1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/highmem.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 #include <linux/interrupt.h> 17 18 #include <linux/vmalloc.h> 19 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 23 24 DEFINE_RWLOCK(vmlist_lock); 25 struct vm_struct *vmlist; 26 27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 28 int node); 29 30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 31 { 32 pte_t *pte; 33 34 pte = pte_offset_kernel(pmd, addr); 35 do { 36 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 37 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 38 } while (pte++, addr += PAGE_SIZE, addr != end); 39 } 40 41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 42 unsigned long end) 43 { 44 pmd_t *pmd; 45 unsigned long next; 46 47 pmd = pmd_offset(pud, addr); 48 do { 49 next = pmd_addr_end(addr, end); 50 if (pmd_none_or_clear_bad(pmd)) 51 continue; 52 vunmap_pte_range(pmd, addr, next); 53 } while (pmd++, addr = next, addr != end); 54 } 55 56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 57 unsigned long end) 58 { 59 pud_t *pud; 60 unsigned long next; 61 62 pud = pud_offset(pgd, addr); 63 do { 64 next = pud_addr_end(addr, end); 65 if (pud_none_or_clear_bad(pud)) 66 continue; 67 vunmap_pmd_range(pud, addr, next); 68 } while (pud++, addr = next, addr != end); 69 } 70 71 void unmap_kernel_range(unsigned long addr, unsigned long size) 72 { 73 pgd_t *pgd; 74 unsigned long next; 75 unsigned long start = addr; 76 unsigned long end = addr + size; 77 78 BUG_ON(addr >= end); 79 pgd = pgd_offset_k(addr); 80 flush_cache_vunmap(addr, end); 81 do { 82 next = pgd_addr_end(addr, end); 83 if (pgd_none_or_clear_bad(pgd)) 84 continue; 85 vunmap_pud_range(pgd, addr, next); 86 } while (pgd++, addr = next, addr != end); 87 flush_tlb_kernel_range(start, end); 88 } 89 90 static void unmap_vm_area(struct vm_struct *area) 91 { 92 unmap_kernel_range((unsigned long)area->addr, area->size); 93 } 94 95 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 96 unsigned long end, pgprot_t prot, struct page ***pages) 97 { 98 pte_t *pte; 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = **pages; 105 WARN_ON(!pte_none(*pte)); 106 if (!page) 107 return -ENOMEM; 108 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 109 (*pages)++; 110 } while (pte++, addr += PAGE_SIZE, addr != end); 111 return 0; 112 } 113 114 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 115 unsigned long end, pgprot_t prot, struct page ***pages) 116 { 117 pmd_t *pmd; 118 unsigned long next; 119 120 pmd = pmd_alloc(&init_mm, pud, addr); 121 if (!pmd) 122 return -ENOMEM; 123 do { 124 next = pmd_addr_end(addr, end); 125 if (vmap_pte_range(pmd, addr, next, prot, pages)) 126 return -ENOMEM; 127 } while (pmd++, addr = next, addr != end); 128 return 0; 129 } 130 131 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 132 unsigned long end, pgprot_t prot, struct page ***pages) 133 { 134 pud_t *pud; 135 unsigned long next; 136 137 pud = pud_alloc(&init_mm, pgd, addr); 138 if (!pud) 139 return -ENOMEM; 140 do { 141 next = pud_addr_end(addr, end); 142 if (vmap_pmd_range(pud, addr, next, prot, pages)) 143 return -ENOMEM; 144 } while (pud++, addr = next, addr != end); 145 return 0; 146 } 147 148 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 149 { 150 pgd_t *pgd; 151 unsigned long next; 152 unsigned long addr = (unsigned long) area->addr; 153 unsigned long end = addr + area->size - PAGE_SIZE; 154 int err; 155 156 BUG_ON(addr >= end); 157 pgd = pgd_offset_k(addr); 158 do { 159 next = pgd_addr_end(addr, end); 160 err = vmap_pud_range(pgd, addr, next, prot, pages); 161 if (err) 162 break; 163 } while (pgd++, addr = next, addr != end); 164 flush_cache_vmap((unsigned long) area->addr, end); 165 return err; 166 } 167 EXPORT_SYMBOL_GPL(map_vm_area); 168 169 /* 170 * Map a vmalloc()-space virtual address to the physical page. 171 */ 172 struct page *vmalloc_to_page(const void *vmalloc_addr) 173 { 174 unsigned long addr = (unsigned long) vmalloc_addr; 175 struct page *page = NULL; 176 pgd_t *pgd = pgd_offset_k(addr); 177 pud_t *pud; 178 pmd_t *pmd; 179 pte_t *ptep, pte; 180 181 if (!pgd_none(*pgd)) { 182 pud = pud_offset(pgd, addr); 183 if (!pud_none(*pud)) { 184 pmd = pmd_offset(pud, addr); 185 if (!pmd_none(*pmd)) { 186 ptep = pte_offset_map(pmd, addr); 187 pte = *ptep; 188 if (pte_present(pte)) 189 page = pte_page(pte); 190 pte_unmap(ptep); 191 } 192 } 193 } 194 return page; 195 } 196 EXPORT_SYMBOL(vmalloc_to_page); 197 198 /* 199 * Map a vmalloc()-space virtual address to the physical page frame number. 200 */ 201 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 202 { 203 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 204 } 205 EXPORT_SYMBOL(vmalloc_to_pfn); 206 207 static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, 208 unsigned long start, unsigned long end, 209 int node, gfp_t gfp_mask) 210 { 211 struct vm_struct **p, *tmp, *area; 212 unsigned long align = 1; 213 unsigned long addr; 214 215 BUG_ON(in_interrupt()); 216 if (flags & VM_IOREMAP) { 217 int bit = fls(size); 218 219 if (bit > IOREMAP_MAX_ORDER) 220 bit = IOREMAP_MAX_ORDER; 221 else if (bit < PAGE_SHIFT) 222 bit = PAGE_SHIFT; 223 224 align = 1ul << bit; 225 } 226 addr = ALIGN(start, align); 227 size = PAGE_ALIGN(size); 228 if (unlikely(!size)) 229 return NULL; 230 231 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 232 233 if (unlikely(!area)) 234 return NULL; 235 236 /* 237 * We always allocate a guard page. 238 */ 239 size += PAGE_SIZE; 240 241 write_lock(&vmlist_lock); 242 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 243 if ((unsigned long)tmp->addr < addr) { 244 if((unsigned long)tmp->addr + tmp->size >= addr) 245 addr = ALIGN(tmp->size + 246 (unsigned long)tmp->addr, align); 247 continue; 248 } 249 if ((size + addr) < addr) 250 goto out; 251 if (size + addr <= (unsigned long)tmp->addr) 252 goto found; 253 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 254 if (addr > end - size) 255 goto out; 256 } 257 if ((size + addr) < addr) 258 goto out; 259 if (addr > end - size) 260 goto out; 261 262 found: 263 area->next = *p; 264 *p = area; 265 266 area->flags = flags; 267 area->addr = (void *)addr; 268 area->size = size; 269 area->pages = NULL; 270 area->nr_pages = 0; 271 area->phys_addr = 0; 272 write_unlock(&vmlist_lock); 273 274 return area; 275 276 out: 277 write_unlock(&vmlist_lock); 278 kfree(area); 279 if (printk_ratelimit()) 280 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 281 return NULL; 282 } 283 284 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 285 unsigned long start, unsigned long end) 286 { 287 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL); 288 } 289 EXPORT_SYMBOL_GPL(__get_vm_area); 290 291 /** 292 * get_vm_area - reserve a contiguous kernel virtual area 293 * @size: size of the area 294 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 295 * 296 * Search an area of @size in the kernel virtual mapping area, 297 * and reserved it for out purposes. Returns the area descriptor 298 * on success or %NULL on failure. 299 */ 300 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 301 { 302 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); 303 } 304 305 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 306 int node, gfp_t gfp_mask) 307 { 308 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 309 gfp_mask); 310 } 311 312 /* Caller must hold vmlist_lock */ 313 static struct vm_struct *__find_vm_area(const void *addr) 314 { 315 struct vm_struct *tmp; 316 317 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { 318 if (tmp->addr == addr) 319 break; 320 } 321 322 return tmp; 323 } 324 325 /* Caller must hold vmlist_lock */ 326 static struct vm_struct *__remove_vm_area(const void *addr) 327 { 328 struct vm_struct **p, *tmp; 329 330 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 331 if (tmp->addr == addr) 332 goto found; 333 } 334 return NULL; 335 336 found: 337 unmap_vm_area(tmp); 338 *p = tmp->next; 339 340 /* 341 * Remove the guard page. 342 */ 343 tmp->size -= PAGE_SIZE; 344 return tmp; 345 } 346 347 /** 348 * remove_vm_area - find and remove a continuous kernel virtual area 349 * @addr: base address 350 * 351 * Search for the kernel VM area starting at @addr, and remove it. 352 * This function returns the found VM area, but using it is NOT safe 353 * on SMP machines, except for its size or flags. 354 */ 355 struct vm_struct *remove_vm_area(const void *addr) 356 { 357 struct vm_struct *v; 358 write_lock(&vmlist_lock); 359 v = __remove_vm_area(addr); 360 write_unlock(&vmlist_lock); 361 return v; 362 } 363 364 static void __vunmap(const void *addr, int deallocate_pages) 365 { 366 struct vm_struct *area; 367 368 if (!addr) 369 return; 370 371 if ((PAGE_SIZE-1) & (unsigned long)addr) { 372 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 373 WARN_ON(1); 374 return; 375 } 376 377 area = remove_vm_area(addr); 378 if (unlikely(!area)) { 379 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 380 addr); 381 WARN_ON(1); 382 return; 383 } 384 385 debug_check_no_locks_freed(addr, area->size); 386 387 if (deallocate_pages) { 388 int i; 389 390 for (i = 0; i < area->nr_pages; i++) { 391 struct page *page = area->pages[i]; 392 393 BUG_ON(!page); 394 __free_page(page); 395 } 396 397 if (area->flags & VM_VPAGES) 398 vfree(area->pages); 399 else 400 kfree(area->pages); 401 } 402 403 kfree(area); 404 return; 405 } 406 407 /** 408 * vfree - release memory allocated by vmalloc() 409 * @addr: memory base address 410 * 411 * Free the virtually continuous memory area starting at @addr, as 412 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 413 * NULL, no operation is performed. 414 * 415 * Must not be called in interrupt context. 416 */ 417 void vfree(const void *addr) 418 { 419 BUG_ON(in_interrupt()); 420 __vunmap(addr, 1); 421 } 422 EXPORT_SYMBOL(vfree); 423 424 /** 425 * vunmap - release virtual mapping obtained by vmap() 426 * @addr: memory base address 427 * 428 * Free the virtually contiguous memory area starting at @addr, 429 * which was created from the page array passed to vmap(). 430 * 431 * Must not be called in interrupt context. 432 */ 433 void vunmap(const void *addr) 434 { 435 BUG_ON(in_interrupt()); 436 __vunmap(addr, 0); 437 } 438 EXPORT_SYMBOL(vunmap); 439 440 /** 441 * vmap - map an array of pages into virtually contiguous space 442 * @pages: array of page pointers 443 * @count: number of pages to map 444 * @flags: vm_area->flags 445 * @prot: page protection for the mapping 446 * 447 * Maps @count pages from @pages into contiguous kernel virtual 448 * space. 449 */ 450 void *vmap(struct page **pages, unsigned int count, 451 unsigned long flags, pgprot_t prot) 452 { 453 struct vm_struct *area; 454 455 if (count > num_physpages) 456 return NULL; 457 458 area = get_vm_area((count << PAGE_SHIFT), flags); 459 if (!area) 460 return NULL; 461 if (map_vm_area(area, prot, &pages)) { 462 vunmap(area->addr); 463 return NULL; 464 } 465 466 return area->addr; 467 } 468 EXPORT_SYMBOL(vmap); 469 470 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 471 pgprot_t prot, int node) 472 { 473 struct page **pages; 474 unsigned int nr_pages, array_size, i; 475 476 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 477 array_size = (nr_pages * sizeof(struct page *)); 478 479 area->nr_pages = nr_pages; 480 /* Please note that the recursion is strictly bounded. */ 481 if (array_size > PAGE_SIZE) { 482 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 483 PAGE_KERNEL, node); 484 area->flags |= VM_VPAGES; 485 } else { 486 pages = kmalloc_node(array_size, 487 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 488 node); 489 } 490 area->pages = pages; 491 if (!area->pages) { 492 remove_vm_area(area->addr); 493 kfree(area); 494 return NULL; 495 } 496 497 for (i = 0; i < area->nr_pages; i++) { 498 struct page *page; 499 500 if (node < 0) 501 page = alloc_page(gfp_mask); 502 else 503 page = alloc_pages_node(node, gfp_mask, 0); 504 505 if (unlikely(!page)) { 506 /* Successfully allocated i pages, free them in __vunmap() */ 507 area->nr_pages = i; 508 goto fail; 509 } 510 area->pages[i] = page; 511 } 512 513 if (map_vm_area(area, prot, &pages)) 514 goto fail; 515 return area->addr; 516 517 fail: 518 vfree(area->addr); 519 return NULL; 520 } 521 522 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 523 { 524 return __vmalloc_area_node(area, gfp_mask, prot, -1); 525 } 526 527 /** 528 * __vmalloc_node - allocate virtually contiguous memory 529 * @size: allocation size 530 * @gfp_mask: flags for the page level allocator 531 * @prot: protection mask for the allocated pages 532 * @node: node to use for allocation or -1 533 * 534 * Allocate enough pages to cover @size from the page level 535 * allocator with @gfp_mask flags. Map them into contiguous 536 * kernel virtual space, using a pagetable protection of @prot. 537 */ 538 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 539 int node) 540 { 541 struct vm_struct *area; 542 543 size = PAGE_ALIGN(size); 544 if (!size || (size >> PAGE_SHIFT) > num_physpages) 545 return NULL; 546 547 area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask); 548 if (!area) 549 return NULL; 550 551 return __vmalloc_area_node(area, gfp_mask, prot, node); 552 } 553 554 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 555 { 556 return __vmalloc_node(size, gfp_mask, prot, -1); 557 } 558 EXPORT_SYMBOL(__vmalloc); 559 560 /** 561 * vmalloc - allocate virtually contiguous memory 562 * @size: allocation size 563 * Allocate enough pages to cover @size from the page level 564 * allocator and map them into contiguous kernel virtual space. 565 * 566 * For tight control over page level allocator and protection flags 567 * use __vmalloc() instead. 568 */ 569 void *vmalloc(unsigned long size) 570 { 571 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 572 } 573 EXPORT_SYMBOL(vmalloc); 574 575 /** 576 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 577 * @size: allocation size 578 * 579 * The resulting memory area is zeroed so it can be mapped to userspace 580 * without leaking data. 581 */ 582 void *vmalloc_user(unsigned long size) 583 { 584 struct vm_struct *area; 585 void *ret; 586 587 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 588 if (ret) { 589 write_lock(&vmlist_lock); 590 area = __find_vm_area(ret); 591 area->flags |= VM_USERMAP; 592 write_unlock(&vmlist_lock); 593 } 594 return ret; 595 } 596 EXPORT_SYMBOL(vmalloc_user); 597 598 /** 599 * vmalloc_node - allocate memory on a specific node 600 * @size: allocation size 601 * @node: numa node 602 * 603 * Allocate enough pages to cover @size from the page level 604 * allocator and map them into contiguous kernel virtual space. 605 * 606 * For tight control over page level allocator and protection flags 607 * use __vmalloc() instead. 608 */ 609 void *vmalloc_node(unsigned long size, int node) 610 { 611 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node); 612 } 613 EXPORT_SYMBOL(vmalloc_node); 614 615 #ifndef PAGE_KERNEL_EXEC 616 # define PAGE_KERNEL_EXEC PAGE_KERNEL 617 #endif 618 619 /** 620 * vmalloc_exec - allocate virtually contiguous, executable memory 621 * @size: allocation size 622 * 623 * Kernel-internal function to allocate enough pages to cover @size 624 * the page level allocator and map them into contiguous and 625 * executable kernel virtual space. 626 * 627 * For tight control over page level allocator and protection flags 628 * use __vmalloc() instead. 629 */ 630 631 void *vmalloc_exec(unsigned long size) 632 { 633 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 634 } 635 636 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 637 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 638 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 639 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 640 #else 641 #define GFP_VMALLOC32 GFP_KERNEL 642 #endif 643 644 /** 645 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 646 * @size: allocation size 647 * 648 * Allocate enough 32bit PA addressable pages to cover @size from the 649 * page level allocator and map them into contiguous kernel virtual space. 650 */ 651 void *vmalloc_32(unsigned long size) 652 { 653 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL); 654 } 655 EXPORT_SYMBOL(vmalloc_32); 656 657 /** 658 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 659 * @size: allocation size 660 * 661 * The resulting memory area is 32bit addressable and zeroed so it can be 662 * mapped to userspace without leaking data. 663 */ 664 void *vmalloc_32_user(unsigned long size) 665 { 666 struct vm_struct *area; 667 void *ret; 668 669 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); 670 if (ret) { 671 write_lock(&vmlist_lock); 672 area = __find_vm_area(ret); 673 area->flags |= VM_USERMAP; 674 write_unlock(&vmlist_lock); 675 } 676 return ret; 677 } 678 EXPORT_SYMBOL(vmalloc_32_user); 679 680 long vread(char *buf, char *addr, unsigned long count) 681 { 682 struct vm_struct *tmp; 683 char *vaddr, *buf_start = buf; 684 unsigned long n; 685 686 /* Don't allow overflow */ 687 if ((unsigned long) addr + count < count) 688 count = -(unsigned long) addr; 689 690 read_lock(&vmlist_lock); 691 for (tmp = vmlist; tmp; tmp = tmp->next) { 692 vaddr = (char *) tmp->addr; 693 if (addr >= vaddr + tmp->size - PAGE_SIZE) 694 continue; 695 while (addr < vaddr) { 696 if (count == 0) 697 goto finished; 698 *buf = '\0'; 699 buf++; 700 addr++; 701 count--; 702 } 703 n = vaddr + tmp->size - PAGE_SIZE - addr; 704 do { 705 if (count == 0) 706 goto finished; 707 *buf = *addr; 708 buf++; 709 addr++; 710 count--; 711 } while (--n > 0); 712 } 713 finished: 714 read_unlock(&vmlist_lock); 715 return buf - buf_start; 716 } 717 718 long vwrite(char *buf, char *addr, unsigned long count) 719 { 720 struct vm_struct *tmp; 721 char *vaddr, *buf_start = buf; 722 unsigned long n; 723 724 /* Don't allow overflow */ 725 if ((unsigned long) addr + count < count) 726 count = -(unsigned long) addr; 727 728 read_lock(&vmlist_lock); 729 for (tmp = vmlist; tmp; tmp = tmp->next) { 730 vaddr = (char *) tmp->addr; 731 if (addr >= vaddr + tmp->size - PAGE_SIZE) 732 continue; 733 while (addr < vaddr) { 734 if (count == 0) 735 goto finished; 736 buf++; 737 addr++; 738 count--; 739 } 740 n = vaddr + tmp->size - PAGE_SIZE - addr; 741 do { 742 if (count == 0) 743 goto finished; 744 *addr = *buf; 745 buf++; 746 addr++; 747 count--; 748 } while (--n > 0); 749 } 750 finished: 751 read_unlock(&vmlist_lock); 752 return buf - buf_start; 753 } 754 755 /** 756 * remap_vmalloc_range - map vmalloc pages to userspace 757 * @vma: vma to cover (map full range of vma) 758 * @addr: vmalloc memory 759 * @pgoff: number of pages into addr before first page to map 760 * 761 * Returns: 0 for success, -Exxx on failure 762 * 763 * This function checks that addr is a valid vmalloc'ed area, and 764 * that it is big enough to cover the vma. Will return failure if 765 * that criteria isn't met. 766 * 767 * Similar to remap_pfn_range() (see mm/memory.c) 768 */ 769 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 770 unsigned long pgoff) 771 { 772 struct vm_struct *area; 773 unsigned long uaddr = vma->vm_start; 774 unsigned long usize = vma->vm_end - vma->vm_start; 775 int ret; 776 777 if ((PAGE_SIZE-1) & (unsigned long)addr) 778 return -EINVAL; 779 780 read_lock(&vmlist_lock); 781 area = __find_vm_area(addr); 782 if (!area) 783 goto out_einval_locked; 784 785 if (!(area->flags & VM_USERMAP)) 786 goto out_einval_locked; 787 788 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 789 goto out_einval_locked; 790 read_unlock(&vmlist_lock); 791 792 addr += pgoff << PAGE_SHIFT; 793 do { 794 struct page *page = vmalloc_to_page(addr); 795 ret = vm_insert_page(vma, uaddr, page); 796 if (ret) 797 return ret; 798 799 uaddr += PAGE_SIZE; 800 addr += PAGE_SIZE; 801 usize -= PAGE_SIZE; 802 } while (usize > 0); 803 804 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 805 vma->vm_flags |= VM_RESERVED; 806 807 return ret; 808 809 out_einval_locked: 810 read_unlock(&vmlist_lock); 811 return -EINVAL; 812 } 813 EXPORT_SYMBOL(remap_vmalloc_range); 814 815 /* 816 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 817 * have one. 818 */ 819 void __attribute__((weak)) vmalloc_sync_all(void) 820 { 821 } 822 823 824 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 825 { 826 /* apply_to_page_range() does all the hard work. */ 827 return 0; 828 } 829 830 /** 831 * alloc_vm_area - allocate a range of kernel address space 832 * @size: size of the area 833 * 834 * Returns: NULL on failure, vm_struct on success 835 * 836 * This function reserves a range of kernel address space, and 837 * allocates pagetables to map that range. No actual mappings 838 * are created. If the kernel address space is not shared 839 * between processes, it syncs the pagetable across all 840 * processes. 841 */ 842 struct vm_struct *alloc_vm_area(size_t size) 843 { 844 struct vm_struct *area; 845 846 area = get_vm_area(size, VM_IOREMAP); 847 if (area == NULL) 848 return NULL; 849 850 /* 851 * This ensures that page tables are constructed for this region 852 * of kernel virtual address space and mapped into init_mm. 853 */ 854 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 855 area->size, f, NULL)) { 856 free_vm_area(area); 857 return NULL; 858 } 859 860 /* Make sure the pagetables are constructed in process kernel 861 mappings */ 862 vmalloc_sync_all(); 863 864 return area; 865 } 866 EXPORT_SYMBOL_GPL(alloc_vm_area); 867 868 void free_vm_area(struct vm_struct *area) 869 { 870 struct vm_struct *ret; 871 ret = remove_vm_area(area->addr); 872 BUG_ON(ret != area); 873 kfree(area); 874 } 875 EXPORT_SYMBOL_GPL(free_vm_area); 876