xref: /openbmc/linux/mm/vmpressure.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Linux VM pressure
4  *
5  * Copyright 2012 Linaro Ltd.
6  *		  Anton Vorontsov <anton.vorontsov@linaro.org>
7  *
8  * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
9  * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
10  */
11 
12 #include <linux/cgroup.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/sched.h>
16 #include <linux/mm.h>
17 #include <linux/vmstat.h>
18 #include <linux/eventfd.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/printk.h>
22 #include <linux/vmpressure.h>
23 
24 /*
25  * The window size (vmpressure_win) is the number of scanned pages before
26  * we try to analyze scanned/reclaimed ratio. So the window is used as a
27  * rate-limit tunable for the "low" level notification, and also for
28  * averaging the ratio for medium/critical levels. Using small window
29  * sizes can cause lot of false positives, but too big window size will
30  * delay the notifications.
31  *
32  * As the vmscan reclaimer logic works with chunks which are multiple of
33  * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
34  *
35  * TODO: Make the window size depend on machine size, as we do for vmstat
36  * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
37  */
38 static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
39 
40 /*
41  * These thresholds are used when we account memory pressure through
42  * scanned/reclaimed ratio. The current values were chosen empirically. In
43  * essence, they are percents: the higher the value, the more number
44  * unsuccessful reclaims there were.
45  */
46 static const unsigned int vmpressure_level_med = 60;
47 static const unsigned int vmpressure_level_critical = 95;
48 
49 /*
50  * When there are too little pages left to scan, vmpressure() may miss the
51  * critical pressure as number of pages will be less than "window size".
52  * However, in that case the vmscan priority will raise fast as the
53  * reclaimer will try to scan LRUs more deeply.
54  *
55  * The vmscan logic considers these special priorities:
56  *
57  * prio == DEF_PRIORITY (12): reclaimer starts with that value
58  * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
59  * prio == 0                : close to OOM, kernel scans every page in an lru
60  *
61  * Any value in this range is acceptable for this tunable (i.e. from 12 to
62  * 0). Current value for the vmpressure_level_critical_prio is chosen
63  * empirically, but the number, in essence, means that we consider
64  * critical level when scanning depth is ~10% of the lru size (vmscan
65  * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
66  * eights).
67  */
68 static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
69 
70 static struct vmpressure *work_to_vmpressure(struct work_struct *work)
71 {
72 	return container_of(work, struct vmpressure, work);
73 }
74 
75 static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
76 {
77 	struct cgroup_subsys_state *css = vmpressure_to_css(vmpr);
78 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
79 
80 	memcg = parent_mem_cgroup(memcg);
81 	if (!memcg)
82 		return NULL;
83 	return memcg_to_vmpressure(memcg);
84 }
85 
86 enum vmpressure_levels {
87 	VMPRESSURE_LOW = 0,
88 	VMPRESSURE_MEDIUM,
89 	VMPRESSURE_CRITICAL,
90 	VMPRESSURE_NUM_LEVELS,
91 };
92 
93 enum vmpressure_modes {
94 	VMPRESSURE_NO_PASSTHROUGH = 0,
95 	VMPRESSURE_HIERARCHY,
96 	VMPRESSURE_LOCAL,
97 	VMPRESSURE_NUM_MODES,
98 };
99 
100 static const char * const vmpressure_str_levels[] = {
101 	[VMPRESSURE_LOW] = "low",
102 	[VMPRESSURE_MEDIUM] = "medium",
103 	[VMPRESSURE_CRITICAL] = "critical",
104 };
105 
106 static const char * const vmpressure_str_modes[] = {
107 	[VMPRESSURE_NO_PASSTHROUGH] = "default",
108 	[VMPRESSURE_HIERARCHY] = "hierarchy",
109 	[VMPRESSURE_LOCAL] = "local",
110 };
111 
112 static enum vmpressure_levels vmpressure_level(unsigned long pressure)
113 {
114 	if (pressure >= vmpressure_level_critical)
115 		return VMPRESSURE_CRITICAL;
116 	else if (pressure >= vmpressure_level_med)
117 		return VMPRESSURE_MEDIUM;
118 	return VMPRESSURE_LOW;
119 }
120 
121 static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
122 						    unsigned long reclaimed)
123 {
124 	unsigned long scale = scanned + reclaimed;
125 	unsigned long pressure = 0;
126 
127 	/*
128 	 * reclaimed can be greater than scanned for things such as reclaimed
129 	 * slab pages. shrink_node() just adds reclaimed pages without a
130 	 * related increment to scanned pages.
131 	 */
132 	if (reclaimed >= scanned)
133 		goto out;
134 	/*
135 	 * We calculate the ratio (in percents) of how many pages were
136 	 * scanned vs. reclaimed in a given time frame (window). Note that
137 	 * time is in VM reclaimer's "ticks", i.e. number of pages
138 	 * scanned. This makes it possible to set desired reaction time
139 	 * and serves as a ratelimit.
140 	 */
141 	pressure = scale - (reclaimed * scale / scanned);
142 	pressure = pressure * 100 / scale;
143 
144 out:
145 	pr_debug("%s: %3lu  (s: %lu  r: %lu)\n", __func__, pressure,
146 		 scanned, reclaimed);
147 
148 	return vmpressure_level(pressure);
149 }
150 
151 struct vmpressure_event {
152 	struct eventfd_ctx *efd;
153 	enum vmpressure_levels level;
154 	enum vmpressure_modes mode;
155 	struct list_head node;
156 };
157 
158 static bool vmpressure_event(struct vmpressure *vmpr,
159 			     const enum vmpressure_levels level,
160 			     bool ancestor, bool signalled)
161 {
162 	struct vmpressure_event *ev;
163 	bool ret = false;
164 
165 	mutex_lock(&vmpr->events_lock);
166 	list_for_each_entry(ev, &vmpr->events, node) {
167 		if (ancestor && ev->mode == VMPRESSURE_LOCAL)
168 			continue;
169 		if (signalled && ev->mode == VMPRESSURE_NO_PASSTHROUGH)
170 			continue;
171 		if (level < ev->level)
172 			continue;
173 		eventfd_signal(ev->efd, 1);
174 		ret = true;
175 	}
176 	mutex_unlock(&vmpr->events_lock);
177 
178 	return ret;
179 }
180 
181 static void vmpressure_work_fn(struct work_struct *work)
182 {
183 	struct vmpressure *vmpr = work_to_vmpressure(work);
184 	unsigned long scanned;
185 	unsigned long reclaimed;
186 	enum vmpressure_levels level;
187 	bool ancestor = false;
188 	bool signalled = false;
189 
190 	spin_lock(&vmpr->sr_lock);
191 	/*
192 	 * Several contexts might be calling vmpressure(), so it is
193 	 * possible that the work was rescheduled again before the old
194 	 * work context cleared the counters. In that case we will run
195 	 * just after the old work returns, but then scanned might be zero
196 	 * here. No need for any locks here since we don't care if
197 	 * vmpr->reclaimed is in sync.
198 	 */
199 	scanned = vmpr->tree_scanned;
200 	if (!scanned) {
201 		spin_unlock(&vmpr->sr_lock);
202 		return;
203 	}
204 
205 	reclaimed = vmpr->tree_reclaimed;
206 	vmpr->tree_scanned = 0;
207 	vmpr->tree_reclaimed = 0;
208 	spin_unlock(&vmpr->sr_lock);
209 
210 	level = vmpressure_calc_level(scanned, reclaimed);
211 
212 	do {
213 		if (vmpressure_event(vmpr, level, ancestor, signalled))
214 			signalled = true;
215 		ancestor = true;
216 	} while ((vmpr = vmpressure_parent(vmpr)));
217 }
218 
219 /**
220  * vmpressure() - Account memory pressure through scanned/reclaimed ratio
221  * @gfp:	reclaimer's gfp mask
222  * @memcg:	cgroup memory controller handle
223  * @tree:	legacy subtree mode
224  * @scanned:	number of pages scanned
225  * @reclaimed:	number of pages reclaimed
226  *
227  * This function should be called from the vmscan reclaim path to account
228  * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
229  * pressure index is then further refined and averaged over time.
230  *
231  * If @tree is set, vmpressure is in traditional userspace reporting
232  * mode: @memcg is considered the pressure root and userspace is
233  * notified of the entire subtree's reclaim efficiency.
234  *
235  * If @tree is not set, reclaim efficiency is recorded for @memcg, and
236  * only in-kernel users are notified.
237  *
238  * This function does not return any value.
239  */
240 void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, bool tree,
241 		unsigned long scanned, unsigned long reclaimed)
242 {
243 	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
244 
245 	/*
246 	 * Here we only want to account pressure that userland is able to
247 	 * help us with. For example, suppose that DMA zone is under
248 	 * pressure; if we notify userland about that kind of pressure,
249 	 * then it will be mostly a waste as it will trigger unnecessary
250 	 * freeing of memory by userland (since userland is more likely to
251 	 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
252 	 * is why we include only movable, highmem and FS/IO pages.
253 	 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
254 	 * we account it too.
255 	 */
256 	if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
257 		return;
258 
259 	/*
260 	 * If we got here with no pages scanned, then that is an indicator
261 	 * that reclaimer was unable to find any shrinkable LRUs at the
262 	 * current scanning depth. But it does not mean that we should
263 	 * report the critical pressure, yet. If the scanning priority
264 	 * (scanning depth) goes too high (deep), we will be notified
265 	 * through vmpressure_prio(). But so far, keep calm.
266 	 */
267 	if (!scanned)
268 		return;
269 
270 	if (tree) {
271 		spin_lock(&vmpr->sr_lock);
272 		scanned = vmpr->tree_scanned += scanned;
273 		vmpr->tree_reclaimed += reclaimed;
274 		spin_unlock(&vmpr->sr_lock);
275 
276 		if (scanned < vmpressure_win)
277 			return;
278 		schedule_work(&vmpr->work);
279 	} else {
280 		enum vmpressure_levels level;
281 
282 		/* For now, no users for root-level efficiency */
283 		if (!memcg || memcg == root_mem_cgroup)
284 			return;
285 
286 		spin_lock(&vmpr->sr_lock);
287 		scanned = vmpr->scanned += scanned;
288 		reclaimed = vmpr->reclaimed += reclaimed;
289 		if (scanned < vmpressure_win) {
290 			spin_unlock(&vmpr->sr_lock);
291 			return;
292 		}
293 		vmpr->scanned = vmpr->reclaimed = 0;
294 		spin_unlock(&vmpr->sr_lock);
295 
296 		level = vmpressure_calc_level(scanned, reclaimed);
297 
298 		if (level > VMPRESSURE_LOW) {
299 			/*
300 			 * Let the socket buffer allocator know that
301 			 * we are having trouble reclaiming LRU pages.
302 			 *
303 			 * For hysteresis keep the pressure state
304 			 * asserted for a second in which subsequent
305 			 * pressure events can occur.
306 			 */
307 			memcg->socket_pressure = jiffies + HZ;
308 		}
309 	}
310 }
311 
312 /**
313  * vmpressure_prio() - Account memory pressure through reclaimer priority level
314  * @gfp:	reclaimer's gfp mask
315  * @memcg:	cgroup memory controller handle
316  * @prio:	reclaimer's priority
317  *
318  * This function should be called from the reclaim path every time when
319  * the vmscan's reclaiming priority (scanning depth) changes.
320  *
321  * This function does not return any value.
322  */
323 void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
324 {
325 	/*
326 	 * We only use prio for accounting critical level. For more info
327 	 * see comment for vmpressure_level_critical_prio variable above.
328 	 */
329 	if (prio > vmpressure_level_critical_prio)
330 		return;
331 
332 	/*
333 	 * OK, the prio is below the threshold, updating vmpressure
334 	 * information before shrinker dives into long shrinking of long
335 	 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
336 	 * to the vmpressure() basically means that we signal 'critical'
337 	 * level.
338 	 */
339 	vmpressure(gfp, memcg, true, vmpressure_win, 0);
340 }
341 
342 #define MAX_VMPRESSURE_ARGS_LEN	(strlen("critical") + strlen("hierarchy") + 2)
343 
344 /**
345  * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
346  * @memcg:	memcg that is interested in vmpressure notifications
347  * @eventfd:	eventfd context to link notifications with
348  * @args:	event arguments (pressure level threshold, optional mode)
349  *
350  * This function associates eventfd context with the vmpressure
351  * infrastructure, so that the notifications will be delivered to the
352  * @eventfd. The @args parameter is a comma-delimited string that denotes a
353  * pressure level threshold (one of vmpressure_str_levels, i.e. "low", "medium",
354  * or "critical") and an optional mode (one of vmpressure_str_modes, i.e.
355  * "hierarchy" or "local").
356  *
357  * To be used as memcg event method.
358  */
359 int vmpressure_register_event(struct mem_cgroup *memcg,
360 			      struct eventfd_ctx *eventfd, const char *args)
361 {
362 	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
363 	struct vmpressure_event *ev;
364 	enum vmpressure_modes mode = VMPRESSURE_NO_PASSTHROUGH;
365 	enum vmpressure_levels level = -1;
366 	char *spec, *spec_orig;
367 	char *token;
368 	int ret = 0;
369 
370 	spec_orig = spec = kstrndup(args, MAX_VMPRESSURE_ARGS_LEN, GFP_KERNEL);
371 	if (!spec) {
372 		ret = -ENOMEM;
373 		goto out;
374 	}
375 
376 	/* Find required level */
377 	token = strsep(&spec, ",");
378 	level = match_string(vmpressure_str_levels, VMPRESSURE_NUM_LEVELS, token);
379 	if (level < 0) {
380 		ret = level;
381 		goto out;
382 	}
383 
384 	/* Find optional mode */
385 	token = strsep(&spec, ",");
386 	if (token) {
387 		mode = match_string(vmpressure_str_modes, VMPRESSURE_NUM_MODES, token);
388 		if (mode < 0) {
389 			ret = mode;
390 			goto out;
391 		}
392 	}
393 
394 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
395 	if (!ev) {
396 		ret = -ENOMEM;
397 		goto out;
398 	}
399 
400 	ev->efd = eventfd;
401 	ev->level = level;
402 	ev->mode = mode;
403 
404 	mutex_lock(&vmpr->events_lock);
405 	list_add(&ev->node, &vmpr->events);
406 	mutex_unlock(&vmpr->events_lock);
407 out:
408 	kfree(spec_orig);
409 	return ret;
410 }
411 
412 /**
413  * vmpressure_unregister_event() - Unbind eventfd from vmpressure
414  * @memcg:	memcg handle
415  * @eventfd:	eventfd context that was used to link vmpressure with the @cg
416  *
417  * This function does internal manipulations to detach the @eventfd from
418  * the vmpressure notifications, and then frees internal resources
419  * associated with the @eventfd (but the @eventfd itself is not freed).
420  *
421  * To be used as memcg event method.
422  */
423 void vmpressure_unregister_event(struct mem_cgroup *memcg,
424 				 struct eventfd_ctx *eventfd)
425 {
426 	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
427 	struct vmpressure_event *ev;
428 
429 	mutex_lock(&vmpr->events_lock);
430 	list_for_each_entry(ev, &vmpr->events, node) {
431 		if (ev->efd != eventfd)
432 			continue;
433 		list_del(&ev->node);
434 		kfree(ev);
435 		break;
436 	}
437 	mutex_unlock(&vmpr->events_lock);
438 }
439 
440 /**
441  * vmpressure_init() - Initialize vmpressure control structure
442  * @vmpr:	Structure to be initialized
443  *
444  * This function should be called on every allocated vmpressure structure
445  * before any usage.
446  */
447 void vmpressure_init(struct vmpressure *vmpr)
448 {
449 	spin_lock_init(&vmpr->sr_lock);
450 	mutex_init(&vmpr->events_lock);
451 	INIT_LIST_HEAD(&vmpr->events);
452 	INIT_WORK(&vmpr->work, vmpressure_work_fn);
453 }
454 
455 /**
456  * vmpressure_cleanup() - shuts down vmpressure control structure
457  * @vmpr:	Structure to be cleaned up
458  *
459  * This function should be called before the structure in which it is
460  * embedded is cleaned up.
461  */
462 void vmpressure_cleanup(struct vmpressure *vmpr)
463 {
464 	/*
465 	 * Make sure there is no pending work before eventfd infrastructure
466 	 * goes away.
467 	 */
468 	flush_work(&vmpr->work);
469 }
470