627 		 * When this happens, 'page' will likely just be discarded
1628 		 * instead of migrated.
1629 		 */
1630 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1631 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1632 		.nid = target_nid,
1633 		.nmask = &allowed_mask
1634 	};
1635 
1636 	if (list_empty(demote_folios))
1637 		return 0;
1638 
1639 	if (target_nid == NUMA_NO_NODE)
1640 		return 0;
1641 
1642 	node_get_allowed_targets(pgdat, &allowed_mask);
1643 
1644 	/* Demotion ignores all cpuset and mempolicy settings */
1645 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1646 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1647 		      &nr_succeeded);
1648 
1649 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1650 
1651 	return nr_succeeded;
1652 }
1653 
1654 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1655 {
1656 	if (gfp_mask & __GFP_FS)
1657 		return true;
1658 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1659 		return false;
1660 	/*
1661 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1662 	 * providing this isn't SWP_FS_OPS.
1663 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1664 	 * but that will never affect SWP_FS_OPS, so the data_race
1665 	 * is safe.
1666 	 */
1667 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1668 }
1669 
1670 /*
1671  * shrink_folio_list() returns the number of reclaimed pages
1672  */
1673 static unsigned int shrink_folio_list(struct list_head *folio_list,
1674 		struct pglist_data *pgdat, struct scan_control *sc,
1675 		struct reclaim_stat *stat, bool ignore_references)
1676 {
1677 	LIST_HEAD(ret_folios);
1678 	LIST_HEAD(free_folios);
1679 	LIST_HEAD(demote_folios);
1680 	unsigned int nr_reclaimed = 0;
1681 	unsigned int pgactivate = 0;
1682 	bool do_demote_pass;
1683 	struct swap_iocb *plug = NULL;
1684 
1685 	memset(stat, 0, sizeof(*stat));
1686 	cond_resched();
1687 	do_demote_pass = can_demote(pgdat->node_id, sc);
1688 
1689 retry:
1690 	while (!list_empty(folio_list)) {
1691 		struct address_space *mapping;
1692 		struct folio *folio;
1693 		enum folio_references references = FOLIOREF_RECLAIM;
1694 		bool dirty, writeback;
1695 		unsigned int nr_pages;
1696 
1697 		cond_resched();
1698 
1699 		folio = lru_to_folio(folio_list);
1700 		list_del(&folio->lru);
1701 
1702 		if (!folio_trylock(folio))
1703 			goto keep;
1704 
1705 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1706 
1707 		nr_pages = folio_nr_pages(folio);
1708 
1709 		/* Account the number of base pages */
1710 		sc->nr_scanned += nr_pages;
1711 
1712 		if (unlikely(!folio_evictable(folio)))
1713 			goto activate_locked;
1714 
1715 		if (!sc->may_unmap && folio_mapped(folio))
1716 			goto keep_locked;
1717 
1718 		/* folio_update_gen() tried to promote this page? */
1719 		if (lru_gen_enabled() && !ignore_references &&
1720 		    folio_mapped(folio) && folio_test_referenced(folio))
1721 			goto keep_locked;
1722 
1723 		/*
1724 		 * The number of dirty pages determines if a node is marked
1725 		 * reclaim_congested. kswapd will stall and start writing
1726 		 * folios if the tail of the LRU is all dirty unqueued folios.
1727 		 */
1728 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1729 		if (dirty || writeback)
1730 			stat->nr_dirty += nr_pages;
1731 
1732 		if (dirty && !writeback)
1733 			stat->nr_unqueued_dirty += nr_pages;
1734 
1735 		/*
1736 		 * Treat this folio as congested if folios are cycling
1737 		 * through the LRU so quickly that the folios marked
1738 		 * for immediate reclaim are making it to the end of
1739 		 * the LRU a second time.
1740 		 */
1741 		if (writeback && folio_test_reclaim(folio))
1742 			stat->nr_congested += nr_pages;
1743 
1744 		/*
1745 		 * If a folio at the tail of the LRU is under writeback, there
1746 		 * are three cases to consider.
1747 		 *
1748 		 * 1) If reclaim is encountering an excessive number
1749 		 *    of folios under writeback and this folio has both
1750 		 *    the writeback and reclaim flags set, then it
1751 		 *    indicates that folios are being queued for I/O but
1752 		 *    are being recycled through the LRU before the I/O
1753 		 *    can complete. Waiting on the folio itself risks an
1754 		 *    indefinite stall if it is impossible to writeback
1755 		 *    the folio due to I/O error or disconnected storage
1756 		 *    so instead note that the LRU is being scanned too
1757 		 *    quickly and the caller can stall after the folio
1758 		 *    list has been processed.
1759 		 *
1760 		 * 2) Global or new memcg reclaim encounters a folio that is
1761 		 *    not marked for immediate reclaim, or the caller does not
1762 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1763 		 *    not to fs). In this case mark the folio for immediate
1764 		 *    reclaim and continue scanning.
1765 		 *
1766 		 *    Require may_enter_fs() because we would wait on fs, which
1767 		 *    may not have submitted I/O yet. And the loop driver might
1768 		 *    enter reclaim, and deadlock if it waits on a folio for
1769 		 *    which it is needed to do the write (loop masks off
1770 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1771 		 *    would probably show more reasons.
1772 		 *
1773 		 * 3) Legacy memcg encounters a folio that already has the
1774 		 *    reclaim flag set. memcg does not have any dirty folio
1775 		 *    throttling so we could easily OOM just because too many
1776 		 *    folios are in writeback and there is nothing else to
1777 		 *    reclaim. Wait for the writeback to complete.
1778 		 *
1779 		 * In cases 1) and 2) we activate the folios to get them out of
1780 		 * the way while we continue scanning for clean folios on the
1781 		 * inactive list and refilling from the active list. The
1782 		 * observation here is that waiting for disk writes is more
1783 		 * expensive than potentially causing reloads down the line.
1784 		 * Since they're marked for immediate reclaim, they won't put
1785 		 * memory pressure on the cache working set any longer than it
1786 		 * takes to write them to disk.
1787 		 */
1788 		if (folio_test_writeback(folio)) {
1789 			/* Case 1 above */
1790 			if (current_is_kswapd() &&
1791 			    folio_test_reclaim(folio) &&
1792 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1793 				stat->nr_immediate += nr_pages;
1794 				goto activate_locked;
1795 
1796 			/* Case 2 above */
1797 			} else if (writeback_throttling_sane(sc) ||
1798 			    !folio_test_reclaim(folio) ||
1799 			    !may_enter_fs(folio, sc->gfp_mask)) {
1800 				/*
1801 				 * This is slightly racy -
1802 				 * folio_end_writeback() might have
1803 				 * just cleared the reclaim flag, then
1804 				 * setting the reclaim flag here ends up
1805 				 * interpreted as the readahead flag - but
1806 				 * that does not matter enough to care.
1807 				 * What we do want is for this folio to
1808 				 * have the reclaim flag set next time
1809 				 * memcg reclaim reaches the tests above,
1810 				 * so it will then wait for writeback to
1811 				 * avoid OOM; and it's also appropriate
1812 				 * in global reclaim.
1813 				 */
1814 				folio_set_reclaim(folio);
1815 				stat->nr_writeback += nr_pages;
1816 				goto activate_locked;
1817 
1818 			/* Case 3 above */
1819 			} else {
1820 				folio_unlock(folio);
1821 				folio_wait_writeback(folio);
1822 				/* then go back and try same folio again */
1823 				list_add_tail(&folio->lru, folio_list);
1824 				continue;
1825 			}
1826 		}
1827 
1828 		if (!ignore_references)
1829 			references = folio_check_references(folio, sc);
1830 
1831 		switch (references) {
1832 		case FOLIOREF_ACTIVATE:
1833 			goto activate_locked;
1834 		case FOLIOREF_KEEP:
1835 			stat->nr_ref_keep += nr_pages;
1836 			goto keep_locked;
1837 		case FOLIOREF_RECLAIM:
1838 		case FOLIOREF_RECLAIM_CLEAN:
1839 			; /* try to reclaim the folio below */
1840 		}
1841 
1842 		/*
1843 		 * Before reclaiming the folio, try to relocate
1844 		 * its contents to another node.
1845 		 */
1846 		if (do_demote_pass &&
1847 		    (thp_migration_supported() || !folio_test_large(folio))) {
1848 			list_add(&folio->lru, &demote_folios);
1849 			folio_unlock(folio);
1850 			continue;
1851 		}
1852 
1853 		/*
1854 		 * Anonymous process memory has backing store?
1855 		 * Try to allocate it some swap space here.
1856 		 * Lazyfree folio could be freed directly
1857 		 */
1858 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1859 			if (!folio_test_swapcache(folio)) {
1860 				if (!(sc->gfp_mask & __GFP_IO))
1861 					goto keep_locked;
1862 				if (folio_maybe_dma_pinned(folio))
1863 					goto keep_locked;
1864 				if (folio_test_large(folio)) {
1865 					/* cannot split folio, skip it */
1866 					if (!can_split_folio(folio, NULL))
1867 						goto activate_locked;
1868 					/*
1869 					 * Split folios without a PMD map right
1870 					 * away. Chances are some or all of the
1871 					 * tail pages can be freed without IO.
1872 					 */
1873 					if (!folio_entire_mapcount(folio) &&
1874 					    split_folio_to_list(folio,
1875 								folio_list))
1876 						goto activate_locked;
1877 				}
1878 				if (!add_to_swap(folio)) {
1879 					if (!folio_test_large(folio))
1880 						goto activate_locked_split;
1881 					/* Fallback to swap normal pages */
1882 					if (split_folio_to_list(folio,
1883 								folio_list))
1884 						goto activate_locked;
1885 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1886 					count_vm_event(THP_SWPOUT_FALLBACK);
1887 #endif
1888 					if (!add_to_swap(folio))
1889 						goto activate_locked_split;
1890 				}
1891 			}
1892 		} else if (folio_test_swapbacked(folio) &&
1893 			   folio_test_large(folio)) {
1894 			/* Split shmem folio */
1895 			if (split_folio_to_list(folio, folio_list))
1896 				goto keep_locked;
1897 		}
1898 
1899 		/*
1900 		 * If the folio was split above, the tail pages will make
1901 		 * their own pass through this function and be accounted
1902 		 * then.
1903 		 */
1904 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1905 			sc->nr_scanned -= (nr_pages - 1);
1906 			nr_pages = 1;
1907 		}
1908 
1909 		/*
1910 		 * The folio is mapped into the page tables of one or more
1911 		 * processes. Try to unmap it here.
1912 		 */
1913 		if (folio_mapped(folio)) {
1914 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1915 			bool was_swapbacked = folio_test_swapbacked(folio);
1916 
1917 			if (folio_test_pmd_mappable(folio))
1918 				flags |= TTU_SPLIT_HUGE_PMD;
1919 
1920 			try_to_unmap(folio, flags);
1921 			if (folio_mapped(folio)) {
1922 				stat->nr_unmap_fail += nr_pages;
1923 				if (!was_swapbacked &&
1924 				    folio_test_swapbacked(folio))
1925 					stat->nr_lazyfree_fail += nr_pages;
1926 				goto activate_locked;
1927 			}
1928 		}
1929 
1930 		mapping = folio_mapping(folio);
1931 		if (folio_test_dirty(folio)) {
1932 			/*
1933 			 * Only kswapd can writeback filesystem folios
1934 			 * to avoid risk of stack overflow. But avoid
1935 			 * injecting inefficient single-folio I/O into
1936 			 * flusher writeback as much as possible: only
1937 			 * write folios when we've encountered many
1938 			 * dirty folios, and when we've already scanned
1939 			 * the rest of the LRU for clean folios and see
1940 			 * the same dirty folios again (with the reclaim
1941 			 * flag set).
1942 			 */
1943 			if (folio_is_file_lru(folio) &&
1944 			    (!current_is_kswapd() ||
1945 			     !folio_test_reclaim(folio) ||
1946 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1947 				/*
1948 				 * Immediately reclaim when written back.
1949 				 * Similar in principle to folio_deactivate()
1950 				 * except we already have the folio isolated
1951 				 * and know it's dirty
1952 				 */
1953 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1954 						nr_pages);
1955 				folio_set_reclaim(folio);
1956 
1957 				goto activate_locked;
1958 			}
1959 
1960 			if (references == FOLIOREF_RECLAIM_CLEAN)
1961 				goto keep_locked;
1962 			if (!may_enter_fs(folio, sc->gfp_mask))
1963 				goto keep_locked;
1964 			if (!sc->may_writepage)
1965 				goto keep_locked;
1966 
1967 			/*
1968 			 * Folio is dirty. Flush the TLB if a writable entry
1969 			 * potentially exists to avoid CPU writes after I/O
1970 			 * starts and then write it out here.
1971 			 */
1972 			try_to_unmap_flush_dirty();
1973 			switch (pageout(folio, mapping, &plug)) {
1974 			case PAGE_KEEP:
1975 				goto keep_locked;
1976 			case PAGE_ACTIVATE:
1977 				goto activate_locked;
1978 			case PAGE_SUCCESS:
1979 				stat->nr_pageout += nr_pages;
1980 
1981 				if (folio_test_writeback(folio))
1982 					goto keep;
1983 				if (folio_test_dirty(folio))
1984 					goto keep;
1985 
1986 				/*
1987 				 * A synchronous write - probably a ramdisk.  Go
1988 				 * ahead and try to reclaim the folio.
1989 				 */
1990 				if (!folio_trylock(folio))
1991 					goto keep;
1992 				if (folio_test_dirty(folio) ||
1993 				    folio_test_writeback(folio))
1994 					goto keep_locked;
1995 				mapping = folio_mapping(folio);
1996 				fallthrough;
1997 			case PAGE_CLEAN:
1998 				; /* try to free the folio below */
1999 			}
2000 		}
2001 
2002 		/*
2003 		 * If the folio has buffers, try to free the buffer
2004 		 * mappings associated with this folio. If we succeed
2005 		 * we try to free the folio as well.
2006 		 *
2007 		 * We do this even if the folio is dirty.
2008 		 * filemap_release_folio() does not perform I/O, but it
2009 		 * is possible for a folio to have the dirty flag set,
2010 		 * but it is actually clean (all its buffers are clean).
2011 		 * This happens if the buffers were written out directly,
2012 		 * with submit_bh(). ext3 will do this, as well as
2013 		 * the blockdev mapping.  filemap_release_folio() will
2014 		 * discover that cleanness and will drop the buffers
2015 		 * and mark the folio clean - it can be freed.
2016 		 *
2017 		 * Rarely, folios can have buffers and no ->mapping.
2018 		 * These are the folios which were not successfully
2019 		 * invalidated in truncate_cleanup_folio().  We try to
2020 		 * drop those buffers here and if that worked, and the
2021 		 * folio is no longer mapped into process address space
2022 		 * (refcount == 1) it can be freed.  Otherwise, leave
2023 		 * the folio on the LRU so it is swappable.
2024 		 */
2025 		if (folio_has_private(folio)) {
2026 			if (!filemap_release_folio(folio, sc->gfp_mask))
2027 				goto activate_locked;
2028 			if (!mapping && folio_ref_count(folio) == 1) {
2029 				folio_unlock(folio);
2030 				if (folio_put_testzero(folio))
2031 					goto free_it;
2032 				else {
2033 					/*
2034 					 * rare race with speculative reference.
2035 					 * the speculative reference will free
2036 					 * this folio shortly, so we may
2037 					 * increment nr_reclaimed here (and
2038 					 * leave it off the LRU).
2039 					 */
2040 					nr_reclaimed += nr_pages;
2041 					continue;
2042 				}
2043 			}
2044 		}
2045 
2046 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2047 			/* follow __remove_mapping for reference */
2048 			if (!folio_ref_freeze(folio, 1))
2049 				goto keep_locked;
2050 			/*
2051 			 * The folio has only one reference left, which is
2052 			 * from the isolation. After the caller puts the
2053 			 * folio back on the lru and drops the reference, the
2054 			 * folio will be freed anyway. It doesn't matter
2055 			 * which lru it goes on. So we don't bother checking
2056 			 * the dirty flag here.
2057 			 */
2058 			count_vm_events(PGLAZYFREED, nr_pages);
2059 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2060 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2061 							 sc->target_mem_cgroup))
2062 			goto keep_locked;
2063 
2064 		folio_unlock(folio);
2065 free_it:
2066 		/*
2067 		 * Folio may get swapped out as a whole, need to account
2068 		 * all pages in it.
2069 		 */
2070 		nr_reclaimed += nr_pages;
2071 
2072 		/*
2073 		 * Is there need to periodically free_folio_list? It would
2074 		 * appear not as the counts should be low
2075 		 */
2076 		if (unlikely(folio_test_large(folio)))
2077 			destroy_large_folio(folio);
2078 		else
2079 			list_add(&folio->lru, &free_folios);
2080 		continue;
2081 
2082 activate_locked_split:
2083 		/*
2084 		 * The tail pages that are failed to add into swap cache
2085 		 * reach here.  Fixup nr_scanned and nr_pages.
2086 		 */
2087 		if (nr_pages > 1) {
2088 			sc->nr_scanned -= (nr_pages - 1);
2089 			nr_pages = 1;
2090 		}
2091 activate_locked:
2092 		/* Not a candidate for swapping, so reclaim swap space. */
2093 		if (folio_test_swapcache(folio) &&
2094 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2095 			folio_free_swap(folio);
2096 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2097 		if (!folio_test_mlocked(folio)) {
2098 			int type = folio_is_file_lru(folio);
2099 			folio_set_active(folio);
2100 			stat->nr_activate[type] += nr_pages;
2101 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2102 		}
2103 keep_locked:
2104 		folio_unlock(folio);
2105 keep:
2106 		list_add(&folio->lru, &ret_folios);
2107 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2108 				folio_test_unevictable(folio), folio);
2109 	}
2110 	/* 'folio_list' is always empty here */
2111 
2112 	/* Migrate folios selected for demotion */
2113 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2114 	/* Folios that could not be demoted are still in @demote_folios */
2115 	if (!list_empty(&demote_folios)) {
2116 		/* Folios which weren't demoted go back on @folio_list */
2117 		list_splice_init(&demote_folios, folio_list);
2118 
2119 		/*
2120 		 * goto retry to reclaim the undemoted folios in folio_list if
2121 		 * desired.
2122 		 *
2123 		 * Reclaiming directly from top tier nodes is not often desired
2124 		 * due to it breaking the LRU ordering: in general memory
2125 		 * should be reclaimed from lower tier nodes and demoted from
2126 		 * top tier nodes.
2127 		 *
2128 		 * However, disabling reclaim from top tier nodes entirely
2129 		 * would cause ooms in edge scenarios where lower tier memory
2130 		 * is unreclaimable for whatever reason, eg memory being
2131 		 * mlocked or too hot to reclaim. We can disable reclaim
2132 		 * from top tier nodes in proactive reclaim though as that is
2133 		 * not real memory pressure.
2134 		 */
2135 		if (!sc->proactive) {
2136 			do_demote_pass = false;
2137 			goto retry;
2138 		}
2139 	}
2140 
2141 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2142 
2143 	mem_cgroup_uncharge_list(&free_folios);
2144 	try_to_unmap_flush();
2145 	free_unref_page_list(&free_folios);
2146 
2147 	list_splice(&ret_folios, folio_list);
2148 	count_vm_events(PGACTIVATE, pgactivate);
2149 
2150 	if (plug)
2151 		swap_write_unplug(plug);
2152 	return nr_reclaimed;
2153 }
2154 
2155 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2156 					   struct list_head *folio_list)
2157 {
2158 	struct scan_control sc = {
2159 		.gfp_mask = GFP_KERNEL,
2160 		.may_unmap = 1,
2161 	};
2162 	struct reclaim_stat stat;
2163 	unsigned int nr_reclaimed;
2164 	struct folio *folio, *next;
2165 	LIST_HEAD(clean_folios);
2166 	unsigned int noreclaim_flag;
2167 
2168 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2169 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2170 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2171 		    !folio_test_unevictable(folio)) {
2172 			folio_clear_active(folio);
2173 			list_move(&folio->lru, &clean_folios);
2174 		}
2175 	}
2176 
2177 	/*
2178 	 * We should be safe here since we are only dealing with file pages and
2179 	 * we are not kswapd and therefore cannot write dirty file pages. But
2180 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2181 	 * change in the future.
2182 	 */
2183 	noreclaim_flag = memalloc_noreclaim_save();
2184 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2185 					&stat, true);
2186 	memalloc_noreclaim_restore(noreclaim_flag);
2187 
2188 	list_splice(&clean_folios, folio_list);
2189 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2190 			    -(long)nr_reclaimed);
2191 	/*
2192 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2193 	 * they will rotate back to anonymous LRU in the end if it failed to
2194 	 * discard so isolated count will be mismatched.
2195 	 * Compensate the isolated count for both LRU lists.
2196 	 */
2197 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2198 			    stat.nr_lazyfree_fail);
2199 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2200 			    -(long)stat.nr_lazyfree_fail);
2201 	return nr_reclaimed;
2202 }
2203 
2204 /*
2205  * Update LRU sizes after isolating pages. The LRU size updates must
2206  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2207  */
2208 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2209 			enum lru_list lru, unsigned long *nr_zone_taken)
2210 {
2211 	int zid;
2212 
2213 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2214 		if (!nr_zone_taken[zid])
2215 			continue;
2216 
2217 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2218 	}
2219 
2220 }
2221 
2222 /*
2223  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2224  *
2225  * lruvec->lru_lock is heavily contended.  Some of the functions that
2226  * shrink the lists perform better by taking out a batch of pages
2227  * and working on them outside the LRU lock.
2228  *
2229  * For pagecache intensive workloads, this function is the hottest
2230  * spot in the kernel (apart from copy_*_user functions).
2231  *
2232  * Lru_lock must be held before calling this function.
2233  *
2234  * @nr_to_scan:	The number of eligible pages to look through on the list.
2235  * @lruvec:	The LRU vector to pull pages from.
2236  * @dst:	The temp list to put pages on to.
2237  * @nr_scanned:	The number of pages that were scanned.
2238  * @sc:		The scan_control struct for this reclaim session
2239  * @lru:	LRU list id for isolating
2240  *
2241  * returns how many pages were moved onto *@dst.
2242  */
2243 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2244 		struct lruvec *lruvec, struct list_head *dst,
2245 		unsigned long *nr_scanned, struct scan_control *sc,
2246 		enum lru_list lru)
2247 {
2248 	struct list_head *src = &lruvec->lists[lru];
2249 	unsigned long nr_taken = 0;
2250 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2251 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2252 	unsigned long skipped = 0;
2253 	unsigned long scan, total_scan, nr_pages;
2254 	LIST_HEAD(folios_skipped);
2255 
2256 	total_scan = 0;
2257 	scan = 0;
2258 	while (scan < nr_to_scan && !list_empty(src)) {
2259 		struct list_head *move_to = src;
2260 		struct folio *folio;
2261 
2262 		folio = lru_to_folio(src);
2263 		prefetchw_prev_lru_folio(folio, src, flags);
2264 
2265 		nr_pages = folio_nr_pages(folio);
2266 		total_scan += nr_pages;
2267 
2268 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2269 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2270 			move_to = &folios_skipped;
2271 			goto move;
2272 		}
2273 
2274 		/*
2275 		 * Do not count skipped folios because that makes the function
2276 		 * return with no isolated folios if the LRU mostly contains
2277 		 * ineligible folios.  This causes the VM to not reclaim any
2278 		 * folios, triggering a premature OOM.
2279 		 * Account all pages in a folio.
2280 		 */
2281 		scan += nr_pages;
2282 
2283 		if (!folio_test_lru(folio))
2284 			goto move;
2285 		if (!sc->may_unmap && folio_mapped(folio))
2286 			goto move;
2287 
2288 		/*
2289 		 * Be careful not to clear the lru flag until after we're
2290 		 * sure the folio is not being freed elsewhere -- the
2291 		 * folio release code relies on it.
2292 		 */
2293 		if (unlikely(!folio_try_get(folio)))
2294 			goto move;
2295 
2296 		if (!folio_test_clear_lru(folio)) {
2297 			/* Another thread is already isolating this folio */
2298 			folio_put(folio);
2299 			goto move;
2300 		}
2301 
2302 		nr_taken += nr_pages;
2303 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2304 		move_to = dst;
2305 move:
2306 		list_move(&folio->lru, move_to);
2307 	}
2308 
2309 	/*
2310 	 * Splice any skipped folios to the start of the LRU list. Note that
2311 	 * this disrupts the LRU order when reclaiming for lower zones but
2312 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2313 	 * scanning would soon rescan the same folios to skip and waste lots
2314 	 * of cpu cycles.
2315 	 */
2316 	if (!list_empty(&folios_skipped)) {
2317 		int zid;
2318 
2319 		list_splice(&folios_skipped, src);
2320 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2321 			if (!nr_skipped[zid])
2322 				continue;
2323 
2324 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2325 			skipped += nr_skipped[zid];
2326 		}
2327 	}
2328 	*nr_scanned = total_scan;
2329 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2330 				    total_scan, skipped, nr_taken,
2331 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2332 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2333 	return nr_taken;
2334 }
2335 
2336 /**
2337  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2338  * @folio: Folio to isolate from its LRU list.
2339  *
2340  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2341  * corresponding to whatever LRU list the folio was on.
2342  *
2343  * The folio will have its LRU flag cleared.  If it was found on the
2344  * active list, it will have the Active flag set.  If it was found on the
2345  * unevictable list, it will have the Unevictable flag set.  These flags
2346  * may need to be cleared by the caller before letting the page go.
2347  *
2348  * Context:
2349  *
2350  * (1) Must be called with an elevated refcount on the folio. This is a
2351  *     fundamental difference from isolate_lru_folios() (which is called
2352  *     without a stable reference).
2353  * (2) The lru_lock must not be held.
2354  * (3) Interrupts must be enabled.
2355  *
2356  * Return: true if the folio was removed from an LRU list.
2357  * false if the folio was not on an LRU list.
2358  */
2359 bool folio_isolate_lru(struct folio *folio)
2360 {
2361 	bool ret = false;
2362 
2363 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2364 
2365 	if (folio_test_clear_lru(folio)) {
2366 		struct lruvec *lruvec;
2367 
2368 		folio_get(folio);
2369 		lruvec = folio_lruvec_lock_irq(folio);
2370 		lruvec_del_folio(lruvec, folio);
2371 		unlock_page_lruvec_irq(lruvec);
2372 		ret = true;
2373 	}
2374 
2375 	return ret;
2376 }
2377 
2378 /*
2379  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2380  * then get rescheduled. When there are massive number of tasks doing page
2381  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2382  * the LRU list will go small and be scanned faster than necessary, leading to
2383  * unnecessary swapping, thrashing and OOM.
2384  */
2385 static int too_many_isolated(struct pglist_data *pgdat, int file,
2386 		struct scan_control *sc)
2387 {
2388 	unsigned long inactive, isolated;
2389 	bool too_many;
2390 
2391 	if (current_is_kswapd())
2392 		return 0;
2393 
2394 	if (!writeback_throttling_sane(sc))
2395 		return 0;
2396 
2397 	if (file) {
2398 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2399 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2400 	} else {
2401 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2402 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2403 	}
2404 
2405 	/*
2406 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2407 	 * won't get blocked by normal direct-reclaimers, forming a circular
2408 	 * deadlock.
2409 	 */
2410 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2411 		inactive >>= 3;
2412 
2413 	too_many = isolated > inactive;
2414 
2415 	/* Wake up tasks throttled due to too_many_isolated. */
2416 	if (!too_many)
2417 		wake_throttle_isolated(pgdat);
2418 
2419 	return too_many;
2420 }
2421 
2422 /*
2423  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2424  * On return, @list is reused as a list of folios to be freed by the caller.
2425  *
2426  * Returns the number of pages moved to the given lruvec.
2427  */
2428 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2429 		struct list_head *list)
2430 {
2431 	int nr_pages, nr_moved = 0;
2432 	LIST_HEAD(folios_to_free);
2433 
2434 	while (!list_empty(list)) {
2435 		struct folio *folio = lru_to_folio(list);
2436 
2437 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2438 		list_del(&folio->lru);
2439 		if (unlikely(!folio_evictable(folio))) {
2440 			spin_unlock_irq(&lruvec->lru_lock);
2441 			folio_putback_lru(folio);
2442 			spin_lock_irq(&lruvec->lru_lock);
2443 			continue;
2444 		}
2445 
2446 		/*
2447 		 * The folio_set_lru needs to be kept here for list integrity.
2448 		 * Otherwise:
2449 		 *   #0 move_folios_to_lru             #1 release_pages
2450 		 *   if (!folio_put_testzero())
2451 		 *				      if (folio_put_testzero())
2452 		 *				        !lru //skip lru_lock
2453 		 *     folio_set_lru()
2454 		 *     list_add(&folio->lru,)
2455 		 *                                        list_add(&folio->lru,)
2456 		 */
2457 		folio_set_lru(folio);
2458 
2459 		if (unlikely(folio_put_testzero(folio))) {
2460 			__folio_clear_lru_flags(folio);
2461 
2462 			if (unlikely(folio_test_large(folio))) {
2463 				spin_unlock_irq(&lruvec->lru_lock);
2464 				destroy_large_folio(folio);
2465 				spin_lock_irq(&lruvec->lru_lock);
2466 			} else
2467 				list_add(&folio->lru, &folios_to_free);
2468 
2469 			continue;
2470 		}
2471 
2472 		/*
2473 		 * All pages were isolated from the same lruvec (and isolation
2474 		 * inhibits memcg migration).
2475 		 */
2476 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2477 		lruvec_add_folio(lruvec, folio);
2478 		nr_pages = folio_nr_pages(folio);
2479 		nr_moved += nr_pages;
2480 		if (folio_test_active(folio))
2481 			workingset_age_nonresident(lruvec, nr_pages);
2482 	}
2483 
2484 	/*
2485 	 * To save our caller's stack, now use input list for pages to free.
2486 	 */
2487 	list_splice(&folios_to_free, list);
2488 
2489 	return nr_moved;
2490 }
2491 
2492 /*
2493  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2494  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2495  * we should not throttle.  Otherwise it is safe to do so.
2496  */
2497 static int current_may_throttle(void)
2498 {
2499 	return !(current->flags & PF_LOCAL_THROTTLE);
2500 }
2501 
2502 /*
2503  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2504  * of reclaimed pages
2505  */
2506 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2507 		struct lruvec *lruvec, struct scan_control *sc,
2508 		enum lru_list lru)
2509 {
2510 	LIST_HEAD(folio_list);
2511 	unsigned long nr_scanned;
2512 	unsigned int nr_reclaimed = 0;
2513 	unsigned long nr_taken;
2514 	struct reclaim_stat stat;
2515 	bool file = is_file_lru(lru);
2516 	enum vm_event_item item;
2517 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2518 	bool stalled = false;
2519 
2520 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2521 		if (stalled)
2522 			return 0;
2523 
2524 		/* wait a bit for the reclaimer. */
2525 		stalled = true;
2526 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2527 
2528 		/* We are about to die and free our memory. Return now. */
2529 		if (fatal_signal_pending(current))
2530 			return SWAP_CLUSTER_MAX;
2531 	}
2532 
2533 	lru_add_drain();
2534 
2535 	spin_lock_irq(&lruvec->lru_lock);
2536 
2537 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2538 				     &nr_scanned, sc, lru);
2539 
2540 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2541 	item = PGSCAN_KSWAPD + reclaimer_offset();
2542 	if (!cgroup_reclaim(sc))
2543 		__count_vm_events(item, nr_scanned);
2544 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2545 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2546 
2547 	spin_unlock_irq(&lruvec->lru_lock);
2548 
2549 	if (nr_taken == 0)
2550 		return 0;
2551 
2552 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2553 
2554 	spin_lock_irq(&lruvec->lru_lock);
2555 	move_folios_to_lru(lruvec, &folio_list);
2556 
2557 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2558 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2559 	if (!cgroup_reclaim(sc))
2560 		__count_vm_events(item, nr_reclaimed);
2561 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2562 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2563 	spin_unlock_irq(&lruvec->lru_lock);
2564 
2565 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2566 	mem_cgroup_uncharge_list(&folio_list);
2567 	free_unref_page_list(&folio_list);
2568 
2569 	/*
2570 	 * If dirty folios are scanned that are not queued for IO, it
2571 	 * implies that flushers are not doing their job. This can
2572 	 * happen when memory pressure pushes dirty folios to the end of
2573 	 * the LRU before the dirty limits are breached and the dirty
2574 	 * data has expired. It can also happen when the proportion of
2575 	 * dirty folios grows not through writes but through memory
2576 	 * pressure reclaiming all the clean cache. And in some cases,
2577 	 * the flushers simply cannot keep up with the allocation
2578 	 * rate. Nudge the flusher threads in case they are asleep.
2579 	 */
2580 	if (stat.nr_unqueued_dirty == nr_taken) {
2581 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2582 		/*
2583 		 * For cgroupv1 dirty throttling is achieved by waking up
2584 		 * the kernel flusher here and later waiting on folios
2585 		 * which are in writeback to finish (see shrink_folio_list()).
2586 		 *
2587 		 * Flusher may not be able to issue writeback quickly
2588 		 * enough for cgroupv1 writeback throttling to work
2589 		 * on a large system.
2590 		 */
2591 		if (!writeback_throttling_sane(sc))
2592 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2593 	}
2594 
2595 	sc->nr.dirty += stat.nr_dirty;
2596 	sc->nr.congested += stat.nr_congested;
2597 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2598 	sc->nr.writeback += stat.nr_writeback;
2599 	sc->nr.immediate += stat.nr_immediate;
2600 	sc->nr.taken += nr_taken;
2601 	if (file)
2602 		sc->nr.file_taken += nr_taken;
2603 
2604 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2605 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2606 	return nr_reclaimed;
2607 }
2608 
2609 /*
2610  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2611  *
2612  * We move them the other way if the folio is referenced by one or more
2613  * processes.
2614  *
2615  * If the folios are mostly unmapped, the processing is fast and it is
2616  * appropriate to hold lru_lock across the whole operation.  But if
2617  * the folios are mapped, the processing is slow (folio_referenced()), so
2618  * we should drop lru_lock around each folio.  It's impossible to balance
2619  * this, so instead we remove the folios from the LRU while processing them.
2620  * It is safe to rely on the active flag against the non-LRU folios in here
2621  * because nobody will play with that bit on a non-LRU folio.
2622  *
2623  * The downside is that we have to touch folio->_refcount against each folio.
2624  * But we had to alter folio->flags anyway.
2625  */
2626 static void shrink_active_list(unsigned long nr_to_scan,
2627 			       struct lruvec *lruvec,
2628 			       struct scan_control *sc,
2629 			       enum lru_list lru)
2630 {
2631 	unsigned long nr_taken;
2632 	unsigned long nr_scanned;
2633 	unsigned long vm_flags;
2634 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2635 	LIST_HEAD(l_active);
2636 	LIST_HEAD(l_inactive);
2637 	unsigned nr_deactivate, nr_activate;
2638 	unsigned nr_rotated = 0;
2639 	int file = is_file_lru(lru);
2640 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2641 
2642 	lru_add_drain();
2643 
2644 	spin_lock_irq(&lruvec->lru_lock);
2645 
2646 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2647 				     &nr_scanned, sc, lru);
2648 
2649 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2650 
2651 	if (!cgroup_reclaim(sc))
2652 		__count_vm_events(PGREFILL, nr_scanned);
2653 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2654 
2655 	spin_unlock_irq(&lruvec->lru_lock);
2656 
2657 	while (!list_empty(&l_hold)) {
2658 		struct folio *folio;
2659 
2660 		cond_resched();
2661 		folio = lru_to_folio(&l_hold);
2662 		list_del(&folio->lru);
2663 
2664 		if (unlikely(!folio_evictable(folio))) {
2665 			folio_putback_lru(folio);
2666 			continue;
2667 		}
2668 
2669 		if (unlikely(buffer_heads_over_limit)) {
2670 			if (folio_test_private(folio) && folio_trylock(folio)) {
2671 				if (folio_test_private(folio))
2672 					filemap_release_folio(folio, 0);
2673 				folio_unlock(folio);
2674 			}
2675 		}
2676 
2677 		/* Referenced or rmap lock contention: rotate */
2678 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2679 				     &vm_flags) != 0) {
2680 			/*
2681 			 * Identify referenced, file-backed active folios and
2682 			 * give them one more trip around the active list. So
2683 			 * that executable code get better chances to stay in
2684 			 * memory under moderate memory pressure.  Anon folios
2685 			 * are not likely to be evicted by use-once streaming
2686 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2687 			 * so we ignore them here.
2688 			 */
2689 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2690 				nr_rotated += folio_nr_pages(folio);
2691 				list_add(&folio->lru, &l_active);
2692 				continue;
2693 			}
2694 		}
2695 
2696 		folio_clear_active(folio);	/* we are de-activating */
2697 		folio_set_workingset(folio);
2698 		list_add(&folio->lru, &l_inactive);
2699 	}
2700 
2701 	/*
2702 	 * Move folios back to the lru list.
2703 	 */
2704 	spin_lock_irq(&lruvec->lru_lock);
2705 
2706 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2707 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2708 	/* Keep all free folios in l_active list */
2709 	list_splice(&l_inactive, &l_active);
2710 
2711 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2712 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2713 
2714 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2715 	spin_unlock_irq(&lruvec->lru_lock);
2716 
2717 	if (nr_rotated)
2718 		lru_note_cost(lruvec, file, 0, nr_rotated);
2719 	mem_cgroup_uncharge_list(&l_active);
2720 	free_unref_page_list(&l_active);
2721 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2722 			nr_deactivate, nr_rotated, sc->priority, file);
2723 }
2724 
2725 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2726 				      struct pglist_data *pgdat)
2727 {
2728 	struct reclaim_stat dummy_stat;
2729 	unsigned int nr_reclaimed;
2730 	struct folio *folio;
2731 	struct scan_control sc = {
2732 		.gfp_mask = GFP_KERNEL,
2733 		.may_writepage = 1,
2734 		.may_unmap = 1,
2735 		.may_swap = 1,
2736 		.no_demotion = 1,
2737 	};
2738 
2739 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2740 	while (!list_empty(folio_list)) {
2741 		folio = lru_to_folio(folio_list);
2742 		list_del(&folio->lru);
2743 		folio_putback_lru(folio);
2744 	}
2745 
2746 	return nr_reclaimed;
2747 }
2748 
2749 unsigned long reclaim_pages(struct list_head *folio_list)
2750 {
2751 	int nid;
2752 	unsigned int nr_reclaimed = 0;
2753 	LIST_HEAD(node_folio_list);
2754 	unsigned int noreclaim_flag;
2755 
2756 	if (list_empty(folio_list))
2757 		return nr_reclaimed;
2758 
2759 	noreclaim_flag = memalloc_noreclaim_save();
2760 
2761 	nid = folio_nid(lru_to_folio(folio_list));
2762 	do {
2763 		struct folio *folio = lru_to_folio(folio_list);
2764 
2765 		if (nid == folio_nid(folio)) {
2766 			folio_clear_active(folio);
2767 			list_move(&folio->lru, &node_folio_list);
2768 			continue;
2769 		}
2770 
2771 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2772 		nid = folio_nid(lru_to_folio(folio_list));
2773 	} while (!list_empty(folio_list));
2774 
2775 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2776 
2777 	memalloc_noreclaim_restore(noreclaim_flag);
2778 
2779 	return nr_reclaimed;
2780 }
2781 
2782 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2783 				 struct lruvec *lruvec, struct scan_control *sc)
2784 {
2785 	if (is_active_lru(lru)) {
2786 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2787 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2788 		else
2789 			sc->skipped_deactivate = 1;
2790 		return 0;
2791 	}
2792 
2793 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2794 }
2795 
2796 /*
2797  * The inactive anon list should be small enough that the VM never has
2798  * to do too much work.
2799  *
2800  * The inactive file list should be small enough to leave most memory
2801  * to the established workingset on the scan-resistant active list,
2802  * but large enough to avoid thrashing the aggregate readahead window.
2803  *
2804  * Both inactive lists should also be large enough that each inactive
2805  * folio has a chance to be referenced again before it is reclaimed.
2806  *
2807  * If that fails and refaulting is observed, the inactive list grows.
2808  *
2809  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2810  * on this LRU, maintained by the pageout code. An inactive_ratio
2811  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2812  *
2813  * total     target    max
2814  * memory    ratio     inactive
2815  * -------------------------------------
2816  *   10MB       1         5MB
2817  *  100MB       1        50MB
2818  *    1GB       3       250MB
2819  *   10GB      10       0.9GB
2820  *  100GB      31         3GB
2821  *    1TB     101        10GB
2822  *   10TB     320        32GB
2823  */
2824 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2825 {
2826 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2827 	unsigned long inactive, active;
2828 	unsigned long inactive_ratio;
2829 	unsigned long gb;
2830 
2831 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2832 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2833 
2834 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2835 	if (gb)
2836 		inactive_ratio = int_sqrt(10 * gb);
2837 	else
2838 		inactive_ratio = 1;
2839 
2840 	return inactive * inactive_ratio < active;
2841 }
2842 
2843 enum scan_balance {
2844 	SCAN_EQUAL,
2845 	SCAN_FRACT,
2846 	SCAN_ANON,
2847 	SCAN_FILE,
2848 };
2849 
2850 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2851 {
2852 	unsigned long file;
2853 	struct lruvec *target_lruvec;
2854 
2855 	if (lru_gen_enabled())
2856 		return;
2857 
2858 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2859 
2860 	/*
2861 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2862 	 * lruvec stats for heuristics.
2863 	 */
2864 	mem_cgroup_flush_stats();
2865 
2866 	/*
2867 	 * Determine the scan balance between anon and file LRUs.
2868 	 */
2869 	spin_lock_irq(&target_lruvec->lru_lock);
2870 	sc->anon_cost = target_lruvec->anon_cost;
2871 	sc->file_cost = target_lruvec->file_cost;
2872 	spin_unlock_irq(&target_lruvec->lru_lock);
2873 
2874 	/*
2875 	 * Target desirable inactive:active list ratios for the anon
2876 	 * and file LRU lists.
2877 	 */
2878 	if (!sc->force_deactivate) {
2879 		unsigned long refaults;
2880 
2881 		/*
2882 		 * When refaults are being observed, it means a new
2883 		 * workingset is being established. Deactivate to get
2884 		 * rid of any stale active pages quickly.
2885 		 */
2886 		refaults = lruvec_page_state(target_lruvec,
2887 				WORKINGSET_ACTIVATE_ANON);
2888 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2889 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2890 			sc->may_deactivate |= DEACTIVATE_ANON;
2891 		else
2892 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2893 
2894 		refaults = lruvec_page_state(target_lruvec,
2895 				WORKINGSET_ACTIVATE_FILE);
2896 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2897 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2898 			sc->may_deactivate |= DEACTIVATE_FILE;
2899 		else
2900 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2901 	} else
2902 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2903 
2904 	/*
2905 	 * If we have plenty of inactive file pages that aren't
2906 	 * thrashing, try to reclaim those first before touching
2907 	 * anonymous pages.
2908 	 */
2909 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2910 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2911 		sc->cache_trim_mode = 1;
2912 	else
2913 		sc->cache_trim_mode = 0;
2914 
2915 	/*
2916 	 * Prevent the reclaimer from falling into the cache trap: as
2917 	 * cache pages start out inactive, every cache fault will tip
2918 	 * the scan balance towards the file LRU.  And as the file LRU
2919 	 * shrinks, so does the window for rotation from references.
2920 	 * This means we have a runaway feedback loop where a tiny
2921 	 * thrashing file LRU becomes infinitely more attractive than
2922 	 * anon pages.  Try to detect this based on file LRU size.
2923 	 */
2924 	if (!cgroup_reclaim(sc)) {
2925 		unsigned long total_high_wmark = 0;
2926 		unsigned long free, anon;
2927 		int z;
2928 
2929 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2930 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2931 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2932 
2933 		for (z = 0; z < MAX_NR_ZONES; z++) {
2934 			struct zone *zone = &pgdat->node_zones[z];
2935 
2936 			if (!managed_zone(zone))
2937 				continue;
2938 
2939 			total_high_wmark += high_wmark_pages(zone);
2940 		}
2941 
2942 		/*
2943 		 * Consider anon: if that's low too, this isn't a
2944 		 * runaway file reclaim problem, but rather just
2945 		 * extreme pressure. Reclaim as per usual then.
2946 		 */
2947 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2948 
2949 		sc->file_is_tiny =
2950 			file + free <= total_high_wmark &&
2951 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2952 			anon >> sc->priority;
2953 	}
2954 }
2955 
2956 /*
2957  * Determine how aggressively the anon and file LRU lists should be
2958  * scanned.
2959  *
2960  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2961  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2962  */
2963 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2964 			   unsigned long *nr)
2965 {
2966 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2967 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2968 	unsigned long anon_cost, file_cost, total_cost;
2969 	int swappiness = mem_cgroup_swappiness(memcg);
2970 	u64 fraction[ANON_AND_FILE];
2971 	u64 denominator = 0;	/* gcc */
2972 	enum scan_balance scan_balance;
2973 	unsigned long ap, fp;
2974 	enum lru_list lru;
2975 
2976 	/* If we have no swap space, do not bother scanning anon folios. */
2977 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2978 		scan_balance = SCAN_FILE;
2979 		goto out;
2980 	}
2981 
2982 	/*
2983 	 * Global reclaim will swap to prevent OOM even with no
2984 	 * swappiness, but memcg users want to use this knob to
2985 	 * disable swapping for individual groups completely when
2986 	 * using the memory controller's swap limit feature would be
2987 	 * too expensive.
2988 	 */
2989 	if (cgroup_reclaim(sc) && !swappiness) {
2990 		scan_balance = SCAN_FILE;
2991 		goto out;
2992 	}
2993 
2994 	/*
2995 	 * Do not apply any pressure balancing cleverness when the
2996 	 * system is close to OOM, scan both anon and file equally
2997 	 * (unless the swappiness setting disagrees with swapping).
2998 	 */
2999 	if (!sc->priority && swappiness) {
3000 		scan_balance = SCAN_EQUAL;
3001 		goto out;
3002 	}
3003 
3004 	/*
3005 	 * If the system is almost out of file pages, force-scan anon.
3006 	 */
3007 	if (sc->file_is_tiny) {
3008 		scan_balance = SCAN_ANON;
3009 		goto out;
3010 	}
3011 
3012 	/*
3013 	 * If there is enough inactive page cache, we do not reclaim
3014 	 * anything from the anonymous working right now.
3015 	 */
3016 	if (sc->cache_trim_mode) {
3017 		scan_balance = SCAN_FILE;
3018 		goto out;
3019 	}
3020 
3021 	scan_balance = SCAN_FRACT;
3022 	/*
3023 	 * Calculate the pressure balance between anon and file pages.
3024 	 *
3025 	 * The amount of pressure we put on each LRU is inversely
3026 	 * proportional to the cost of reclaiming each list, as
3027 	 * determined by the share of pages that are refaulting, times
3028 	 * the relative IO cost of bringing back a swapped out
3029 	 * anonymous page vs reloading a filesystem page (swappiness).
3030 	 *
3031 	 * Although we limit that influence to ensure no list gets
3032 	 * left behind completely: at least a third of the pressure is
3033 	 * applied, before swappiness.
3034 	 *
3035 	 * With swappiness at 100, anon and file have equal IO cost.
3036 	 */
3037 	total_cost = sc->anon_cost + sc->file_cost;
3038 	anon_cost = total_cost + sc->anon_cost;
3039 	file_cost = total_cost + sc->file_cost;
3040 	total_cost = anon_cost + file_cost;
3041 
3042 	ap = swappiness * (total_cost + 1);
3043 	ap /= anon_cost + 1;
3044 
3045 	fp = (200 - swappiness) * (total_cost + 1);
3046 	fp /= file_cost + 1;
3047 
3048 	fraction[0] = ap;
3049 	fraction[1] = fp;
3050 	denominator = ap + fp;
3051 out:
3052 	for_each_evictable_lru(lru) {
3053 		int file = is_file_lru(lru);
3054 		unsigned long lruvec_size;
3055 		unsigned long low, min;
3056 		unsigned long scan;
3057 
3058 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3059 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3060 				      &min, &low);
3061 
3062 		if (min || low) {
3063 			/*
3064 			 * Scale a cgroup's reclaim pressure by proportioning
3065 			 * its current usage to its memory.low or memory.min
3066 			 * setting.
3067 			 *
3068 			 * This is important, as otherwise scanning aggression
3069 			 * becomes extremely binary -- from nothing as we
3070 			 * approach the memory protection threshold, to totally
3071 			 * nominal as we exceed it.  This results in requiring
3072 			 * setting extremely liberal protection thresholds. It
3073 			 * also means we simply get no protection at all if we
3074 			 * set it too low, which is not ideal.
3075 			 *
3076 			 * If there is any protection in place, we reduce scan
3077 			 * pressure by how much of the total memory used is
3078 			 * within protection thresholds.
3079 			 *
3080 			 * There is one special case: in the first reclaim pass,
3081 			 * we skip over all groups that are within their low
3082 			 * protection. If that fails to reclaim enough pages to
3083 			 * satisfy the reclaim goal, we come back and override
3084 			 * the best-effort low protection. However, we still
3085 			 * ideally want to honor how well-behaved groups are in
3086 			 * that case instead of simply punishing them all
3087 			 * equally. As such, we reclaim them based on how much
3088 			 * memory they are using, reducing the scan pressure
3089 			 * again by how much of the total memory used is under
3090 			 * hard protection.
3091 			 */
3092 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3093 			unsigned long protection;
3094 
3095 			/* memory.low scaling, make sure we retry before OOM */
3096 			if (!sc->memcg_low_reclaim && low > min) {
3097 				protection = low;
3098 				sc->memcg_low_skipped = 1;
3099 			} else {
3100 				protection = min;
3101 			}
3102 
3103 			/* Avoid TOCTOU with earlier protection check */
3104 			cgroup_size = max(cgroup_size, protection);
3105 
3106 			scan = lruvec_size - lruvec_size * protection /
3107 				(cgroup_size + 1);
3108 
3109 			/*
3110 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3111 			 * reclaim moving forwards, avoiding decrementing
3112 			 * sc->priority further than desirable.
3113 			 */
3114 			scan = max(scan, SWAP_CLUSTER_MAX);
3115 		} else {
3116 			scan = lruvec_size;
3117 		}
3118 
3119 		scan >>= sc->priority;
3120 
3121 		/*
3122 		 * If the cgroup's already been deleted, make sure to
3123 		 * scrape out the remaining cache.
3124 		 */
3125 		if (!scan && !mem_cgroup_online(memcg))
3126 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3127 
3128 		switch (scan_balance) {
3129 		case SCAN_EQUAL:
3130 			/* Scan lists relative to size */
3131 			break;
3132 		case SCAN_FRACT:
3133 			/*
3134 			 * Scan types proportional to swappiness and
3135 			 * their relative recent reclaim efficiency.
3136 			 * Make sure we don't miss the last page on
3137 			 * the offlined memory cgroups because of a
3138 			 * round-off error.
3139 			 */
3140 			scan = mem_cgroup_online(memcg) ?
3141 			       div64_u64(scan * fraction[file], denominator) :
3142 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3143 						  denominator);
3144 			break;
3145 		case SCAN_FILE:
3146 		case SCAN_ANON:
3147 			/* Scan one type exclusively */
3148 			if ((scan_balance == SCAN_FILE) != file)
3149 				scan = 0;
3150 			break;
3151 		default:
3152 			/* Look ma, no brain */
3153 			BUG();
3154 		}
3155 
3156 		nr[lru] = scan;
3157 	}
3158 }
3159 
3160 /*
3161  * Anonymous LRU management is a waste if there is
3162  * ultimately no way to reclaim the memory.
3163  */
3164 static bool can_age_anon_pages(struct pglist_data *pgdat,
3165 			       struct scan_control *sc)
3166 {
3167 	/* Aging the anon LRU is valuable if swap is present: */
3168 	if (total_swap_pages > 0)
3169 		return true;
3170 
3171 	/* Also valuable if anon pages can be demoted: */
3172 	return can_demote(pgdat->node_id, sc);
3173 }
3174 
3175 #ifdef CONFIG_LRU_GEN
3176 
3177 #ifdef CONFIG_LRU_GEN_ENABLED
3178 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3179 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3180 #else
3181 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3182 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3183 #endif
3184 
3185 /******************************************************************************
3186  *                          shorthand helpers
3187  ******************************************************************************/
3188 
3189 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3190 
3191 #define DEFINE_MAX_SEQ(lruvec)						\
3192 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3193 
3194 #define DEFINE_MIN_SEQ(lruvec)						\
3195 	unsigned long min_seq[ANON_AND_FILE] = {			\
3196 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3197 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3198 	}
3199 
3200 #define for_each_gen_type_zone(gen, type, zone)				\
3201 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3202 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3203 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3204 
3205 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3206 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3207 
3208 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3209 {
3210 	struct pglist_data *pgdat = NODE_DATA(nid);
3211 
3212 #ifdef CONFIG_MEMCG
3213 	if (memcg) {
3214 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3215 
3216 		/* see the comment in mem_cgroup_lruvec() */
3217 		if (!lruvec->pgdat)
3218 			lruvec->pgdat = pgdat;
3219 
3220 		return lruvec;
3221 	}
3222 #endif
3223 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3224 
3225 	return &pgdat->__lruvec;
3226 }
3227 
3228 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3229 {
3230 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3231 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3232 
3233 	if (!sc->may_swap)
3234 		return 0;
3235 
3236 	if (!can_demote(pgdat->node_id, sc) &&
3237 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3238 		return 0;
3239 
3240 	return mem_cgroup_swappiness(memcg);
3241 }
3242 
3243 static int get_nr_gens(struct lruvec *lruvec, int type)
3244 {
3245 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3246 }
3247 
3248 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3249 {
3250 	/* see the comment on lru_gen_folio */
3251 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3252 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3253 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3254 }
3255 
3256 /******************************************************************************
3257  *                          Bloom filters
3258  ******************************************************************************/
3259 
3260 /*
3261  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3262  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3263  * bits in a bitmap, k is the number of hash functions and n is the number of
3264  * inserted items.
3265  *
3266  * Page table walkers use one of the two filters to reduce their search space.
3267  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3268  * aging uses the double-buffering technique to flip to the other filter each
3269  * time it produces a new generation. For non-leaf entries that have enough
3270  * leaf entries, the aging carries them over to the next generation in
3271  * walk_pmd_range(); the eviction also report them when walking the rmap
3272  * in lru_gen_look_around().
3273  *
3274  * For future optimizations:
3275  * 1. It's not necessary to keep both filters all the time. The spare one can be
3276  *    freed after the RCU grace period and reallocated if needed again.
3277  * 2. And when reallocating, it's worth scaling its size according to the number
3278  *    of inserted entries in the other filter, to reduce the memory overhead on
3279  *    small systems and false positives on large systems.
3280  * 3. Jenkins' hash function is an alternative to Knuth's.
3281  */
3282 #define BLOOM_FILTER_SHIFT	15
3283 
3284 static inline int filter_gen_from_seq(unsigned long seq)
3285 {
3286 	return seq % NR_BLOOM_FILTERS;
3287 }
3288 
3289 static void get_item_key(void *item, int *key)
3290 {
3291 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3292 
3293 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3294 
3295 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3296 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3297 }
3298 
3299 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3300 {
3301 	int key[2];
3302 	unsigned long *filter;
3303 	int gen = filter_gen_from_seq(seq);
3304 
3305 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3306 	if (!filter)
3307 		return true;
3308 
3309 	get_item_key(item, key);
3310 
3311 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3312 }
3313 
3314 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3315 {
3316 	int key[2];
3317 	unsigned long *filter;
3318 	int gen = filter_gen_from_seq(seq);
3319 
3320 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3321 	if (!filter)
3322 		return;
3323 
3324 	get_item_key(item, key);
3325 
3326 	if (!test_bit(key[0], filter))
3327 		set_bit(key[0], filter);
3328 	if (!test_bit(key[1], filter))
3329 		set_bit(key[1], filter);
3330 }
3331 
3332 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3333 {
3334 	unsigned long *filter;
3335 	int gen = filter_gen_from_seq(seq);
3336 
3337 	filter = lruvec->mm_state.filters[gen];
3338 	if (filter) {
3339 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3340 		return;
3341 	}
3342 
3343 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3344 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3345 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3346 }
3347 
3348 /******************************************************************************
3349  *                          mm_struct list
3350  ******************************************************************************/
3351 
3352 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3353 {
3354 	static struct lru_gen_mm_list mm_list = {
3355 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3356 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3357 	};
3358 
3359 #ifdef CONFIG_MEMCG
3360 	if (memcg)
3361 		return &memcg->mm_list;
3362 #endif
3363 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3364 
3365 	return &mm_list;
3366 }
3367 
3368 void lru_gen_add_mm(struct mm_struct *mm)
3369 {
3370 	int nid;
3371 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3372 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3373 
3374 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3375 #ifdef CONFIG_MEMCG
3376 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3377 	mm->lru_gen.memcg = memcg;
3378 #endif
3379 	spin_lock(&mm_list->lock);
3380 
3381 	for_each_node_state(nid, N_MEMORY) {
3382 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3383 
3384 		/* the first addition since the last iteration */
3385 		if (lruvec->mm_state.tail == &mm_list->fifo)
3386 			lruvec->mm_state.tail = &mm->lru_gen.list;
3387 	}
3388 
3389 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3390 
3391 	spin_unlock(&mm_list->lock);
3392 }
3393 
3394 void lru_gen_del_mm(struct mm_struct *mm)
3395 {
3396 	int nid;
3397 	struct lru_gen_mm_list *mm_list;
3398 	struct mem_cgroup *memcg = NULL;
3399 
3400 	if (list_empty(&mm->lru_gen.list))
3401 		return;
3402 
3403 #ifdef CONFIG_MEMCG
3404 	memcg = mm->lru_gen.memcg;
3405 #endif
3406 	mm_list = get_mm_list(memcg);
3407 
3408 	spin_lock(&mm_list->lock);
3409 
3410 	for_each_node(nid) {
3411 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3412 
3413 		/* where the last iteration ended (exclusive) */
3414 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3415 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3416 
3417 		/* where the current iteration continues (inclusive) */
3418 		if (lruvec->mm_state.head != &mm->lru_gen.list)
3419 			continue;
3420 
3421 		lruvec->mm_state.head = lruvec->mm_state.head->next;
3422 		/* the deletion ends the current iteration */
3423 		if (lruvec->mm_state.head == &mm_list->fifo)
3424 			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3425 	}
3426 
3427 	list_del_init(&mm->lru_gen.list);
3428 
3429 	spin_unlock(&mm_list->lock);
3430 
3431 #ifdef CONFIG_MEMCG
3432 	mem_cgroup_put(mm->lru_gen.memcg);
3433 	mm->lru_gen.memcg = NULL;
3434 #endif
3435 }
3436 
3437 #ifdef CONFIG_MEMCG
3438 void lru_gen_migrate_mm(struct mm_struct *mm)
3439 {
3440 	struct mem_cgroup *memcg;
3441 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3442 
3443 	VM_WARN_ON_ONCE(task->mm != mm);
3444 	lockdep_assert_held(&task->alloc_lock);
3445 
3446 	/* for mm_update_next_owner() */
3447 	if (mem_cgroup_disabled())
3448 		return;
3449 
3450 	/* migration can happen before addition */
3451 	if (!mm->lru_gen.memcg)
3452 		return;
3453 
3454 	rcu_read_lock();
3455 	memcg = mem_cgroup_from_task(task);
3456 	rcu_read_unlock();
3457 	if (memcg == mm->lru_gen.memcg)
3458 		return;
3459 
3460 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3461 
3462 	lru_gen_del_mm(mm);
3463 	lru_gen_add_mm(mm);
3464 }
3465 #endif
3466 
3467 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3468 {
3469 	int i;
3470 	int hist;
3471 
3472 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3473 
3474 	if (walk) {
3475 		hist = lru_hist_from_seq(walk->max_seq);
3476 
3477 		for (i = 0; i < NR_MM_STATS; i++) {
3478 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3479 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3480 			walk->mm_stats[i] = 0;
3481 		}
3482 	}
3483 
3484 	if (NR_HIST_GENS > 1 && last) {
3485 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3486 
3487 		for (i = 0; i < NR_MM_STATS; i++)
3488 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3489 	}
3490 }
3491 
3492 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3493 {
3494 	int type;
3495 	unsigned long size = 0;
3496 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3497 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3498 
3499 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3500 		return true;
3501 
3502 	clear_bit(key, &mm->lru_gen.bitmap);
3503 
3504 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3505 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3506 			       get_mm_counter(mm, MM_ANONPAGES) +
3507 			       get_mm_counter(mm, MM_SHMEMPAGES);
3508 	}
3509 
3510 	if (size < MIN_LRU_BATCH)
3511 		return true;
3512 
3513 	return !mmget_not_zero(mm);
3514 }
3515 
3516 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3517 			    struct mm_struct **iter)
3518 {
3519 	bool first = false;
3520 	bool last = true;
3521 	struct mm_struct *mm = NULL;
3522 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3523 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3524 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3525 
3526 	/*
3527 	 * There are four interesting cases for this page table walker:
3528 	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3529 	 *    there is nothing left to do.
3530 	 * 2. It's the first of the current generation, and it needs to reset
3531 	 *    the Bloom filter for the next generation.
3532 	 * 3. It reaches the end of mm_list, and it needs to increment
3533 	 *    mm_state->seq; the iteration is done.
3534 	 * 4. It's the last of the current generation, and it needs to reset the
3535 	 *    mm stats counters for the next generation.
3536 	 */
3537 	spin_lock(&mm_list->lock);
3538 
3539 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3540 	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3541 	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3542 
3543 	if (walk->max_seq <= mm_state->seq) {
3544 		if (!*iter)
3545 			last = false;
3546 		goto done;
3547 	}
3548 
3549 	if (!mm_state->nr_walkers) {
3550 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3551 
3552 		mm_state->head = mm_list->fifo.next;
3553 		first = true;
3554 	}
3555 
3556 	while (!mm && mm_state->head != &mm_list->fifo) {
3557 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3558 
3559 		mm_state->head = mm_state->head->next;
3560 
3561 		/* force scan for those added after the last iteration */
3562 		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3563 			mm_state->tail = mm_state->head;
3564 			walk->force_scan = true;
3565 		}
3566 
3567 		if (should_skip_mm(mm, walk))
3568 			mm = NULL;
3569 	}
3570 
3571 	if (mm_state->head == &mm_list->fifo)
3572 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3573 done:
3574 	if (*iter && !mm)
3575 		mm_state->nr_walkers--;
3576 	if (!*iter && mm)
3577 		mm_state->nr_walkers++;
3578 
3579 	if (mm_state->nr_walkers)
3580 		last = false;
3581 
3582 	if (*iter || last)
3583 		reset_mm_stats(lruvec, walk, last);
3584 
3585 	spin_unlock(&mm_list->lock);
3586 
3587 	if (mm && first)
3588 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3589 
3590 	if (*iter)
3591 		mmput_async(*iter);
3592 
3593 	*iter = mm;
3594 
3595 	return last;
3596 }
3597 
3598 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3599 {
3600 	bool success = false;
3601 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3602 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3603 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3604 
3605 	spin_lock(&mm_list->lock);
3606 
3607 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3608 
3609 	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3610 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3611 
3612 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3613 		reset_mm_stats(lruvec, NULL, true);
3614 		success = true;
3615 	}
3616 
3617 	spin_unlock(&mm_list->lock);
3618 
3619 	return success;
3620 }
3621 
3622 /******************************************************************************
3623  *                          PID controller
3624  ******************************************************************************/
3625 
3626 /*
3627  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3628  *
3629  * The P term is refaulted/(evicted+protected) from a tier in the generation
3630  * currently being evicted; the I term is the exponential moving average of the
3631  * P term over the generations previously evicted, using the smoothing factor
3632  * 1/2; the D term isn't supported.
3633  *
3634  * The setpoint (SP) is always the first tier of one type; the process variable
3635  * (PV) is either any tier of the other type or any other tier of the same
3636  * type.
3637  *
3638  * The error is the difference between the SP and the PV; the correction is to
3639  * turn off protection when SP>PV or turn on protection when SP<PV.
3640  *
3641  * For future optimizations:
3642  * 1. The D term may discount the other two terms over time so that long-lived
3643  *    generations can resist stale information.
3644  */
3645 struct ctrl_pos {
3646 	unsigned long refaulted;
3647 	unsigned long total;
3648 	int gain;
3649 };
3650 
3651 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3652 			  struct ctrl_pos *pos)
3653 {
3654 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3655 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3656 
3657 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3658 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3659 	pos->total = lrugen->avg_total[type][tier] +
3660 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3661 	if (tier)
3662 		pos->total += lrugen->protected[hist][type][tier - 1];
3663 	pos->gain = gain;
3664 }
3665 
3666 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3667 {
3668 	int hist, tier;
3669 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3670 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3671 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3672 
3673 	lockdep_assert_held(&lruvec->lru_lock);
3674 
3675 	if (!carryover && !clear)
3676 		return;
3677 
3678 	hist = lru_hist_from_seq(seq);
3679 
3680 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3681 		if (carryover) {
3682 			unsigned long sum;
3683 
3684 			sum = lrugen->avg_refaulted[type][tier] +
3685 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3686 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3687 
3688 			sum = lrugen->avg_total[type][tier] +
3689 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3690 			if (tier)
3691 				sum += lrugen->protected[hist][type][tier - 1];
3692 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3693 		}
3694 
3695 		if (clear) {
3696 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3697 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3698 			if (tier)
3699 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3700 		}
3701 	}
3702 }
3703 
3704 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3705 {
3706 	/*
3707 	 * Return true if the PV has a limited number of refaults or a lower
3708 	 * refaulted/total than the SP.
3709 	 */
3710 	return pv->refaulted < MIN_LRU_BATCH ||
3711 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3712 	       (sp->refaulted + 1) * pv->total * pv->gain;
3713 }
3714 
3715 /******************************************************************************
3716  *                          the aging
3717  ******************************************************************************/
3718 
3719 /* promote pages accessed through page tables */
3720 static int folio_update_gen(struct folio *folio, int gen)
3721 {
3722 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3723 
3724 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3725 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3726 
3727 	do {
3728 		/* lru_gen_del_folio() has isolated this page? */
3729 		if (!(old_flags & LRU_GEN_MASK)) {
3730 			/* for shrink_folio_list() */
3731 			new_flags = old_flags | BIT(PG_referenced);
3732 			continue;
3733 		}
3734 
3735 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3736 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3737 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3738 
3739 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3740 }
3741 
3742 /* protect pages accessed multiple times through file descriptors */
3743 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3744 {
3745 	int type = folio_is_file_lru(folio);
3746 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3747 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3748 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3749 
3750 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3751 
3752 	do {
3753 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3754 		/* folio_update_gen() has promoted this page? */
3755 		if (new_gen >= 0 && new_gen != old_gen)
3756 			return new_gen;
3757 
3758 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3759 
3760 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3761 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3762 		/* for folio_end_writeback() */
3763 		if (reclaiming)
3764 			new_flags |= BIT(PG_reclaim);
3765 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3766 
3767 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3768 
3769 	return new_gen;
3770 }
3771 
3772 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3773 			      int old_gen, int new_gen)
3774 {
3775 	int type = folio_is_file_lru(folio);
3776 	int zone = folio_zonenum(folio);
3777 	int delta = folio_nr_pages(folio);
3778 
3779 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3780 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3781 
3782 	walk->batched++;
3783 
3784 	walk->nr_pages[old_gen][type][zone] -= delta;
3785 	walk->nr_pages[new_gen][type][zone] += delta;
3786 }
3787 
3788 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3789 {
3790 	int gen, type, zone;
3791 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3792 
3793 	walk->batched = 0;
3794 
3795 	for_each_gen_type_zone(gen, type, zone) {
3796 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3797 		int delta = walk->nr_pages[gen][type][zone];
3798 
3799 		if (!delta)
3800 			continue;
3801 
3802 		walk->nr_pages[gen][type][zone] = 0;
3803 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3804 			   lrugen->nr_pages[gen][type][zone] + delta);
3805 
3806 		if (lru_gen_is_active(lruvec, gen))
3807 			lru += LRU_ACTIVE;
3808 		__update_lru_size(lruvec, lru, zone, delta);
3809 	}
3810 }
3811 
3812 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3813 {
3814 	struct address_space *mapping;
3815 	struct vm_area_struct *vma = args->vma;
3816 	struct lru_gen_mm_walk *walk = args->private;
3817 
3818 	if (!vma_is_accessible(vma))
3819 		return true;
3820 
3821 	if (is_vm_hugetlb_page(vma))
3822 		return true;
3823 
3824 	if (!vma_has_recency(vma))
3825 		return true;
3826 
3827 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3828 		return true;
3829 
3830 	if (vma == get_gate_vma(vma->vm_mm))
3831 		return true;
3832 
3833 	if (vma_is_anonymous(vma))
3834 		return !walk->can_swap;
3835 
3836 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3837 		return true;
3838 
3839 	mapping = vma->vm_file->f_mapping;
3840 	if (mapping_unevictable(mapping))
3841 		return true;
3842 
3843 	if (shmem_mapping(mapping))
3844 		return !walk->can_swap;
3845 
3846 	/* to exclude special mappings like dax, etc. */
3847 	return !mapping->a_ops->read_folio;
3848 }
3849 
3850 /*
3851  * Some userspace memory allocators map many single-page VMAs. Instead of
3852  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3853  * table to reduce zigzags and improve cache performance.
3854  */
3855 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3856 			 unsigned long *vm_start, unsigned long *vm_end)
3857 {
3858 	unsigned long start = round_up(*vm_end, size);
3859 	unsigned long end = (start | ~mask) + 1;
3860 	VMA_ITERATOR(vmi, args->mm, start);
3861 
3862 	VM_WARN_ON_ONCE(mask & size);
3863 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3864 
3865 	for_each_vma(vmi, args->vma) {
3866 		if (end && end <= args->vma->vm_start)
3867 			return false;
3868 
3869 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3870 			continue;
3871 
3872 		*vm_start = max(start, args->vma->vm_start);
3873 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3874 
3875 		return true;
3876 	}
3877 
3878 	return false;
3879 }
3880 
3881 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3882 {
3883 	unsigned long pfn = pte_pfn(pte);
3884 
3885 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3886 
3887 	if (!pte_present(pte) || is_zero_pfn(pfn))
3888 		return -1;
3889 
3890 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3891 		return -1;
3892 
3893 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3894 		return -1;
3895 
3896 	return pfn;
3897 }
3898 
3899 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3900 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3901 {
3902 	unsigned long pfn = pmd_pfn(pmd);
3903 
3904 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3905 
3906 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3907 		return -1;
3908 
3909 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3910 		return -1;
3911 
3912 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3913 		return -1;
3914 
3915 	return pfn;
3916 }
3917 #endif
3918 
3919 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3920 				   struct pglist_data *pgdat, bool can_swap)
3921 {
3922 	struct folio *folio;
3923 
3924 	/* try to avoid unnecessary memory loads */
3925 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3926 		return NULL;
3927 
3928 	folio = pfn_folio(pfn);
3929 	if (folio_nid(folio) != pgdat->node_id)
3930 		return NULL;
3931 
3932 	if (folio_memcg_rcu(folio) != memcg)
3933 		return NULL;
3934 
3935 	/* file VMAs can contain anon pages from COW */
3936 	if (!folio_is_file_lru(folio) && !can_swap)
3937 		return NULL;
3938 
3939 	return folio;
3940 }
3941 
3942 static bool suitable_to_scan(int total, int young)
3943 {
3944 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3945 
3946 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3947 	return young * n >= total;
3948 }
3949 
3950 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3951 			   struct mm_walk *args)
3952 {
3953 	int i;
3954 	pte_t *pte;
3955 	spinlock_t *ptl;
3956 	unsigned long addr;
3957 	int total = 0;
3958 	int young = 0;
3959 	struct lru_gen_mm_walk *walk = args->private;
3960 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3961 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3962 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3963 
3964 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3965 
3966 	ptl = pte_lockptr(args->mm, pmd);
3967 	if (!spin_trylock(ptl))
3968 		return false;
3969 
3970 	arch_enter_lazy_mmu_mode();
3971 
3972 	pte = pte_offset_map(pmd, start & PMD_MASK);
3973 restart:
3974 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3975 		unsigned long pfn;
3976 		struct folio *folio;
3977 
3978 		total++;
3979 		walk->mm_stats[MM_LEAF_TOTAL]++;
3980 
3981 		pfn = get_pte_pfn(pte[i], args->vma, addr);
3982 		if (pfn == -1)
3983 			continue;
3984 
3985 		if (!pte_young(pte[i])) {
3986 			walk->mm_stats[MM_LEAF_OLD]++;
3987 			continue;
3988 		}
3989 
3990 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3991 		if (!folio)
3992 			continue;
3993 
3994 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3995 			VM_WARN_ON_ONCE(true);
3996 
3997 		young++;
3998 		walk->mm_stats[MM_LEAF_YOUNG]++;
3999 
4000 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4001 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4002 		      !folio_test_swapcache(folio)))
4003 			folio_mark_dirty(folio);
4004 
4005 		old_gen = folio_update_gen(folio, new_gen);
4006 		if (old_gen >= 0 && old_gen != new_gen)
4007 			update_batch_size(walk, folio, old_gen, new_gen);
4008 	}
4009 
4010 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4011 		goto restart;
4012 
4013 	pte_unmap(pte);
4014 
4015 	arch_leave_lazy_mmu_mode();
4016 	spin_unlock(ptl);
4017 
4018 	return suitable_to_scan(total, young);
4019 }
4020 
4021 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4022 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4023 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4024 {
4025 	int i;
4026 	pmd_t *pmd;
4027 	spinlock_t *ptl;
4028 	struct lru_gen_mm_walk *walk = args->private;
4029 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4030 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4031 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4032 
4033 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4034 
4035 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4036 	if (*first == -1) {
4037 		*first = addr;
4038 		bitmap_zero(bitmap, MIN_LRU_BATCH);
4039 		return;
4040 	}
4041 
4042 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4043 	if (i && i <= MIN_LRU_BATCH) {
4044 		__set_bit(i - 1, bitmap);
4045 		return;
4046 	}
4047 
4048 	pmd = pmd_offset(pud, *first);
4049 
4050 	ptl = pmd_lockptr(args->mm, pmd);
4051 	if (!spin_trylock(ptl))
4052 		goto done;
4053 
4054 	arch_enter_lazy_mmu_mode();
4055 
4056 	do {
4057 		unsigned long pfn;
4058 		struct folio *folio;
4059 
4060 		/* don't round down the first address */
4061 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4062 
4063 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4064 		if (pfn == -1)
4065 			goto next;
4066 
4067 		if (!pmd_trans_huge(pmd[i])) {
4068 			if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
4069 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4070 			goto next;
4071 		}
4072 
4073 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4074 		if (!folio)
4075 			goto next;
4076 
4077 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4078 			goto next;
4079 
4080 		walk->mm_stats[MM_LEAF_YOUNG]++;
4081 
4082 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4083 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4084 		      !folio_test_swapcache(folio)))
4085 			folio_mark_dirty(folio);
4086 
4087 		old_gen = folio_update_gen(folio, new_gen);
4088 		if (old_gen >= 0 && old_gen != new_gen)
4089 			update_batch_size(walk, folio, old_gen, new_gen);
4090 next:
4091 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4092 	} while (i <= MIN_LRU_BATCH);
4093 
4094 	arch_leave_lazy_mmu_mode();
4095 	spin_unlock(ptl);
4096 done:
4097 	*first = -1;
4098 }
4099 #else
4100 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4101 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4102 {
4103 }
4104 #endif
4105 
4106 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4107 			   struct mm_walk *args)
4108 {
4109 	int i;
4110 	pmd_t *pmd;
4111 	unsigned long next;
4112 	unsigned long addr;
4113 	struct vm_area_struct *vma;
4114 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)];
4115 	unsigned long first = -1;
4116 	struct lru_gen_mm_walk *walk = args->private;
4117 
4118 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4119 
4120 	/*
4121 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4122 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4123 	 * the PMD lock to clear the accessed bit in PMD entries.
4124 	 */
4125 	pmd = pmd_offset(pud, start & PUD_MASK);
4126 restart:
4127 	/* walk_pte_range() may call get_next_vma() */
4128 	vma = args->vma;
4129 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4130 		pmd_t val = pmdp_get_lockless(pmd + i);
4131 
4132 		next = pmd_addr_end(addr, end);
4133 
4134 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4135 			walk->mm_stats[MM_LEAF_TOTAL]++;
4136 			continue;
4137 		}
4138 
4139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4140 		if (pmd_trans_huge(val)) {
4141 			unsigned long pfn = pmd_pfn(val);
4142 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4143 
4144 			walk->mm_stats[MM_LEAF_TOTAL]++;
4145 
4146 			if (!pmd_young(val)) {
4147 				walk->mm_stats[MM_LEAF_OLD]++;
4148 				continue;
4149 			}
4150 
4151 			/* try to avoid unnecessary memory loads */
4152 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4153 				continue;
4154 
4155 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4156 			continue;
4157 		}
4158 #endif
4159 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4160 
4161 		if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4162 			if (!pmd_young(val))
4163 				continue;
4164 
4165 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4166 		}
4167 
4168 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4169 			continue;
4170 
4171 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4172 
4173 		if (!walk_pte_range(&val, addr, next, args))
4174 			continue;
4175 
4176 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4177 
4178 		/* carry over to the next generation */
4179 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4180 	}
4181 
4182 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4183 
4184 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4185 		goto restart;
4186 }
4187 
4188 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4189 			  struct mm_walk *args)
4190 {
4191 	int i;
4192 	pud_t *pud;
4193 	unsigned long addr;
4194 	unsigned long next;
4195 	struct lru_gen_mm_walk *walk = args->private;
4196 
4197 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4198 
4199 	pud = pud_offset(p4d, start & P4D_MASK);
4200 restart:
4201 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4202 		pud_t val = READ_ONCE(pud[i]);
4203 
4204 		next = pud_addr_end(addr, end);
4205 
4206 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4207 			continue;
4208 
4209 		walk_pmd_range(&val, addr, next, args);
4210 
4211 		/* a racy check to curtail the waiting time */
4212 		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4213 			return 1;
4214 
4215 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4216 			end = (addr | ~PUD_MASK) + 1;
4217 			goto done;
4218 		}
4219 	}
4220 
4221 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4222 		goto restart;
4223 
4224 	end = round_up(end, P4D_SIZE);
4225 done:
4226 	if (!end || !args->vma)
4227 		return 1;
4228 
4229 	walk->next_addr = max(end, args->vma->vm_start);
4230 
4231 	return -EAGAIN;
4232 }
4233 
4234 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4235 {
4236 	static const struct mm_walk_ops mm_walk_ops = {
4237 		.test_walk = should_skip_vma,
4238 		.p4d_entry = walk_pud_range,
4239 	};
4240 
4241 	int err;
4242 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4243 
4244 	walk->next_addr = FIRST_USER_ADDRESS;
4245 
4246 	do {
4247 		err = -EBUSY;
4248 
4249 		/* folio_update_gen() requires stable folio_memcg() */
4250 		if (!mem_cgroup_trylock_pages(memcg))
4251 			break;
4252 
4253 		/* the caller might be holding the lock for write */
4254 		if (mmap_read_trylock(mm)) {
4255 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4256 
4257 			mmap_read_unlock(mm);
4258 		}
4259 
4260 		mem_cgroup_unlock_pages();
4261 
4262 		if (walk->batched) {
4263 			spin_lock_irq(&lruvec->lru_lock);
4264 			reset_batch_size(lruvec, walk);
4265 			spin_unlock_irq(&lruvec->lru_lock);
4266 		}
4267 
4268 		cond_resched();
4269 	} while (err == -EAGAIN);
4270 }
4271 
4272 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4273 {
4274 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4275 
4276 	if (pgdat && current_is_kswapd()) {
4277 		VM_WARN_ON_ONCE(walk);
4278 
4279 		walk = &pgdat->mm_walk;
4280 	} else if (!walk && force_alloc) {
4281 		VM_WARN_ON_ONCE(current_is_kswapd());
4282 
4283 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4284 	}
4285 
4286 	current->reclaim_state->mm_walk = walk;
4287 
4288 	return walk;
4289 }
4290 
4291 static void clear_mm_walk(void)
4292 {
4293 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4294 
4295 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4296 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4297 
4298 	current->reclaim_state->mm_walk = NULL;
4299 
4300 	if (!current_is_kswapd())
4301 		kfree(walk);
4302 }
4303 
4304 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4305 {
4306 	int zone;
4307 	int remaining = MAX_LRU_BATCH;
4308 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4309 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4310 
4311 	if (type == LRU_GEN_ANON && !can_swap)
4312 		goto done;
4313 
4314 	/* prevent cold/hot inversion if force_scan is true */
4315 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4316 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4317 
4318 		while (!list_empty(head)) {
4319 			struct folio *folio = lru_to_folio(head);
4320 
4321 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4322 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4323 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4324 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4325 
4326 			new_gen = folio_inc_gen(lruvec, folio, false);
4327 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4328 
4329 			if (!--remaining)
4330 				return false;
4331 		}
4332 	}
4333 done:
4334 	reset_ctrl_pos(lruvec, type, true);
4335 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4336 
4337 	return true;
4338 }
4339 
4340 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4341 {
4342 	int gen, type, zone;
4343 	bool success = false;
4344 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4345 	DEFINE_MIN_SEQ(lruvec);
4346 
4347 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4348 
4349 	/* find the oldest populated generation */
4350 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4351 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4352 			gen = lru_gen_from_seq(min_seq[type]);
4353 
4354 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4355 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4356 					goto next;
4357 			}
4358 
4359 			min_seq[type]++;
4360 		}
4361 next:
4362 		;
4363 	}
4364 
4365 	/* see the comment on lru_gen_folio */
4366 	if (can_swap) {
4367 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4368 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4369 	}
4370 
4371 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4372 		if (min_seq[type] == lrugen->min_seq[type])
4373 			continue;
4374 
4375 		reset_ctrl_pos(lruvec, type, true);
4376 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4377 		success = true;
4378 	}
4379 
4380 	return success;
4381 }
4382 
4383 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4384 {
4385 	int prev, next;
4386 	int type, zone;
4387 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4388 
4389 	spin_lock_irq(&lruvec->lru_lock);
4390 
4391 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4392 
4393 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4394 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4395 			continue;
4396 
4397 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4398 
4399 		while (!inc_min_seq(lruvec, type, can_swap)) {
4400 			spin_unlock_irq(&lruvec->lru_lock);
4401 			cond_resched();
4402 			spin_lock_irq(&lruvec->lru_lock);
4403 		}
4404 	}
4405 
4406 	/*
4407 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4408 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4409 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4410 	 * overlap, cold/hot inversion happens.
4411 	 */
4412 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4413 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4414 
4415 	for (type = 0; type < ANON_AND_FILE; type++) {
4416 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4417 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4418 			long delta = lrugen->nr_pages[prev][type][zone] -
4419 				     lrugen->nr_pages[next][type][zone];
4420 
4421 			if (!delta)
4422 				continue;
4423 
4424 			__update_lru_size(lruvec, lru, zone, delta);
4425 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4426 		}
4427 	}
4428 
4429 	for (type = 0; type < ANON_AND_FILE; type++)
4430 		reset_ctrl_pos(lruvec, type, false);
4431 
4432 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4433 	/* make sure preceding modifications appear */
4434 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4435 
4436 	spin_unlock_irq(&lruvec->lru_lock);
4437 }
4438 
4439 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4440 			       struct scan_control *sc, bool can_swap, bool force_scan)
4441 {
4442 	bool success;
4443 	struct lru_gen_mm_walk *walk;
4444 	struct mm_struct *mm = NULL;
4445 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4446 
4447 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4448 
4449 	/* see the comment in iterate_mm_list() */
4450 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4451 		success = false;
4452 		goto done;
4453 	}
4454 
4455 	/*
4456 	 * If the hardware doesn't automatically set the accessed bit, fallback
4457 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4458 	 * handful of PTEs. Spreading the work out over a period of time usually
4459 	 * is less efficient, but it avoids bursty page faults.
4460 	 */
4461 	if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4462 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4463 		goto done;
4464 	}
4465 
4466 	walk = set_mm_walk(NULL, true);
4467 	if (!walk) {
4468 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4469 		goto done;
4470 	}
4471 
4472 	walk->lruvec = lruvec;
4473 	walk->max_seq = max_seq;
4474 	walk->can_swap = can_swap;
4475 	walk->force_scan = force_scan;
4476 
4477 	do {
4478 		success = iterate_mm_list(lruvec, walk, &mm);
4479 		if (mm)
4480 			walk_mm(lruvec, mm, walk);
4481 
4482 		cond_resched();
4483 	} while (mm);
4484 done:
4485 	if (!success) {
4486 		if (sc->priority <= DEF_PRIORITY - 2)
4487 			wait_event_killable(lruvec->mm_state.wait,
4488 					    max_seq < READ_ONCE(lrugen->max_seq));
4489 		return false;
4490 	}
4491 
4492 	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4493 
4494 	inc_max_seq(lruvec, can_swap, force_scan);
4495 	/* either this sees any waiters or they will see updated max_seq */
4496 	if (wq_has_sleeper(&lruvec->mm_state.wait))
4497 		wake_up_all(&lruvec->mm_state.wait);
4498 
4499 	return true;
4500 }
4501 
4502 /******************************************************************************
4503  *                          working set protection
4504  ******************************************************************************/
4505 
4506 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4507 {
4508 	int gen, type, zone;
4509 	unsigned long total = 0;
4510 	bool can_swap = get_swappiness(lruvec, sc);
4511 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4512 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4513 	DEFINE_MAX_SEQ(lruvec);
4514 	DEFINE_MIN_SEQ(lruvec);
4515 
4516 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4517 		unsigned long seq;
4518 
4519 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4520 			gen = lru_gen_from_seq(seq);
4521 
4522 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4523 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4524 		}
4525 	}
4526 
4527 	/* whether the size is big enough to be helpful */
4528 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4529 }
4530 
4531 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4532 				  unsigned long min_ttl)
4533 {
4534 	int gen;
4535 	unsigned long birth;
4536 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4537 	DEFINE_MIN_SEQ(lruvec);
4538 
4539 	/* see the comment on lru_gen_folio */
4540 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4541 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4542 
4543 	if (time_is_after_jiffies(birth + min_ttl))
4544 		return false;
4545 
4546 	if (!lruvec_is_sizable(lruvec, sc))
4547 		return false;
4548 
4549 	mem_cgroup_calculate_protection(NULL, memcg);
4550 
4551 	return !mem_cgroup_below_min(NULL, memcg);
4552 }
4553 
4554 /* to protect the working set of the last N jiffies */
4555 static unsigned long lru_gen_min_ttl __read_mostly;
4556 
4557 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4558 {
4559 	struct mem_cgroup *memcg;
4560 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4561 
4562 	VM_WARN_ON_ONCE(!current_is_kswapd());
4563 
4564 	/* check the order to exclude compaction-induced reclaim */
4565 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4566 		return;
4567 
4568 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4569 	do {
4570 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4571 
4572 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4573 			mem_cgroup_iter_break(NULL, memcg);
4574 			return;
4575 		}
4576 
4577 		cond_resched();
4578 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4579 
4580 	/*
4581 	 * The main goal is to OOM kill if every generation from all memcgs is
4582 	 * younger than min_ttl. However, another possibility is all memcgs are
4583 	 * either too small or below min.
4584 	 */
4585 	if (mutex_trylock(&oom_lock)) {
4586 		struct oom_control oc = {
4587 			.gfp_mask = sc->gfp_mask,
4588 		};
4589 
4590 		out_of_memory(&oc);
4591 
4592 		mutex_unlock(&oom_lock);
4593 	}
4594 }
4595 
4596 /******************************************************************************
4597  *                          rmap/PT walk feedback
4598  ******************************************************************************/
4599 
4600 /*
4601  * This function exploits spatial locality when shrink_folio_list() walks the
4602  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4603  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4604  * the PTE table to the Bloom filter. This forms a feedback loop between the
4605  * eviction and the aging.
4606  */
4607 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4608 {
4609 	int i;
4610 	unsigned long start;
4611 	unsigned long end;
4612 	struct lru_gen_mm_walk *walk;
4613 	int young = 0;
4614 	pte_t *pte = pvmw->pte;
4615 	unsigned long addr = pvmw->address;
4616 	struct folio *folio = pfn_folio(pvmw->pfn);
4617 	struct mem_cgroup *memcg = folio_memcg(folio);
4618 	struct pglist_data *pgdat = folio_pgdat(folio);
4619 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4620 	DEFINE_MAX_SEQ(lruvec);
4621 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4622 
4623 	lockdep_assert_held(pvmw->ptl);
4624 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4625 
4626 	if (spin_is_contended(pvmw->ptl))
4627 		return;
4628 
4629 	/* avoid taking the LRU lock under the PTL when possible */
4630 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4631 
4632 	start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4633 	end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4634 
4635 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4636 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4637 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4638 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4639 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4640 		else {
4641 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4642 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4643 		}
4644 	}
4645 
4646 	/* folio_update_gen() requires stable folio_memcg() */
4647 	if (!mem_cgroup_trylock_pages(memcg))
4648 		return;
4649 
4650 	arch_enter_lazy_mmu_mode();
4651 
4652 	pte -= (addr - start) / PAGE_SIZE;
4653 
4654 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4655 		unsigned long pfn;
4656 
4657 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4658 		if (pfn == -1)
4659 			continue;
4660 
4661 		if (!pte_young(pte[i]))
4662 			continue;
4663 
4664 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4665 		if (!folio)
4666 			continue;
4667 
4668 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4669 			VM_WARN_ON_ONCE(true);
4670 
4671 		young++;
4672 
4673 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4674 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4675 		      !folio_test_swapcache(folio)))
4676 			folio_mark_dirty(folio);
4677 
4678 		if (walk) {
4679 			old_gen = folio_update_gen(folio, new_gen);
4680 			if (old_gen >= 0 && old_gen != new_gen)
4681 				update_batch_size(walk, folio, old_gen, new_gen);
4682 
4683 			continue;
4684 		}
4685 
4686 		old_gen = folio_lru_gen(folio);
4687 		if (old_gen < 0)
4688 			folio_set_referenced(folio);
4689 		else if (old_gen != new_gen)
4690 			folio_activate(folio);
4691 	}
4692 
4693 	arch_leave_lazy_mmu_mode();
4694 	mem_cgroup_unlock_pages();
4695 
4696 	/* feedback from rmap walkers to page table walkers */
4697 	if (suitable_to_scan(i, young))
4698 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4699 }
4700 
4701 /******************************************************************************
4702  *                          memcg LRU
4703  ******************************************************************************/
4704 
4705 /* see the comment on MEMCG_NR_GENS */
4706 enum {
4707 	MEMCG_LRU_NOP,
4708 	MEMCG_LRU_HEAD,
4709 	MEMCG_LRU_TAIL,
4710 	MEMCG_LRU_OLD,
4711 	MEMCG_LRU_YOUNG,
4712 };
4713 
4714 #ifdef CONFIG_MEMCG
4715 
4716 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4717 {
4718 	return READ_ONCE(lruvec->lrugen.seg);
4719 }
4720 
4721 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4722 {
4723 	int seg;
4724 	int old, new;
4725 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4726 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4727 
4728 	spin_lock(&pgdat->memcg_lru.lock);
4729 
4730 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4731 
4732 	seg = 0;
4733 	new = old = lruvec->lrugen.gen;
4734 
4735 	/* see the comment on MEMCG_NR_GENS */
4736 	if (op == MEMCG_LRU_HEAD)
4737 		seg = MEMCG_LRU_HEAD;
4738 	else if (op == MEMCG_LRU_TAIL)
4739 		seg = MEMCG_LRU_TAIL;
4740 	else if (op == MEMCG_LRU_OLD)
4741 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4742 	else if (op == MEMCG_LRU_YOUNG)
4743 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4744 	else
4745 		VM_WARN_ON_ONCE(true);
4746 
4747 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4748 
4749 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4750 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4751 	else
4752 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4753 
4754 	pgdat->memcg_lru.nr_memcgs[old]--;
4755 	pgdat->memcg_lru.nr_memcgs[new]++;
4756 
4757 	lruvec->lrugen.gen = new;
4758 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4759 
4760 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4761 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4762 
4763 	spin_unlock(&pgdat->memcg_lru.lock);
4764 }
4765 
4766 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4767 {
4768 	int gen;
4769 	int nid;
4770 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4771 
4772 	for_each_node(nid) {
4773 		struct pglist_data *pgdat = NODE_DATA(nid);
4774 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4775 
4776 		spin_lock(&pgdat->memcg_lru.lock);
4777 
4778 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4779 
4780 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4781 
4782 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4783 		pgdat->memcg_lru.nr_memcgs[gen]++;
4784 
4785 		lruvec->lrugen.gen = gen;
4786 
4787 		spin_unlock(&pgdat->memcg_lru.lock);
4788 	}
4789 }
4790 
4791 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4792 {
4793 	int nid;
4794 
4795 	for_each_node(nid) {
4796 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4797 
4798 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4799 	}
4800 }
4801 
4802 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4803 {
4804 	int gen;
4805 	int nid;
4806 
4807 	for_each_node(nid) {
4808 		struct pglist_data *pgdat = NODE_DATA(nid);
4809 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4810 
4811 		spin_lock(&pgdat->memcg_lru.lock);
4812 
4813 		VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4814 
4815 		gen = lruvec->lrugen.gen;
4816 
4817 		hlist_nulls_del_rcu(&lruvec->lrugen.list);
4818 		pgdat->memcg_lru.nr_memcgs[gen]--;
4819 
4820 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4821 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4822 
4823 		spin_unlock(&pgdat->memcg_lru.lock);
4824 	}
4825 }
4826 
4827 void lru_gen_soft_reclaim(struct lruvec *lruvec)
4828 {
4829 	/* see the comment on MEMCG_NR_GENS */
4830 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4831 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4832 }
4833 
4834 #else /* !CONFIG_MEMCG */
4835 
4836 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4837 {
4838 	return 0;
4839 }
4840 
4841 #endif
4842 
4843 /******************************************************************************
4844  *                          the eviction
4845  ******************************************************************************/
4846 
4847 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4848 {
4849 	bool success;
4850 	int gen = folio_lru_gen(folio);
4851 	int type = folio_is_file_lru(folio);
4852 	int zone = folio_zonenum(folio);
4853 	int delta = folio_nr_pages(folio);
4854 	int refs = folio_lru_refs(folio);
4855 	int tier = lru_tier_from_refs(refs);
4856 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4857 
4858 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4859 
4860 	/* unevictable */
4861 	if (!folio_evictable(folio)) {
4862 		success = lru_gen_del_folio(lruvec, folio, true);
4863 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4864 		folio_set_unevictable(folio);
4865 		lruvec_add_folio(lruvec, folio);
4866 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4867 		return true;
4868 	}
4869 
4870 	/* dirty lazyfree */
4871 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4872 		success = lru_gen_del_folio(lruvec, folio, true);
4873 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4874 		folio_set_swapbacked(folio);
4875 		lruvec_add_folio_tail(lruvec, folio);
4876 		return true;
4877 	}
4878 
4879 	/* promoted */
4880 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4881 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4882 		return true;
4883 	}
4884 
4885 	/* protected */
4886 	if (tier > tier_idx) {
4887 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4888 
4889 		gen = folio_inc_gen(lruvec, folio, false);
4890 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4891 
4892 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4893 			   lrugen->protected[hist][type][tier - 1] + delta);
4894 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4895 		return true;
4896 	}
4897 
4898 	/* waiting for writeback */
4899 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4900 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4901 		gen = folio_inc_gen(lruvec, folio, true);
4902 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4903 		return true;
4904 	}
4905 
4906 	return false;
4907 }
4908 
4909 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4910 {
4911 	bool success;
4912 
4913 	/* swapping inhibited */
4914 	if (!(sc->gfp_mask & __GFP_IO) &&
4915 	    (folio_test_dirty(folio) ||
4916 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4917 		return false;
4918 
4919 	/* raced with release_pages() */
4920 	if (!folio_try_get(folio))
4921 		return false;
4922 
4923 	/* raced with another isolation */
4924 	if (!folio_test_clear_lru(folio)) {
4925 		folio_put(folio);
4926 		return false;
4927 	}
4928 
4929 	/* see the comment on MAX_NR_TIERS */
4930 	if (!folio_test_referenced(folio))
4931 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4932 
4933 	/* for shrink_folio_list() */
4934 	folio_clear_reclaim(folio);
4935 	folio_clear_referenced(folio);
4936 
4937 	success = lru_gen_del_folio(lruvec, folio, true);
4938 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4939 
4940 	return true;
4941 }
4942 
4943 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4944 		       int type, int tier, struct list_head *list)
4945 {
4946 	int gen, zone;
4947 	enum vm_event_item item;
4948 	int sorted = 0;
4949 	int scanned = 0;
4950 	int isolated = 0;
4951 	int remaining = MAX_LRU_BATCH;
4952 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4953 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4954 
4955 	VM_WARN_ON_ONCE(!list_empty(list));
4956 
4957 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4958 		return 0;
4959 
4960 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4961 
4962 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4963 		LIST_HEAD(moved);
4964 		int skipped = 0;
4965 		struct list_head *head = &lrugen->folios[gen][type][zone];
4966 
4967 		while (!list_empty(head)) {
4968 			struct folio *folio = lru_to_folio(head);
4969 			int delta = folio_nr_pages(folio);
4970 
4971 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4972 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4973 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4974 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4975 
4976 			scanned += delta;
4977 
4978 			if (sort_folio(lruvec, folio, tier))
4979 				sorted += delta;
4980 			else if (isolate_folio(lruvec, folio, sc)) {
4981 				list_add(&folio->lru, list);
4982 				isolated += delta;
4983 			} else {
4984 				list_move(&folio->lru, &moved);
4985 				skipped += delta;
4986 			}
4987 
4988 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4989 				break;
4990 		}
4991 
4992 		if (skipped) {
4993 			list_splice(&moved, head);
4994 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4995 		}
4996 
4997 		if (!remaining || isolated >= MIN_LRU_BATCH)
4998 			break;
4999 	}
5000 
5001 	item = PGSCAN_KSWAPD + reclaimer_offset();
5002 	if (!cgroup_reclaim(sc)) {
5003 		__count_vm_events(item, isolated);
5004 		__count_vm_events(PGREFILL, sorted);
5005 	}
5006 	__count_memcg_events(memcg, item, isolated);
5007 	__count_memcg_events(memcg, PGREFILL, sorted);
5008 	__count_vm_events(PGSCAN_ANON + type, isolated);
5009 
5010 	/*
5011 	 * There might not be eligible folios due to reclaim_idx. Check the
5012 	 * remaining to prevent livelock if it's not making progress.
5013 	 */
5014 	return isolated || !remaining ? scanned : 0;
5015 }
5016 
5017 static int get_tier_idx(struct lruvec *lruvec, int type)
5018 {
5019 	int tier;
5020 	struct ctrl_pos sp, pv;
5021 
5022 	/*
5023 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5024 	 * This value is chosen because any other tier would have at least twice
5025 	 * as many refaults as the first tier.
5026 	 */
5027 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
5028 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5029 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
5030 		if (!positive_ctrl_err(&sp, &pv))
5031 			break;
5032 	}
5033 
5034 	return tier - 1;
5035 }
5036 
5037 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5038 {
5039 	int type, tier;
5040 	struct ctrl_pos sp, pv;
5041 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5042 
5043 	/*
5044 	 * Compare the first tier of anon with that of file to determine which
5045 	 * type to scan. Also need to compare other tiers of the selected type
5046 	 * with the first tier of the other type to determine the last tier (of
5047 	 * the selected type) to evict.
5048 	 */
5049 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5050 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5051 	type = positive_ctrl_err(&sp, &pv);
5052 
5053 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5054 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5055 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5056 		if (!positive_ctrl_err(&sp, &pv))
5057 			break;
5058 	}
5059 
5060 	*tier_idx = tier - 1;
5061 
5062 	return type;
5063 }
5064 
5065 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5066 			  int *type_scanned, struct list_head *list)
5067 {
5068 	int i;
5069 	int type;
5070 	int scanned;
5071 	int tier = -1;
5072 	DEFINE_MIN_SEQ(lruvec);
5073 
5074 	/*
5075 	 * Try to make the obvious choice first. When anon and file are both
5076 	 * available from the same generation, interpret swappiness 1 as file
5077 	 * first and 200 as anon first.
5078 	 */
5079 	if (!swappiness)
5080 		type = LRU_GEN_FILE;
5081 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5082 		type = LRU_GEN_ANON;
5083 	else if (swappiness == 1)
5084 		type = LRU_GEN_FILE;
5085 	else if (swappiness == 200)
5086 		type = LRU_GEN_ANON;
5087 	else
5088 		type = get_type_to_scan(lruvec, swappiness, &tier);
5089 
5090 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5091 		if (tier < 0)
5092 			tier = get_tier_idx(lruvec, type);
5093 
5094 		scanned = scan_folios(lruvec, sc, type, tier, list);
5095 		if (scanned)
5096 			break;
5097 
5098 		type = !type;
5099 		tier = -1;
5100 	}
5101 
5102 	*type_scanned = type;
5103 
5104 	return scanned;
5105 }
5106 
5107 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5108 {
5109 	int type;
5110 	int scanned;
5111 	int reclaimed;
5112 	LIST_HEAD(list);
5113 	LIST_HEAD(clean);
5114 	struct folio *folio;
5115 	struct folio *next;
5116 	enum vm_event_item item;
5117 	struct reclaim_stat stat;
5118 	struct lru_gen_mm_walk *walk;
5119 	bool skip_retry = false;
5120 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5121 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5122 
5123 	spin_lock_irq(&lruvec->lru_lock);
5124 
5125 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5126 
5127 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5128 
5129 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5130 		scanned = 0;
5131 
5132 	spin_unlock_irq(&lruvec->lru_lock);
5133 
5134 	if (list_empty(&list))
5135 		return scanned;
5136 retry:
5137 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5138 	sc->nr_reclaimed += reclaimed;
5139 
5140 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5141 		if (!folio_evictable(folio)) {
5142 			list_del(&folio->lru);
5143 			folio_putback_lru(folio);
5144 			continue;
5145 		}
5146 
5147 		if (folio_test_reclaim(folio) &&
5148 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5149 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5150 			if (folio_test_workingset(folio))
5151 				folio_set_referenced(folio);
5152 			continue;
5153 		}
5154 
5155 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5156 		    folio_mapped(folio) || folio_test_locked(folio) ||
5157 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5158 			/* don't add rejected folios to the oldest generation */
5159 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5160 				      BIT(PG_active));
5161 			continue;
5162 		}
5163 
5164 		/* retry folios that may have missed folio_rotate_reclaimable() */
5165 		list_move(&folio->lru, &clean);
5166 		sc->nr_scanned -= folio_nr_pages(folio);
5167 	}
5168 
5169 	spin_lock_irq(&lruvec->lru_lock);
5170 
5171 	move_folios_to_lru(lruvec, &list);
5172 
5173 	walk = current->reclaim_state->mm_walk;
5174 	if (walk && walk->batched)
5175 		reset_batch_size(lruvec, walk);
5176 
5177 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5178 	if (!cgroup_reclaim(sc))
5179 		__count_vm_events(item, reclaimed);
5180 	__count_memcg_events(memcg, item, reclaimed);
5181 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5182 
5183 	spin_unlock_irq(&lruvec->lru_lock);
5184 
5185 	mem_cgroup_uncharge_list(&list);
5186 	free_unref_page_list(&list);
5187 
5188 	INIT_LIST_HEAD(&list);
5189 	list_splice_init(&clean, &list);
5190 
5191 	if (!list_empty(&list)) {
5192 		skip_retry = true;
5193 		goto retry;
5194 	}
5195 
5196 	return scanned;
5197 }
5198 
5199 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5200 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5201 {
5202 	int gen, type, zone;
5203 	unsigned long old = 0;
5204 	unsigned long young = 0;
5205 	unsigned long total = 0;
5206 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5207 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5208 	DEFINE_MIN_SEQ(lruvec);
5209 
5210 	/* whether this lruvec is completely out of cold folios */
5211 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5212 		*nr_to_scan = 0;
5213 		return true;
5214 	}
5215 
5216 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5217 		unsigned long seq;
5218 
5219 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5220 			unsigned long size = 0;
5221 
5222 			gen = lru_gen_from_seq(seq);
5223 
5224 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5225 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5226 
5227 			total += size;
5228 			if (seq == max_seq)
5229 				young += size;
5230 			else if (seq + MIN_NR_GENS == max_seq)
5231 				old += size;
5232 		}
5233 	}
5234 
5235 	/* try to scrape all its memory if this memcg was deleted */
5236 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5237 
5238 	/*
5239 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5240 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5241 	 * ideal number of generations is MIN_NR_GENS+1.
5242 	 */
5243 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5244 		return false;
5245 
5246 	/*
5247 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5248 	 * of the total number of pages for each generation. A reasonable range
5249 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5250 	 * aging cares about the upper bound of hot pages, while the eviction
5251 	 * cares about the lower bound of cold pages.
5252 	 */
5253 	if (young * MIN_NR_GENS > total)
5254 		return true;
5255 	if (old * (MIN_NR_GENS + 2) < total)
5256 		return true;
5257 
5258 	return false;
5259 }
5260 
5261 /*
5262  * For future optimizations:
5263  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5264  *    reclaim.
5265  */
5266 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5267 {
5268 	unsigned long nr_to_scan;
5269 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5270 	DEFINE_MAX_SEQ(lruvec);
5271 
5272 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5273 		return 0;
5274 
5275 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5276 		return nr_to_scan;
5277 
5278 	/* skip the aging path at the default priority */
5279 	if (sc->priority == DEF_PRIORITY)
5280 		return nr_to_scan;
5281 
5282 	/* skip this lruvec as it's low on cold folios */
5283 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5284 }
5285 
5286 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5287 {
5288 	/* don't abort memcg reclaim to ensure fairness */
5289 	if (!global_reclaim(sc))
5290 		return -1;
5291 
5292 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5293 }
5294 
5295 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5296 {
5297 	long nr_to_scan;
5298 	unsigned long scanned = 0;
5299 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5300 	int swappiness = get_swappiness(lruvec, sc);
5301 
5302 	/* clean file folios are more likely to exist */
5303 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5304 		swappiness = 1;
5305 
5306 	while (true) {
5307 		int delta;
5308 
5309 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5310 		if (nr_to_scan <= 0)
5311 			break;
5312 
5313 		delta = evict_folios(lruvec, sc, swappiness);
5314 		if (!delta)
5315 			break;
5316 
5317 		scanned += delta;
5318 		if (scanned >= nr_to_scan)
5319 			break;
5320 
5321 		if (sc->nr_reclaimed >= nr_to_reclaim)
5322 			break;
5323 
5324 		cond_resched();
5325 	}
5326 
5327 	/* whether try_to_inc_max_seq() was successful */
5328 	return nr_to_scan < 0;
5329 }
5330 
5331 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5332 {
5333 	bool success;
5334 	unsigned long scanned = sc->nr_scanned;
5335 	unsigned long reclaimed = sc->nr_reclaimed;
5336 	int seg = lru_gen_memcg_seg(lruvec);
5337 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5338 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5339 
5340 	/* see the comment on MEMCG_NR_GENS */
5341 	if (!lruvec_is_sizable(lruvec, sc))
5342 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5343 
5344 	mem_cgroup_calculate_protection(NULL, memcg);
5345 
5346 	if (mem_cgroup_below_min(NULL, memcg))
5347 		return MEMCG_LRU_YOUNG;
5348 
5349 	if (mem_cgroup_below_low(NULL, memcg)) {
5350 		/* see the comment on MEMCG_NR_GENS */
5351 		if (seg != MEMCG_LRU_TAIL)
5352 			return MEMCG_LRU_TAIL;
5353 
5354 		memcg_memory_event(memcg, MEMCG_LOW);
5355 	}
5356 
5357 	success = try_to_shrink_lruvec(lruvec, sc);
5358 
5359 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5360 
5361 	if (!sc->proactive)
5362 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5363 			   sc->nr_reclaimed - reclaimed);
5364 
5365 	sc->nr_reclaimed += current->reclaim_state->reclaimed_slab;
5366 	current->reclaim_state->reclaimed_slab = 0;
5367 
5368 	return success ? MEMCG_LRU_YOUNG : 0;
5369 }
5370 
5371 #ifdef CONFIG_MEMCG
5372 
5373 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5374 {
5375 	int op;
5376 	int gen;
5377 	int bin;
5378 	int first_bin;
5379 	struct lruvec *lruvec;
5380 	struct lru_gen_folio *lrugen;
5381 	struct mem_cgroup *memcg;
5382 	const struct hlist_nulls_node *pos;
5383 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5384 
5385 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5386 restart:
5387 	op = 0;
5388 	memcg = NULL;
5389 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5390 
5391 	rcu_read_lock();
5392 
5393 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5394 		if (op)
5395 			lru_gen_rotate_memcg(lruvec, op);
5396 
5397 		mem_cgroup_put(memcg);
5398 
5399 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5400 		memcg = lruvec_memcg(lruvec);
5401 
5402 		if (!mem_cgroup_tryget(memcg)) {
5403 			op = 0;
5404 			memcg = NULL;
5405 			continue;
5406 		}
5407 
5408 		rcu_read_unlock();
5409 
5410 		op = shrink_one(lruvec, sc);
5411 
5412 		rcu_read_lock();
5413 
5414 		if (sc->nr_reclaimed >= nr_to_reclaim)
5415 			break;
5416 	}
5417 
5418 	rcu_read_unlock();
5419 
5420 	if (op)
5421 		lru_gen_rotate_memcg(lruvec, op);
5422 
5423 	mem_cgroup_put(memcg);
5424 
5425 	if (sc->nr_reclaimed >= nr_to_reclaim)
5426 		return;
5427 
5428 	/* restart if raced with lru_gen_rotate_memcg() */
5429 	if (gen != get_nulls_value(pos))
5430 		goto restart;
5431 
5432 	/* try the rest of the bins of the current generation */
5433 	bin = get_memcg_bin(bin + 1);
5434 	if (bin != first_bin)
5435 		goto restart;
5436 }
5437 
5438 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5439 {
5440 	struct blk_plug plug;
5441 
5442 	VM_WARN_ON_ONCE(global_reclaim(sc));
5443 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5444 
5445 	lru_add_drain();
5446 
5447 	blk_start_plug(&plug);
5448 
5449 	set_mm_walk(NULL, sc->proactive);
5450 
5451 	if (try_to_shrink_lruvec(lruvec, sc))
5452 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5453 
5454 	clear_mm_walk();
5455 
5456 	blk_finish_plug(&plug);
5457 }
5458 
5459 #else /* !CONFIG_MEMCG */
5460 
5461 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5462 {
5463 	BUILD_BUG();
5464 }
5465 
5466 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5467 {
5468 	BUILD_BUG();
5469 }
5470 
5471 #endif
5472 
5473 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5474 {
5475 	int priority;
5476 	unsigned long reclaimable;
5477 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5478 
5479 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5480 		return;
5481 	/*
5482 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5483 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5484 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
5485 	 */
5486 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5487 	if (get_swappiness(lruvec, sc))
5488 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5489 
5490 	reclaimable /= MEMCG_NR_GENS;
5491 
5492 	/* round down reclaimable and round up sc->nr_to_reclaim */
5493 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5494 
5495 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
5496 }
5497 
5498 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5499 {
5500 	struct blk_plug plug;
5501 	unsigned long reclaimed = sc->nr_reclaimed;
5502 
5503 	VM_WARN_ON_ONCE(!global_reclaim(sc));
5504 
5505 	/*
5506 	 * Unmapped clean folios are already prioritized. Scanning for more of
5507 	 * them is likely futile and can cause high reclaim latency when there
5508 	 * is a large number of memcgs.
5509 	 */
5510 	if (!sc->may_writepage || !sc->may_unmap)
5511 		goto done;
5512 
5513 	lru_add_drain();
5514 
5515 	blk_start_plug(&plug);
5516 
5517 	set_mm_walk(pgdat, sc->proactive);
5518 
5519 	set_initial_priority(pgdat, sc);
5520 
5521 	if (current_is_kswapd())
5522 		sc->nr_reclaimed = 0;
5523 
5524 	if (mem_cgroup_disabled())
5525 		shrink_one(&pgdat->__lruvec, sc);
5526 	else
5527 		shrink_many(pgdat, sc);
5528 
5529 	if (current_is_kswapd())
5530 		sc->nr_reclaimed += reclaimed;
5531 
5532 	clear_mm_walk();
5533 
5534 	blk_finish_plug(&plug);
5535 done:
5536 	/* kswapd should never fail */
5537 	pgdat->kswapd_failures = 0;
5538 }
5539 
5540 /******************************************************************************
5541  *                          state change
5542  ******************************************************************************/
5543 
5544 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5545 {
5546 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5547 
5548 	if (lrugen->enabled) {
5549 		enum lru_list lru;
5550 
5551 		for_each_evictable_lru(lru) {
5552 			if (!list_empty(&lruvec->lists[lru]))
5553 				return false;
5554 		}
5555 	} else {
5556 		int gen, type, zone;
5557 
5558 		for_each_gen_type_zone(gen, type, zone) {
5559 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5560 				return false;
5561 		}
5562 	}
5563 
5564 	return true;
5565 }
5566 
5567 static bool fill_evictable(struct lruvec *lruvec)
5568 {
5569 	enum lru_list lru;
5570 	int remaining = MAX_LRU_BATCH;
5571 
5572 	for_each_evictable_lru(lru) {
5573 		int type = is_file_lru(lru);
5574 		bool active = is_active_lru(lru);
5575 		struct list_head *head = &lruvec->lists[lru];
5576 
5577 		while (!list_empty(head)) {
5578 			bool success;
5579 			struct folio *folio = lru_to_folio(head);
5580 
5581 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5582 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5583 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5584 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5585 
5586 			lruvec_del_folio(lruvec, folio);
5587 			success = lru_gen_add_folio(lruvec, folio, false);
5588 			VM_WARN_ON_ONCE(!success);
5589 
5590 			if (!--remaining)
5591 				return false;
5592 		}
5593 	}
5594 
5595 	return true;
5596 }
5597 
5598 static bool drain_evictable(struct lruvec *lruvec)
5599 {
5600 	int gen, type, zone;
5601 	int remaining = MAX_LRU_BATCH;
5602 
5603 	for_each_gen_type_zone(gen, type, zone) {
5604 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5605 
5606 		while (!list_empty(head)) {
5607 			bool success;
5608 			struct folio *folio = lru_to_folio(head);
5609 
5610 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5611 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5612 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5613 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5614 
5615 			success = lru_gen_del_folio(lruvec, folio, false);
5616 			VM_WARN_ON_ONCE(!success);
5617 			lruvec_add_folio(lruvec, folio);
5618 
5619 			if (!--remaining)
5620 				return false;
5621 		}
5622 	}
5623 
5624 	return true;
5625 }
5626 
5627 static void lru_gen_change_state(bool enabled)
5628 {
5629 	static DEFINE_MUTEX(state_mutex);
5630 
5631 	struct mem_cgroup *memcg;
5632 
5633 	cgroup_lock();
5634 	cpus_read_lock();
5635 	get_online_mems();
5636 	mutex_lock(&state_mutex);
5637 
5638 	if (enabled == lru_gen_enabled())
5639 		goto unlock;
5640 
5641 	if (enabled)
5642 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5643 	else
5644 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5645 
5646 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5647 	do {
5648 		int nid;
5649 
5650 		for_each_node(nid) {
5651 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5652 
5653 			spin_lock_irq(&lruvec->lru_lock);
5654 
5655 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5656 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5657 
5658 			lruvec->lrugen.enabled = enabled;
5659 
5660 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5661 				spin_unlock_irq(&lruvec->lru_lock);
5662 				cond_resched();
5663 				spin_lock_irq(&lruvec->lru_lock);
5664 			}
5665 
5666 			spin_unlock_irq(&lruvec->lru_lock);
5667 		}
5668 
5669 		cond_resched();
5670 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5671 unlock:
5672 	mutex_unlock(&state_mutex);
5673 	put_online_mems();
5674 	cpus_read_unlock();
5675 	cgroup_unlock();
5676 }
5677 
5678 /******************************************************************************
5679  *                          sysfs interface
5680  ******************************************************************************/
5681 
5682 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5683 {
5684 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5685 }
5686 
5687 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5688 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5689 				const char *buf, size_t len)
5690 {
5691 	unsigned int msecs;
5692 
5693 	if (kstrtouint(buf, 0, &msecs))
5694 		return -EINVAL;
5695 
5696 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5697 
5698 	return len;
5699 }
5700 
5701 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5702 
5703 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5704 {
5705 	unsigned int caps = 0;
5706 
5707 	if (get_cap(LRU_GEN_CORE))
5708 		caps |= BIT(LRU_GEN_CORE);
5709 
5710 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5711 		caps |= BIT(LRU_GEN_MM_WALK);
5712 
5713 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5714 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5715 
5716 	return sysfs_emit(buf, "0x%04x\n", caps);
5717 }
5718 
5719 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5720 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5721 			     const char *buf, size_t len)
5722 {
5723 	int i;
5724 	unsigned int caps;
5725 
5726 	if (tolower(*buf) == 'n')
5727 		caps = 0;
5728 	else if (tolower(*buf) == 'y')
5729 		caps = -1;
5730 	else if (kstrtouint(buf, 0, &caps))
5731 		return -EINVAL;
5732 
5733 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5734 		bool enabled = caps & BIT(i);
5735 
5736 		if (i == LRU_GEN_CORE)
5737 			lru_gen_change_state(enabled);
5738 		else if (enabled)
5739 			static_branch_enable(&lru_gen_caps[i]);
5740 		else
5741 			static_branch_disable(&lru_gen_caps[i]);
5742 	}
5743 
5744 	return len;
5745 }
5746 
5747 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5748 
5749 static struct attribute *lru_gen_attrs[] = {
5750 	&lru_gen_min_ttl_attr.attr,
5751 	&lru_gen_enabled_attr.attr,
5752 	NULL
5753 };
5754 
5755 static const struct attribute_group lru_gen_attr_group = {
5756 	.name = "lru_gen",
5757 	.attrs = lru_gen_attrs,
5758 };
5759 
5760 /******************************************************************************
5761  *                          debugfs interface
5762  ******************************************************************************/
5763 
5764 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5765 {
5766 	struct mem_cgroup *memcg;
5767 	loff_t nr_to_skip = *pos;
5768 
5769 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5770 	if (!m->private)
5771 		return ERR_PTR(-ENOMEM);
5772 
5773 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5774 	do {
5775 		int nid;
5776 
5777 		for_each_node_state(nid, N_MEMORY) {
5778 			if (!nr_to_skip--)
5779 				return get_lruvec(memcg, nid);
5780 		}
5781 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5782 
5783 	return NULL;
5784 }
5785 
5786 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5787 {
5788 	if (!IS_ERR_OR_NULL(v))
5789 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5790 
5791 	kvfree(m->private);
5792 	m->private = NULL;
5793 }
5794 
5795 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5796 {
5797 	int nid = lruvec_pgdat(v)->node_id;
5798 	struct mem_cgroup *memcg = lruvec_memcg(v);
5799 
5800 	++*pos;
5801 
5802 	nid = next_memory_node(nid);
5803 	if (nid == MAX_NUMNODES) {
5804 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5805 		if (!memcg)
5806 			return NULL;
5807 
5808 		nid = first_memory_node;
5809 	}
5810 
5811 	return get_lruvec(memcg, nid);
5812 }
5813 
5814 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5815 				  unsigned long max_seq, unsigned long *min_seq,
5816 				  unsigned long seq)
5817 {
5818 	int i;
5819 	int type, tier;
5820 	int hist = lru_hist_from_seq(seq);
5821 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5822 
5823 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5824 		seq_printf(m, "            %10d", tier);
5825 		for (type = 0; type < ANON_AND_FILE; type++) {
5826 			const char *s = "   ";
5827 			unsigned long n[3] = {};
5828 
5829 			if (seq == max_seq) {
5830 				s = "RT ";
5831 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5832 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5833 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5834 				s = "rep";
5835 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5836 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5837 				if (tier)
5838 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5839 			}
5840 
5841 			for (i = 0; i < 3; i++)
5842 				seq_printf(m, " %10lu%c", n[i], s[i]);
5843 		}
5844 		seq_putc(m, '\n');
5845 	}
5846 
5847 	seq_puts(m, "                      ");
5848 	for (i = 0; i < NR_MM_STATS; i++) {
5849 		const char *s = "      ";
5850 		unsigned long n = 0;
5851 
5852 		if (seq == max_seq && NR_HIST_GENS == 1) {
5853 			s = "LOYNFA";
5854 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5855 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5856 			s = "loynfa";
5857 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5858 		}
5859 
5860 		seq_printf(m, " %10lu%c", n, s[i]);
5861 	}
5862 	seq_putc(m, '\n');
5863 }
5864 
5865 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5866 static int lru_gen_seq_show(struct seq_file *m, void *v)
5867 {
5868 	unsigned long seq;
5869 	bool full = !debugfs_real_fops(m->file)->write;
5870 	struct lruvec *lruvec = v;
5871 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5872 	int nid = lruvec_pgdat(lruvec)->node_id;
5873 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5874 	DEFINE_MAX_SEQ(lruvec);
5875 	DEFINE_MIN_SEQ(lruvec);
5876 
5877 	if (nid == first_memory_node) {
5878 		const char *path = memcg ? m->private : "";
5879 
5880 #ifdef CONFIG_MEMCG
5881 		if (memcg)
5882 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5883 #endif
5884 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5885 	}
5886 
5887 	seq_printf(m, " node %5d\n", nid);
5888 
5889 	if (!full)
5890 		seq = min_seq[LRU_GEN_ANON];
5891 	else if (max_seq >= MAX_NR_GENS)
5892 		seq = max_seq - MAX_NR_GENS + 1;
5893 	else
5894 		seq = 0;
5895 
5896 	for (; seq <= max_seq; seq++) {
5897 		int type, zone;
5898 		int gen = lru_gen_from_seq(seq);
5899 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5900 
5901 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5902 
5903 		for (type = 0; type < ANON_AND_FILE; type++) {
5904 			unsigned long size = 0;
5905 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5906 
5907 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5908 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5909 
5910 			seq_printf(m, " %10lu%c", size, mark);
5911 		}
5912 
5913 		seq_putc(m, '\n');
5914 
5915 		if (full)
5916 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5917 	}
5918 
5919 	return 0;
5920 }
5921 
5922 static const struct seq_operations lru_gen_seq_ops = {
5923 	.start = lru_gen_seq_start,
5924 	.stop = lru_gen_seq_stop,
5925 	.next = lru_gen_seq_next,
5926 	.show = lru_gen_seq_show,
5927 };
5928 
5929 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5930 		     bool can_swap, bool force_scan)
5931 {
5932 	DEFINE_MAX_SEQ(lruvec);
5933 	DEFINE_MIN_SEQ(lruvec);
5934 
5935 	if (seq < max_seq)
5936 		return 0;
5937 
5938 	if (seq > max_seq)
5939 		return -EINVAL;
5940 
5941 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5942 		return -ERANGE;
5943 
5944 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5945 
5946 	return 0;
5947 }
5948 
5949 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5950 			int swappiness, unsigned long nr_to_reclaim)
5951 {
5952 	DEFINE_MAX_SEQ(lruvec);
5953 
5954 	if (seq + MIN_NR_GENS > max_seq)
5955 		return -EINVAL;
5956 
5957 	sc->nr_reclaimed = 0;
5958 
5959 	while (!signal_pending(current)) {
5960 		DEFINE_MIN_SEQ(lruvec);
5961 
5962 		if (seq < min_seq[!swappiness])
5963 			return 0;
5964 
5965 		if (sc->nr_reclaimed >= nr_to_reclaim)
5966 			return 0;
5967 
5968 		if (!evict_folios(lruvec, sc, swappiness))
5969 			return 0;
5970 
5971 		cond_resched();
5972 	}
5973 
5974 	return -EINTR;
5975 }
5976 
5977 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5978 		   struct scan_control *sc, int swappiness, unsigned long opt)
5979 {
5980 	struct lruvec *lruvec;
5981 	int err = -EINVAL;
5982 	struct mem_cgroup *memcg = NULL;
5983 
5984 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5985 		return -EINVAL;
5986 
5987 	if (!mem_cgroup_disabled()) {
5988 		rcu_read_lock();
5989 
5990 		memcg = mem_cgroup_from_id(memcg_id);
5991 		if (!mem_cgroup_tryget(memcg))
5992 			memcg = NULL;
5993 
5994 		rcu_read_unlock();
5995 
5996 		if (!memcg)
5997 			return -EINVAL;
5998 	}
5999 
6000 	if (memcg_id != mem_cgroup_id(memcg))
6001 		goto done;
6002 
6003 	lruvec = get_lruvec(memcg, nid);
6004 
6005 	if (swappiness < 0)
6006 		swappiness = get_swappiness(lruvec, sc);
6007 	else if (swappiness > 200)
6008 		goto done;
6009 
6010 	switch (cmd) {
6011 	case '+':
6012 		err = run_aging(lruvec, seq, sc, swappiness, opt);
6013 		break;
6014 	case '-':
6015 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
6016 		break;
6017 	}
6018 done:
6019 	mem_cgroup_put(memcg);
6020 
6021 	return err;
6022 }
6023 
6024 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6025 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6026 				 size_t len, loff_t *pos)
6027 {
6028 	void *buf;
6029 	char *cur, *next;
6030 	unsigned int flags;
6031 	struct blk_plug plug;
6032 	int err = -EINVAL;
6033 	struct scan_control sc = {
6034 		.may_writepage = true,
6035 		.may_unmap = true,
6036 		.may_swap = true,
6037 		.reclaim_idx = MAX_NR_ZONES - 1,
6038 		.gfp_mask = GFP_KERNEL,
6039 	};
6040 
6041 	buf = kvmalloc(len + 1, GFP_KERNEL);
6042 	if (!buf)
6043 		return -ENOMEM;
6044 
6045 	if (copy_from_user(buf, src, len)) {
6046 		kvfree(buf);
6047 		return -EFAULT;
6048 	}
6049 
6050 	set_task_reclaim_state(current, &sc.reclaim_state);
6051 	flags = memalloc_noreclaim_save();
6052 	blk_start_plug(&plug);
6053 	if (!set_mm_walk(NULL, true)) {
6054 		err = -ENOMEM;
6055 		goto done;
6056 	}
6057 
6058 	next = buf;
6059 	next[len] = '\0';
6060 
6061 	while ((cur = strsep(&next, ",;\n"))) {
6062 		int n;
6063 		int end;
6064 		char cmd;
6065 		unsigned int memcg_id;
6066 		unsigned int nid;
6067 		unsigned long seq;
6068 		unsigned int swappiness = -1;
6069 		unsigned long opt = -1;
6070 
6071 		cur = skip_spaces(cur);
6072 		if (!*cur)
6073 			continue;
6074 
6075 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6076 			   &seq, &end, &swappiness, &end, &opt, &end);
6077 		if (n < 4 || cur[end]) {
6078 			err = -EINVAL;
6079 			break;
6080 		}
6081 
6082 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6083 		if (err)
6084 			break;
6085 	}
6086 done:
6087 	clear_mm_walk();
6088 	blk_finish_plug(&plug);
6089 	memalloc_noreclaim_restore(flags);
6090 	set_task_reclaim_state(current, NULL);
6091 
6092 	kvfree(buf);
6093 
6094 	return err ? : len;
6095 }
6096 
6097 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6098 {
6099 	return seq_open(file, &lru_gen_seq_ops);
6100 }
6101 
6102 static const struct file_operations lru_gen_rw_fops = {
6103 	.open = lru_gen_seq_open,
6104 	.read = seq_read,
6105 	.write = lru_gen_seq_write,
6106 	.llseek = seq_lseek,
6107 	.release = seq_release,
6108 };
6109 
6110 static const struct file_operations lru_gen_ro_fops = {
6111 	.open = lru_gen_seq_open,
6112 	.read = seq_read,
6113 	.llseek = seq_lseek,
6114 	.release = seq_release,
6115 };
6116 
6117 /******************************************************************************
6118  *                          initialization
6119  ******************************************************************************/
6120 
6121 void lru_gen_init_lruvec(struct lruvec *lruvec)
6122 {
6123 	int i;
6124 	int gen, type, zone;
6125 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6126 
6127 	lrugen->max_seq = MIN_NR_GENS + 1;
6128 	lrugen->enabled = lru_gen_enabled();
6129 
6130 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6131 		lrugen->timestamps[i] = jiffies;
6132 
6133 	for_each_gen_type_zone(gen, type, zone)
6134 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6135 
6136 	lruvec->mm_state.seq = MIN_NR_GENS;
6137 	init_waitqueue_head(&lruvec->mm_state.wait);
6138 }
6139 
6140 #ifdef CONFIG_MEMCG
6141 
6142 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6143 {
6144 	int i, j;
6145 
6146 	spin_lock_init(&pgdat->memcg_lru.lock);
6147 
6148 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6149 		for (j = 0; j < MEMCG_NR_BINS; j++)
6150 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6151 	}
6152 }
6153 
6154 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6155 {
6156 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6157 	spin_lock_init(&memcg->mm_list.lock);
6158 }
6159 
6160 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6161 {
6162 	int i;
6163 	int nid;
6164 
6165 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6166 
6167 	for_each_node(nid) {
6168 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6169 
6170 		VM_WARN_ON_ONCE(lruvec->mm_state.nr_walkers);
6171 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6172 					   sizeof(lruvec->lrugen.nr_pages)));
6173 
6174 		lruvec->lrugen.list.next = LIST_POISON1;
6175 
6176 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6177 			bitmap_free(lruvec->mm_state.filters[i]);
6178 			lruvec->mm_state.filters[i] = NULL;
6179 		}
6180 	}
6181 }
6182 
6183 #endif /* CONFIG_MEMCG */
6184 
6185 static int __init init_lru_gen(void)
6186 {
6187 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6188 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6189 
6190 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6191 		pr_err("lru_gen: failed to create sysfs group\n");
6192 
6193 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6194 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6195 
6196 	return 0;
6197 };
6198 late_initcall(init_lru_gen);
6199 
6200 #else /* !CONFIG_LRU_GEN */
6201 
6202 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6203 {
6204 }
6205 
6206 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6207 {
6208 }
6209 
6210 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6211 {
6212 }
6213 
6214 #endif /* CONFIG_LRU_GEN */
6215 
6216 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6217 {
6218 	unsigned long nr[NR_LRU_LISTS];
6219 	unsigned long targets[NR_LRU_LISTS];
6220 	unsigned long nr_to_scan;
6221 	enum lru_list lru;
6222 	unsigned long nr_reclaimed = 0;
6223 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6224 	bool proportional_reclaim;
6225 	struct blk_plug plug;
6226 
6227 	if (lru_gen_enabled() && !global_reclaim(sc)) {
6228 		lru_gen_shrink_lruvec(lruvec, sc);
6229 		return;
6230 	}
6231 
6232 	get_scan_count(lruvec, sc, nr);
6233 
6234 	/* Record the original scan target for proportional adjustments later */
6235 	memcpy(targets, nr, sizeof(nr));
6236 
6237 	/*
6238 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6239 	 * event that can occur when there is little memory pressure e.g.
6240 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6241 	 * when the requested number of pages are reclaimed when scanning at
6242 	 * DEF_PRIORITY on the assumption that the fact we are direct
6243 	 * reclaiming implies that kswapd is not keeping up and it is best to
6244 	 * do a batch of work at once. For memcg reclaim one check is made to
6245 	 * abort proportional reclaim if either the file or anon lru has already
6246 	 * dropped to zero at the first pass.
6247 	 */
6248 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6249 				sc->priority == DEF_PRIORITY);
6250 
6251 	blk_start_plug(&plug);
6252 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6253 					nr[LRU_INACTIVE_FILE]) {
6254 		unsigned long nr_anon, nr_file, percentage;
6255 		unsigned long nr_scanned;
6256 
6257 		for_each_evictable_lru(lru) {
6258 			if (nr[lru]) {
6259 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6260 				nr[lru] -= nr_to_scan;
6261 
6262 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6263 							    lruvec, sc);
6264 			}
6265 		}
6266 
6267 		cond_resched();
6268 
6269 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6270 			continue;
6271 
6272 		/*
6273 		 * For kswapd and memcg, reclaim at least the number of pages
6274 		 * requested. Ensure that the anon and file LRUs are scanned
6275 		 * proportionally what was requested by get_scan_count(). We
6276 		 * stop reclaiming one LRU and reduce the amount scanning
6277 		 * proportional to the original scan target.
6278 		 */
6279 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6280 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6281 
6282 		/*
6283 		 * It's just vindictive to attack the larger once the smaller
6284 		 * has gone to zero.  And given the way we stop scanning the
6285 		 * smaller below, this makes sure that we only make one nudge
6286 		 * towards proportionality once we've got nr_to_reclaim.
6287 		 */
6288 		if (!nr_file || !nr_anon)
6289 			break;
6290 
6291 		if (nr_file > nr_anon) {
6292 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6293 						targets[LRU_ACTIVE_ANON] + 1;
6294 			lru = LRU_BASE;
6295 			percentage = nr_anon * 100 / scan_target;
6296 		} else {
6297 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6298 						targets[LRU_ACTIVE_FILE] + 1;
6299 			lru = LRU_FILE;
6300 			percentage = nr_file * 100 / scan_target;
6301 		}
6302 
6303 		/* Stop scanning the smaller of the LRU */
6304 		nr[lru] = 0;
6305 		nr[lru + LRU_ACTIVE] = 0;
6306 
6307 		/*
6308 		 * Recalculate the other LRU scan count based on its original
6309 		 * scan target and the percentage scanning already complete
6310 		 */
6311 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6312 		nr_scanned = targets[lru] - nr[lru];
6313 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6314 		nr[lru] -= min(nr[lru], nr_scanned);
6315 
6316 		lru += LRU_ACTIVE;
6317 		nr_scanned = targets[lru] - nr[lru];
6318 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6319 		nr[lru] -= min(nr[lru], nr_scanned);
6320 	}
6321 	blk_finish_plug(&plug);
6322 	sc->nr_reclaimed += nr_reclaimed;
6323 
6324 	/*
6325 	 * Even if we did not try to evict anon pages at all, we want to
6326 	 * rebalance the anon lru active/inactive ratio.
6327 	 */
6328 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6329 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6330 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6331 				   sc, LRU_ACTIVE_ANON);
6332 }
6333 
6334 /* Use reclaim/compaction for costly allocs or under memory pressure */
6335 static bool in_reclaim_compaction(struct scan_control *sc)
6336 {
6337 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6338 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6339 			 sc->priority < DEF_PRIORITY - 2))
6340 		return true;
6341 
6342 	return false;
6343 }
6344 
6345 /*
6346  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6347  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6348  * true if more pages should be reclaimed such that when the page allocator
6349  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6350  * It will give up earlier than that if there is difficulty reclaiming pages.
6351  */
6352 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6353 					unsigned long nr_reclaimed,
6354 					struct scan_control *sc)
6355 {
6356 	unsigned long pages_for_compaction;
6357 	unsigned long inactive_lru_pages;
6358 	int z;
6359 
6360 	/* If not in reclaim/compaction mode, stop */
6361 	if (!in_reclaim_compaction(sc))
6362 		return false;
6363 
6364 	/*
6365 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6366 	 * number of pages that were scanned. This will return to the caller
6367 	 * with the risk reclaim/compaction and the resulting allocation attempt
6368 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6369 	 * allocations through requiring that the full LRU list has been scanned
6370 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6371 	 * scan, but that approximation was wrong, and there were corner cases
6372 	 * where always a non-zero amount of pages were scanned.
6373 	 */
6374 	if (!nr_reclaimed)
6375 		return false;
6376 
6377 	/* If compaction would go ahead or the allocation would succeed, stop */
6378 	for (z = 0; z <= sc->reclaim_idx; z++) {
6379 		struct zone *zone = &pgdat->node_zones[z];
6380 		if (!managed_zone(zone))
6381 			continue;
6382 
6383 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6384 		case COMPACT_SUCCESS:
6385 		case COMPACT_CONTINUE:
6386 			return false;
6387 		default:
6388 			/* check next zone */
6389 			;
6390 		}
6391 	}
6392 
6393 	/*
6394 	 * If we have not reclaimed enough pages for compaction and the
6395 	 * inactive lists are large enough, continue reclaiming
6396 	 */
6397 	pages_for_compaction = compact_gap(sc->order);
6398 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6399 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6400 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6401 
6402 	return inactive_lru_pages > pages_for_compaction;
6403 }
6404 
6405 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6406 {
6407 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6408 	struct mem_cgroup *memcg;
6409 
6410 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6411 	do {
6412 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6413 		unsigned long reclaimed;
6414 		unsigned long scanned;
6415 
6416 		/*
6417 		 * This loop can become CPU-bound when target memcgs
6418 		 * aren't eligible for reclaim - either because they
6419 		 * don't have any reclaimable pages, or because their
6420 		 * memory is explicitly protected. Avoid soft lockups.
6421 		 */
6422 		cond_resched();
6423 
6424 		mem_cgroup_calculate_protection(target_memcg, memcg);
6425 
6426 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6427 			/*
6428 			 * Hard protection.
6429 			 * If there is no reclaimable memory, OOM.
6430 			 */
6431 			continue;
6432 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6433 			/*
6434 			 * Soft protection.
6435 			 * Respect the protection only as long as
6436 			 * there is an unprotected supply
6437 			 * of reclaimable memory from other cgroups.
6438 			 */
6439 			if (!sc->memcg_low_reclaim) {
6440 				sc->memcg_low_skipped = 1;
6441 				continue;
6442 			}
6443 			memcg_memory_event(memcg, MEMCG_LOW);
6444 		}
6445 
6446 		reclaimed = sc->nr_reclaimed;
6447 		scanned = sc->nr_scanned;
6448 
6449 		shrink_lruvec(lruvec, sc);
6450 
6451 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6452 			    sc->priority);
6453 
6454 		/* Record the group's reclaim efficiency */
6455 		if (!sc->proactive)
6456 			vmpressure(sc->gfp_mask, memcg, false,
6457 				   sc->nr_scanned - scanned,
6458 				   sc->nr_reclaimed - reclaimed);
6459 
6460 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6461 }
6462 
6463 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6464 {
6465 	struct reclaim_state *reclaim_state = current->reclaim_state;
6466 	unsigned long nr_reclaimed, nr_scanned;
6467 	struct lruvec *target_lruvec;
6468 	bool reclaimable = false;
6469 
6470 	if (lru_gen_enabled() && global_reclaim(sc)) {
6471 		lru_gen_shrink_node(pgdat, sc);
6472 		return;
6473 	}
6474 
6475 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6476 
6477 again:
6478 	memset(&sc->nr, 0, sizeof(sc->nr));
6479 
6480 	nr_reclaimed = sc->nr_reclaimed;
6481 	nr_scanned = sc->nr_scanned;
6482 
6483 	prepare_scan_count(pgdat, sc);
6484 
6485 	shrink_node_memcgs(pgdat, sc);
6486 
6487 	if (reclaim_state) {
6488 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6489 		reclaim_state->reclaimed_slab = 0;
6490 	}
6491 
6492 	/* Record the subtree's reclaim efficiency */
6493 	if (!sc->proactive)
6494 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6495 			   sc->nr_scanned - nr_scanned,
6496 			   sc->nr_reclaimed - nr_reclaimed);
6497 
6498 	if (sc->nr_reclaimed - nr_reclaimed)
6499 		reclaimable = true;
6500 
6501 	if (current_is_kswapd()) {
6502 		/*
6503 		 * If reclaim is isolating dirty pages under writeback,
6504 		 * it implies that the long-lived page allocation rate
6505 		 * is exceeding the page laundering rate. Either the
6506 		 * global limits are not being effective at throttling
6507 		 * processes due to the page distribution throughout
6508 		 * zones or there is heavy usage of a slow backing
6509 		 * device. The only option is to throttle from reclaim
6510 		 * context which is not ideal as there is no guarantee
6511 		 * the dirtying process is throttled in the same way
6512 		 * balance_dirty_pages() manages.
6513 		 *
6514 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6515 		 * count the number of pages under pages flagged for
6516 		 * immediate reclaim and stall if any are encountered
6517 		 * in the nr_immediate check below.
6518 		 */
6519 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6520 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6521 
6522 		/* Allow kswapd to start writing pages during reclaim.*/
6523 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6524 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6525 
6526 		/*
6527 		 * If kswapd scans pages marked for immediate
6528 		 * reclaim and under writeback (nr_immediate), it
6529 		 * implies that pages are cycling through the LRU
6530 		 * faster than they are written so forcibly stall
6531 		 * until some pages complete writeback.
6532 		 */
6533 		if (sc->nr.immediate)
6534 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6535 	}
6536 
6537 	/*
6538 	 * Tag a node/memcg as congested if all the dirty pages were marked
6539 	 * for writeback and immediate reclaim (counted in nr.congested).
6540 	 *
6541 	 * Legacy memcg will stall in page writeback so avoid forcibly
6542 	 * stalling in reclaim_throttle().
6543 	 */
6544 	if ((current_is_kswapd() ||
6545 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6546 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6547 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6548 
6549 	/*
6550 	 * Stall direct reclaim for IO completions if the lruvec is
6551 	 * node is congested. Allow kswapd to continue until it
6552 	 * starts encountering unqueued dirty pages or cycling through
6553 	 * the LRU too quickly.
6554 	 */
6555 	if (!current_is_kswapd() && current_may_throttle() &&
6556 	    !sc->hibernation_mode &&
6557 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6558 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6559 
6560 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6561 				    sc))
6562 		goto again;
6563 
6564 	/*
6565 	 * Kswapd gives up on balancing particular nodes after too
6566 	 * many failures to reclaim anything from them and goes to
6567 	 * sleep. On reclaim progress, reset the failure counter. A
6568 	 * successful direct reclaim run will revive a dormant kswapd.
6569 	 */
6570 	if (reclaimable)
6571 		pgdat->kswapd_failures = 0;
6572 }
6573 
6574 /*
6575  * Returns true if compaction should go ahead for a costly-order request, or
6576  * the allocation would already succeed without compaction. Return false if we
6577  * should reclaim first.
6578  */
6579 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6580 {
6581 	unsigned long watermark;
6582 	enum compact_result suitable;
6583 
6584 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6585 	if (suitable == COMPACT_SUCCESS)
6586 		/* Allocation should succeed already. Don't reclaim. */
6587 		return true;
6588 	if (suitable == COMPACT_SKIPPED)
6589 		/* Compaction cannot yet proceed. Do reclaim. */
6590 		return false;
6591 
6592 	/*
6593 	 * Compaction is already possible, but it takes time to run and there
6594 	 * are potentially other callers using the pages just freed. So proceed
6595 	 * with reclaim to make a buffer of free pages available to give
6596 	 * compaction a reasonable chance of completing and allocating the page.
6597 	 * Note that we won't actually reclaim the whole buffer in one attempt
6598 	 * as the target watermark in should_continue_reclaim() is lower. But if
6599 	 * we are already above the high+gap watermark, don't reclaim at all.
6600 	 */
6601 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6602 
6603 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6604 }
6605 
6606 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6607 {
6608 	/*
6609 	 * If reclaim is making progress greater than 12% efficiency then
6610 	 * wake all the NOPROGRESS throttled tasks.
6611 	 */
6612 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6613 		wait_queue_head_t *wqh;
6614 
6615 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6616 		if (waitqueue_active(wqh))
6617 			wake_up(wqh);
6618 
6619 		return;
6620 	}
6621 
6622 	/*
6623 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6624 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6625 	 * under writeback and marked for immediate reclaim at the tail of the
6626 	 * LRU.
6627 	 */
6628 	if (current_is_kswapd() || cgroup_reclaim(sc))
6629 		return;
6630 
6631 	/* Throttle if making no progress at high prioities. */
6632 	if (sc->priority == 1 && !sc->nr_reclaimed)
6633 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6634 }
6635 
6636 /*
6637  * This is the direct reclaim path, for page-allocating processes.  We only
6638  * try to reclaim pages from zones which will satisfy the caller's allocation
6639  * request.
6640  *
6641  * If a zone is deemed to be full of pinned pages then just give it a light
6642  * scan then give up on it.
6643  */
6644 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6645 {
6646 	struct zoneref *z;
6647 	struct zone *zone;
6648 	unsigned long nr_soft_reclaimed;
6649 	unsigned long nr_soft_scanned;
6650 	gfp_t orig_mask;
6651 	pg_data_t *last_pgdat = NULL;
6652 	pg_data_t *first_pgdat = NULL;
6653 
6654 	/*
6655 	 * If the number of buffer_heads in the machine exceeds the maximum
6656 	 * allowed level, force direct reclaim to scan the highmem zone as
6657 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6658 	 */
6659 	orig_mask = sc->gfp_mask;
6660 	if (buffer_heads_over_limit) {
6661 		sc->gfp_mask |= __GFP_HIGHMEM;
6662 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6663 	}
6664 
6665 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6666 					sc->reclaim_idx, sc->nodemask) {
6667 		/*
6668 		 * Take care memory controller reclaiming has small influence
6669 		 * to global LRU.
6670 		 */
6671 		if (!cgroup_reclaim(sc)) {
6672 			if (!cpuset_zone_allowed(zone,
6673 						 GFP_KERNEL | __GFP_HARDWALL))
6674 				continue;
6675 
6676 			/*
6677 			 * If we already have plenty of memory free for
6678 			 * compaction in this zone, don't free any more.
6679 			 * Even though compaction is invoked for any
6680 			 * non-zero order, only frequent costly order
6681 			 * reclamation is disruptive enough to become a
6682 			 * noticeable problem, like transparent huge
6683 			 * page allocations.
6684 			 */
6685 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6686 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6687 			    compaction_ready(zone, sc)) {
6688 				sc->compaction_ready = true;
6689 				continue;
6690 			}
6691 
6692 			/*
6693 			 * Shrink each node in the zonelist once. If the
6694 			 * zonelist is ordered by zone (not the default) then a
6695 			 * node may be shrunk multiple times but in that case
6696 			 * the user prefers lower zones being preserved.
6697 			 */
6698 			if (zone->zone_pgdat == last_pgdat)
6699 				continue;
6700 
6701 			/*
6702 			 * This steals pages from memory cgroups over softlimit
6703 			 * and returns the number of reclaimed pages and
6704 			 * scanned pages. This works for global memory pressure
6705 			 * and balancing, not for a memcg's limit.
6706 			 */
6707 			nr_soft_scanned = 0;
6708 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6709 						sc->order, sc->gfp_mask,
6710 						&nr_soft_scanned);
6711 			sc->nr_reclaimed += nr_soft_reclaimed;
6712 			sc->nr_scanned += nr_soft_scanned;
6713 			/* need some check for avoid more shrink_zone() */
6714 		}
6715 
6716 		if (!first_pgdat)
6717 			first_pgdat = zone->zone_pgdat;
6718 
6719 		/* See comment about same check for global reclaim above */
6720 		if (zone->zone_pgdat == last_pgdat)
6721 			continue;
6722 		last_pgdat = zone->zone_pgdat;
6723 		shrink_node(zone->zone_pgdat, sc);
6724 	}
6725 
6726 	if (first_pgdat)
6727 		consider_reclaim_throttle(first_pgdat, sc);
6728 
6729 	/*
6730 	 * Restore to original mask to avoid the impact on the caller if we
6731 	 * promoted it to __GFP_HIGHMEM.
6732 	 */
6733 	sc->gfp_mask = orig_mask;
6734 }
6735 
6736 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6737 {
6738 	struct lruvec *target_lruvec;
6739 	unsigned long refaults;
6740 
6741 	if (lru_gen_enabled())
6742 		return;
6743 
6744 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6745 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6746 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6747 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6748 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6749 }
6750 
6751 /*
6752  * This is the main entry point to direct page reclaim.
6753  *
6754  * If a full scan of the inactive list fails to free enough memory then we
6755  * are "out of memory" and something needs to be killed.
6756  *
6757  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6758  * high - the zone may be full of dirty or under-writeback pages, which this
6759  * caller can't do much about.  We kick the writeback threads and take explicit
6760  * naps in the hope that some of these pages can be written.  But if the
6761  * allocating task holds filesystem locks which prevent writeout this might not
6762  * work, and the allocation attempt will fail.
6763  *
6764  * returns:	0, if no pages reclaimed
6765  * 		else, the number of pages reclaimed
6766  */
6767 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6768 					  struct scan_control *sc)
6769 {
6770 	int initial_priority = sc->priority;
6771 	pg_data_t *last_pgdat;
6772 	struct zoneref *z;
6773 	struct zone *zone;
6774 retry:
6775 	delayacct_freepages_start();
6776 
6777 	if (!cgroup_reclaim(sc))
6778 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6779 
6780 	do {
6781 		if (!sc->proactive)
6782 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6783 					sc->priority);
6784 		sc->nr_scanned = 0;
6785 		shrink_zones(zonelist, sc);
6786 
6787 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6788 			break;
6789 
6790 		if (sc->compaction_ready)
6791 			break;
6792 
6793 		/*
6794 		 * If we're getting trouble reclaiming, start doing
6795 		 * writepage even in laptop mode.
6796 		 */
6797 		if (sc->priority < DEF_PRIORITY - 2)
6798 			sc->may_writepage = 1;
6799 	} while (--sc->priority >= 0);
6800 
6801 	last_pgdat = NULL;
6802 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6803 					sc->nodemask) {
6804 		if (zone->zone_pgdat == last_pgdat)
6805 			continue;
6806 		last_pgdat = zone->zone_pgdat;
6807 
6808 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6809 
6810 		if (cgroup_reclaim(sc)) {
6811 			struct lruvec *lruvec;
6812 
6813 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6814 						   zone->zone_pgdat);
6815 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6816 		}
6817 	}
6818 
6819 	delayacct_freepages_end();
6820 
6821 	if (sc->nr_reclaimed)
6822 		return sc->nr_reclaimed;
6823 
6824 	/* Aborted reclaim to try compaction? don't OOM, then */
6825 	if (sc->compaction_ready)
6826 		return 1;
6827 
6828 	/*
6829 	 * We make inactive:active ratio decisions based on the node's
6830 	 * composition of memory, but a restrictive reclaim_idx or a
6831 	 * memory.low cgroup setting can exempt large amounts of
6832 	 * memory from reclaim. Neither of which are very common, so
6833 	 * instead of doing costly eligibility calculations of the
6834 	 * entire cgroup subtree up front, we assume the estimates are
6835 	 * good, and retry with forcible deactivation if that fails.
6836 	 */
6837 	if (sc->skipped_deactivate) {
6838 		sc->priority = initial_priority;
6839 		sc->force_deactivate = 1;
6840 		sc->skipped_deactivate = 0;
6841 		goto retry;
6842 	}
6843 
6844 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6845 	if (sc->memcg_low_skipped) {
6846 		sc->priority = initial_priority;
6847 		sc->force_deactivate = 0;
6848 		sc->memcg_low_reclaim = 1;
6849 		sc->memcg_low_skipped = 0;
6850 		goto retry;
6851 	}
6852 
6853 	return 0;
6854 }
6855 
6856 static bool allow_direct_reclaim(pg_data_t *pgdat)
6857 {
6858 	struct zone *zone;
6859 	unsigned long pfmemalloc_reserve = 0;
6860 	unsigned long free_pages = 0;
6861 	int i;
6862 	bool wmark_ok;
6863 
6864 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6865 		return true;
6866 
6867 	for (i = 0; i <= ZONE_NORMAL; i++) {
6868 		zone = &pgdat->node_zones[i];
6869 		if (!managed_zone(zone))
6870 			continue;
6871 
6872 		if (!zone_reclaimable_pages(zone))
6873 			continue;
6874 
6875 		pfmemalloc_reserve += min_wmark_pages(zone);
6876 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6877 	}
6878 
6879 	/* If there are no reserves (unexpected config) then do not throttle */
6880 	if (!pfmemalloc_reserve)
6881 		return true;
6882 
6883 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6884 
6885 	/* kswapd must be awake if processes are being throttled */
6886 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6887 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6888 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6889 
6890 		wake_up_interruptible(&pgdat->kswapd_wait);
6891 	}
6892 
6893 	return wmark_ok;
6894 }
6895 
6896 /*
6897  * Throttle direct reclaimers if backing storage is backed by the network
6898  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6899  * depleted. kswapd will continue to make progress and wake the processes
6900  * when the low watermark is reached.
6901  *
6902  * Returns true if a fatal signal was delivered during throttling. If this
6903  * happens, the page allocator should not consider triggering the OOM killer.
6904  */
6905 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6906 					nodemask_t *nodemask)
6907 {
6908 	struct zoneref *z;
6909 	struct zone *zone;
6910 	pg_data_t *pgdat = NULL;
6911 
6912 	/*
6913 	 * Kernel threads should not be throttled as they may be indirectly
6914 	 * responsible for cleaning pages necessary for reclaim to make forward
6915 	 * progress. kjournald for example may enter direct reclaim while
6916 	 * committing a transaction where throttling it could forcing other
6917 	 * processes to block on log_wait_commit().
6918 	 */
6919 	if (current->flags & PF_KTHREAD)
6920 		goto out;
6921 
6922 	/*
6923 	 * If a fatal signal is pending, this process should not throttle.
6924 	 * It should return quickly so it can exit and free its memory
6925 	 */
6926 	if (fatal_signal_pending(current))
6927 		goto out;
6928 
6929 	/*
6930 	 * Check if the pfmemalloc reserves are ok by finding the first node
6931 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6932 	 * GFP_KERNEL will be required for allocating network buffers when
6933 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6934 	 *
6935 	 * Throttling is based on the first usable node and throttled processes
6936 	 * wait on a queue until kswapd makes progress and wakes them. There
6937 	 * is an affinity then between processes waking up and where reclaim
6938 	 * progress has been made assuming the process wakes on the same node.
6939 	 * More importantly, processes running on remote nodes will not compete
6940 	 * for remote pfmemalloc reserves and processes on different nodes
6941 	 * should make reasonable progress.
6942 	 */
6943 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6944 					gfp_zone(gfp_mask), nodemask) {
6945 		if (zone_idx(zone) > ZONE_NORMAL)
6946 			continue;
6947 
6948 		/* Throttle based on the first usable node */
6949 		pgdat = zone->zone_pgdat;
6950 		if (allow_direct_reclaim(pgdat))
6951 			goto out;
6952 		break;
6953 	}
6954 
6955 	/* If no zone was usable by the allocation flags then do not throttle */
6956 	if (!pgdat)
6957 		goto out;
6958 
6959 	/* Account for the throttling */
6960 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6961 
6962 	/*
6963 	 * If the caller cannot enter the filesystem, it's possible that it
6964 	 * is due to the caller holding an FS lock or performing a journal
6965 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6966 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6967 	 * blocked waiting on the same lock. Instead, throttle for up to a
6968 	 * second before continuing.
6969 	 */
6970 	if (!(gfp_mask & __GFP_FS))
6971 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6972 			allow_direct_reclaim(pgdat), HZ);
6973 	else
6974 		/* Throttle until kswapd wakes the process */
6975 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6976 			allow_direct_reclaim(pgdat));
6977 
6978 	if (fatal_signal_pending(current))
6979 		return true;
6980 
6981 out:
6982 	return false;
6983 }
6984 
6985 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6986 				gfp_t gfp_mask, nodemask_t *nodemask)
6987 {
6988 	unsigned long nr_reclaimed;
6989 	struct scan_control sc = {
6990 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6991 		.gfp_mask = current_gfp_context(gfp_mask),
6992 		.reclaim_idx = gfp_zone(gfp_mask),
6993 		.order = order,
6994 		.nodemask = nodemask,
6995 		.priority = DEF_PRIORITY,
6996 		.may_writepage = !laptop_mode,
6997 		.may_unmap = 1,
6998 		.may_swap = 1,
6999 	};
7000 
7001 	/*
7002 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7003 	 * Confirm they are large enough for max values.
7004 	 */
7005 	BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7006 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7007 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7008 
7009 	/*
7010 	 * Do not enter reclaim if fatal signal was delivered while throttled.
7011 	 * 1 is returned so that the page allocator does not OOM kill at this
7012 	 * point.
7013 	 */
7014 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7015 		return 1;
7016 
7017 	set_task_reclaim_state(current, &sc.reclaim_state);
7018 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7019 
7020 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7021 
7022 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7023 	set_task_reclaim_state(current, NULL);
7024 
7025 	return nr_reclaimed;
7026 }
7027 
7028 #ifdef CONFIG_MEMCG
7029 
7030 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7031 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7032 						gfp_t gfp_mask, bool noswap,
7033 						pg_data_t *pgdat,
7034 						unsigned long *nr_scanned)
7035 {
7036 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7037 	struct scan_control sc = {
7038 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7039 		.target_mem_cgroup = memcg,
7040 		.may_writepage = !laptop_mode,
7041 		.may_unmap = 1,
7042 		.reclaim_idx = MAX_NR_ZONES - 1,
7043 		.may_swap = !noswap,
7044 	};
7045 
7046 	WARN_ON_ONCE(!current->reclaim_state);
7047 
7048 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7049 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7050 
7051 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7052 						      sc.gfp_mask);
7053 
7054 	/*
7055 	 * NOTE: Although we can get the priority field, using it
7056 	 * here is not a good idea, since it limits the pages we can scan.
7057 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7058 	 * will pick up pages from other mem cgroup's as well. We hack
7059 	 * the priority and make it zero.
7060 	 */
7061 	shrink_lruvec(lruvec, &sc);
7062 
7063 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7064 
7065 	*nr_scanned = sc.nr_scanned;
7066 
7067 	return sc.nr_reclaimed;
7068 }
7069 
7070 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7071 					   unsigned long nr_pages,
7072 					   gfp_t gfp_mask,
7073 					   unsigned int reclaim_options)
7074 {
7075 	unsigned long nr_reclaimed;
7076 	unsigned int noreclaim_flag;
7077 	struct scan_control sc = {
7078 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7079 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7080 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7081 		.reclaim_idx = MAX_NR_ZONES - 1,
7082 		.target_mem_cgroup = memcg,
7083 		.priority = DEF_PRIORITY,
7084 		.may_writepage = !laptop_mode,
7085 		.may_unmap = 1,
7086 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7087 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7088 	};
7089 	/*
7090 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7091 	 * equal pressure on all the nodes. This is based on the assumption that
7092 	 * the reclaim does not bail out early.
7093 	 */
7094 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7095 
7096 	set_task_reclaim_state(current, &sc.reclaim_state);
7097 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7098 	noreclaim_flag = memalloc_noreclaim_save();
7099 
7100 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7101 
7102 	memalloc_noreclaim_restore(noreclaim_flag);
7103 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7104 	set_task_reclaim_state(current, NULL);
7105 
7106 	return nr_reclaimed;
7107 }
7108 #endif
7109 
7110 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7111 {
7112 	struct mem_cgroup *memcg;
7113 	struct lruvec *lruvec;
7114 
7115 	if (lru_gen_enabled()) {
7116 		lru_gen_age_node(pgdat, sc);
7117 		return;
7118 	}
7119 
7120 	if (!can_age_anon_pages(pgdat, sc))
7121 		return;
7122 
7123 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7124 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7125 		return;
7126 
7127 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7128 	do {
7129 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7130 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7131 				   sc, LRU_ACTIVE_ANON);
7132 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7133 	} while (memcg);
7134 }
7135 
7136 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7137 {
7138 	int i;
7139 	struct zone *zone;
7140 
7141 	/*
7142 	 * Check for watermark boosts top-down as the higher zones
7143 	 * are more likely to be boosted. Both watermarks and boosts
7144 	 * should not be checked at the same time as reclaim would
7145 	 * start prematurely when there is no boosting and a lower
7146 	 * zone is balanced.
7147 	 */
7148 	for (i = highest_zoneidx; i >= 0; i--) {
7149 		zone = pgdat->node_zones + i;
7150 		if (!managed_zone(zone))
7151 			continue;
7152 
7153 		if (zone->watermark_boost)
7154 			return true;
7155 	}
7156 
7157 	return false;
7158 }
7159 
7160 /*
7161  * Returns true if there is an eligible zone balanced for the request order
7162  * and highest_zoneidx
7163  */
7164 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7165 {
7166 	int i;
7167 	unsigned long mark = -1;
7168 	struct zone *zone;
7169 
7170 	/*
7171 	 * Check watermarks bottom-up as lower zones are more likely to
7172 	 * meet watermarks.
7173 	 */
7174 	for (i = 0; i <= highest_zoneidx; i++) {
7175 		zone = pgdat->node_zones + i;
7176 
7177 		if (!managed_zone(zone))
7178 			continue;
7179 
7180 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7181 			mark = wmark_pages(zone, WMARK_PROMO);
7182 		else
7183 			mark = high_wmark_pages(zone);
7184 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7185 			return true;
7186 	}
7187 
7188 	/*
7189 	 * If a node has no managed zone within highest_zoneidx, it does not
7190 	 * need balancing by definition. This can happen if a zone-restricted
7191 	 * allocation tries to wake a remote kswapd.
7192 	 */
7193 	if (mark == -1)
7194 		return true;
7195 
7196 	return false;
7197 }
7198 
7199 /* Clear pgdat state for congested, dirty or under writeback. */
7200 static void clear_pgdat_congested(pg_data_t *pgdat)
7201 {
7202 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7203 
7204 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7205 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7206 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7207 }
7208 
7209 /*
7210  * Prepare kswapd for sleeping. This verifies that there are no processes
7211  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7212  *
7213  * Returns true if kswapd is ready to sleep
7214  */
7215 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7216 				int highest_zoneidx)
7217 {
7218 	/*
7219 	 * The throttled processes are normally woken up in balance_pgdat() as
7220 	 * soon as allow_direct_reclaim() is true. But there is a potential
7221 	 * race between when kswapd checks the watermarks and a process gets
7222 	 * throttled. There is also a potential race if processes get
7223 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7224 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7225 	 * the wake up checks. If kswapd is going to sleep, no process should
7226 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7227 	 * the wake up is premature, processes will wake kswapd and get
7228 	 * throttled again. The difference from wake ups in balance_pgdat() is
7229 	 * that here we are under prepare_to_wait().
7230 	 */
7231 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7232 		wake_up_all(&pgdat->pfmemalloc_wait);
7233 
7234 	/* Hopeless node, leave it to direct reclaim */
7235 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7236 		return true;
7237 
7238 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7239 		clear_pgdat_congested(pgdat);
7240 		return true;
7241 	}
7242 
7243 	return false;
7244 }
7245 
7246 /*
7247  * kswapd shrinks a node of pages that are at or below the highest usable
7248  * zone that is currently unbalanced.
7249  *
7250  * Returns true if kswapd scanned at least the requested number of pages to
7251  * reclaim or if the lack of progress was due to pages under writeback.
7252  * This is used to determine if the scanning priority needs to be raised.
7253  */
7254 static bool kswapd_shrink_node(pg_data_t *pgdat,
7255 			       struct scan_control *sc)
7256 {
7257 	struct zone *zone;
7258 	int z;
7259 
7260 	/* Reclaim a number of pages proportional to the number of zones */
7261 	sc->nr_to_reclaim = 0;
7262 	for (z = 0; z <= sc->reclaim_idx; z++) {
7263 		zone = pgdat->node_zones + z;
7264 		if (!managed_zone(zone))
7265 			continue;
7266 
7267 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7268 	}
7269 
7270 	/*
7271 	 * Historically care was taken to put equal pressure on all zones but
7272 	 * now pressure is applied based on node LRU order.
7273 	 */
7274 	shrink_node(pgdat, sc);
7275 
7276 	/*
7277 	 * Fragmentation may mean that the system cannot be rebalanced for
7278 	 * high-order allocations. If twice the allocation size has been
7279 	 * reclaimed then recheck watermarks only at order-0 to prevent
7280 	 * excessive reclaim. Assume that a process requested a high-order
7281 	 * can direct reclaim/compact.
7282 	 */
7283 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7284 		sc->order = 0;
7285 
7286 	return sc->nr_scanned >= sc->nr_to_reclaim;
7287 }
7288 
7289 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7290 static inline void
7291 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7292 {
7293 	int i;
7294 	struct zone *zone;
7295 
7296 	for (i = 0; i <= highest_zoneidx; i++) {
7297 		zone = pgdat->node_zones + i;
7298 
7299 		if (!managed_zone(zone))
7300 			continue;
7301 
7302 		if (active)
7303 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7304 		else
7305 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7306 	}
7307 }
7308 
7309 static inline void
7310 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7311 {
7312 	update_reclaim_active(pgdat, highest_zoneidx, true);
7313 }
7314 
7315 static inline void
7316 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7317 {
7318 	update_reclaim_active(pgdat, highest_zoneidx, false);
7319 }
7320 
7321 /*
7322  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7323  * that are eligible for use by the caller until at least one zone is
7324  * balanced.
7325  *
7326  * Returns the order kswapd finished reclaiming at.
7327  *
7328  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7329  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7330  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7331  * or lower is eligible for reclaim until at least one usable zone is
7332  * balanced.
7333  */
7334 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7335 {
7336 	int i;
7337 	unsigned long nr_soft_reclaimed;
7338 	unsigned long nr_soft_scanned;
7339 	unsigned long pflags;
7340 	unsigned long nr_boost_reclaim;
7341 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7342 	bool boosted;
7343 	struct zone *zone;
7344 	struct scan_control sc = {
7345 		.gfp_mask = GFP_KERNEL,
7346 		.order = order,
7347 		.may_unmap = 1,
7348 	};
7349 
7350 	set_task_reclaim_state(current, &sc.reclaim_state);
7351 	psi_memstall_enter(&pflags);
7352 	__fs_reclaim_acquire(_THIS_IP_);
7353 
7354 	count_vm_event(PAGEOUTRUN);
7355 
7356 	/*
7357 	 * Account for the reclaim boost. Note that the zone boost is left in
7358 	 * place so that parallel allocations that are near the watermark will
7359 	 * stall or direct reclaim until kswapd is finished.
7360 	 */
7361 	nr_boost_reclaim = 0;
7362 	for (i = 0; i <= highest_zoneidx; i++) {
7363 		zone = pgdat->node_zones + i;
7364 		if (!managed_zone(zone))
7365 			continue;
7366 
7367 		nr_boost_reclaim += zone->watermark_boost;
7368 		zone_boosts[i] = zone->watermark_boost;
7369 	}
7370 	boosted = nr_boost_reclaim;
7371 
7372 restart:
7373 	set_reclaim_active(pgdat, highest_zoneidx);
7374 	sc.priority = DEF_PRIORITY;
7375 	do {
7376 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7377 		bool raise_priority = true;
7378 		bool balanced;
7379 		bool ret;
7380 
7381 		sc.reclaim_idx = highest_zoneidx;
7382 
7383 		/*
7384 		 * If the number of buffer_heads exceeds the maximum allowed
7385 		 * then consider reclaiming from all zones. This has a dual
7386 		 * purpose -- on 64-bit systems it is expected that
7387 		 * buffer_heads are stripped during active rotation. On 32-bit
7388 		 * systems, highmem pages can pin lowmem memory and shrinking
7389 		 * buffers can relieve lowmem pressure. Reclaim may still not
7390 		 * go ahead if all eligible zones for the original allocation
7391 		 * request are balanced to avoid excessive reclaim from kswapd.
7392 		 */
7393 		if (buffer_heads_over_limit) {
7394 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7395 				zone = pgdat->node_zones + i;
7396 				if (!managed_zone(zone))
7397 					continue;
7398 
7399 				sc.reclaim_idx = i;
7400 				break;
7401 			}
7402 		}
7403 
7404 		/*
7405 		 * If the pgdat is imbalanced then ignore boosting and preserve
7406 		 * the watermarks for a later time and restart. Note that the
7407 		 * zone watermarks will be still reset at the end of balancing
7408 		 * on the grounds that the normal reclaim should be enough to
7409 		 * re-evaluate if boosting is required when kswapd next wakes.
7410 		 */
7411 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7412 		if (!balanced && nr_boost_reclaim) {
7413 			nr_boost_reclaim = 0;
7414 			goto restart;
7415 		}
7416 
7417 		/*
7418 		 * If boosting is not active then only reclaim if there are no
7419 		 * eligible zones. Note that sc.reclaim_idx is not used as
7420 		 * buffer_heads_over_limit may have adjusted it.
7421 		 */
7422 		if (!nr_boost_reclaim && balanced)
7423 			goto out;
7424 
7425 		/* Limit the priority of boosting to avoid reclaim writeback */
7426 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7427 			raise_priority = false;
7428 
7429 		/*
7430 		 * Do not writeback or swap pages for boosted reclaim. The
7431 		 * intent is to relieve pressure not issue sub-optimal IO
7432 		 * from reclaim context. If no pages are reclaimed, the
7433 		 * reclaim will be aborted.
7434 		 */
7435 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7436 		sc.may_swap = !nr_boost_reclaim;
7437 
7438 		/*
7439 		 * Do some background aging, to give pages a chance to be
7440 		 * referenced before reclaiming. All pages are rotated
7441 		 * regardless of classzone as this is about consistent aging.
7442 		 */
7443 		kswapd_age_node(pgdat, &sc);
7444 
7445 		/*
7446 		 * If we're getting trouble reclaiming, start doing writepage
7447 		 * even in laptop mode.
7448 		 */
7449 		if (sc.priority < DEF_PRIORITY - 2)
7450 			sc.may_writepage = 1;
7451 
7452 		/* Call soft limit reclaim before calling shrink_node. */
7453 		sc.nr_scanned = 0;
7454 		nr_soft_scanned = 0;
7455 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7456 						sc.gfp_mask, &nr_soft_scanned);
7457 		sc.nr_reclaimed += nr_soft_reclaimed;
7458 
7459 		/*
7460 		 * There should be no need to raise the scanning priority if
7461 		 * enough pages are already being scanned that that high
7462 		 * watermark would be met at 100% efficiency.
7463 		 */
7464 		if (kswapd_shrink_node(pgdat, &sc))
7465 			raise_priority = false;
7466 
7467 		/*
7468 		 * If the low watermark is met there is no need for processes
7469 		 * to be throttled on pfmemalloc_wait as they should not be
7470 		 * able to safely make forward progress. Wake them
7471 		 */
7472 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7473 				allow_direct_reclaim(pgdat))
7474 			wake_up_all(&pgdat->pfmemalloc_wait);
7475 
7476 		/* Check if kswapd should be suspending */
7477 		__fs_reclaim_release(_THIS_IP_);
7478 		ret = try_to_freeze();
7479 		__fs_reclaim_acquire(_THIS_IP_);
7480 		if (ret || kthread_should_stop())
7481 			break;
7482 
7483 		/*
7484 		 * Raise priority if scanning rate is too low or there was no
7485 		 * progress in reclaiming pages
7486 		 */
7487 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7488 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7489 
7490 		/*
7491 		 * If reclaim made no progress for a boost, stop reclaim as
7492 		 * IO cannot be queued and it could be an infinite loop in
7493 		 * extreme circumstances.
7494 		 */
7495 		if (nr_boost_reclaim && !nr_reclaimed)
7496 			break;
7497 
7498 		if (raise_priority || !nr_reclaimed)
7499 			sc.priority--;
7500 	} while (sc.priority >= 1);
7501 
7502 	if (!sc.nr_reclaimed)
7503 		pgdat->kswapd_failures++;
7504 
7505 out:
7506 	clear_reclaim_active(pgdat, highest_zoneidx);
7507 
7508 	/* If reclaim was boosted, account for the reclaim done in this pass */
7509 	if (boosted) {
7510 		unsigned long flags;
7511 
7512 		for (i = 0; i <= highest_zoneidx; i++) {
7513 			if (!zone_boosts[i])
7514 				continue;
7515 
7516 			/* Increments are under the zone lock */
7517 			zone = pgdat->node_zones + i;
7518 			spin_lock_irqsave(&zone->lock, flags);
7519 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7520 			spin_unlock_irqrestore(&zone->lock, flags);
7521 		}
7522 
7523 		/*
7524 		 * As there is now likely space, wakeup kcompact to defragment
7525 		 * pageblocks.
7526 		 */
7527 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7528 	}
7529 
7530 	snapshot_refaults(NULL, pgdat);
7531 	__fs_reclaim_release(_THIS_IP_);
7532 	psi_memstall_leave(&pflags);
7533 	set_task_reclaim_state(current, NULL);
7534 
7535 	/*
7536 	 * Return the order kswapd stopped reclaiming at as
7537 	 * prepare_kswapd_sleep() takes it into account. If another caller
7538 	 * entered the allocator slow path while kswapd was awake, order will
7539 	 * remain at the higher level.
7540 	 */
7541 	return sc.order;
7542 }
7543 
7544 /*
7545  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7546  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7547  * not a valid index then either kswapd runs for first time or kswapd couldn't
7548  * sleep after previous reclaim attempt (node is still unbalanced). In that
7549  * case return the zone index of the previous kswapd reclaim cycle.
7550  */
7551 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7552 					   enum zone_type prev_highest_zoneidx)
7553 {
7554 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7555 
7556 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7557 }
7558 
7559 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7560 				unsigned int highest_zoneidx)
7561 {
7562 	long remaining = 0;
7563 	DEFINE_WAIT(wait);
7564 
7565 	if (freezing(current) || kthread_should_stop())
7566 		return;
7567 
7568 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7569 
7570 	/*
7571 	 * Try to sleep for a short interval. Note that kcompactd will only be
7572 	 * woken if it is possible to sleep for a short interval. This is
7573 	 * deliberate on the assumption that if reclaim cannot keep an
7574 	 * eligible zone balanced that it's also unlikely that compaction will
7575 	 * succeed.
7576 	 */
7577 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7578 		/*
7579 		 * Compaction records what page blocks it recently failed to
7580 		 * isolate pages from and skips them in the future scanning.
7581 		 * When kswapd is going to sleep, it is reasonable to assume
7582 		 * that pages and compaction may succeed so reset the cache.
7583 		 */
7584 		reset_isolation_suitable(pgdat);
7585 
7586 		/*
7587 		 * We have freed the memory, now we should compact it to make
7588 		 * allocation of the requested order possible.
7589 		 */
7590 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7591 
7592 		remaining = schedule_timeout(HZ/10);
7593 
7594 		/*
7595 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7596 		 * order. The values will either be from a wakeup request or
7597 		 * the previous request that slept prematurely.
7598 		 */
7599 		if (remaining) {
7600 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7601 					kswapd_highest_zoneidx(pgdat,
7602 							highest_zoneidx));
7603 
7604 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7605 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7606 		}
7607 
7608 		finish_wait(&pgdat->kswapd_wait, &wait);
7609 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7610 	}
7611 
7612 	/*
7613 	 * After a short sleep, check if it was a premature sleep. If not, then
7614 	 * go fully to sleep until explicitly woken up.
7615 	 */
7616 	if (!remaining &&
7617 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7618 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7619 
7620 		/*
7621 		 * vmstat counters are not perfectly accurate and the estimated
7622 		 * value for counters such as NR_FREE_PAGES can deviate from the
7623 		 * true value by nr_online_cpus * threshold. To avoid the zone
7624 		 * watermarks being breached while under pressure, we reduce the
7625 		 * per-cpu vmstat threshold while kswapd is awake and restore
7626 		 * them before going back to sleep.
7627 		 */
7628 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7629 
7630 		if (!kthread_should_stop())
7631 			schedule();
7632 
7633 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7634 	} else {
7635 		if (remaining)
7636 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7637 		else
7638 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7639 	}
7640 	finish_wait(&pgdat->kswapd_wait, &wait);
7641 }
7642 
7643 /*
7644  * The background pageout daemon, started as a kernel thread
7645  * from the init process.
7646  *
7647  * This basically trickles out pages so that we have _some_
7648  * free memory available even if there is no other activity
7649  * that frees anything up. This is needed for things like routing
7650  * etc, where we otherwise might have all activity going on in
7651  * asynchronous contexts that cannot page things out.
7652  *
7653  * If there are applications that are active memory-allocators
7654  * (most normal use), this basically shouldn't matter.
7655  */
7656 static int kswapd(void *p)
7657 {
7658 	unsigned int alloc_order, reclaim_order;
7659 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7660 	pg_data_t *pgdat = (pg_data_t *)p;
7661 	struct task_struct *tsk = current;
7662 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7663 
7664 	if (!cpumask_empty(cpumask))
7665 		set_cpus_allowed_ptr(tsk, cpumask);
7666 
7667 	/*
7668 	 * Tell the memory management that we're a "memory allocator",
7669 	 * and that if we need more memory we should get access to it
7670 	 * regardless (see "__alloc_pages()"). "kswapd" should
7671 	 * never get caught in the normal page freeing logic.
7672 	 *
7673 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7674 	 * you need a small amount of memory in order to be able to
7675 	 * page out something else, and this flag essentially protects
7676 	 * us from recursively trying to free more memory as we're
7677 	 * trying to free the first piece of memory in the first place).
7678 	 */
7679 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7680 	set_freezable();
7681 
7682 	WRITE_ONCE(pgdat->kswapd_order, 0);
7683 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7684 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7685 	for ( ; ; ) {
7686 		bool ret;
7687 
7688 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7689 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7690 							highest_zoneidx);
7691 
7692 kswapd_try_sleep:
7693 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7694 					highest_zoneidx);
7695 
7696 		/* Read the new order and highest_zoneidx */
7697 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7698 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7699 							highest_zoneidx);
7700 		WRITE_ONCE(pgdat->kswapd_order, 0);
7701 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7702 
7703 		ret = try_to_freeze();
7704 		if (kthread_should_stop())
7705 			break;
7706 
7707 		/*
7708 		 * We can speed up thawing tasks if we don't call balance_pgdat
7709 		 * after returning from the refrigerator
7710 		 */
7711 		if (ret)
7712 			continue;
7713 
7714 		/*
7715 		 * Reclaim begins at the requested order but if a high-order
7716 		 * reclaim fails then kswapd falls back to reclaiming for
7717 		 * order-0. If that happens, kswapd will consider sleeping
7718 		 * for the order it finished reclaiming at (reclaim_order)
7719 		 * but kcompactd is woken to compact for the original
7720 		 * request (alloc_order).
7721 		 */
7722 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7723 						alloc_order);
7724 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7725 						highest_zoneidx);
7726 		if (reclaim_order < alloc_order)
7727 			goto kswapd_try_sleep;
7728 	}
7729 
7730 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7731 
7732 	return 0;
7733 }
7734 
7735 /*
7736  * A zone is low on free memory or too fragmented for high-order memory.  If
7737  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7738  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7739  * has failed or is not needed, still wake up kcompactd if only compaction is
7740  * needed.
7741  */
7742 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7743 		   enum zone_type highest_zoneidx)
7744 {
7745 	pg_data_t *pgdat;
7746 	enum zone_type curr_idx;
7747 
7748 	if (!managed_zone(zone))
7749 		return;
7750 
7751 	if (!cpuset_zone_allowed(zone, gfp_flags))
7752 		return;
7753 
7754 	pgdat = zone->zone_pgdat;
7755 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7756 
7757 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7758 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7759 
7760 	if (READ_ONCE(pgdat->kswapd_order) < order)
7761 		WRITE_ONCE(pgdat->kswapd_order, order);
7762 
7763 	if (!waitqueue_active(&pgdat->kswapd_wait))
7764 		return;
7765 
7766 	/* Hopeless node, leave it to direct reclaim if possible */
7767 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7768 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7769 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7770 		/*
7771 		 * There may be plenty of free memory available, but it's too
7772 		 * fragmented for high-order allocations.  Wake up kcompactd
7773 		 * and rely on compaction_suitable() to determine if it's
7774 		 * needed.  If it fails, it will defer subsequent attempts to
7775 		 * ratelimit its work.
7776 		 */
7777 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7778 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7779 		return;
7780 	}
7781 
7782 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7783 				      gfp_flags);
7784 	wake_up_interruptible(&pgdat->kswapd_wait);
7785 }
7786 
7787 #ifdef CONFIG_HIBERNATION
7788 /*
7789  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7790  * freed pages.
7791  *
7792  * Rather than trying to age LRUs the aim is to preserve the overall
7793  * LRU order by reclaiming preferentially
7794  * inactive > active > active referenced > active mapped
7795  */
7796 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7797 {
7798 	struct scan_control sc = {
7799 		.nr_to_reclaim = nr_to_reclaim,
7800 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7801 		.reclaim_idx = MAX_NR_ZONES - 1,
7802 		.priority = DEF_PRIORITY,
7803 		.may_writepage = 1,
7804 		.may_unmap = 1,
7805 		.may_swap = 1,
7806 		.hibernation_mode = 1,
7807 	};
7808 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7809 	unsigned long nr_reclaimed;
7810 	unsigned int noreclaim_flag;
7811 
7812 	fs_reclaim_acquire(sc.gfp_mask);
7813 	noreclaim_flag = memalloc_noreclaim_save();
7814 	set_task_reclaim_state(current, &sc.reclaim_state);
7815 
7816 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7817 
7818 	set_task_reclaim_state(current, NULL);
7819 	memalloc_noreclaim_restore(noreclaim_flag);
7820 	fs_reclaim_release(sc.gfp_mask);
7821 
7822 	return nr_reclaimed;
7823 }
7824 #endif /* CONFIG_HIBERNATION */
7825 
7826 /*
7827  * This kswapd start function will be called by init and node-hot-add.
7828  */
7829 void kswapd_run(int nid)
7830 {
7831 	pg_data_t *pgdat = NODE_DATA(nid);
7832 
7833 	pgdat_kswapd_lock(pgdat);
7834 	if (!pgdat->kswapd) {
7835 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7836 		if (IS_ERR(pgdat->kswapd)) {
7837 			/* failure at boot is fatal */
7838 			BUG_ON(system_state < SYSTEM_RUNNING);
7839 			pr_err("Failed to start kswapd on node %d\n", nid);
7840 			pgdat->kswapd = NULL;
7841 		}
7842 	}
7843 	pgdat_kswapd_unlock(pgdat);
7844 }
7845 
7846 /*
7847  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7848  * be holding mem_hotplug_begin/done().
7849  */
7850 void kswapd_stop(int nid)
7851 {
7852 	pg_data_t *pgdat = NODE_DATA(nid);
7853 	struct task_struct *kswapd;
7854 
7855 	pgdat_kswapd_lock(pgdat);
7856 	kswapd = pgdat->kswapd;
7857 	if (kswapd) {
7858 		kthread_stop(kswapd);
7859 		pgdat->kswapd = NULL;
7860 	}
7861 	pgdat_kswapd_unlock(pgdat);
7862 }
7863 
7864 static int __init kswapd_init(void)
7865 {
7866 	int nid;
7867 
7868 	swap_setup();
7869 	for_each_node_state(nid, N_MEMORY)
7870  		kswapd_run(nid);
7871 	return 0;
7872 }
7873 
7874 module_init(kswapd_init)
7875 
7876 #ifdef CONFIG_NUMA
7877 /*
7878  * Node reclaim mode
7879  *
7880  * If non-zero call node_reclaim when the number of free pages falls below
7881  * the watermarks.
7882  */
7883 int node_reclaim_mode __read_mostly;
7884 
7885 /*
7886  * Priority for NODE_RECLAIM. This determines the fraction of pages
7887  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7888  * a zone.
7889  */
7890 #define NODE_RECLAIM_PRIORITY 4
7891 
7892 /*
7893  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7894  * occur.
7895  */
7896 int sysctl_min_unmapped_ratio = 1;
7897 
7898 /*
7899  * If the number of slab pages in a zone grows beyond this percentage then
7900  * slab reclaim needs to occur.
7901  */
7902 int sysctl_min_slab_ratio = 5;
7903 
7904 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7905 {
7906 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7907 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7908 		node_page_state(pgdat, NR_ACTIVE_FILE);
7909 
7910 	/*
7911 	 * It's possible for there to be more file mapped pages than
7912 	 * accounted for by the pages on the file LRU lists because
7913 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7914 	 */
7915 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7916 }
7917 
7918 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7919 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7920 {
7921 	unsigned long nr_pagecache_reclaimable;
7922 	unsigned long delta = 0;
7923 
7924 	/*
7925 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7926 	 * potentially reclaimable. Otherwise, we have to worry about
7927 	 * pages like swapcache and node_unmapped_file_pages() provides
7928 	 * a better estimate
7929 	 */
7930 	if (node_reclaim_mode & RECLAIM_UNMAP)
7931 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7932 	else
7933 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7934 
7935 	/* If we can't clean pages, remove dirty pages from consideration */
7936 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7937 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7938 
7939 	/* Watch for any possible underflows due to delta */
7940 	if (unlikely(delta > nr_pagecache_reclaimable))
7941 		delta = nr_pagecache_reclaimable;
7942 
7943 	return nr_pagecache_reclaimable - delta;
7944 }
7945 
7946 /*
7947  * Try to free up some pages from this node through reclaim.
7948  */
7949 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7950 {
7951 	/* Minimum pages needed in order to stay on node */
7952 	const unsigned long nr_pages = 1 << order;
7953 	struct task_struct *p = current;
7954 	unsigned int noreclaim_flag;
7955 	struct scan_control sc = {
7956 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7957 		.gfp_mask = current_gfp_context(gfp_mask),
7958 		.order = order,
7959 		.priority = NODE_RECLAIM_PRIORITY,
7960 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7961 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7962 		.may_swap = 1,
7963 		.reclaim_idx = gfp_zone(gfp_mask),
7964 	};
7965 	unsigned long pflags;
7966 
7967 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7968 					   sc.gfp_mask);
7969 
7970 	cond_resched();
7971 	psi_memstall_enter(&pflags);
7972 	fs_reclaim_acquire(sc.gfp_mask);
7973 	/*
7974 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7975 	 */
7976 	noreclaim_flag = memalloc_noreclaim_save();
7977 	set_task_reclaim_state(p, &sc.reclaim_state);
7978 
7979 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7980 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7981 		/*
7982 		 * Free memory by calling shrink node with increasing
7983 		 * priorities until we have enough memory freed.
7984 		 */
7985 		do {
7986 			shrink_node(pgdat, &sc);
7987 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7988 	}
7989 
7990 	set_task_reclaim_state(p, NULL);
7991 	memalloc_noreclaim_restore(noreclaim_flag);
7992 	fs_reclaim_release(sc.gfp_mask);
7993 	psi_memstall_leave(&pflags);
7994 
7995 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7996 
7997 	return sc.nr_reclaimed >= nr_pages;
7998 }
7999 
8000 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8001 {
8002 	int ret;
8003 
8004 	/*
8005 	 * Node reclaim reclaims unmapped file backed pages and
8006 	 * slab pages if we are over the defined limits.
8007 	 *
8008 	 * A small portion of unmapped file backed pages is needed for
8009 	 * file I/O otherwise pages read by file I/O will be immediately
8010 	 * thrown out if the node is overallocated. So we do not reclaim
8011 	 * if less than a specified percentage of the node is used by
8012 	 * unmapped file backed pages.
8013 	 */
8014 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8015 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8016 	    pgdat->min_slab_pages)
8017 		return NODE_RECLAIM_FULL;
8018 
8019 	/*
8020 	 * Do not scan if the allocation should not be delayed.
8021 	 */
8022 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8023 		return NODE_RECLAIM_NOSCAN;
8024 
8025 	/*
8026 	 * Only run node reclaim on the local node or on nodes that do not
8027 	 * have associated processors. This will favor the local processor
8028 	 * over remote processors and spread off node memory allocations
8029 	 * as wide as possible.
8030 	 */
8031 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8032 		return NODE_RECLAIM_NOSCAN;
8033 
8034 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8035 		return NODE_RECLAIM_NOSCAN;
8036 
8037 	ret = __node_reclaim(pgdat, gfp_mask, order);
8038 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8039 
8040 	if (!ret)
8041 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8042 
8043 	return ret;
8044 }
8045 #endif
8046 
8047 void check_move_unevictable_pages(struct pagevec *pvec)
8048 {
8049 	struct folio_batch fbatch;
8050 	unsigned i;
8051 
8052 	folio_batch_init(&fbatch);
8053 	for (i = 0; i < pvec->nr; i++) {
8054 		struct page *page = pvec->pages[i];
8055 
8056 		if (PageTransTail(page))
8057 			continue;
8058 		folio_batch_add(&fbatch, page_folio(page));
8059 	}
8060 	check_move_unevictable_folios(&fbatch);
8061 }
8062 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8063 
8064 /**
8065  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8066  * lru list
8067  * @fbatch: Batch of lru folios to check.
8068  *
8069  * Checks folios for evictability, if an evictable folio is in the unevictable
8070  * lru list, moves it to the appropriate evictable lru list. This function
8071  * should be only used for lru folios.
8072  */
8073 void check_move_unevictable_folios(struct folio_batch *fbatch)
8074 {
8075 	struct lruvec *lruvec = NULL;
8076 	int pgscanned = 0;
8077 	int pgrescued = 0;
8078 	int i;
8079 
8080 	for (i = 0; i < fbatch->nr; i++) {
8081 		struct folio *folio = fbatch->folios[i];
8082 		int nr_pages = folio_nr_pages(folio);
8083 
8084 		pgscanned += nr_pages;
8085 
8086 		/* block memcg migration while the folio moves between lrus */
8087 		if (!folio_test_clear_lru(folio))
8088 			continue;
8089 
8090 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8091 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8092 			lruvec_del_folio(lruvec, folio);
8093 			folio_clear_unevictable(folio);
8094 			lruvec_add_folio(lruvec, folio);
8095 			pgrescued += nr_pages;
8096 		}
8097 		folio_set_lru(folio);
8098 	}
8099 
8100 	if (lruvec) {
8101 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8102 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8103 		unlock_page_lruvec_irq(lruvec);
8104 	} else if (pgscanned) {
8105 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8106 	}
8107 }
8108 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8109