1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmalloc.c 4 * 5 * Copyright (C) 1993 Linus Torvalds 6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 9 * Numa awareness, Christoph Lameter, SGI, June 2005 10 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 11 */ 12 13 #include <linux/vmalloc.h> 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/highmem.h> 17 #include <linux/sched/signal.h> 18 #include <linux/slab.h> 19 #include <linux/spinlock.h> 20 #include <linux/interrupt.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/set_memory.h> 24 #include <linux/debugobjects.h> 25 #include <linux/kallsyms.h> 26 #include <linux/list.h> 27 #include <linux/notifier.h> 28 #include <linux/rbtree.h> 29 #include <linux/xarray.h> 30 #include <linux/rcupdate.h> 31 #include <linux/pfn.h> 32 #include <linux/kmemleak.h> 33 #include <linux/atomic.h> 34 #include <linux/compiler.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 40 #include <linux/uaccess.h> 41 #include <asm/tlbflush.h> 42 #include <asm/shmparam.h> 43 44 #include "internal.h" 45 #include "pgalloc-track.h" 46 47 bool is_vmalloc_addr(const void *x) 48 { 49 unsigned long addr = (unsigned long)x; 50 51 return addr >= VMALLOC_START && addr < VMALLOC_END; 52 } 53 EXPORT_SYMBOL(is_vmalloc_addr); 54 55 struct vfree_deferred { 56 struct llist_head list; 57 struct work_struct wq; 58 }; 59 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 60 61 static void __vunmap(const void *, int); 62 63 static void free_work(struct work_struct *w) 64 { 65 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 66 struct llist_node *t, *llnode; 67 68 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 69 __vunmap((void *)llnode, 1); 70 } 71 72 /*** Page table manipulation functions ***/ 73 74 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 75 pgtbl_mod_mask *mask) 76 { 77 pte_t *pte; 78 79 pte = pte_offset_kernel(pmd, addr); 80 do { 81 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 82 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 83 } while (pte++, addr += PAGE_SIZE, addr != end); 84 *mask |= PGTBL_PTE_MODIFIED; 85 } 86 87 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 88 pgtbl_mod_mask *mask) 89 { 90 pmd_t *pmd; 91 unsigned long next; 92 int cleared; 93 94 pmd = pmd_offset(pud, addr); 95 do { 96 next = pmd_addr_end(addr, end); 97 98 cleared = pmd_clear_huge(pmd); 99 if (cleared || pmd_bad(*pmd)) 100 *mask |= PGTBL_PMD_MODIFIED; 101 102 if (cleared) 103 continue; 104 if (pmd_none_or_clear_bad(pmd)) 105 continue; 106 vunmap_pte_range(pmd, addr, next, mask); 107 108 cond_resched(); 109 } while (pmd++, addr = next, addr != end); 110 } 111 112 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 113 pgtbl_mod_mask *mask) 114 { 115 pud_t *pud; 116 unsigned long next; 117 int cleared; 118 119 pud = pud_offset(p4d, addr); 120 do { 121 next = pud_addr_end(addr, end); 122 123 cleared = pud_clear_huge(pud); 124 if (cleared || pud_bad(*pud)) 125 *mask |= PGTBL_PUD_MODIFIED; 126 127 if (cleared) 128 continue; 129 if (pud_none_or_clear_bad(pud)) 130 continue; 131 vunmap_pmd_range(pud, addr, next, mask); 132 } while (pud++, addr = next, addr != end); 133 } 134 135 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 136 pgtbl_mod_mask *mask) 137 { 138 p4d_t *p4d; 139 unsigned long next; 140 int cleared; 141 142 p4d = p4d_offset(pgd, addr); 143 do { 144 next = p4d_addr_end(addr, end); 145 146 cleared = p4d_clear_huge(p4d); 147 if (cleared || p4d_bad(*p4d)) 148 *mask |= PGTBL_P4D_MODIFIED; 149 150 if (cleared) 151 continue; 152 if (p4d_none_or_clear_bad(p4d)) 153 continue; 154 vunmap_pud_range(p4d, addr, next, mask); 155 } while (p4d++, addr = next, addr != end); 156 } 157 158 /** 159 * unmap_kernel_range_noflush - unmap kernel VM area 160 * @start: start of the VM area to unmap 161 * @size: size of the VM area to unmap 162 * 163 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify 164 * should have been allocated using get_vm_area() and its friends. 165 * 166 * NOTE: 167 * This function does NOT do any cache flushing. The caller is responsible 168 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this 169 * function and flush_tlb_kernel_range() after. 170 */ 171 void unmap_kernel_range_noflush(unsigned long start, unsigned long size) 172 { 173 unsigned long end = start + size; 174 unsigned long next; 175 pgd_t *pgd; 176 unsigned long addr = start; 177 pgtbl_mod_mask mask = 0; 178 179 BUG_ON(addr >= end); 180 pgd = pgd_offset_k(addr); 181 do { 182 next = pgd_addr_end(addr, end); 183 if (pgd_bad(*pgd)) 184 mask |= PGTBL_PGD_MODIFIED; 185 if (pgd_none_or_clear_bad(pgd)) 186 continue; 187 vunmap_p4d_range(pgd, addr, next, &mask); 188 } while (pgd++, addr = next, addr != end); 189 190 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 191 arch_sync_kernel_mappings(start, end); 192 } 193 194 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 195 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 196 pgtbl_mod_mask *mask) 197 { 198 pte_t *pte; 199 200 /* 201 * nr is a running index into the array which helps higher level 202 * callers keep track of where we're up to. 203 */ 204 205 pte = pte_alloc_kernel_track(pmd, addr, mask); 206 if (!pte) 207 return -ENOMEM; 208 do { 209 struct page *page = pages[*nr]; 210 211 if (WARN_ON(!pte_none(*pte))) 212 return -EBUSY; 213 if (WARN_ON(!page)) 214 return -ENOMEM; 215 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 216 (*nr)++; 217 } while (pte++, addr += PAGE_SIZE, addr != end); 218 *mask |= PGTBL_PTE_MODIFIED; 219 return 0; 220 } 221 222 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 223 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 224 pgtbl_mod_mask *mask) 225 { 226 pmd_t *pmd; 227 unsigned long next; 228 229 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 230 if (!pmd) 231 return -ENOMEM; 232 do { 233 next = pmd_addr_end(addr, end); 234 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask)) 235 return -ENOMEM; 236 } while (pmd++, addr = next, addr != end); 237 return 0; 238 } 239 240 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 241 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 242 pgtbl_mod_mask *mask) 243 { 244 pud_t *pud; 245 unsigned long next; 246 247 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 248 if (!pud) 249 return -ENOMEM; 250 do { 251 next = pud_addr_end(addr, end); 252 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask)) 253 return -ENOMEM; 254 } while (pud++, addr = next, addr != end); 255 return 0; 256 } 257 258 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 259 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 260 pgtbl_mod_mask *mask) 261 { 262 p4d_t *p4d; 263 unsigned long next; 264 265 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 266 if (!p4d) 267 return -ENOMEM; 268 do { 269 next = p4d_addr_end(addr, end); 270 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask)) 271 return -ENOMEM; 272 } while (p4d++, addr = next, addr != end); 273 return 0; 274 } 275 276 /** 277 * map_kernel_range_noflush - map kernel VM area with the specified pages 278 * @addr: start of the VM area to map 279 * @size: size of the VM area to map 280 * @prot: page protection flags to use 281 * @pages: pages to map 282 * 283 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should 284 * have been allocated using get_vm_area() and its friends. 285 * 286 * NOTE: 287 * This function does NOT do any cache flushing. The caller is responsible for 288 * calling flush_cache_vmap() on to-be-mapped areas before calling this 289 * function. 290 * 291 * RETURNS: 292 * 0 on success, -errno on failure. 293 */ 294 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 295 pgprot_t prot, struct page **pages) 296 { 297 unsigned long start = addr; 298 unsigned long end = addr + size; 299 unsigned long next; 300 pgd_t *pgd; 301 int err = 0; 302 int nr = 0; 303 pgtbl_mod_mask mask = 0; 304 305 BUG_ON(addr >= end); 306 pgd = pgd_offset_k(addr); 307 do { 308 next = pgd_addr_end(addr, end); 309 if (pgd_bad(*pgd)) 310 mask |= PGTBL_PGD_MODIFIED; 311 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 312 if (err) 313 return err; 314 } while (pgd++, addr = next, addr != end); 315 316 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 317 arch_sync_kernel_mappings(start, end); 318 319 return 0; 320 } 321 322 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot, 323 struct page **pages) 324 { 325 int ret; 326 327 ret = map_kernel_range_noflush(start, size, prot, pages); 328 flush_cache_vmap(start, start + size); 329 return ret; 330 } 331 332 int is_vmalloc_or_module_addr(const void *x) 333 { 334 /* 335 * ARM, x86-64 and sparc64 put modules in a special place, 336 * and fall back on vmalloc() if that fails. Others 337 * just put it in the vmalloc space. 338 */ 339 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 340 unsigned long addr = (unsigned long)x; 341 if (addr >= MODULES_VADDR && addr < MODULES_END) 342 return 1; 343 #endif 344 return is_vmalloc_addr(x); 345 } 346 347 /* 348 * Walk a vmap address to the struct page it maps. 349 */ 350 struct page *vmalloc_to_page(const void *vmalloc_addr) 351 { 352 unsigned long addr = (unsigned long) vmalloc_addr; 353 struct page *page = NULL; 354 pgd_t *pgd = pgd_offset_k(addr); 355 p4d_t *p4d; 356 pud_t *pud; 357 pmd_t *pmd; 358 pte_t *ptep, pte; 359 360 /* 361 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 362 * architectures that do not vmalloc module space 363 */ 364 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 365 366 if (pgd_none(*pgd)) 367 return NULL; 368 p4d = p4d_offset(pgd, addr); 369 if (p4d_none(*p4d)) 370 return NULL; 371 pud = pud_offset(p4d, addr); 372 373 /* 374 * Don't dereference bad PUD or PMD (below) entries. This will also 375 * identify huge mappings, which we may encounter on architectures 376 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 377 * identified as vmalloc addresses by is_vmalloc_addr(), but are 378 * not [unambiguously] associated with a struct page, so there is 379 * no correct value to return for them. 380 */ 381 WARN_ON_ONCE(pud_bad(*pud)); 382 if (pud_none(*pud) || pud_bad(*pud)) 383 return NULL; 384 pmd = pmd_offset(pud, addr); 385 WARN_ON_ONCE(pmd_bad(*pmd)); 386 if (pmd_none(*pmd) || pmd_bad(*pmd)) 387 return NULL; 388 389 ptep = pte_offset_map(pmd, addr); 390 pte = *ptep; 391 if (pte_present(pte)) 392 page = pte_page(pte); 393 pte_unmap(ptep); 394 return page; 395 } 396 EXPORT_SYMBOL(vmalloc_to_page); 397 398 /* 399 * Map a vmalloc()-space virtual address to the physical page frame number. 400 */ 401 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 402 { 403 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 404 } 405 EXPORT_SYMBOL(vmalloc_to_pfn); 406 407 408 /*** Global kva allocator ***/ 409 410 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 411 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 412 413 414 static DEFINE_SPINLOCK(vmap_area_lock); 415 static DEFINE_SPINLOCK(free_vmap_area_lock); 416 /* Export for kexec only */ 417 LIST_HEAD(vmap_area_list); 418 static LLIST_HEAD(vmap_purge_list); 419 static struct rb_root vmap_area_root = RB_ROOT; 420 static bool vmap_initialized __read_mostly; 421 422 /* 423 * This kmem_cache is used for vmap_area objects. Instead of 424 * allocating from slab we reuse an object from this cache to 425 * make things faster. Especially in "no edge" splitting of 426 * free block. 427 */ 428 static struct kmem_cache *vmap_area_cachep; 429 430 /* 431 * This linked list is used in pair with free_vmap_area_root. 432 * It gives O(1) access to prev/next to perform fast coalescing. 433 */ 434 static LIST_HEAD(free_vmap_area_list); 435 436 /* 437 * This augment red-black tree represents the free vmap space. 438 * All vmap_area objects in this tree are sorted by va->va_start 439 * address. It is used for allocation and merging when a vmap 440 * object is released. 441 * 442 * Each vmap_area node contains a maximum available free block 443 * of its sub-tree, right or left. Therefore it is possible to 444 * find a lowest match of free area. 445 */ 446 static struct rb_root free_vmap_area_root = RB_ROOT; 447 448 /* 449 * Preload a CPU with one object for "no edge" split case. The 450 * aim is to get rid of allocations from the atomic context, thus 451 * to use more permissive allocation masks. 452 */ 453 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 454 455 static __always_inline unsigned long 456 va_size(struct vmap_area *va) 457 { 458 return (va->va_end - va->va_start); 459 } 460 461 static __always_inline unsigned long 462 get_subtree_max_size(struct rb_node *node) 463 { 464 struct vmap_area *va; 465 466 va = rb_entry_safe(node, struct vmap_area, rb_node); 467 return va ? va->subtree_max_size : 0; 468 } 469 470 /* 471 * Gets called when remove the node and rotate. 472 */ 473 static __always_inline unsigned long 474 compute_subtree_max_size(struct vmap_area *va) 475 { 476 return max3(va_size(va), 477 get_subtree_max_size(va->rb_node.rb_left), 478 get_subtree_max_size(va->rb_node.rb_right)); 479 } 480 481 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 482 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 483 484 static void purge_vmap_area_lazy(void); 485 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 486 static unsigned long lazy_max_pages(void); 487 488 static atomic_long_t nr_vmalloc_pages; 489 490 unsigned long vmalloc_nr_pages(void) 491 { 492 return atomic_long_read(&nr_vmalloc_pages); 493 } 494 495 static struct vmap_area *__find_vmap_area(unsigned long addr) 496 { 497 struct rb_node *n = vmap_area_root.rb_node; 498 499 while (n) { 500 struct vmap_area *va; 501 502 va = rb_entry(n, struct vmap_area, rb_node); 503 if (addr < va->va_start) 504 n = n->rb_left; 505 else if (addr >= va->va_end) 506 n = n->rb_right; 507 else 508 return va; 509 } 510 511 return NULL; 512 } 513 514 /* 515 * This function returns back addresses of parent node 516 * and its left or right link for further processing. 517 * 518 * Otherwise NULL is returned. In that case all further 519 * steps regarding inserting of conflicting overlap range 520 * have to be declined and actually considered as a bug. 521 */ 522 static __always_inline struct rb_node ** 523 find_va_links(struct vmap_area *va, 524 struct rb_root *root, struct rb_node *from, 525 struct rb_node **parent) 526 { 527 struct vmap_area *tmp_va; 528 struct rb_node **link; 529 530 if (root) { 531 link = &root->rb_node; 532 if (unlikely(!*link)) { 533 *parent = NULL; 534 return link; 535 } 536 } else { 537 link = &from; 538 } 539 540 /* 541 * Go to the bottom of the tree. When we hit the last point 542 * we end up with parent rb_node and correct direction, i name 543 * it link, where the new va->rb_node will be attached to. 544 */ 545 do { 546 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 547 548 /* 549 * During the traversal we also do some sanity check. 550 * Trigger the BUG() if there are sides(left/right) 551 * or full overlaps. 552 */ 553 if (va->va_start < tmp_va->va_end && 554 va->va_end <= tmp_va->va_start) 555 link = &(*link)->rb_left; 556 else if (va->va_end > tmp_va->va_start && 557 va->va_start >= tmp_va->va_end) 558 link = &(*link)->rb_right; 559 else { 560 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 561 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 562 563 return NULL; 564 } 565 } while (*link); 566 567 *parent = &tmp_va->rb_node; 568 return link; 569 } 570 571 static __always_inline struct list_head * 572 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 573 { 574 struct list_head *list; 575 576 if (unlikely(!parent)) 577 /* 578 * The red-black tree where we try to find VA neighbors 579 * before merging or inserting is empty, i.e. it means 580 * there is no free vmap space. Normally it does not 581 * happen but we handle this case anyway. 582 */ 583 return NULL; 584 585 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 586 return (&parent->rb_right == link ? list->next : list); 587 } 588 589 static __always_inline void 590 link_va(struct vmap_area *va, struct rb_root *root, 591 struct rb_node *parent, struct rb_node **link, struct list_head *head) 592 { 593 /* 594 * VA is still not in the list, but we can 595 * identify its future previous list_head node. 596 */ 597 if (likely(parent)) { 598 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 599 if (&parent->rb_right != link) 600 head = head->prev; 601 } 602 603 /* Insert to the rb-tree */ 604 rb_link_node(&va->rb_node, parent, link); 605 if (root == &free_vmap_area_root) { 606 /* 607 * Some explanation here. Just perform simple insertion 608 * to the tree. We do not set va->subtree_max_size to 609 * its current size before calling rb_insert_augmented(). 610 * It is because of we populate the tree from the bottom 611 * to parent levels when the node _is_ in the tree. 612 * 613 * Therefore we set subtree_max_size to zero after insertion, 614 * to let __augment_tree_propagate_from() puts everything to 615 * the correct order later on. 616 */ 617 rb_insert_augmented(&va->rb_node, 618 root, &free_vmap_area_rb_augment_cb); 619 va->subtree_max_size = 0; 620 } else { 621 rb_insert_color(&va->rb_node, root); 622 } 623 624 /* Address-sort this list */ 625 list_add(&va->list, head); 626 } 627 628 static __always_inline void 629 unlink_va(struct vmap_area *va, struct rb_root *root) 630 { 631 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 632 return; 633 634 if (root == &free_vmap_area_root) 635 rb_erase_augmented(&va->rb_node, 636 root, &free_vmap_area_rb_augment_cb); 637 else 638 rb_erase(&va->rb_node, root); 639 640 list_del(&va->list); 641 RB_CLEAR_NODE(&va->rb_node); 642 } 643 644 #if DEBUG_AUGMENT_PROPAGATE_CHECK 645 static void 646 augment_tree_propagate_check(void) 647 { 648 struct vmap_area *va; 649 unsigned long computed_size; 650 651 list_for_each_entry(va, &free_vmap_area_list, list) { 652 computed_size = compute_subtree_max_size(va); 653 if (computed_size != va->subtree_max_size) 654 pr_emerg("tree is corrupted: %lu, %lu\n", 655 va_size(va), va->subtree_max_size); 656 } 657 } 658 #endif 659 660 /* 661 * This function populates subtree_max_size from bottom to upper 662 * levels starting from VA point. The propagation must be done 663 * when VA size is modified by changing its va_start/va_end. Or 664 * in case of newly inserting of VA to the tree. 665 * 666 * It means that __augment_tree_propagate_from() must be called: 667 * - After VA has been inserted to the tree(free path); 668 * - After VA has been shrunk(allocation path); 669 * - After VA has been increased(merging path). 670 * 671 * Please note that, it does not mean that upper parent nodes 672 * and their subtree_max_size are recalculated all the time up 673 * to the root node. 674 * 675 * 4--8 676 * /\ 677 * / \ 678 * / \ 679 * 2--2 8--8 680 * 681 * For example if we modify the node 4, shrinking it to 2, then 682 * no any modification is required. If we shrink the node 2 to 1 683 * its subtree_max_size is updated only, and set to 1. If we shrink 684 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 685 * node becomes 4--6. 686 */ 687 static __always_inline void 688 augment_tree_propagate_from(struct vmap_area *va) 689 { 690 /* 691 * Populate the tree from bottom towards the root until 692 * the calculated maximum available size of checked node 693 * is equal to its current one. 694 */ 695 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 696 697 #if DEBUG_AUGMENT_PROPAGATE_CHECK 698 augment_tree_propagate_check(); 699 #endif 700 } 701 702 static void 703 insert_vmap_area(struct vmap_area *va, 704 struct rb_root *root, struct list_head *head) 705 { 706 struct rb_node **link; 707 struct rb_node *parent; 708 709 link = find_va_links(va, root, NULL, &parent); 710 if (link) 711 link_va(va, root, parent, link, head); 712 } 713 714 static void 715 insert_vmap_area_augment(struct vmap_area *va, 716 struct rb_node *from, struct rb_root *root, 717 struct list_head *head) 718 { 719 struct rb_node **link; 720 struct rb_node *parent; 721 722 if (from) 723 link = find_va_links(va, NULL, from, &parent); 724 else 725 link = find_va_links(va, root, NULL, &parent); 726 727 if (link) { 728 link_va(va, root, parent, link, head); 729 augment_tree_propagate_from(va); 730 } 731 } 732 733 /* 734 * Merge de-allocated chunk of VA memory with previous 735 * and next free blocks. If coalesce is not done a new 736 * free area is inserted. If VA has been merged, it is 737 * freed. 738 * 739 * Please note, it can return NULL in case of overlap 740 * ranges, followed by WARN() report. Despite it is a 741 * buggy behaviour, a system can be alive and keep 742 * ongoing. 743 */ 744 static __always_inline struct vmap_area * 745 merge_or_add_vmap_area(struct vmap_area *va, 746 struct rb_root *root, struct list_head *head) 747 { 748 struct vmap_area *sibling; 749 struct list_head *next; 750 struct rb_node **link; 751 struct rb_node *parent; 752 bool merged = false; 753 754 /* 755 * Find a place in the tree where VA potentially will be 756 * inserted, unless it is merged with its sibling/siblings. 757 */ 758 link = find_va_links(va, root, NULL, &parent); 759 if (!link) 760 return NULL; 761 762 /* 763 * Get next node of VA to check if merging can be done. 764 */ 765 next = get_va_next_sibling(parent, link); 766 if (unlikely(next == NULL)) 767 goto insert; 768 769 /* 770 * start end 771 * | | 772 * |<------VA------>|<-----Next----->| 773 * | | 774 * start end 775 */ 776 if (next != head) { 777 sibling = list_entry(next, struct vmap_area, list); 778 if (sibling->va_start == va->va_end) { 779 sibling->va_start = va->va_start; 780 781 /* Free vmap_area object. */ 782 kmem_cache_free(vmap_area_cachep, va); 783 784 /* Point to the new merged area. */ 785 va = sibling; 786 merged = true; 787 } 788 } 789 790 /* 791 * start end 792 * | | 793 * |<-----Prev----->|<------VA------>| 794 * | | 795 * start end 796 */ 797 if (next->prev != head) { 798 sibling = list_entry(next->prev, struct vmap_area, list); 799 if (sibling->va_end == va->va_start) { 800 /* 801 * If both neighbors are coalesced, it is important 802 * to unlink the "next" node first, followed by merging 803 * with "previous" one. Otherwise the tree might not be 804 * fully populated if a sibling's augmented value is 805 * "normalized" because of rotation operations. 806 */ 807 if (merged) 808 unlink_va(va, root); 809 810 sibling->va_end = va->va_end; 811 812 /* Free vmap_area object. */ 813 kmem_cache_free(vmap_area_cachep, va); 814 815 /* Point to the new merged area. */ 816 va = sibling; 817 merged = true; 818 } 819 } 820 821 insert: 822 if (!merged) 823 link_va(va, root, parent, link, head); 824 825 /* 826 * Last step is to check and update the tree. 827 */ 828 augment_tree_propagate_from(va); 829 return va; 830 } 831 832 static __always_inline bool 833 is_within_this_va(struct vmap_area *va, unsigned long size, 834 unsigned long align, unsigned long vstart) 835 { 836 unsigned long nva_start_addr; 837 838 if (va->va_start > vstart) 839 nva_start_addr = ALIGN(va->va_start, align); 840 else 841 nva_start_addr = ALIGN(vstart, align); 842 843 /* Can be overflowed due to big size or alignment. */ 844 if (nva_start_addr + size < nva_start_addr || 845 nva_start_addr < vstart) 846 return false; 847 848 return (nva_start_addr + size <= va->va_end); 849 } 850 851 /* 852 * Find the first free block(lowest start address) in the tree, 853 * that will accomplish the request corresponding to passing 854 * parameters. 855 */ 856 static __always_inline struct vmap_area * 857 find_vmap_lowest_match(unsigned long size, 858 unsigned long align, unsigned long vstart) 859 { 860 struct vmap_area *va; 861 struct rb_node *node; 862 unsigned long length; 863 864 /* Start from the root. */ 865 node = free_vmap_area_root.rb_node; 866 867 /* Adjust the search size for alignment overhead. */ 868 length = size + align - 1; 869 870 while (node) { 871 va = rb_entry(node, struct vmap_area, rb_node); 872 873 if (get_subtree_max_size(node->rb_left) >= length && 874 vstart < va->va_start) { 875 node = node->rb_left; 876 } else { 877 if (is_within_this_va(va, size, align, vstart)) 878 return va; 879 880 /* 881 * Does not make sense to go deeper towards the right 882 * sub-tree if it does not have a free block that is 883 * equal or bigger to the requested search length. 884 */ 885 if (get_subtree_max_size(node->rb_right) >= length) { 886 node = node->rb_right; 887 continue; 888 } 889 890 /* 891 * OK. We roll back and find the first right sub-tree, 892 * that will satisfy the search criteria. It can happen 893 * only once due to "vstart" restriction. 894 */ 895 while ((node = rb_parent(node))) { 896 va = rb_entry(node, struct vmap_area, rb_node); 897 if (is_within_this_va(va, size, align, vstart)) 898 return va; 899 900 if (get_subtree_max_size(node->rb_right) >= length && 901 vstart <= va->va_start) { 902 node = node->rb_right; 903 break; 904 } 905 } 906 } 907 } 908 909 return NULL; 910 } 911 912 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 913 #include <linux/random.h> 914 915 static struct vmap_area * 916 find_vmap_lowest_linear_match(unsigned long size, 917 unsigned long align, unsigned long vstart) 918 { 919 struct vmap_area *va; 920 921 list_for_each_entry(va, &free_vmap_area_list, list) { 922 if (!is_within_this_va(va, size, align, vstart)) 923 continue; 924 925 return va; 926 } 927 928 return NULL; 929 } 930 931 static void 932 find_vmap_lowest_match_check(unsigned long size) 933 { 934 struct vmap_area *va_1, *va_2; 935 unsigned long vstart; 936 unsigned int rnd; 937 938 get_random_bytes(&rnd, sizeof(rnd)); 939 vstart = VMALLOC_START + rnd; 940 941 va_1 = find_vmap_lowest_match(size, 1, vstart); 942 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 943 944 if (va_1 != va_2) 945 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 946 va_1, va_2, vstart); 947 } 948 #endif 949 950 enum fit_type { 951 NOTHING_FIT = 0, 952 FL_FIT_TYPE = 1, /* full fit */ 953 LE_FIT_TYPE = 2, /* left edge fit */ 954 RE_FIT_TYPE = 3, /* right edge fit */ 955 NE_FIT_TYPE = 4 /* no edge fit */ 956 }; 957 958 static __always_inline enum fit_type 959 classify_va_fit_type(struct vmap_area *va, 960 unsigned long nva_start_addr, unsigned long size) 961 { 962 enum fit_type type; 963 964 /* Check if it is within VA. */ 965 if (nva_start_addr < va->va_start || 966 nva_start_addr + size > va->va_end) 967 return NOTHING_FIT; 968 969 /* Now classify. */ 970 if (va->va_start == nva_start_addr) { 971 if (va->va_end == nva_start_addr + size) 972 type = FL_FIT_TYPE; 973 else 974 type = LE_FIT_TYPE; 975 } else if (va->va_end == nva_start_addr + size) { 976 type = RE_FIT_TYPE; 977 } else { 978 type = NE_FIT_TYPE; 979 } 980 981 return type; 982 } 983 984 static __always_inline int 985 adjust_va_to_fit_type(struct vmap_area *va, 986 unsigned long nva_start_addr, unsigned long size, 987 enum fit_type type) 988 { 989 struct vmap_area *lva = NULL; 990 991 if (type == FL_FIT_TYPE) { 992 /* 993 * No need to split VA, it fully fits. 994 * 995 * | | 996 * V NVA V 997 * |---------------| 998 */ 999 unlink_va(va, &free_vmap_area_root); 1000 kmem_cache_free(vmap_area_cachep, va); 1001 } else if (type == LE_FIT_TYPE) { 1002 /* 1003 * Split left edge of fit VA. 1004 * 1005 * | | 1006 * V NVA V R 1007 * |-------|-------| 1008 */ 1009 va->va_start += size; 1010 } else if (type == RE_FIT_TYPE) { 1011 /* 1012 * Split right edge of fit VA. 1013 * 1014 * | | 1015 * L V NVA V 1016 * |-------|-------| 1017 */ 1018 va->va_end = nva_start_addr; 1019 } else if (type == NE_FIT_TYPE) { 1020 /* 1021 * Split no edge of fit VA. 1022 * 1023 * | | 1024 * L V NVA V R 1025 * |---|-------|---| 1026 */ 1027 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1028 if (unlikely(!lva)) { 1029 /* 1030 * For percpu allocator we do not do any pre-allocation 1031 * and leave it as it is. The reason is it most likely 1032 * never ends up with NE_FIT_TYPE splitting. In case of 1033 * percpu allocations offsets and sizes are aligned to 1034 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1035 * are its main fitting cases. 1036 * 1037 * There are a few exceptions though, as an example it is 1038 * a first allocation (early boot up) when we have "one" 1039 * big free space that has to be split. 1040 * 1041 * Also we can hit this path in case of regular "vmap" 1042 * allocations, if "this" current CPU was not preloaded. 1043 * See the comment in alloc_vmap_area() why. If so, then 1044 * GFP_NOWAIT is used instead to get an extra object for 1045 * split purpose. That is rare and most time does not 1046 * occur. 1047 * 1048 * What happens if an allocation gets failed. Basically, 1049 * an "overflow" path is triggered to purge lazily freed 1050 * areas to free some memory, then, the "retry" path is 1051 * triggered to repeat one more time. See more details 1052 * in alloc_vmap_area() function. 1053 */ 1054 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1055 if (!lva) 1056 return -1; 1057 } 1058 1059 /* 1060 * Build the remainder. 1061 */ 1062 lva->va_start = va->va_start; 1063 lva->va_end = nva_start_addr; 1064 1065 /* 1066 * Shrink this VA to remaining size. 1067 */ 1068 va->va_start = nva_start_addr + size; 1069 } else { 1070 return -1; 1071 } 1072 1073 if (type != FL_FIT_TYPE) { 1074 augment_tree_propagate_from(va); 1075 1076 if (lva) /* type == NE_FIT_TYPE */ 1077 insert_vmap_area_augment(lva, &va->rb_node, 1078 &free_vmap_area_root, &free_vmap_area_list); 1079 } 1080 1081 return 0; 1082 } 1083 1084 /* 1085 * Returns a start address of the newly allocated area, if success. 1086 * Otherwise a vend is returned that indicates failure. 1087 */ 1088 static __always_inline unsigned long 1089 __alloc_vmap_area(unsigned long size, unsigned long align, 1090 unsigned long vstart, unsigned long vend) 1091 { 1092 unsigned long nva_start_addr; 1093 struct vmap_area *va; 1094 enum fit_type type; 1095 int ret; 1096 1097 va = find_vmap_lowest_match(size, align, vstart); 1098 if (unlikely(!va)) 1099 return vend; 1100 1101 if (va->va_start > vstart) 1102 nva_start_addr = ALIGN(va->va_start, align); 1103 else 1104 nva_start_addr = ALIGN(vstart, align); 1105 1106 /* Check the "vend" restriction. */ 1107 if (nva_start_addr + size > vend) 1108 return vend; 1109 1110 /* Classify what we have found. */ 1111 type = classify_va_fit_type(va, nva_start_addr, size); 1112 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1113 return vend; 1114 1115 /* Update the free vmap_area. */ 1116 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1117 if (ret) 1118 return vend; 1119 1120 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1121 find_vmap_lowest_match_check(size); 1122 #endif 1123 1124 return nva_start_addr; 1125 } 1126 1127 /* 1128 * Free a region of KVA allocated by alloc_vmap_area 1129 */ 1130 static void free_vmap_area(struct vmap_area *va) 1131 { 1132 /* 1133 * Remove from the busy tree/list. 1134 */ 1135 spin_lock(&vmap_area_lock); 1136 unlink_va(va, &vmap_area_root); 1137 spin_unlock(&vmap_area_lock); 1138 1139 /* 1140 * Insert/Merge it back to the free tree/list. 1141 */ 1142 spin_lock(&free_vmap_area_lock); 1143 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list); 1144 spin_unlock(&free_vmap_area_lock); 1145 } 1146 1147 /* 1148 * Allocate a region of KVA of the specified size and alignment, within the 1149 * vstart and vend. 1150 */ 1151 static struct vmap_area *alloc_vmap_area(unsigned long size, 1152 unsigned long align, 1153 unsigned long vstart, unsigned long vend, 1154 int node, gfp_t gfp_mask) 1155 { 1156 struct vmap_area *va, *pva; 1157 unsigned long addr; 1158 int purged = 0; 1159 int ret; 1160 1161 BUG_ON(!size); 1162 BUG_ON(offset_in_page(size)); 1163 BUG_ON(!is_power_of_2(align)); 1164 1165 if (unlikely(!vmap_initialized)) 1166 return ERR_PTR(-EBUSY); 1167 1168 might_sleep(); 1169 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1170 1171 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1172 if (unlikely(!va)) 1173 return ERR_PTR(-ENOMEM); 1174 1175 /* 1176 * Only scan the relevant parts containing pointers to other objects 1177 * to avoid false negatives. 1178 */ 1179 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1180 1181 retry: 1182 /* 1183 * Preload this CPU with one extra vmap_area object. It is used 1184 * when fit type of free area is NE_FIT_TYPE. Please note, it 1185 * does not guarantee that an allocation occurs on a CPU that 1186 * is preloaded, instead we minimize the case when it is not. 1187 * It can happen because of cpu migration, because there is a 1188 * race until the below spinlock is taken. 1189 * 1190 * The preload is done in non-atomic context, thus it allows us 1191 * to use more permissive allocation masks to be more stable under 1192 * low memory condition and high memory pressure. In rare case, 1193 * if not preloaded, GFP_NOWAIT is used. 1194 * 1195 * Set "pva" to NULL here, because of "retry" path. 1196 */ 1197 pva = NULL; 1198 1199 if (!this_cpu_read(ne_fit_preload_node)) 1200 /* 1201 * Even if it fails we do not really care about that. 1202 * Just proceed as it is. If needed "overflow" path 1203 * will refill the cache we allocate from. 1204 */ 1205 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1206 1207 spin_lock(&free_vmap_area_lock); 1208 1209 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) 1210 kmem_cache_free(vmap_area_cachep, pva); 1211 1212 /* 1213 * If an allocation fails, the "vend" address is 1214 * returned. Therefore trigger the overflow path. 1215 */ 1216 addr = __alloc_vmap_area(size, align, vstart, vend); 1217 spin_unlock(&free_vmap_area_lock); 1218 1219 if (unlikely(addr == vend)) 1220 goto overflow; 1221 1222 va->va_start = addr; 1223 va->va_end = addr + size; 1224 va->vm = NULL; 1225 1226 1227 spin_lock(&vmap_area_lock); 1228 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1229 spin_unlock(&vmap_area_lock); 1230 1231 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1232 BUG_ON(va->va_start < vstart); 1233 BUG_ON(va->va_end > vend); 1234 1235 ret = kasan_populate_vmalloc(addr, size); 1236 if (ret) { 1237 free_vmap_area(va); 1238 return ERR_PTR(ret); 1239 } 1240 1241 return va; 1242 1243 overflow: 1244 if (!purged) { 1245 purge_vmap_area_lazy(); 1246 purged = 1; 1247 goto retry; 1248 } 1249 1250 if (gfpflags_allow_blocking(gfp_mask)) { 1251 unsigned long freed = 0; 1252 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1253 if (freed > 0) { 1254 purged = 0; 1255 goto retry; 1256 } 1257 } 1258 1259 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1260 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1261 size); 1262 1263 kmem_cache_free(vmap_area_cachep, va); 1264 return ERR_PTR(-EBUSY); 1265 } 1266 1267 int register_vmap_purge_notifier(struct notifier_block *nb) 1268 { 1269 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1270 } 1271 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1272 1273 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1274 { 1275 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1276 } 1277 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1278 1279 /* 1280 * lazy_max_pages is the maximum amount of virtual address space we gather up 1281 * before attempting to purge with a TLB flush. 1282 * 1283 * There is a tradeoff here: a larger number will cover more kernel page tables 1284 * and take slightly longer to purge, but it will linearly reduce the number of 1285 * global TLB flushes that must be performed. It would seem natural to scale 1286 * this number up linearly with the number of CPUs (because vmapping activity 1287 * could also scale linearly with the number of CPUs), however it is likely 1288 * that in practice, workloads might be constrained in other ways that mean 1289 * vmap activity will not scale linearly with CPUs. Also, I want to be 1290 * conservative and not introduce a big latency on huge systems, so go with 1291 * a less aggressive log scale. It will still be an improvement over the old 1292 * code, and it will be simple to change the scale factor if we find that it 1293 * becomes a problem on bigger systems. 1294 */ 1295 static unsigned long lazy_max_pages(void) 1296 { 1297 unsigned int log; 1298 1299 log = fls(num_online_cpus()); 1300 1301 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1302 } 1303 1304 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1305 1306 /* 1307 * Serialize vmap purging. There is no actual criticial section protected 1308 * by this look, but we want to avoid concurrent calls for performance 1309 * reasons and to make the pcpu_get_vm_areas more deterministic. 1310 */ 1311 static DEFINE_MUTEX(vmap_purge_lock); 1312 1313 /* for per-CPU blocks */ 1314 static void purge_fragmented_blocks_allcpus(void); 1315 1316 /* 1317 * called before a call to iounmap() if the caller wants vm_area_struct's 1318 * immediately freed. 1319 */ 1320 void set_iounmap_nonlazy(void) 1321 { 1322 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1323 } 1324 1325 /* 1326 * Purges all lazily-freed vmap areas. 1327 */ 1328 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1329 { 1330 unsigned long resched_threshold; 1331 struct llist_node *valist; 1332 struct vmap_area *va; 1333 struct vmap_area *n_va; 1334 1335 lockdep_assert_held(&vmap_purge_lock); 1336 1337 valist = llist_del_all(&vmap_purge_list); 1338 if (unlikely(valist == NULL)) 1339 return false; 1340 1341 /* 1342 * TODO: to calculate a flush range without looping. 1343 * The list can be up to lazy_max_pages() elements. 1344 */ 1345 llist_for_each_entry(va, valist, purge_list) { 1346 if (va->va_start < start) 1347 start = va->va_start; 1348 if (va->va_end > end) 1349 end = va->va_end; 1350 } 1351 1352 flush_tlb_kernel_range(start, end); 1353 resched_threshold = lazy_max_pages() << 1; 1354 1355 spin_lock(&free_vmap_area_lock); 1356 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 1357 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1358 unsigned long orig_start = va->va_start; 1359 unsigned long orig_end = va->va_end; 1360 1361 /* 1362 * Finally insert or merge lazily-freed area. It is 1363 * detached and there is no need to "unlink" it from 1364 * anything. 1365 */ 1366 va = merge_or_add_vmap_area(va, &free_vmap_area_root, 1367 &free_vmap_area_list); 1368 1369 if (!va) 1370 continue; 1371 1372 if (is_vmalloc_or_module_addr((void *)orig_start)) 1373 kasan_release_vmalloc(orig_start, orig_end, 1374 va->va_start, va->va_end); 1375 1376 atomic_long_sub(nr, &vmap_lazy_nr); 1377 1378 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1379 cond_resched_lock(&free_vmap_area_lock); 1380 } 1381 spin_unlock(&free_vmap_area_lock); 1382 return true; 1383 } 1384 1385 /* 1386 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1387 * is already purging. 1388 */ 1389 static void try_purge_vmap_area_lazy(void) 1390 { 1391 if (mutex_trylock(&vmap_purge_lock)) { 1392 __purge_vmap_area_lazy(ULONG_MAX, 0); 1393 mutex_unlock(&vmap_purge_lock); 1394 } 1395 } 1396 1397 /* 1398 * Kick off a purge of the outstanding lazy areas. 1399 */ 1400 static void purge_vmap_area_lazy(void) 1401 { 1402 mutex_lock(&vmap_purge_lock); 1403 purge_fragmented_blocks_allcpus(); 1404 __purge_vmap_area_lazy(ULONG_MAX, 0); 1405 mutex_unlock(&vmap_purge_lock); 1406 } 1407 1408 /* 1409 * Free a vmap area, caller ensuring that the area has been unmapped 1410 * and flush_cache_vunmap had been called for the correct range 1411 * previously. 1412 */ 1413 static void free_vmap_area_noflush(struct vmap_area *va) 1414 { 1415 unsigned long nr_lazy; 1416 1417 spin_lock(&vmap_area_lock); 1418 unlink_va(va, &vmap_area_root); 1419 spin_unlock(&vmap_area_lock); 1420 1421 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1422 PAGE_SHIFT, &vmap_lazy_nr); 1423 1424 /* After this point, we may free va at any time */ 1425 llist_add(&va->purge_list, &vmap_purge_list); 1426 1427 if (unlikely(nr_lazy > lazy_max_pages())) 1428 try_purge_vmap_area_lazy(); 1429 } 1430 1431 /* 1432 * Free and unmap a vmap area 1433 */ 1434 static void free_unmap_vmap_area(struct vmap_area *va) 1435 { 1436 flush_cache_vunmap(va->va_start, va->va_end); 1437 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start); 1438 if (debug_pagealloc_enabled_static()) 1439 flush_tlb_kernel_range(va->va_start, va->va_end); 1440 1441 free_vmap_area_noflush(va); 1442 } 1443 1444 static struct vmap_area *find_vmap_area(unsigned long addr) 1445 { 1446 struct vmap_area *va; 1447 1448 spin_lock(&vmap_area_lock); 1449 va = __find_vmap_area(addr); 1450 spin_unlock(&vmap_area_lock); 1451 1452 return va; 1453 } 1454 1455 /*** Per cpu kva allocator ***/ 1456 1457 /* 1458 * vmap space is limited especially on 32 bit architectures. Ensure there is 1459 * room for at least 16 percpu vmap blocks per CPU. 1460 */ 1461 /* 1462 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1463 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1464 * instead (we just need a rough idea) 1465 */ 1466 #if BITS_PER_LONG == 32 1467 #define VMALLOC_SPACE (128UL*1024*1024) 1468 #else 1469 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1470 #endif 1471 1472 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1473 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1474 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1475 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1476 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1477 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1478 #define VMAP_BBMAP_BITS \ 1479 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1480 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1481 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1482 1483 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1484 1485 struct vmap_block_queue { 1486 spinlock_t lock; 1487 struct list_head free; 1488 }; 1489 1490 struct vmap_block { 1491 spinlock_t lock; 1492 struct vmap_area *va; 1493 unsigned long free, dirty; 1494 unsigned long dirty_min, dirty_max; /*< dirty range */ 1495 struct list_head free_list; 1496 struct rcu_head rcu_head; 1497 struct list_head purge; 1498 }; 1499 1500 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1501 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1502 1503 /* 1504 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1505 * in the free path. Could get rid of this if we change the API to return a 1506 * "cookie" from alloc, to be passed to free. But no big deal yet. 1507 */ 1508 static DEFINE_XARRAY(vmap_blocks); 1509 1510 /* 1511 * We should probably have a fallback mechanism to allocate virtual memory 1512 * out of partially filled vmap blocks. However vmap block sizing should be 1513 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1514 * big problem. 1515 */ 1516 1517 static unsigned long addr_to_vb_idx(unsigned long addr) 1518 { 1519 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1520 addr /= VMAP_BLOCK_SIZE; 1521 return addr; 1522 } 1523 1524 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1525 { 1526 unsigned long addr; 1527 1528 addr = va_start + (pages_off << PAGE_SHIFT); 1529 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1530 return (void *)addr; 1531 } 1532 1533 /** 1534 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1535 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1536 * @order: how many 2^order pages should be occupied in newly allocated block 1537 * @gfp_mask: flags for the page level allocator 1538 * 1539 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1540 */ 1541 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1542 { 1543 struct vmap_block_queue *vbq; 1544 struct vmap_block *vb; 1545 struct vmap_area *va; 1546 unsigned long vb_idx; 1547 int node, err; 1548 void *vaddr; 1549 1550 node = numa_node_id(); 1551 1552 vb = kmalloc_node(sizeof(struct vmap_block), 1553 gfp_mask & GFP_RECLAIM_MASK, node); 1554 if (unlikely(!vb)) 1555 return ERR_PTR(-ENOMEM); 1556 1557 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1558 VMALLOC_START, VMALLOC_END, 1559 node, gfp_mask); 1560 if (IS_ERR(va)) { 1561 kfree(vb); 1562 return ERR_CAST(va); 1563 } 1564 1565 vaddr = vmap_block_vaddr(va->va_start, 0); 1566 spin_lock_init(&vb->lock); 1567 vb->va = va; 1568 /* At least something should be left free */ 1569 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1570 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1571 vb->dirty = 0; 1572 vb->dirty_min = VMAP_BBMAP_BITS; 1573 vb->dirty_max = 0; 1574 INIT_LIST_HEAD(&vb->free_list); 1575 1576 vb_idx = addr_to_vb_idx(va->va_start); 1577 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1578 if (err) { 1579 kfree(vb); 1580 free_vmap_area(va); 1581 return ERR_PTR(err); 1582 } 1583 1584 vbq = &get_cpu_var(vmap_block_queue); 1585 spin_lock(&vbq->lock); 1586 list_add_tail_rcu(&vb->free_list, &vbq->free); 1587 spin_unlock(&vbq->lock); 1588 put_cpu_var(vmap_block_queue); 1589 1590 return vaddr; 1591 } 1592 1593 static void free_vmap_block(struct vmap_block *vb) 1594 { 1595 struct vmap_block *tmp; 1596 1597 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 1598 BUG_ON(tmp != vb); 1599 1600 free_vmap_area_noflush(vb->va); 1601 kfree_rcu(vb, rcu_head); 1602 } 1603 1604 static void purge_fragmented_blocks(int cpu) 1605 { 1606 LIST_HEAD(purge); 1607 struct vmap_block *vb; 1608 struct vmap_block *n_vb; 1609 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1610 1611 rcu_read_lock(); 1612 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1613 1614 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1615 continue; 1616 1617 spin_lock(&vb->lock); 1618 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1619 vb->free = 0; /* prevent further allocs after releasing lock */ 1620 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1621 vb->dirty_min = 0; 1622 vb->dirty_max = VMAP_BBMAP_BITS; 1623 spin_lock(&vbq->lock); 1624 list_del_rcu(&vb->free_list); 1625 spin_unlock(&vbq->lock); 1626 spin_unlock(&vb->lock); 1627 list_add_tail(&vb->purge, &purge); 1628 } else 1629 spin_unlock(&vb->lock); 1630 } 1631 rcu_read_unlock(); 1632 1633 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1634 list_del(&vb->purge); 1635 free_vmap_block(vb); 1636 } 1637 } 1638 1639 static void purge_fragmented_blocks_allcpus(void) 1640 { 1641 int cpu; 1642 1643 for_each_possible_cpu(cpu) 1644 purge_fragmented_blocks(cpu); 1645 } 1646 1647 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1648 { 1649 struct vmap_block_queue *vbq; 1650 struct vmap_block *vb; 1651 void *vaddr = NULL; 1652 unsigned int order; 1653 1654 BUG_ON(offset_in_page(size)); 1655 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1656 if (WARN_ON(size == 0)) { 1657 /* 1658 * Allocating 0 bytes isn't what caller wants since 1659 * get_order(0) returns funny result. Just warn and terminate 1660 * early. 1661 */ 1662 return NULL; 1663 } 1664 order = get_order(size); 1665 1666 rcu_read_lock(); 1667 vbq = &get_cpu_var(vmap_block_queue); 1668 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1669 unsigned long pages_off; 1670 1671 spin_lock(&vb->lock); 1672 if (vb->free < (1UL << order)) { 1673 spin_unlock(&vb->lock); 1674 continue; 1675 } 1676 1677 pages_off = VMAP_BBMAP_BITS - vb->free; 1678 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1679 vb->free -= 1UL << order; 1680 if (vb->free == 0) { 1681 spin_lock(&vbq->lock); 1682 list_del_rcu(&vb->free_list); 1683 spin_unlock(&vbq->lock); 1684 } 1685 1686 spin_unlock(&vb->lock); 1687 break; 1688 } 1689 1690 put_cpu_var(vmap_block_queue); 1691 rcu_read_unlock(); 1692 1693 /* Allocate new block if nothing was found */ 1694 if (!vaddr) 1695 vaddr = new_vmap_block(order, gfp_mask); 1696 1697 return vaddr; 1698 } 1699 1700 static void vb_free(unsigned long addr, unsigned long size) 1701 { 1702 unsigned long offset; 1703 unsigned int order; 1704 struct vmap_block *vb; 1705 1706 BUG_ON(offset_in_page(size)); 1707 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1708 1709 flush_cache_vunmap(addr, addr + size); 1710 1711 order = get_order(size); 1712 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 1713 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 1714 1715 unmap_kernel_range_noflush(addr, size); 1716 1717 if (debug_pagealloc_enabled_static()) 1718 flush_tlb_kernel_range(addr, addr + size); 1719 1720 spin_lock(&vb->lock); 1721 1722 /* Expand dirty range */ 1723 vb->dirty_min = min(vb->dirty_min, offset); 1724 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1725 1726 vb->dirty += 1UL << order; 1727 if (vb->dirty == VMAP_BBMAP_BITS) { 1728 BUG_ON(vb->free); 1729 spin_unlock(&vb->lock); 1730 free_vmap_block(vb); 1731 } else 1732 spin_unlock(&vb->lock); 1733 } 1734 1735 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1736 { 1737 int cpu; 1738 1739 if (unlikely(!vmap_initialized)) 1740 return; 1741 1742 might_sleep(); 1743 1744 for_each_possible_cpu(cpu) { 1745 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1746 struct vmap_block *vb; 1747 1748 rcu_read_lock(); 1749 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1750 spin_lock(&vb->lock); 1751 if (vb->dirty) { 1752 unsigned long va_start = vb->va->va_start; 1753 unsigned long s, e; 1754 1755 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1756 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1757 1758 start = min(s, start); 1759 end = max(e, end); 1760 1761 flush = 1; 1762 } 1763 spin_unlock(&vb->lock); 1764 } 1765 rcu_read_unlock(); 1766 } 1767 1768 mutex_lock(&vmap_purge_lock); 1769 purge_fragmented_blocks_allcpus(); 1770 if (!__purge_vmap_area_lazy(start, end) && flush) 1771 flush_tlb_kernel_range(start, end); 1772 mutex_unlock(&vmap_purge_lock); 1773 } 1774 1775 /** 1776 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1777 * 1778 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1779 * to amortize TLB flushing overheads. What this means is that any page you 1780 * have now, may, in a former life, have been mapped into kernel virtual 1781 * address by the vmap layer and so there might be some CPUs with TLB entries 1782 * still referencing that page (additional to the regular 1:1 kernel mapping). 1783 * 1784 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1785 * be sure that none of the pages we have control over will have any aliases 1786 * from the vmap layer. 1787 */ 1788 void vm_unmap_aliases(void) 1789 { 1790 unsigned long start = ULONG_MAX, end = 0; 1791 int flush = 0; 1792 1793 _vm_unmap_aliases(start, end, flush); 1794 } 1795 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1796 1797 /** 1798 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1799 * @mem: the pointer returned by vm_map_ram 1800 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1801 */ 1802 void vm_unmap_ram(const void *mem, unsigned int count) 1803 { 1804 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1805 unsigned long addr = (unsigned long)mem; 1806 struct vmap_area *va; 1807 1808 might_sleep(); 1809 BUG_ON(!addr); 1810 BUG_ON(addr < VMALLOC_START); 1811 BUG_ON(addr > VMALLOC_END); 1812 BUG_ON(!PAGE_ALIGNED(addr)); 1813 1814 kasan_poison_vmalloc(mem, size); 1815 1816 if (likely(count <= VMAP_MAX_ALLOC)) { 1817 debug_check_no_locks_freed(mem, size); 1818 vb_free(addr, size); 1819 return; 1820 } 1821 1822 va = find_vmap_area(addr); 1823 BUG_ON(!va); 1824 debug_check_no_locks_freed((void *)va->va_start, 1825 (va->va_end - va->va_start)); 1826 free_unmap_vmap_area(va); 1827 } 1828 EXPORT_SYMBOL(vm_unmap_ram); 1829 1830 /** 1831 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1832 * @pages: an array of pointers to the pages to be mapped 1833 * @count: number of pages 1834 * @node: prefer to allocate data structures on this node 1835 * 1836 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1837 * faster than vmap so it's good. But if you mix long-life and short-life 1838 * objects with vm_map_ram(), it could consume lots of address space through 1839 * fragmentation (especially on a 32bit machine). You could see failures in 1840 * the end. Please use this function for short-lived objects. 1841 * 1842 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1843 */ 1844 void *vm_map_ram(struct page **pages, unsigned int count, int node) 1845 { 1846 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1847 unsigned long addr; 1848 void *mem; 1849 1850 if (likely(count <= VMAP_MAX_ALLOC)) { 1851 mem = vb_alloc(size, GFP_KERNEL); 1852 if (IS_ERR(mem)) 1853 return NULL; 1854 addr = (unsigned long)mem; 1855 } else { 1856 struct vmap_area *va; 1857 va = alloc_vmap_area(size, PAGE_SIZE, 1858 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1859 if (IS_ERR(va)) 1860 return NULL; 1861 1862 addr = va->va_start; 1863 mem = (void *)addr; 1864 } 1865 1866 kasan_unpoison_vmalloc(mem, size); 1867 1868 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) { 1869 vm_unmap_ram(mem, count); 1870 return NULL; 1871 } 1872 return mem; 1873 } 1874 EXPORT_SYMBOL(vm_map_ram); 1875 1876 static struct vm_struct *vmlist __initdata; 1877 1878 /** 1879 * vm_area_add_early - add vmap area early during boot 1880 * @vm: vm_struct to add 1881 * 1882 * This function is used to add fixed kernel vm area to vmlist before 1883 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1884 * should contain proper values and the other fields should be zero. 1885 * 1886 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1887 */ 1888 void __init vm_area_add_early(struct vm_struct *vm) 1889 { 1890 struct vm_struct *tmp, **p; 1891 1892 BUG_ON(vmap_initialized); 1893 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1894 if (tmp->addr >= vm->addr) { 1895 BUG_ON(tmp->addr < vm->addr + vm->size); 1896 break; 1897 } else 1898 BUG_ON(tmp->addr + tmp->size > vm->addr); 1899 } 1900 vm->next = *p; 1901 *p = vm; 1902 } 1903 1904 /** 1905 * vm_area_register_early - register vmap area early during boot 1906 * @vm: vm_struct to register 1907 * @align: requested alignment 1908 * 1909 * This function is used to register kernel vm area before 1910 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1911 * proper values on entry and other fields should be zero. On return, 1912 * vm->addr contains the allocated address. 1913 * 1914 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1915 */ 1916 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1917 { 1918 static size_t vm_init_off __initdata; 1919 unsigned long addr; 1920 1921 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1922 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1923 1924 vm->addr = (void *)addr; 1925 1926 vm_area_add_early(vm); 1927 } 1928 1929 static void vmap_init_free_space(void) 1930 { 1931 unsigned long vmap_start = 1; 1932 const unsigned long vmap_end = ULONG_MAX; 1933 struct vmap_area *busy, *free; 1934 1935 /* 1936 * B F B B B F 1937 * -|-----|.....|-----|-----|-----|.....|- 1938 * | The KVA space | 1939 * |<--------------------------------->| 1940 */ 1941 list_for_each_entry(busy, &vmap_area_list, list) { 1942 if (busy->va_start - vmap_start > 0) { 1943 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1944 if (!WARN_ON_ONCE(!free)) { 1945 free->va_start = vmap_start; 1946 free->va_end = busy->va_start; 1947 1948 insert_vmap_area_augment(free, NULL, 1949 &free_vmap_area_root, 1950 &free_vmap_area_list); 1951 } 1952 } 1953 1954 vmap_start = busy->va_end; 1955 } 1956 1957 if (vmap_end - vmap_start > 0) { 1958 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1959 if (!WARN_ON_ONCE(!free)) { 1960 free->va_start = vmap_start; 1961 free->va_end = vmap_end; 1962 1963 insert_vmap_area_augment(free, NULL, 1964 &free_vmap_area_root, 1965 &free_vmap_area_list); 1966 } 1967 } 1968 } 1969 1970 void __init vmalloc_init(void) 1971 { 1972 struct vmap_area *va; 1973 struct vm_struct *tmp; 1974 int i; 1975 1976 /* 1977 * Create the cache for vmap_area objects. 1978 */ 1979 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 1980 1981 for_each_possible_cpu(i) { 1982 struct vmap_block_queue *vbq; 1983 struct vfree_deferred *p; 1984 1985 vbq = &per_cpu(vmap_block_queue, i); 1986 spin_lock_init(&vbq->lock); 1987 INIT_LIST_HEAD(&vbq->free); 1988 p = &per_cpu(vfree_deferred, i); 1989 init_llist_head(&p->list); 1990 INIT_WORK(&p->wq, free_work); 1991 } 1992 1993 /* Import existing vmlist entries. */ 1994 for (tmp = vmlist; tmp; tmp = tmp->next) { 1995 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1996 if (WARN_ON_ONCE(!va)) 1997 continue; 1998 1999 va->va_start = (unsigned long)tmp->addr; 2000 va->va_end = va->va_start + tmp->size; 2001 va->vm = tmp; 2002 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2003 } 2004 2005 /* 2006 * Now we can initialize a free vmap space. 2007 */ 2008 vmap_init_free_space(); 2009 vmap_initialized = true; 2010 } 2011 2012 /** 2013 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 2014 * @addr: start of the VM area to unmap 2015 * @size: size of the VM area to unmap 2016 * 2017 * Similar to unmap_kernel_range_noflush() but flushes vcache before 2018 * the unmapping and tlb after. 2019 */ 2020 void unmap_kernel_range(unsigned long addr, unsigned long size) 2021 { 2022 unsigned long end = addr + size; 2023 2024 flush_cache_vunmap(addr, end); 2025 unmap_kernel_range_noflush(addr, size); 2026 flush_tlb_kernel_range(addr, end); 2027 } 2028 2029 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2030 struct vmap_area *va, unsigned long flags, const void *caller) 2031 { 2032 vm->flags = flags; 2033 vm->addr = (void *)va->va_start; 2034 vm->size = va->va_end - va->va_start; 2035 vm->caller = caller; 2036 va->vm = vm; 2037 } 2038 2039 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2040 unsigned long flags, const void *caller) 2041 { 2042 spin_lock(&vmap_area_lock); 2043 setup_vmalloc_vm_locked(vm, va, flags, caller); 2044 spin_unlock(&vmap_area_lock); 2045 } 2046 2047 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2048 { 2049 /* 2050 * Before removing VM_UNINITIALIZED, 2051 * we should make sure that vm has proper values. 2052 * Pair with smp_rmb() in show_numa_info(). 2053 */ 2054 smp_wmb(); 2055 vm->flags &= ~VM_UNINITIALIZED; 2056 } 2057 2058 static struct vm_struct *__get_vm_area_node(unsigned long size, 2059 unsigned long align, unsigned long flags, unsigned long start, 2060 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 2061 { 2062 struct vmap_area *va; 2063 struct vm_struct *area; 2064 unsigned long requested_size = size; 2065 2066 BUG_ON(in_interrupt()); 2067 size = PAGE_ALIGN(size); 2068 if (unlikely(!size)) 2069 return NULL; 2070 2071 if (flags & VM_IOREMAP) 2072 align = 1ul << clamp_t(int, get_count_order_long(size), 2073 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2074 2075 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2076 if (unlikely(!area)) 2077 return NULL; 2078 2079 if (!(flags & VM_NO_GUARD)) 2080 size += PAGE_SIZE; 2081 2082 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2083 if (IS_ERR(va)) { 2084 kfree(area); 2085 return NULL; 2086 } 2087 2088 kasan_unpoison_vmalloc((void *)va->va_start, requested_size); 2089 2090 setup_vmalloc_vm(area, va, flags, caller); 2091 2092 return area; 2093 } 2094 2095 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2096 unsigned long start, unsigned long end, 2097 const void *caller) 2098 { 2099 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2100 GFP_KERNEL, caller); 2101 } 2102 2103 /** 2104 * get_vm_area - reserve a contiguous kernel virtual area 2105 * @size: size of the area 2106 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2107 * 2108 * Search an area of @size in the kernel virtual mapping area, 2109 * and reserved it for out purposes. Returns the area descriptor 2110 * on success or %NULL on failure. 2111 * 2112 * Return: the area descriptor on success or %NULL on failure. 2113 */ 2114 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2115 { 2116 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2117 NUMA_NO_NODE, GFP_KERNEL, 2118 __builtin_return_address(0)); 2119 } 2120 2121 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2122 const void *caller) 2123 { 2124 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2125 NUMA_NO_NODE, GFP_KERNEL, caller); 2126 } 2127 2128 /** 2129 * find_vm_area - find a continuous kernel virtual area 2130 * @addr: base address 2131 * 2132 * Search for the kernel VM area starting at @addr, and return it. 2133 * It is up to the caller to do all required locking to keep the returned 2134 * pointer valid. 2135 * 2136 * Return: pointer to the found area or %NULL on faulure 2137 */ 2138 struct vm_struct *find_vm_area(const void *addr) 2139 { 2140 struct vmap_area *va; 2141 2142 va = find_vmap_area((unsigned long)addr); 2143 if (!va) 2144 return NULL; 2145 2146 return va->vm; 2147 } 2148 2149 /** 2150 * remove_vm_area - find and remove a continuous kernel virtual area 2151 * @addr: base address 2152 * 2153 * Search for the kernel VM area starting at @addr, and remove it. 2154 * This function returns the found VM area, but using it is NOT safe 2155 * on SMP machines, except for its size or flags. 2156 * 2157 * Return: pointer to the found area or %NULL on faulure 2158 */ 2159 struct vm_struct *remove_vm_area(const void *addr) 2160 { 2161 struct vmap_area *va; 2162 2163 might_sleep(); 2164 2165 spin_lock(&vmap_area_lock); 2166 va = __find_vmap_area((unsigned long)addr); 2167 if (va && va->vm) { 2168 struct vm_struct *vm = va->vm; 2169 2170 va->vm = NULL; 2171 spin_unlock(&vmap_area_lock); 2172 2173 kasan_free_shadow(vm); 2174 free_unmap_vmap_area(va); 2175 2176 return vm; 2177 } 2178 2179 spin_unlock(&vmap_area_lock); 2180 return NULL; 2181 } 2182 2183 static inline void set_area_direct_map(const struct vm_struct *area, 2184 int (*set_direct_map)(struct page *page)) 2185 { 2186 int i; 2187 2188 for (i = 0; i < area->nr_pages; i++) 2189 if (page_address(area->pages[i])) 2190 set_direct_map(area->pages[i]); 2191 } 2192 2193 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2194 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2195 { 2196 unsigned long start = ULONG_MAX, end = 0; 2197 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2198 int flush_dmap = 0; 2199 int i; 2200 2201 remove_vm_area(area->addr); 2202 2203 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2204 if (!flush_reset) 2205 return; 2206 2207 /* 2208 * If not deallocating pages, just do the flush of the VM area and 2209 * return. 2210 */ 2211 if (!deallocate_pages) { 2212 vm_unmap_aliases(); 2213 return; 2214 } 2215 2216 /* 2217 * If execution gets here, flush the vm mapping and reset the direct 2218 * map. Find the start and end range of the direct mappings to make sure 2219 * the vm_unmap_aliases() flush includes the direct map. 2220 */ 2221 for (i = 0; i < area->nr_pages; i++) { 2222 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2223 if (addr) { 2224 start = min(addr, start); 2225 end = max(addr + PAGE_SIZE, end); 2226 flush_dmap = 1; 2227 } 2228 } 2229 2230 /* 2231 * Set direct map to something invalid so that it won't be cached if 2232 * there are any accesses after the TLB flush, then flush the TLB and 2233 * reset the direct map permissions to the default. 2234 */ 2235 set_area_direct_map(area, set_direct_map_invalid_noflush); 2236 _vm_unmap_aliases(start, end, flush_dmap); 2237 set_area_direct_map(area, set_direct_map_default_noflush); 2238 } 2239 2240 static void __vunmap(const void *addr, int deallocate_pages) 2241 { 2242 struct vm_struct *area; 2243 2244 if (!addr) 2245 return; 2246 2247 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2248 addr)) 2249 return; 2250 2251 area = find_vm_area(addr); 2252 if (unlikely(!area)) { 2253 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2254 addr); 2255 return; 2256 } 2257 2258 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2259 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2260 2261 kasan_poison_vmalloc(area->addr, area->size); 2262 2263 vm_remove_mappings(area, deallocate_pages); 2264 2265 if (deallocate_pages) { 2266 int i; 2267 2268 for (i = 0; i < area->nr_pages; i++) { 2269 struct page *page = area->pages[i]; 2270 2271 BUG_ON(!page); 2272 __free_pages(page, 0); 2273 } 2274 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2275 2276 kvfree(area->pages); 2277 } 2278 2279 kfree(area); 2280 return; 2281 } 2282 2283 static inline void __vfree_deferred(const void *addr) 2284 { 2285 /* 2286 * Use raw_cpu_ptr() because this can be called from preemptible 2287 * context. Preemption is absolutely fine here, because the llist_add() 2288 * implementation is lockless, so it works even if we are adding to 2289 * another cpu's list. schedule_work() should be fine with this too. 2290 */ 2291 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2292 2293 if (llist_add((struct llist_node *)addr, &p->list)) 2294 schedule_work(&p->wq); 2295 } 2296 2297 /** 2298 * vfree_atomic - release memory allocated by vmalloc() 2299 * @addr: memory base address 2300 * 2301 * This one is just like vfree() but can be called in any atomic context 2302 * except NMIs. 2303 */ 2304 void vfree_atomic(const void *addr) 2305 { 2306 BUG_ON(in_nmi()); 2307 2308 kmemleak_free(addr); 2309 2310 if (!addr) 2311 return; 2312 __vfree_deferred(addr); 2313 } 2314 2315 static void __vfree(const void *addr) 2316 { 2317 if (unlikely(in_interrupt())) 2318 __vfree_deferred(addr); 2319 else 2320 __vunmap(addr, 1); 2321 } 2322 2323 /** 2324 * vfree - release memory allocated by vmalloc() 2325 * @addr: memory base address 2326 * 2327 * Free the virtually continuous memory area starting at @addr, as 2328 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 2329 * NULL, no operation is performed. 2330 * 2331 * Must not be called in NMI context (strictly speaking, only if we don't 2332 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2333 * conventions for vfree() arch-depenedent would be a really bad idea) 2334 * 2335 * May sleep if called *not* from interrupt context. 2336 * 2337 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 2338 */ 2339 void vfree(const void *addr) 2340 { 2341 BUG_ON(in_nmi()); 2342 2343 kmemleak_free(addr); 2344 2345 might_sleep_if(!in_interrupt()); 2346 2347 if (!addr) 2348 return; 2349 2350 __vfree(addr); 2351 } 2352 EXPORT_SYMBOL(vfree); 2353 2354 /** 2355 * vunmap - release virtual mapping obtained by vmap() 2356 * @addr: memory base address 2357 * 2358 * Free the virtually contiguous memory area starting at @addr, 2359 * which was created from the page array passed to vmap(). 2360 * 2361 * Must not be called in interrupt context. 2362 */ 2363 void vunmap(const void *addr) 2364 { 2365 BUG_ON(in_interrupt()); 2366 might_sleep(); 2367 if (addr) 2368 __vunmap(addr, 0); 2369 } 2370 EXPORT_SYMBOL(vunmap); 2371 2372 /** 2373 * vmap - map an array of pages into virtually contiguous space 2374 * @pages: array of page pointers 2375 * @count: number of pages to map 2376 * @flags: vm_area->flags 2377 * @prot: page protection for the mapping 2378 * 2379 * Maps @count pages from @pages into contiguous kernel virtual 2380 * space. 2381 * 2382 * Return: the address of the area or %NULL on failure 2383 */ 2384 void *vmap(struct page **pages, unsigned int count, 2385 unsigned long flags, pgprot_t prot) 2386 { 2387 struct vm_struct *area; 2388 unsigned long size; /* In bytes */ 2389 2390 might_sleep(); 2391 2392 if (count > totalram_pages()) 2393 return NULL; 2394 2395 size = (unsigned long)count << PAGE_SHIFT; 2396 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2397 if (!area) 2398 return NULL; 2399 2400 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot), 2401 pages) < 0) { 2402 vunmap(area->addr); 2403 return NULL; 2404 } 2405 2406 return area->addr; 2407 } 2408 EXPORT_SYMBOL(vmap); 2409 2410 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2411 pgprot_t prot, int node) 2412 { 2413 struct page **pages; 2414 unsigned int nr_pages, array_size, i; 2415 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2416 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 2417 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 2418 0 : 2419 __GFP_HIGHMEM; 2420 2421 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 2422 array_size = (nr_pages * sizeof(struct page *)); 2423 2424 /* Please note that the recursion is strictly bounded. */ 2425 if (array_size > PAGE_SIZE) { 2426 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 2427 node, area->caller); 2428 } else { 2429 pages = kmalloc_node(array_size, nested_gfp, node); 2430 } 2431 2432 if (!pages) { 2433 remove_vm_area(area->addr); 2434 kfree(area); 2435 return NULL; 2436 } 2437 2438 area->pages = pages; 2439 area->nr_pages = nr_pages; 2440 2441 for (i = 0; i < area->nr_pages; i++) { 2442 struct page *page; 2443 2444 if (node == NUMA_NO_NODE) 2445 page = alloc_page(alloc_mask|highmem_mask); 2446 else 2447 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 2448 2449 if (unlikely(!page)) { 2450 /* Successfully allocated i pages, free them in __vunmap() */ 2451 area->nr_pages = i; 2452 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2453 goto fail; 2454 } 2455 area->pages[i] = page; 2456 if (gfpflags_allow_blocking(gfp_mask)) 2457 cond_resched(); 2458 } 2459 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2460 2461 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area), 2462 prot, pages) < 0) 2463 goto fail; 2464 2465 return area->addr; 2466 2467 fail: 2468 warn_alloc(gfp_mask, NULL, 2469 "vmalloc: allocation failure, allocated %ld of %ld bytes", 2470 (area->nr_pages*PAGE_SIZE), area->size); 2471 __vfree(area->addr); 2472 return NULL; 2473 } 2474 2475 /** 2476 * __vmalloc_node_range - allocate virtually contiguous memory 2477 * @size: allocation size 2478 * @align: desired alignment 2479 * @start: vm area range start 2480 * @end: vm area range end 2481 * @gfp_mask: flags for the page level allocator 2482 * @prot: protection mask for the allocated pages 2483 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2484 * @node: node to use for allocation or NUMA_NO_NODE 2485 * @caller: caller's return address 2486 * 2487 * Allocate enough pages to cover @size from the page level 2488 * allocator with @gfp_mask flags. Map them into contiguous 2489 * kernel virtual space, using a pagetable protection of @prot. 2490 * 2491 * Return: the address of the area or %NULL on failure 2492 */ 2493 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2494 unsigned long start, unsigned long end, gfp_t gfp_mask, 2495 pgprot_t prot, unsigned long vm_flags, int node, 2496 const void *caller) 2497 { 2498 struct vm_struct *area; 2499 void *addr; 2500 unsigned long real_size = size; 2501 2502 size = PAGE_ALIGN(size); 2503 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 2504 goto fail; 2505 2506 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED | 2507 vm_flags, start, end, node, gfp_mask, caller); 2508 if (!area) 2509 goto fail; 2510 2511 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 2512 if (!addr) 2513 return NULL; 2514 2515 /* 2516 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2517 * flag. It means that vm_struct is not fully initialized. 2518 * Now, it is fully initialized, so remove this flag here. 2519 */ 2520 clear_vm_uninitialized_flag(area); 2521 2522 kmemleak_vmalloc(area, size, gfp_mask); 2523 2524 return addr; 2525 2526 fail: 2527 warn_alloc(gfp_mask, NULL, 2528 "vmalloc: allocation failure: %lu bytes", real_size); 2529 return NULL; 2530 } 2531 2532 /** 2533 * __vmalloc_node - allocate virtually contiguous memory 2534 * @size: allocation size 2535 * @align: desired alignment 2536 * @gfp_mask: flags for the page level allocator 2537 * @node: node to use for allocation or NUMA_NO_NODE 2538 * @caller: caller's return address 2539 * 2540 * Allocate enough pages to cover @size from the page level allocator with 2541 * @gfp_mask flags. Map them into contiguous kernel virtual space. 2542 * 2543 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 2544 * and __GFP_NOFAIL are not supported 2545 * 2546 * Any use of gfp flags outside of GFP_KERNEL should be consulted 2547 * with mm people. 2548 * 2549 * Return: pointer to the allocated memory or %NULL on error 2550 */ 2551 void *__vmalloc_node(unsigned long size, unsigned long align, 2552 gfp_t gfp_mask, int node, const void *caller) 2553 { 2554 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 2555 gfp_mask, PAGE_KERNEL, 0, node, caller); 2556 } 2557 /* 2558 * This is only for performance analysis of vmalloc and stress purpose. 2559 * It is required by vmalloc test module, therefore do not use it other 2560 * than that. 2561 */ 2562 #ifdef CONFIG_TEST_VMALLOC_MODULE 2563 EXPORT_SYMBOL_GPL(__vmalloc_node); 2564 #endif 2565 2566 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 2567 { 2568 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 2569 __builtin_return_address(0)); 2570 } 2571 EXPORT_SYMBOL(__vmalloc); 2572 2573 /** 2574 * vmalloc - allocate virtually contiguous memory 2575 * @size: allocation size 2576 * 2577 * Allocate enough pages to cover @size from the page level 2578 * allocator and map them into contiguous kernel virtual space. 2579 * 2580 * For tight control over page level allocator and protection flags 2581 * use __vmalloc() instead. 2582 * 2583 * Return: pointer to the allocated memory or %NULL on error 2584 */ 2585 void *vmalloc(unsigned long size) 2586 { 2587 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 2588 __builtin_return_address(0)); 2589 } 2590 EXPORT_SYMBOL(vmalloc); 2591 2592 /** 2593 * vzalloc - allocate virtually contiguous memory with zero fill 2594 * @size: allocation size 2595 * 2596 * Allocate enough pages to cover @size from the page level 2597 * allocator and map them into contiguous kernel virtual space. 2598 * The memory allocated is set to zero. 2599 * 2600 * For tight control over page level allocator and protection flags 2601 * use __vmalloc() instead. 2602 * 2603 * Return: pointer to the allocated memory or %NULL on error 2604 */ 2605 void *vzalloc(unsigned long size) 2606 { 2607 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 2608 __builtin_return_address(0)); 2609 } 2610 EXPORT_SYMBOL(vzalloc); 2611 2612 /** 2613 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 2614 * @size: allocation size 2615 * 2616 * The resulting memory area is zeroed so it can be mapped to userspace 2617 * without leaking data. 2618 * 2619 * Return: pointer to the allocated memory or %NULL on error 2620 */ 2621 void *vmalloc_user(unsigned long size) 2622 { 2623 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2624 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 2625 VM_USERMAP, NUMA_NO_NODE, 2626 __builtin_return_address(0)); 2627 } 2628 EXPORT_SYMBOL(vmalloc_user); 2629 2630 /** 2631 * vmalloc_node - allocate memory on a specific node 2632 * @size: allocation size 2633 * @node: numa node 2634 * 2635 * Allocate enough pages to cover @size from the page level 2636 * allocator and map them into contiguous kernel virtual space. 2637 * 2638 * For tight control over page level allocator and protection flags 2639 * use __vmalloc() instead. 2640 * 2641 * Return: pointer to the allocated memory or %NULL on error 2642 */ 2643 void *vmalloc_node(unsigned long size, int node) 2644 { 2645 return __vmalloc_node(size, 1, GFP_KERNEL, node, 2646 __builtin_return_address(0)); 2647 } 2648 EXPORT_SYMBOL(vmalloc_node); 2649 2650 /** 2651 * vzalloc_node - allocate memory on a specific node with zero fill 2652 * @size: allocation size 2653 * @node: numa node 2654 * 2655 * Allocate enough pages to cover @size from the page level 2656 * allocator and map them into contiguous kernel virtual space. 2657 * The memory allocated is set to zero. 2658 * 2659 * Return: pointer to the allocated memory or %NULL on error 2660 */ 2661 void *vzalloc_node(unsigned long size, int node) 2662 { 2663 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 2664 __builtin_return_address(0)); 2665 } 2666 EXPORT_SYMBOL(vzalloc_node); 2667 2668 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2669 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2670 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2671 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2672 #else 2673 /* 2674 * 64b systems should always have either DMA or DMA32 zones. For others 2675 * GFP_DMA32 should do the right thing and use the normal zone. 2676 */ 2677 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2678 #endif 2679 2680 /** 2681 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2682 * @size: allocation size 2683 * 2684 * Allocate enough 32bit PA addressable pages to cover @size from the 2685 * page level allocator and map them into contiguous kernel virtual space. 2686 * 2687 * Return: pointer to the allocated memory or %NULL on error 2688 */ 2689 void *vmalloc_32(unsigned long size) 2690 { 2691 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 2692 __builtin_return_address(0)); 2693 } 2694 EXPORT_SYMBOL(vmalloc_32); 2695 2696 /** 2697 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2698 * @size: allocation size 2699 * 2700 * The resulting memory area is 32bit addressable and zeroed so it can be 2701 * mapped to userspace without leaking data. 2702 * 2703 * Return: pointer to the allocated memory or %NULL on error 2704 */ 2705 void *vmalloc_32_user(unsigned long size) 2706 { 2707 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2708 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2709 VM_USERMAP, NUMA_NO_NODE, 2710 __builtin_return_address(0)); 2711 } 2712 EXPORT_SYMBOL(vmalloc_32_user); 2713 2714 /* 2715 * small helper routine , copy contents to buf from addr. 2716 * If the page is not present, fill zero. 2717 */ 2718 2719 static int aligned_vread(char *buf, char *addr, unsigned long count) 2720 { 2721 struct page *p; 2722 int copied = 0; 2723 2724 while (count) { 2725 unsigned long offset, length; 2726 2727 offset = offset_in_page(addr); 2728 length = PAGE_SIZE - offset; 2729 if (length > count) 2730 length = count; 2731 p = vmalloc_to_page(addr); 2732 /* 2733 * To do safe access to this _mapped_ area, we need 2734 * lock. But adding lock here means that we need to add 2735 * overhead of vmalloc()/vfree() calles for this _debug_ 2736 * interface, rarely used. Instead of that, we'll use 2737 * kmap() and get small overhead in this access function. 2738 */ 2739 if (p) { 2740 /* 2741 * we can expect USER0 is not used (see vread/vwrite's 2742 * function description) 2743 */ 2744 void *map = kmap_atomic(p); 2745 memcpy(buf, map + offset, length); 2746 kunmap_atomic(map); 2747 } else 2748 memset(buf, 0, length); 2749 2750 addr += length; 2751 buf += length; 2752 copied += length; 2753 count -= length; 2754 } 2755 return copied; 2756 } 2757 2758 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2759 { 2760 struct page *p; 2761 int copied = 0; 2762 2763 while (count) { 2764 unsigned long offset, length; 2765 2766 offset = offset_in_page(addr); 2767 length = PAGE_SIZE - offset; 2768 if (length > count) 2769 length = count; 2770 p = vmalloc_to_page(addr); 2771 /* 2772 * To do safe access to this _mapped_ area, we need 2773 * lock. But adding lock here means that we need to add 2774 * overhead of vmalloc()/vfree() calles for this _debug_ 2775 * interface, rarely used. Instead of that, we'll use 2776 * kmap() and get small overhead in this access function. 2777 */ 2778 if (p) { 2779 /* 2780 * we can expect USER0 is not used (see vread/vwrite's 2781 * function description) 2782 */ 2783 void *map = kmap_atomic(p); 2784 memcpy(map + offset, buf, length); 2785 kunmap_atomic(map); 2786 } 2787 addr += length; 2788 buf += length; 2789 copied += length; 2790 count -= length; 2791 } 2792 return copied; 2793 } 2794 2795 /** 2796 * vread() - read vmalloc area in a safe way. 2797 * @buf: buffer for reading data 2798 * @addr: vm address. 2799 * @count: number of bytes to be read. 2800 * 2801 * This function checks that addr is a valid vmalloc'ed area, and 2802 * copy data from that area to a given buffer. If the given memory range 2803 * of [addr...addr+count) includes some valid address, data is copied to 2804 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2805 * IOREMAP area is treated as memory hole and no copy is done. 2806 * 2807 * If [addr...addr+count) doesn't includes any intersects with alive 2808 * vm_struct area, returns 0. @buf should be kernel's buffer. 2809 * 2810 * Note: In usual ops, vread() is never necessary because the caller 2811 * should know vmalloc() area is valid and can use memcpy(). 2812 * This is for routines which have to access vmalloc area without 2813 * any information, as /dev/kmem. 2814 * 2815 * Return: number of bytes for which addr and buf should be increased 2816 * (same number as @count) or %0 if [addr...addr+count) doesn't 2817 * include any intersection with valid vmalloc area 2818 */ 2819 long vread(char *buf, char *addr, unsigned long count) 2820 { 2821 struct vmap_area *va; 2822 struct vm_struct *vm; 2823 char *vaddr, *buf_start = buf; 2824 unsigned long buflen = count; 2825 unsigned long n; 2826 2827 /* Don't allow overflow */ 2828 if ((unsigned long) addr + count < count) 2829 count = -(unsigned long) addr; 2830 2831 spin_lock(&vmap_area_lock); 2832 list_for_each_entry(va, &vmap_area_list, list) { 2833 if (!count) 2834 break; 2835 2836 if (!va->vm) 2837 continue; 2838 2839 vm = va->vm; 2840 vaddr = (char *) vm->addr; 2841 if (addr >= vaddr + get_vm_area_size(vm)) 2842 continue; 2843 while (addr < vaddr) { 2844 if (count == 0) 2845 goto finished; 2846 *buf = '\0'; 2847 buf++; 2848 addr++; 2849 count--; 2850 } 2851 n = vaddr + get_vm_area_size(vm) - addr; 2852 if (n > count) 2853 n = count; 2854 if (!(vm->flags & VM_IOREMAP)) 2855 aligned_vread(buf, addr, n); 2856 else /* IOREMAP area is treated as memory hole */ 2857 memset(buf, 0, n); 2858 buf += n; 2859 addr += n; 2860 count -= n; 2861 } 2862 finished: 2863 spin_unlock(&vmap_area_lock); 2864 2865 if (buf == buf_start) 2866 return 0; 2867 /* zero-fill memory holes */ 2868 if (buf != buf_start + buflen) 2869 memset(buf, 0, buflen - (buf - buf_start)); 2870 2871 return buflen; 2872 } 2873 2874 /** 2875 * vwrite() - write vmalloc area in a safe way. 2876 * @buf: buffer for source data 2877 * @addr: vm address. 2878 * @count: number of bytes to be read. 2879 * 2880 * This function checks that addr is a valid vmalloc'ed area, and 2881 * copy data from a buffer to the given addr. If specified range of 2882 * [addr...addr+count) includes some valid address, data is copied from 2883 * proper area of @buf. If there are memory holes, no copy to hole. 2884 * IOREMAP area is treated as memory hole and no copy is done. 2885 * 2886 * If [addr...addr+count) doesn't includes any intersects with alive 2887 * vm_struct area, returns 0. @buf should be kernel's buffer. 2888 * 2889 * Note: In usual ops, vwrite() is never necessary because the caller 2890 * should know vmalloc() area is valid and can use memcpy(). 2891 * This is for routines which have to access vmalloc area without 2892 * any information, as /dev/kmem. 2893 * 2894 * Return: number of bytes for which addr and buf should be 2895 * increased (same number as @count) or %0 if [addr...addr+count) 2896 * doesn't include any intersection with valid vmalloc area 2897 */ 2898 long vwrite(char *buf, char *addr, unsigned long count) 2899 { 2900 struct vmap_area *va; 2901 struct vm_struct *vm; 2902 char *vaddr; 2903 unsigned long n, buflen; 2904 int copied = 0; 2905 2906 /* Don't allow overflow */ 2907 if ((unsigned long) addr + count < count) 2908 count = -(unsigned long) addr; 2909 buflen = count; 2910 2911 spin_lock(&vmap_area_lock); 2912 list_for_each_entry(va, &vmap_area_list, list) { 2913 if (!count) 2914 break; 2915 2916 if (!va->vm) 2917 continue; 2918 2919 vm = va->vm; 2920 vaddr = (char *) vm->addr; 2921 if (addr >= vaddr + get_vm_area_size(vm)) 2922 continue; 2923 while (addr < vaddr) { 2924 if (count == 0) 2925 goto finished; 2926 buf++; 2927 addr++; 2928 count--; 2929 } 2930 n = vaddr + get_vm_area_size(vm) - addr; 2931 if (n > count) 2932 n = count; 2933 if (!(vm->flags & VM_IOREMAP)) { 2934 aligned_vwrite(buf, addr, n); 2935 copied++; 2936 } 2937 buf += n; 2938 addr += n; 2939 count -= n; 2940 } 2941 finished: 2942 spin_unlock(&vmap_area_lock); 2943 if (!copied) 2944 return 0; 2945 return buflen; 2946 } 2947 2948 /** 2949 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2950 * @vma: vma to cover 2951 * @uaddr: target user address to start at 2952 * @kaddr: virtual address of vmalloc kernel memory 2953 * @pgoff: offset from @kaddr to start at 2954 * @size: size of map area 2955 * 2956 * Returns: 0 for success, -Exxx on failure 2957 * 2958 * This function checks that @kaddr is a valid vmalloc'ed area, 2959 * and that it is big enough to cover the range starting at 2960 * @uaddr in @vma. Will return failure if that criteria isn't 2961 * met. 2962 * 2963 * Similar to remap_pfn_range() (see mm/memory.c) 2964 */ 2965 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2966 void *kaddr, unsigned long pgoff, 2967 unsigned long size) 2968 { 2969 struct vm_struct *area; 2970 unsigned long off; 2971 unsigned long end_index; 2972 2973 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 2974 return -EINVAL; 2975 2976 size = PAGE_ALIGN(size); 2977 2978 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2979 return -EINVAL; 2980 2981 area = find_vm_area(kaddr); 2982 if (!area) 2983 return -EINVAL; 2984 2985 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 2986 return -EINVAL; 2987 2988 if (check_add_overflow(size, off, &end_index) || 2989 end_index > get_vm_area_size(area)) 2990 return -EINVAL; 2991 kaddr += off; 2992 2993 do { 2994 struct page *page = vmalloc_to_page(kaddr); 2995 int ret; 2996 2997 ret = vm_insert_page(vma, uaddr, page); 2998 if (ret) 2999 return ret; 3000 3001 uaddr += PAGE_SIZE; 3002 kaddr += PAGE_SIZE; 3003 size -= PAGE_SIZE; 3004 } while (size > 0); 3005 3006 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3007 3008 return 0; 3009 } 3010 EXPORT_SYMBOL(remap_vmalloc_range_partial); 3011 3012 /** 3013 * remap_vmalloc_range - map vmalloc pages to userspace 3014 * @vma: vma to cover (map full range of vma) 3015 * @addr: vmalloc memory 3016 * @pgoff: number of pages into addr before first page to map 3017 * 3018 * Returns: 0 for success, -Exxx on failure 3019 * 3020 * This function checks that addr is a valid vmalloc'ed area, and 3021 * that it is big enough to cover the vma. Will return failure if 3022 * that criteria isn't met. 3023 * 3024 * Similar to remap_pfn_range() (see mm/memory.c) 3025 */ 3026 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3027 unsigned long pgoff) 3028 { 3029 return remap_vmalloc_range_partial(vma, vma->vm_start, 3030 addr, pgoff, 3031 vma->vm_end - vma->vm_start); 3032 } 3033 EXPORT_SYMBOL(remap_vmalloc_range); 3034 3035 static int f(pte_t *pte, unsigned long addr, void *data) 3036 { 3037 pte_t ***p = data; 3038 3039 if (p) { 3040 *(*p) = pte; 3041 (*p)++; 3042 } 3043 return 0; 3044 } 3045 3046 /** 3047 * alloc_vm_area - allocate a range of kernel address space 3048 * @size: size of the area 3049 * @ptes: returns the PTEs for the address space 3050 * 3051 * Returns: NULL on failure, vm_struct on success 3052 * 3053 * This function reserves a range of kernel address space, and 3054 * allocates pagetables to map that range. No actual mappings 3055 * are created. 3056 * 3057 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 3058 * allocated for the VM area are returned. 3059 */ 3060 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 3061 { 3062 struct vm_struct *area; 3063 3064 area = get_vm_area_caller(size, VM_IOREMAP, 3065 __builtin_return_address(0)); 3066 if (area == NULL) 3067 return NULL; 3068 3069 /* 3070 * This ensures that page tables are constructed for this region 3071 * of kernel virtual address space and mapped into init_mm. 3072 */ 3073 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3074 size, f, ptes ? &ptes : NULL)) { 3075 free_vm_area(area); 3076 return NULL; 3077 } 3078 3079 return area; 3080 } 3081 EXPORT_SYMBOL_GPL(alloc_vm_area); 3082 3083 void free_vm_area(struct vm_struct *area) 3084 { 3085 struct vm_struct *ret; 3086 ret = remove_vm_area(area->addr); 3087 BUG_ON(ret != area); 3088 kfree(area); 3089 } 3090 EXPORT_SYMBOL_GPL(free_vm_area); 3091 3092 #ifdef CONFIG_SMP 3093 static struct vmap_area *node_to_va(struct rb_node *n) 3094 { 3095 return rb_entry_safe(n, struct vmap_area, rb_node); 3096 } 3097 3098 /** 3099 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3100 * @addr: target address 3101 * 3102 * Returns: vmap_area if it is found. If there is no such area 3103 * the first highest(reverse order) vmap_area is returned 3104 * i.e. va->va_start < addr && va->va_end < addr or NULL 3105 * if there are no any areas before @addr. 3106 */ 3107 static struct vmap_area * 3108 pvm_find_va_enclose_addr(unsigned long addr) 3109 { 3110 struct vmap_area *va, *tmp; 3111 struct rb_node *n; 3112 3113 n = free_vmap_area_root.rb_node; 3114 va = NULL; 3115 3116 while (n) { 3117 tmp = rb_entry(n, struct vmap_area, rb_node); 3118 if (tmp->va_start <= addr) { 3119 va = tmp; 3120 if (tmp->va_end >= addr) 3121 break; 3122 3123 n = n->rb_right; 3124 } else { 3125 n = n->rb_left; 3126 } 3127 } 3128 3129 return va; 3130 } 3131 3132 /** 3133 * pvm_determine_end_from_reverse - find the highest aligned address 3134 * of free block below VMALLOC_END 3135 * @va: 3136 * in - the VA we start the search(reverse order); 3137 * out - the VA with the highest aligned end address. 3138 * 3139 * Returns: determined end address within vmap_area 3140 */ 3141 static unsigned long 3142 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3143 { 3144 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3145 unsigned long addr; 3146 3147 if (likely(*va)) { 3148 list_for_each_entry_from_reverse((*va), 3149 &free_vmap_area_list, list) { 3150 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3151 if ((*va)->va_start < addr) 3152 return addr; 3153 } 3154 } 3155 3156 return 0; 3157 } 3158 3159 /** 3160 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3161 * @offsets: array containing offset of each area 3162 * @sizes: array containing size of each area 3163 * @nr_vms: the number of areas to allocate 3164 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3165 * 3166 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3167 * vm_structs on success, %NULL on failure 3168 * 3169 * Percpu allocator wants to use congruent vm areas so that it can 3170 * maintain the offsets among percpu areas. This function allocates 3171 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3172 * be scattered pretty far, distance between two areas easily going up 3173 * to gigabytes. To avoid interacting with regular vmallocs, these 3174 * areas are allocated from top. 3175 * 3176 * Despite its complicated look, this allocator is rather simple. It 3177 * does everything top-down and scans free blocks from the end looking 3178 * for matching base. While scanning, if any of the areas do not fit the 3179 * base address is pulled down to fit the area. Scanning is repeated till 3180 * all the areas fit and then all necessary data structures are inserted 3181 * and the result is returned. 3182 */ 3183 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3184 const size_t *sizes, int nr_vms, 3185 size_t align) 3186 { 3187 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3188 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3189 struct vmap_area **vas, *va; 3190 struct vm_struct **vms; 3191 int area, area2, last_area, term_area; 3192 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3193 bool purged = false; 3194 enum fit_type type; 3195 3196 /* verify parameters and allocate data structures */ 3197 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3198 for (last_area = 0, area = 0; area < nr_vms; area++) { 3199 start = offsets[area]; 3200 end = start + sizes[area]; 3201 3202 /* is everything aligned properly? */ 3203 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3204 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3205 3206 /* detect the area with the highest address */ 3207 if (start > offsets[last_area]) 3208 last_area = area; 3209 3210 for (area2 = area + 1; area2 < nr_vms; area2++) { 3211 unsigned long start2 = offsets[area2]; 3212 unsigned long end2 = start2 + sizes[area2]; 3213 3214 BUG_ON(start2 < end && start < end2); 3215 } 3216 } 3217 last_end = offsets[last_area] + sizes[last_area]; 3218 3219 if (vmalloc_end - vmalloc_start < last_end) { 3220 WARN_ON(true); 3221 return NULL; 3222 } 3223 3224 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3225 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3226 if (!vas || !vms) 3227 goto err_free2; 3228 3229 for (area = 0; area < nr_vms; area++) { 3230 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3231 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3232 if (!vas[area] || !vms[area]) 3233 goto err_free; 3234 } 3235 retry: 3236 spin_lock(&free_vmap_area_lock); 3237 3238 /* start scanning - we scan from the top, begin with the last area */ 3239 area = term_area = last_area; 3240 start = offsets[area]; 3241 end = start + sizes[area]; 3242 3243 va = pvm_find_va_enclose_addr(vmalloc_end); 3244 base = pvm_determine_end_from_reverse(&va, align) - end; 3245 3246 while (true) { 3247 /* 3248 * base might have underflowed, add last_end before 3249 * comparing. 3250 */ 3251 if (base + last_end < vmalloc_start + last_end) 3252 goto overflow; 3253 3254 /* 3255 * Fitting base has not been found. 3256 */ 3257 if (va == NULL) 3258 goto overflow; 3259 3260 /* 3261 * If required width exceeds current VA block, move 3262 * base downwards and then recheck. 3263 */ 3264 if (base + end > va->va_end) { 3265 base = pvm_determine_end_from_reverse(&va, align) - end; 3266 term_area = area; 3267 continue; 3268 } 3269 3270 /* 3271 * If this VA does not fit, move base downwards and recheck. 3272 */ 3273 if (base + start < va->va_start) { 3274 va = node_to_va(rb_prev(&va->rb_node)); 3275 base = pvm_determine_end_from_reverse(&va, align) - end; 3276 term_area = area; 3277 continue; 3278 } 3279 3280 /* 3281 * This area fits, move on to the previous one. If 3282 * the previous one is the terminal one, we're done. 3283 */ 3284 area = (area + nr_vms - 1) % nr_vms; 3285 if (area == term_area) 3286 break; 3287 3288 start = offsets[area]; 3289 end = start + sizes[area]; 3290 va = pvm_find_va_enclose_addr(base + end); 3291 } 3292 3293 /* we've found a fitting base, insert all va's */ 3294 for (area = 0; area < nr_vms; area++) { 3295 int ret; 3296 3297 start = base + offsets[area]; 3298 size = sizes[area]; 3299 3300 va = pvm_find_va_enclose_addr(start); 3301 if (WARN_ON_ONCE(va == NULL)) 3302 /* It is a BUG(), but trigger recovery instead. */ 3303 goto recovery; 3304 3305 type = classify_va_fit_type(va, start, size); 3306 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3307 /* It is a BUG(), but trigger recovery instead. */ 3308 goto recovery; 3309 3310 ret = adjust_va_to_fit_type(va, start, size, type); 3311 if (unlikely(ret)) 3312 goto recovery; 3313 3314 /* Allocated area. */ 3315 va = vas[area]; 3316 va->va_start = start; 3317 va->va_end = start + size; 3318 } 3319 3320 spin_unlock(&free_vmap_area_lock); 3321 3322 /* populate the kasan shadow space */ 3323 for (area = 0; area < nr_vms; area++) { 3324 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3325 goto err_free_shadow; 3326 3327 kasan_unpoison_vmalloc((void *)vas[area]->va_start, 3328 sizes[area]); 3329 } 3330 3331 /* insert all vm's */ 3332 spin_lock(&vmap_area_lock); 3333 for (area = 0; area < nr_vms; area++) { 3334 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3335 3336 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3337 pcpu_get_vm_areas); 3338 } 3339 spin_unlock(&vmap_area_lock); 3340 3341 kfree(vas); 3342 return vms; 3343 3344 recovery: 3345 /* 3346 * Remove previously allocated areas. There is no 3347 * need in removing these areas from the busy tree, 3348 * because they are inserted only on the final step 3349 * and when pcpu_get_vm_areas() is success. 3350 */ 3351 while (area--) { 3352 orig_start = vas[area]->va_start; 3353 orig_end = vas[area]->va_end; 3354 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, 3355 &free_vmap_area_list); 3356 if (va) 3357 kasan_release_vmalloc(orig_start, orig_end, 3358 va->va_start, va->va_end); 3359 vas[area] = NULL; 3360 } 3361 3362 overflow: 3363 spin_unlock(&free_vmap_area_lock); 3364 if (!purged) { 3365 purge_vmap_area_lazy(); 3366 purged = true; 3367 3368 /* Before "retry", check if we recover. */ 3369 for (area = 0; area < nr_vms; area++) { 3370 if (vas[area]) 3371 continue; 3372 3373 vas[area] = kmem_cache_zalloc( 3374 vmap_area_cachep, GFP_KERNEL); 3375 if (!vas[area]) 3376 goto err_free; 3377 } 3378 3379 goto retry; 3380 } 3381 3382 err_free: 3383 for (area = 0; area < nr_vms; area++) { 3384 if (vas[area]) 3385 kmem_cache_free(vmap_area_cachep, vas[area]); 3386 3387 kfree(vms[area]); 3388 } 3389 err_free2: 3390 kfree(vas); 3391 kfree(vms); 3392 return NULL; 3393 3394 err_free_shadow: 3395 spin_lock(&free_vmap_area_lock); 3396 /* 3397 * We release all the vmalloc shadows, even the ones for regions that 3398 * hadn't been successfully added. This relies on kasan_release_vmalloc 3399 * being able to tolerate this case. 3400 */ 3401 for (area = 0; area < nr_vms; area++) { 3402 orig_start = vas[area]->va_start; 3403 orig_end = vas[area]->va_end; 3404 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, 3405 &free_vmap_area_list); 3406 if (va) 3407 kasan_release_vmalloc(orig_start, orig_end, 3408 va->va_start, va->va_end); 3409 vas[area] = NULL; 3410 kfree(vms[area]); 3411 } 3412 spin_unlock(&free_vmap_area_lock); 3413 kfree(vas); 3414 kfree(vms); 3415 return NULL; 3416 } 3417 3418 /** 3419 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3420 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3421 * @nr_vms: the number of allocated areas 3422 * 3423 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3424 */ 3425 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3426 { 3427 int i; 3428 3429 for (i = 0; i < nr_vms; i++) 3430 free_vm_area(vms[i]); 3431 kfree(vms); 3432 } 3433 #endif /* CONFIG_SMP */ 3434 3435 #ifdef CONFIG_PROC_FS 3436 static void *s_start(struct seq_file *m, loff_t *pos) 3437 __acquires(&vmap_purge_lock) 3438 __acquires(&vmap_area_lock) 3439 { 3440 mutex_lock(&vmap_purge_lock); 3441 spin_lock(&vmap_area_lock); 3442 3443 return seq_list_start(&vmap_area_list, *pos); 3444 } 3445 3446 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3447 { 3448 return seq_list_next(p, &vmap_area_list, pos); 3449 } 3450 3451 static void s_stop(struct seq_file *m, void *p) 3452 __releases(&vmap_purge_lock) 3453 __releases(&vmap_area_lock) 3454 { 3455 mutex_unlock(&vmap_purge_lock); 3456 spin_unlock(&vmap_area_lock); 3457 } 3458 3459 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3460 { 3461 if (IS_ENABLED(CONFIG_NUMA)) { 3462 unsigned int nr, *counters = m->private; 3463 3464 if (!counters) 3465 return; 3466 3467 if (v->flags & VM_UNINITIALIZED) 3468 return; 3469 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3470 smp_rmb(); 3471 3472 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3473 3474 for (nr = 0; nr < v->nr_pages; nr++) 3475 counters[page_to_nid(v->pages[nr])]++; 3476 3477 for_each_node_state(nr, N_HIGH_MEMORY) 3478 if (counters[nr]) 3479 seq_printf(m, " N%u=%u", nr, counters[nr]); 3480 } 3481 } 3482 3483 static void show_purge_info(struct seq_file *m) 3484 { 3485 struct llist_node *head; 3486 struct vmap_area *va; 3487 3488 head = READ_ONCE(vmap_purge_list.first); 3489 if (head == NULL) 3490 return; 3491 3492 llist_for_each_entry(va, head, purge_list) { 3493 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 3494 (void *)va->va_start, (void *)va->va_end, 3495 va->va_end - va->va_start); 3496 } 3497 } 3498 3499 static int s_show(struct seq_file *m, void *p) 3500 { 3501 struct vmap_area *va; 3502 struct vm_struct *v; 3503 3504 va = list_entry(p, struct vmap_area, list); 3505 3506 /* 3507 * s_show can encounter race with remove_vm_area, !vm on behalf 3508 * of vmap area is being tear down or vm_map_ram allocation. 3509 */ 3510 if (!va->vm) { 3511 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 3512 (void *)va->va_start, (void *)va->va_end, 3513 va->va_end - va->va_start); 3514 3515 return 0; 3516 } 3517 3518 v = va->vm; 3519 3520 seq_printf(m, "0x%pK-0x%pK %7ld", 3521 v->addr, v->addr + v->size, v->size); 3522 3523 if (v->caller) 3524 seq_printf(m, " %pS", v->caller); 3525 3526 if (v->nr_pages) 3527 seq_printf(m, " pages=%d", v->nr_pages); 3528 3529 if (v->phys_addr) 3530 seq_printf(m, " phys=%pa", &v->phys_addr); 3531 3532 if (v->flags & VM_IOREMAP) 3533 seq_puts(m, " ioremap"); 3534 3535 if (v->flags & VM_ALLOC) 3536 seq_puts(m, " vmalloc"); 3537 3538 if (v->flags & VM_MAP) 3539 seq_puts(m, " vmap"); 3540 3541 if (v->flags & VM_USERMAP) 3542 seq_puts(m, " user"); 3543 3544 if (v->flags & VM_DMA_COHERENT) 3545 seq_puts(m, " dma-coherent"); 3546 3547 if (is_vmalloc_addr(v->pages)) 3548 seq_puts(m, " vpages"); 3549 3550 show_numa_info(m, v); 3551 seq_putc(m, '\n'); 3552 3553 /* 3554 * As a final step, dump "unpurged" areas. Note, 3555 * that entire "/proc/vmallocinfo" output will not 3556 * be address sorted, because the purge list is not 3557 * sorted. 3558 */ 3559 if (list_is_last(&va->list, &vmap_area_list)) 3560 show_purge_info(m); 3561 3562 return 0; 3563 } 3564 3565 static const struct seq_operations vmalloc_op = { 3566 .start = s_start, 3567 .next = s_next, 3568 .stop = s_stop, 3569 .show = s_show, 3570 }; 3571 3572 static int __init proc_vmalloc_init(void) 3573 { 3574 if (IS_ENABLED(CONFIG_NUMA)) 3575 proc_create_seq_private("vmallocinfo", 0400, NULL, 3576 &vmalloc_op, 3577 nr_node_ids * sizeof(unsigned int), NULL); 3578 else 3579 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3580 return 0; 3581 } 3582 module_init(proc_vmalloc_init); 3583 3584 #endif 3585