1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Linux VM pressure 4 * 5 * Copyright 2012 Linaro Ltd. 6 * Anton Vorontsov <anton.vorontsov@linaro.org> 7 * 8 * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro, 9 * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg. 10 */ 11 12 #include <linux/cgroup.h> 13 #include <linux/fs.h> 14 #include <linux/log2.h> 15 #include <linux/sched.h> 16 #include <linux/mm.h> 17 #include <linux/vmstat.h> 18 #include <linux/eventfd.h> 19 #include <linux/slab.h> 20 #include <linux/swap.h> 21 #include <linux/printk.h> 22 #include <linux/vmpressure.h> 23 24 /* 25 * The window size (vmpressure_win) is the number of scanned pages before 26 * we try to analyze scanned/reclaimed ratio. So the window is used as a 27 * rate-limit tunable for the "low" level notification, and also for 28 * averaging the ratio for medium/critical levels. Using small window 29 * sizes can cause lot of false positives, but too big window size will 30 * delay the notifications. 31 * 32 * As the vmscan reclaimer logic works with chunks which are multiple of 33 * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well. 34 * 35 * TODO: Make the window size depend on machine size, as we do for vmstat 36 * thresholds. Currently we set it to 512 pages (2MB for 4KB pages). 37 */ 38 static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16; 39 40 /* 41 * These thresholds are used when we account memory pressure through 42 * scanned/reclaimed ratio. The current values were chosen empirically. In 43 * essence, they are percents: the higher the value, the more number 44 * unsuccessful reclaims there were. 45 */ 46 static const unsigned int vmpressure_level_med = 60; 47 static const unsigned int vmpressure_level_critical = 95; 48 49 /* 50 * When there are too little pages left to scan, vmpressure() may miss the 51 * critical pressure as number of pages will be less than "window size". 52 * However, in that case the vmscan priority will raise fast as the 53 * reclaimer will try to scan LRUs more deeply. 54 * 55 * The vmscan logic considers these special priorities: 56 * 57 * prio == DEF_PRIORITY (12): reclaimer starts with that value 58 * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed 59 * prio == 0 : close to OOM, kernel scans every page in an lru 60 * 61 * Any value in this range is acceptable for this tunable (i.e. from 12 to 62 * 0). Current value for the vmpressure_level_critical_prio is chosen 63 * empirically, but the number, in essence, means that we consider 64 * critical level when scanning depth is ~10% of the lru size (vmscan 65 * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one 66 * eights). 67 */ 68 static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10); 69 70 static struct vmpressure *work_to_vmpressure(struct work_struct *work) 71 { 72 return container_of(work, struct vmpressure, work); 73 } 74 75 static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr) 76 { 77 struct cgroup_subsys_state *css = vmpressure_to_css(vmpr); 78 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 79 80 memcg = parent_mem_cgroup(memcg); 81 if (!memcg) 82 return NULL; 83 return memcg_to_vmpressure(memcg); 84 } 85 86 enum vmpressure_levels { 87 VMPRESSURE_LOW = 0, 88 VMPRESSURE_MEDIUM, 89 VMPRESSURE_CRITICAL, 90 VMPRESSURE_NUM_LEVELS, 91 }; 92 93 enum vmpressure_modes { 94 VMPRESSURE_NO_PASSTHROUGH = 0, 95 VMPRESSURE_HIERARCHY, 96 VMPRESSURE_LOCAL, 97 VMPRESSURE_NUM_MODES, 98 }; 99 100 static const char * const vmpressure_str_levels[] = { 101 [VMPRESSURE_LOW] = "low", 102 [VMPRESSURE_MEDIUM] = "medium", 103 [VMPRESSURE_CRITICAL] = "critical", 104 }; 105 106 static const char * const vmpressure_str_modes[] = { 107 [VMPRESSURE_NO_PASSTHROUGH] = "default", 108 [VMPRESSURE_HIERARCHY] = "hierarchy", 109 [VMPRESSURE_LOCAL] = "local", 110 }; 111 112 static enum vmpressure_levels vmpressure_level(unsigned long pressure) 113 { 114 if (pressure >= vmpressure_level_critical) 115 return VMPRESSURE_CRITICAL; 116 else if (pressure >= vmpressure_level_med) 117 return VMPRESSURE_MEDIUM; 118 return VMPRESSURE_LOW; 119 } 120 121 static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned, 122 unsigned long reclaimed) 123 { 124 unsigned long scale = scanned + reclaimed; 125 unsigned long pressure = 0; 126 127 /* 128 * reclaimed can be greater than scanned for things such as reclaimed 129 * slab pages. shrink_node() just adds reclaimed pages without a 130 * related increment to scanned pages. 131 */ 132 if (reclaimed >= scanned) 133 goto out; 134 /* 135 * We calculate the ratio (in percents) of how many pages were 136 * scanned vs. reclaimed in a given time frame (window). Note that 137 * time is in VM reclaimer's "ticks", i.e. number of pages 138 * scanned. This makes it possible to set desired reaction time 139 * and serves as a ratelimit. 140 */ 141 pressure = scale - (reclaimed * scale / scanned); 142 pressure = pressure * 100 / scale; 143 144 out: 145 pr_debug("%s: %3lu (s: %lu r: %lu)\n", __func__, pressure, 146 scanned, reclaimed); 147 148 return vmpressure_level(pressure); 149 } 150 151 struct vmpressure_event { 152 struct eventfd_ctx *efd; 153 enum vmpressure_levels level; 154 enum vmpressure_modes mode; 155 struct list_head node; 156 }; 157 158 static bool vmpressure_event(struct vmpressure *vmpr, 159 const enum vmpressure_levels level, 160 bool ancestor, bool signalled) 161 { 162 struct vmpressure_event *ev; 163 bool ret = false; 164 165 mutex_lock(&vmpr->events_lock); 166 list_for_each_entry(ev, &vmpr->events, node) { 167 if (ancestor && ev->mode == VMPRESSURE_LOCAL) 168 continue; 169 if (signalled && ev->mode == VMPRESSURE_NO_PASSTHROUGH) 170 continue; 171 if (level < ev->level) 172 continue; 173 eventfd_signal(ev->efd, 1); 174 ret = true; 175 } 176 mutex_unlock(&vmpr->events_lock); 177 178 return ret; 179 } 180 181 static void vmpressure_work_fn(struct work_struct *work) 182 { 183 struct vmpressure *vmpr = work_to_vmpressure(work); 184 unsigned long scanned; 185 unsigned long reclaimed; 186 enum vmpressure_levels level; 187 bool ancestor = false; 188 bool signalled = false; 189 190 spin_lock(&vmpr->sr_lock); 191 /* 192 * Several contexts might be calling vmpressure(), so it is 193 * possible that the work was rescheduled again before the old 194 * work context cleared the counters. In that case we will run 195 * just after the old work returns, but then scanned might be zero 196 * here. No need for any locks here since we don't care if 197 * vmpr->reclaimed is in sync. 198 */ 199 scanned = vmpr->tree_scanned; 200 if (!scanned) { 201 spin_unlock(&vmpr->sr_lock); 202 return; 203 } 204 205 reclaimed = vmpr->tree_reclaimed; 206 vmpr->tree_scanned = 0; 207 vmpr->tree_reclaimed = 0; 208 spin_unlock(&vmpr->sr_lock); 209 210 level = vmpressure_calc_level(scanned, reclaimed); 211 212 do { 213 if (vmpressure_event(vmpr, level, ancestor, signalled)) 214 signalled = true; 215 ancestor = true; 216 } while ((vmpr = vmpressure_parent(vmpr))); 217 } 218 219 /** 220 * vmpressure() - Account memory pressure through scanned/reclaimed ratio 221 * @gfp: reclaimer's gfp mask 222 * @memcg: cgroup memory controller handle 223 * @tree: legacy subtree mode 224 * @scanned: number of pages scanned 225 * @reclaimed: number of pages reclaimed 226 * 227 * This function should be called from the vmscan reclaim path to account 228 * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw 229 * pressure index is then further refined and averaged over time. 230 * 231 * If @tree is set, vmpressure is in traditional userspace reporting 232 * mode: @memcg is considered the pressure root and userspace is 233 * notified of the entire subtree's reclaim efficiency. 234 * 235 * If @tree is not set, reclaim efficiency is recorded for @memcg, and 236 * only in-kernel users are notified. 237 * 238 * This function does not return any value. 239 */ 240 void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, bool tree, 241 unsigned long scanned, unsigned long reclaimed) 242 { 243 struct vmpressure *vmpr = memcg_to_vmpressure(memcg); 244 245 /* 246 * Here we only want to account pressure that userland is able to 247 * help us with. For example, suppose that DMA zone is under 248 * pressure; if we notify userland about that kind of pressure, 249 * then it will be mostly a waste as it will trigger unnecessary 250 * freeing of memory by userland (since userland is more likely to 251 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That 252 * is why we include only movable, highmem and FS/IO pages. 253 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so 254 * we account it too. 255 */ 256 if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS))) 257 return; 258 259 /* 260 * If we got here with no pages scanned, then that is an indicator 261 * that reclaimer was unable to find any shrinkable LRUs at the 262 * current scanning depth. But it does not mean that we should 263 * report the critical pressure, yet. If the scanning priority 264 * (scanning depth) goes too high (deep), we will be notified 265 * through vmpressure_prio(). But so far, keep calm. 266 */ 267 if (!scanned) 268 return; 269 270 if (tree) { 271 spin_lock(&vmpr->sr_lock); 272 scanned = vmpr->tree_scanned += scanned; 273 vmpr->tree_reclaimed += reclaimed; 274 spin_unlock(&vmpr->sr_lock); 275 276 if (scanned < vmpressure_win) 277 return; 278 schedule_work(&vmpr->work); 279 } else { 280 enum vmpressure_levels level; 281 282 /* For now, no users for root-level efficiency */ 283 if (!memcg || memcg == root_mem_cgroup) 284 return; 285 286 spin_lock(&vmpr->sr_lock); 287 scanned = vmpr->scanned += scanned; 288 reclaimed = vmpr->reclaimed += reclaimed; 289 if (scanned < vmpressure_win) { 290 spin_unlock(&vmpr->sr_lock); 291 return; 292 } 293 vmpr->scanned = vmpr->reclaimed = 0; 294 spin_unlock(&vmpr->sr_lock); 295 296 level = vmpressure_calc_level(scanned, reclaimed); 297 298 if (level > VMPRESSURE_LOW) { 299 /* 300 * Let the socket buffer allocator know that 301 * we are having trouble reclaiming LRU pages. 302 * 303 * For hysteresis keep the pressure state 304 * asserted for a second in which subsequent 305 * pressure events can occur. 306 */ 307 memcg->socket_pressure = jiffies + HZ; 308 } 309 } 310 } 311 312 /** 313 * vmpressure_prio() - Account memory pressure through reclaimer priority level 314 * @gfp: reclaimer's gfp mask 315 * @memcg: cgroup memory controller handle 316 * @prio: reclaimer's priority 317 * 318 * This function should be called from the reclaim path every time when 319 * the vmscan's reclaiming priority (scanning depth) changes. 320 * 321 * This function does not return any value. 322 */ 323 void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio) 324 { 325 /* 326 * We only use prio for accounting critical level. For more info 327 * see comment for vmpressure_level_critical_prio variable above. 328 */ 329 if (prio > vmpressure_level_critical_prio) 330 return; 331 332 /* 333 * OK, the prio is below the threshold, updating vmpressure 334 * information before shrinker dives into long shrinking of long 335 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0 336 * to the vmpressure() basically means that we signal 'critical' 337 * level. 338 */ 339 vmpressure(gfp, memcg, true, vmpressure_win, 0); 340 } 341 342 #define MAX_VMPRESSURE_ARGS_LEN (strlen("critical") + strlen("hierarchy") + 2) 343 344 /** 345 * vmpressure_register_event() - Bind vmpressure notifications to an eventfd 346 * @memcg: memcg that is interested in vmpressure notifications 347 * @eventfd: eventfd context to link notifications with 348 * @args: event arguments (pressure level threshold, optional mode) 349 * 350 * This function associates eventfd context with the vmpressure 351 * infrastructure, so that the notifications will be delivered to the 352 * @eventfd. The @args parameter is a comma-delimited string that denotes a 353 * pressure level threshold (one of vmpressure_str_levels, i.e. "low", "medium", 354 * or "critical") and an optional mode (one of vmpressure_str_modes, i.e. 355 * "hierarchy" or "local"). 356 * 357 * To be used as memcg event method. 358 */ 359 int vmpressure_register_event(struct mem_cgroup *memcg, 360 struct eventfd_ctx *eventfd, const char *args) 361 { 362 struct vmpressure *vmpr = memcg_to_vmpressure(memcg); 363 struct vmpressure_event *ev; 364 enum vmpressure_modes mode = VMPRESSURE_NO_PASSTHROUGH; 365 enum vmpressure_levels level = -1; 366 char *spec, *spec_orig; 367 char *token; 368 int ret = 0; 369 370 spec_orig = spec = kstrndup(args, MAX_VMPRESSURE_ARGS_LEN, GFP_KERNEL); 371 if (!spec) { 372 ret = -ENOMEM; 373 goto out; 374 } 375 376 /* Find required level */ 377 token = strsep(&spec, ","); 378 level = match_string(vmpressure_str_levels, VMPRESSURE_NUM_LEVELS, token); 379 if (level < 0) { 380 ret = level; 381 goto out; 382 } 383 384 /* Find optional mode */ 385 token = strsep(&spec, ","); 386 if (token) { 387 mode = match_string(vmpressure_str_modes, VMPRESSURE_NUM_MODES, token); 388 if (mode < 0) { 389 ret = mode; 390 goto out; 391 } 392 } 393 394 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 395 if (!ev) { 396 ret = -ENOMEM; 397 goto out; 398 } 399 400 ev->efd = eventfd; 401 ev->level = level; 402 ev->mode = mode; 403 404 mutex_lock(&vmpr->events_lock); 405 list_add(&ev->node, &vmpr->events); 406 mutex_unlock(&vmpr->events_lock); 407 out: 408 kfree(spec_orig); 409 return ret; 410 } 411 412 /** 413 * vmpressure_unregister_event() - Unbind eventfd from vmpressure 414 * @memcg: memcg handle 415 * @eventfd: eventfd context that was used to link vmpressure with the @cg 416 * 417 * This function does internal manipulations to detach the @eventfd from 418 * the vmpressure notifications, and then frees internal resources 419 * associated with the @eventfd (but the @eventfd itself is not freed). 420 * 421 * To be used as memcg event method. 422 */ 423 void vmpressure_unregister_event(struct mem_cgroup *memcg, 424 struct eventfd_ctx *eventfd) 425 { 426 struct vmpressure *vmpr = memcg_to_vmpressure(memcg); 427 struct vmpressure_event *ev; 428 429 mutex_lock(&vmpr->events_lock); 430 list_for_each_entry(ev, &vmpr->events, node) { 431 if (ev->efd != eventfd) 432 continue; 433 list_del(&ev->node); 434 kfree(ev); 435 break; 436 } 437 mutex_unlock(&vmpr->events_lock); 438 } 439 440 /** 441 * vmpressure_init() - Initialize vmpressure control structure 442 * @vmpr: Structure to be initialized 443 * 444 * This function should be called on every allocated vmpressure structure 445 * before any usage. 446 */ 447 void vmpressure_init(struct vmpressure *vmpr) 448 { 449 spin_lock_init(&vmpr->sr_lock); 450 mutex_init(&vmpr->events_lock); 451 INIT_LIST_HEAD(&vmpr->events); 452 INIT_WORK(&vmpr->work, vmpressure_work_fn); 453 } 454 455 /** 456 * vmpressure_cleanup() - shuts down vmpressure control structure 457 * @vmpr: Structure to be cleaned up 458 * 459 * This function should be called before the structure in which it is 460 * embedded is cleaned up. 461 */ 462 void vmpressure_cleanup(struct vmpressure *vmpr) 463 { 464 /* 465 * Make sure there is no pending work before eventfd infrastructure 466 * goes away. 467 */ 468 flush_work(&vmpr->work); 469 } 470