xref: /openbmc/linux/mm/vmalloc.c (revision f42b3800)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 
18 #include <linux/vmalloc.h>
19 
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 
23 
24 DEFINE_RWLOCK(vmlist_lock);
25 struct vm_struct *vmlist;
26 
27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
28 			    int node);
29 
30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
31 {
32 	pte_t *pte;
33 
34 	pte = pte_offset_kernel(pmd, addr);
35 	do {
36 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
37 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
38 	} while (pte++, addr += PAGE_SIZE, addr != end);
39 }
40 
41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
42 						unsigned long end)
43 {
44 	pmd_t *pmd;
45 	unsigned long next;
46 
47 	pmd = pmd_offset(pud, addr);
48 	do {
49 		next = pmd_addr_end(addr, end);
50 		if (pmd_none_or_clear_bad(pmd))
51 			continue;
52 		vunmap_pte_range(pmd, addr, next);
53 	} while (pmd++, addr = next, addr != end);
54 }
55 
56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
57 						unsigned long end)
58 {
59 	pud_t *pud;
60 	unsigned long next;
61 
62 	pud = pud_offset(pgd, addr);
63 	do {
64 		next = pud_addr_end(addr, end);
65 		if (pud_none_or_clear_bad(pud))
66 			continue;
67 		vunmap_pmd_range(pud, addr, next);
68 	} while (pud++, addr = next, addr != end);
69 }
70 
71 void unmap_kernel_range(unsigned long addr, unsigned long size)
72 {
73 	pgd_t *pgd;
74 	unsigned long next;
75 	unsigned long start = addr;
76 	unsigned long end = addr + size;
77 
78 	BUG_ON(addr >= end);
79 	pgd = pgd_offset_k(addr);
80 	flush_cache_vunmap(addr, end);
81 	do {
82 		next = pgd_addr_end(addr, end);
83 		if (pgd_none_or_clear_bad(pgd))
84 			continue;
85 		vunmap_pud_range(pgd, addr, next);
86 	} while (pgd++, addr = next, addr != end);
87 	flush_tlb_kernel_range(start, end);
88 }
89 
90 static void unmap_vm_area(struct vm_struct *area)
91 {
92 	unmap_kernel_range((unsigned long)area->addr, area->size);
93 }
94 
95 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
96 			unsigned long end, pgprot_t prot, struct page ***pages)
97 {
98 	pte_t *pte;
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = **pages;
105 		WARN_ON(!pte_none(*pte));
106 		if (!page)
107 			return -ENOMEM;
108 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
109 		(*pages)++;
110 	} while (pte++, addr += PAGE_SIZE, addr != end);
111 	return 0;
112 }
113 
114 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
115 			unsigned long end, pgprot_t prot, struct page ***pages)
116 {
117 	pmd_t *pmd;
118 	unsigned long next;
119 
120 	pmd = pmd_alloc(&init_mm, pud, addr);
121 	if (!pmd)
122 		return -ENOMEM;
123 	do {
124 		next = pmd_addr_end(addr, end);
125 		if (vmap_pte_range(pmd, addr, next, prot, pages))
126 			return -ENOMEM;
127 	} while (pmd++, addr = next, addr != end);
128 	return 0;
129 }
130 
131 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
132 			unsigned long end, pgprot_t prot, struct page ***pages)
133 {
134 	pud_t *pud;
135 	unsigned long next;
136 
137 	pud = pud_alloc(&init_mm, pgd, addr);
138 	if (!pud)
139 		return -ENOMEM;
140 	do {
141 		next = pud_addr_end(addr, end);
142 		if (vmap_pmd_range(pud, addr, next, prot, pages))
143 			return -ENOMEM;
144 	} while (pud++, addr = next, addr != end);
145 	return 0;
146 }
147 
148 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
149 {
150 	pgd_t *pgd;
151 	unsigned long next;
152 	unsigned long addr = (unsigned long) area->addr;
153 	unsigned long end = addr + area->size - PAGE_SIZE;
154 	int err;
155 
156 	BUG_ON(addr >= end);
157 	pgd = pgd_offset_k(addr);
158 	do {
159 		next = pgd_addr_end(addr, end);
160 		err = vmap_pud_range(pgd, addr, next, prot, pages);
161 		if (err)
162 			break;
163 	} while (pgd++, addr = next, addr != end);
164 	flush_cache_vmap((unsigned long) area->addr, end);
165 	return err;
166 }
167 EXPORT_SYMBOL_GPL(map_vm_area);
168 
169 /*
170  * Map a vmalloc()-space virtual address to the physical page.
171  */
172 struct page *vmalloc_to_page(const void *vmalloc_addr)
173 {
174 	unsigned long addr = (unsigned long) vmalloc_addr;
175 	struct page *page = NULL;
176 	pgd_t *pgd = pgd_offset_k(addr);
177 	pud_t *pud;
178 	pmd_t *pmd;
179 	pte_t *ptep, pte;
180 
181 	if (!pgd_none(*pgd)) {
182 		pud = pud_offset(pgd, addr);
183 		if (!pud_none(*pud)) {
184 			pmd = pmd_offset(pud, addr);
185 			if (!pmd_none(*pmd)) {
186 				ptep = pte_offset_map(pmd, addr);
187 				pte = *ptep;
188 				if (pte_present(pte))
189 					page = pte_page(pte);
190 				pte_unmap(ptep);
191 			}
192 		}
193 	}
194 	return page;
195 }
196 EXPORT_SYMBOL(vmalloc_to_page);
197 
198 /*
199  * Map a vmalloc()-space virtual address to the physical page frame number.
200  */
201 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
202 {
203 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
204 }
205 EXPORT_SYMBOL(vmalloc_to_pfn);
206 
207 static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
208 					    unsigned long start, unsigned long end,
209 					    int node, gfp_t gfp_mask)
210 {
211 	struct vm_struct **p, *tmp, *area;
212 	unsigned long align = 1;
213 	unsigned long addr;
214 
215 	BUG_ON(in_interrupt());
216 	if (flags & VM_IOREMAP) {
217 		int bit = fls(size);
218 
219 		if (bit > IOREMAP_MAX_ORDER)
220 			bit = IOREMAP_MAX_ORDER;
221 		else if (bit < PAGE_SHIFT)
222 			bit = PAGE_SHIFT;
223 
224 		align = 1ul << bit;
225 	}
226 	addr = ALIGN(start, align);
227 	size = PAGE_ALIGN(size);
228 	if (unlikely(!size))
229 		return NULL;
230 
231 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
232 
233 	if (unlikely(!area))
234 		return NULL;
235 
236 	/*
237 	 * We always allocate a guard page.
238 	 */
239 	size += PAGE_SIZE;
240 
241 	write_lock(&vmlist_lock);
242 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
243 		if ((unsigned long)tmp->addr < addr) {
244 			if((unsigned long)tmp->addr + tmp->size >= addr)
245 				addr = ALIGN(tmp->size +
246 					     (unsigned long)tmp->addr, align);
247 			continue;
248 		}
249 		if ((size + addr) < addr)
250 			goto out;
251 		if (size + addr <= (unsigned long)tmp->addr)
252 			goto found;
253 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
254 		if (addr > end - size)
255 			goto out;
256 	}
257 	if ((size + addr) < addr)
258 		goto out;
259 	if (addr > end - size)
260 		goto out;
261 
262 found:
263 	area->next = *p;
264 	*p = area;
265 
266 	area->flags = flags;
267 	area->addr = (void *)addr;
268 	area->size = size;
269 	area->pages = NULL;
270 	area->nr_pages = 0;
271 	area->phys_addr = 0;
272 	write_unlock(&vmlist_lock);
273 
274 	return area;
275 
276 out:
277 	write_unlock(&vmlist_lock);
278 	kfree(area);
279 	if (printk_ratelimit())
280 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
281 	return NULL;
282 }
283 
284 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
285 				unsigned long start, unsigned long end)
286 {
287 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL);
288 }
289 EXPORT_SYMBOL_GPL(__get_vm_area);
290 
291 /**
292  *	get_vm_area  -  reserve a contiguous kernel virtual area
293  *	@size:		size of the area
294  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
295  *
296  *	Search an area of @size in the kernel virtual mapping area,
297  *	and reserved it for out purposes.  Returns the area descriptor
298  *	on success or %NULL on failure.
299  */
300 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
301 {
302 	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
303 }
304 
305 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
306 				   int node, gfp_t gfp_mask)
307 {
308 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
309 				  gfp_mask);
310 }
311 
312 /* Caller must hold vmlist_lock */
313 static struct vm_struct *__find_vm_area(const void *addr)
314 {
315 	struct vm_struct *tmp;
316 
317 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
318 		 if (tmp->addr == addr)
319 			break;
320 	}
321 
322 	return tmp;
323 }
324 
325 /* Caller must hold vmlist_lock */
326 static struct vm_struct *__remove_vm_area(const void *addr)
327 {
328 	struct vm_struct **p, *tmp;
329 
330 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
331 		 if (tmp->addr == addr)
332 			 goto found;
333 	}
334 	return NULL;
335 
336 found:
337 	unmap_vm_area(tmp);
338 	*p = tmp->next;
339 
340 	/*
341 	 * Remove the guard page.
342 	 */
343 	tmp->size -= PAGE_SIZE;
344 	return tmp;
345 }
346 
347 /**
348  *	remove_vm_area  -  find and remove a continuous kernel virtual area
349  *	@addr:		base address
350  *
351  *	Search for the kernel VM area starting at @addr, and remove it.
352  *	This function returns the found VM area, but using it is NOT safe
353  *	on SMP machines, except for its size or flags.
354  */
355 struct vm_struct *remove_vm_area(const void *addr)
356 {
357 	struct vm_struct *v;
358 	write_lock(&vmlist_lock);
359 	v = __remove_vm_area(addr);
360 	write_unlock(&vmlist_lock);
361 	return v;
362 }
363 
364 static void __vunmap(const void *addr, int deallocate_pages)
365 {
366 	struct vm_struct *area;
367 
368 	if (!addr)
369 		return;
370 
371 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
372 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
373 		WARN_ON(1);
374 		return;
375 	}
376 
377 	area = remove_vm_area(addr);
378 	if (unlikely(!area)) {
379 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
380 				addr);
381 		WARN_ON(1);
382 		return;
383 	}
384 
385 	debug_check_no_locks_freed(addr, area->size);
386 
387 	if (deallocate_pages) {
388 		int i;
389 
390 		for (i = 0; i < area->nr_pages; i++) {
391 			struct page *page = area->pages[i];
392 
393 			BUG_ON(!page);
394 			__free_page(page);
395 		}
396 
397 		if (area->flags & VM_VPAGES)
398 			vfree(area->pages);
399 		else
400 			kfree(area->pages);
401 	}
402 
403 	kfree(area);
404 	return;
405 }
406 
407 /**
408  *	vfree  -  release memory allocated by vmalloc()
409  *	@addr:		memory base address
410  *
411  *	Free the virtually continuous memory area starting at @addr, as
412  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
413  *	NULL, no operation is performed.
414  *
415  *	Must not be called in interrupt context.
416  */
417 void vfree(const void *addr)
418 {
419 	BUG_ON(in_interrupt());
420 	__vunmap(addr, 1);
421 }
422 EXPORT_SYMBOL(vfree);
423 
424 /**
425  *	vunmap  -  release virtual mapping obtained by vmap()
426  *	@addr:		memory base address
427  *
428  *	Free the virtually contiguous memory area starting at @addr,
429  *	which was created from the page array passed to vmap().
430  *
431  *	Must not be called in interrupt context.
432  */
433 void vunmap(const void *addr)
434 {
435 	BUG_ON(in_interrupt());
436 	__vunmap(addr, 0);
437 }
438 EXPORT_SYMBOL(vunmap);
439 
440 /**
441  *	vmap  -  map an array of pages into virtually contiguous space
442  *	@pages:		array of page pointers
443  *	@count:		number of pages to map
444  *	@flags:		vm_area->flags
445  *	@prot:		page protection for the mapping
446  *
447  *	Maps @count pages from @pages into contiguous kernel virtual
448  *	space.
449  */
450 void *vmap(struct page **pages, unsigned int count,
451 		unsigned long flags, pgprot_t prot)
452 {
453 	struct vm_struct *area;
454 
455 	if (count > num_physpages)
456 		return NULL;
457 
458 	area = get_vm_area((count << PAGE_SHIFT), flags);
459 	if (!area)
460 		return NULL;
461 	if (map_vm_area(area, prot, &pages)) {
462 		vunmap(area->addr);
463 		return NULL;
464 	}
465 
466 	return area->addr;
467 }
468 EXPORT_SYMBOL(vmap);
469 
470 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
471 				 pgprot_t prot, int node)
472 {
473 	struct page **pages;
474 	unsigned int nr_pages, array_size, i;
475 
476 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
477 	array_size = (nr_pages * sizeof(struct page *));
478 
479 	area->nr_pages = nr_pages;
480 	/* Please note that the recursion is strictly bounded. */
481 	if (array_size > PAGE_SIZE) {
482 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
483 					PAGE_KERNEL, node);
484 		area->flags |= VM_VPAGES;
485 	} else {
486 		pages = kmalloc_node(array_size,
487 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
488 				node);
489 	}
490 	area->pages = pages;
491 	if (!area->pages) {
492 		remove_vm_area(area->addr);
493 		kfree(area);
494 		return NULL;
495 	}
496 
497 	for (i = 0; i < area->nr_pages; i++) {
498 		struct page *page;
499 
500 		if (node < 0)
501 			page = alloc_page(gfp_mask);
502 		else
503 			page = alloc_pages_node(node, gfp_mask, 0);
504 
505 		if (unlikely(!page)) {
506 			/* Successfully allocated i pages, free them in __vunmap() */
507 			area->nr_pages = i;
508 			goto fail;
509 		}
510 		area->pages[i] = page;
511 	}
512 
513 	if (map_vm_area(area, prot, &pages))
514 		goto fail;
515 	return area->addr;
516 
517 fail:
518 	vfree(area->addr);
519 	return NULL;
520 }
521 
522 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
523 {
524 	return __vmalloc_area_node(area, gfp_mask, prot, -1);
525 }
526 
527 /**
528  *	__vmalloc_node  -  allocate virtually contiguous memory
529  *	@size:		allocation size
530  *	@gfp_mask:	flags for the page level allocator
531  *	@prot:		protection mask for the allocated pages
532  *	@node:		node to use for allocation or -1
533  *
534  *	Allocate enough pages to cover @size from the page level
535  *	allocator with @gfp_mask flags.  Map them into contiguous
536  *	kernel virtual space, using a pagetable protection of @prot.
537  */
538 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
539 			    int node)
540 {
541 	struct vm_struct *area;
542 
543 	size = PAGE_ALIGN(size);
544 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
545 		return NULL;
546 
547 	area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask);
548 	if (!area)
549 		return NULL;
550 
551 	return __vmalloc_area_node(area, gfp_mask, prot, node);
552 }
553 
554 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
555 {
556 	return __vmalloc_node(size, gfp_mask, prot, -1);
557 }
558 EXPORT_SYMBOL(__vmalloc);
559 
560 /**
561  *	vmalloc  -  allocate virtually contiguous memory
562  *	@size:		allocation size
563  *	Allocate enough pages to cover @size from the page level
564  *	allocator and map them into contiguous kernel virtual space.
565  *
566  *	For tight control over page level allocator and protection flags
567  *	use __vmalloc() instead.
568  */
569 void *vmalloc(unsigned long size)
570 {
571 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
572 }
573 EXPORT_SYMBOL(vmalloc);
574 
575 /**
576  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
577  * @size: allocation size
578  *
579  * The resulting memory area is zeroed so it can be mapped to userspace
580  * without leaking data.
581  */
582 void *vmalloc_user(unsigned long size)
583 {
584 	struct vm_struct *area;
585 	void *ret;
586 
587 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
588 	if (ret) {
589 		write_lock(&vmlist_lock);
590 		area = __find_vm_area(ret);
591 		area->flags |= VM_USERMAP;
592 		write_unlock(&vmlist_lock);
593 	}
594 	return ret;
595 }
596 EXPORT_SYMBOL(vmalloc_user);
597 
598 /**
599  *	vmalloc_node  -  allocate memory on a specific node
600  *	@size:		allocation size
601  *	@node:		numa node
602  *
603  *	Allocate enough pages to cover @size from the page level
604  *	allocator and map them into contiguous kernel virtual space.
605  *
606  *	For tight control over page level allocator and protection flags
607  *	use __vmalloc() instead.
608  */
609 void *vmalloc_node(unsigned long size, int node)
610 {
611 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
612 }
613 EXPORT_SYMBOL(vmalloc_node);
614 
615 #ifndef PAGE_KERNEL_EXEC
616 # define PAGE_KERNEL_EXEC PAGE_KERNEL
617 #endif
618 
619 /**
620  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
621  *	@size:		allocation size
622  *
623  *	Kernel-internal function to allocate enough pages to cover @size
624  *	the page level allocator and map them into contiguous and
625  *	executable kernel virtual space.
626  *
627  *	For tight control over page level allocator and protection flags
628  *	use __vmalloc() instead.
629  */
630 
631 void *vmalloc_exec(unsigned long size)
632 {
633 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
634 }
635 
636 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
637 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
638 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
639 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
640 #else
641 #define GFP_VMALLOC32 GFP_KERNEL
642 #endif
643 
644 /**
645  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
646  *	@size:		allocation size
647  *
648  *	Allocate enough 32bit PA addressable pages to cover @size from the
649  *	page level allocator and map them into contiguous kernel virtual space.
650  */
651 void *vmalloc_32(unsigned long size)
652 {
653 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
654 }
655 EXPORT_SYMBOL(vmalloc_32);
656 
657 /**
658  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
659  *	@size:		allocation size
660  *
661  * The resulting memory area is 32bit addressable and zeroed so it can be
662  * mapped to userspace without leaking data.
663  */
664 void *vmalloc_32_user(unsigned long size)
665 {
666 	struct vm_struct *area;
667 	void *ret;
668 
669 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
670 	if (ret) {
671 		write_lock(&vmlist_lock);
672 		area = __find_vm_area(ret);
673 		area->flags |= VM_USERMAP;
674 		write_unlock(&vmlist_lock);
675 	}
676 	return ret;
677 }
678 EXPORT_SYMBOL(vmalloc_32_user);
679 
680 long vread(char *buf, char *addr, unsigned long count)
681 {
682 	struct vm_struct *tmp;
683 	char *vaddr, *buf_start = buf;
684 	unsigned long n;
685 
686 	/* Don't allow overflow */
687 	if ((unsigned long) addr + count < count)
688 		count = -(unsigned long) addr;
689 
690 	read_lock(&vmlist_lock);
691 	for (tmp = vmlist; tmp; tmp = tmp->next) {
692 		vaddr = (char *) tmp->addr;
693 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
694 			continue;
695 		while (addr < vaddr) {
696 			if (count == 0)
697 				goto finished;
698 			*buf = '\0';
699 			buf++;
700 			addr++;
701 			count--;
702 		}
703 		n = vaddr + tmp->size - PAGE_SIZE - addr;
704 		do {
705 			if (count == 0)
706 				goto finished;
707 			*buf = *addr;
708 			buf++;
709 			addr++;
710 			count--;
711 		} while (--n > 0);
712 	}
713 finished:
714 	read_unlock(&vmlist_lock);
715 	return buf - buf_start;
716 }
717 
718 long vwrite(char *buf, char *addr, unsigned long count)
719 {
720 	struct vm_struct *tmp;
721 	char *vaddr, *buf_start = buf;
722 	unsigned long n;
723 
724 	/* Don't allow overflow */
725 	if ((unsigned long) addr + count < count)
726 		count = -(unsigned long) addr;
727 
728 	read_lock(&vmlist_lock);
729 	for (tmp = vmlist; tmp; tmp = tmp->next) {
730 		vaddr = (char *) tmp->addr;
731 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
732 			continue;
733 		while (addr < vaddr) {
734 			if (count == 0)
735 				goto finished;
736 			buf++;
737 			addr++;
738 			count--;
739 		}
740 		n = vaddr + tmp->size - PAGE_SIZE - addr;
741 		do {
742 			if (count == 0)
743 				goto finished;
744 			*addr = *buf;
745 			buf++;
746 			addr++;
747 			count--;
748 		} while (--n > 0);
749 	}
750 finished:
751 	read_unlock(&vmlist_lock);
752 	return buf - buf_start;
753 }
754 
755 /**
756  *	remap_vmalloc_range  -  map vmalloc pages to userspace
757  *	@vma:		vma to cover (map full range of vma)
758  *	@addr:		vmalloc memory
759  *	@pgoff:		number of pages into addr before first page to map
760  *
761  *	Returns:	0 for success, -Exxx on failure
762  *
763  *	This function checks that addr is a valid vmalloc'ed area, and
764  *	that it is big enough to cover the vma. Will return failure if
765  *	that criteria isn't met.
766  *
767  *	Similar to remap_pfn_range() (see mm/memory.c)
768  */
769 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
770 						unsigned long pgoff)
771 {
772 	struct vm_struct *area;
773 	unsigned long uaddr = vma->vm_start;
774 	unsigned long usize = vma->vm_end - vma->vm_start;
775 	int ret;
776 
777 	if ((PAGE_SIZE-1) & (unsigned long)addr)
778 		return -EINVAL;
779 
780 	read_lock(&vmlist_lock);
781 	area = __find_vm_area(addr);
782 	if (!area)
783 		goto out_einval_locked;
784 
785 	if (!(area->flags & VM_USERMAP))
786 		goto out_einval_locked;
787 
788 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
789 		goto out_einval_locked;
790 	read_unlock(&vmlist_lock);
791 
792 	addr += pgoff << PAGE_SHIFT;
793 	do {
794 		struct page *page = vmalloc_to_page(addr);
795 		ret = vm_insert_page(vma, uaddr, page);
796 		if (ret)
797 			return ret;
798 
799 		uaddr += PAGE_SIZE;
800 		addr += PAGE_SIZE;
801 		usize -= PAGE_SIZE;
802 	} while (usize > 0);
803 
804 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
805 	vma->vm_flags |= VM_RESERVED;
806 
807 	return ret;
808 
809 out_einval_locked:
810 	read_unlock(&vmlist_lock);
811 	return -EINVAL;
812 }
813 EXPORT_SYMBOL(remap_vmalloc_range);
814 
815 /*
816  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
817  * have one.
818  */
819 void  __attribute__((weak)) vmalloc_sync_all(void)
820 {
821 }
822 
823 
824 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
825 {
826 	/* apply_to_page_range() does all the hard work. */
827 	return 0;
828 }
829 
830 /**
831  *	alloc_vm_area - allocate a range of kernel address space
832  *	@size:		size of the area
833  *
834  *	Returns:	NULL on failure, vm_struct on success
835  *
836  *	This function reserves a range of kernel address space, and
837  *	allocates pagetables to map that range.  No actual mappings
838  *	are created.  If the kernel address space is not shared
839  *	between processes, it syncs the pagetable across all
840  *	processes.
841  */
842 struct vm_struct *alloc_vm_area(size_t size)
843 {
844 	struct vm_struct *area;
845 
846 	area = get_vm_area(size, VM_IOREMAP);
847 	if (area == NULL)
848 		return NULL;
849 
850 	/*
851 	 * This ensures that page tables are constructed for this region
852 	 * of kernel virtual address space and mapped into init_mm.
853 	 */
854 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
855 				area->size, f, NULL)) {
856 		free_vm_area(area);
857 		return NULL;
858 	}
859 
860 	/* Make sure the pagetables are constructed in process kernel
861 	   mappings */
862 	vmalloc_sync_all();
863 
864 	return area;
865 }
866 EXPORT_SYMBOL_GPL(alloc_vm_area);
867 
868 void free_vm_area(struct vm_struct *area)
869 {
870 	struct vm_struct *ret;
871 	ret = remove_vm_area(area->addr);
872 	BUG_ON(ret != area);
873 	kfree(area);
874 }
875 EXPORT_SYMBOL_GPL(free_vm_area);
876