xref: /openbmc/linux/mm/vmpressure.c (revision c4ee0af3)
1 /*
2  * Linux VM pressure
3  *
4  * Copyright 2012 Linaro Ltd.
5  *		  Anton Vorontsov <anton.vorontsov@linaro.org>
6  *
7  * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
8  * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License version 2 as published
12  * by the Free Software Foundation.
13  */
14 
15 #include <linux/cgroup.h>
16 #include <linux/fs.h>
17 #include <linux/log2.h>
18 #include <linux/sched.h>
19 #include <linux/mm.h>
20 #include <linux/vmstat.h>
21 #include <linux/eventfd.h>
22 #include <linux/swap.h>
23 #include <linux/printk.h>
24 #include <linux/vmpressure.h>
25 
26 /*
27  * The window size (vmpressure_win) is the number of scanned pages before
28  * we try to analyze scanned/reclaimed ratio. So the window is used as a
29  * rate-limit tunable for the "low" level notification, and also for
30  * averaging the ratio for medium/critical levels. Using small window
31  * sizes can cause lot of false positives, but too big window size will
32  * delay the notifications.
33  *
34  * As the vmscan reclaimer logic works with chunks which are multiple of
35  * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
36  *
37  * TODO: Make the window size depend on machine size, as we do for vmstat
38  * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
39  */
40 static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
41 
42 /*
43  * These thresholds are used when we account memory pressure through
44  * scanned/reclaimed ratio. The current values were chosen empirically. In
45  * essence, they are percents: the higher the value, the more number
46  * unsuccessful reclaims there were.
47  */
48 static const unsigned int vmpressure_level_med = 60;
49 static const unsigned int vmpressure_level_critical = 95;
50 
51 /*
52  * When there are too little pages left to scan, vmpressure() may miss the
53  * critical pressure as number of pages will be less than "window size".
54  * However, in that case the vmscan priority will raise fast as the
55  * reclaimer will try to scan LRUs more deeply.
56  *
57  * The vmscan logic considers these special priorities:
58  *
59  * prio == DEF_PRIORITY (12): reclaimer starts with that value
60  * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
61  * prio == 0                : close to OOM, kernel scans every page in an lru
62  *
63  * Any value in this range is acceptable for this tunable (i.e. from 12 to
64  * 0). Current value for the vmpressure_level_critical_prio is chosen
65  * empirically, but the number, in essence, means that we consider
66  * critical level when scanning depth is ~10% of the lru size (vmscan
67  * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
68  * eights).
69  */
70 static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
71 
72 static struct vmpressure *work_to_vmpressure(struct work_struct *work)
73 {
74 	return container_of(work, struct vmpressure, work);
75 }
76 
77 static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
78 {
79 	struct cgroup_subsys_state *css = vmpressure_to_css(vmpr);
80 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
81 
82 	memcg = parent_mem_cgroup(memcg);
83 	if (!memcg)
84 		return NULL;
85 	return memcg_to_vmpressure(memcg);
86 }
87 
88 enum vmpressure_levels {
89 	VMPRESSURE_LOW = 0,
90 	VMPRESSURE_MEDIUM,
91 	VMPRESSURE_CRITICAL,
92 	VMPRESSURE_NUM_LEVELS,
93 };
94 
95 static const char * const vmpressure_str_levels[] = {
96 	[VMPRESSURE_LOW] = "low",
97 	[VMPRESSURE_MEDIUM] = "medium",
98 	[VMPRESSURE_CRITICAL] = "critical",
99 };
100 
101 static enum vmpressure_levels vmpressure_level(unsigned long pressure)
102 {
103 	if (pressure >= vmpressure_level_critical)
104 		return VMPRESSURE_CRITICAL;
105 	else if (pressure >= vmpressure_level_med)
106 		return VMPRESSURE_MEDIUM;
107 	return VMPRESSURE_LOW;
108 }
109 
110 static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
111 						    unsigned long reclaimed)
112 {
113 	unsigned long scale = scanned + reclaimed;
114 	unsigned long pressure;
115 
116 	/*
117 	 * We calculate the ratio (in percents) of how many pages were
118 	 * scanned vs. reclaimed in a given time frame (window). Note that
119 	 * time is in VM reclaimer's "ticks", i.e. number of pages
120 	 * scanned. This makes it possible to set desired reaction time
121 	 * and serves as a ratelimit.
122 	 */
123 	pressure = scale - (reclaimed * scale / scanned);
124 	pressure = pressure * 100 / scale;
125 
126 	pr_debug("%s: %3lu  (s: %lu  r: %lu)\n", __func__, pressure,
127 		 scanned, reclaimed);
128 
129 	return vmpressure_level(pressure);
130 }
131 
132 struct vmpressure_event {
133 	struct eventfd_ctx *efd;
134 	enum vmpressure_levels level;
135 	struct list_head node;
136 };
137 
138 static bool vmpressure_event(struct vmpressure *vmpr,
139 			     unsigned long scanned, unsigned long reclaimed)
140 {
141 	struct vmpressure_event *ev;
142 	enum vmpressure_levels level;
143 	bool signalled = false;
144 
145 	level = vmpressure_calc_level(scanned, reclaimed);
146 
147 	mutex_lock(&vmpr->events_lock);
148 
149 	list_for_each_entry(ev, &vmpr->events, node) {
150 		if (level >= ev->level) {
151 			eventfd_signal(ev->efd, 1);
152 			signalled = true;
153 		}
154 	}
155 
156 	mutex_unlock(&vmpr->events_lock);
157 
158 	return signalled;
159 }
160 
161 static void vmpressure_work_fn(struct work_struct *work)
162 {
163 	struct vmpressure *vmpr = work_to_vmpressure(work);
164 	unsigned long scanned;
165 	unsigned long reclaimed;
166 
167 	/*
168 	 * Several contexts might be calling vmpressure(), so it is
169 	 * possible that the work was rescheduled again before the old
170 	 * work context cleared the counters. In that case we will run
171 	 * just after the old work returns, but then scanned might be zero
172 	 * here. No need for any locks here since we don't care if
173 	 * vmpr->reclaimed is in sync.
174 	 */
175 	if (!vmpr->scanned)
176 		return;
177 
178 	spin_lock(&vmpr->sr_lock);
179 	scanned = vmpr->scanned;
180 	reclaimed = vmpr->reclaimed;
181 	vmpr->scanned = 0;
182 	vmpr->reclaimed = 0;
183 	spin_unlock(&vmpr->sr_lock);
184 
185 	do {
186 		if (vmpressure_event(vmpr, scanned, reclaimed))
187 			break;
188 		/*
189 		 * If not handled, propagate the event upward into the
190 		 * hierarchy.
191 		 */
192 	} while ((vmpr = vmpressure_parent(vmpr)));
193 }
194 
195 /**
196  * vmpressure() - Account memory pressure through scanned/reclaimed ratio
197  * @gfp:	reclaimer's gfp mask
198  * @memcg:	cgroup memory controller handle
199  * @scanned:	number of pages scanned
200  * @reclaimed:	number of pages reclaimed
201  *
202  * This function should be called from the vmscan reclaim path to account
203  * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
204  * pressure index is then further refined and averaged over time.
205  *
206  * This function does not return any value.
207  */
208 void vmpressure(gfp_t gfp, struct mem_cgroup *memcg,
209 		unsigned long scanned, unsigned long reclaimed)
210 {
211 	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
212 
213 	/*
214 	 * Here we only want to account pressure that userland is able to
215 	 * help us with. For example, suppose that DMA zone is under
216 	 * pressure; if we notify userland about that kind of pressure,
217 	 * then it will be mostly a waste as it will trigger unnecessary
218 	 * freeing of memory by userland (since userland is more likely to
219 	 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
220 	 * is why we include only movable, highmem and FS/IO pages.
221 	 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
222 	 * we account it too.
223 	 */
224 	if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
225 		return;
226 
227 	/*
228 	 * If we got here with no pages scanned, then that is an indicator
229 	 * that reclaimer was unable to find any shrinkable LRUs at the
230 	 * current scanning depth. But it does not mean that we should
231 	 * report the critical pressure, yet. If the scanning priority
232 	 * (scanning depth) goes too high (deep), we will be notified
233 	 * through vmpressure_prio(). But so far, keep calm.
234 	 */
235 	if (!scanned)
236 		return;
237 
238 	spin_lock(&vmpr->sr_lock);
239 	vmpr->scanned += scanned;
240 	vmpr->reclaimed += reclaimed;
241 	scanned = vmpr->scanned;
242 	spin_unlock(&vmpr->sr_lock);
243 
244 	if (scanned < vmpressure_win)
245 		return;
246 	schedule_work(&vmpr->work);
247 }
248 
249 /**
250  * vmpressure_prio() - Account memory pressure through reclaimer priority level
251  * @gfp:	reclaimer's gfp mask
252  * @memcg:	cgroup memory controller handle
253  * @prio:	reclaimer's priority
254  *
255  * This function should be called from the reclaim path every time when
256  * the vmscan's reclaiming priority (scanning depth) changes.
257  *
258  * This function does not return any value.
259  */
260 void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
261 {
262 	/*
263 	 * We only use prio for accounting critical level. For more info
264 	 * see comment for vmpressure_level_critical_prio variable above.
265 	 */
266 	if (prio > vmpressure_level_critical_prio)
267 		return;
268 
269 	/*
270 	 * OK, the prio is below the threshold, updating vmpressure
271 	 * information before shrinker dives into long shrinking of long
272 	 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
273 	 * to the vmpressure() basically means that we signal 'critical'
274 	 * level.
275 	 */
276 	vmpressure(gfp, memcg, vmpressure_win, 0);
277 }
278 
279 /**
280  * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
281  * @css:	css that is interested in vmpressure notifications
282  * @cft:	cgroup control files handle
283  * @eventfd:	eventfd context to link notifications with
284  * @args:	event arguments (used to set up a pressure level threshold)
285  *
286  * This function associates eventfd context with the vmpressure
287  * infrastructure, so that the notifications will be delivered to the
288  * @eventfd. The @args parameter is a string that denotes pressure level
289  * threshold (one of vmpressure_str_levels, i.e. "low", "medium", or
290  * "critical").
291  *
292  * This function should not be used directly, just pass it to (struct
293  * cftype).register_event, and then cgroup core will handle everything by
294  * itself.
295  */
296 int vmpressure_register_event(struct cgroup_subsys_state *css,
297 			      struct cftype *cft, struct eventfd_ctx *eventfd,
298 			      const char *args)
299 {
300 	struct vmpressure *vmpr = css_to_vmpressure(css);
301 	struct vmpressure_event *ev;
302 	int level;
303 
304 	for (level = 0; level < VMPRESSURE_NUM_LEVELS; level++) {
305 		if (!strcmp(vmpressure_str_levels[level], args))
306 			break;
307 	}
308 
309 	if (level >= VMPRESSURE_NUM_LEVELS)
310 		return -EINVAL;
311 
312 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
313 	if (!ev)
314 		return -ENOMEM;
315 
316 	ev->efd = eventfd;
317 	ev->level = level;
318 
319 	mutex_lock(&vmpr->events_lock);
320 	list_add(&ev->node, &vmpr->events);
321 	mutex_unlock(&vmpr->events_lock);
322 
323 	return 0;
324 }
325 
326 /**
327  * vmpressure_unregister_event() - Unbind eventfd from vmpressure
328  * @css:	css handle
329  * @cft:	cgroup control files handle
330  * @eventfd:	eventfd context that was used to link vmpressure with the @cg
331  *
332  * This function does internal manipulations to detach the @eventfd from
333  * the vmpressure notifications, and then frees internal resources
334  * associated with the @eventfd (but the @eventfd itself is not freed).
335  *
336  * This function should not be used directly, just pass it to (struct
337  * cftype).unregister_event, and then cgroup core will handle everything
338  * by itself.
339  */
340 void vmpressure_unregister_event(struct cgroup_subsys_state *css,
341 				 struct cftype *cft,
342 				 struct eventfd_ctx *eventfd)
343 {
344 	struct vmpressure *vmpr = css_to_vmpressure(css);
345 	struct vmpressure_event *ev;
346 
347 	mutex_lock(&vmpr->events_lock);
348 	list_for_each_entry(ev, &vmpr->events, node) {
349 		if (ev->efd != eventfd)
350 			continue;
351 		list_del(&ev->node);
352 		kfree(ev);
353 		break;
354 	}
355 	mutex_unlock(&vmpr->events_lock);
356 }
357 
358 /**
359  * vmpressure_init() - Initialize vmpressure control structure
360  * @vmpr:	Structure to be initialized
361  *
362  * This function should be called on every allocated vmpressure structure
363  * before any usage.
364  */
365 void vmpressure_init(struct vmpressure *vmpr)
366 {
367 	spin_lock_init(&vmpr->sr_lock);
368 	mutex_init(&vmpr->events_lock);
369 	INIT_LIST_HEAD(&vmpr->events);
370 	INIT_WORK(&vmpr->work, vmpressure_work_fn);
371 }
372 
373 /**
374  * vmpressure_cleanup() - shuts down vmpressure control structure
375  * @vmpr:	Structure to be cleaned up
376  *
377  * This function should be called before the structure in which it is
378  * embedded is cleaned up.
379  */
380 void vmpressure_cleanup(struct vmpressure *vmpr)
381 {
382 	/*
383 	 * Make sure there is no pending work before eventfd infrastructure
384 	 * goes away.
385 	 */
386 	flush_work(&vmpr->work);
387 }
388