xref: /openbmc/linux/mm/vmalloc.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/seq_file.h>
18 #include <linux/debugobjects.h>
19 #include <linux/vmalloc.h>
20 #include <linux/kallsyms.h>
21 
22 #include <asm/uaccess.h>
23 #include <asm/tlbflush.h>
24 
25 
26 DEFINE_RWLOCK(vmlist_lock);
27 struct vm_struct *vmlist;
28 
29 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
30 			    int node, void *caller);
31 
32 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
33 {
34 	pte_t *pte;
35 
36 	pte = pte_offset_kernel(pmd, addr);
37 	do {
38 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
39 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
40 	} while (pte++, addr += PAGE_SIZE, addr != end);
41 }
42 
43 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
44 						unsigned long end)
45 {
46 	pmd_t *pmd;
47 	unsigned long next;
48 
49 	pmd = pmd_offset(pud, addr);
50 	do {
51 		next = pmd_addr_end(addr, end);
52 		if (pmd_none_or_clear_bad(pmd))
53 			continue;
54 		vunmap_pte_range(pmd, addr, next);
55 	} while (pmd++, addr = next, addr != end);
56 }
57 
58 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
59 						unsigned long end)
60 {
61 	pud_t *pud;
62 	unsigned long next;
63 
64 	pud = pud_offset(pgd, addr);
65 	do {
66 		next = pud_addr_end(addr, end);
67 		if (pud_none_or_clear_bad(pud))
68 			continue;
69 		vunmap_pmd_range(pud, addr, next);
70 	} while (pud++, addr = next, addr != end);
71 }
72 
73 void unmap_kernel_range(unsigned long addr, unsigned long size)
74 {
75 	pgd_t *pgd;
76 	unsigned long next;
77 	unsigned long start = addr;
78 	unsigned long end = addr + size;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	flush_cache_vunmap(addr, end);
83 	do {
84 		next = pgd_addr_end(addr, end);
85 		if (pgd_none_or_clear_bad(pgd))
86 			continue;
87 		vunmap_pud_range(pgd, addr, next);
88 	} while (pgd++, addr = next, addr != end);
89 	flush_tlb_kernel_range(start, end);
90 }
91 
92 static void unmap_vm_area(struct vm_struct *area)
93 {
94 	unmap_kernel_range((unsigned long)area->addr, area->size);
95 }
96 
97 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
98 			unsigned long end, pgprot_t prot, struct page ***pages)
99 {
100 	pte_t *pte;
101 
102 	pte = pte_alloc_kernel(pmd, addr);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		struct page *page = **pages;
107 		WARN_ON(!pte_none(*pte));
108 		if (!page)
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*pages)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 			unsigned long end, pgprot_t prot, struct page ***pages)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 			unsigned long end, pgprot_t prot, struct page ***pages)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
151 {
152 	pgd_t *pgd;
153 	unsigned long next;
154 	unsigned long addr = (unsigned long) area->addr;
155 	unsigned long end = addr + area->size - PAGE_SIZE;
156 	int err;
157 
158 	BUG_ON(addr >= end);
159 	pgd = pgd_offset_k(addr);
160 	do {
161 		next = pgd_addr_end(addr, end);
162 		err = vmap_pud_range(pgd, addr, next, prot, pages);
163 		if (err)
164 			break;
165 	} while (pgd++, addr = next, addr != end);
166 	flush_cache_vmap((unsigned long) area->addr, end);
167 	return err;
168 }
169 EXPORT_SYMBOL_GPL(map_vm_area);
170 
171 /*
172  * Map a vmalloc()-space virtual address to the physical page.
173  */
174 struct page *vmalloc_to_page(const void *vmalloc_addr)
175 {
176 	unsigned long addr = (unsigned long) vmalloc_addr;
177 	struct page *page = NULL;
178 	pgd_t *pgd = pgd_offset_k(addr);
179 	pud_t *pud;
180 	pmd_t *pmd;
181 	pte_t *ptep, pte;
182 
183 	if (!pgd_none(*pgd)) {
184 		pud = pud_offset(pgd, addr);
185 		if (!pud_none(*pud)) {
186 			pmd = pmd_offset(pud, addr);
187 			if (!pmd_none(*pmd)) {
188 				ptep = pte_offset_map(pmd, addr);
189 				pte = *ptep;
190 				if (pte_present(pte))
191 					page = pte_page(pte);
192 				pte_unmap(ptep);
193 			}
194 		}
195 	}
196 	return page;
197 }
198 EXPORT_SYMBOL(vmalloc_to_page);
199 
200 /*
201  * Map a vmalloc()-space virtual address to the physical page frame number.
202  */
203 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
204 {
205 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
206 }
207 EXPORT_SYMBOL(vmalloc_to_pfn);
208 
209 static struct vm_struct *
210 __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
211 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
212 {
213 	struct vm_struct **p, *tmp, *area;
214 	unsigned long align = 1;
215 	unsigned long addr;
216 
217 	BUG_ON(in_interrupt());
218 	if (flags & VM_IOREMAP) {
219 		int bit = fls(size);
220 
221 		if (bit > IOREMAP_MAX_ORDER)
222 			bit = IOREMAP_MAX_ORDER;
223 		else if (bit < PAGE_SHIFT)
224 			bit = PAGE_SHIFT;
225 
226 		align = 1ul << bit;
227 	}
228 	addr = ALIGN(start, align);
229 	size = PAGE_ALIGN(size);
230 	if (unlikely(!size))
231 		return NULL;
232 
233 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
234 
235 	if (unlikely(!area))
236 		return NULL;
237 
238 	/*
239 	 * We always allocate a guard page.
240 	 */
241 	size += PAGE_SIZE;
242 
243 	write_lock(&vmlist_lock);
244 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
245 		if ((unsigned long)tmp->addr < addr) {
246 			if((unsigned long)tmp->addr + tmp->size >= addr)
247 				addr = ALIGN(tmp->size +
248 					     (unsigned long)tmp->addr, align);
249 			continue;
250 		}
251 		if ((size + addr) < addr)
252 			goto out;
253 		if (size + addr <= (unsigned long)tmp->addr)
254 			goto found;
255 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
256 		if (addr > end - size)
257 			goto out;
258 	}
259 	if ((size + addr) < addr)
260 		goto out;
261 	if (addr > end - size)
262 		goto out;
263 
264 found:
265 	area->next = *p;
266 	*p = area;
267 
268 	area->flags = flags;
269 	area->addr = (void *)addr;
270 	area->size = size;
271 	area->pages = NULL;
272 	area->nr_pages = 0;
273 	area->phys_addr = 0;
274 	area->caller = caller;
275 	write_unlock(&vmlist_lock);
276 
277 	return area;
278 
279 out:
280 	write_unlock(&vmlist_lock);
281 	kfree(area);
282 	if (printk_ratelimit())
283 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
284 	return NULL;
285 }
286 
287 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
288 				unsigned long start, unsigned long end)
289 {
290 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
291 						__builtin_return_address(0));
292 }
293 EXPORT_SYMBOL_GPL(__get_vm_area);
294 
295 /**
296  *	get_vm_area  -  reserve a contiguous kernel virtual area
297  *	@size:		size of the area
298  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
299  *
300  *	Search an area of @size in the kernel virtual mapping area,
301  *	and reserved it for out purposes.  Returns the area descriptor
302  *	on success or %NULL on failure.
303  */
304 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
305 {
306 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
307 				-1, GFP_KERNEL, __builtin_return_address(0));
308 }
309 
310 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
311 				void *caller)
312 {
313 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
314 						-1, GFP_KERNEL, caller);
315 }
316 
317 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
318 				   int node, gfp_t gfp_mask)
319 {
320 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
321 				  gfp_mask, __builtin_return_address(0));
322 }
323 
324 /* Caller must hold vmlist_lock */
325 static struct vm_struct *__find_vm_area(const void *addr)
326 {
327 	struct vm_struct *tmp;
328 
329 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
330 		 if (tmp->addr == addr)
331 			break;
332 	}
333 
334 	return tmp;
335 }
336 
337 /* Caller must hold vmlist_lock */
338 static struct vm_struct *__remove_vm_area(const void *addr)
339 {
340 	struct vm_struct **p, *tmp;
341 
342 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
343 		 if (tmp->addr == addr)
344 			 goto found;
345 	}
346 	return NULL;
347 
348 found:
349 	unmap_vm_area(tmp);
350 	*p = tmp->next;
351 
352 	/*
353 	 * Remove the guard page.
354 	 */
355 	tmp->size -= PAGE_SIZE;
356 	return tmp;
357 }
358 
359 /**
360  *	remove_vm_area  -  find and remove a continuous kernel virtual area
361  *	@addr:		base address
362  *
363  *	Search for the kernel VM area starting at @addr, and remove it.
364  *	This function returns the found VM area, but using it is NOT safe
365  *	on SMP machines, except for its size or flags.
366  */
367 struct vm_struct *remove_vm_area(const void *addr)
368 {
369 	struct vm_struct *v;
370 	write_lock(&vmlist_lock);
371 	v = __remove_vm_area(addr);
372 	write_unlock(&vmlist_lock);
373 	return v;
374 }
375 
376 static void __vunmap(const void *addr, int deallocate_pages)
377 {
378 	struct vm_struct *area;
379 
380 	if (!addr)
381 		return;
382 
383 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
384 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
385 		return;
386 	}
387 
388 	area = remove_vm_area(addr);
389 	if (unlikely(!area)) {
390 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
391 				addr);
392 		return;
393 	}
394 
395 	debug_check_no_locks_freed(addr, area->size);
396 	debug_check_no_obj_freed(addr, area->size);
397 
398 	if (deallocate_pages) {
399 		int i;
400 
401 		for (i = 0; i < area->nr_pages; i++) {
402 			struct page *page = area->pages[i];
403 
404 			BUG_ON(!page);
405 			__free_page(page);
406 		}
407 
408 		if (area->flags & VM_VPAGES)
409 			vfree(area->pages);
410 		else
411 			kfree(area->pages);
412 	}
413 
414 	kfree(area);
415 	return;
416 }
417 
418 /**
419  *	vfree  -  release memory allocated by vmalloc()
420  *	@addr:		memory base address
421  *
422  *	Free the virtually continuous memory area starting at @addr, as
423  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
424  *	NULL, no operation is performed.
425  *
426  *	Must not be called in interrupt context.
427  */
428 void vfree(const void *addr)
429 {
430 	BUG_ON(in_interrupt());
431 	__vunmap(addr, 1);
432 }
433 EXPORT_SYMBOL(vfree);
434 
435 /**
436  *	vunmap  -  release virtual mapping obtained by vmap()
437  *	@addr:		memory base address
438  *
439  *	Free the virtually contiguous memory area starting at @addr,
440  *	which was created from the page array passed to vmap().
441  *
442  *	Must not be called in interrupt context.
443  */
444 void vunmap(const void *addr)
445 {
446 	BUG_ON(in_interrupt());
447 	__vunmap(addr, 0);
448 }
449 EXPORT_SYMBOL(vunmap);
450 
451 /**
452  *	vmap  -  map an array of pages into virtually contiguous space
453  *	@pages:		array of page pointers
454  *	@count:		number of pages to map
455  *	@flags:		vm_area->flags
456  *	@prot:		page protection for the mapping
457  *
458  *	Maps @count pages from @pages into contiguous kernel virtual
459  *	space.
460  */
461 void *vmap(struct page **pages, unsigned int count,
462 		unsigned long flags, pgprot_t prot)
463 {
464 	struct vm_struct *area;
465 
466 	if (count > num_physpages)
467 		return NULL;
468 
469 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
470 					__builtin_return_address(0));
471 	if (!area)
472 		return NULL;
473 
474 	if (map_vm_area(area, prot, &pages)) {
475 		vunmap(area->addr);
476 		return NULL;
477 	}
478 
479 	return area->addr;
480 }
481 EXPORT_SYMBOL(vmap);
482 
483 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
484 				 pgprot_t prot, int node, void *caller)
485 {
486 	struct page **pages;
487 	unsigned int nr_pages, array_size, i;
488 
489 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
490 	array_size = (nr_pages * sizeof(struct page *));
491 
492 	area->nr_pages = nr_pages;
493 	/* Please note that the recursion is strictly bounded. */
494 	if (array_size > PAGE_SIZE) {
495 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
496 				PAGE_KERNEL, node, caller);
497 		area->flags |= VM_VPAGES;
498 	} else {
499 		pages = kmalloc_node(array_size,
500 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
501 				node);
502 	}
503 	area->pages = pages;
504 	area->caller = caller;
505 	if (!area->pages) {
506 		remove_vm_area(area->addr);
507 		kfree(area);
508 		return NULL;
509 	}
510 
511 	for (i = 0; i < area->nr_pages; i++) {
512 		struct page *page;
513 
514 		if (node < 0)
515 			page = alloc_page(gfp_mask);
516 		else
517 			page = alloc_pages_node(node, gfp_mask, 0);
518 
519 		if (unlikely(!page)) {
520 			/* Successfully allocated i pages, free them in __vunmap() */
521 			area->nr_pages = i;
522 			goto fail;
523 		}
524 		area->pages[i] = page;
525 	}
526 
527 	if (map_vm_area(area, prot, &pages))
528 		goto fail;
529 	return area->addr;
530 
531 fail:
532 	vfree(area->addr);
533 	return NULL;
534 }
535 
536 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
537 {
538 	return __vmalloc_area_node(area, gfp_mask, prot, -1,
539 					__builtin_return_address(0));
540 }
541 
542 /**
543  *	__vmalloc_node  -  allocate virtually contiguous memory
544  *	@size:		allocation size
545  *	@gfp_mask:	flags for the page level allocator
546  *	@prot:		protection mask for the allocated pages
547  *	@node:		node to use for allocation or -1
548  *	@caller:	caller's return address
549  *
550  *	Allocate enough pages to cover @size from the page level
551  *	allocator with @gfp_mask flags.  Map them into contiguous
552  *	kernel virtual space, using a pagetable protection of @prot.
553  */
554 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
555 						int node, void *caller)
556 {
557 	struct vm_struct *area;
558 
559 	size = PAGE_ALIGN(size);
560 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
561 		return NULL;
562 
563 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
564 						node, gfp_mask, caller);
565 
566 	if (!area)
567 		return NULL;
568 
569 	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
570 }
571 
572 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
573 {
574 	return __vmalloc_node(size, gfp_mask, prot, -1,
575 				__builtin_return_address(0));
576 }
577 EXPORT_SYMBOL(__vmalloc);
578 
579 /**
580  *	vmalloc  -  allocate virtually contiguous memory
581  *	@size:		allocation size
582  *	Allocate enough pages to cover @size from the page level
583  *	allocator and map them into contiguous kernel virtual space.
584  *
585  *	For tight control over page level allocator and protection flags
586  *	use __vmalloc() instead.
587  */
588 void *vmalloc(unsigned long size)
589 {
590 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
591 					-1, __builtin_return_address(0));
592 }
593 EXPORT_SYMBOL(vmalloc);
594 
595 /**
596  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
597  * @size: allocation size
598  *
599  * The resulting memory area is zeroed so it can be mapped to userspace
600  * without leaking data.
601  */
602 void *vmalloc_user(unsigned long size)
603 {
604 	struct vm_struct *area;
605 	void *ret;
606 
607 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
608 	if (ret) {
609 		write_lock(&vmlist_lock);
610 		area = __find_vm_area(ret);
611 		area->flags |= VM_USERMAP;
612 		write_unlock(&vmlist_lock);
613 	}
614 	return ret;
615 }
616 EXPORT_SYMBOL(vmalloc_user);
617 
618 /**
619  *	vmalloc_node  -  allocate memory on a specific node
620  *	@size:		allocation size
621  *	@node:		numa node
622  *
623  *	Allocate enough pages to cover @size from the page level
624  *	allocator and map them into contiguous kernel virtual space.
625  *
626  *	For tight control over page level allocator and protection flags
627  *	use __vmalloc() instead.
628  */
629 void *vmalloc_node(unsigned long size, int node)
630 {
631 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
632 					node, __builtin_return_address(0));
633 }
634 EXPORT_SYMBOL(vmalloc_node);
635 
636 #ifndef PAGE_KERNEL_EXEC
637 # define PAGE_KERNEL_EXEC PAGE_KERNEL
638 #endif
639 
640 /**
641  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
642  *	@size:		allocation size
643  *
644  *	Kernel-internal function to allocate enough pages to cover @size
645  *	the page level allocator and map them into contiguous and
646  *	executable kernel virtual space.
647  *
648  *	For tight control over page level allocator and protection flags
649  *	use __vmalloc() instead.
650  */
651 
652 void *vmalloc_exec(unsigned long size)
653 {
654 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
655 }
656 
657 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
658 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
659 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
660 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
661 #else
662 #define GFP_VMALLOC32 GFP_KERNEL
663 #endif
664 
665 /**
666  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
667  *	@size:		allocation size
668  *
669  *	Allocate enough 32bit PA addressable pages to cover @size from the
670  *	page level allocator and map them into contiguous kernel virtual space.
671  */
672 void *vmalloc_32(unsigned long size)
673 {
674 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
675 }
676 EXPORT_SYMBOL(vmalloc_32);
677 
678 /**
679  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
680  *	@size:		allocation size
681  *
682  * The resulting memory area is 32bit addressable and zeroed so it can be
683  * mapped to userspace without leaking data.
684  */
685 void *vmalloc_32_user(unsigned long size)
686 {
687 	struct vm_struct *area;
688 	void *ret;
689 
690 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
691 	if (ret) {
692 		write_lock(&vmlist_lock);
693 		area = __find_vm_area(ret);
694 		area->flags |= VM_USERMAP;
695 		write_unlock(&vmlist_lock);
696 	}
697 	return ret;
698 }
699 EXPORT_SYMBOL(vmalloc_32_user);
700 
701 long vread(char *buf, char *addr, unsigned long count)
702 {
703 	struct vm_struct *tmp;
704 	char *vaddr, *buf_start = buf;
705 	unsigned long n;
706 
707 	/* Don't allow overflow */
708 	if ((unsigned long) addr + count < count)
709 		count = -(unsigned long) addr;
710 
711 	read_lock(&vmlist_lock);
712 	for (tmp = vmlist; tmp; tmp = tmp->next) {
713 		vaddr = (char *) tmp->addr;
714 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
715 			continue;
716 		while (addr < vaddr) {
717 			if (count == 0)
718 				goto finished;
719 			*buf = '\0';
720 			buf++;
721 			addr++;
722 			count--;
723 		}
724 		n = vaddr + tmp->size - PAGE_SIZE - addr;
725 		do {
726 			if (count == 0)
727 				goto finished;
728 			*buf = *addr;
729 			buf++;
730 			addr++;
731 			count--;
732 		} while (--n > 0);
733 	}
734 finished:
735 	read_unlock(&vmlist_lock);
736 	return buf - buf_start;
737 }
738 
739 long vwrite(char *buf, char *addr, unsigned long count)
740 {
741 	struct vm_struct *tmp;
742 	char *vaddr, *buf_start = buf;
743 	unsigned long n;
744 
745 	/* Don't allow overflow */
746 	if ((unsigned long) addr + count < count)
747 		count = -(unsigned long) addr;
748 
749 	read_lock(&vmlist_lock);
750 	for (tmp = vmlist; tmp; tmp = tmp->next) {
751 		vaddr = (char *) tmp->addr;
752 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
753 			continue;
754 		while (addr < vaddr) {
755 			if (count == 0)
756 				goto finished;
757 			buf++;
758 			addr++;
759 			count--;
760 		}
761 		n = vaddr + tmp->size - PAGE_SIZE - addr;
762 		do {
763 			if (count == 0)
764 				goto finished;
765 			*addr = *buf;
766 			buf++;
767 			addr++;
768 			count--;
769 		} while (--n > 0);
770 	}
771 finished:
772 	read_unlock(&vmlist_lock);
773 	return buf - buf_start;
774 }
775 
776 /**
777  *	remap_vmalloc_range  -  map vmalloc pages to userspace
778  *	@vma:		vma to cover (map full range of vma)
779  *	@addr:		vmalloc memory
780  *	@pgoff:		number of pages into addr before first page to map
781  *
782  *	Returns:	0 for success, -Exxx on failure
783  *
784  *	This function checks that addr is a valid vmalloc'ed area, and
785  *	that it is big enough to cover the vma. Will return failure if
786  *	that criteria isn't met.
787  *
788  *	Similar to remap_pfn_range() (see mm/memory.c)
789  */
790 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
791 						unsigned long pgoff)
792 {
793 	struct vm_struct *area;
794 	unsigned long uaddr = vma->vm_start;
795 	unsigned long usize = vma->vm_end - vma->vm_start;
796 	int ret;
797 
798 	if ((PAGE_SIZE-1) & (unsigned long)addr)
799 		return -EINVAL;
800 
801 	read_lock(&vmlist_lock);
802 	area = __find_vm_area(addr);
803 	if (!area)
804 		goto out_einval_locked;
805 
806 	if (!(area->flags & VM_USERMAP))
807 		goto out_einval_locked;
808 
809 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
810 		goto out_einval_locked;
811 	read_unlock(&vmlist_lock);
812 
813 	addr += pgoff << PAGE_SHIFT;
814 	do {
815 		struct page *page = vmalloc_to_page(addr);
816 		ret = vm_insert_page(vma, uaddr, page);
817 		if (ret)
818 			return ret;
819 
820 		uaddr += PAGE_SIZE;
821 		addr += PAGE_SIZE;
822 		usize -= PAGE_SIZE;
823 	} while (usize > 0);
824 
825 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
826 	vma->vm_flags |= VM_RESERVED;
827 
828 	return ret;
829 
830 out_einval_locked:
831 	read_unlock(&vmlist_lock);
832 	return -EINVAL;
833 }
834 EXPORT_SYMBOL(remap_vmalloc_range);
835 
836 /*
837  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
838  * have one.
839  */
840 void  __attribute__((weak)) vmalloc_sync_all(void)
841 {
842 }
843 
844 
845 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
846 {
847 	/* apply_to_page_range() does all the hard work. */
848 	return 0;
849 }
850 
851 /**
852  *	alloc_vm_area - allocate a range of kernel address space
853  *	@size:		size of the area
854  *
855  *	Returns:	NULL on failure, vm_struct on success
856  *
857  *	This function reserves a range of kernel address space, and
858  *	allocates pagetables to map that range.  No actual mappings
859  *	are created.  If the kernel address space is not shared
860  *	between processes, it syncs the pagetable across all
861  *	processes.
862  */
863 struct vm_struct *alloc_vm_area(size_t size)
864 {
865 	struct vm_struct *area;
866 
867 	area = get_vm_area_caller(size, VM_IOREMAP,
868 				__builtin_return_address(0));
869 	if (area == NULL)
870 		return NULL;
871 
872 	/*
873 	 * This ensures that page tables are constructed for this region
874 	 * of kernel virtual address space and mapped into init_mm.
875 	 */
876 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
877 				area->size, f, NULL)) {
878 		free_vm_area(area);
879 		return NULL;
880 	}
881 
882 	/* Make sure the pagetables are constructed in process kernel
883 	   mappings */
884 	vmalloc_sync_all();
885 
886 	return area;
887 }
888 EXPORT_SYMBOL_GPL(alloc_vm_area);
889 
890 void free_vm_area(struct vm_struct *area)
891 {
892 	struct vm_struct *ret;
893 	ret = remove_vm_area(area->addr);
894 	BUG_ON(ret != area);
895 	kfree(area);
896 }
897 EXPORT_SYMBOL_GPL(free_vm_area);
898 
899 
900 #ifdef CONFIG_PROC_FS
901 static void *s_start(struct seq_file *m, loff_t *pos)
902 {
903 	loff_t n = *pos;
904 	struct vm_struct *v;
905 
906 	read_lock(&vmlist_lock);
907 	v = vmlist;
908 	while (n > 0 && v) {
909 		n--;
910 		v = v->next;
911 	}
912 	if (!n)
913 		return v;
914 
915 	return NULL;
916 
917 }
918 
919 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
920 {
921 	struct vm_struct *v = p;
922 
923 	++*pos;
924 	return v->next;
925 }
926 
927 static void s_stop(struct seq_file *m, void *p)
928 {
929 	read_unlock(&vmlist_lock);
930 }
931 
932 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
933 {
934 	if (NUMA_BUILD) {
935 		unsigned int nr, *counters = m->private;
936 
937 		if (!counters)
938 			return;
939 
940 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
941 
942 		for (nr = 0; nr < v->nr_pages; nr++)
943 			counters[page_to_nid(v->pages[nr])]++;
944 
945 		for_each_node_state(nr, N_HIGH_MEMORY)
946 			if (counters[nr])
947 				seq_printf(m, " N%u=%u", nr, counters[nr]);
948 	}
949 }
950 
951 static int s_show(struct seq_file *m, void *p)
952 {
953 	struct vm_struct *v = p;
954 
955 	seq_printf(m, "0x%p-0x%p %7ld",
956 		v->addr, v->addr + v->size, v->size);
957 
958 	if (v->caller) {
959 		char buff[2 * KSYM_NAME_LEN];
960 
961 		seq_putc(m, ' ');
962 		sprint_symbol(buff, (unsigned long)v->caller);
963 		seq_puts(m, buff);
964 	}
965 
966 	if (v->nr_pages)
967 		seq_printf(m, " pages=%d", v->nr_pages);
968 
969 	if (v->phys_addr)
970 		seq_printf(m, " phys=%lx", v->phys_addr);
971 
972 	if (v->flags & VM_IOREMAP)
973 		seq_printf(m, " ioremap");
974 
975 	if (v->flags & VM_ALLOC)
976 		seq_printf(m, " vmalloc");
977 
978 	if (v->flags & VM_MAP)
979 		seq_printf(m, " vmap");
980 
981 	if (v->flags & VM_USERMAP)
982 		seq_printf(m, " user");
983 
984 	if (v->flags & VM_VPAGES)
985 		seq_printf(m, " vpages");
986 
987 	show_numa_info(m, v);
988 	seq_putc(m, '\n');
989 	return 0;
990 }
991 
992 const struct seq_operations vmalloc_op = {
993 	.start = s_start,
994 	.next = s_next,
995 	.stop = s_stop,
996 	.show = s_show,
997 };
998 #endif
999 
1000