1 /* 2 * Linux VM pressure 3 * 4 * Copyright 2012 Linaro Ltd. 5 * Anton Vorontsov <anton.vorontsov@linaro.org> 6 * 7 * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro, 8 * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg. 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License version 2 as published 12 * by the Free Software Foundation. 13 */ 14 15 #include <linux/cgroup.h> 16 #include <linux/fs.h> 17 #include <linux/log2.h> 18 #include <linux/sched.h> 19 #include <linux/mm.h> 20 #include <linux/vmstat.h> 21 #include <linux/eventfd.h> 22 #include <linux/swap.h> 23 #include <linux/printk.h> 24 #include <linux/vmpressure.h> 25 26 /* 27 * The window size (vmpressure_win) is the number of scanned pages before 28 * we try to analyze scanned/reclaimed ratio. So the window is used as a 29 * rate-limit tunable for the "low" level notification, and also for 30 * averaging the ratio for medium/critical levels. Using small window 31 * sizes can cause lot of false positives, but too big window size will 32 * delay the notifications. 33 * 34 * As the vmscan reclaimer logic works with chunks which are multiple of 35 * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well. 36 * 37 * TODO: Make the window size depend on machine size, as we do for vmstat 38 * thresholds. Currently we set it to 512 pages (2MB for 4KB pages). 39 */ 40 static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16; 41 42 /* 43 * These thresholds are used when we account memory pressure through 44 * scanned/reclaimed ratio. The current values were chosen empirically. In 45 * essence, they are percents: the higher the value, the more number 46 * unsuccessful reclaims there were. 47 */ 48 static const unsigned int vmpressure_level_med = 60; 49 static const unsigned int vmpressure_level_critical = 95; 50 51 /* 52 * When there are too little pages left to scan, vmpressure() may miss the 53 * critical pressure as number of pages will be less than "window size". 54 * However, in that case the vmscan priority will raise fast as the 55 * reclaimer will try to scan LRUs more deeply. 56 * 57 * The vmscan logic considers these special priorities: 58 * 59 * prio == DEF_PRIORITY (12): reclaimer starts with that value 60 * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed 61 * prio == 0 : close to OOM, kernel scans every page in an lru 62 * 63 * Any value in this range is acceptable for this tunable (i.e. from 12 to 64 * 0). Current value for the vmpressure_level_critical_prio is chosen 65 * empirically, but the number, in essence, means that we consider 66 * critical level when scanning depth is ~10% of the lru size (vmscan 67 * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one 68 * eights). 69 */ 70 static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10); 71 72 static struct vmpressure *work_to_vmpressure(struct work_struct *work) 73 { 74 return container_of(work, struct vmpressure, work); 75 } 76 77 static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr) 78 { 79 struct cgroup_subsys_state *css = vmpressure_to_css(vmpr); 80 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 81 82 memcg = parent_mem_cgroup(memcg); 83 if (!memcg) 84 return NULL; 85 return memcg_to_vmpressure(memcg); 86 } 87 88 enum vmpressure_levels { 89 VMPRESSURE_LOW = 0, 90 VMPRESSURE_MEDIUM, 91 VMPRESSURE_CRITICAL, 92 VMPRESSURE_NUM_LEVELS, 93 }; 94 95 static const char * const vmpressure_str_levels[] = { 96 [VMPRESSURE_LOW] = "low", 97 [VMPRESSURE_MEDIUM] = "medium", 98 [VMPRESSURE_CRITICAL] = "critical", 99 }; 100 101 static enum vmpressure_levels vmpressure_level(unsigned long pressure) 102 { 103 if (pressure >= vmpressure_level_critical) 104 return VMPRESSURE_CRITICAL; 105 else if (pressure >= vmpressure_level_med) 106 return VMPRESSURE_MEDIUM; 107 return VMPRESSURE_LOW; 108 } 109 110 static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned, 111 unsigned long reclaimed) 112 { 113 unsigned long scale = scanned + reclaimed; 114 unsigned long pressure; 115 116 /* 117 * We calculate the ratio (in percents) of how many pages were 118 * scanned vs. reclaimed in a given time frame (window). Note that 119 * time is in VM reclaimer's "ticks", i.e. number of pages 120 * scanned. This makes it possible to set desired reaction time 121 * and serves as a ratelimit. 122 */ 123 pressure = scale - (reclaimed * scale / scanned); 124 pressure = pressure * 100 / scale; 125 126 pr_debug("%s: %3lu (s: %lu r: %lu)\n", __func__, pressure, 127 scanned, reclaimed); 128 129 return vmpressure_level(pressure); 130 } 131 132 struct vmpressure_event { 133 struct eventfd_ctx *efd; 134 enum vmpressure_levels level; 135 struct list_head node; 136 }; 137 138 static bool vmpressure_event(struct vmpressure *vmpr, 139 unsigned long scanned, unsigned long reclaimed) 140 { 141 struct vmpressure_event *ev; 142 enum vmpressure_levels level; 143 bool signalled = false; 144 145 level = vmpressure_calc_level(scanned, reclaimed); 146 147 mutex_lock(&vmpr->events_lock); 148 149 list_for_each_entry(ev, &vmpr->events, node) { 150 if (level >= ev->level) { 151 eventfd_signal(ev->efd, 1); 152 signalled = true; 153 } 154 } 155 156 mutex_unlock(&vmpr->events_lock); 157 158 return signalled; 159 } 160 161 static void vmpressure_work_fn(struct work_struct *work) 162 { 163 struct vmpressure *vmpr = work_to_vmpressure(work); 164 unsigned long scanned; 165 unsigned long reclaimed; 166 167 /* 168 * Several contexts might be calling vmpressure(), so it is 169 * possible that the work was rescheduled again before the old 170 * work context cleared the counters. In that case we will run 171 * just after the old work returns, but then scanned might be zero 172 * here. No need for any locks here since we don't care if 173 * vmpr->reclaimed is in sync. 174 */ 175 if (!vmpr->scanned) 176 return; 177 178 spin_lock(&vmpr->sr_lock); 179 scanned = vmpr->scanned; 180 reclaimed = vmpr->reclaimed; 181 vmpr->scanned = 0; 182 vmpr->reclaimed = 0; 183 spin_unlock(&vmpr->sr_lock); 184 185 do { 186 if (vmpressure_event(vmpr, scanned, reclaimed)) 187 break; 188 /* 189 * If not handled, propagate the event upward into the 190 * hierarchy. 191 */ 192 } while ((vmpr = vmpressure_parent(vmpr))); 193 } 194 195 /** 196 * vmpressure() - Account memory pressure through scanned/reclaimed ratio 197 * @gfp: reclaimer's gfp mask 198 * @memcg: cgroup memory controller handle 199 * @scanned: number of pages scanned 200 * @reclaimed: number of pages reclaimed 201 * 202 * This function should be called from the vmscan reclaim path to account 203 * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw 204 * pressure index is then further refined and averaged over time. 205 * 206 * This function does not return any value. 207 */ 208 void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, 209 unsigned long scanned, unsigned long reclaimed) 210 { 211 struct vmpressure *vmpr = memcg_to_vmpressure(memcg); 212 213 /* 214 * Here we only want to account pressure that userland is able to 215 * help us with. For example, suppose that DMA zone is under 216 * pressure; if we notify userland about that kind of pressure, 217 * then it will be mostly a waste as it will trigger unnecessary 218 * freeing of memory by userland (since userland is more likely to 219 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That 220 * is why we include only movable, highmem and FS/IO pages. 221 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so 222 * we account it too. 223 */ 224 if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS))) 225 return; 226 227 /* 228 * If we got here with no pages scanned, then that is an indicator 229 * that reclaimer was unable to find any shrinkable LRUs at the 230 * current scanning depth. But it does not mean that we should 231 * report the critical pressure, yet. If the scanning priority 232 * (scanning depth) goes too high (deep), we will be notified 233 * through vmpressure_prio(). But so far, keep calm. 234 */ 235 if (!scanned) 236 return; 237 238 spin_lock(&vmpr->sr_lock); 239 vmpr->scanned += scanned; 240 vmpr->reclaimed += reclaimed; 241 scanned = vmpr->scanned; 242 spin_unlock(&vmpr->sr_lock); 243 244 if (scanned < vmpressure_win) 245 return; 246 schedule_work(&vmpr->work); 247 } 248 249 /** 250 * vmpressure_prio() - Account memory pressure through reclaimer priority level 251 * @gfp: reclaimer's gfp mask 252 * @memcg: cgroup memory controller handle 253 * @prio: reclaimer's priority 254 * 255 * This function should be called from the reclaim path every time when 256 * the vmscan's reclaiming priority (scanning depth) changes. 257 * 258 * This function does not return any value. 259 */ 260 void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio) 261 { 262 /* 263 * We only use prio for accounting critical level. For more info 264 * see comment for vmpressure_level_critical_prio variable above. 265 */ 266 if (prio > vmpressure_level_critical_prio) 267 return; 268 269 /* 270 * OK, the prio is below the threshold, updating vmpressure 271 * information before shrinker dives into long shrinking of long 272 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0 273 * to the vmpressure() basically means that we signal 'critical' 274 * level. 275 */ 276 vmpressure(gfp, memcg, vmpressure_win, 0); 277 } 278 279 /** 280 * vmpressure_register_event() - Bind vmpressure notifications to an eventfd 281 * @css: css that is interested in vmpressure notifications 282 * @cft: cgroup control files handle 283 * @eventfd: eventfd context to link notifications with 284 * @args: event arguments (used to set up a pressure level threshold) 285 * 286 * This function associates eventfd context with the vmpressure 287 * infrastructure, so that the notifications will be delivered to the 288 * @eventfd. The @args parameter is a string that denotes pressure level 289 * threshold (one of vmpressure_str_levels, i.e. "low", "medium", or 290 * "critical"). 291 * 292 * This function should not be used directly, just pass it to (struct 293 * cftype).register_event, and then cgroup core will handle everything by 294 * itself. 295 */ 296 int vmpressure_register_event(struct cgroup_subsys_state *css, 297 struct cftype *cft, struct eventfd_ctx *eventfd, 298 const char *args) 299 { 300 struct vmpressure *vmpr = css_to_vmpressure(css); 301 struct vmpressure_event *ev; 302 int level; 303 304 for (level = 0; level < VMPRESSURE_NUM_LEVELS; level++) { 305 if (!strcmp(vmpressure_str_levels[level], args)) 306 break; 307 } 308 309 if (level >= VMPRESSURE_NUM_LEVELS) 310 return -EINVAL; 311 312 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 313 if (!ev) 314 return -ENOMEM; 315 316 ev->efd = eventfd; 317 ev->level = level; 318 319 mutex_lock(&vmpr->events_lock); 320 list_add(&ev->node, &vmpr->events); 321 mutex_unlock(&vmpr->events_lock); 322 323 return 0; 324 } 325 326 /** 327 * vmpressure_unregister_event() - Unbind eventfd from vmpressure 328 * @css: css handle 329 * @cft: cgroup control files handle 330 * @eventfd: eventfd context that was used to link vmpressure with the @cg 331 * 332 * This function does internal manipulations to detach the @eventfd from 333 * the vmpressure notifications, and then frees internal resources 334 * associated with the @eventfd (but the @eventfd itself is not freed). 335 * 336 * This function should not be used directly, just pass it to (struct 337 * cftype).unregister_event, and then cgroup core will handle everything 338 * by itself. 339 */ 340 void vmpressure_unregister_event(struct cgroup_subsys_state *css, 341 struct cftype *cft, 342 struct eventfd_ctx *eventfd) 343 { 344 struct vmpressure *vmpr = css_to_vmpressure(css); 345 struct vmpressure_event *ev; 346 347 mutex_lock(&vmpr->events_lock); 348 list_for_each_entry(ev, &vmpr->events, node) { 349 if (ev->efd != eventfd) 350 continue; 351 list_del(&ev->node); 352 kfree(ev); 353 break; 354 } 355 mutex_unlock(&vmpr->events_lock); 356 } 357 358 /** 359 * vmpressure_init() - Initialize vmpressure control structure 360 * @vmpr: Structure to be initialized 361 * 362 * This function should be called on every allocated vmpressure structure 363 * before any usage. 364 */ 365 void vmpressure_init(struct vmpressure *vmpr) 366 { 367 spin_lock_init(&vmpr->sr_lock); 368 mutex_init(&vmpr->events_lock); 369 INIT_LIST_HEAD(&vmpr->events); 370 INIT_WORK(&vmpr->work, vmpressure_work_fn); 371 } 372 373 /** 374 * vmpressure_cleanup() - shuts down vmpressure control structure 375 * @vmpr: Structure to be cleaned up 376 * 377 * This function should be called before the structure in which it is 378 * embedded is cleaned up. 379 */ 380 void vmpressure_cleanup(struct vmpressure *vmpr) 381 { 382 /* 383 * Make sure there is no pending work before eventfd infrastructure 384 * goes away. 385 */ 386 flush_work(&vmpr->work); 387 } 388