1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <linux/llist.h> 31 #include <asm/uaccess.h> 32 #include <asm/tlbflush.h> 33 #include <asm/shmparam.h> 34 35 struct vfree_deferred { 36 struct llist_head list; 37 struct work_struct wq; 38 }; 39 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 40 41 static void __vunmap(const void *, int); 42 43 static void free_work(struct work_struct *w) 44 { 45 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 46 struct llist_node *llnode = llist_del_all(&p->list); 47 while (llnode) { 48 void *p = llnode; 49 llnode = llist_next(llnode); 50 __vunmap(p, 1); 51 } 52 } 53 54 /*** Page table manipulation functions ***/ 55 56 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 57 { 58 pte_t *pte; 59 60 pte = pte_offset_kernel(pmd, addr); 61 do { 62 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 63 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 64 } while (pte++, addr += PAGE_SIZE, addr != end); 65 } 66 67 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 68 { 69 pmd_t *pmd; 70 unsigned long next; 71 72 pmd = pmd_offset(pud, addr); 73 do { 74 next = pmd_addr_end(addr, end); 75 if (pmd_none_or_clear_bad(pmd)) 76 continue; 77 vunmap_pte_range(pmd, addr, next); 78 } while (pmd++, addr = next, addr != end); 79 } 80 81 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 82 { 83 pud_t *pud; 84 unsigned long next; 85 86 pud = pud_offset(pgd, addr); 87 do { 88 next = pud_addr_end(addr, end); 89 if (pud_none_or_clear_bad(pud)) 90 continue; 91 vunmap_pmd_range(pud, addr, next); 92 } while (pud++, addr = next, addr != end); 93 } 94 95 static void vunmap_page_range(unsigned long addr, unsigned long end) 96 { 97 pgd_t *pgd; 98 unsigned long next; 99 100 BUG_ON(addr >= end); 101 pgd = pgd_offset_k(addr); 102 do { 103 next = pgd_addr_end(addr, end); 104 if (pgd_none_or_clear_bad(pgd)) 105 continue; 106 vunmap_pud_range(pgd, addr, next); 107 } while (pgd++, addr = next, addr != end); 108 } 109 110 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 111 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 112 { 113 pte_t *pte; 114 115 /* 116 * nr is a running index into the array which helps higher level 117 * callers keep track of where we're up to. 118 */ 119 120 pte = pte_alloc_kernel(pmd, addr); 121 if (!pte) 122 return -ENOMEM; 123 do { 124 struct page *page = pages[*nr]; 125 126 if (WARN_ON(!pte_none(*pte))) 127 return -EBUSY; 128 if (WARN_ON(!page)) 129 return -ENOMEM; 130 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 131 (*nr)++; 132 } while (pte++, addr += PAGE_SIZE, addr != end); 133 return 0; 134 } 135 136 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 137 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 138 { 139 pmd_t *pmd; 140 unsigned long next; 141 142 pmd = pmd_alloc(&init_mm, pud, addr); 143 if (!pmd) 144 return -ENOMEM; 145 do { 146 next = pmd_addr_end(addr, end); 147 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 148 return -ENOMEM; 149 } while (pmd++, addr = next, addr != end); 150 return 0; 151 } 152 153 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 154 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 155 { 156 pud_t *pud; 157 unsigned long next; 158 159 pud = pud_alloc(&init_mm, pgd, addr); 160 if (!pud) 161 return -ENOMEM; 162 do { 163 next = pud_addr_end(addr, end); 164 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 165 return -ENOMEM; 166 } while (pud++, addr = next, addr != end); 167 return 0; 168 } 169 170 /* 171 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 172 * will have pfns corresponding to the "pages" array. 173 * 174 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 175 */ 176 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 177 pgprot_t prot, struct page **pages) 178 { 179 pgd_t *pgd; 180 unsigned long next; 181 unsigned long addr = start; 182 int err = 0; 183 int nr = 0; 184 185 BUG_ON(addr >= end); 186 pgd = pgd_offset_k(addr); 187 do { 188 next = pgd_addr_end(addr, end); 189 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 190 if (err) 191 return err; 192 } while (pgd++, addr = next, addr != end); 193 194 return nr; 195 } 196 197 static int vmap_page_range(unsigned long start, unsigned long end, 198 pgprot_t prot, struct page **pages) 199 { 200 int ret; 201 202 ret = vmap_page_range_noflush(start, end, prot, pages); 203 flush_cache_vmap(start, end); 204 return ret; 205 } 206 207 int is_vmalloc_or_module_addr(const void *x) 208 { 209 /* 210 * ARM, x86-64 and sparc64 put modules in a special place, 211 * and fall back on vmalloc() if that fails. Others 212 * just put it in the vmalloc space. 213 */ 214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 215 unsigned long addr = (unsigned long)x; 216 if (addr >= MODULES_VADDR && addr < MODULES_END) 217 return 1; 218 #endif 219 return is_vmalloc_addr(x); 220 } 221 222 /* 223 * Walk a vmap address to the struct page it maps. 224 */ 225 struct page *vmalloc_to_page(const void *vmalloc_addr) 226 { 227 unsigned long addr = (unsigned long) vmalloc_addr; 228 struct page *page = NULL; 229 pgd_t *pgd = pgd_offset_k(addr); 230 231 /* 232 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 233 * architectures that do not vmalloc module space 234 */ 235 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 236 237 if (!pgd_none(*pgd)) { 238 pud_t *pud = pud_offset(pgd, addr); 239 if (!pud_none(*pud)) { 240 pmd_t *pmd = pmd_offset(pud, addr); 241 if (!pmd_none(*pmd)) { 242 pte_t *ptep, pte; 243 244 ptep = pte_offset_map(pmd, addr); 245 pte = *ptep; 246 if (pte_present(pte)) 247 page = pte_page(pte); 248 pte_unmap(ptep); 249 } 250 } 251 } 252 return page; 253 } 254 EXPORT_SYMBOL(vmalloc_to_page); 255 256 /* 257 * Map a vmalloc()-space virtual address to the physical page frame number. 258 */ 259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 260 { 261 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 262 } 263 EXPORT_SYMBOL(vmalloc_to_pfn); 264 265 266 /*** Global kva allocator ***/ 267 268 #define VM_LAZY_FREE 0x01 269 #define VM_LAZY_FREEING 0x02 270 #define VM_VM_AREA 0x04 271 272 static DEFINE_SPINLOCK(vmap_area_lock); 273 /* Export for kexec only */ 274 LIST_HEAD(vmap_area_list); 275 static struct rb_root vmap_area_root = RB_ROOT; 276 277 /* The vmap cache globals are protected by vmap_area_lock */ 278 static struct rb_node *free_vmap_cache; 279 static unsigned long cached_hole_size; 280 static unsigned long cached_vstart; 281 static unsigned long cached_align; 282 283 static unsigned long vmap_area_pcpu_hole; 284 285 static struct vmap_area *__find_vmap_area(unsigned long addr) 286 { 287 struct rb_node *n = vmap_area_root.rb_node; 288 289 while (n) { 290 struct vmap_area *va; 291 292 va = rb_entry(n, struct vmap_area, rb_node); 293 if (addr < va->va_start) 294 n = n->rb_left; 295 else if (addr >= va->va_end) 296 n = n->rb_right; 297 else 298 return va; 299 } 300 301 return NULL; 302 } 303 304 static void __insert_vmap_area(struct vmap_area *va) 305 { 306 struct rb_node **p = &vmap_area_root.rb_node; 307 struct rb_node *parent = NULL; 308 struct rb_node *tmp; 309 310 while (*p) { 311 struct vmap_area *tmp_va; 312 313 parent = *p; 314 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 315 if (va->va_start < tmp_va->va_end) 316 p = &(*p)->rb_left; 317 else if (va->va_end > tmp_va->va_start) 318 p = &(*p)->rb_right; 319 else 320 BUG(); 321 } 322 323 rb_link_node(&va->rb_node, parent, p); 324 rb_insert_color(&va->rb_node, &vmap_area_root); 325 326 /* address-sort this list */ 327 tmp = rb_prev(&va->rb_node); 328 if (tmp) { 329 struct vmap_area *prev; 330 prev = rb_entry(tmp, struct vmap_area, rb_node); 331 list_add_rcu(&va->list, &prev->list); 332 } else 333 list_add_rcu(&va->list, &vmap_area_list); 334 } 335 336 static void purge_vmap_area_lazy(void); 337 338 /* 339 * Allocate a region of KVA of the specified size and alignment, within the 340 * vstart and vend. 341 */ 342 static struct vmap_area *alloc_vmap_area(unsigned long size, 343 unsigned long align, 344 unsigned long vstart, unsigned long vend, 345 int node, gfp_t gfp_mask) 346 { 347 struct vmap_area *va; 348 struct rb_node *n; 349 unsigned long addr; 350 int purged = 0; 351 struct vmap_area *first; 352 353 BUG_ON(!size); 354 BUG_ON(size & ~PAGE_MASK); 355 BUG_ON(!is_power_of_2(align)); 356 357 va = kmalloc_node(sizeof(struct vmap_area), 358 gfp_mask & GFP_RECLAIM_MASK, node); 359 if (unlikely(!va)) 360 return ERR_PTR(-ENOMEM); 361 362 retry: 363 spin_lock(&vmap_area_lock); 364 /* 365 * Invalidate cache if we have more permissive parameters. 366 * cached_hole_size notes the largest hole noticed _below_ 367 * the vmap_area cached in free_vmap_cache: if size fits 368 * into that hole, we want to scan from vstart to reuse 369 * the hole instead of allocating above free_vmap_cache. 370 * Note that __free_vmap_area may update free_vmap_cache 371 * without updating cached_hole_size or cached_align. 372 */ 373 if (!free_vmap_cache || 374 size < cached_hole_size || 375 vstart < cached_vstart || 376 align < cached_align) { 377 nocache: 378 cached_hole_size = 0; 379 free_vmap_cache = NULL; 380 } 381 /* record if we encounter less permissive parameters */ 382 cached_vstart = vstart; 383 cached_align = align; 384 385 /* find starting point for our search */ 386 if (free_vmap_cache) { 387 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 388 addr = ALIGN(first->va_end, align); 389 if (addr < vstart) 390 goto nocache; 391 if (addr + size < addr) 392 goto overflow; 393 394 } else { 395 addr = ALIGN(vstart, align); 396 if (addr + size < addr) 397 goto overflow; 398 399 n = vmap_area_root.rb_node; 400 first = NULL; 401 402 while (n) { 403 struct vmap_area *tmp; 404 tmp = rb_entry(n, struct vmap_area, rb_node); 405 if (tmp->va_end >= addr) { 406 first = tmp; 407 if (tmp->va_start <= addr) 408 break; 409 n = n->rb_left; 410 } else 411 n = n->rb_right; 412 } 413 414 if (!first) 415 goto found; 416 } 417 418 /* from the starting point, walk areas until a suitable hole is found */ 419 while (addr + size > first->va_start && addr + size <= vend) { 420 if (addr + cached_hole_size < first->va_start) 421 cached_hole_size = first->va_start - addr; 422 addr = ALIGN(first->va_end, align); 423 if (addr + size < addr) 424 goto overflow; 425 426 if (list_is_last(&first->list, &vmap_area_list)) 427 goto found; 428 429 first = list_entry(first->list.next, 430 struct vmap_area, list); 431 } 432 433 found: 434 if (addr + size > vend) 435 goto overflow; 436 437 va->va_start = addr; 438 va->va_end = addr + size; 439 va->flags = 0; 440 __insert_vmap_area(va); 441 free_vmap_cache = &va->rb_node; 442 spin_unlock(&vmap_area_lock); 443 444 BUG_ON(va->va_start & (align-1)); 445 BUG_ON(va->va_start < vstart); 446 BUG_ON(va->va_end > vend); 447 448 return va; 449 450 overflow: 451 spin_unlock(&vmap_area_lock); 452 if (!purged) { 453 purge_vmap_area_lazy(); 454 purged = 1; 455 goto retry; 456 } 457 if (printk_ratelimit()) 458 printk(KERN_WARNING 459 "vmap allocation for size %lu failed: " 460 "use vmalloc=<size> to increase size.\n", size); 461 kfree(va); 462 return ERR_PTR(-EBUSY); 463 } 464 465 static void __free_vmap_area(struct vmap_area *va) 466 { 467 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 468 469 if (free_vmap_cache) { 470 if (va->va_end < cached_vstart) { 471 free_vmap_cache = NULL; 472 } else { 473 struct vmap_area *cache; 474 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 475 if (va->va_start <= cache->va_start) { 476 free_vmap_cache = rb_prev(&va->rb_node); 477 /* 478 * We don't try to update cached_hole_size or 479 * cached_align, but it won't go very wrong. 480 */ 481 } 482 } 483 } 484 rb_erase(&va->rb_node, &vmap_area_root); 485 RB_CLEAR_NODE(&va->rb_node); 486 list_del_rcu(&va->list); 487 488 /* 489 * Track the highest possible candidate for pcpu area 490 * allocation. Areas outside of vmalloc area can be returned 491 * here too, consider only end addresses which fall inside 492 * vmalloc area proper. 493 */ 494 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 495 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 496 497 kfree_rcu(va, rcu_head); 498 } 499 500 /* 501 * Free a region of KVA allocated by alloc_vmap_area 502 */ 503 static void free_vmap_area(struct vmap_area *va) 504 { 505 spin_lock(&vmap_area_lock); 506 __free_vmap_area(va); 507 spin_unlock(&vmap_area_lock); 508 } 509 510 /* 511 * Clear the pagetable entries of a given vmap_area 512 */ 513 static void unmap_vmap_area(struct vmap_area *va) 514 { 515 vunmap_page_range(va->va_start, va->va_end); 516 } 517 518 static void vmap_debug_free_range(unsigned long start, unsigned long end) 519 { 520 /* 521 * Unmap page tables and force a TLB flush immediately if 522 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 523 * bugs similarly to those in linear kernel virtual address 524 * space after a page has been freed. 525 * 526 * All the lazy freeing logic is still retained, in order to 527 * minimise intrusiveness of this debugging feature. 528 * 529 * This is going to be *slow* (linear kernel virtual address 530 * debugging doesn't do a broadcast TLB flush so it is a lot 531 * faster). 532 */ 533 #ifdef CONFIG_DEBUG_PAGEALLOC 534 vunmap_page_range(start, end); 535 flush_tlb_kernel_range(start, end); 536 #endif 537 } 538 539 /* 540 * lazy_max_pages is the maximum amount of virtual address space we gather up 541 * before attempting to purge with a TLB flush. 542 * 543 * There is a tradeoff here: a larger number will cover more kernel page tables 544 * and take slightly longer to purge, but it will linearly reduce the number of 545 * global TLB flushes that must be performed. It would seem natural to scale 546 * this number up linearly with the number of CPUs (because vmapping activity 547 * could also scale linearly with the number of CPUs), however it is likely 548 * that in practice, workloads might be constrained in other ways that mean 549 * vmap activity will not scale linearly with CPUs. Also, I want to be 550 * conservative and not introduce a big latency on huge systems, so go with 551 * a less aggressive log scale. It will still be an improvement over the old 552 * code, and it will be simple to change the scale factor if we find that it 553 * becomes a problem on bigger systems. 554 */ 555 static unsigned long lazy_max_pages(void) 556 { 557 unsigned int log; 558 559 log = fls(num_online_cpus()); 560 561 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 562 } 563 564 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 565 566 /* for per-CPU blocks */ 567 static void purge_fragmented_blocks_allcpus(void); 568 569 /* 570 * called before a call to iounmap() if the caller wants vm_area_struct's 571 * immediately freed. 572 */ 573 void set_iounmap_nonlazy(void) 574 { 575 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 576 } 577 578 /* 579 * Purges all lazily-freed vmap areas. 580 * 581 * If sync is 0 then don't purge if there is already a purge in progress. 582 * If force_flush is 1, then flush kernel TLBs between *start and *end even 583 * if we found no lazy vmap areas to unmap (callers can use this to optimise 584 * their own TLB flushing). 585 * Returns with *start = min(*start, lowest purged address) 586 * *end = max(*end, highest purged address) 587 */ 588 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 589 int sync, int force_flush) 590 { 591 static DEFINE_SPINLOCK(purge_lock); 592 LIST_HEAD(valist); 593 struct vmap_area *va; 594 struct vmap_area *n_va; 595 int nr = 0; 596 597 /* 598 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 599 * should not expect such behaviour. This just simplifies locking for 600 * the case that isn't actually used at the moment anyway. 601 */ 602 if (!sync && !force_flush) { 603 if (!spin_trylock(&purge_lock)) 604 return; 605 } else 606 spin_lock(&purge_lock); 607 608 if (sync) 609 purge_fragmented_blocks_allcpus(); 610 611 rcu_read_lock(); 612 list_for_each_entry_rcu(va, &vmap_area_list, list) { 613 if (va->flags & VM_LAZY_FREE) { 614 if (va->va_start < *start) 615 *start = va->va_start; 616 if (va->va_end > *end) 617 *end = va->va_end; 618 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 619 list_add_tail(&va->purge_list, &valist); 620 va->flags |= VM_LAZY_FREEING; 621 va->flags &= ~VM_LAZY_FREE; 622 } 623 } 624 rcu_read_unlock(); 625 626 if (nr) 627 atomic_sub(nr, &vmap_lazy_nr); 628 629 if (nr || force_flush) 630 flush_tlb_kernel_range(*start, *end); 631 632 if (nr) { 633 spin_lock(&vmap_area_lock); 634 list_for_each_entry_safe(va, n_va, &valist, purge_list) 635 __free_vmap_area(va); 636 spin_unlock(&vmap_area_lock); 637 } 638 spin_unlock(&purge_lock); 639 } 640 641 /* 642 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 643 * is already purging. 644 */ 645 static void try_purge_vmap_area_lazy(void) 646 { 647 unsigned long start = ULONG_MAX, end = 0; 648 649 __purge_vmap_area_lazy(&start, &end, 0, 0); 650 } 651 652 /* 653 * Kick off a purge of the outstanding lazy areas. 654 */ 655 static void purge_vmap_area_lazy(void) 656 { 657 unsigned long start = ULONG_MAX, end = 0; 658 659 __purge_vmap_area_lazy(&start, &end, 1, 0); 660 } 661 662 /* 663 * Free a vmap area, caller ensuring that the area has been unmapped 664 * and flush_cache_vunmap had been called for the correct range 665 * previously. 666 */ 667 static void free_vmap_area_noflush(struct vmap_area *va) 668 { 669 va->flags |= VM_LAZY_FREE; 670 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 671 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 672 try_purge_vmap_area_lazy(); 673 } 674 675 /* 676 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 677 * called for the correct range previously. 678 */ 679 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 680 { 681 unmap_vmap_area(va); 682 free_vmap_area_noflush(va); 683 } 684 685 /* 686 * Free and unmap a vmap area 687 */ 688 static void free_unmap_vmap_area(struct vmap_area *va) 689 { 690 flush_cache_vunmap(va->va_start, va->va_end); 691 free_unmap_vmap_area_noflush(va); 692 } 693 694 static struct vmap_area *find_vmap_area(unsigned long addr) 695 { 696 struct vmap_area *va; 697 698 spin_lock(&vmap_area_lock); 699 va = __find_vmap_area(addr); 700 spin_unlock(&vmap_area_lock); 701 702 return va; 703 } 704 705 static void free_unmap_vmap_area_addr(unsigned long addr) 706 { 707 struct vmap_area *va; 708 709 va = find_vmap_area(addr); 710 BUG_ON(!va); 711 free_unmap_vmap_area(va); 712 } 713 714 715 /*** Per cpu kva allocator ***/ 716 717 /* 718 * vmap space is limited especially on 32 bit architectures. Ensure there is 719 * room for at least 16 percpu vmap blocks per CPU. 720 */ 721 /* 722 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 723 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 724 * instead (we just need a rough idea) 725 */ 726 #if BITS_PER_LONG == 32 727 #define VMALLOC_SPACE (128UL*1024*1024) 728 #else 729 #define VMALLOC_SPACE (128UL*1024*1024*1024) 730 #endif 731 732 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 733 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 734 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 735 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 736 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 737 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 738 #define VMAP_BBMAP_BITS \ 739 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 740 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 741 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 742 743 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 744 745 static bool vmap_initialized __read_mostly = false; 746 747 struct vmap_block_queue { 748 spinlock_t lock; 749 struct list_head free; 750 }; 751 752 struct vmap_block { 753 spinlock_t lock; 754 struct vmap_area *va; 755 unsigned long free, dirty; 756 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 757 struct list_head free_list; 758 struct rcu_head rcu_head; 759 struct list_head purge; 760 }; 761 762 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 763 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 764 765 /* 766 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 767 * in the free path. Could get rid of this if we change the API to return a 768 * "cookie" from alloc, to be passed to free. But no big deal yet. 769 */ 770 static DEFINE_SPINLOCK(vmap_block_tree_lock); 771 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 772 773 /* 774 * We should probably have a fallback mechanism to allocate virtual memory 775 * out of partially filled vmap blocks. However vmap block sizing should be 776 * fairly reasonable according to the vmalloc size, so it shouldn't be a 777 * big problem. 778 */ 779 780 static unsigned long addr_to_vb_idx(unsigned long addr) 781 { 782 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 783 addr /= VMAP_BLOCK_SIZE; 784 return addr; 785 } 786 787 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 788 { 789 struct vmap_block_queue *vbq; 790 struct vmap_block *vb; 791 struct vmap_area *va; 792 unsigned long vb_idx; 793 int node, err; 794 795 node = numa_node_id(); 796 797 vb = kmalloc_node(sizeof(struct vmap_block), 798 gfp_mask & GFP_RECLAIM_MASK, node); 799 if (unlikely(!vb)) 800 return ERR_PTR(-ENOMEM); 801 802 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 803 VMALLOC_START, VMALLOC_END, 804 node, gfp_mask); 805 if (IS_ERR(va)) { 806 kfree(vb); 807 return ERR_CAST(va); 808 } 809 810 err = radix_tree_preload(gfp_mask); 811 if (unlikely(err)) { 812 kfree(vb); 813 free_vmap_area(va); 814 return ERR_PTR(err); 815 } 816 817 spin_lock_init(&vb->lock); 818 vb->va = va; 819 vb->free = VMAP_BBMAP_BITS; 820 vb->dirty = 0; 821 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 822 INIT_LIST_HEAD(&vb->free_list); 823 824 vb_idx = addr_to_vb_idx(va->va_start); 825 spin_lock(&vmap_block_tree_lock); 826 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 827 spin_unlock(&vmap_block_tree_lock); 828 BUG_ON(err); 829 radix_tree_preload_end(); 830 831 vbq = &get_cpu_var(vmap_block_queue); 832 spin_lock(&vbq->lock); 833 list_add_rcu(&vb->free_list, &vbq->free); 834 spin_unlock(&vbq->lock); 835 put_cpu_var(vmap_block_queue); 836 837 return vb; 838 } 839 840 static void free_vmap_block(struct vmap_block *vb) 841 { 842 struct vmap_block *tmp; 843 unsigned long vb_idx; 844 845 vb_idx = addr_to_vb_idx(vb->va->va_start); 846 spin_lock(&vmap_block_tree_lock); 847 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 848 spin_unlock(&vmap_block_tree_lock); 849 BUG_ON(tmp != vb); 850 851 free_vmap_area_noflush(vb->va); 852 kfree_rcu(vb, rcu_head); 853 } 854 855 static void purge_fragmented_blocks(int cpu) 856 { 857 LIST_HEAD(purge); 858 struct vmap_block *vb; 859 struct vmap_block *n_vb; 860 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 861 862 rcu_read_lock(); 863 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 864 865 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 866 continue; 867 868 spin_lock(&vb->lock); 869 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 870 vb->free = 0; /* prevent further allocs after releasing lock */ 871 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 872 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 873 spin_lock(&vbq->lock); 874 list_del_rcu(&vb->free_list); 875 spin_unlock(&vbq->lock); 876 spin_unlock(&vb->lock); 877 list_add_tail(&vb->purge, &purge); 878 } else 879 spin_unlock(&vb->lock); 880 } 881 rcu_read_unlock(); 882 883 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 884 list_del(&vb->purge); 885 free_vmap_block(vb); 886 } 887 } 888 889 static void purge_fragmented_blocks_allcpus(void) 890 { 891 int cpu; 892 893 for_each_possible_cpu(cpu) 894 purge_fragmented_blocks(cpu); 895 } 896 897 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 898 { 899 struct vmap_block_queue *vbq; 900 struct vmap_block *vb; 901 unsigned long addr = 0; 902 unsigned int order; 903 904 BUG_ON(size & ~PAGE_MASK); 905 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 906 if (WARN_ON(size == 0)) { 907 /* 908 * Allocating 0 bytes isn't what caller wants since 909 * get_order(0) returns funny result. Just warn and terminate 910 * early. 911 */ 912 return NULL; 913 } 914 order = get_order(size); 915 916 again: 917 rcu_read_lock(); 918 vbq = &get_cpu_var(vmap_block_queue); 919 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 920 int i; 921 922 spin_lock(&vb->lock); 923 if (vb->free < 1UL << order) 924 goto next; 925 926 i = VMAP_BBMAP_BITS - vb->free; 927 addr = vb->va->va_start + (i << PAGE_SHIFT); 928 BUG_ON(addr_to_vb_idx(addr) != 929 addr_to_vb_idx(vb->va->va_start)); 930 vb->free -= 1UL << order; 931 if (vb->free == 0) { 932 spin_lock(&vbq->lock); 933 list_del_rcu(&vb->free_list); 934 spin_unlock(&vbq->lock); 935 } 936 spin_unlock(&vb->lock); 937 break; 938 next: 939 spin_unlock(&vb->lock); 940 } 941 942 put_cpu_var(vmap_block_queue); 943 rcu_read_unlock(); 944 945 if (!addr) { 946 vb = new_vmap_block(gfp_mask); 947 if (IS_ERR(vb)) 948 return vb; 949 goto again; 950 } 951 952 return (void *)addr; 953 } 954 955 static void vb_free(const void *addr, unsigned long size) 956 { 957 unsigned long offset; 958 unsigned long vb_idx; 959 unsigned int order; 960 struct vmap_block *vb; 961 962 BUG_ON(size & ~PAGE_MASK); 963 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 964 965 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 966 967 order = get_order(size); 968 969 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 970 971 vb_idx = addr_to_vb_idx((unsigned long)addr); 972 rcu_read_lock(); 973 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 974 rcu_read_unlock(); 975 BUG_ON(!vb); 976 977 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 978 979 spin_lock(&vb->lock); 980 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 981 982 vb->dirty += 1UL << order; 983 if (vb->dirty == VMAP_BBMAP_BITS) { 984 BUG_ON(vb->free); 985 spin_unlock(&vb->lock); 986 free_vmap_block(vb); 987 } else 988 spin_unlock(&vb->lock); 989 } 990 991 /** 992 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 993 * 994 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 995 * to amortize TLB flushing overheads. What this means is that any page you 996 * have now, may, in a former life, have been mapped into kernel virtual 997 * address by the vmap layer and so there might be some CPUs with TLB entries 998 * still referencing that page (additional to the regular 1:1 kernel mapping). 999 * 1000 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1001 * be sure that none of the pages we have control over will have any aliases 1002 * from the vmap layer. 1003 */ 1004 void vm_unmap_aliases(void) 1005 { 1006 unsigned long start = ULONG_MAX, end = 0; 1007 int cpu; 1008 int flush = 0; 1009 1010 if (unlikely(!vmap_initialized)) 1011 return; 1012 1013 for_each_possible_cpu(cpu) { 1014 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1015 struct vmap_block *vb; 1016 1017 rcu_read_lock(); 1018 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1019 int i, j; 1020 1021 spin_lock(&vb->lock); 1022 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1023 if (i < VMAP_BBMAP_BITS) { 1024 unsigned long s, e; 1025 1026 j = find_last_bit(vb->dirty_map, 1027 VMAP_BBMAP_BITS); 1028 j = j + 1; /* need exclusive index */ 1029 1030 s = vb->va->va_start + (i << PAGE_SHIFT); 1031 e = vb->va->va_start + (j << PAGE_SHIFT); 1032 flush = 1; 1033 1034 if (s < start) 1035 start = s; 1036 if (e > end) 1037 end = e; 1038 } 1039 spin_unlock(&vb->lock); 1040 } 1041 rcu_read_unlock(); 1042 } 1043 1044 __purge_vmap_area_lazy(&start, &end, 1, flush); 1045 } 1046 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1047 1048 /** 1049 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1050 * @mem: the pointer returned by vm_map_ram 1051 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1052 */ 1053 void vm_unmap_ram(const void *mem, unsigned int count) 1054 { 1055 unsigned long size = count << PAGE_SHIFT; 1056 unsigned long addr = (unsigned long)mem; 1057 1058 BUG_ON(!addr); 1059 BUG_ON(addr < VMALLOC_START); 1060 BUG_ON(addr > VMALLOC_END); 1061 BUG_ON(addr & (PAGE_SIZE-1)); 1062 1063 debug_check_no_locks_freed(mem, size); 1064 vmap_debug_free_range(addr, addr+size); 1065 1066 if (likely(count <= VMAP_MAX_ALLOC)) 1067 vb_free(mem, size); 1068 else 1069 free_unmap_vmap_area_addr(addr); 1070 } 1071 EXPORT_SYMBOL(vm_unmap_ram); 1072 1073 /** 1074 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1075 * @pages: an array of pointers to the pages to be mapped 1076 * @count: number of pages 1077 * @node: prefer to allocate data structures on this node 1078 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1079 * 1080 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1081 */ 1082 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1083 { 1084 unsigned long size = count << PAGE_SHIFT; 1085 unsigned long addr; 1086 void *mem; 1087 1088 if (likely(count <= VMAP_MAX_ALLOC)) { 1089 mem = vb_alloc(size, GFP_KERNEL); 1090 if (IS_ERR(mem)) 1091 return NULL; 1092 addr = (unsigned long)mem; 1093 } else { 1094 struct vmap_area *va; 1095 va = alloc_vmap_area(size, PAGE_SIZE, 1096 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1097 if (IS_ERR(va)) 1098 return NULL; 1099 1100 addr = va->va_start; 1101 mem = (void *)addr; 1102 } 1103 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1104 vm_unmap_ram(mem, count); 1105 return NULL; 1106 } 1107 return mem; 1108 } 1109 EXPORT_SYMBOL(vm_map_ram); 1110 1111 static struct vm_struct *vmlist __initdata; 1112 /** 1113 * vm_area_add_early - add vmap area early during boot 1114 * @vm: vm_struct to add 1115 * 1116 * This function is used to add fixed kernel vm area to vmlist before 1117 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1118 * should contain proper values and the other fields should be zero. 1119 * 1120 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1121 */ 1122 void __init vm_area_add_early(struct vm_struct *vm) 1123 { 1124 struct vm_struct *tmp, **p; 1125 1126 BUG_ON(vmap_initialized); 1127 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1128 if (tmp->addr >= vm->addr) { 1129 BUG_ON(tmp->addr < vm->addr + vm->size); 1130 break; 1131 } else 1132 BUG_ON(tmp->addr + tmp->size > vm->addr); 1133 } 1134 vm->next = *p; 1135 *p = vm; 1136 } 1137 1138 /** 1139 * vm_area_register_early - register vmap area early during boot 1140 * @vm: vm_struct to register 1141 * @align: requested alignment 1142 * 1143 * This function is used to register kernel vm area before 1144 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1145 * proper values on entry and other fields should be zero. On return, 1146 * vm->addr contains the allocated address. 1147 * 1148 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1149 */ 1150 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1151 { 1152 static size_t vm_init_off __initdata; 1153 unsigned long addr; 1154 1155 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1156 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1157 1158 vm->addr = (void *)addr; 1159 1160 vm_area_add_early(vm); 1161 } 1162 1163 void __init vmalloc_init(void) 1164 { 1165 struct vmap_area *va; 1166 struct vm_struct *tmp; 1167 int i; 1168 1169 for_each_possible_cpu(i) { 1170 struct vmap_block_queue *vbq; 1171 struct vfree_deferred *p; 1172 1173 vbq = &per_cpu(vmap_block_queue, i); 1174 spin_lock_init(&vbq->lock); 1175 INIT_LIST_HEAD(&vbq->free); 1176 p = &per_cpu(vfree_deferred, i); 1177 init_llist_head(&p->list); 1178 INIT_WORK(&p->wq, free_work); 1179 } 1180 1181 /* Import existing vmlist entries. */ 1182 for (tmp = vmlist; tmp; tmp = tmp->next) { 1183 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1184 va->flags = VM_VM_AREA; 1185 va->va_start = (unsigned long)tmp->addr; 1186 va->va_end = va->va_start + tmp->size; 1187 va->vm = tmp; 1188 __insert_vmap_area(va); 1189 } 1190 1191 vmap_area_pcpu_hole = VMALLOC_END; 1192 1193 vmap_initialized = true; 1194 } 1195 1196 /** 1197 * map_kernel_range_noflush - map kernel VM area with the specified pages 1198 * @addr: start of the VM area to map 1199 * @size: size of the VM area to map 1200 * @prot: page protection flags to use 1201 * @pages: pages to map 1202 * 1203 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1204 * specify should have been allocated using get_vm_area() and its 1205 * friends. 1206 * 1207 * NOTE: 1208 * This function does NOT do any cache flushing. The caller is 1209 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1210 * before calling this function. 1211 * 1212 * RETURNS: 1213 * The number of pages mapped on success, -errno on failure. 1214 */ 1215 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1216 pgprot_t prot, struct page **pages) 1217 { 1218 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1219 } 1220 1221 /** 1222 * unmap_kernel_range_noflush - unmap kernel VM area 1223 * @addr: start of the VM area to unmap 1224 * @size: size of the VM area to unmap 1225 * 1226 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1227 * specify should have been allocated using get_vm_area() and its 1228 * friends. 1229 * 1230 * NOTE: 1231 * This function does NOT do any cache flushing. The caller is 1232 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1233 * before calling this function and flush_tlb_kernel_range() after. 1234 */ 1235 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1236 { 1237 vunmap_page_range(addr, addr + size); 1238 } 1239 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1240 1241 /** 1242 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1243 * @addr: start of the VM area to unmap 1244 * @size: size of the VM area to unmap 1245 * 1246 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1247 * the unmapping and tlb after. 1248 */ 1249 void unmap_kernel_range(unsigned long addr, unsigned long size) 1250 { 1251 unsigned long end = addr + size; 1252 1253 flush_cache_vunmap(addr, end); 1254 vunmap_page_range(addr, end); 1255 flush_tlb_kernel_range(addr, end); 1256 } 1257 1258 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1259 { 1260 unsigned long addr = (unsigned long)area->addr; 1261 unsigned long end = addr + get_vm_area_size(area); 1262 int err; 1263 1264 err = vmap_page_range(addr, end, prot, *pages); 1265 if (err > 0) { 1266 *pages += err; 1267 err = 0; 1268 } 1269 1270 return err; 1271 } 1272 EXPORT_SYMBOL_GPL(map_vm_area); 1273 1274 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1275 unsigned long flags, const void *caller) 1276 { 1277 spin_lock(&vmap_area_lock); 1278 vm->flags = flags; 1279 vm->addr = (void *)va->va_start; 1280 vm->size = va->va_end - va->va_start; 1281 vm->caller = caller; 1282 va->vm = vm; 1283 va->flags |= VM_VM_AREA; 1284 spin_unlock(&vmap_area_lock); 1285 } 1286 1287 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1288 { 1289 /* 1290 * Before removing VM_UNINITIALIZED, 1291 * we should make sure that vm has proper values. 1292 * Pair with smp_rmb() in show_numa_info(). 1293 */ 1294 smp_wmb(); 1295 vm->flags &= ~VM_UNINITIALIZED; 1296 } 1297 1298 static struct vm_struct *__get_vm_area_node(unsigned long size, 1299 unsigned long align, unsigned long flags, unsigned long start, 1300 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1301 { 1302 struct vmap_area *va; 1303 struct vm_struct *area; 1304 1305 BUG_ON(in_interrupt()); 1306 if (flags & VM_IOREMAP) 1307 align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); 1308 1309 size = PAGE_ALIGN(size); 1310 if (unlikely(!size)) 1311 return NULL; 1312 1313 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1314 if (unlikely(!area)) 1315 return NULL; 1316 1317 /* 1318 * We always allocate a guard page. 1319 */ 1320 size += PAGE_SIZE; 1321 1322 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1323 if (IS_ERR(va)) { 1324 kfree(area); 1325 return NULL; 1326 } 1327 1328 setup_vmalloc_vm(area, va, flags, caller); 1329 1330 return area; 1331 } 1332 1333 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1334 unsigned long start, unsigned long end) 1335 { 1336 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1337 GFP_KERNEL, __builtin_return_address(0)); 1338 } 1339 EXPORT_SYMBOL_GPL(__get_vm_area); 1340 1341 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1342 unsigned long start, unsigned long end, 1343 const void *caller) 1344 { 1345 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1346 GFP_KERNEL, caller); 1347 } 1348 1349 /** 1350 * get_vm_area - reserve a contiguous kernel virtual area 1351 * @size: size of the area 1352 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1353 * 1354 * Search an area of @size in the kernel virtual mapping area, 1355 * and reserved it for out purposes. Returns the area descriptor 1356 * on success or %NULL on failure. 1357 */ 1358 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1359 { 1360 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1361 NUMA_NO_NODE, GFP_KERNEL, 1362 __builtin_return_address(0)); 1363 } 1364 1365 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1366 const void *caller) 1367 { 1368 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1369 NUMA_NO_NODE, GFP_KERNEL, caller); 1370 } 1371 1372 /** 1373 * find_vm_area - find a continuous kernel virtual area 1374 * @addr: base address 1375 * 1376 * Search for the kernel VM area starting at @addr, and return it. 1377 * It is up to the caller to do all required locking to keep the returned 1378 * pointer valid. 1379 */ 1380 struct vm_struct *find_vm_area(const void *addr) 1381 { 1382 struct vmap_area *va; 1383 1384 va = find_vmap_area((unsigned long)addr); 1385 if (va && va->flags & VM_VM_AREA) 1386 return va->vm; 1387 1388 return NULL; 1389 } 1390 1391 /** 1392 * remove_vm_area - find and remove a continuous kernel virtual area 1393 * @addr: base address 1394 * 1395 * Search for the kernel VM area starting at @addr, and remove it. 1396 * This function returns the found VM area, but using it is NOT safe 1397 * on SMP machines, except for its size or flags. 1398 */ 1399 struct vm_struct *remove_vm_area(const void *addr) 1400 { 1401 struct vmap_area *va; 1402 1403 va = find_vmap_area((unsigned long)addr); 1404 if (va && va->flags & VM_VM_AREA) { 1405 struct vm_struct *vm = va->vm; 1406 1407 spin_lock(&vmap_area_lock); 1408 va->vm = NULL; 1409 va->flags &= ~VM_VM_AREA; 1410 spin_unlock(&vmap_area_lock); 1411 1412 vmap_debug_free_range(va->va_start, va->va_end); 1413 free_unmap_vmap_area(va); 1414 vm->size -= PAGE_SIZE; 1415 1416 return vm; 1417 } 1418 return NULL; 1419 } 1420 1421 static void __vunmap(const void *addr, int deallocate_pages) 1422 { 1423 struct vm_struct *area; 1424 1425 if (!addr) 1426 return; 1427 1428 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1429 addr)) 1430 return; 1431 1432 area = remove_vm_area(addr); 1433 if (unlikely(!area)) { 1434 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1435 addr); 1436 return; 1437 } 1438 1439 debug_check_no_locks_freed(addr, area->size); 1440 debug_check_no_obj_freed(addr, area->size); 1441 1442 if (deallocate_pages) { 1443 int i; 1444 1445 for (i = 0; i < area->nr_pages; i++) { 1446 struct page *page = area->pages[i]; 1447 1448 BUG_ON(!page); 1449 __free_page(page); 1450 } 1451 1452 if (area->flags & VM_VPAGES) 1453 vfree(area->pages); 1454 else 1455 kfree(area->pages); 1456 } 1457 1458 kfree(area); 1459 return; 1460 } 1461 1462 /** 1463 * vfree - release memory allocated by vmalloc() 1464 * @addr: memory base address 1465 * 1466 * Free the virtually continuous memory area starting at @addr, as 1467 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1468 * NULL, no operation is performed. 1469 * 1470 * Must not be called in NMI context (strictly speaking, only if we don't 1471 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1472 * conventions for vfree() arch-depenedent would be a really bad idea) 1473 * 1474 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) 1475 */ 1476 void vfree(const void *addr) 1477 { 1478 BUG_ON(in_nmi()); 1479 1480 kmemleak_free(addr); 1481 1482 if (!addr) 1483 return; 1484 if (unlikely(in_interrupt())) { 1485 struct vfree_deferred *p = &__get_cpu_var(vfree_deferred); 1486 if (llist_add((struct llist_node *)addr, &p->list)) 1487 schedule_work(&p->wq); 1488 } else 1489 __vunmap(addr, 1); 1490 } 1491 EXPORT_SYMBOL(vfree); 1492 1493 /** 1494 * vunmap - release virtual mapping obtained by vmap() 1495 * @addr: memory base address 1496 * 1497 * Free the virtually contiguous memory area starting at @addr, 1498 * which was created from the page array passed to vmap(). 1499 * 1500 * Must not be called in interrupt context. 1501 */ 1502 void vunmap(const void *addr) 1503 { 1504 BUG_ON(in_interrupt()); 1505 might_sleep(); 1506 if (addr) 1507 __vunmap(addr, 0); 1508 } 1509 EXPORT_SYMBOL(vunmap); 1510 1511 /** 1512 * vmap - map an array of pages into virtually contiguous space 1513 * @pages: array of page pointers 1514 * @count: number of pages to map 1515 * @flags: vm_area->flags 1516 * @prot: page protection for the mapping 1517 * 1518 * Maps @count pages from @pages into contiguous kernel virtual 1519 * space. 1520 */ 1521 void *vmap(struct page **pages, unsigned int count, 1522 unsigned long flags, pgprot_t prot) 1523 { 1524 struct vm_struct *area; 1525 1526 might_sleep(); 1527 1528 if (count > totalram_pages) 1529 return NULL; 1530 1531 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1532 __builtin_return_address(0)); 1533 if (!area) 1534 return NULL; 1535 1536 if (map_vm_area(area, prot, &pages)) { 1537 vunmap(area->addr); 1538 return NULL; 1539 } 1540 1541 return area->addr; 1542 } 1543 EXPORT_SYMBOL(vmap); 1544 1545 static void *__vmalloc_node(unsigned long size, unsigned long align, 1546 gfp_t gfp_mask, pgprot_t prot, 1547 int node, const void *caller); 1548 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1549 pgprot_t prot, int node, const void *caller) 1550 { 1551 const int order = 0; 1552 struct page **pages; 1553 unsigned int nr_pages, array_size, i; 1554 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1555 1556 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1557 array_size = (nr_pages * sizeof(struct page *)); 1558 1559 area->nr_pages = nr_pages; 1560 /* Please note that the recursion is strictly bounded. */ 1561 if (array_size > PAGE_SIZE) { 1562 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1563 PAGE_KERNEL, node, caller); 1564 area->flags |= VM_VPAGES; 1565 } else { 1566 pages = kmalloc_node(array_size, nested_gfp, node); 1567 } 1568 area->pages = pages; 1569 area->caller = caller; 1570 if (!area->pages) { 1571 remove_vm_area(area->addr); 1572 kfree(area); 1573 return NULL; 1574 } 1575 1576 for (i = 0; i < area->nr_pages; i++) { 1577 struct page *page; 1578 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; 1579 1580 if (node < 0) 1581 page = alloc_page(tmp_mask); 1582 else 1583 page = alloc_pages_node(node, tmp_mask, order); 1584 1585 if (unlikely(!page)) { 1586 /* Successfully allocated i pages, free them in __vunmap() */ 1587 area->nr_pages = i; 1588 goto fail; 1589 } 1590 area->pages[i] = page; 1591 } 1592 1593 if (map_vm_area(area, prot, &pages)) 1594 goto fail; 1595 return area->addr; 1596 1597 fail: 1598 warn_alloc_failed(gfp_mask, order, 1599 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1600 (area->nr_pages*PAGE_SIZE), area->size); 1601 vfree(area->addr); 1602 return NULL; 1603 } 1604 1605 /** 1606 * __vmalloc_node_range - allocate virtually contiguous memory 1607 * @size: allocation size 1608 * @align: desired alignment 1609 * @start: vm area range start 1610 * @end: vm area range end 1611 * @gfp_mask: flags for the page level allocator 1612 * @prot: protection mask for the allocated pages 1613 * @node: node to use for allocation or NUMA_NO_NODE 1614 * @caller: caller's return address 1615 * 1616 * Allocate enough pages to cover @size from the page level 1617 * allocator with @gfp_mask flags. Map them into contiguous 1618 * kernel virtual space, using a pagetable protection of @prot. 1619 */ 1620 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1621 unsigned long start, unsigned long end, gfp_t gfp_mask, 1622 pgprot_t prot, int node, const void *caller) 1623 { 1624 struct vm_struct *area; 1625 void *addr; 1626 unsigned long real_size = size; 1627 1628 size = PAGE_ALIGN(size); 1629 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1630 goto fail; 1631 1632 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED, 1633 start, end, node, gfp_mask, caller); 1634 if (!area) 1635 goto fail; 1636 1637 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1638 if (!addr) 1639 goto fail; 1640 1641 /* 1642 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1643 * flag. It means that vm_struct is not fully initialized. 1644 * Now, it is fully initialized, so remove this flag here. 1645 */ 1646 clear_vm_uninitialized_flag(area); 1647 1648 /* 1649 * A ref_count = 3 is needed because the vm_struct and vmap_area 1650 * structures allocated in the __get_vm_area_node() function contain 1651 * references to the virtual address of the vmalloc'ed block. 1652 */ 1653 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1654 1655 return addr; 1656 1657 fail: 1658 warn_alloc_failed(gfp_mask, 0, 1659 "vmalloc: allocation failure: %lu bytes\n", 1660 real_size); 1661 return NULL; 1662 } 1663 1664 /** 1665 * __vmalloc_node - allocate virtually contiguous memory 1666 * @size: allocation size 1667 * @align: desired alignment 1668 * @gfp_mask: flags for the page level allocator 1669 * @prot: protection mask for the allocated pages 1670 * @node: node to use for allocation or NUMA_NO_NODE 1671 * @caller: caller's return address 1672 * 1673 * Allocate enough pages to cover @size from the page level 1674 * allocator with @gfp_mask flags. Map them into contiguous 1675 * kernel virtual space, using a pagetable protection of @prot. 1676 */ 1677 static void *__vmalloc_node(unsigned long size, unsigned long align, 1678 gfp_t gfp_mask, pgprot_t prot, 1679 int node, const void *caller) 1680 { 1681 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1682 gfp_mask, prot, node, caller); 1683 } 1684 1685 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1686 { 1687 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1688 __builtin_return_address(0)); 1689 } 1690 EXPORT_SYMBOL(__vmalloc); 1691 1692 static inline void *__vmalloc_node_flags(unsigned long size, 1693 int node, gfp_t flags) 1694 { 1695 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1696 node, __builtin_return_address(0)); 1697 } 1698 1699 /** 1700 * vmalloc - allocate virtually contiguous memory 1701 * @size: allocation size 1702 * Allocate enough pages to cover @size from the page level 1703 * allocator and map them into contiguous kernel virtual space. 1704 * 1705 * For tight control over page level allocator and protection flags 1706 * use __vmalloc() instead. 1707 */ 1708 void *vmalloc(unsigned long size) 1709 { 1710 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1711 GFP_KERNEL | __GFP_HIGHMEM); 1712 } 1713 EXPORT_SYMBOL(vmalloc); 1714 1715 /** 1716 * vzalloc - allocate virtually contiguous memory with zero fill 1717 * @size: allocation size 1718 * Allocate enough pages to cover @size from the page level 1719 * allocator and map them into contiguous kernel virtual space. 1720 * The memory allocated is set to zero. 1721 * 1722 * For tight control over page level allocator and protection flags 1723 * use __vmalloc() instead. 1724 */ 1725 void *vzalloc(unsigned long size) 1726 { 1727 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1728 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1729 } 1730 EXPORT_SYMBOL(vzalloc); 1731 1732 /** 1733 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1734 * @size: allocation size 1735 * 1736 * The resulting memory area is zeroed so it can be mapped to userspace 1737 * without leaking data. 1738 */ 1739 void *vmalloc_user(unsigned long size) 1740 { 1741 struct vm_struct *area; 1742 void *ret; 1743 1744 ret = __vmalloc_node(size, SHMLBA, 1745 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1746 PAGE_KERNEL, NUMA_NO_NODE, 1747 __builtin_return_address(0)); 1748 if (ret) { 1749 area = find_vm_area(ret); 1750 area->flags |= VM_USERMAP; 1751 } 1752 return ret; 1753 } 1754 EXPORT_SYMBOL(vmalloc_user); 1755 1756 /** 1757 * vmalloc_node - allocate memory on a specific node 1758 * @size: allocation size 1759 * @node: numa node 1760 * 1761 * Allocate enough pages to cover @size from the page level 1762 * allocator and map them into contiguous kernel virtual space. 1763 * 1764 * For tight control over page level allocator and protection flags 1765 * use __vmalloc() instead. 1766 */ 1767 void *vmalloc_node(unsigned long size, int node) 1768 { 1769 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1770 node, __builtin_return_address(0)); 1771 } 1772 EXPORT_SYMBOL(vmalloc_node); 1773 1774 /** 1775 * vzalloc_node - allocate memory on a specific node with zero fill 1776 * @size: allocation size 1777 * @node: numa node 1778 * 1779 * Allocate enough pages to cover @size from the page level 1780 * allocator and map them into contiguous kernel virtual space. 1781 * The memory allocated is set to zero. 1782 * 1783 * For tight control over page level allocator and protection flags 1784 * use __vmalloc_node() instead. 1785 */ 1786 void *vzalloc_node(unsigned long size, int node) 1787 { 1788 return __vmalloc_node_flags(size, node, 1789 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1790 } 1791 EXPORT_SYMBOL(vzalloc_node); 1792 1793 #ifndef PAGE_KERNEL_EXEC 1794 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1795 #endif 1796 1797 /** 1798 * vmalloc_exec - allocate virtually contiguous, executable memory 1799 * @size: allocation size 1800 * 1801 * Kernel-internal function to allocate enough pages to cover @size 1802 * the page level allocator and map them into contiguous and 1803 * executable kernel virtual space. 1804 * 1805 * For tight control over page level allocator and protection flags 1806 * use __vmalloc() instead. 1807 */ 1808 1809 void *vmalloc_exec(unsigned long size) 1810 { 1811 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1812 NUMA_NO_NODE, __builtin_return_address(0)); 1813 } 1814 1815 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1816 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1817 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1818 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1819 #else 1820 #define GFP_VMALLOC32 GFP_KERNEL 1821 #endif 1822 1823 /** 1824 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1825 * @size: allocation size 1826 * 1827 * Allocate enough 32bit PA addressable pages to cover @size from the 1828 * page level allocator and map them into contiguous kernel virtual space. 1829 */ 1830 void *vmalloc_32(unsigned long size) 1831 { 1832 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1833 NUMA_NO_NODE, __builtin_return_address(0)); 1834 } 1835 EXPORT_SYMBOL(vmalloc_32); 1836 1837 /** 1838 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1839 * @size: allocation size 1840 * 1841 * The resulting memory area is 32bit addressable and zeroed so it can be 1842 * mapped to userspace without leaking data. 1843 */ 1844 void *vmalloc_32_user(unsigned long size) 1845 { 1846 struct vm_struct *area; 1847 void *ret; 1848 1849 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1850 NUMA_NO_NODE, __builtin_return_address(0)); 1851 if (ret) { 1852 area = find_vm_area(ret); 1853 area->flags |= VM_USERMAP; 1854 } 1855 return ret; 1856 } 1857 EXPORT_SYMBOL(vmalloc_32_user); 1858 1859 /* 1860 * small helper routine , copy contents to buf from addr. 1861 * If the page is not present, fill zero. 1862 */ 1863 1864 static int aligned_vread(char *buf, char *addr, unsigned long count) 1865 { 1866 struct page *p; 1867 int copied = 0; 1868 1869 while (count) { 1870 unsigned long offset, length; 1871 1872 offset = (unsigned long)addr & ~PAGE_MASK; 1873 length = PAGE_SIZE - offset; 1874 if (length > count) 1875 length = count; 1876 p = vmalloc_to_page(addr); 1877 /* 1878 * To do safe access to this _mapped_ area, we need 1879 * lock. But adding lock here means that we need to add 1880 * overhead of vmalloc()/vfree() calles for this _debug_ 1881 * interface, rarely used. Instead of that, we'll use 1882 * kmap() and get small overhead in this access function. 1883 */ 1884 if (p) { 1885 /* 1886 * we can expect USER0 is not used (see vread/vwrite's 1887 * function description) 1888 */ 1889 void *map = kmap_atomic(p); 1890 memcpy(buf, map + offset, length); 1891 kunmap_atomic(map); 1892 } else 1893 memset(buf, 0, length); 1894 1895 addr += length; 1896 buf += length; 1897 copied += length; 1898 count -= length; 1899 } 1900 return copied; 1901 } 1902 1903 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1904 { 1905 struct page *p; 1906 int copied = 0; 1907 1908 while (count) { 1909 unsigned long offset, length; 1910 1911 offset = (unsigned long)addr & ~PAGE_MASK; 1912 length = PAGE_SIZE - offset; 1913 if (length > count) 1914 length = count; 1915 p = vmalloc_to_page(addr); 1916 /* 1917 * To do safe access to this _mapped_ area, we need 1918 * lock. But adding lock here means that we need to add 1919 * overhead of vmalloc()/vfree() calles for this _debug_ 1920 * interface, rarely used. Instead of that, we'll use 1921 * kmap() and get small overhead in this access function. 1922 */ 1923 if (p) { 1924 /* 1925 * we can expect USER0 is not used (see vread/vwrite's 1926 * function description) 1927 */ 1928 void *map = kmap_atomic(p); 1929 memcpy(map + offset, buf, length); 1930 kunmap_atomic(map); 1931 } 1932 addr += length; 1933 buf += length; 1934 copied += length; 1935 count -= length; 1936 } 1937 return copied; 1938 } 1939 1940 /** 1941 * vread() - read vmalloc area in a safe way. 1942 * @buf: buffer for reading data 1943 * @addr: vm address. 1944 * @count: number of bytes to be read. 1945 * 1946 * Returns # of bytes which addr and buf should be increased. 1947 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1948 * includes any intersect with alive vmalloc area. 1949 * 1950 * This function checks that addr is a valid vmalloc'ed area, and 1951 * copy data from that area to a given buffer. If the given memory range 1952 * of [addr...addr+count) includes some valid address, data is copied to 1953 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1954 * IOREMAP area is treated as memory hole and no copy is done. 1955 * 1956 * If [addr...addr+count) doesn't includes any intersects with alive 1957 * vm_struct area, returns 0. @buf should be kernel's buffer. 1958 * 1959 * Note: In usual ops, vread() is never necessary because the caller 1960 * should know vmalloc() area is valid and can use memcpy(). 1961 * This is for routines which have to access vmalloc area without 1962 * any informaion, as /dev/kmem. 1963 * 1964 */ 1965 1966 long vread(char *buf, char *addr, unsigned long count) 1967 { 1968 struct vmap_area *va; 1969 struct vm_struct *vm; 1970 char *vaddr, *buf_start = buf; 1971 unsigned long buflen = count; 1972 unsigned long n; 1973 1974 /* Don't allow overflow */ 1975 if ((unsigned long) addr + count < count) 1976 count = -(unsigned long) addr; 1977 1978 spin_lock(&vmap_area_lock); 1979 list_for_each_entry(va, &vmap_area_list, list) { 1980 if (!count) 1981 break; 1982 1983 if (!(va->flags & VM_VM_AREA)) 1984 continue; 1985 1986 vm = va->vm; 1987 vaddr = (char *) vm->addr; 1988 if (addr >= vaddr + get_vm_area_size(vm)) 1989 continue; 1990 while (addr < vaddr) { 1991 if (count == 0) 1992 goto finished; 1993 *buf = '\0'; 1994 buf++; 1995 addr++; 1996 count--; 1997 } 1998 n = vaddr + get_vm_area_size(vm) - addr; 1999 if (n > count) 2000 n = count; 2001 if (!(vm->flags & VM_IOREMAP)) 2002 aligned_vread(buf, addr, n); 2003 else /* IOREMAP area is treated as memory hole */ 2004 memset(buf, 0, n); 2005 buf += n; 2006 addr += n; 2007 count -= n; 2008 } 2009 finished: 2010 spin_unlock(&vmap_area_lock); 2011 2012 if (buf == buf_start) 2013 return 0; 2014 /* zero-fill memory holes */ 2015 if (buf != buf_start + buflen) 2016 memset(buf, 0, buflen - (buf - buf_start)); 2017 2018 return buflen; 2019 } 2020 2021 /** 2022 * vwrite() - write vmalloc area in a safe way. 2023 * @buf: buffer for source data 2024 * @addr: vm address. 2025 * @count: number of bytes to be read. 2026 * 2027 * Returns # of bytes which addr and buf should be incresed. 2028 * (same number to @count). 2029 * If [addr...addr+count) doesn't includes any intersect with valid 2030 * vmalloc area, returns 0. 2031 * 2032 * This function checks that addr is a valid vmalloc'ed area, and 2033 * copy data from a buffer to the given addr. If specified range of 2034 * [addr...addr+count) includes some valid address, data is copied from 2035 * proper area of @buf. If there are memory holes, no copy to hole. 2036 * IOREMAP area is treated as memory hole and no copy is done. 2037 * 2038 * If [addr...addr+count) doesn't includes any intersects with alive 2039 * vm_struct area, returns 0. @buf should be kernel's buffer. 2040 * 2041 * Note: In usual ops, vwrite() is never necessary because the caller 2042 * should know vmalloc() area is valid and can use memcpy(). 2043 * This is for routines which have to access vmalloc area without 2044 * any informaion, as /dev/kmem. 2045 */ 2046 2047 long vwrite(char *buf, char *addr, unsigned long count) 2048 { 2049 struct vmap_area *va; 2050 struct vm_struct *vm; 2051 char *vaddr; 2052 unsigned long n, buflen; 2053 int copied = 0; 2054 2055 /* Don't allow overflow */ 2056 if ((unsigned long) addr + count < count) 2057 count = -(unsigned long) addr; 2058 buflen = count; 2059 2060 spin_lock(&vmap_area_lock); 2061 list_for_each_entry(va, &vmap_area_list, list) { 2062 if (!count) 2063 break; 2064 2065 if (!(va->flags & VM_VM_AREA)) 2066 continue; 2067 2068 vm = va->vm; 2069 vaddr = (char *) vm->addr; 2070 if (addr >= vaddr + get_vm_area_size(vm)) 2071 continue; 2072 while (addr < vaddr) { 2073 if (count == 0) 2074 goto finished; 2075 buf++; 2076 addr++; 2077 count--; 2078 } 2079 n = vaddr + get_vm_area_size(vm) - addr; 2080 if (n > count) 2081 n = count; 2082 if (!(vm->flags & VM_IOREMAP)) { 2083 aligned_vwrite(buf, addr, n); 2084 copied++; 2085 } 2086 buf += n; 2087 addr += n; 2088 count -= n; 2089 } 2090 finished: 2091 spin_unlock(&vmap_area_lock); 2092 if (!copied) 2093 return 0; 2094 return buflen; 2095 } 2096 2097 /** 2098 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2099 * @vma: vma to cover 2100 * @uaddr: target user address to start at 2101 * @kaddr: virtual address of vmalloc kernel memory 2102 * @size: size of map area 2103 * 2104 * Returns: 0 for success, -Exxx on failure 2105 * 2106 * This function checks that @kaddr is a valid vmalloc'ed area, 2107 * and that it is big enough to cover the range starting at 2108 * @uaddr in @vma. Will return failure if that criteria isn't 2109 * met. 2110 * 2111 * Similar to remap_pfn_range() (see mm/memory.c) 2112 */ 2113 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2114 void *kaddr, unsigned long size) 2115 { 2116 struct vm_struct *area; 2117 2118 size = PAGE_ALIGN(size); 2119 2120 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2121 return -EINVAL; 2122 2123 area = find_vm_area(kaddr); 2124 if (!area) 2125 return -EINVAL; 2126 2127 if (!(area->flags & VM_USERMAP)) 2128 return -EINVAL; 2129 2130 if (kaddr + size > area->addr + area->size) 2131 return -EINVAL; 2132 2133 do { 2134 struct page *page = vmalloc_to_page(kaddr); 2135 int ret; 2136 2137 ret = vm_insert_page(vma, uaddr, page); 2138 if (ret) 2139 return ret; 2140 2141 uaddr += PAGE_SIZE; 2142 kaddr += PAGE_SIZE; 2143 size -= PAGE_SIZE; 2144 } while (size > 0); 2145 2146 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2147 2148 return 0; 2149 } 2150 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2151 2152 /** 2153 * remap_vmalloc_range - map vmalloc pages to userspace 2154 * @vma: vma to cover (map full range of vma) 2155 * @addr: vmalloc memory 2156 * @pgoff: number of pages into addr before first page to map 2157 * 2158 * Returns: 0 for success, -Exxx on failure 2159 * 2160 * This function checks that addr is a valid vmalloc'ed area, and 2161 * that it is big enough to cover the vma. Will return failure if 2162 * that criteria isn't met. 2163 * 2164 * Similar to remap_pfn_range() (see mm/memory.c) 2165 */ 2166 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2167 unsigned long pgoff) 2168 { 2169 return remap_vmalloc_range_partial(vma, vma->vm_start, 2170 addr + (pgoff << PAGE_SHIFT), 2171 vma->vm_end - vma->vm_start); 2172 } 2173 EXPORT_SYMBOL(remap_vmalloc_range); 2174 2175 /* 2176 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2177 * have one. 2178 */ 2179 void __attribute__((weak)) vmalloc_sync_all(void) 2180 { 2181 } 2182 2183 2184 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2185 { 2186 pte_t ***p = data; 2187 2188 if (p) { 2189 *(*p) = pte; 2190 (*p)++; 2191 } 2192 return 0; 2193 } 2194 2195 /** 2196 * alloc_vm_area - allocate a range of kernel address space 2197 * @size: size of the area 2198 * @ptes: returns the PTEs for the address space 2199 * 2200 * Returns: NULL on failure, vm_struct on success 2201 * 2202 * This function reserves a range of kernel address space, and 2203 * allocates pagetables to map that range. No actual mappings 2204 * are created. 2205 * 2206 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2207 * allocated for the VM area are returned. 2208 */ 2209 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2210 { 2211 struct vm_struct *area; 2212 2213 area = get_vm_area_caller(size, VM_IOREMAP, 2214 __builtin_return_address(0)); 2215 if (area == NULL) 2216 return NULL; 2217 2218 /* 2219 * This ensures that page tables are constructed for this region 2220 * of kernel virtual address space and mapped into init_mm. 2221 */ 2222 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2223 size, f, ptes ? &ptes : NULL)) { 2224 free_vm_area(area); 2225 return NULL; 2226 } 2227 2228 return area; 2229 } 2230 EXPORT_SYMBOL_GPL(alloc_vm_area); 2231 2232 void free_vm_area(struct vm_struct *area) 2233 { 2234 struct vm_struct *ret; 2235 ret = remove_vm_area(area->addr); 2236 BUG_ON(ret != area); 2237 kfree(area); 2238 } 2239 EXPORT_SYMBOL_GPL(free_vm_area); 2240 2241 #ifdef CONFIG_SMP 2242 static struct vmap_area *node_to_va(struct rb_node *n) 2243 { 2244 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2245 } 2246 2247 /** 2248 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2249 * @end: target address 2250 * @pnext: out arg for the next vmap_area 2251 * @pprev: out arg for the previous vmap_area 2252 * 2253 * Returns: %true if either or both of next and prev are found, 2254 * %false if no vmap_area exists 2255 * 2256 * Find vmap_areas end addresses of which enclose @end. ie. if not 2257 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2258 */ 2259 static bool pvm_find_next_prev(unsigned long end, 2260 struct vmap_area **pnext, 2261 struct vmap_area **pprev) 2262 { 2263 struct rb_node *n = vmap_area_root.rb_node; 2264 struct vmap_area *va = NULL; 2265 2266 while (n) { 2267 va = rb_entry(n, struct vmap_area, rb_node); 2268 if (end < va->va_end) 2269 n = n->rb_left; 2270 else if (end > va->va_end) 2271 n = n->rb_right; 2272 else 2273 break; 2274 } 2275 2276 if (!va) 2277 return false; 2278 2279 if (va->va_end > end) { 2280 *pnext = va; 2281 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2282 } else { 2283 *pprev = va; 2284 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2285 } 2286 return true; 2287 } 2288 2289 /** 2290 * pvm_determine_end - find the highest aligned address between two vmap_areas 2291 * @pnext: in/out arg for the next vmap_area 2292 * @pprev: in/out arg for the previous vmap_area 2293 * @align: alignment 2294 * 2295 * Returns: determined end address 2296 * 2297 * Find the highest aligned address between *@pnext and *@pprev below 2298 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2299 * down address is between the end addresses of the two vmap_areas. 2300 * 2301 * Please note that the address returned by this function may fall 2302 * inside *@pnext vmap_area. The caller is responsible for checking 2303 * that. 2304 */ 2305 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2306 struct vmap_area **pprev, 2307 unsigned long align) 2308 { 2309 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2310 unsigned long addr; 2311 2312 if (*pnext) 2313 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2314 else 2315 addr = vmalloc_end; 2316 2317 while (*pprev && (*pprev)->va_end > addr) { 2318 *pnext = *pprev; 2319 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2320 } 2321 2322 return addr; 2323 } 2324 2325 /** 2326 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2327 * @offsets: array containing offset of each area 2328 * @sizes: array containing size of each area 2329 * @nr_vms: the number of areas to allocate 2330 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2331 * 2332 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2333 * vm_structs on success, %NULL on failure 2334 * 2335 * Percpu allocator wants to use congruent vm areas so that it can 2336 * maintain the offsets among percpu areas. This function allocates 2337 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2338 * be scattered pretty far, distance between two areas easily going up 2339 * to gigabytes. To avoid interacting with regular vmallocs, these 2340 * areas are allocated from top. 2341 * 2342 * Despite its complicated look, this allocator is rather simple. It 2343 * does everything top-down and scans areas from the end looking for 2344 * matching slot. While scanning, if any of the areas overlaps with 2345 * existing vmap_area, the base address is pulled down to fit the 2346 * area. Scanning is repeated till all the areas fit and then all 2347 * necessary data structres are inserted and the result is returned. 2348 */ 2349 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2350 const size_t *sizes, int nr_vms, 2351 size_t align) 2352 { 2353 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2354 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2355 struct vmap_area **vas, *prev, *next; 2356 struct vm_struct **vms; 2357 int area, area2, last_area, term_area; 2358 unsigned long base, start, end, last_end; 2359 bool purged = false; 2360 2361 /* verify parameters and allocate data structures */ 2362 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2363 for (last_area = 0, area = 0; area < nr_vms; area++) { 2364 start = offsets[area]; 2365 end = start + sizes[area]; 2366 2367 /* is everything aligned properly? */ 2368 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2369 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2370 2371 /* detect the area with the highest address */ 2372 if (start > offsets[last_area]) 2373 last_area = area; 2374 2375 for (area2 = 0; area2 < nr_vms; area2++) { 2376 unsigned long start2 = offsets[area2]; 2377 unsigned long end2 = start2 + sizes[area2]; 2378 2379 if (area2 == area) 2380 continue; 2381 2382 BUG_ON(start2 >= start && start2 < end); 2383 BUG_ON(end2 <= end && end2 > start); 2384 } 2385 } 2386 last_end = offsets[last_area] + sizes[last_area]; 2387 2388 if (vmalloc_end - vmalloc_start < last_end) { 2389 WARN_ON(true); 2390 return NULL; 2391 } 2392 2393 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2394 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2395 if (!vas || !vms) 2396 goto err_free2; 2397 2398 for (area = 0; area < nr_vms; area++) { 2399 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2400 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2401 if (!vas[area] || !vms[area]) 2402 goto err_free; 2403 } 2404 retry: 2405 spin_lock(&vmap_area_lock); 2406 2407 /* start scanning - we scan from the top, begin with the last area */ 2408 area = term_area = last_area; 2409 start = offsets[area]; 2410 end = start + sizes[area]; 2411 2412 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2413 base = vmalloc_end - last_end; 2414 goto found; 2415 } 2416 base = pvm_determine_end(&next, &prev, align) - end; 2417 2418 while (true) { 2419 BUG_ON(next && next->va_end <= base + end); 2420 BUG_ON(prev && prev->va_end > base + end); 2421 2422 /* 2423 * base might have underflowed, add last_end before 2424 * comparing. 2425 */ 2426 if (base + last_end < vmalloc_start + last_end) { 2427 spin_unlock(&vmap_area_lock); 2428 if (!purged) { 2429 purge_vmap_area_lazy(); 2430 purged = true; 2431 goto retry; 2432 } 2433 goto err_free; 2434 } 2435 2436 /* 2437 * If next overlaps, move base downwards so that it's 2438 * right below next and then recheck. 2439 */ 2440 if (next && next->va_start < base + end) { 2441 base = pvm_determine_end(&next, &prev, align) - end; 2442 term_area = area; 2443 continue; 2444 } 2445 2446 /* 2447 * If prev overlaps, shift down next and prev and move 2448 * base so that it's right below new next and then 2449 * recheck. 2450 */ 2451 if (prev && prev->va_end > base + start) { 2452 next = prev; 2453 prev = node_to_va(rb_prev(&next->rb_node)); 2454 base = pvm_determine_end(&next, &prev, align) - end; 2455 term_area = area; 2456 continue; 2457 } 2458 2459 /* 2460 * This area fits, move on to the previous one. If 2461 * the previous one is the terminal one, we're done. 2462 */ 2463 area = (area + nr_vms - 1) % nr_vms; 2464 if (area == term_area) 2465 break; 2466 start = offsets[area]; 2467 end = start + sizes[area]; 2468 pvm_find_next_prev(base + end, &next, &prev); 2469 } 2470 found: 2471 /* we've found a fitting base, insert all va's */ 2472 for (area = 0; area < nr_vms; area++) { 2473 struct vmap_area *va = vas[area]; 2474 2475 va->va_start = base + offsets[area]; 2476 va->va_end = va->va_start + sizes[area]; 2477 __insert_vmap_area(va); 2478 } 2479 2480 vmap_area_pcpu_hole = base + offsets[last_area]; 2481 2482 spin_unlock(&vmap_area_lock); 2483 2484 /* insert all vm's */ 2485 for (area = 0; area < nr_vms; area++) 2486 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2487 pcpu_get_vm_areas); 2488 2489 kfree(vas); 2490 return vms; 2491 2492 err_free: 2493 for (area = 0; area < nr_vms; area++) { 2494 kfree(vas[area]); 2495 kfree(vms[area]); 2496 } 2497 err_free2: 2498 kfree(vas); 2499 kfree(vms); 2500 return NULL; 2501 } 2502 2503 /** 2504 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2505 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2506 * @nr_vms: the number of allocated areas 2507 * 2508 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2509 */ 2510 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2511 { 2512 int i; 2513 2514 for (i = 0; i < nr_vms; i++) 2515 free_vm_area(vms[i]); 2516 kfree(vms); 2517 } 2518 #endif /* CONFIG_SMP */ 2519 2520 #ifdef CONFIG_PROC_FS 2521 static void *s_start(struct seq_file *m, loff_t *pos) 2522 __acquires(&vmap_area_lock) 2523 { 2524 loff_t n = *pos; 2525 struct vmap_area *va; 2526 2527 spin_lock(&vmap_area_lock); 2528 va = list_entry((&vmap_area_list)->next, typeof(*va), list); 2529 while (n > 0 && &va->list != &vmap_area_list) { 2530 n--; 2531 va = list_entry(va->list.next, typeof(*va), list); 2532 } 2533 if (!n && &va->list != &vmap_area_list) 2534 return va; 2535 2536 return NULL; 2537 2538 } 2539 2540 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2541 { 2542 struct vmap_area *va = p, *next; 2543 2544 ++*pos; 2545 next = list_entry(va->list.next, typeof(*va), list); 2546 if (&next->list != &vmap_area_list) 2547 return next; 2548 2549 return NULL; 2550 } 2551 2552 static void s_stop(struct seq_file *m, void *p) 2553 __releases(&vmap_area_lock) 2554 { 2555 spin_unlock(&vmap_area_lock); 2556 } 2557 2558 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2559 { 2560 if (IS_ENABLED(CONFIG_NUMA)) { 2561 unsigned int nr, *counters = m->private; 2562 2563 if (!counters) 2564 return; 2565 2566 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2567 2568 for (nr = 0; nr < v->nr_pages; nr++) 2569 counters[page_to_nid(v->pages[nr])]++; 2570 2571 for_each_node_state(nr, N_HIGH_MEMORY) 2572 if (counters[nr]) 2573 seq_printf(m, " N%u=%u", nr, counters[nr]); 2574 } 2575 } 2576 2577 static int s_show(struct seq_file *m, void *p) 2578 { 2579 struct vmap_area *va = p; 2580 struct vm_struct *v; 2581 2582 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) 2583 return 0; 2584 2585 if (!(va->flags & VM_VM_AREA)) { 2586 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 2587 (void *)va->va_start, (void *)va->va_end, 2588 va->va_end - va->va_start); 2589 return 0; 2590 } 2591 2592 v = va->vm; 2593 2594 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2595 smp_rmb(); 2596 if (v->flags & VM_UNINITIALIZED) 2597 return 0; 2598 2599 seq_printf(m, "0x%pK-0x%pK %7ld", 2600 v->addr, v->addr + v->size, v->size); 2601 2602 if (v->caller) 2603 seq_printf(m, " %pS", v->caller); 2604 2605 if (v->nr_pages) 2606 seq_printf(m, " pages=%d", v->nr_pages); 2607 2608 if (v->phys_addr) 2609 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2610 2611 if (v->flags & VM_IOREMAP) 2612 seq_printf(m, " ioremap"); 2613 2614 if (v->flags & VM_ALLOC) 2615 seq_printf(m, " vmalloc"); 2616 2617 if (v->flags & VM_MAP) 2618 seq_printf(m, " vmap"); 2619 2620 if (v->flags & VM_USERMAP) 2621 seq_printf(m, " user"); 2622 2623 if (v->flags & VM_VPAGES) 2624 seq_printf(m, " vpages"); 2625 2626 show_numa_info(m, v); 2627 seq_putc(m, '\n'); 2628 return 0; 2629 } 2630 2631 static const struct seq_operations vmalloc_op = { 2632 .start = s_start, 2633 .next = s_next, 2634 .stop = s_stop, 2635 .show = s_show, 2636 }; 2637 2638 static int vmalloc_open(struct inode *inode, struct file *file) 2639 { 2640 unsigned int *ptr = NULL; 2641 int ret; 2642 2643 if (IS_ENABLED(CONFIG_NUMA)) { 2644 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2645 if (ptr == NULL) 2646 return -ENOMEM; 2647 } 2648 ret = seq_open(file, &vmalloc_op); 2649 if (!ret) { 2650 struct seq_file *m = file->private_data; 2651 m->private = ptr; 2652 } else 2653 kfree(ptr); 2654 return ret; 2655 } 2656 2657 static const struct file_operations proc_vmalloc_operations = { 2658 .open = vmalloc_open, 2659 .read = seq_read, 2660 .llseek = seq_lseek, 2661 .release = seq_release_private, 2662 }; 2663 2664 static int __init proc_vmalloc_init(void) 2665 { 2666 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2667 return 0; 2668 } 2669 module_init(proc_vmalloc_init); 2670 2671 void get_vmalloc_info(struct vmalloc_info *vmi) 2672 { 2673 struct vmap_area *va; 2674 unsigned long free_area_size; 2675 unsigned long prev_end; 2676 2677 vmi->used = 0; 2678 vmi->largest_chunk = 0; 2679 2680 prev_end = VMALLOC_START; 2681 2682 spin_lock(&vmap_area_lock); 2683 2684 if (list_empty(&vmap_area_list)) { 2685 vmi->largest_chunk = VMALLOC_TOTAL; 2686 goto out; 2687 } 2688 2689 list_for_each_entry(va, &vmap_area_list, list) { 2690 unsigned long addr = va->va_start; 2691 2692 /* 2693 * Some archs keep another range for modules in vmalloc space 2694 */ 2695 if (addr < VMALLOC_START) 2696 continue; 2697 if (addr >= VMALLOC_END) 2698 break; 2699 2700 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) 2701 continue; 2702 2703 vmi->used += (va->va_end - va->va_start); 2704 2705 free_area_size = addr - prev_end; 2706 if (vmi->largest_chunk < free_area_size) 2707 vmi->largest_chunk = free_area_size; 2708 2709 prev_end = va->va_end; 2710 } 2711 2712 if (VMALLOC_END - prev_end > vmi->largest_chunk) 2713 vmi->largest_chunk = VMALLOC_END - prev_end; 2714 2715 out: 2716 spin_unlock(&vmap_area_lock); 2717 } 2718 #endif 2719 2720