xref: /openbmc/linux/mm/vmalloc.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
33 
34 /*** Page table manipulation functions ***/
35 
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 {
38 	pte_t *pte;
39 
40 	pte = pte_offset_kernel(pmd, addr);
41 	do {
42 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 	} while (pte++, addr += PAGE_SIZE, addr != end);
45 }
46 
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 {
49 	pmd_t *pmd;
50 	unsigned long next;
51 
52 	pmd = pmd_offset(pud, addr);
53 	do {
54 		next = pmd_addr_end(addr, end);
55 		if (pmd_none_or_clear_bad(pmd))
56 			continue;
57 		vunmap_pte_range(pmd, addr, next);
58 	} while (pmd++, addr = next, addr != end);
59 }
60 
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 {
63 	pud_t *pud;
64 	unsigned long next;
65 
66 	pud = pud_offset(pgd, addr);
67 	do {
68 		next = pud_addr_end(addr, end);
69 		if (pud_none_or_clear_bad(pud))
70 			continue;
71 		vunmap_pmd_range(pud, addr, next);
72 	} while (pud++, addr = next, addr != end);
73 }
74 
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 {
77 	pgd_t *pgd;
78 	unsigned long next;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	do {
83 		next = pgd_addr_end(addr, end);
84 		if (pgd_none_or_clear_bad(pgd))
85 			continue;
86 		vunmap_pud_range(pgd, addr, next);
87 	} while (pgd++, addr = next, addr != end);
88 }
89 
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 {
93 	pte_t *pte;
94 
95 	/*
96 	 * nr is a running index into the array which helps higher level
97 	 * callers keep track of where we're up to.
98 	 */
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = pages[*nr];
105 
106 		if (WARN_ON(!pte_none(*pte)))
107 			return -EBUSY;
108 		if (WARN_ON(!page))
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*nr)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 /*
151  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152  * will have pfns corresponding to the "pages" array.
153  *
154  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155  */
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 				   pgprot_t prot, struct page **pages)
158 {
159 	pgd_t *pgd;
160 	unsigned long next;
161 	unsigned long addr = start;
162 	int err = 0;
163 	int nr = 0;
164 
165 	BUG_ON(addr >= end);
166 	pgd = pgd_offset_k(addr);
167 	do {
168 		next = pgd_addr_end(addr, end);
169 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 		if (err)
171 			return err;
172 	} while (pgd++, addr = next, addr != end);
173 
174 	return nr;
175 }
176 
177 static int vmap_page_range(unsigned long start, unsigned long end,
178 			   pgprot_t prot, struct page **pages)
179 {
180 	int ret;
181 
182 	ret = vmap_page_range_noflush(start, end, prot, pages);
183 	flush_cache_vmap(start, end);
184 	return ret;
185 }
186 
187 int is_vmalloc_or_module_addr(const void *x)
188 {
189 	/*
190 	 * ARM, x86-64 and sparc64 put modules in a special place,
191 	 * and fall back on vmalloc() if that fails. Others
192 	 * just put it in the vmalloc space.
193 	 */
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 	unsigned long addr = (unsigned long)x;
196 	if (addr >= MODULES_VADDR && addr < MODULES_END)
197 		return 1;
198 #endif
199 	return is_vmalloc_addr(x);
200 }
201 
202 /*
203  * Walk a vmap address to the struct page it maps.
204  */
205 struct page *vmalloc_to_page(const void *vmalloc_addr)
206 {
207 	unsigned long addr = (unsigned long) vmalloc_addr;
208 	struct page *page = NULL;
209 	pgd_t *pgd = pgd_offset_k(addr);
210 
211 	/*
212 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 	 * architectures that do not vmalloc module space
214 	 */
215 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
216 
217 	if (!pgd_none(*pgd)) {
218 		pud_t *pud = pud_offset(pgd, addr);
219 		if (!pud_none(*pud)) {
220 			pmd_t *pmd = pmd_offset(pud, addr);
221 			if (!pmd_none(*pmd)) {
222 				pte_t *ptep, pte;
223 
224 				ptep = pte_offset_map(pmd, addr);
225 				pte = *ptep;
226 				if (pte_present(pte))
227 					page = pte_page(pte);
228 				pte_unmap(ptep);
229 			}
230 		}
231 	}
232 	return page;
233 }
234 EXPORT_SYMBOL(vmalloc_to_page);
235 
236 /*
237  * Map a vmalloc()-space virtual address to the physical page frame number.
238  */
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
240 {
241 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242 }
243 EXPORT_SYMBOL(vmalloc_to_pfn);
244 
245 
246 /*** Global kva allocator ***/
247 
248 #define VM_LAZY_FREE	0x01
249 #define VM_LAZY_FREEING	0x02
250 #define VM_VM_AREA	0x04
251 
252 struct vmap_area {
253 	unsigned long va_start;
254 	unsigned long va_end;
255 	unsigned long flags;
256 	struct rb_node rb_node;		/* address sorted rbtree */
257 	struct list_head list;		/* address sorted list */
258 	struct list_head purge_list;	/* "lazy purge" list */
259 	void *private;
260 	struct rcu_head rcu_head;
261 };
262 
263 static DEFINE_SPINLOCK(vmap_area_lock);
264 static struct rb_root vmap_area_root = RB_ROOT;
265 static LIST_HEAD(vmap_area_list);
266 static unsigned long vmap_area_pcpu_hole;
267 
268 static struct vmap_area *__find_vmap_area(unsigned long addr)
269 {
270 	struct rb_node *n = vmap_area_root.rb_node;
271 
272 	while (n) {
273 		struct vmap_area *va;
274 
275 		va = rb_entry(n, struct vmap_area, rb_node);
276 		if (addr < va->va_start)
277 			n = n->rb_left;
278 		else if (addr > va->va_start)
279 			n = n->rb_right;
280 		else
281 			return va;
282 	}
283 
284 	return NULL;
285 }
286 
287 static void __insert_vmap_area(struct vmap_area *va)
288 {
289 	struct rb_node **p = &vmap_area_root.rb_node;
290 	struct rb_node *parent = NULL;
291 	struct rb_node *tmp;
292 
293 	while (*p) {
294 		struct vmap_area *tmp_va;
295 
296 		parent = *p;
297 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
298 		if (va->va_start < tmp_va->va_end)
299 			p = &(*p)->rb_left;
300 		else if (va->va_end > tmp_va->va_start)
301 			p = &(*p)->rb_right;
302 		else
303 			BUG();
304 	}
305 
306 	rb_link_node(&va->rb_node, parent, p);
307 	rb_insert_color(&va->rb_node, &vmap_area_root);
308 
309 	/* address-sort this list so it is usable like the vmlist */
310 	tmp = rb_prev(&va->rb_node);
311 	if (tmp) {
312 		struct vmap_area *prev;
313 		prev = rb_entry(tmp, struct vmap_area, rb_node);
314 		list_add_rcu(&va->list, &prev->list);
315 	} else
316 		list_add_rcu(&va->list, &vmap_area_list);
317 }
318 
319 static void purge_vmap_area_lazy(void);
320 
321 /*
322  * Allocate a region of KVA of the specified size and alignment, within the
323  * vstart and vend.
324  */
325 static struct vmap_area *alloc_vmap_area(unsigned long size,
326 				unsigned long align,
327 				unsigned long vstart, unsigned long vend,
328 				int node, gfp_t gfp_mask)
329 {
330 	struct vmap_area *va;
331 	struct rb_node *n;
332 	unsigned long addr;
333 	int purged = 0;
334 
335 	BUG_ON(!size);
336 	BUG_ON(size & ~PAGE_MASK);
337 
338 	va = kmalloc_node(sizeof(struct vmap_area),
339 			gfp_mask & GFP_RECLAIM_MASK, node);
340 	if (unlikely(!va))
341 		return ERR_PTR(-ENOMEM);
342 
343 retry:
344 	addr = ALIGN(vstart, align);
345 
346 	spin_lock(&vmap_area_lock);
347 	if (addr + size - 1 < addr)
348 		goto overflow;
349 
350 	/* XXX: could have a last_hole cache */
351 	n = vmap_area_root.rb_node;
352 	if (n) {
353 		struct vmap_area *first = NULL;
354 
355 		do {
356 			struct vmap_area *tmp;
357 			tmp = rb_entry(n, struct vmap_area, rb_node);
358 			if (tmp->va_end >= addr) {
359 				if (!first && tmp->va_start < addr + size)
360 					first = tmp;
361 				n = n->rb_left;
362 			} else {
363 				first = tmp;
364 				n = n->rb_right;
365 			}
366 		} while (n);
367 
368 		if (!first)
369 			goto found;
370 
371 		if (first->va_end < addr) {
372 			n = rb_next(&first->rb_node);
373 			if (n)
374 				first = rb_entry(n, struct vmap_area, rb_node);
375 			else
376 				goto found;
377 		}
378 
379 		while (addr + size > first->va_start && addr + size <= vend) {
380 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
381 			if (addr + size - 1 < addr)
382 				goto overflow;
383 
384 			n = rb_next(&first->rb_node);
385 			if (n)
386 				first = rb_entry(n, struct vmap_area, rb_node);
387 			else
388 				goto found;
389 		}
390 	}
391 found:
392 	if (addr + size > vend) {
393 overflow:
394 		spin_unlock(&vmap_area_lock);
395 		if (!purged) {
396 			purge_vmap_area_lazy();
397 			purged = 1;
398 			goto retry;
399 		}
400 		if (printk_ratelimit())
401 			printk(KERN_WARNING
402 				"vmap allocation for size %lu failed: "
403 				"use vmalloc=<size> to increase size.\n", size);
404 		kfree(va);
405 		return ERR_PTR(-EBUSY);
406 	}
407 
408 	BUG_ON(addr & (align-1));
409 
410 	va->va_start = addr;
411 	va->va_end = addr + size;
412 	va->flags = 0;
413 	__insert_vmap_area(va);
414 	spin_unlock(&vmap_area_lock);
415 
416 	return va;
417 }
418 
419 static void rcu_free_va(struct rcu_head *head)
420 {
421 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
422 
423 	kfree(va);
424 }
425 
426 static void __free_vmap_area(struct vmap_area *va)
427 {
428 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
429 	rb_erase(&va->rb_node, &vmap_area_root);
430 	RB_CLEAR_NODE(&va->rb_node);
431 	list_del_rcu(&va->list);
432 
433 	/*
434 	 * Track the highest possible candidate for pcpu area
435 	 * allocation.  Areas outside of vmalloc area can be returned
436 	 * here too, consider only end addresses which fall inside
437 	 * vmalloc area proper.
438 	 */
439 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
440 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
441 
442 	call_rcu(&va->rcu_head, rcu_free_va);
443 }
444 
445 /*
446  * Free a region of KVA allocated by alloc_vmap_area
447  */
448 static void free_vmap_area(struct vmap_area *va)
449 {
450 	spin_lock(&vmap_area_lock);
451 	__free_vmap_area(va);
452 	spin_unlock(&vmap_area_lock);
453 }
454 
455 /*
456  * Clear the pagetable entries of a given vmap_area
457  */
458 static void unmap_vmap_area(struct vmap_area *va)
459 {
460 	vunmap_page_range(va->va_start, va->va_end);
461 }
462 
463 static void vmap_debug_free_range(unsigned long start, unsigned long end)
464 {
465 	/*
466 	 * Unmap page tables and force a TLB flush immediately if
467 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
468 	 * bugs similarly to those in linear kernel virtual address
469 	 * space after a page has been freed.
470 	 *
471 	 * All the lazy freeing logic is still retained, in order to
472 	 * minimise intrusiveness of this debugging feature.
473 	 *
474 	 * This is going to be *slow* (linear kernel virtual address
475 	 * debugging doesn't do a broadcast TLB flush so it is a lot
476 	 * faster).
477 	 */
478 #ifdef CONFIG_DEBUG_PAGEALLOC
479 	vunmap_page_range(start, end);
480 	flush_tlb_kernel_range(start, end);
481 #endif
482 }
483 
484 /*
485  * lazy_max_pages is the maximum amount of virtual address space we gather up
486  * before attempting to purge with a TLB flush.
487  *
488  * There is a tradeoff here: a larger number will cover more kernel page tables
489  * and take slightly longer to purge, but it will linearly reduce the number of
490  * global TLB flushes that must be performed. It would seem natural to scale
491  * this number up linearly with the number of CPUs (because vmapping activity
492  * could also scale linearly with the number of CPUs), however it is likely
493  * that in practice, workloads might be constrained in other ways that mean
494  * vmap activity will not scale linearly with CPUs. Also, I want to be
495  * conservative and not introduce a big latency on huge systems, so go with
496  * a less aggressive log scale. It will still be an improvement over the old
497  * code, and it will be simple to change the scale factor if we find that it
498  * becomes a problem on bigger systems.
499  */
500 static unsigned long lazy_max_pages(void)
501 {
502 	unsigned int log;
503 
504 	log = fls(num_online_cpus());
505 
506 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
507 }
508 
509 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
510 
511 /* for per-CPU blocks */
512 static void purge_fragmented_blocks_allcpus(void);
513 
514 /*
515  * called before a call to iounmap() if the caller wants vm_area_struct's
516  * immediately freed.
517  */
518 void set_iounmap_nonlazy(void)
519 {
520 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
521 }
522 
523 /*
524  * Purges all lazily-freed vmap areas.
525  *
526  * If sync is 0 then don't purge if there is already a purge in progress.
527  * If force_flush is 1, then flush kernel TLBs between *start and *end even
528  * if we found no lazy vmap areas to unmap (callers can use this to optimise
529  * their own TLB flushing).
530  * Returns with *start = min(*start, lowest purged address)
531  *              *end = max(*end, highest purged address)
532  */
533 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
534 					int sync, int force_flush)
535 {
536 	static DEFINE_SPINLOCK(purge_lock);
537 	LIST_HEAD(valist);
538 	struct vmap_area *va;
539 	struct vmap_area *n_va;
540 	int nr = 0;
541 
542 	/*
543 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
544 	 * should not expect such behaviour. This just simplifies locking for
545 	 * the case that isn't actually used at the moment anyway.
546 	 */
547 	if (!sync && !force_flush) {
548 		if (!spin_trylock(&purge_lock))
549 			return;
550 	} else
551 		spin_lock(&purge_lock);
552 
553 	if (sync)
554 		purge_fragmented_blocks_allcpus();
555 
556 	rcu_read_lock();
557 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
558 		if (va->flags & VM_LAZY_FREE) {
559 			if (va->va_start < *start)
560 				*start = va->va_start;
561 			if (va->va_end > *end)
562 				*end = va->va_end;
563 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
564 			list_add_tail(&va->purge_list, &valist);
565 			va->flags |= VM_LAZY_FREEING;
566 			va->flags &= ~VM_LAZY_FREE;
567 		}
568 	}
569 	rcu_read_unlock();
570 
571 	if (nr)
572 		atomic_sub(nr, &vmap_lazy_nr);
573 
574 	if (nr || force_flush)
575 		flush_tlb_kernel_range(*start, *end);
576 
577 	if (nr) {
578 		spin_lock(&vmap_area_lock);
579 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
580 			__free_vmap_area(va);
581 		spin_unlock(&vmap_area_lock);
582 	}
583 	spin_unlock(&purge_lock);
584 }
585 
586 /*
587  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
588  * is already purging.
589  */
590 static void try_purge_vmap_area_lazy(void)
591 {
592 	unsigned long start = ULONG_MAX, end = 0;
593 
594 	__purge_vmap_area_lazy(&start, &end, 0, 0);
595 }
596 
597 /*
598  * Kick off a purge of the outstanding lazy areas.
599  */
600 static void purge_vmap_area_lazy(void)
601 {
602 	unsigned long start = ULONG_MAX, end = 0;
603 
604 	__purge_vmap_area_lazy(&start, &end, 1, 0);
605 }
606 
607 /*
608  * Free a vmap area, caller ensuring that the area has been unmapped
609  * and flush_cache_vunmap had been called for the correct range
610  * previously.
611  */
612 static void free_vmap_area_noflush(struct vmap_area *va)
613 {
614 	va->flags |= VM_LAZY_FREE;
615 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
616 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
617 		try_purge_vmap_area_lazy();
618 }
619 
620 /*
621  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
622  * called for the correct range previously.
623  */
624 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
625 {
626 	unmap_vmap_area(va);
627 	free_vmap_area_noflush(va);
628 }
629 
630 /*
631  * Free and unmap a vmap area
632  */
633 static void free_unmap_vmap_area(struct vmap_area *va)
634 {
635 	flush_cache_vunmap(va->va_start, va->va_end);
636 	free_unmap_vmap_area_noflush(va);
637 }
638 
639 static struct vmap_area *find_vmap_area(unsigned long addr)
640 {
641 	struct vmap_area *va;
642 
643 	spin_lock(&vmap_area_lock);
644 	va = __find_vmap_area(addr);
645 	spin_unlock(&vmap_area_lock);
646 
647 	return va;
648 }
649 
650 static void free_unmap_vmap_area_addr(unsigned long addr)
651 {
652 	struct vmap_area *va;
653 
654 	va = find_vmap_area(addr);
655 	BUG_ON(!va);
656 	free_unmap_vmap_area(va);
657 }
658 
659 
660 /*** Per cpu kva allocator ***/
661 
662 /*
663  * vmap space is limited especially on 32 bit architectures. Ensure there is
664  * room for at least 16 percpu vmap blocks per CPU.
665  */
666 /*
667  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
668  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
669  * instead (we just need a rough idea)
670  */
671 #if BITS_PER_LONG == 32
672 #define VMALLOC_SPACE		(128UL*1024*1024)
673 #else
674 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
675 #endif
676 
677 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
678 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
679 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
680 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
681 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
682 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
683 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
684 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
685 						VMALLOC_PAGES / NR_CPUS / 16))
686 
687 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
688 
689 static bool vmap_initialized __read_mostly = false;
690 
691 struct vmap_block_queue {
692 	spinlock_t lock;
693 	struct list_head free;
694 };
695 
696 struct vmap_block {
697 	spinlock_t lock;
698 	struct vmap_area *va;
699 	struct vmap_block_queue *vbq;
700 	unsigned long free, dirty;
701 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
702 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
703 	struct list_head free_list;
704 	struct rcu_head rcu_head;
705 	struct list_head purge;
706 };
707 
708 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
709 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
710 
711 /*
712  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
713  * in the free path. Could get rid of this if we change the API to return a
714  * "cookie" from alloc, to be passed to free. But no big deal yet.
715  */
716 static DEFINE_SPINLOCK(vmap_block_tree_lock);
717 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
718 
719 /*
720  * We should probably have a fallback mechanism to allocate virtual memory
721  * out of partially filled vmap blocks. However vmap block sizing should be
722  * fairly reasonable according to the vmalloc size, so it shouldn't be a
723  * big problem.
724  */
725 
726 static unsigned long addr_to_vb_idx(unsigned long addr)
727 {
728 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
729 	addr /= VMAP_BLOCK_SIZE;
730 	return addr;
731 }
732 
733 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
734 {
735 	struct vmap_block_queue *vbq;
736 	struct vmap_block *vb;
737 	struct vmap_area *va;
738 	unsigned long vb_idx;
739 	int node, err;
740 
741 	node = numa_node_id();
742 
743 	vb = kmalloc_node(sizeof(struct vmap_block),
744 			gfp_mask & GFP_RECLAIM_MASK, node);
745 	if (unlikely(!vb))
746 		return ERR_PTR(-ENOMEM);
747 
748 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
749 					VMALLOC_START, VMALLOC_END,
750 					node, gfp_mask);
751 	if (IS_ERR(va)) {
752 		kfree(vb);
753 		return ERR_CAST(va);
754 	}
755 
756 	err = radix_tree_preload(gfp_mask);
757 	if (unlikely(err)) {
758 		kfree(vb);
759 		free_vmap_area(va);
760 		return ERR_PTR(err);
761 	}
762 
763 	spin_lock_init(&vb->lock);
764 	vb->va = va;
765 	vb->free = VMAP_BBMAP_BITS;
766 	vb->dirty = 0;
767 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
768 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
769 	INIT_LIST_HEAD(&vb->free_list);
770 
771 	vb_idx = addr_to_vb_idx(va->va_start);
772 	spin_lock(&vmap_block_tree_lock);
773 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
774 	spin_unlock(&vmap_block_tree_lock);
775 	BUG_ON(err);
776 	radix_tree_preload_end();
777 
778 	vbq = &get_cpu_var(vmap_block_queue);
779 	vb->vbq = vbq;
780 	spin_lock(&vbq->lock);
781 	list_add_rcu(&vb->free_list, &vbq->free);
782 	spin_unlock(&vbq->lock);
783 	put_cpu_var(vmap_block_queue);
784 
785 	return vb;
786 }
787 
788 static void rcu_free_vb(struct rcu_head *head)
789 {
790 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
791 
792 	kfree(vb);
793 }
794 
795 static void free_vmap_block(struct vmap_block *vb)
796 {
797 	struct vmap_block *tmp;
798 	unsigned long vb_idx;
799 
800 	vb_idx = addr_to_vb_idx(vb->va->va_start);
801 	spin_lock(&vmap_block_tree_lock);
802 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
803 	spin_unlock(&vmap_block_tree_lock);
804 	BUG_ON(tmp != vb);
805 
806 	free_vmap_area_noflush(vb->va);
807 	call_rcu(&vb->rcu_head, rcu_free_vb);
808 }
809 
810 static void purge_fragmented_blocks(int cpu)
811 {
812 	LIST_HEAD(purge);
813 	struct vmap_block *vb;
814 	struct vmap_block *n_vb;
815 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
816 
817 	rcu_read_lock();
818 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
819 
820 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
821 			continue;
822 
823 		spin_lock(&vb->lock);
824 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
825 			vb->free = 0; /* prevent further allocs after releasing lock */
826 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
827 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
828 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
829 			spin_lock(&vbq->lock);
830 			list_del_rcu(&vb->free_list);
831 			spin_unlock(&vbq->lock);
832 			spin_unlock(&vb->lock);
833 			list_add_tail(&vb->purge, &purge);
834 		} else
835 			spin_unlock(&vb->lock);
836 	}
837 	rcu_read_unlock();
838 
839 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
840 		list_del(&vb->purge);
841 		free_vmap_block(vb);
842 	}
843 }
844 
845 static void purge_fragmented_blocks_thiscpu(void)
846 {
847 	purge_fragmented_blocks(smp_processor_id());
848 }
849 
850 static void purge_fragmented_blocks_allcpus(void)
851 {
852 	int cpu;
853 
854 	for_each_possible_cpu(cpu)
855 		purge_fragmented_blocks(cpu);
856 }
857 
858 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
859 {
860 	struct vmap_block_queue *vbq;
861 	struct vmap_block *vb;
862 	unsigned long addr = 0;
863 	unsigned int order;
864 	int purge = 0;
865 
866 	BUG_ON(size & ~PAGE_MASK);
867 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
868 	order = get_order(size);
869 
870 again:
871 	rcu_read_lock();
872 	vbq = &get_cpu_var(vmap_block_queue);
873 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
874 		int i;
875 
876 		spin_lock(&vb->lock);
877 		if (vb->free < 1UL << order)
878 			goto next;
879 
880 		i = bitmap_find_free_region(vb->alloc_map,
881 						VMAP_BBMAP_BITS, order);
882 
883 		if (i < 0) {
884 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
885 				/* fragmented and no outstanding allocations */
886 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
887 				purge = 1;
888 			}
889 			goto next;
890 		}
891 		addr = vb->va->va_start + (i << PAGE_SHIFT);
892 		BUG_ON(addr_to_vb_idx(addr) !=
893 				addr_to_vb_idx(vb->va->va_start));
894 		vb->free -= 1UL << order;
895 		if (vb->free == 0) {
896 			spin_lock(&vbq->lock);
897 			list_del_rcu(&vb->free_list);
898 			spin_unlock(&vbq->lock);
899 		}
900 		spin_unlock(&vb->lock);
901 		break;
902 next:
903 		spin_unlock(&vb->lock);
904 	}
905 
906 	if (purge)
907 		purge_fragmented_blocks_thiscpu();
908 
909 	put_cpu_var(vmap_block_queue);
910 	rcu_read_unlock();
911 
912 	if (!addr) {
913 		vb = new_vmap_block(gfp_mask);
914 		if (IS_ERR(vb))
915 			return vb;
916 		goto again;
917 	}
918 
919 	return (void *)addr;
920 }
921 
922 static void vb_free(const void *addr, unsigned long size)
923 {
924 	unsigned long offset;
925 	unsigned long vb_idx;
926 	unsigned int order;
927 	struct vmap_block *vb;
928 
929 	BUG_ON(size & ~PAGE_MASK);
930 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
931 
932 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
933 
934 	order = get_order(size);
935 
936 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
937 
938 	vb_idx = addr_to_vb_idx((unsigned long)addr);
939 	rcu_read_lock();
940 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
941 	rcu_read_unlock();
942 	BUG_ON(!vb);
943 
944 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
945 
946 	spin_lock(&vb->lock);
947 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
948 
949 	vb->dirty += 1UL << order;
950 	if (vb->dirty == VMAP_BBMAP_BITS) {
951 		BUG_ON(vb->free);
952 		spin_unlock(&vb->lock);
953 		free_vmap_block(vb);
954 	} else
955 		spin_unlock(&vb->lock);
956 }
957 
958 /**
959  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
960  *
961  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
962  * to amortize TLB flushing overheads. What this means is that any page you
963  * have now, may, in a former life, have been mapped into kernel virtual
964  * address by the vmap layer and so there might be some CPUs with TLB entries
965  * still referencing that page (additional to the regular 1:1 kernel mapping).
966  *
967  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
968  * be sure that none of the pages we have control over will have any aliases
969  * from the vmap layer.
970  */
971 void vm_unmap_aliases(void)
972 {
973 	unsigned long start = ULONG_MAX, end = 0;
974 	int cpu;
975 	int flush = 0;
976 
977 	if (unlikely(!vmap_initialized))
978 		return;
979 
980 	for_each_possible_cpu(cpu) {
981 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
982 		struct vmap_block *vb;
983 
984 		rcu_read_lock();
985 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
986 			int i;
987 
988 			spin_lock(&vb->lock);
989 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
990 			while (i < VMAP_BBMAP_BITS) {
991 				unsigned long s, e;
992 				int j;
993 				j = find_next_zero_bit(vb->dirty_map,
994 					VMAP_BBMAP_BITS, i);
995 
996 				s = vb->va->va_start + (i << PAGE_SHIFT);
997 				e = vb->va->va_start + (j << PAGE_SHIFT);
998 				flush = 1;
999 
1000 				if (s < start)
1001 					start = s;
1002 				if (e > end)
1003 					end = e;
1004 
1005 				i = j;
1006 				i = find_next_bit(vb->dirty_map,
1007 							VMAP_BBMAP_BITS, i);
1008 			}
1009 			spin_unlock(&vb->lock);
1010 		}
1011 		rcu_read_unlock();
1012 	}
1013 
1014 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1015 }
1016 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1017 
1018 /**
1019  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1020  * @mem: the pointer returned by vm_map_ram
1021  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1022  */
1023 void vm_unmap_ram(const void *mem, unsigned int count)
1024 {
1025 	unsigned long size = count << PAGE_SHIFT;
1026 	unsigned long addr = (unsigned long)mem;
1027 
1028 	BUG_ON(!addr);
1029 	BUG_ON(addr < VMALLOC_START);
1030 	BUG_ON(addr > VMALLOC_END);
1031 	BUG_ON(addr & (PAGE_SIZE-1));
1032 
1033 	debug_check_no_locks_freed(mem, size);
1034 	vmap_debug_free_range(addr, addr+size);
1035 
1036 	if (likely(count <= VMAP_MAX_ALLOC))
1037 		vb_free(mem, size);
1038 	else
1039 		free_unmap_vmap_area_addr(addr);
1040 }
1041 EXPORT_SYMBOL(vm_unmap_ram);
1042 
1043 /**
1044  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1045  * @pages: an array of pointers to the pages to be mapped
1046  * @count: number of pages
1047  * @node: prefer to allocate data structures on this node
1048  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1049  *
1050  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1051  */
1052 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1053 {
1054 	unsigned long size = count << PAGE_SHIFT;
1055 	unsigned long addr;
1056 	void *mem;
1057 
1058 	if (likely(count <= VMAP_MAX_ALLOC)) {
1059 		mem = vb_alloc(size, GFP_KERNEL);
1060 		if (IS_ERR(mem))
1061 			return NULL;
1062 		addr = (unsigned long)mem;
1063 	} else {
1064 		struct vmap_area *va;
1065 		va = alloc_vmap_area(size, PAGE_SIZE,
1066 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1067 		if (IS_ERR(va))
1068 			return NULL;
1069 
1070 		addr = va->va_start;
1071 		mem = (void *)addr;
1072 	}
1073 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1074 		vm_unmap_ram(mem, count);
1075 		return NULL;
1076 	}
1077 	return mem;
1078 }
1079 EXPORT_SYMBOL(vm_map_ram);
1080 
1081 /**
1082  * vm_area_register_early - register vmap area early during boot
1083  * @vm: vm_struct to register
1084  * @align: requested alignment
1085  *
1086  * This function is used to register kernel vm area before
1087  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1088  * proper values on entry and other fields should be zero.  On return,
1089  * vm->addr contains the allocated address.
1090  *
1091  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1092  */
1093 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1094 {
1095 	static size_t vm_init_off __initdata;
1096 	unsigned long addr;
1097 
1098 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1099 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1100 
1101 	vm->addr = (void *)addr;
1102 
1103 	vm->next = vmlist;
1104 	vmlist = vm;
1105 }
1106 
1107 void __init vmalloc_init(void)
1108 {
1109 	struct vmap_area *va;
1110 	struct vm_struct *tmp;
1111 	int i;
1112 
1113 	for_each_possible_cpu(i) {
1114 		struct vmap_block_queue *vbq;
1115 
1116 		vbq = &per_cpu(vmap_block_queue, i);
1117 		spin_lock_init(&vbq->lock);
1118 		INIT_LIST_HEAD(&vbq->free);
1119 	}
1120 
1121 	/* Import existing vmlist entries. */
1122 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1123 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1124 		va->flags = tmp->flags | VM_VM_AREA;
1125 		va->va_start = (unsigned long)tmp->addr;
1126 		va->va_end = va->va_start + tmp->size;
1127 		__insert_vmap_area(va);
1128 	}
1129 
1130 	vmap_area_pcpu_hole = VMALLOC_END;
1131 
1132 	vmap_initialized = true;
1133 }
1134 
1135 /**
1136  * map_kernel_range_noflush - map kernel VM area with the specified pages
1137  * @addr: start of the VM area to map
1138  * @size: size of the VM area to map
1139  * @prot: page protection flags to use
1140  * @pages: pages to map
1141  *
1142  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1143  * specify should have been allocated using get_vm_area() and its
1144  * friends.
1145  *
1146  * NOTE:
1147  * This function does NOT do any cache flushing.  The caller is
1148  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1149  * before calling this function.
1150  *
1151  * RETURNS:
1152  * The number of pages mapped on success, -errno on failure.
1153  */
1154 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1155 			     pgprot_t prot, struct page **pages)
1156 {
1157 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1158 }
1159 
1160 /**
1161  * unmap_kernel_range_noflush - unmap kernel VM area
1162  * @addr: start of the VM area to unmap
1163  * @size: size of the VM area to unmap
1164  *
1165  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1166  * specify should have been allocated using get_vm_area() and its
1167  * friends.
1168  *
1169  * NOTE:
1170  * This function does NOT do any cache flushing.  The caller is
1171  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1172  * before calling this function and flush_tlb_kernel_range() after.
1173  */
1174 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1175 {
1176 	vunmap_page_range(addr, addr + size);
1177 }
1178 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1179 
1180 /**
1181  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1182  * @addr: start of the VM area to unmap
1183  * @size: size of the VM area to unmap
1184  *
1185  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1186  * the unmapping and tlb after.
1187  */
1188 void unmap_kernel_range(unsigned long addr, unsigned long size)
1189 {
1190 	unsigned long end = addr + size;
1191 
1192 	flush_cache_vunmap(addr, end);
1193 	vunmap_page_range(addr, end);
1194 	flush_tlb_kernel_range(addr, end);
1195 }
1196 
1197 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1198 {
1199 	unsigned long addr = (unsigned long)area->addr;
1200 	unsigned long end = addr + area->size - PAGE_SIZE;
1201 	int err;
1202 
1203 	err = vmap_page_range(addr, end, prot, *pages);
1204 	if (err > 0) {
1205 		*pages += err;
1206 		err = 0;
1207 	}
1208 
1209 	return err;
1210 }
1211 EXPORT_SYMBOL_GPL(map_vm_area);
1212 
1213 /*** Old vmalloc interfaces ***/
1214 DEFINE_RWLOCK(vmlist_lock);
1215 struct vm_struct *vmlist;
1216 
1217 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1218 			      unsigned long flags, void *caller)
1219 {
1220 	struct vm_struct *tmp, **p;
1221 
1222 	vm->flags = flags;
1223 	vm->addr = (void *)va->va_start;
1224 	vm->size = va->va_end - va->va_start;
1225 	vm->caller = caller;
1226 	va->private = vm;
1227 	va->flags |= VM_VM_AREA;
1228 
1229 	write_lock(&vmlist_lock);
1230 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1231 		if (tmp->addr >= vm->addr)
1232 			break;
1233 	}
1234 	vm->next = *p;
1235 	*p = vm;
1236 	write_unlock(&vmlist_lock);
1237 }
1238 
1239 static struct vm_struct *__get_vm_area_node(unsigned long size,
1240 		unsigned long align, unsigned long flags, unsigned long start,
1241 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1242 {
1243 	static struct vmap_area *va;
1244 	struct vm_struct *area;
1245 
1246 	BUG_ON(in_interrupt());
1247 	if (flags & VM_IOREMAP) {
1248 		int bit = fls(size);
1249 
1250 		if (bit > IOREMAP_MAX_ORDER)
1251 			bit = IOREMAP_MAX_ORDER;
1252 		else if (bit < PAGE_SHIFT)
1253 			bit = PAGE_SHIFT;
1254 
1255 		align = 1ul << bit;
1256 	}
1257 
1258 	size = PAGE_ALIGN(size);
1259 	if (unlikely(!size))
1260 		return NULL;
1261 
1262 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1263 	if (unlikely(!area))
1264 		return NULL;
1265 
1266 	/*
1267 	 * We always allocate a guard page.
1268 	 */
1269 	size += PAGE_SIZE;
1270 
1271 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1272 	if (IS_ERR(va)) {
1273 		kfree(area);
1274 		return NULL;
1275 	}
1276 
1277 	insert_vmalloc_vm(area, va, flags, caller);
1278 	return area;
1279 }
1280 
1281 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1282 				unsigned long start, unsigned long end)
1283 {
1284 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1285 						__builtin_return_address(0));
1286 }
1287 EXPORT_SYMBOL_GPL(__get_vm_area);
1288 
1289 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1290 				       unsigned long start, unsigned long end,
1291 				       void *caller)
1292 {
1293 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1294 				  caller);
1295 }
1296 
1297 /**
1298  *	get_vm_area  -  reserve a contiguous kernel virtual area
1299  *	@size:		size of the area
1300  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1301  *
1302  *	Search an area of @size in the kernel virtual mapping area,
1303  *	and reserved it for out purposes.  Returns the area descriptor
1304  *	on success or %NULL on failure.
1305  */
1306 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1307 {
1308 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1309 				-1, GFP_KERNEL, __builtin_return_address(0));
1310 }
1311 
1312 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1313 				void *caller)
1314 {
1315 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1316 						-1, GFP_KERNEL, caller);
1317 }
1318 
1319 static struct vm_struct *find_vm_area(const void *addr)
1320 {
1321 	struct vmap_area *va;
1322 
1323 	va = find_vmap_area((unsigned long)addr);
1324 	if (va && va->flags & VM_VM_AREA)
1325 		return va->private;
1326 
1327 	return NULL;
1328 }
1329 
1330 /**
1331  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1332  *	@addr:		base address
1333  *
1334  *	Search for the kernel VM area starting at @addr, and remove it.
1335  *	This function returns the found VM area, but using it is NOT safe
1336  *	on SMP machines, except for its size or flags.
1337  */
1338 struct vm_struct *remove_vm_area(const void *addr)
1339 {
1340 	struct vmap_area *va;
1341 
1342 	va = find_vmap_area((unsigned long)addr);
1343 	if (va && va->flags & VM_VM_AREA) {
1344 		struct vm_struct *vm = va->private;
1345 		struct vm_struct *tmp, **p;
1346 		/*
1347 		 * remove from list and disallow access to this vm_struct
1348 		 * before unmap. (address range confliction is maintained by
1349 		 * vmap.)
1350 		 */
1351 		write_lock(&vmlist_lock);
1352 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1353 			;
1354 		*p = tmp->next;
1355 		write_unlock(&vmlist_lock);
1356 
1357 		vmap_debug_free_range(va->va_start, va->va_end);
1358 		free_unmap_vmap_area(va);
1359 		vm->size -= PAGE_SIZE;
1360 
1361 		return vm;
1362 	}
1363 	return NULL;
1364 }
1365 
1366 static void __vunmap(const void *addr, int deallocate_pages)
1367 {
1368 	struct vm_struct *area;
1369 
1370 	if (!addr)
1371 		return;
1372 
1373 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1374 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1375 		return;
1376 	}
1377 
1378 	area = remove_vm_area(addr);
1379 	if (unlikely(!area)) {
1380 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1381 				addr);
1382 		return;
1383 	}
1384 
1385 	debug_check_no_locks_freed(addr, area->size);
1386 	debug_check_no_obj_freed(addr, area->size);
1387 
1388 	if (deallocate_pages) {
1389 		int i;
1390 
1391 		for (i = 0; i < area->nr_pages; i++) {
1392 			struct page *page = area->pages[i];
1393 
1394 			BUG_ON(!page);
1395 			__free_page(page);
1396 		}
1397 
1398 		if (area->flags & VM_VPAGES)
1399 			vfree(area->pages);
1400 		else
1401 			kfree(area->pages);
1402 	}
1403 
1404 	kfree(area);
1405 	return;
1406 }
1407 
1408 /**
1409  *	vfree  -  release memory allocated by vmalloc()
1410  *	@addr:		memory base address
1411  *
1412  *	Free the virtually continuous memory area starting at @addr, as
1413  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1414  *	NULL, no operation is performed.
1415  *
1416  *	Must not be called in interrupt context.
1417  */
1418 void vfree(const void *addr)
1419 {
1420 	BUG_ON(in_interrupt());
1421 
1422 	kmemleak_free(addr);
1423 
1424 	__vunmap(addr, 1);
1425 }
1426 EXPORT_SYMBOL(vfree);
1427 
1428 /**
1429  *	vunmap  -  release virtual mapping obtained by vmap()
1430  *	@addr:		memory base address
1431  *
1432  *	Free the virtually contiguous memory area starting at @addr,
1433  *	which was created from the page array passed to vmap().
1434  *
1435  *	Must not be called in interrupt context.
1436  */
1437 void vunmap(const void *addr)
1438 {
1439 	BUG_ON(in_interrupt());
1440 	might_sleep();
1441 	__vunmap(addr, 0);
1442 }
1443 EXPORT_SYMBOL(vunmap);
1444 
1445 /**
1446  *	vmap  -  map an array of pages into virtually contiguous space
1447  *	@pages:		array of page pointers
1448  *	@count:		number of pages to map
1449  *	@flags:		vm_area->flags
1450  *	@prot:		page protection for the mapping
1451  *
1452  *	Maps @count pages from @pages into contiguous kernel virtual
1453  *	space.
1454  */
1455 void *vmap(struct page **pages, unsigned int count,
1456 		unsigned long flags, pgprot_t prot)
1457 {
1458 	struct vm_struct *area;
1459 
1460 	might_sleep();
1461 
1462 	if (count > totalram_pages)
1463 		return NULL;
1464 
1465 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1466 					__builtin_return_address(0));
1467 	if (!area)
1468 		return NULL;
1469 
1470 	if (map_vm_area(area, prot, &pages)) {
1471 		vunmap(area->addr);
1472 		return NULL;
1473 	}
1474 
1475 	return area->addr;
1476 }
1477 EXPORT_SYMBOL(vmap);
1478 
1479 static void *__vmalloc_node(unsigned long size, unsigned long align,
1480 			    gfp_t gfp_mask, pgprot_t prot,
1481 			    int node, void *caller);
1482 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1483 				 pgprot_t prot, int node, void *caller)
1484 {
1485 	struct page **pages;
1486 	unsigned int nr_pages, array_size, i;
1487 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1488 
1489 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1490 	array_size = (nr_pages * sizeof(struct page *));
1491 
1492 	area->nr_pages = nr_pages;
1493 	/* Please note that the recursion is strictly bounded. */
1494 	if (array_size > PAGE_SIZE) {
1495 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1496 				PAGE_KERNEL, node, caller);
1497 		area->flags |= VM_VPAGES;
1498 	} else {
1499 		pages = kmalloc_node(array_size, nested_gfp, node);
1500 	}
1501 	area->pages = pages;
1502 	area->caller = caller;
1503 	if (!area->pages) {
1504 		remove_vm_area(area->addr);
1505 		kfree(area);
1506 		return NULL;
1507 	}
1508 
1509 	for (i = 0; i < area->nr_pages; i++) {
1510 		struct page *page;
1511 
1512 		if (node < 0)
1513 			page = alloc_page(gfp_mask);
1514 		else
1515 			page = alloc_pages_node(node, gfp_mask, 0);
1516 
1517 		if (unlikely(!page)) {
1518 			/* Successfully allocated i pages, free them in __vunmap() */
1519 			area->nr_pages = i;
1520 			goto fail;
1521 		}
1522 		area->pages[i] = page;
1523 	}
1524 
1525 	if (map_vm_area(area, prot, &pages))
1526 		goto fail;
1527 	return area->addr;
1528 
1529 fail:
1530 	vfree(area->addr);
1531 	return NULL;
1532 }
1533 
1534 /**
1535  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1536  *	@size:		allocation size
1537  *	@align:		desired alignment
1538  *	@start:		vm area range start
1539  *	@end:		vm area range end
1540  *	@gfp_mask:	flags for the page level allocator
1541  *	@prot:		protection mask for the allocated pages
1542  *	@node:		node to use for allocation or -1
1543  *	@caller:	caller's return address
1544  *
1545  *	Allocate enough pages to cover @size from the page level
1546  *	allocator with @gfp_mask flags.  Map them into contiguous
1547  *	kernel virtual space, using a pagetable protection of @prot.
1548  */
1549 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1550 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1551 			pgprot_t prot, int node, void *caller)
1552 {
1553 	struct vm_struct *area;
1554 	void *addr;
1555 	unsigned long real_size = size;
1556 
1557 	size = PAGE_ALIGN(size);
1558 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1559 		return NULL;
1560 
1561 	area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
1562 				  gfp_mask, caller);
1563 
1564 	if (!area)
1565 		return NULL;
1566 
1567 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1568 
1569 	/*
1570 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1571 	 * structures allocated in the __get_vm_area_node() function contain
1572 	 * references to the virtual address of the vmalloc'ed block.
1573 	 */
1574 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1575 
1576 	return addr;
1577 }
1578 
1579 /**
1580  *	__vmalloc_node  -  allocate virtually contiguous memory
1581  *	@size:		allocation size
1582  *	@align:		desired alignment
1583  *	@gfp_mask:	flags for the page level allocator
1584  *	@prot:		protection mask for the allocated pages
1585  *	@node:		node to use for allocation or -1
1586  *	@caller:	caller's return address
1587  *
1588  *	Allocate enough pages to cover @size from the page level
1589  *	allocator with @gfp_mask flags.  Map them into contiguous
1590  *	kernel virtual space, using a pagetable protection of @prot.
1591  */
1592 static void *__vmalloc_node(unsigned long size, unsigned long align,
1593 			    gfp_t gfp_mask, pgprot_t prot,
1594 			    int node, void *caller)
1595 {
1596 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1597 				gfp_mask, prot, node, caller);
1598 }
1599 
1600 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1601 {
1602 	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1603 				__builtin_return_address(0));
1604 }
1605 EXPORT_SYMBOL(__vmalloc);
1606 
1607 static inline void *__vmalloc_node_flags(unsigned long size,
1608 					int node, gfp_t flags)
1609 {
1610 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1611 					node, __builtin_return_address(0));
1612 }
1613 
1614 /**
1615  *	vmalloc  -  allocate virtually contiguous memory
1616  *	@size:		allocation size
1617  *	Allocate enough pages to cover @size from the page level
1618  *	allocator and map them into contiguous kernel virtual space.
1619  *
1620  *	For tight control over page level allocator and protection flags
1621  *	use __vmalloc() instead.
1622  */
1623 void *vmalloc(unsigned long size)
1624 {
1625 	return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1626 }
1627 EXPORT_SYMBOL(vmalloc);
1628 
1629 /**
1630  *	vzalloc - allocate virtually contiguous memory with zero fill
1631  *	@size:	allocation size
1632  *	Allocate enough pages to cover @size from the page level
1633  *	allocator and map them into contiguous kernel virtual space.
1634  *	The memory allocated is set to zero.
1635  *
1636  *	For tight control over page level allocator and protection flags
1637  *	use __vmalloc() instead.
1638  */
1639 void *vzalloc(unsigned long size)
1640 {
1641 	return __vmalloc_node_flags(size, -1,
1642 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1643 }
1644 EXPORT_SYMBOL(vzalloc);
1645 
1646 /**
1647  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1648  * @size: allocation size
1649  *
1650  * The resulting memory area is zeroed so it can be mapped to userspace
1651  * without leaking data.
1652  */
1653 void *vmalloc_user(unsigned long size)
1654 {
1655 	struct vm_struct *area;
1656 	void *ret;
1657 
1658 	ret = __vmalloc_node(size, SHMLBA,
1659 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1660 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1661 	if (ret) {
1662 		area = find_vm_area(ret);
1663 		area->flags |= VM_USERMAP;
1664 	}
1665 	return ret;
1666 }
1667 EXPORT_SYMBOL(vmalloc_user);
1668 
1669 /**
1670  *	vmalloc_node  -  allocate memory on a specific node
1671  *	@size:		allocation size
1672  *	@node:		numa node
1673  *
1674  *	Allocate enough pages to cover @size from the page level
1675  *	allocator and map them into contiguous kernel virtual space.
1676  *
1677  *	For tight control over page level allocator and protection flags
1678  *	use __vmalloc() instead.
1679  */
1680 void *vmalloc_node(unsigned long size, int node)
1681 {
1682 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1683 					node, __builtin_return_address(0));
1684 }
1685 EXPORT_SYMBOL(vmalloc_node);
1686 
1687 /**
1688  * vzalloc_node - allocate memory on a specific node with zero fill
1689  * @size:	allocation size
1690  * @node:	numa node
1691  *
1692  * Allocate enough pages to cover @size from the page level
1693  * allocator and map them into contiguous kernel virtual space.
1694  * The memory allocated is set to zero.
1695  *
1696  * For tight control over page level allocator and protection flags
1697  * use __vmalloc_node() instead.
1698  */
1699 void *vzalloc_node(unsigned long size, int node)
1700 {
1701 	return __vmalloc_node_flags(size, node,
1702 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1703 }
1704 EXPORT_SYMBOL(vzalloc_node);
1705 
1706 #ifndef PAGE_KERNEL_EXEC
1707 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1708 #endif
1709 
1710 /**
1711  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1712  *	@size:		allocation size
1713  *
1714  *	Kernel-internal function to allocate enough pages to cover @size
1715  *	the page level allocator and map them into contiguous and
1716  *	executable kernel virtual space.
1717  *
1718  *	For tight control over page level allocator and protection flags
1719  *	use __vmalloc() instead.
1720  */
1721 
1722 void *vmalloc_exec(unsigned long size)
1723 {
1724 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1725 			      -1, __builtin_return_address(0));
1726 }
1727 
1728 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1729 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1730 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1731 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1732 #else
1733 #define GFP_VMALLOC32 GFP_KERNEL
1734 #endif
1735 
1736 /**
1737  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1738  *	@size:		allocation size
1739  *
1740  *	Allocate enough 32bit PA addressable pages to cover @size from the
1741  *	page level allocator and map them into contiguous kernel virtual space.
1742  */
1743 void *vmalloc_32(unsigned long size)
1744 {
1745 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1746 			      -1, __builtin_return_address(0));
1747 }
1748 EXPORT_SYMBOL(vmalloc_32);
1749 
1750 /**
1751  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1752  *	@size:		allocation size
1753  *
1754  * The resulting memory area is 32bit addressable and zeroed so it can be
1755  * mapped to userspace without leaking data.
1756  */
1757 void *vmalloc_32_user(unsigned long size)
1758 {
1759 	struct vm_struct *area;
1760 	void *ret;
1761 
1762 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1763 			     -1, __builtin_return_address(0));
1764 	if (ret) {
1765 		area = find_vm_area(ret);
1766 		area->flags |= VM_USERMAP;
1767 	}
1768 	return ret;
1769 }
1770 EXPORT_SYMBOL(vmalloc_32_user);
1771 
1772 /*
1773  * small helper routine , copy contents to buf from addr.
1774  * If the page is not present, fill zero.
1775  */
1776 
1777 static int aligned_vread(char *buf, char *addr, unsigned long count)
1778 {
1779 	struct page *p;
1780 	int copied = 0;
1781 
1782 	while (count) {
1783 		unsigned long offset, length;
1784 
1785 		offset = (unsigned long)addr & ~PAGE_MASK;
1786 		length = PAGE_SIZE - offset;
1787 		if (length > count)
1788 			length = count;
1789 		p = vmalloc_to_page(addr);
1790 		/*
1791 		 * To do safe access to this _mapped_ area, we need
1792 		 * lock. But adding lock here means that we need to add
1793 		 * overhead of vmalloc()/vfree() calles for this _debug_
1794 		 * interface, rarely used. Instead of that, we'll use
1795 		 * kmap() and get small overhead in this access function.
1796 		 */
1797 		if (p) {
1798 			/*
1799 			 * we can expect USER0 is not used (see vread/vwrite's
1800 			 * function description)
1801 			 */
1802 			void *map = kmap_atomic(p, KM_USER0);
1803 			memcpy(buf, map + offset, length);
1804 			kunmap_atomic(map, KM_USER0);
1805 		} else
1806 			memset(buf, 0, length);
1807 
1808 		addr += length;
1809 		buf += length;
1810 		copied += length;
1811 		count -= length;
1812 	}
1813 	return copied;
1814 }
1815 
1816 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1817 {
1818 	struct page *p;
1819 	int copied = 0;
1820 
1821 	while (count) {
1822 		unsigned long offset, length;
1823 
1824 		offset = (unsigned long)addr & ~PAGE_MASK;
1825 		length = PAGE_SIZE - offset;
1826 		if (length > count)
1827 			length = count;
1828 		p = vmalloc_to_page(addr);
1829 		/*
1830 		 * To do safe access to this _mapped_ area, we need
1831 		 * lock. But adding lock here means that we need to add
1832 		 * overhead of vmalloc()/vfree() calles for this _debug_
1833 		 * interface, rarely used. Instead of that, we'll use
1834 		 * kmap() and get small overhead in this access function.
1835 		 */
1836 		if (p) {
1837 			/*
1838 			 * we can expect USER0 is not used (see vread/vwrite's
1839 			 * function description)
1840 			 */
1841 			void *map = kmap_atomic(p, KM_USER0);
1842 			memcpy(map + offset, buf, length);
1843 			kunmap_atomic(map, KM_USER0);
1844 		}
1845 		addr += length;
1846 		buf += length;
1847 		copied += length;
1848 		count -= length;
1849 	}
1850 	return copied;
1851 }
1852 
1853 /**
1854  *	vread() -  read vmalloc area in a safe way.
1855  *	@buf:		buffer for reading data
1856  *	@addr:		vm address.
1857  *	@count:		number of bytes to be read.
1858  *
1859  *	Returns # of bytes which addr and buf should be increased.
1860  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1861  *	includes any intersect with alive vmalloc area.
1862  *
1863  *	This function checks that addr is a valid vmalloc'ed area, and
1864  *	copy data from that area to a given buffer. If the given memory range
1865  *	of [addr...addr+count) includes some valid address, data is copied to
1866  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1867  *	IOREMAP area is treated as memory hole and no copy is done.
1868  *
1869  *	If [addr...addr+count) doesn't includes any intersects with alive
1870  *	vm_struct area, returns 0.
1871  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1872  *	the caller should guarantee KM_USER0 is not used.
1873  *
1874  *	Note: In usual ops, vread() is never necessary because the caller
1875  *	should know vmalloc() area is valid and can use memcpy().
1876  *	This is for routines which have to access vmalloc area without
1877  *	any informaion, as /dev/kmem.
1878  *
1879  */
1880 
1881 long vread(char *buf, char *addr, unsigned long count)
1882 {
1883 	struct vm_struct *tmp;
1884 	char *vaddr, *buf_start = buf;
1885 	unsigned long buflen = count;
1886 	unsigned long n;
1887 
1888 	/* Don't allow overflow */
1889 	if ((unsigned long) addr + count < count)
1890 		count = -(unsigned long) addr;
1891 
1892 	read_lock(&vmlist_lock);
1893 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1894 		vaddr = (char *) tmp->addr;
1895 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1896 			continue;
1897 		while (addr < vaddr) {
1898 			if (count == 0)
1899 				goto finished;
1900 			*buf = '\0';
1901 			buf++;
1902 			addr++;
1903 			count--;
1904 		}
1905 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1906 		if (n > count)
1907 			n = count;
1908 		if (!(tmp->flags & VM_IOREMAP))
1909 			aligned_vread(buf, addr, n);
1910 		else /* IOREMAP area is treated as memory hole */
1911 			memset(buf, 0, n);
1912 		buf += n;
1913 		addr += n;
1914 		count -= n;
1915 	}
1916 finished:
1917 	read_unlock(&vmlist_lock);
1918 
1919 	if (buf == buf_start)
1920 		return 0;
1921 	/* zero-fill memory holes */
1922 	if (buf != buf_start + buflen)
1923 		memset(buf, 0, buflen - (buf - buf_start));
1924 
1925 	return buflen;
1926 }
1927 
1928 /**
1929  *	vwrite() -  write vmalloc area in a safe way.
1930  *	@buf:		buffer for source data
1931  *	@addr:		vm address.
1932  *	@count:		number of bytes to be read.
1933  *
1934  *	Returns # of bytes which addr and buf should be incresed.
1935  *	(same number to @count).
1936  *	If [addr...addr+count) doesn't includes any intersect with valid
1937  *	vmalloc area, returns 0.
1938  *
1939  *	This function checks that addr is a valid vmalloc'ed area, and
1940  *	copy data from a buffer to the given addr. If specified range of
1941  *	[addr...addr+count) includes some valid address, data is copied from
1942  *	proper area of @buf. If there are memory holes, no copy to hole.
1943  *	IOREMAP area is treated as memory hole and no copy is done.
1944  *
1945  *	If [addr...addr+count) doesn't includes any intersects with alive
1946  *	vm_struct area, returns 0.
1947  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1948  *	the caller should guarantee KM_USER0 is not used.
1949  *
1950  *	Note: In usual ops, vwrite() is never necessary because the caller
1951  *	should know vmalloc() area is valid and can use memcpy().
1952  *	This is for routines which have to access vmalloc area without
1953  *	any informaion, as /dev/kmem.
1954  *
1955  *	The caller should guarantee KM_USER1 is not used.
1956  */
1957 
1958 long vwrite(char *buf, char *addr, unsigned long count)
1959 {
1960 	struct vm_struct *tmp;
1961 	char *vaddr;
1962 	unsigned long n, buflen;
1963 	int copied = 0;
1964 
1965 	/* Don't allow overflow */
1966 	if ((unsigned long) addr + count < count)
1967 		count = -(unsigned long) addr;
1968 	buflen = count;
1969 
1970 	read_lock(&vmlist_lock);
1971 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1972 		vaddr = (char *) tmp->addr;
1973 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1974 			continue;
1975 		while (addr < vaddr) {
1976 			if (count == 0)
1977 				goto finished;
1978 			buf++;
1979 			addr++;
1980 			count--;
1981 		}
1982 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1983 		if (n > count)
1984 			n = count;
1985 		if (!(tmp->flags & VM_IOREMAP)) {
1986 			aligned_vwrite(buf, addr, n);
1987 			copied++;
1988 		}
1989 		buf += n;
1990 		addr += n;
1991 		count -= n;
1992 	}
1993 finished:
1994 	read_unlock(&vmlist_lock);
1995 	if (!copied)
1996 		return 0;
1997 	return buflen;
1998 }
1999 
2000 /**
2001  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2002  *	@vma:		vma to cover (map full range of vma)
2003  *	@addr:		vmalloc memory
2004  *	@pgoff:		number of pages into addr before first page to map
2005  *
2006  *	Returns:	0 for success, -Exxx on failure
2007  *
2008  *	This function checks that addr is a valid vmalloc'ed area, and
2009  *	that it is big enough to cover the vma. Will return failure if
2010  *	that criteria isn't met.
2011  *
2012  *	Similar to remap_pfn_range() (see mm/memory.c)
2013  */
2014 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2015 						unsigned long pgoff)
2016 {
2017 	struct vm_struct *area;
2018 	unsigned long uaddr = vma->vm_start;
2019 	unsigned long usize = vma->vm_end - vma->vm_start;
2020 
2021 	if ((PAGE_SIZE-1) & (unsigned long)addr)
2022 		return -EINVAL;
2023 
2024 	area = find_vm_area(addr);
2025 	if (!area)
2026 		return -EINVAL;
2027 
2028 	if (!(area->flags & VM_USERMAP))
2029 		return -EINVAL;
2030 
2031 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2032 		return -EINVAL;
2033 
2034 	addr += pgoff << PAGE_SHIFT;
2035 	do {
2036 		struct page *page = vmalloc_to_page(addr);
2037 		int ret;
2038 
2039 		ret = vm_insert_page(vma, uaddr, page);
2040 		if (ret)
2041 			return ret;
2042 
2043 		uaddr += PAGE_SIZE;
2044 		addr += PAGE_SIZE;
2045 		usize -= PAGE_SIZE;
2046 	} while (usize > 0);
2047 
2048 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
2049 	vma->vm_flags |= VM_RESERVED;
2050 
2051 	return 0;
2052 }
2053 EXPORT_SYMBOL(remap_vmalloc_range);
2054 
2055 /*
2056  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2057  * have one.
2058  */
2059 void  __attribute__((weak)) vmalloc_sync_all(void)
2060 {
2061 }
2062 
2063 
2064 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2065 {
2066 	/* apply_to_page_range() does all the hard work. */
2067 	return 0;
2068 }
2069 
2070 /**
2071  *	alloc_vm_area - allocate a range of kernel address space
2072  *	@size:		size of the area
2073  *
2074  *	Returns:	NULL on failure, vm_struct on success
2075  *
2076  *	This function reserves a range of kernel address space, and
2077  *	allocates pagetables to map that range.  No actual mappings
2078  *	are created.  If the kernel address space is not shared
2079  *	between processes, it syncs the pagetable across all
2080  *	processes.
2081  */
2082 struct vm_struct *alloc_vm_area(size_t size)
2083 {
2084 	struct vm_struct *area;
2085 
2086 	area = get_vm_area_caller(size, VM_IOREMAP,
2087 				__builtin_return_address(0));
2088 	if (area == NULL)
2089 		return NULL;
2090 
2091 	/*
2092 	 * This ensures that page tables are constructed for this region
2093 	 * of kernel virtual address space and mapped into init_mm.
2094 	 */
2095 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2096 				area->size, f, NULL)) {
2097 		free_vm_area(area);
2098 		return NULL;
2099 	}
2100 
2101 	/* Make sure the pagetables are constructed in process kernel
2102 	   mappings */
2103 	vmalloc_sync_all();
2104 
2105 	return area;
2106 }
2107 EXPORT_SYMBOL_GPL(alloc_vm_area);
2108 
2109 void free_vm_area(struct vm_struct *area)
2110 {
2111 	struct vm_struct *ret;
2112 	ret = remove_vm_area(area->addr);
2113 	BUG_ON(ret != area);
2114 	kfree(area);
2115 }
2116 EXPORT_SYMBOL_GPL(free_vm_area);
2117 
2118 #ifdef CONFIG_SMP
2119 static struct vmap_area *node_to_va(struct rb_node *n)
2120 {
2121 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2122 }
2123 
2124 /**
2125  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2126  * @end: target address
2127  * @pnext: out arg for the next vmap_area
2128  * @pprev: out arg for the previous vmap_area
2129  *
2130  * Returns: %true if either or both of next and prev are found,
2131  *	    %false if no vmap_area exists
2132  *
2133  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2134  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2135  */
2136 static bool pvm_find_next_prev(unsigned long end,
2137 			       struct vmap_area **pnext,
2138 			       struct vmap_area **pprev)
2139 {
2140 	struct rb_node *n = vmap_area_root.rb_node;
2141 	struct vmap_area *va = NULL;
2142 
2143 	while (n) {
2144 		va = rb_entry(n, struct vmap_area, rb_node);
2145 		if (end < va->va_end)
2146 			n = n->rb_left;
2147 		else if (end > va->va_end)
2148 			n = n->rb_right;
2149 		else
2150 			break;
2151 	}
2152 
2153 	if (!va)
2154 		return false;
2155 
2156 	if (va->va_end > end) {
2157 		*pnext = va;
2158 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2159 	} else {
2160 		*pprev = va;
2161 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2162 	}
2163 	return true;
2164 }
2165 
2166 /**
2167  * pvm_determine_end - find the highest aligned address between two vmap_areas
2168  * @pnext: in/out arg for the next vmap_area
2169  * @pprev: in/out arg for the previous vmap_area
2170  * @align: alignment
2171  *
2172  * Returns: determined end address
2173  *
2174  * Find the highest aligned address between *@pnext and *@pprev below
2175  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2176  * down address is between the end addresses of the two vmap_areas.
2177  *
2178  * Please note that the address returned by this function may fall
2179  * inside *@pnext vmap_area.  The caller is responsible for checking
2180  * that.
2181  */
2182 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2183 				       struct vmap_area **pprev,
2184 				       unsigned long align)
2185 {
2186 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2187 	unsigned long addr;
2188 
2189 	if (*pnext)
2190 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2191 	else
2192 		addr = vmalloc_end;
2193 
2194 	while (*pprev && (*pprev)->va_end > addr) {
2195 		*pnext = *pprev;
2196 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2197 	}
2198 
2199 	return addr;
2200 }
2201 
2202 /**
2203  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2204  * @offsets: array containing offset of each area
2205  * @sizes: array containing size of each area
2206  * @nr_vms: the number of areas to allocate
2207  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2208  *
2209  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2210  *	    vm_structs on success, %NULL on failure
2211  *
2212  * Percpu allocator wants to use congruent vm areas so that it can
2213  * maintain the offsets among percpu areas.  This function allocates
2214  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2215  * be scattered pretty far, distance between two areas easily going up
2216  * to gigabytes.  To avoid interacting with regular vmallocs, these
2217  * areas are allocated from top.
2218  *
2219  * Despite its complicated look, this allocator is rather simple.  It
2220  * does everything top-down and scans areas from the end looking for
2221  * matching slot.  While scanning, if any of the areas overlaps with
2222  * existing vmap_area, the base address is pulled down to fit the
2223  * area.  Scanning is repeated till all the areas fit and then all
2224  * necessary data structres are inserted and the result is returned.
2225  */
2226 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2227 				     const size_t *sizes, int nr_vms,
2228 				     size_t align)
2229 {
2230 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2231 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2232 	struct vmap_area **vas, *prev, *next;
2233 	struct vm_struct **vms;
2234 	int area, area2, last_area, term_area;
2235 	unsigned long base, start, end, last_end;
2236 	bool purged = false;
2237 
2238 	/* verify parameters and allocate data structures */
2239 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2240 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2241 		start = offsets[area];
2242 		end = start + sizes[area];
2243 
2244 		/* is everything aligned properly? */
2245 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2246 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2247 
2248 		/* detect the area with the highest address */
2249 		if (start > offsets[last_area])
2250 			last_area = area;
2251 
2252 		for (area2 = 0; area2 < nr_vms; area2++) {
2253 			unsigned long start2 = offsets[area2];
2254 			unsigned long end2 = start2 + sizes[area2];
2255 
2256 			if (area2 == area)
2257 				continue;
2258 
2259 			BUG_ON(start2 >= start && start2 < end);
2260 			BUG_ON(end2 <= end && end2 > start);
2261 		}
2262 	}
2263 	last_end = offsets[last_area] + sizes[last_area];
2264 
2265 	if (vmalloc_end - vmalloc_start < last_end) {
2266 		WARN_ON(true);
2267 		return NULL;
2268 	}
2269 
2270 	vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2271 	vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2272 	if (!vas || !vms)
2273 		goto err_free;
2274 
2275 	for (area = 0; area < nr_vms; area++) {
2276 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2277 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2278 		if (!vas[area] || !vms[area])
2279 			goto err_free;
2280 	}
2281 retry:
2282 	spin_lock(&vmap_area_lock);
2283 
2284 	/* start scanning - we scan from the top, begin with the last area */
2285 	area = term_area = last_area;
2286 	start = offsets[area];
2287 	end = start + sizes[area];
2288 
2289 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2290 		base = vmalloc_end - last_end;
2291 		goto found;
2292 	}
2293 	base = pvm_determine_end(&next, &prev, align) - end;
2294 
2295 	while (true) {
2296 		BUG_ON(next && next->va_end <= base + end);
2297 		BUG_ON(prev && prev->va_end > base + end);
2298 
2299 		/*
2300 		 * base might have underflowed, add last_end before
2301 		 * comparing.
2302 		 */
2303 		if (base + last_end < vmalloc_start + last_end) {
2304 			spin_unlock(&vmap_area_lock);
2305 			if (!purged) {
2306 				purge_vmap_area_lazy();
2307 				purged = true;
2308 				goto retry;
2309 			}
2310 			goto err_free;
2311 		}
2312 
2313 		/*
2314 		 * If next overlaps, move base downwards so that it's
2315 		 * right below next and then recheck.
2316 		 */
2317 		if (next && next->va_start < base + end) {
2318 			base = pvm_determine_end(&next, &prev, align) - end;
2319 			term_area = area;
2320 			continue;
2321 		}
2322 
2323 		/*
2324 		 * If prev overlaps, shift down next and prev and move
2325 		 * base so that it's right below new next and then
2326 		 * recheck.
2327 		 */
2328 		if (prev && prev->va_end > base + start)  {
2329 			next = prev;
2330 			prev = node_to_va(rb_prev(&next->rb_node));
2331 			base = pvm_determine_end(&next, &prev, align) - end;
2332 			term_area = area;
2333 			continue;
2334 		}
2335 
2336 		/*
2337 		 * This area fits, move on to the previous one.  If
2338 		 * the previous one is the terminal one, we're done.
2339 		 */
2340 		area = (area + nr_vms - 1) % nr_vms;
2341 		if (area == term_area)
2342 			break;
2343 		start = offsets[area];
2344 		end = start + sizes[area];
2345 		pvm_find_next_prev(base + end, &next, &prev);
2346 	}
2347 found:
2348 	/* we've found a fitting base, insert all va's */
2349 	for (area = 0; area < nr_vms; area++) {
2350 		struct vmap_area *va = vas[area];
2351 
2352 		va->va_start = base + offsets[area];
2353 		va->va_end = va->va_start + sizes[area];
2354 		__insert_vmap_area(va);
2355 	}
2356 
2357 	vmap_area_pcpu_hole = base + offsets[last_area];
2358 
2359 	spin_unlock(&vmap_area_lock);
2360 
2361 	/* insert all vm's */
2362 	for (area = 0; area < nr_vms; area++)
2363 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2364 				  pcpu_get_vm_areas);
2365 
2366 	kfree(vas);
2367 	return vms;
2368 
2369 err_free:
2370 	for (area = 0; area < nr_vms; area++) {
2371 		if (vas)
2372 			kfree(vas[area]);
2373 		if (vms)
2374 			kfree(vms[area]);
2375 	}
2376 	kfree(vas);
2377 	kfree(vms);
2378 	return NULL;
2379 }
2380 
2381 /**
2382  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2383  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2384  * @nr_vms: the number of allocated areas
2385  *
2386  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2387  */
2388 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2389 {
2390 	int i;
2391 
2392 	for (i = 0; i < nr_vms; i++)
2393 		free_vm_area(vms[i]);
2394 	kfree(vms);
2395 }
2396 #endif	/* CONFIG_SMP */
2397 
2398 #ifdef CONFIG_PROC_FS
2399 static void *s_start(struct seq_file *m, loff_t *pos)
2400 	__acquires(&vmlist_lock)
2401 {
2402 	loff_t n = *pos;
2403 	struct vm_struct *v;
2404 
2405 	read_lock(&vmlist_lock);
2406 	v = vmlist;
2407 	while (n > 0 && v) {
2408 		n--;
2409 		v = v->next;
2410 	}
2411 	if (!n)
2412 		return v;
2413 
2414 	return NULL;
2415 
2416 }
2417 
2418 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2419 {
2420 	struct vm_struct *v = p;
2421 
2422 	++*pos;
2423 	return v->next;
2424 }
2425 
2426 static void s_stop(struct seq_file *m, void *p)
2427 	__releases(&vmlist_lock)
2428 {
2429 	read_unlock(&vmlist_lock);
2430 }
2431 
2432 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2433 {
2434 	if (NUMA_BUILD) {
2435 		unsigned int nr, *counters = m->private;
2436 
2437 		if (!counters)
2438 			return;
2439 
2440 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2441 
2442 		for (nr = 0; nr < v->nr_pages; nr++)
2443 			counters[page_to_nid(v->pages[nr])]++;
2444 
2445 		for_each_node_state(nr, N_HIGH_MEMORY)
2446 			if (counters[nr])
2447 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2448 	}
2449 }
2450 
2451 static int s_show(struct seq_file *m, void *p)
2452 {
2453 	struct vm_struct *v = p;
2454 
2455 	seq_printf(m, "0x%p-0x%p %7ld",
2456 		v->addr, v->addr + v->size, v->size);
2457 
2458 	if (v->caller)
2459 		seq_printf(m, " %pS", v->caller);
2460 
2461 	if (v->nr_pages)
2462 		seq_printf(m, " pages=%d", v->nr_pages);
2463 
2464 	if (v->phys_addr)
2465 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2466 
2467 	if (v->flags & VM_IOREMAP)
2468 		seq_printf(m, " ioremap");
2469 
2470 	if (v->flags & VM_ALLOC)
2471 		seq_printf(m, " vmalloc");
2472 
2473 	if (v->flags & VM_MAP)
2474 		seq_printf(m, " vmap");
2475 
2476 	if (v->flags & VM_USERMAP)
2477 		seq_printf(m, " user");
2478 
2479 	if (v->flags & VM_VPAGES)
2480 		seq_printf(m, " vpages");
2481 
2482 	show_numa_info(m, v);
2483 	seq_putc(m, '\n');
2484 	return 0;
2485 }
2486 
2487 static const struct seq_operations vmalloc_op = {
2488 	.start = s_start,
2489 	.next = s_next,
2490 	.stop = s_stop,
2491 	.show = s_show,
2492 };
2493 
2494 static int vmalloc_open(struct inode *inode, struct file *file)
2495 {
2496 	unsigned int *ptr = NULL;
2497 	int ret;
2498 
2499 	if (NUMA_BUILD) {
2500 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2501 		if (ptr == NULL)
2502 			return -ENOMEM;
2503 	}
2504 	ret = seq_open(file, &vmalloc_op);
2505 	if (!ret) {
2506 		struct seq_file *m = file->private_data;
2507 		m->private = ptr;
2508 	} else
2509 		kfree(ptr);
2510 	return ret;
2511 }
2512 
2513 static const struct file_operations proc_vmalloc_operations = {
2514 	.open		= vmalloc_open,
2515 	.read		= seq_read,
2516 	.llseek		= seq_lseek,
2517 	.release	= seq_release_private,
2518 };
2519 
2520 static int __init proc_vmalloc_init(void)
2521 {
2522 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2523 	return 0;
2524 }
2525 module_init(proc_vmalloc_init);
2526 #endif
2527 
2528