xref: /openbmc/linux/mm/vmalloc.c (revision d63670d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #include "internal.h"
47 #include "pgalloc-track.h"
48 
49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
51 
52 static int __init set_nohugeiomap(char *str)
53 {
54 	ioremap_max_page_shift = PAGE_SHIFT;
55 	return 0;
56 }
57 early_param("nohugeiomap", set_nohugeiomap);
58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
61 
62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63 static bool __ro_after_init vmap_allow_huge = true;
64 
65 static int __init set_nohugevmalloc(char *str)
66 {
67 	vmap_allow_huge = false;
68 	return 0;
69 }
70 early_param("nohugevmalloc", set_nohugevmalloc);
71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 static const bool vmap_allow_huge = false;
73 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
74 
75 bool is_vmalloc_addr(const void *x)
76 {
77 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
78 
79 	return addr >= VMALLOC_START && addr < VMALLOC_END;
80 }
81 EXPORT_SYMBOL(is_vmalloc_addr);
82 
83 struct vfree_deferred {
84 	struct llist_head list;
85 	struct work_struct wq;
86 };
87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
88 
89 static void __vunmap(const void *, int);
90 
91 static void free_work(struct work_struct *w)
92 {
93 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
94 	struct llist_node *t, *llnode;
95 
96 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97 		__vunmap((void *)llnode, 1);
98 }
99 
100 /*** Page table manipulation functions ***/
101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102 			phys_addr_t phys_addr, pgprot_t prot,
103 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
104 {
105 	pte_t *pte;
106 	u64 pfn;
107 	unsigned long size = PAGE_SIZE;
108 
109 	pfn = phys_addr >> PAGE_SHIFT;
110 	pte = pte_alloc_kernel_track(pmd, addr, mask);
111 	if (!pte)
112 		return -ENOMEM;
113 	do {
114 		BUG_ON(!pte_none(*pte));
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 		if (size != PAGE_SIZE) {
119 			pte_t entry = pfn_pte(pfn, prot);
120 
121 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 			set_huge_pte_at(&init_mm, addr, pte, entry);
123 			pfn += PFN_DOWN(size);
124 			continue;
125 		}
126 #endif
127 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 		pfn++;
129 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
130 	*mask |= PGTBL_PTE_MODIFIED;
131 	return 0;
132 }
133 
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 			phys_addr_t phys_addr, pgprot_t prot,
136 			unsigned int max_page_shift)
137 {
138 	if (max_page_shift < PMD_SHIFT)
139 		return 0;
140 
141 	if (!arch_vmap_pmd_supported(prot))
142 		return 0;
143 
144 	if ((end - addr) != PMD_SIZE)
145 		return 0;
146 
147 	if (!IS_ALIGNED(addr, PMD_SIZE))
148 		return 0;
149 
150 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 		return 0;
152 
153 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 		return 0;
155 
156 	return pmd_set_huge(pmd, phys_addr, prot);
157 }
158 
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 			phys_addr_t phys_addr, pgprot_t prot,
161 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 
172 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 					max_page_shift)) {
174 			*mask |= PGTBL_PMD_MODIFIED;
175 			continue;
176 		}
177 
178 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 			return -ENOMEM;
180 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 	return 0;
182 }
183 
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 			phys_addr_t phys_addr, pgprot_t prot,
186 			unsigned int max_page_shift)
187 {
188 	if (max_page_shift < PUD_SHIFT)
189 		return 0;
190 
191 	if (!arch_vmap_pud_supported(prot))
192 		return 0;
193 
194 	if ((end - addr) != PUD_SIZE)
195 		return 0;
196 
197 	if (!IS_ALIGNED(addr, PUD_SIZE))
198 		return 0;
199 
200 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 		return 0;
202 
203 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 		return 0;
205 
206 	return pud_set_huge(pud, phys_addr, prot);
207 }
208 
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 			phys_addr_t phys_addr, pgprot_t prot,
211 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 	pud_t *pud;
214 	unsigned long next;
215 
216 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 	if (!pud)
218 		return -ENOMEM;
219 	do {
220 		next = pud_addr_end(addr, end);
221 
222 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 					max_page_shift)) {
224 			*mask |= PGTBL_PUD_MODIFIED;
225 			continue;
226 		}
227 
228 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 					max_page_shift, mask))
230 			return -ENOMEM;
231 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 	return 0;
233 }
234 
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 			phys_addr_t phys_addr, pgprot_t prot,
237 			unsigned int max_page_shift)
238 {
239 	if (max_page_shift < P4D_SHIFT)
240 		return 0;
241 
242 	if (!arch_vmap_p4d_supported(prot))
243 		return 0;
244 
245 	if ((end - addr) != P4D_SIZE)
246 		return 0;
247 
248 	if (!IS_ALIGNED(addr, P4D_SIZE))
249 		return 0;
250 
251 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 		return 0;
253 
254 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 		return 0;
256 
257 	return p4d_set_huge(p4d, phys_addr, prot);
258 }
259 
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 			phys_addr_t phys_addr, pgprot_t prot,
262 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 	p4d_t *p4d;
265 	unsigned long next;
266 
267 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 	if (!p4d)
269 		return -ENOMEM;
270 	do {
271 		next = p4d_addr_end(addr, end);
272 
273 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 					max_page_shift)) {
275 			*mask |= PGTBL_P4D_MODIFIED;
276 			continue;
277 		}
278 
279 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 					max_page_shift, mask))
281 			return -ENOMEM;
282 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 	return 0;
284 }
285 
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 			phys_addr_t phys_addr, pgprot_t prot,
288 			unsigned int max_page_shift)
289 {
290 	pgd_t *pgd;
291 	unsigned long start;
292 	unsigned long next;
293 	int err;
294 	pgtbl_mod_mask mask = 0;
295 
296 	might_sleep();
297 	BUG_ON(addr >= end);
298 
299 	start = addr;
300 	pgd = pgd_offset_k(addr);
301 	do {
302 		next = pgd_addr_end(addr, end);
303 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 					max_page_shift, &mask);
305 		if (err)
306 			break;
307 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 
309 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 		arch_sync_kernel_mappings(start, end);
311 
312 	return err;
313 }
314 
315 int ioremap_page_range(unsigned long addr, unsigned long end,
316 		phys_addr_t phys_addr, pgprot_t prot)
317 {
318 	int err;
319 
320 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 				 ioremap_max_page_shift);
322 	flush_cache_vmap(addr, end);
323 	return err;
324 }
325 
326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
327 			     pgtbl_mod_mask *mask)
328 {
329 	pte_t *pte;
330 
331 	pte = pte_offset_kernel(pmd, addr);
332 	do {
333 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
334 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
335 	} while (pte++, addr += PAGE_SIZE, addr != end);
336 	*mask |= PGTBL_PTE_MODIFIED;
337 }
338 
339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
340 			     pgtbl_mod_mask *mask)
341 {
342 	pmd_t *pmd;
343 	unsigned long next;
344 	int cleared;
345 
346 	pmd = pmd_offset(pud, addr);
347 	do {
348 		next = pmd_addr_end(addr, end);
349 
350 		cleared = pmd_clear_huge(pmd);
351 		if (cleared || pmd_bad(*pmd))
352 			*mask |= PGTBL_PMD_MODIFIED;
353 
354 		if (cleared)
355 			continue;
356 		if (pmd_none_or_clear_bad(pmd))
357 			continue;
358 		vunmap_pte_range(pmd, addr, next, mask);
359 
360 		cond_resched();
361 	} while (pmd++, addr = next, addr != end);
362 }
363 
364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
365 			     pgtbl_mod_mask *mask)
366 {
367 	pud_t *pud;
368 	unsigned long next;
369 	int cleared;
370 
371 	pud = pud_offset(p4d, addr);
372 	do {
373 		next = pud_addr_end(addr, end);
374 
375 		cleared = pud_clear_huge(pud);
376 		if (cleared || pud_bad(*pud))
377 			*mask |= PGTBL_PUD_MODIFIED;
378 
379 		if (cleared)
380 			continue;
381 		if (pud_none_or_clear_bad(pud))
382 			continue;
383 		vunmap_pmd_range(pud, addr, next, mask);
384 	} while (pud++, addr = next, addr != end);
385 }
386 
387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
388 			     pgtbl_mod_mask *mask)
389 {
390 	p4d_t *p4d;
391 	unsigned long next;
392 	int cleared;
393 
394 	p4d = p4d_offset(pgd, addr);
395 	do {
396 		next = p4d_addr_end(addr, end);
397 
398 		cleared = p4d_clear_huge(p4d);
399 		if (cleared || p4d_bad(*p4d))
400 			*mask |= PGTBL_P4D_MODIFIED;
401 
402 		if (cleared)
403 			continue;
404 		if (p4d_none_or_clear_bad(p4d))
405 			continue;
406 		vunmap_pud_range(p4d, addr, next, mask);
407 	} while (p4d++, addr = next, addr != end);
408 }
409 
410 /*
411  * vunmap_range_noflush is similar to vunmap_range, but does not
412  * flush caches or TLBs.
413  *
414  * The caller is responsible for calling flush_cache_vmap() before calling
415  * this function, and flush_tlb_kernel_range after it has returned
416  * successfully (and before the addresses are expected to cause a page fault
417  * or be re-mapped for something else, if TLB flushes are being delayed or
418  * coalesced).
419  *
420  * This is an internal function only. Do not use outside mm/.
421  */
422 void vunmap_range_noflush(unsigned long start, unsigned long end)
423 {
424 	unsigned long next;
425 	pgd_t *pgd;
426 	unsigned long addr = start;
427 	pgtbl_mod_mask mask = 0;
428 
429 	BUG_ON(addr >= end);
430 	pgd = pgd_offset_k(addr);
431 	do {
432 		next = pgd_addr_end(addr, end);
433 		if (pgd_bad(*pgd))
434 			mask |= PGTBL_PGD_MODIFIED;
435 		if (pgd_none_or_clear_bad(pgd))
436 			continue;
437 		vunmap_p4d_range(pgd, addr, next, &mask);
438 	} while (pgd++, addr = next, addr != end);
439 
440 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
441 		arch_sync_kernel_mappings(start, end);
442 }
443 
444 /**
445  * vunmap_range - unmap kernel virtual addresses
446  * @addr: start of the VM area to unmap
447  * @end: end of the VM area to unmap (non-inclusive)
448  *
449  * Clears any present PTEs in the virtual address range, flushes TLBs and
450  * caches. Any subsequent access to the address before it has been re-mapped
451  * is a kernel bug.
452  */
453 void vunmap_range(unsigned long addr, unsigned long end)
454 {
455 	flush_cache_vunmap(addr, end);
456 	vunmap_range_noflush(addr, end);
457 	flush_tlb_kernel_range(addr, end);
458 }
459 
460 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
461 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
462 		pgtbl_mod_mask *mask)
463 {
464 	pte_t *pte;
465 
466 	/*
467 	 * nr is a running index into the array which helps higher level
468 	 * callers keep track of where we're up to.
469 	 */
470 
471 	pte = pte_alloc_kernel_track(pmd, addr, mask);
472 	if (!pte)
473 		return -ENOMEM;
474 	do {
475 		struct page *page = pages[*nr];
476 
477 		if (WARN_ON(!pte_none(*pte)))
478 			return -EBUSY;
479 		if (WARN_ON(!page))
480 			return -ENOMEM;
481 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
482 		(*nr)++;
483 	} while (pte++, addr += PAGE_SIZE, addr != end);
484 	*mask |= PGTBL_PTE_MODIFIED;
485 	return 0;
486 }
487 
488 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
489 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
490 		pgtbl_mod_mask *mask)
491 {
492 	pmd_t *pmd;
493 	unsigned long next;
494 
495 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
496 	if (!pmd)
497 		return -ENOMEM;
498 	do {
499 		next = pmd_addr_end(addr, end);
500 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
501 			return -ENOMEM;
502 	} while (pmd++, addr = next, addr != end);
503 	return 0;
504 }
505 
506 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
507 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
508 		pgtbl_mod_mask *mask)
509 {
510 	pud_t *pud;
511 	unsigned long next;
512 
513 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
514 	if (!pud)
515 		return -ENOMEM;
516 	do {
517 		next = pud_addr_end(addr, end);
518 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
519 			return -ENOMEM;
520 	} while (pud++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
525 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
526 		pgtbl_mod_mask *mask)
527 {
528 	p4d_t *p4d;
529 	unsigned long next;
530 
531 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
532 	if (!p4d)
533 		return -ENOMEM;
534 	do {
535 		next = p4d_addr_end(addr, end);
536 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
537 			return -ENOMEM;
538 	} while (p4d++, addr = next, addr != end);
539 	return 0;
540 }
541 
542 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
543 		pgprot_t prot, struct page **pages)
544 {
545 	unsigned long start = addr;
546 	pgd_t *pgd;
547 	unsigned long next;
548 	int err = 0;
549 	int nr = 0;
550 	pgtbl_mod_mask mask = 0;
551 
552 	BUG_ON(addr >= end);
553 	pgd = pgd_offset_k(addr);
554 	do {
555 		next = pgd_addr_end(addr, end);
556 		if (pgd_bad(*pgd))
557 			mask |= PGTBL_PGD_MODIFIED;
558 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
559 		if (err)
560 			return err;
561 	} while (pgd++, addr = next, addr != end);
562 
563 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
564 		arch_sync_kernel_mappings(start, end);
565 
566 	return 0;
567 }
568 
569 /*
570  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
571  * flush caches.
572  *
573  * The caller is responsible for calling flush_cache_vmap() after this
574  * function returns successfully and before the addresses are accessed.
575  *
576  * This is an internal function only. Do not use outside mm/.
577  */
578 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
579 		pgprot_t prot, struct page **pages, unsigned int page_shift)
580 {
581 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
582 
583 	WARN_ON(page_shift < PAGE_SHIFT);
584 
585 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
586 			page_shift == PAGE_SHIFT)
587 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
588 
589 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
590 		int err;
591 
592 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
593 					__pa(page_address(pages[i])), prot,
594 					page_shift);
595 		if (err)
596 			return err;
597 
598 		addr += 1UL << page_shift;
599 	}
600 
601 	return 0;
602 }
603 
604 /**
605  * vmap_pages_range - map pages to a kernel virtual address
606  * @addr: start of the VM area to map
607  * @end: end of the VM area to map (non-inclusive)
608  * @prot: page protection flags to use
609  * @pages: pages to map (always PAGE_SIZE pages)
610  * @page_shift: maximum shift that the pages may be mapped with, @pages must
611  * be aligned and contiguous up to at least this shift.
612  *
613  * RETURNS:
614  * 0 on success, -errno on failure.
615  */
616 static int vmap_pages_range(unsigned long addr, unsigned long end,
617 		pgprot_t prot, struct page **pages, unsigned int page_shift)
618 {
619 	int err;
620 
621 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
622 	flush_cache_vmap(addr, end);
623 	return err;
624 }
625 
626 int is_vmalloc_or_module_addr(const void *x)
627 {
628 	/*
629 	 * ARM, x86-64 and sparc64 put modules in a special place,
630 	 * and fall back on vmalloc() if that fails. Others
631 	 * just put it in the vmalloc space.
632 	 */
633 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
634 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
635 	if (addr >= MODULES_VADDR && addr < MODULES_END)
636 		return 1;
637 #endif
638 	return is_vmalloc_addr(x);
639 }
640 
641 /*
642  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
643  * return the tail page that corresponds to the base page address, which
644  * matches small vmap mappings.
645  */
646 struct page *vmalloc_to_page(const void *vmalloc_addr)
647 {
648 	unsigned long addr = (unsigned long) vmalloc_addr;
649 	struct page *page = NULL;
650 	pgd_t *pgd = pgd_offset_k(addr);
651 	p4d_t *p4d;
652 	pud_t *pud;
653 	pmd_t *pmd;
654 	pte_t *ptep, pte;
655 
656 	/*
657 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
658 	 * architectures that do not vmalloc module space
659 	 */
660 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
661 
662 	if (pgd_none(*pgd))
663 		return NULL;
664 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
665 		return NULL; /* XXX: no allowance for huge pgd */
666 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
667 		return NULL;
668 
669 	p4d = p4d_offset(pgd, addr);
670 	if (p4d_none(*p4d))
671 		return NULL;
672 	if (p4d_leaf(*p4d))
673 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
674 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
675 		return NULL;
676 
677 	pud = pud_offset(p4d, addr);
678 	if (pud_none(*pud))
679 		return NULL;
680 	if (pud_leaf(*pud))
681 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
682 	if (WARN_ON_ONCE(pud_bad(*pud)))
683 		return NULL;
684 
685 	pmd = pmd_offset(pud, addr);
686 	if (pmd_none(*pmd))
687 		return NULL;
688 	if (pmd_leaf(*pmd))
689 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
690 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
691 		return NULL;
692 
693 	ptep = pte_offset_map(pmd, addr);
694 	pte = *ptep;
695 	if (pte_present(pte))
696 		page = pte_page(pte);
697 	pte_unmap(ptep);
698 
699 	return page;
700 }
701 EXPORT_SYMBOL(vmalloc_to_page);
702 
703 /*
704  * Map a vmalloc()-space virtual address to the physical page frame number.
705  */
706 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
707 {
708 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
709 }
710 EXPORT_SYMBOL(vmalloc_to_pfn);
711 
712 
713 /*** Global kva allocator ***/
714 
715 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
716 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
717 
718 
719 static DEFINE_SPINLOCK(vmap_area_lock);
720 static DEFINE_SPINLOCK(free_vmap_area_lock);
721 /* Export for kexec only */
722 LIST_HEAD(vmap_area_list);
723 static struct rb_root vmap_area_root = RB_ROOT;
724 static bool vmap_initialized __read_mostly;
725 
726 static struct rb_root purge_vmap_area_root = RB_ROOT;
727 static LIST_HEAD(purge_vmap_area_list);
728 static DEFINE_SPINLOCK(purge_vmap_area_lock);
729 
730 /*
731  * This kmem_cache is used for vmap_area objects. Instead of
732  * allocating from slab we reuse an object from this cache to
733  * make things faster. Especially in "no edge" splitting of
734  * free block.
735  */
736 static struct kmem_cache *vmap_area_cachep;
737 
738 /*
739  * This linked list is used in pair with free_vmap_area_root.
740  * It gives O(1) access to prev/next to perform fast coalescing.
741  */
742 static LIST_HEAD(free_vmap_area_list);
743 
744 /*
745  * This augment red-black tree represents the free vmap space.
746  * All vmap_area objects in this tree are sorted by va->va_start
747  * address. It is used for allocation and merging when a vmap
748  * object is released.
749  *
750  * Each vmap_area node contains a maximum available free block
751  * of its sub-tree, right or left. Therefore it is possible to
752  * find a lowest match of free area.
753  */
754 static struct rb_root free_vmap_area_root = RB_ROOT;
755 
756 /*
757  * Preload a CPU with one object for "no edge" split case. The
758  * aim is to get rid of allocations from the atomic context, thus
759  * to use more permissive allocation masks.
760  */
761 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
762 
763 static __always_inline unsigned long
764 va_size(struct vmap_area *va)
765 {
766 	return (va->va_end - va->va_start);
767 }
768 
769 static __always_inline unsigned long
770 get_subtree_max_size(struct rb_node *node)
771 {
772 	struct vmap_area *va;
773 
774 	va = rb_entry_safe(node, struct vmap_area, rb_node);
775 	return va ? va->subtree_max_size : 0;
776 }
777 
778 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
779 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
780 
781 static void purge_vmap_area_lazy(void);
782 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
783 static void drain_vmap_area_work(struct work_struct *work);
784 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
785 
786 static atomic_long_t nr_vmalloc_pages;
787 
788 unsigned long vmalloc_nr_pages(void)
789 {
790 	return atomic_long_read(&nr_vmalloc_pages);
791 }
792 
793 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
794 {
795 	struct vmap_area *va = NULL;
796 	struct rb_node *n = vmap_area_root.rb_node;
797 
798 	addr = (unsigned long)kasan_reset_tag((void *)addr);
799 
800 	while (n) {
801 		struct vmap_area *tmp;
802 
803 		tmp = rb_entry(n, struct vmap_area, rb_node);
804 		if (tmp->va_end > addr) {
805 			va = tmp;
806 			if (tmp->va_start <= addr)
807 				break;
808 
809 			n = n->rb_left;
810 		} else
811 			n = n->rb_right;
812 	}
813 
814 	return va;
815 }
816 
817 static struct vmap_area *__find_vmap_area(unsigned long addr)
818 {
819 	struct rb_node *n = vmap_area_root.rb_node;
820 
821 	addr = (unsigned long)kasan_reset_tag((void *)addr);
822 
823 	while (n) {
824 		struct vmap_area *va;
825 
826 		va = rb_entry(n, struct vmap_area, rb_node);
827 		if (addr < va->va_start)
828 			n = n->rb_left;
829 		else if (addr >= va->va_end)
830 			n = n->rb_right;
831 		else
832 			return va;
833 	}
834 
835 	return NULL;
836 }
837 
838 /*
839  * This function returns back addresses of parent node
840  * and its left or right link for further processing.
841  *
842  * Otherwise NULL is returned. In that case all further
843  * steps regarding inserting of conflicting overlap range
844  * have to be declined and actually considered as a bug.
845  */
846 static __always_inline struct rb_node **
847 find_va_links(struct vmap_area *va,
848 	struct rb_root *root, struct rb_node *from,
849 	struct rb_node **parent)
850 {
851 	struct vmap_area *tmp_va;
852 	struct rb_node **link;
853 
854 	if (root) {
855 		link = &root->rb_node;
856 		if (unlikely(!*link)) {
857 			*parent = NULL;
858 			return link;
859 		}
860 	} else {
861 		link = &from;
862 	}
863 
864 	/*
865 	 * Go to the bottom of the tree. When we hit the last point
866 	 * we end up with parent rb_node and correct direction, i name
867 	 * it link, where the new va->rb_node will be attached to.
868 	 */
869 	do {
870 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
871 
872 		/*
873 		 * During the traversal we also do some sanity check.
874 		 * Trigger the BUG() if there are sides(left/right)
875 		 * or full overlaps.
876 		 */
877 		if (va->va_start < tmp_va->va_end &&
878 				va->va_end <= tmp_va->va_start)
879 			link = &(*link)->rb_left;
880 		else if (va->va_end > tmp_va->va_start &&
881 				va->va_start >= tmp_va->va_end)
882 			link = &(*link)->rb_right;
883 		else {
884 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
885 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
886 
887 			return NULL;
888 		}
889 	} while (*link);
890 
891 	*parent = &tmp_va->rb_node;
892 	return link;
893 }
894 
895 static __always_inline struct list_head *
896 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
897 {
898 	struct list_head *list;
899 
900 	if (unlikely(!parent))
901 		/*
902 		 * The red-black tree where we try to find VA neighbors
903 		 * before merging or inserting is empty, i.e. it means
904 		 * there is no free vmap space. Normally it does not
905 		 * happen but we handle this case anyway.
906 		 */
907 		return NULL;
908 
909 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
910 	return (&parent->rb_right == link ? list->next : list);
911 }
912 
913 static __always_inline void
914 link_va(struct vmap_area *va, struct rb_root *root,
915 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
916 {
917 	/*
918 	 * VA is still not in the list, but we can
919 	 * identify its future previous list_head node.
920 	 */
921 	if (likely(parent)) {
922 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
923 		if (&parent->rb_right != link)
924 			head = head->prev;
925 	}
926 
927 	/* Insert to the rb-tree */
928 	rb_link_node(&va->rb_node, parent, link);
929 	if (root == &free_vmap_area_root) {
930 		/*
931 		 * Some explanation here. Just perform simple insertion
932 		 * to the tree. We do not set va->subtree_max_size to
933 		 * its current size before calling rb_insert_augmented().
934 		 * It is because of we populate the tree from the bottom
935 		 * to parent levels when the node _is_ in the tree.
936 		 *
937 		 * Therefore we set subtree_max_size to zero after insertion,
938 		 * to let __augment_tree_propagate_from() puts everything to
939 		 * the correct order later on.
940 		 */
941 		rb_insert_augmented(&va->rb_node,
942 			root, &free_vmap_area_rb_augment_cb);
943 		va->subtree_max_size = 0;
944 	} else {
945 		rb_insert_color(&va->rb_node, root);
946 	}
947 
948 	/* Address-sort this list */
949 	list_add(&va->list, head);
950 }
951 
952 static __always_inline void
953 unlink_va(struct vmap_area *va, struct rb_root *root)
954 {
955 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
956 		return;
957 
958 	if (root == &free_vmap_area_root)
959 		rb_erase_augmented(&va->rb_node,
960 			root, &free_vmap_area_rb_augment_cb);
961 	else
962 		rb_erase(&va->rb_node, root);
963 
964 	list_del(&va->list);
965 	RB_CLEAR_NODE(&va->rb_node);
966 }
967 
968 #if DEBUG_AUGMENT_PROPAGATE_CHECK
969 /*
970  * Gets called when remove the node and rotate.
971  */
972 static __always_inline unsigned long
973 compute_subtree_max_size(struct vmap_area *va)
974 {
975 	return max3(va_size(va),
976 		get_subtree_max_size(va->rb_node.rb_left),
977 		get_subtree_max_size(va->rb_node.rb_right));
978 }
979 
980 static void
981 augment_tree_propagate_check(void)
982 {
983 	struct vmap_area *va;
984 	unsigned long computed_size;
985 
986 	list_for_each_entry(va, &free_vmap_area_list, list) {
987 		computed_size = compute_subtree_max_size(va);
988 		if (computed_size != va->subtree_max_size)
989 			pr_emerg("tree is corrupted: %lu, %lu\n",
990 				va_size(va), va->subtree_max_size);
991 	}
992 }
993 #endif
994 
995 /*
996  * This function populates subtree_max_size from bottom to upper
997  * levels starting from VA point. The propagation must be done
998  * when VA size is modified by changing its va_start/va_end. Or
999  * in case of newly inserting of VA to the tree.
1000  *
1001  * It means that __augment_tree_propagate_from() must be called:
1002  * - After VA has been inserted to the tree(free path);
1003  * - After VA has been shrunk(allocation path);
1004  * - After VA has been increased(merging path).
1005  *
1006  * Please note that, it does not mean that upper parent nodes
1007  * and their subtree_max_size are recalculated all the time up
1008  * to the root node.
1009  *
1010  *       4--8
1011  *        /\
1012  *       /  \
1013  *      /    \
1014  *    2--2  8--8
1015  *
1016  * For example if we modify the node 4, shrinking it to 2, then
1017  * no any modification is required. If we shrink the node 2 to 1
1018  * its subtree_max_size is updated only, and set to 1. If we shrink
1019  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1020  * node becomes 4--6.
1021  */
1022 static __always_inline void
1023 augment_tree_propagate_from(struct vmap_area *va)
1024 {
1025 	/*
1026 	 * Populate the tree from bottom towards the root until
1027 	 * the calculated maximum available size of checked node
1028 	 * is equal to its current one.
1029 	 */
1030 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1031 
1032 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1033 	augment_tree_propagate_check();
1034 #endif
1035 }
1036 
1037 static void
1038 insert_vmap_area(struct vmap_area *va,
1039 	struct rb_root *root, struct list_head *head)
1040 {
1041 	struct rb_node **link;
1042 	struct rb_node *parent;
1043 
1044 	link = find_va_links(va, root, NULL, &parent);
1045 	if (link)
1046 		link_va(va, root, parent, link, head);
1047 }
1048 
1049 static void
1050 insert_vmap_area_augment(struct vmap_area *va,
1051 	struct rb_node *from, struct rb_root *root,
1052 	struct list_head *head)
1053 {
1054 	struct rb_node **link;
1055 	struct rb_node *parent;
1056 
1057 	if (from)
1058 		link = find_va_links(va, NULL, from, &parent);
1059 	else
1060 		link = find_va_links(va, root, NULL, &parent);
1061 
1062 	if (link) {
1063 		link_va(va, root, parent, link, head);
1064 		augment_tree_propagate_from(va);
1065 	}
1066 }
1067 
1068 /*
1069  * Merge de-allocated chunk of VA memory with previous
1070  * and next free blocks. If coalesce is not done a new
1071  * free area is inserted. If VA has been merged, it is
1072  * freed.
1073  *
1074  * Please note, it can return NULL in case of overlap
1075  * ranges, followed by WARN() report. Despite it is a
1076  * buggy behaviour, a system can be alive and keep
1077  * ongoing.
1078  */
1079 static __always_inline struct vmap_area *
1080 merge_or_add_vmap_area(struct vmap_area *va,
1081 	struct rb_root *root, struct list_head *head)
1082 {
1083 	struct vmap_area *sibling;
1084 	struct list_head *next;
1085 	struct rb_node **link;
1086 	struct rb_node *parent;
1087 	bool merged = false;
1088 
1089 	/*
1090 	 * Find a place in the tree where VA potentially will be
1091 	 * inserted, unless it is merged with its sibling/siblings.
1092 	 */
1093 	link = find_va_links(va, root, NULL, &parent);
1094 	if (!link)
1095 		return NULL;
1096 
1097 	/*
1098 	 * Get next node of VA to check if merging can be done.
1099 	 */
1100 	next = get_va_next_sibling(parent, link);
1101 	if (unlikely(next == NULL))
1102 		goto insert;
1103 
1104 	/*
1105 	 * start            end
1106 	 * |                |
1107 	 * |<------VA------>|<-----Next----->|
1108 	 *                  |                |
1109 	 *                  start            end
1110 	 */
1111 	if (next != head) {
1112 		sibling = list_entry(next, struct vmap_area, list);
1113 		if (sibling->va_start == va->va_end) {
1114 			sibling->va_start = va->va_start;
1115 
1116 			/* Free vmap_area object. */
1117 			kmem_cache_free(vmap_area_cachep, va);
1118 
1119 			/* Point to the new merged area. */
1120 			va = sibling;
1121 			merged = true;
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * start            end
1127 	 * |                |
1128 	 * |<-----Prev----->|<------VA------>|
1129 	 *                  |                |
1130 	 *                  start            end
1131 	 */
1132 	if (next->prev != head) {
1133 		sibling = list_entry(next->prev, struct vmap_area, list);
1134 		if (sibling->va_end == va->va_start) {
1135 			/*
1136 			 * If both neighbors are coalesced, it is important
1137 			 * to unlink the "next" node first, followed by merging
1138 			 * with "previous" one. Otherwise the tree might not be
1139 			 * fully populated if a sibling's augmented value is
1140 			 * "normalized" because of rotation operations.
1141 			 */
1142 			if (merged)
1143 				unlink_va(va, root);
1144 
1145 			sibling->va_end = va->va_end;
1146 
1147 			/* Free vmap_area object. */
1148 			kmem_cache_free(vmap_area_cachep, va);
1149 
1150 			/* Point to the new merged area. */
1151 			va = sibling;
1152 			merged = true;
1153 		}
1154 	}
1155 
1156 insert:
1157 	if (!merged)
1158 		link_va(va, root, parent, link, head);
1159 
1160 	return va;
1161 }
1162 
1163 static __always_inline struct vmap_area *
1164 merge_or_add_vmap_area_augment(struct vmap_area *va,
1165 	struct rb_root *root, struct list_head *head)
1166 {
1167 	va = merge_or_add_vmap_area(va, root, head);
1168 	if (va)
1169 		augment_tree_propagate_from(va);
1170 
1171 	return va;
1172 }
1173 
1174 static __always_inline bool
1175 is_within_this_va(struct vmap_area *va, unsigned long size,
1176 	unsigned long align, unsigned long vstart)
1177 {
1178 	unsigned long nva_start_addr;
1179 
1180 	if (va->va_start > vstart)
1181 		nva_start_addr = ALIGN(va->va_start, align);
1182 	else
1183 		nva_start_addr = ALIGN(vstart, align);
1184 
1185 	/* Can be overflowed due to big size or alignment. */
1186 	if (nva_start_addr + size < nva_start_addr ||
1187 			nva_start_addr < vstart)
1188 		return false;
1189 
1190 	return (nva_start_addr + size <= va->va_end);
1191 }
1192 
1193 /*
1194  * Find the first free block(lowest start address) in the tree,
1195  * that will accomplish the request corresponding to passing
1196  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1197  * a search length is adjusted to account for worst case alignment
1198  * overhead.
1199  */
1200 static __always_inline struct vmap_area *
1201 find_vmap_lowest_match(unsigned long size, unsigned long align,
1202 	unsigned long vstart, bool adjust_search_size)
1203 {
1204 	struct vmap_area *va;
1205 	struct rb_node *node;
1206 	unsigned long length;
1207 
1208 	/* Start from the root. */
1209 	node = free_vmap_area_root.rb_node;
1210 
1211 	/* Adjust the search size for alignment overhead. */
1212 	length = adjust_search_size ? size + align - 1 : size;
1213 
1214 	while (node) {
1215 		va = rb_entry(node, struct vmap_area, rb_node);
1216 
1217 		if (get_subtree_max_size(node->rb_left) >= length &&
1218 				vstart < va->va_start) {
1219 			node = node->rb_left;
1220 		} else {
1221 			if (is_within_this_va(va, size, align, vstart))
1222 				return va;
1223 
1224 			/*
1225 			 * Does not make sense to go deeper towards the right
1226 			 * sub-tree if it does not have a free block that is
1227 			 * equal or bigger to the requested search length.
1228 			 */
1229 			if (get_subtree_max_size(node->rb_right) >= length) {
1230 				node = node->rb_right;
1231 				continue;
1232 			}
1233 
1234 			/*
1235 			 * OK. We roll back and find the first right sub-tree,
1236 			 * that will satisfy the search criteria. It can happen
1237 			 * due to "vstart" restriction or an alignment overhead
1238 			 * that is bigger then PAGE_SIZE.
1239 			 */
1240 			while ((node = rb_parent(node))) {
1241 				va = rb_entry(node, struct vmap_area, rb_node);
1242 				if (is_within_this_va(va, size, align, vstart))
1243 					return va;
1244 
1245 				if (get_subtree_max_size(node->rb_right) >= length &&
1246 						vstart <= va->va_start) {
1247 					/*
1248 					 * Shift the vstart forward. Please note, we update it with
1249 					 * parent's start address adding "1" because we do not want
1250 					 * to enter same sub-tree after it has already been checked
1251 					 * and no suitable free block found there.
1252 					 */
1253 					vstart = va->va_start + 1;
1254 					node = node->rb_right;
1255 					break;
1256 				}
1257 			}
1258 		}
1259 	}
1260 
1261 	return NULL;
1262 }
1263 
1264 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1265 #include <linux/random.h>
1266 
1267 static struct vmap_area *
1268 find_vmap_lowest_linear_match(unsigned long size,
1269 	unsigned long align, unsigned long vstart)
1270 {
1271 	struct vmap_area *va;
1272 
1273 	list_for_each_entry(va, &free_vmap_area_list, list) {
1274 		if (!is_within_this_va(va, size, align, vstart))
1275 			continue;
1276 
1277 		return va;
1278 	}
1279 
1280 	return NULL;
1281 }
1282 
1283 static void
1284 find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1285 {
1286 	struct vmap_area *va_1, *va_2;
1287 	unsigned long vstart;
1288 	unsigned int rnd;
1289 
1290 	get_random_bytes(&rnd, sizeof(rnd));
1291 	vstart = VMALLOC_START + rnd;
1292 
1293 	va_1 = find_vmap_lowest_match(size, align, vstart, false);
1294 	va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1295 
1296 	if (va_1 != va_2)
1297 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1298 			va_1, va_2, vstart);
1299 }
1300 #endif
1301 
1302 enum fit_type {
1303 	NOTHING_FIT = 0,
1304 	FL_FIT_TYPE = 1,	/* full fit */
1305 	LE_FIT_TYPE = 2,	/* left edge fit */
1306 	RE_FIT_TYPE = 3,	/* right edge fit */
1307 	NE_FIT_TYPE = 4		/* no edge fit */
1308 };
1309 
1310 static __always_inline enum fit_type
1311 classify_va_fit_type(struct vmap_area *va,
1312 	unsigned long nva_start_addr, unsigned long size)
1313 {
1314 	enum fit_type type;
1315 
1316 	/* Check if it is within VA. */
1317 	if (nva_start_addr < va->va_start ||
1318 			nva_start_addr + size > va->va_end)
1319 		return NOTHING_FIT;
1320 
1321 	/* Now classify. */
1322 	if (va->va_start == nva_start_addr) {
1323 		if (va->va_end == nva_start_addr + size)
1324 			type = FL_FIT_TYPE;
1325 		else
1326 			type = LE_FIT_TYPE;
1327 	} else if (va->va_end == nva_start_addr + size) {
1328 		type = RE_FIT_TYPE;
1329 	} else {
1330 		type = NE_FIT_TYPE;
1331 	}
1332 
1333 	return type;
1334 }
1335 
1336 static __always_inline int
1337 adjust_va_to_fit_type(struct vmap_area *va,
1338 	unsigned long nva_start_addr, unsigned long size,
1339 	enum fit_type type)
1340 {
1341 	struct vmap_area *lva = NULL;
1342 
1343 	if (type == FL_FIT_TYPE) {
1344 		/*
1345 		 * No need to split VA, it fully fits.
1346 		 *
1347 		 * |               |
1348 		 * V      NVA      V
1349 		 * |---------------|
1350 		 */
1351 		unlink_va(va, &free_vmap_area_root);
1352 		kmem_cache_free(vmap_area_cachep, va);
1353 	} else if (type == LE_FIT_TYPE) {
1354 		/*
1355 		 * Split left edge of fit VA.
1356 		 *
1357 		 * |       |
1358 		 * V  NVA  V   R
1359 		 * |-------|-------|
1360 		 */
1361 		va->va_start += size;
1362 	} else if (type == RE_FIT_TYPE) {
1363 		/*
1364 		 * Split right edge of fit VA.
1365 		 *
1366 		 *         |       |
1367 		 *     L   V  NVA  V
1368 		 * |-------|-------|
1369 		 */
1370 		va->va_end = nva_start_addr;
1371 	} else if (type == NE_FIT_TYPE) {
1372 		/*
1373 		 * Split no edge of fit VA.
1374 		 *
1375 		 *     |       |
1376 		 *   L V  NVA  V R
1377 		 * |---|-------|---|
1378 		 */
1379 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1380 		if (unlikely(!lva)) {
1381 			/*
1382 			 * For percpu allocator we do not do any pre-allocation
1383 			 * and leave it as it is. The reason is it most likely
1384 			 * never ends up with NE_FIT_TYPE splitting. In case of
1385 			 * percpu allocations offsets and sizes are aligned to
1386 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1387 			 * are its main fitting cases.
1388 			 *
1389 			 * There are a few exceptions though, as an example it is
1390 			 * a first allocation (early boot up) when we have "one"
1391 			 * big free space that has to be split.
1392 			 *
1393 			 * Also we can hit this path in case of regular "vmap"
1394 			 * allocations, if "this" current CPU was not preloaded.
1395 			 * See the comment in alloc_vmap_area() why. If so, then
1396 			 * GFP_NOWAIT is used instead to get an extra object for
1397 			 * split purpose. That is rare and most time does not
1398 			 * occur.
1399 			 *
1400 			 * What happens if an allocation gets failed. Basically,
1401 			 * an "overflow" path is triggered to purge lazily freed
1402 			 * areas to free some memory, then, the "retry" path is
1403 			 * triggered to repeat one more time. See more details
1404 			 * in alloc_vmap_area() function.
1405 			 */
1406 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1407 			if (!lva)
1408 				return -1;
1409 		}
1410 
1411 		/*
1412 		 * Build the remainder.
1413 		 */
1414 		lva->va_start = va->va_start;
1415 		lva->va_end = nva_start_addr;
1416 
1417 		/*
1418 		 * Shrink this VA to remaining size.
1419 		 */
1420 		va->va_start = nva_start_addr + size;
1421 	} else {
1422 		return -1;
1423 	}
1424 
1425 	if (type != FL_FIT_TYPE) {
1426 		augment_tree_propagate_from(va);
1427 
1428 		if (lva)	/* type == NE_FIT_TYPE */
1429 			insert_vmap_area_augment(lva, &va->rb_node,
1430 				&free_vmap_area_root, &free_vmap_area_list);
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 /*
1437  * Returns a start address of the newly allocated area, if success.
1438  * Otherwise a vend is returned that indicates failure.
1439  */
1440 static __always_inline unsigned long
1441 __alloc_vmap_area(unsigned long size, unsigned long align,
1442 	unsigned long vstart, unsigned long vend)
1443 {
1444 	bool adjust_search_size = true;
1445 	unsigned long nva_start_addr;
1446 	struct vmap_area *va;
1447 	enum fit_type type;
1448 	int ret;
1449 
1450 	/*
1451 	 * Do not adjust when:
1452 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1453 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1454 	 *      aligned anyway;
1455 	 *   b) a short range where a requested size corresponds to exactly
1456 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1457 	 *      With adjusted search length an allocation would not succeed.
1458 	 */
1459 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1460 		adjust_search_size = false;
1461 
1462 	va = find_vmap_lowest_match(size, align, vstart, adjust_search_size);
1463 	if (unlikely(!va))
1464 		return vend;
1465 
1466 	if (va->va_start > vstart)
1467 		nva_start_addr = ALIGN(va->va_start, align);
1468 	else
1469 		nva_start_addr = ALIGN(vstart, align);
1470 
1471 	/* Check the "vend" restriction. */
1472 	if (nva_start_addr + size > vend)
1473 		return vend;
1474 
1475 	/* Classify what we have found. */
1476 	type = classify_va_fit_type(va, nva_start_addr, size);
1477 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1478 		return vend;
1479 
1480 	/* Update the free vmap_area. */
1481 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1482 	if (ret)
1483 		return vend;
1484 
1485 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1486 	find_vmap_lowest_match_check(size, align);
1487 #endif
1488 
1489 	return nva_start_addr;
1490 }
1491 
1492 /*
1493  * Free a region of KVA allocated by alloc_vmap_area
1494  */
1495 static void free_vmap_area(struct vmap_area *va)
1496 {
1497 	/*
1498 	 * Remove from the busy tree/list.
1499 	 */
1500 	spin_lock(&vmap_area_lock);
1501 	unlink_va(va, &vmap_area_root);
1502 	spin_unlock(&vmap_area_lock);
1503 
1504 	/*
1505 	 * Insert/Merge it back to the free tree/list.
1506 	 */
1507 	spin_lock(&free_vmap_area_lock);
1508 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1509 	spin_unlock(&free_vmap_area_lock);
1510 }
1511 
1512 static inline void
1513 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1514 {
1515 	struct vmap_area *va = NULL;
1516 
1517 	/*
1518 	 * Preload this CPU with one extra vmap_area object. It is used
1519 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1520 	 * a CPU that does an allocation is preloaded.
1521 	 *
1522 	 * We do it in non-atomic context, thus it allows us to use more
1523 	 * permissive allocation masks to be more stable under low memory
1524 	 * condition and high memory pressure.
1525 	 */
1526 	if (!this_cpu_read(ne_fit_preload_node))
1527 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1528 
1529 	spin_lock(lock);
1530 
1531 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1532 		kmem_cache_free(vmap_area_cachep, va);
1533 }
1534 
1535 /*
1536  * Allocate a region of KVA of the specified size and alignment, within the
1537  * vstart and vend.
1538  */
1539 static struct vmap_area *alloc_vmap_area(unsigned long size,
1540 				unsigned long align,
1541 				unsigned long vstart, unsigned long vend,
1542 				int node, gfp_t gfp_mask)
1543 {
1544 	struct vmap_area *va;
1545 	unsigned long freed;
1546 	unsigned long addr;
1547 	int purged = 0;
1548 	int ret;
1549 
1550 	BUG_ON(!size);
1551 	BUG_ON(offset_in_page(size));
1552 	BUG_ON(!is_power_of_2(align));
1553 
1554 	if (unlikely(!vmap_initialized))
1555 		return ERR_PTR(-EBUSY);
1556 
1557 	might_sleep();
1558 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1559 
1560 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1561 	if (unlikely(!va))
1562 		return ERR_PTR(-ENOMEM);
1563 
1564 	/*
1565 	 * Only scan the relevant parts containing pointers to other objects
1566 	 * to avoid false negatives.
1567 	 */
1568 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1569 
1570 retry:
1571 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1572 	addr = __alloc_vmap_area(size, align, vstart, vend);
1573 	spin_unlock(&free_vmap_area_lock);
1574 
1575 	/*
1576 	 * If an allocation fails, the "vend" address is
1577 	 * returned. Therefore trigger the overflow path.
1578 	 */
1579 	if (unlikely(addr == vend))
1580 		goto overflow;
1581 
1582 	va->va_start = addr;
1583 	va->va_end = addr + size;
1584 	va->vm = NULL;
1585 
1586 	spin_lock(&vmap_area_lock);
1587 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1588 	spin_unlock(&vmap_area_lock);
1589 
1590 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1591 	BUG_ON(va->va_start < vstart);
1592 	BUG_ON(va->va_end > vend);
1593 
1594 	ret = kasan_populate_vmalloc(addr, size);
1595 	if (ret) {
1596 		free_vmap_area(va);
1597 		return ERR_PTR(ret);
1598 	}
1599 
1600 	return va;
1601 
1602 overflow:
1603 	if (!purged) {
1604 		purge_vmap_area_lazy();
1605 		purged = 1;
1606 		goto retry;
1607 	}
1608 
1609 	freed = 0;
1610 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1611 
1612 	if (freed > 0) {
1613 		purged = 0;
1614 		goto retry;
1615 	}
1616 
1617 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1618 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1619 			size);
1620 
1621 	kmem_cache_free(vmap_area_cachep, va);
1622 	return ERR_PTR(-EBUSY);
1623 }
1624 
1625 int register_vmap_purge_notifier(struct notifier_block *nb)
1626 {
1627 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1628 }
1629 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1630 
1631 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1632 {
1633 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1634 }
1635 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1636 
1637 /*
1638  * lazy_max_pages is the maximum amount of virtual address space we gather up
1639  * before attempting to purge with a TLB flush.
1640  *
1641  * There is a tradeoff here: a larger number will cover more kernel page tables
1642  * and take slightly longer to purge, but it will linearly reduce the number of
1643  * global TLB flushes that must be performed. It would seem natural to scale
1644  * this number up linearly with the number of CPUs (because vmapping activity
1645  * could also scale linearly with the number of CPUs), however it is likely
1646  * that in practice, workloads might be constrained in other ways that mean
1647  * vmap activity will not scale linearly with CPUs. Also, I want to be
1648  * conservative and not introduce a big latency on huge systems, so go with
1649  * a less aggressive log scale. It will still be an improvement over the old
1650  * code, and it will be simple to change the scale factor if we find that it
1651  * becomes a problem on bigger systems.
1652  */
1653 static unsigned long lazy_max_pages(void)
1654 {
1655 	unsigned int log;
1656 
1657 	log = fls(num_online_cpus());
1658 
1659 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1660 }
1661 
1662 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1663 
1664 /*
1665  * Serialize vmap purging.  There is no actual critical section protected
1666  * by this look, but we want to avoid concurrent calls for performance
1667  * reasons and to make the pcpu_get_vm_areas more deterministic.
1668  */
1669 static DEFINE_MUTEX(vmap_purge_lock);
1670 
1671 /* for per-CPU blocks */
1672 static void purge_fragmented_blocks_allcpus(void);
1673 
1674 #ifdef CONFIG_X86_64
1675 /*
1676  * called before a call to iounmap() if the caller wants vm_area_struct's
1677  * immediately freed.
1678  */
1679 void set_iounmap_nonlazy(void)
1680 {
1681 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1682 }
1683 #endif /* CONFIG_X86_64 */
1684 
1685 /*
1686  * Purges all lazily-freed vmap areas.
1687  */
1688 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1689 {
1690 	unsigned long resched_threshold;
1691 	struct list_head local_pure_list;
1692 	struct vmap_area *va, *n_va;
1693 
1694 	lockdep_assert_held(&vmap_purge_lock);
1695 
1696 	spin_lock(&purge_vmap_area_lock);
1697 	purge_vmap_area_root = RB_ROOT;
1698 	list_replace_init(&purge_vmap_area_list, &local_pure_list);
1699 	spin_unlock(&purge_vmap_area_lock);
1700 
1701 	if (unlikely(list_empty(&local_pure_list)))
1702 		return false;
1703 
1704 	start = min(start,
1705 		list_first_entry(&local_pure_list,
1706 			struct vmap_area, list)->va_start);
1707 
1708 	end = max(end,
1709 		list_last_entry(&local_pure_list,
1710 			struct vmap_area, list)->va_end);
1711 
1712 	flush_tlb_kernel_range(start, end);
1713 	resched_threshold = lazy_max_pages() << 1;
1714 
1715 	spin_lock(&free_vmap_area_lock);
1716 	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1717 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1718 		unsigned long orig_start = va->va_start;
1719 		unsigned long orig_end = va->va_end;
1720 
1721 		/*
1722 		 * Finally insert or merge lazily-freed area. It is
1723 		 * detached and there is no need to "unlink" it from
1724 		 * anything.
1725 		 */
1726 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1727 				&free_vmap_area_list);
1728 
1729 		if (!va)
1730 			continue;
1731 
1732 		if (is_vmalloc_or_module_addr((void *)orig_start))
1733 			kasan_release_vmalloc(orig_start, orig_end,
1734 					      va->va_start, va->va_end);
1735 
1736 		atomic_long_sub(nr, &vmap_lazy_nr);
1737 
1738 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1739 			cond_resched_lock(&free_vmap_area_lock);
1740 	}
1741 	spin_unlock(&free_vmap_area_lock);
1742 	return true;
1743 }
1744 
1745 /*
1746  * Kick off a purge of the outstanding lazy areas.
1747  */
1748 static void purge_vmap_area_lazy(void)
1749 {
1750 	mutex_lock(&vmap_purge_lock);
1751 	purge_fragmented_blocks_allcpus();
1752 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1753 	mutex_unlock(&vmap_purge_lock);
1754 }
1755 
1756 static void drain_vmap_area_work(struct work_struct *work)
1757 {
1758 	unsigned long nr_lazy;
1759 
1760 	do {
1761 		mutex_lock(&vmap_purge_lock);
1762 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1763 		mutex_unlock(&vmap_purge_lock);
1764 
1765 		/* Recheck if further work is required. */
1766 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1767 	} while (nr_lazy > lazy_max_pages());
1768 }
1769 
1770 /*
1771  * Free a vmap area, caller ensuring that the area has been unmapped
1772  * and flush_cache_vunmap had been called for the correct range
1773  * previously.
1774  */
1775 static void free_vmap_area_noflush(struct vmap_area *va)
1776 {
1777 	unsigned long nr_lazy;
1778 
1779 	spin_lock(&vmap_area_lock);
1780 	unlink_va(va, &vmap_area_root);
1781 	spin_unlock(&vmap_area_lock);
1782 
1783 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1784 				PAGE_SHIFT, &vmap_lazy_nr);
1785 
1786 	/*
1787 	 * Merge or place it to the purge tree/list.
1788 	 */
1789 	spin_lock(&purge_vmap_area_lock);
1790 	merge_or_add_vmap_area(va,
1791 		&purge_vmap_area_root, &purge_vmap_area_list);
1792 	spin_unlock(&purge_vmap_area_lock);
1793 
1794 	/* After this point, we may free va at any time */
1795 	if (unlikely(nr_lazy > lazy_max_pages()))
1796 		schedule_work(&drain_vmap_work);
1797 }
1798 
1799 /*
1800  * Free and unmap a vmap area
1801  */
1802 static void free_unmap_vmap_area(struct vmap_area *va)
1803 {
1804 	flush_cache_vunmap(va->va_start, va->va_end);
1805 	vunmap_range_noflush(va->va_start, va->va_end);
1806 	if (debug_pagealloc_enabled_static())
1807 		flush_tlb_kernel_range(va->va_start, va->va_end);
1808 
1809 	free_vmap_area_noflush(va);
1810 }
1811 
1812 static struct vmap_area *find_vmap_area(unsigned long addr)
1813 {
1814 	struct vmap_area *va;
1815 
1816 	spin_lock(&vmap_area_lock);
1817 	va = __find_vmap_area(addr);
1818 	spin_unlock(&vmap_area_lock);
1819 
1820 	return va;
1821 }
1822 
1823 /*** Per cpu kva allocator ***/
1824 
1825 /*
1826  * vmap space is limited especially on 32 bit architectures. Ensure there is
1827  * room for at least 16 percpu vmap blocks per CPU.
1828  */
1829 /*
1830  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1831  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1832  * instead (we just need a rough idea)
1833  */
1834 #if BITS_PER_LONG == 32
1835 #define VMALLOC_SPACE		(128UL*1024*1024)
1836 #else
1837 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1838 #endif
1839 
1840 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1841 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1842 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1843 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1844 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1845 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1846 #define VMAP_BBMAP_BITS		\
1847 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1848 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1849 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1850 
1851 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1852 
1853 struct vmap_block_queue {
1854 	spinlock_t lock;
1855 	struct list_head free;
1856 };
1857 
1858 struct vmap_block {
1859 	spinlock_t lock;
1860 	struct vmap_area *va;
1861 	unsigned long free, dirty;
1862 	unsigned long dirty_min, dirty_max; /*< dirty range */
1863 	struct list_head free_list;
1864 	struct rcu_head rcu_head;
1865 	struct list_head purge;
1866 };
1867 
1868 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1869 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1870 
1871 /*
1872  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1873  * in the free path. Could get rid of this if we change the API to return a
1874  * "cookie" from alloc, to be passed to free. But no big deal yet.
1875  */
1876 static DEFINE_XARRAY(vmap_blocks);
1877 
1878 /*
1879  * We should probably have a fallback mechanism to allocate virtual memory
1880  * out of partially filled vmap blocks. However vmap block sizing should be
1881  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1882  * big problem.
1883  */
1884 
1885 static unsigned long addr_to_vb_idx(unsigned long addr)
1886 {
1887 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1888 	addr /= VMAP_BLOCK_SIZE;
1889 	return addr;
1890 }
1891 
1892 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1893 {
1894 	unsigned long addr;
1895 
1896 	addr = va_start + (pages_off << PAGE_SHIFT);
1897 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1898 	return (void *)addr;
1899 }
1900 
1901 /**
1902  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1903  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1904  * @order:    how many 2^order pages should be occupied in newly allocated block
1905  * @gfp_mask: flags for the page level allocator
1906  *
1907  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1908  */
1909 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1910 {
1911 	struct vmap_block_queue *vbq;
1912 	struct vmap_block *vb;
1913 	struct vmap_area *va;
1914 	unsigned long vb_idx;
1915 	int node, err;
1916 	void *vaddr;
1917 
1918 	node = numa_node_id();
1919 
1920 	vb = kmalloc_node(sizeof(struct vmap_block),
1921 			gfp_mask & GFP_RECLAIM_MASK, node);
1922 	if (unlikely(!vb))
1923 		return ERR_PTR(-ENOMEM);
1924 
1925 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1926 					VMALLOC_START, VMALLOC_END,
1927 					node, gfp_mask);
1928 	if (IS_ERR(va)) {
1929 		kfree(vb);
1930 		return ERR_CAST(va);
1931 	}
1932 
1933 	vaddr = vmap_block_vaddr(va->va_start, 0);
1934 	spin_lock_init(&vb->lock);
1935 	vb->va = va;
1936 	/* At least something should be left free */
1937 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1938 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1939 	vb->dirty = 0;
1940 	vb->dirty_min = VMAP_BBMAP_BITS;
1941 	vb->dirty_max = 0;
1942 	INIT_LIST_HEAD(&vb->free_list);
1943 
1944 	vb_idx = addr_to_vb_idx(va->va_start);
1945 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1946 	if (err) {
1947 		kfree(vb);
1948 		free_vmap_area(va);
1949 		return ERR_PTR(err);
1950 	}
1951 
1952 	vbq = &get_cpu_var(vmap_block_queue);
1953 	spin_lock(&vbq->lock);
1954 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1955 	spin_unlock(&vbq->lock);
1956 	put_cpu_var(vmap_block_queue);
1957 
1958 	return vaddr;
1959 }
1960 
1961 static void free_vmap_block(struct vmap_block *vb)
1962 {
1963 	struct vmap_block *tmp;
1964 
1965 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1966 	BUG_ON(tmp != vb);
1967 
1968 	free_vmap_area_noflush(vb->va);
1969 	kfree_rcu(vb, rcu_head);
1970 }
1971 
1972 static void purge_fragmented_blocks(int cpu)
1973 {
1974 	LIST_HEAD(purge);
1975 	struct vmap_block *vb;
1976 	struct vmap_block *n_vb;
1977 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1978 
1979 	rcu_read_lock();
1980 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1981 
1982 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1983 			continue;
1984 
1985 		spin_lock(&vb->lock);
1986 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1987 			vb->free = 0; /* prevent further allocs after releasing lock */
1988 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1989 			vb->dirty_min = 0;
1990 			vb->dirty_max = VMAP_BBMAP_BITS;
1991 			spin_lock(&vbq->lock);
1992 			list_del_rcu(&vb->free_list);
1993 			spin_unlock(&vbq->lock);
1994 			spin_unlock(&vb->lock);
1995 			list_add_tail(&vb->purge, &purge);
1996 		} else
1997 			spin_unlock(&vb->lock);
1998 	}
1999 	rcu_read_unlock();
2000 
2001 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2002 		list_del(&vb->purge);
2003 		free_vmap_block(vb);
2004 	}
2005 }
2006 
2007 static void purge_fragmented_blocks_allcpus(void)
2008 {
2009 	int cpu;
2010 
2011 	for_each_possible_cpu(cpu)
2012 		purge_fragmented_blocks(cpu);
2013 }
2014 
2015 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2016 {
2017 	struct vmap_block_queue *vbq;
2018 	struct vmap_block *vb;
2019 	void *vaddr = NULL;
2020 	unsigned int order;
2021 
2022 	BUG_ON(offset_in_page(size));
2023 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2024 	if (WARN_ON(size == 0)) {
2025 		/*
2026 		 * Allocating 0 bytes isn't what caller wants since
2027 		 * get_order(0) returns funny result. Just warn and terminate
2028 		 * early.
2029 		 */
2030 		return NULL;
2031 	}
2032 	order = get_order(size);
2033 
2034 	rcu_read_lock();
2035 	vbq = &get_cpu_var(vmap_block_queue);
2036 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2037 		unsigned long pages_off;
2038 
2039 		spin_lock(&vb->lock);
2040 		if (vb->free < (1UL << order)) {
2041 			spin_unlock(&vb->lock);
2042 			continue;
2043 		}
2044 
2045 		pages_off = VMAP_BBMAP_BITS - vb->free;
2046 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2047 		vb->free -= 1UL << order;
2048 		if (vb->free == 0) {
2049 			spin_lock(&vbq->lock);
2050 			list_del_rcu(&vb->free_list);
2051 			spin_unlock(&vbq->lock);
2052 		}
2053 
2054 		spin_unlock(&vb->lock);
2055 		break;
2056 	}
2057 
2058 	put_cpu_var(vmap_block_queue);
2059 	rcu_read_unlock();
2060 
2061 	/* Allocate new block if nothing was found */
2062 	if (!vaddr)
2063 		vaddr = new_vmap_block(order, gfp_mask);
2064 
2065 	return vaddr;
2066 }
2067 
2068 static void vb_free(unsigned long addr, unsigned long size)
2069 {
2070 	unsigned long offset;
2071 	unsigned int order;
2072 	struct vmap_block *vb;
2073 
2074 	BUG_ON(offset_in_page(size));
2075 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2076 
2077 	flush_cache_vunmap(addr, addr + size);
2078 
2079 	order = get_order(size);
2080 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2081 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2082 
2083 	vunmap_range_noflush(addr, addr + size);
2084 
2085 	if (debug_pagealloc_enabled_static())
2086 		flush_tlb_kernel_range(addr, addr + size);
2087 
2088 	spin_lock(&vb->lock);
2089 
2090 	/* Expand dirty range */
2091 	vb->dirty_min = min(vb->dirty_min, offset);
2092 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2093 
2094 	vb->dirty += 1UL << order;
2095 	if (vb->dirty == VMAP_BBMAP_BITS) {
2096 		BUG_ON(vb->free);
2097 		spin_unlock(&vb->lock);
2098 		free_vmap_block(vb);
2099 	} else
2100 		spin_unlock(&vb->lock);
2101 }
2102 
2103 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2104 {
2105 	int cpu;
2106 
2107 	if (unlikely(!vmap_initialized))
2108 		return;
2109 
2110 	might_sleep();
2111 
2112 	for_each_possible_cpu(cpu) {
2113 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2114 		struct vmap_block *vb;
2115 
2116 		rcu_read_lock();
2117 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2118 			spin_lock(&vb->lock);
2119 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2120 				unsigned long va_start = vb->va->va_start;
2121 				unsigned long s, e;
2122 
2123 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2124 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2125 
2126 				start = min(s, start);
2127 				end   = max(e, end);
2128 
2129 				flush = 1;
2130 			}
2131 			spin_unlock(&vb->lock);
2132 		}
2133 		rcu_read_unlock();
2134 	}
2135 
2136 	mutex_lock(&vmap_purge_lock);
2137 	purge_fragmented_blocks_allcpus();
2138 	if (!__purge_vmap_area_lazy(start, end) && flush)
2139 		flush_tlb_kernel_range(start, end);
2140 	mutex_unlock(&vmap_purge_lock);
2141 }
2142 
2143 /**
2144  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2145  *
2146  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2147  * to amortize TLB flushing overheads. What this means is that any page you
2148  * have now, may, in a former life, have been mapped into kernel virtual
2149  * address by the vmap layer and so there might be some CPUs with TLB entries
2150  * still referencing that page (additional to the regular 1:1 kernel mapping).
2151  *
2152  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2153  * be sure that none of the pages we have control over will have any aliases
2154  * from the vmap layer.
2155  */
2156 void vm_unmap_aliases(void)
2157 {
2158 	unsigned long start = ULONG_MAX, end = 0;
2159 	int flush = 0;
2160 
2161 	_vm_unmap_aliases(start, end, flush);
2162 }
2163 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2164 
2165 /**
2166  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2167  * @mem: the pointer returned by vm_map_ram
2168  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2169  */
2170 void vm_unmap_ram(const void *mem, unsigned int count)
2171 {
2172 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2173 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2174 	struct vmap_area *va;
2175 
2176 	might_sleep();
2177 	BUG_ON(!addr);
2178 	BUG_ON(addr < VMALLOC_START);
2179 	BUG_ON(addr > VMALLOC_END);
2180 	BUG_ON(!PAGE_ALIGNED(addr));
2181 
2182 	kasan_poison_vmalloc(mem, size);
2183 
2184 	if (likely(count <= VMAP_MAX_ALLOC)) {
2185 		debug_check_no_locks_freed(mem, size);
2186 		vb_free(addr, size);
2187 		return;
2188 	}
2189 
2190 	va = find_vmap_area(addr);
2191 	BUG_ON(!va);
2192 	debug_check_no_locks_freed((void *)va->va_start,
2193 				    (va->va_end - va->va_start));
2194 	free_unmap_vmap_area(va);
2195 }
2196 EXPORT_SYMBOL(vm_unmap_ram);
2197 
2198 /**
2199  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2200  * @pages: an array of pointers to the pages to be mapped
2201  * @count: number of pages
2202  * @node: prefer to allocate data structures on this node
2203  *
2204  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2205  * faster than vmap so it's good.  But if you mix long-life and short-life
2206  * objects with vm_map_ram(), it could consume lots of address space through
2207  * fragmentation (especially on a 32bit machine).  You could see failures in
2208  * the end.  Please use this function for short-lived objects.
2209  *
2210  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2211  */
2212 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2213 {
2214 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2215 	unsigned long addr;
2216 	void *mem;
2217 
2218 	if (likely(count <= VMAP_MAX_ALLOC)) {
2219 		mem = vb_alloc(size, GFP_KERNEL);
2220 		if (IS_ERR(mem))
2221 			return NULL;
2222 		addr = (unsigned long)mem;
2223 	} else {
2224 		struct vmap_area *va;
2225 		va = alloc_vmap_area(size, PAGE_SIZE,
2226 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2227 		if (IS_ERR(va))
2228 			return NULL;
2229 
2230 		addr = va->va_start;
2231 		mem = (void *)addr;
2232 	}
2233 
2234 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2235 				pages, PAGE_SHIFT) < 0) {
2236 		vm_unmap_ram(mem, count);
2237 		return NULL;
2238 	}
2239 
2240 	/*
2241 	 * Mark the pages as accessible, now that they are mapped.
2242 	 * With hardware tag-based KASAN, marking is skipped for
2243 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2244 	 */
2245 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2246 
2247 	return mem;
2248 }
2249 EXPORT_SYMBOL(vm_map_ram);
2250 
2251 static struct vm_struct *vmlist __initdata;
2252 
2253 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2254 {
2255 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2256 	return vm->page_order;
2257 #else
2258 	return 0;
2259 #endif
2260 }
2261 
2262 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2263 {
2264 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2265 	vm->page_order = order;
2266 #else
2267 	BUG_ON(order != 0);
2268 #endif
2269 }
2270 
2271 /**
2272  * vm_area_add_early - add vmap area early during boot
2273  * @vm: vm_struct to add
2274  *
2275  * This function is used to add fixed kernel vm area to vmlist before
2276  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2277  * should contain proper values and the other fields should be zero.
2278  *
2279  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2280  */
2281 void __init vm_area_add_early(struct vm_struct *vm)
2282 {
2283 	struct vm_struct *tmp, **p;
2284 
2285 	BUG_ON(vmap_initialized);
2286 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2287 		if (tmp->addr >= vm->addr) {
2288 			BUG_ON(tmp->addr < vm->addr + vm->size);
2289 			break;
2290 		} else
2291 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2292 	}
2293 	vm->next = *p;
2294 	*p = vm;
2295 }
2296 
2297 /**
2298  * vm_area_register_early - register vmap area early during boot
2299  * @vm: vm_struct to register
2300  * @align: requested alignment
2301  *
2302  * This function is used to register kernel vm area before
2303  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2304  * proper values on entry and other fields should be zero.  On return,
2305  * vm->addr contains the allocated address.
2306  *
2307  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2308  */
2309 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2310 {
2311 	unsigned long addr = ALIGN(VMALLOC_START, align);
2312 	struct vm_struct *cur, **p;
2313 
2314 	BUG_ON(vmap_initialized);
2315 
2316 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2317 		if ((unsigned long)cur->addr - addr >= vm->size)
2318 			break;
2319 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2320 	}
2321 
2322 	BUG_ON(addr > VMALLOC_END - vm->size);
2323 	vm->addr = (void *)addr;
2324 	vm->next = *p;
2325 	*p = vm;
2326 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2327 }
2328 
2329 static void vmap_init_free_space(void)
2330 {
2331 	unsigned long vmap_start = 1;
2332 	const unsigned long vmap_end = ULONG_MAX;
2333 	struct vmap_area *busy, *free;
2334 
2335 	/*
2336 	 *     B     F     B     B     B     F
2337 	 * -|-----|.....|-----|-----|-----|.....|-
2338 	 *  |           The KVA space           |
2339 	 *  |<--------------------------------->|
2340 	 */
2341 	list_for_each_entry(busy, &vmap_area_list, list) {
2342 		if (busy->va_start - vmap_start > 0) {
2343 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2344 			if (!WARN_ON_ONCE(!free)) {
2345 				free->va_start = vmap_start;
2346 				free->va_end = busy->va_start;
2347 
2348 				insert_vmap_area_augment(free, NULL,
2349 					&free_vmap_area_root,
2350 						&free_vmap_area_list);
2351 			}
2352 		}
2353 
2354 		vmap_start = busy->va_end;
2355 	}
2356 
2357 	if (vmap_end - vmap_start > 0) {
2358 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2359 		if (!WARN_ON_ONCE(!free)) {
2360 			free->va_start = vmap_start;
2361 			free->va_end = vmap_end;
2362 
2363 			insert_vmap_area_augment(free, NULL,
2364 				&free_vmap_area_root,
2365 					&free_vmap_area_list);
2366 		}
2367 	}
2368 }
2369 
2370 void __init vmalloc_init(void)
2371 {
2372 	struct vmap_area *va;
2373 	struct vm_struct *tmp;
2374 	int i;
2375 
2376 	/*
2377 	 * Create the cache for vmap_area objects.
2378 	 */
2379 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2380 
2381 	for_each_possible_cpu(i) {
2382 		struct vmap_block_queue *vbq;
2383 		struct vfree_deferred *p;
2384 
2385 		vbq = &per_cpu(vmap_block_queue, i);
2386 		spin_lock_init(&vbq->lock);
2387 		INIT_LIST_HEAD(&vbq->free);
2388 		p = &per_cpu(vfree_deferred, i);
2389 		init_llist_head(&p->list);
2390 		INIT_WORK(&p->wq, free_work);
2391 	}
2392 
2393 	/* Import existing vmlist entries. */
2394 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2395 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2396 		if (WARN_ON_ONCE(!va))
2397 			continue;
2398 
2399 		va->va_start = (unsigned long)tmp->addr;
2400 		va->va_end = va->va_start + tmp->size;
2401 		va->vm = tmp;
2402 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2403 	}
2404 
2405 	/*
2406 	 * Now we can initialize a free vmap space.
2407 	 */
2408 	vmap_init_free_space();
2409 	vmap_initialized = true;
2410 }
2411 
2412 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2413 	struct vmap_area *va, unsigned long flags, const void *caller)
2414 {
2415 	vm->flags = flags;
2416 	vm->addr = (void *)va->va_start;
2417 	vm->size = va->va_end - va->va_start;
2418 	vm->caller = caller;
2419 	va->vm = vm;
2420 }
2421 
2422 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2423 			      unsigned long flags, const void *caller)
2424 {
2425 	spin_lock(&vmap_area_lock);
2426 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2427 	spin_unlock(&vmap_area_lock);
2428 }
2429 
2430 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2431 {
2432 	/*
2433 	 * Before removing VM_UNINITIALIZED,
2434 	 * we should make sure that vm has proper values.
2435 	 * Pair with smp_rmb() in show_numa_info().
2436 	 */
2437 	smp_wmb();
2438 	vm->flags &= ~VM_UNINITIALIZED;
2439 }
2440 
2441 static struct vm_struct *__get_vm_area_node(unsigned long size,
2442 		unsigned long align, unsigned long shift, unsigned long flags,
2443 		unsigned long start, unsigned long end, int node,
2444 		gfp_t gfp_mask, const void *caller)
2445 {
2446 	struct vmap_area *va;
2447 	struct vm_struct *area;
2448 	unsigned long requested_size = size;
2449 
2450 	BUG_ON(in_interrupt());
2451 	size = ALIGN(size, 1ul << shift);
2452 	if (unlikely(!size))
2453 		return NULL;
2454 
2455 	if (flags & VM_IOREMAP)
2456 		align = 1ul << clamp_t(int, get_count_order_long(size),
2457 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2458 
2459 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2460 	if (unlikely(!area))
2461 		return NULL;
2462 
2463 	if (!(flags & VM_NO_GUARD))
2464 		size += PAGE_SIZE;
2465 
2466 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2467 	if (IS_ERR(va)) {
2468 		kfree(area);
2469 		return NULL;
2470 	}
2471 
2472 	setup_vmalloc_vm(area, va, flags, caller);
2473 
2474 	/*
2475 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2476 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2477 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2478 	 * getting mapped in __vmalloc_node_range().
2479 	 * With hardware tag-based KASAN, marking is skipped for
2480 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2481 	 */
2482 	if (!(flags & VM_ALLOC))
2483 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2484 						    KASAN_VMALLOC_PROT_NORMAL);
2485 
2486 	return area;
2487 }
2488 
2489 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2490 				       unsigned long start, unsigned long end,
2491 				       const void *caller)
2492 {
2493 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2494 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2495 }
2496 
2497 /**
2498  * get_vm_area - reserve a contiguous kernel virtual area
2499  * @size:	 size of the area
2500  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2501  *
2502  * Search an area of @size in the kernel virtual mapping area,
2503  * and reserved it for out purposes.  Returns the area descriptor
2504  * on success or %NULL on failure.
2505  *
2506  * Return: the area descriptor on success or %NULL on failure.
2507  */
2508 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2509 {
2510 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2511 				  VMALLOC_START, VMALLOC_END,
2512 				  NUMA_NO_NODE, GFP_KERNEL,
2513 				  __builtin_return_address(0));
2514 }
2515 
2516 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2517 				const void *caller)
2518 {
2519 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2520 				  VMALLOC_START, VMALLOC_END,
2521 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2522 }
2523 
2524 /**
2525  * find_vm_area - find a continuous kernel virtual area
2526  * @addr:	  base address
2527  *
2528  * Search for the kernel VM area starting at @addr, and return it.
2529  * It is up to the caller to do all required locking to keep the returned
2530  * pointer valid.
2531  *
2532  * Return: the area descriptor on success or %NULL on failure.
2533  */
2534 struct vm_struct *find_vm_area(const void *addr)
2535 {
2536 	struct vmap_area *va;
2537 
2538 	va = find_vmap_area((unsigned long)addr);
2539 	if (!va)
2540 		return NULL;
2541 
2542 	return va->vm;
2543 }
2544 
2545 /**
2546  * remove_vm_area - find and remove a continuous kernel virtual area
2547  * @addr:	    base address
2548  *
2549  * Search for the kernel VM area starting at @addr, and remove it.
2550  * This function returns the found VM area, but using it is NOT safe
2551  * on SMP machines, except for its size or flags.
2552  *
2553  * Return: the area descriptor on success or %NULL on failure.
2554  */
2555 struct vm_struct *remove_vm_area(const void *addr)
2556 {
2557 	struct vmap_area *va;
2558 
2559 	might_sleep();
2560 
2561 	spin_lock(&vmap_area_lock);
2562 	va = __find_vmap_area((unsigned long)addr);
2563 	if (va && va->vm) {
2564 		struct vm_struct *vm = va->vm;
2565 
2566 		va->vm = NULL;
2567 		spin_unlock(&vmap_area_lock);
2568 
2569 		kasan_free_module_shadow(vm);
2570 		free_unmap_vmap_area(va);
2571 
2572 		return vm;
2573 	}
2574 
2575 	spin_unlock(&vmap_area_lock);
2576 	return NULL;
2577 }
2578 
2579 static inline void set_area_direct_map(const struct vm_struct *area,
2580 				       int (*set_direct_map)(struct page *page))
2581 {
2582 	int i;
2583 
2584 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2585 	for (i = 0; i < area->nr_pages; i++)
2586 		if (page_address(area->pages[i]))
2587 			set_direct_map(area->pages[i]);
2588 }
2589 
2590 /* Handle removing and resetting vm mappings related to the vm_struct. */
2591 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2592 {
2593 	unsigned long start = ULONG_MAX, end = 0;
2594 	unsigned int page_order = vm_area_page_order(area);
2595 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2596 	int flush_dmap = 0;
2597 	int i;
2598 
2599 	remove_vm_area(area->addr);
2600 
2601 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2602 	if (!flush_reset)
2603 		return;
2604 
2605 	/*
2606 	 * If not deallocating pages, just do the flush of the VM area and
2607 	 * return.
2608 	 */
2609 	if (!deallocate_pages) {
2610 		vm_unmap_aliases();
2611 		return;
2612 	}
2613 
2614 	/*
2615 	 * If execution gets here, flush the vm mapping and reset the direct
2616 	 * map. Find the start and end range of the direct mappings to make sure
2617 	 * the vm_unmap_aliases() flush includes the direct map.
2618 	 */
2619 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2620 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2621 		if (addr) {
2622 			unsigned long page_size;
2623 
2624 			page_size = PAGE_SIZE << page_order;
2625 			start = min(addr, start);
2626 			end = max(addr + page_size, end);
2627 			flush_dmap = 1;
2628 		}
2629 	}
2630 
2631 	/*
2632 	 * Set direct map to something invalid so that it won't be cached if
2633 	 * there are any accesses after the TLB flush, then flush the TLB and
2634 	 * reset the direct map permissions to the default.
2635 	 */
2636 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2637 	_vm_unmap_aliases(start, end, flush_dmap);
2638 	set_area_direct_map(area, set_direct_map_default_noflush);
2639 }
2640 
2641 static void __vunmap(const void *addr, int deallocate_pages)
2642 {
2643 	struct vm_struct *area;
2644 
2645 	if (!addr)
2646 		return;
2647 
2648 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2649 			addr))
2650 		return;
2651 
2652 	area = find_vm_area(addr);
2653 	if (unlikely(!area)) {
2654 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2655 				addr);
2656 		return;
2657 	}
2658 
2659 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2660 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2661 
2662 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2663 
2664 	vm_remove_mappings(area, deallocate_pages);
2665 
2666 	if (deallocate_pages) {
2667 		unsigned int page_order = vm_area_page_order(area);
2668 		int i, step = 1U << page_order;
2669 
2670 		for (i = 0; i < area->nr_pages; i += step) {
2671 			struct page *page = area->pages[i];
2672 
2673 			BUG_ON(!page);
2674 			mod_memcg_page_state(page, MEMCG_VMALLOC, -step);
2675 			__free_pages(page, page_order);
2676 			cond_resched();
2677 		}
2678 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2679 
2680 		kvfree(area->pages);
2681 	}
2682 
2683 	kfree(area);
2684 }
2685 
2686 static inline void __vfree_deferred(const void *addr)
2687 {
2688 	/*
2689 	 * Use raw_cpu_ptr() because this can be called from preemptible
2690 	 * context. Preemption is absolutely fine here, because the llist_add()
2691 	 * implementation is lockless, so it works even if we are adding to
2692 	 * another cpu's list. schedule_work() should be fine with this too.
2693 	 */
2694 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2695 
2696 	if (llist_add((struct llist_node *)addr, &p->list))
2697 		schedule_work(&p->wq);
2698 }
2699 
2700 /**
2701  * vfree_atomic - release memory allocated by vmalloc()
2702  * @addr:	  memory base address
2703  *
2704  * This one is just like vfree() but can be called in any atomic context
2705  * except NMIs.
2706  */
2707 void vfree_atomic(const void *addr)
2708 {
2709 	BUG_ON(in_nmi());
2710 
2711 	kmemleak_free(addr);
2712 
2713 	if (!addr)
2714 		return;
2715 	__vfree_deferred(addr);
2716 }
2717 
2718 static void __vfree(const void *addr)
2719 {
2720 	if (unlikely(in_interrupt()))
2721 		__vfree_deferred(addr);
2722 	else
2723 		__vunmap(addr, 1);
2724 }
2725 
2726 /**
2727  * vfree - Release memory allocated by vmalloc()
2728  * @addr:  Memory base address
2729  *
2730  * Free the virtually continuous memory area starting at @addr, as obtained
2731  * from one of the vmalloc() family of APIs.  This will usually also free the
2732  * physical memory underlying the virtual allocation, but that memory is
2733  * reference counted, so it will not be freed until the last user goes away.
2734  *
2735  * If @addr is NULL, no operation is performed.
2736  *
2737  * Context:
2738  * May sleep if called *not* from interrupt context.
2739  * Must not be called in NMI context (strictly speaking, it could be
2740  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2741  * conventions for vfree() arch-dependent would be a really bad idea).
2742  */
2743 void vfree(const void *addr)
2744 {
2745 	BUG_ON(in_nmi());
2746 
2747 	kmemleak_free(addr);
2748 
2749 	might_sleep_if(!in_interrupt());
2750 
2751 	if (!addr)
2752 		return;
2753 
2754 	__vfree(addr);
2755 }
2756 EXPORT_SYMBOL(vfree);
2757 
2758 /**
2759  * vunmap - release virtual mapping obtained by vmap()
2760  * @addr:   memory base address
2761  *
2762  * Free the virtually contiguous memory area starting at @addr,
2763  * which was created from the page array passed to vmap().
2764  *
2765  * Must not be called in interrupt context.
2766  */
2767 void vunmap(const void *addr)
2768 {
2769 	BUG_ON(in_interrupt());
2770 	might_sleep();
2771 	if (addr)
2772 		__vunmap(addr, 0);
2773 }
2774 EXPORT_SYMBOL(vunmap);
2775 
2776 /**
2777  * vmap - map an array of pages into virtually contiguous space
2778  * @pages: array of page pointers
2779  * @count: number of pages to map
2780  * @flags: vm_area->flags
2781  * @prot: page protection for the mapping
2782  *
2783  * Maps @count pages from @pages into contiguous kernel virtual space.
2784  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2785  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2786  * are transferred from the caller to vmap(), and will be freed / dropped when
2787  * vfree() is called on the return value.
2788  *
2789  * Return: the address of the area or %NULL on failure
2790  */
2791 void *vmap(struct page **pages, unsigned int count,
2792 	   unsigned long flags, pgprot_t prot)
2793 {
2794 	struct vm_struct *area;
2795 	unsigned long addr;
2796 	unsigned long size;		/* In bytes */
2797 
2798 	might_sleep();
2799 
2800 	/*
2801 	 * Your top guard is someone else's bottom guard. Not having a top
2802 	 * guard compromises someone else's mappings too.
2803 	 */
2804 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2805 		flags &= ~VM_NO_GUARD;
2806 
2807 	if (count > totalram_pages())
2808 		return NULL;
2809 
2810 	size = (unsigned long)count << PAGE_SHIFT;
2811 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2812 	if (!area)
2813 		return NULL;
2814 
2815 	addr = (unsigned long)area->addr;
2816 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2817 				pages, PAGE_SHIFT) < 0) {
2818 		vunmap(area->addr);
2819 		return NULL;
2820 	}
2821 
2822 	if (flags & VM_MAP_PUT_PAGES) {
2823 		area->pages = pages;
2824 		area->nr_pages = count;
2825 	}
2826 	return area->addr;
2827 }
2828 EXPORT_SYMBOL(vmap);
2829 
2830 #ifdef CONFIG_VMAP_PFN
2831 struct vmap_pfn_data {
2832 	unsigned long	*pfns;
2833 	pgprot_t	prot;
2834 	unsigned int	idx;
2835 };
2836 
2837 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2838 {
2839 	struct vmap_pfn_data *data = private;
2840 
2841 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2842 		return -EINVAL;
2843 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2844 	return 0;
2845 }
2846 
2847 /**
2848  * vmap_pfn - map an array of PFNs into virtually contiguous space
2849  * @pfns: array of PFNs
2850  * @count: number of pages to map
2851  * @prot: page protection for the mapping
2852  *
2853  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2854  * the start address of the mapping.
2855  */
2856 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2857 {
2858 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2859 	struct vm_struct *area;
2860 
2861 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2862 			__builtin_return_address(0));
2863 	if (!area)
2864 		return NULL;
2865 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2866 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2867 		free_vm_area(area);
2868 		return NULL;
2869 	}
2870 	return area->addr;
2871 }
2872 EXPORT_SYMBOL_GPL(vmap_pfn);
2873 #endif /* CONFIG_VMAP_PFN */
2874 
2875 static inline unsigned int
2876 vm_area_alloc_pages(gfp_t gfp, int nid,
2877 		unsigned int order, unsigned int nr_pages, struct page **pages)
2878 {
2879 	unsigned int nr_allocated = 0;
2880 	struct page *page;
2881 	int i;
2882 
2883 	/*
2884 	 * For order-0 pages we make use of bulk allocator, if
2885 	 * the page array is partly or not at all populated due
2886 	 * to fails, fallback to a single page allocator that is
2887 	 * more permissive.
2888 	 */
2889 	if (!order) {
2890 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2891 
2892 		while (nr_allocated < nr_pages) {
2893 			unsigned int nr, nr_pages_request;
2894 
2895 			/*
2896 			 * A maximum allowed request is hard-coded and is 100
2897 			 * pages per call. That is done in order to prevent a
2898 			 * long preemption off scenario in the bulk-allocator
2899 			 * so the range is [1:100].
2900 			 */
2901 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2902 
2903 			/* memory allocation should consider mempolicy, we can't
2904 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
2905 			 * otherwise memory may be allocated in only one node,
2906 			 * but mempolcy want to alloc memory by interleaving.
2907 			 */
2908 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2909 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2910 							nr_pages_request,
2911 							pages + nr_allocated);
2912 
2913 			else
2914 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2915 							nr_pages_request,
2916 							pages + nr_allocated);
2917 
2918 			nr_allocated += nr;
2919 			cond_resched();
2920 
2921 			/*
2922 			 * If zero or pages were obtained partly,
2923 			 * fallback to a single page allocator.
2924 			 */
2925 			if (nr != nr_pages_request)
2926 				break;
2927 		}
2928 	} else
2929 		/*
2930 		 * Compound pages required for remap_vmalloc_page if
2931 		 * high-order pages.
2932 		 */
2933 		gfp |= __GFP_COMP;
2934 
2935 	/* High-order pages or fallback path if "bulk" fails. */
2936 
2937 	while (nr_allocated < nr_pages) {
2938 		if (fatal_signal_pending(current))
2939 			break;
2940 
2941 		if (nid == NUMA_NO_NODE)
2942 			page = alloc_pages(gfp, order);
2943 		else
2944 			page = alloc_pages_node(nid, gfp, order);
2945 		if (unlikely(!page))
2946 			break;
2947 
2948 		/*
2949 		 * Careful, we allocate and map page-order pages, but
2950 		 * tracking is done per PAGE_SIZE page so as to keep the
2951 		 * vm_struct APIs independent of the physical/mapped size.
2952 		 */
2953 		for (i = 0; i < (1U << order); i++)
2954 			pages[nr_allocated + i] = page + i;
2955 
2956 		cond_resched();
2957 		nr_allocated += 1U << order;
2958 	}
2959 
2960 	return nr_allocated;
2961 }
2962 
2963 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2964 				 pgprot_t prot, unsigned int page_shift,
2965 				 int node)
2966 {
2967 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2968 	bool nofail = gfp_mask & __GFP_NOFAIL;
2969 	unsigned long addr = (unsigned long)area->addr;
2970 	unsigned long size = get_vm_area_size(area);
2971 	unsigned long array_size;
2972 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
2973 	unsigned int page_order;
2974 	unsigned int flags;
2975 	int ret;
2976 
2977 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2978 	gfp_mask |= __GFP_NOWARN;
2979 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2980 		gfp_mask |= __GFP_HIGHMEM;
2981 
2982 	/* Please note that the recursion is strictly bounded. */
2983 	if (array_size > PAGE_SIZE) {
2984 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2985 					area->caller);
2986 	} else {
2987 		area->pages = kmalloc_node(array_size, nested_gfp, node);
2988 	}
2989 
2990 	if (!area->pages) {
2991 		warn_alloc(gfp_mask, NULL,
2992 			"vmalloc error: size %lu, failed to allocated page array size %lu",
2993 			nr_small_pages * PAGE_SIZE, array_size);
2994 		free_vm_area(area);
2995 		return NULL;
2996 	}
2997 
2998 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2999 	page_order = vm_area_page_order(area);
3000 
3001 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3002 		node, page_order, nr_small_pages, area->pages);
3003 
3004 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3005 	if (gfp_mask & __GFP_ACCOUNT) {
3006 		int i, step = 1U << page_order;
3007 
3008 		for (i = 0; i < area->nr_pages; i += step)
3009 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC,
3010 					     step);
3011 	}
3012 
3013 	/*
3014 	 * If not enough pages were obtained to accomplish an
3015 	 * allocation request, free them via __vfree() if any.
3016 	 */
3017 	if (area->nr_pages != nr_small_pages) {
3018 		warn_alloc(gfp_mask, NULL,
3019 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
3020 			area->nr_pages * PAGE_SIZE, page_order);
3021 		goto fail;
3022 	}
3023 
3024 	/*
3025 	 * page tables allocations ignore external gfp mask, enforce it
3026 	 * by the scope API
3027 	 */
3028 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3029 		flags = memalloc_nofs_save();
3030 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3031 		flags = memalloc_noio_save();
3032 
3033 	do {
3034 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3035 			page_shift);
3036 		if (nofail && (ret < 0))
3037 			schedule_timeout_uninterruptible(1);
3038 	} while (nofail && (ret < 0));
3039 
3040 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3041 		memalloc_nofs_restore(flags);
3042 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3043 		memalloc_noio_restore(flags);
3044 
3045 	if (ret < 0) {
3046 		warn_alloc(gfp_mask, NULL,
3047 			"vmalloc error: size %lu, failed to map pages",
3048 			area->nr_pages * PAGE_SIZE);
3049 		goto fail;
3050 	}
3051 
3052 	return area->addr;
3053 
3054 fail:
3055 	__vfree(area->addr);
3056 	return NULL;
3057 }
3058 
3059 /**
3060  * __vmalloc_node_range - allocate virtually contiguous memory
3061  * @size:		  allocation size
3062  * @align:		  desired alignment
3063  * @start:		  vm area range start
3064  * @end:		  vm area range end
3065  * @gfp_mask:		  flags for the page level allocator
3066  * @prot:		  protection mask for the allocated pages
3067  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3068  * @node:		  node to use for allocation or NUMA_NO_NODE
3069  * @caller:		  caller's return address
3070  *
3071  * Allocate enough pages to cover @size from the page level
3072  * allocator with @gfp_mask flags. Please note that the full set of gfp
3073  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3074  * supported.
3075  * Zone modifiers are not supported. From the reclaim modifiers
3076  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3077  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3078  * __GFP_RETRY_MAYFAIL are not supported).
3079  *
3080  * __GFP_NOWARN can be used to suppress failures messages.
3081  *
3082  * Map them into contiguous kernel virtual space, using a pagetable
3083  * protection of @prot.
3084  *
3085  * Return: the address of the area or %NULL on failure
3086  */
3087 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3088 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3089 			pgprot_t prot, unsigned long vm_flags, int node,
3090 			const void *caller)
3091 {
3092 	struct vm_struct *area;
3093 	void *ret;
3094 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3095 	unsigned long real_size = size;
3096 	unsigned long real_align = align;
3097 	unsigned int shift = PAGE_SHIFT;
3098 
3099 	if (WARN_ON_ONCE(!size))
3100 		return NULL;
3101 
3102 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3103 		warn_alloc(gfp_mask, NULL,
3104 			"vmalloc error: size %lu, exceeds total pages",
3105 			real_size);
3106 		return NULL;
3107 	}
3108 
3109 	if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
3110 		unsigned long size_per_node;
3111 
3112 		/*
3113 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3114 		 * others like modules don't yet expect huge pages in
3115 		 * their allocations due to apply_to_page_range not
3116 		 * supporting them.
3117 		 */
3118 
3119 		size_per_node = size;
3120 		if (node == NUMA_NO_NODE)
3121 			size_per_node /= num_online_nodes();
3122 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3123 			shift = PMD_SHIFT;
3124 		else
3125 			shift = arch_vmap_pte_supported_shift(size_per_node);
3126 
3127 		align = max(real_align, 1UL << shift);
3128 		size = ALIGN(real_size, 1UL << shift);
3129 	}
3130 
3131 again:
3132 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3133 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3134 				  gfp_mask, caller);
3135 	if (!area) {
3136 		bool nofail = gfp_mask & __GFP_NOFAIL;
3137 		warn_alloc(gfp_mask, NULL,
3138 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3139 			real_size, (nofail) ? ". Retrying." : "");
3140 		if (nofail) {
3141 			schedule_timeout_uninterruptible(1);
3142 			goto again;
3143 		}
3144 		goto fail;
3145 	}
3146 
3147 	/*
3148 	 * Prepare arguments for __vmalloc_area_node() and
3149 	 * kasan_unpoison_vmalloc().
3150 	 */
3151 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3152 		if (kasan_hw_tags_enabled()) {
3153 			/*
3154 			 * Modify protection bits to allow tagging.
3155 			 * This must be done before mapping.
3156 			 */
3157 			prot = arch_vmap_pgprot_tagged(prot);
3158 
3159 			/*
3160 			 * Skip page_alloc poisoning and zeroing for physical
3161 			 * pages backing VM_ALLOC mapping. Memory is instead
3162 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3163 			 */
3164 			gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3165 		}
3166 
3167 		/* Take note that the mapping is PAGE_KERNEL. */
3168 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3169 	}
3170 
3171 	/* Allocate physical pages and map them into vmalloc space. */
3172 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3173 	if (!ret)
3174 		goto fail;
3175 
3176 	/*
3177 	 * Mark the pages as accessible, now that they are mapped.
3178 	 * The init condition should match the one in post_alloc_hook()
3179 	 * (except for the should_skip_init() check) to make sure that memory
3180 	 * is initialized under the same conditions regardless of the enabled
3181 	 * KASAN mode.
3182 	 * Tag-based KASAN modes only assign tags to normal non-executable
3183 	 * allocations, see __kasan_unpoison_vmalloc().
3184 	 */
3185 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3186 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask))
3187 		kasan_flags |= KASAN_VMALLOC_INIT;
3188 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3189 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3190 
3191 	/*
3192 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3193 	 * flag. It means that vm_struct is not fully initialized.
3194 	 * Now, it is fully initialized, so remove this flag here.
3195 	 */
3196 	clear_vm_uninitialized_flag(area);
3197 
3198 	size = PAGE_ALIGN(size);
3199 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3200 		kmemleak_vmalloc(area, size, gfp_mask);
3201 
3202 	return area->addr;
3203 
3204 fail:
3205 	if (shift > PAGE_SHIFT) {
3206 		shift = PAGE_SHIFT;
3207 		align = real_align;
3208 		size = real_size;
3209 		goto again;
3210 	}
3211 
3212 	return NULL;
3213 }
3214 
3215 /**
3216  * __vmalloc_node - allocate virtually contiguous memory
3217  * @size:	    allocation size
3218  * @align:	    desired alignment
3219  * @gfp_mask:	    flags for the page level allocator
3220  * @node:	    node to use for allocation or NUMA_NO_NODE
3221  * @caller:	    caller's return address
3222  *
3223  * Allocate enough pages to cover @size from the page level allocator with
3224  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3225  *
3226  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3227  * and __GFP_NOFAIL are not supported
3228  *
3229  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3230  * with mm people.
3231  *
3232  * Return: pointer to the allocated memory or %NULL on error
3233  */
3234 void *__vmalloc_node(unsigned long size, unsigned long align,
3235 			    gfp_t gfp_mask, int node, const void *caller)
3236 {
3237 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3238 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3239 }
3240 /*
3241  * This is only for performance analysis of vmalloc and stress purpose.
3242  * It is required by vmalloc test module, therefore do not use it other
3243  * than that.
3244  */
3245 #ifdef CONFIG_TEST_VMALLOC_MODULE
3246 EXPORT_SYMBOL_GPL(__vmalloc_node);
3247 #endif
3248 
3249 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3250 {
3251 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3252 				__builtin_return_address(0));
3253 }
3254 EXPORT_SYMBOL(__vmalloc);
3255 
3256 /**
3257  * vmalloc - allocate virtually contiguous memory
3258  * @size:    allocation size
3259  *
3260  * Allocate enough pages to cover @size from the page level
3261  * allocator and map them into contiguous kernel virtual space.
3262  *
3263  * For tight control over page level allocator and protection flags
3264  * use __vmalloc() instead.
3265  *
3266  * Return: pointer to the allocated memory or %NULL on error
3267  */
3268 void *vmalloc(unsigned long size)
3269 {
3270 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3271 				__builtin_return_address(0));
3272 }
3273 EXPORT_SYMBOL(vmalloc);
3274 
3275 /**
3276  * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3277  * @size:    allocation size
3278  *
3279  * Allocate enough non-huge pages to cover @size from the page level
3280  * allocator and map them into contiguous kernel virtual space.
3281  *
3282  * Return: pointer to the allocated memory or %NULL on error
3283  */
3284 void *vmalloc_no_huge(unsigned long size)
3285 {
3286 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3287 				    GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3288 				    NUMA_NO_NODE, __builtin_return_address(0));
3289 }
3290 EXPORT_SYMBOL(vmalloc_no_huge);
3291 
3292 /**
3293  * vzalloc - allocate virtually contiguous memory with zero fill
3294  * @size:    allocation size
3295  *
3296  * Allocate enough pages to cover @size from the page level
3297  * allocator and map them into contiguous kernel virtual space.
3298  * The memory allocated is set to zero.
3299  *
3300  * For tight control over page level allocator and protection flags
3301  * use __vmalloc() instead.
3302  *
3303  * Return: pointer to the allocated memory or %NULL on error
3304  */
3305 void *vzalloc(unsigned long size)
3306 {
3307 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3308 				__builtin_return_address(0));
3309 }
3310 EXPORT_SYMBOL(vzalloc);
3311 
3312 /**
3313  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3314  * @size: allocation size
3315  *
3316  * The resulting memory area is zeroed so it can be mapped to userspace
3317  * without leaking data.
3318  *
3319  * Return: pointer to the allocated memory or %NULL on error
3320  */
3321 void *vmalloc_user(unsigned long size)
3322 {
3323 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3324 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3325 				    VM_USERMAP, NUMA_NO_NODE,
3326 				    __builtin_return_address(0));
3327 }
3328 EXPORT_SYMBOL(vmalloc_user);
3329 
3330 /**
3331  * vmalloc_node - allocate memory on a specific node
3332  * @size:	  allocation size
3333  * @node:	  numa node
3334  *
3335  * Allocate enough pages to cover @size from the page level
3336  * allocator and map them into contiguous kernel virtual space.
3337  *
3338  * For tight control over page level allocator and protection flags
3339  * use __vmalloc() instead.
3340  *
3341  * Return: pointer to the allocated memory or %NULL on error
3342  */
3343 void *vmalloc_node(unsigned long size, int node)
3344 {
3345 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3346 			__builtin_return_address(0));
3347 }
3348 EXPORT_SYMBOL(vmalloc_node);
3349 
3350 /**
3351  * vzalloc_node - allocate memory on a specific node with zero fill
3352  * @size:	allocation size
3353  * @node:	numa node
3354  *
3355  * Allocate enough pages to cover @size from the page level
3356  * allocator and map them into contiguous kernel virtual space.
3357  * The memory allocated is set to zero.
3358  *
3359  * Return: pointer to the allocated memory or %NULL on error
3360  */
3361 void *vzalloc_node(unsigned long size, int node)
3362 {
3363 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3364 				__builtin_return_address(0));
3365 }
3366 EXPORT_SYMBOL(vzalloc_node);
3367 
3368 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3369 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3370 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3371 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3372 #else
3373 /*
3374  * 64b systems should always have either DMA or DMA32 zones. For others
3375  * GFP_DMA32 should do the right thing and use the normal zone.
3376  */
3377 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3378 #endif
3379 
3380 /**
3381  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3382  * @size:	allocation size
3383  *
3384  * Allocate enough 32bit PA addressable pages to cover @size from the
3385  * page level allocator and map them into contiguous kernel virtual space.
3386  *
3387  * Return: pointer to the allocated memory or %NULL on error
3388  */
3389 void *vmalloc_32(unsigned long size)
3390 {
3391 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3392 			__builtin_return_address(0));
3393 }
3394 EXPORT_SYMBOL(vmalloc_32);
3395 
3396 /**
3397  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3398  * @size:	     allocation size
3399  *
3400  * The resulting memory area is 32bit addressable and zeroed so it can be
3401  * mapped to userspace without leaking data.
3402  *
3403  * Return: pointer to the allocated memory or %NULL on error
3404  */
3405 void *vmalloc_32_user(unsigned long size)
3406 {
3407 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3408 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3409 				    VM_USERMAP, NUMA_NO_NODE,
3410 				    __builtin_return_address(0));
3411 }
3412 EXPORT_SYMBOL(vmalloc_32_user);
3413 
3414 /*
3415  * small helper routine , copy contents to buf from addr.
3416  * If the page is not present, fill zero.
3417  */
3418 
3419 static int aligned_vread(char *buf, char *addr, unsigned long count)
3420 {
3421 	struct page *p;
3422 	int copied = 0;
3423 
3424 	while (count) {
3425 		unsigned long offset, length;
3426 
3427 		offset = offset_in_page(addr);
3428 		length = PAGE_SIZE - offset;
3429 		if (length > count)
3430 			length = count;
3431 		p = vmalloc_to_page(addr);
3432 		/*
3433 		 * To do safe access to this _mapped_ area, we need
3434 		 * lock. But adding lock here means that we need to add
3435 		 * overhead of vmalloc()/vfree() calls for this _debug_
3436 		 * interface, rarely used. Instead of that, we'll use
3437 		 * kmap() and get small overhead in this access function.
3438 		 */
3439 		if (p) {
3440 			/* We can expect USER0 is not used -- see vread() */
3441 			void *map = kmap_atomic(p);
3442 			memcpy(buf, map + offset, length);
3443 			kunmap_atomic(map);
3444 		} else
3445 			memset(buf, 0, length);
3446 
3447 		addr += length;
3448 		buf += length;
3449 		copied += length;
3450 		count -= length;
3451 	}
3452 	return copied;
3453 }
3454 
3455 /**
3456  * vread() - read vmalloc area in a safe way.
3457  * @buf:     buffer for reading data
3458  * @addr:    vm address.
3459  * @count:   number of bytes to be read.
3460  *
3461  * This function checks that addr is a valid vmalloc'ed area, and
3462  * copy data from that area to a given buffer. If the given memory range
3463  * of [addr...addr+count) includes some valid address, data is copied to
3464  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3465  * IOREMAP area is treated as memory hole and no copy is done.
3466  *
3467  * If [addr...addr+count) doesn't includes any intersects with alive
3468  * vm_struct area, returns 0. @buf should be kernel's buffer.
3469  *
3470  * Note: In usual ops, vread() is never necessary because the caller
3471  * should know vmalloc() area is valid and can use memcpy().
3472  * This is for routines which have to access vmalloc area without
3473  * any information, as /proc/kcore.
3474  *
3475  * Return: number of bytes for which addr and buf should be increased
3476  * (same number as @count) or %0 if [addr...addr+count) doesn't
3477  * include any intersection with valid vmalloc area
3478  */
3479 long vread(char *buf, char *addr, unsigned long count)
3480 {
3481 	struct vmap_area *va;
3482 	struct vm_struct *vm;
3483 	char *vaddr, *buf_start = buf;
3484 	unsigned long buflen = count;
3485 	unsigned long n;
3486 
3487 	addr = kasan_reset_tag(addr);
3488 
3489 	/* Don't allow overflow */
3490 	if ((unsigned long) addr + count < count)
3491 		count = -(unsigned long) addr;
3492 
3493 	spin_lock(&vmap_area_lock);
3494 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3495 	if (!va)
3496 		goto finished;
3497 
3498 	/* no intersects with alive vmap_area */
3499 	if ((unsigned long)addr + count <= va->va_start)
3500 		goto finished;
3501 
3502 	list_for_each_entry_from(va, &vmap_area_list, list) {
3503 		if (!count)
3504 			break;
3505 
3506 		if (!va->vm)
3507 			continue;
3508 
3509 		vm = va->vm;
3510 		vaddr = (char *) vm->addr;
3511 		if (addr >= vaddr + get_vm_area_size(vm))
3512 			continue;
3513 		while (addr < vaddr) {
3514 			if (count == 0)
3515 				goto finished;
3516 			*buf = '\0';
3517 			buf++;
3518 			addr++;
3519 			count--;
3520 		}
3521 		n = vaddr + get_vm_area_size(vm) - addr;
3522 		if (n > count)
3523 			n = count;
3524 		if (!(vm->flags & VM_IOREMAP))
3525 			aligned_vread(buf, addr, n);
3526 		else /* IOREMAP area is treated as memory hole */
3527 			memset(buf, 0, n);
3528 		buf += n;
3529 		addr += n;
3530 		count -= n;
3531 	}
3532 finished:
3533 	spin_unlock(&vmap_area_lock);
3534 
3535 	if (buf == buf_start)
3536 		return 0;
3537 	/* zero-fill memory holes */
3538 	if (buf != buf_start + buflen)
3539 		memset(buf, 0, buflen - (buf - buf_start));
3540 
3541 	return buflen;
3542 }
3543 
3544 /**
3545  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3546  * @vma:		vma to cover
3547  * @uaddr:		target user address to start at
3548  * @kaddr:		virtual address of vmalloc kernel memory
3549  * @pgoff:		offset from @kaddr to start at
3550  * @size:		size of map area
3551  *
3552  * Returns:	0 for success, -Exxx on failure
3553  *
3554  * This function checks that @kaddr is a valid vmalloc'ed area,
3555  * and that it is big enough to cover the range starting at
3556  * @uaddr in @vma. Will return failure if that criteria isn't
3557  * met.
3558  *
3559  * Similar to remap_pfn_range() (see mm/memory.c)
3560  */
3561 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3562 				void *kaddr, unsigned long pgoff,
3563 				unsigned long size)
3564 {
3565 	struct vm_struct *area;
3566 	unsigned long off;
3567 	unsigned long end_index;
3568 
3569 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3570 		return -EINVAL;
3571 
3572 	size = PAGE_ALIGN(size);
3573 
3574 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3575 		return -EINVAL;
3576 
3577 	area = find_vm_area(kaddr);
3578 	if (!area)
3579 		return -EINVAL;
3580 
3581 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3582 		return -EINVAL;
3583 
3584 	if (check_add_overflow(size, off, &end_index) ||
3585 	    end_index > get_vm_area_size(area))
3586 		return -EINVAL;
3587 	kaddr += off;
3588 
3589 	do {
3590 		struct page *page = vmalloc_to_page(kaddr);
3591 		int ret;
3592 
3593 		ret = vm_insert_page(vma, uaddr, page);
3594 		if (ret)
3595 			return ret;
3596 
3597 		uaddr += PAGE_SIZE;
3598 		kaddr += PAGE_SIZE;
3599 		size -= PAGE_SIZE;
3600 	} while (size > 0);
3601 
3602 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3603 
3604 	return 0;
3605 }
3606 
3607 /**
3608  * remap_vmalloc_range - map vmalloc pages to userspace
3609  * @vma:		vma to cover (map full range of vma)
3610  * @addr:		vmalloc memory
3611  * @pgoff:		number of pages into addr before first page to map
3612  *
3613  * Returns:	0 for success, -Exxx on failure
3614  *
3615  * This function checks that addr is a valid vmalloc'ed area, and
3616  * that it is big enough to cover the vma. Will return failure if
3617  * that criteria isn't met.
3618  *
3619  * Similar to remap_pfn_range() (see mm/memory.c)
3620  */
3621 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3622 						unsigned long pgoff)
3623 {
3624 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3625 					   addr, pgoff,
3626 					   vma->vm_end - vma->vm_start);
3627 }
3628 EXPORT_SYMBOL(remap_vmalloc_range);
3629 
3630 void free_vm_area(struct vm_struct *area)
3631 {
3632 	struct vm_struct *ret;
3633 	ret = remove_vm_area(area->addr);
3634 	BUG_ON(ret != area);
3635 	kfree(area);
3636 }
3637 EXPORT_SYMBOL_GPL(free_vm_area);
3638 
3639 #ifdef CONFIG_SMP
3640 static struct vmap_area *node_to_va(struct rb_node *n)
3641 {
3642 	return rb_entry_safe(n, struct vmap_area, rb_node);
3643 }
3644 
3645 /**
3646  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3647  * @addr: target address
3648  *
3649  * Returns: vmap_area if it is found. If there is no such area
3650  *   the first highest(reverse order) vmap_area is returned
3651  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3652  *   if there are no any areas before @addr.
3653  */
3654 static struct vmap_area *
3655 pvm_find_va_enclose_addr(unsigned long addr)
3656 {
3657 	struct vmap_area *va, *tmp;
3658 	struct rb_node *n;
3659 
3660 	n = free_vmap_area_root.rb_node;
3661 	va = NULL;
3662 
3663 	while (n) {
3664 		tmp = rb_entry(n, struct vmap_area, rb_node);
3665 		if (tmp->va_start <= addr) {
3666 			va = tmp;
3667 			if (tmp->va_end >= addr)
3668 				break;
3669 
3670 			n = n->rb_right;
3671 		} else {
3672 			n = n->rb_left;
3673 		}
3674 	}
3675 
3676 	return va;
3677 }
3678 
3679 /**
3680  * pvm_determine_end_from_reverse - find the highest aligned address
3681  * of free block below VMALLOC_END
3682  * @va:
3683  *   in - the VA we start the search(reverse order);
3684  *   out - the VA with the highest aligned end address.
3685  * @align: alignment for required highest address
3686  *
3687  * Returns: determined end address within vmap_area
3688  */
3689 static unsigned long
3690 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3691 {
3692 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3693 	unsigned long addr;
3694 
3695 	if (likely(*va)) {
3696 		list_for_each_entry_from_reverse((*va),
3697 				&free_vmap_area_list, list) {
3698 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3699 			if ((*va)->va_start < addr)
3700 				return addr;
3701 		}
3702 	}
3703 
3704 	return 0;
3705 }
3706 
3707 /**
3708  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3709  * @offsets: array containing offset of each area
3710  * @sizes: array containing size of each area
3711  * @nr_vms: the number of areas to allocate
3712  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3713  *
3714  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3715  *	    vm_structs on success, %NULL on failure
3716  *
3717  * Percpu allocator wants to use congruent vm areas so that it can
3718  * maintain the offsets among percpu areas.  This function allocates
3719  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3720  * be scattered pretty far, distance between two areas easily going up
3721  * to gigabytes.  To avoid interacting with regular vmallocs, these
3722  * areas are allocated from top.
3723  *
3724  * Despite its complicated look, this allocator is rather simple. It
3725  * does everything top-down and scans free blocks from the end looking
3726  * for matching base. While scanning, if any of the areas do not fit the
3727  * base address is pulled down to fit the area. Scanning is repeated till
3728  * all the areas fit and then all necessary data structures are inserted
3729  * and the result is returned.
3730  */
3731 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3732 				     const size_t *sizes, int nr_vms,
3733 				     size_t align)
3734 {
3735 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3736 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3737 	struct vmap_area **vas, *va;
3738 	struct vm_struct **vms;
3739 	int area, area2, last_area, term_area;
3740 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3741 	bool purged = false;
3742 	enum fit_type type;
3743 
3744 	/* verify parameters and allocate data structures */
3745 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3746 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3747 		start = offsets[area];
3748 		end = start + sizes[area];
3749 
3750 		/* is everything aligned properly? */
3751 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3752 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3753 
3754 		/* detect the area with the highest address */
3755 		if (start > offsets[last_area])
3756 			last_area = area;
3757 
3758 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3759 			unsigned long start2 = offsets[area2];
3760 			unsigned long end2 = start2 + sizes[area2];
3761 
3762 			BUG_ON(start2 < end && start < end2);
3763 		}
3764 	}
3765 	last_end = offsets[last_area] + sizes[last_area];
3766 
3767 	if (vmalloc_end - vmalloc_start < last_end) {
3768 		WARN_ON(true);
3769 		return NULL;
3770 	}
3771 
3772 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3773 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3774 	if (!vas || !vms)
3775 		goto err_free2;
3776 
3777 	for (area = 0; area < nr_vms; area++) {
3778 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3779 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3780 		if (!vas[area] || !vms[area])
3781 			goto err_free;
3782 	}
3783 retry:
3784 	spin_lock(&free_vmap_area_lock);
3785 
3786 	/* start scanning - we scan from the top, begin with the last area */
3787 	area = term_area = last_area;
3788 	start = offsets[area];
3789 	end = start + sizes[area];
3790 
3791 	va = pvm_find_va_enclose_addr(vmalloc_end);
3792 	base = pvm_determine_end_from_reverse(&va, align) - end;
3793 
3794 	while (true) {
3795 		/*
3796 		 * base might have underflowed, add last_end before
3797 		 * comparing.
3798 		 */
3799 		if (base + last_end < vmalloc_start + last_end)
3800 			goto overflow;
3801 
3802 		/*
3803 		 * Fitting base has not been found.
3804 		 */
3805 		if (va == NULL)
3806 			goto overflow;
3807 
3808 		/*
3809 		 * If required width exceeds current VA block, move
3810 		 * base downwards and then recheck.
3811 		 */
3812 		if (base + end > va->va_end) {
3813 			base = pvm_determine_end_from_reverse(&va, align) - end;
3814 			term_area = area;
3815 			continue;
3816 		}
3817 
3818 		/*
3819 		 * If this VA does not fit, move base downwards and recheck.
3820 		 */
3821 		if (base + start < va->va_start) {
3822 			va = node_to_va(rb_prev(&va->rb_node));
3823 			base = pvm_determine_end_from_reverse(&va, align) - end;
3824 			term_area = area;
3825 			continue;
3826 		}
3827 
3828 		/*
3829 		 * This area fits, move on to the previous one.  If
3830 		 * the previous one is the terminal one, we're done.
3831 		 */
3832 		area = (area + nr_vms - 1) % nr_vms;
3833 		if (area == term_area)
3834 			break;
3835 
3836 		start = offsets[area];
3837 		end = start + sizes[area];
3838 		va = pvm_find_va_enclose_addr(base + end);
3839 	}
3840 
3841 	/* we've found a fitting base, insert all va's */
3842 	for (area = 0; area < nr_vms; area++) {
3843 		int ret;
3844 
3845 		start = base + offsets[area];
3846 		size = sizes[area];
3847 
3848 		va = pvm_find_va_enclose_addr(start);
3849 		if (WARN_ON_ONCE(va == NULL))
3850 			/* It is a BUG(), but trigger recovery instead. */
3851 			goto recovery;
3852 
3853 		type = classify_va_fit_type(va, start, size);
3854 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3855 			/* It is a BUG(), but trigger recovery instead. */
3856 			goto recovery;
3857 
3858 		ret = adjust_va_to_fit_type(va, start, size, type);
3859 		if (unlikely(ret))
3860 			goto recovery;
3861 
3862 		/* Allocated area. */
3863 		va = vas[area];
3864 		va->va_start = start;
3865 		va->va_end = start + size;
3866 	}
3867 
3868 	spin_unlock(&free_vmap_area_lock);
3869 
3870 	/* populate the kasan shadow space */
3871 	for (area = 0; area < nr_vms; area++) {
3872 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3873 			goto err_free_shadow;
3874 	}
3875 
3876 	/* insert all vm's */
3877 	spin_lock(&vmap_area_lock);
3878 	for (area = 0; area < nr_vms; area++) {
3879 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3880 
3881 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3882 				 pcpu_get_vm_areas);
3883 	}
3884 	spin_unlock(&vmap_area_lock);
3885 
3886 	/*
3887 	 * Mark allocated areas as accessible. Do it now as a best-effort
3888 	 * approach, as they can be mapped outside of vmalloc code.
3889 	 * With hardware tag-based KASAN, marking is skipped for
3890 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3891 	 */
3892 	for (area = 0; area < nr_vms; area++)
3893 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3894 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3895 
3896 	kfree(vas);
3897 	return vms;
3898 
3899 recovery:
3900 	/*
3901 	 * Remove previously allocated areas. There is no
3902 	 * need in removing these areas from the busy tree,
3903 	 * because they are inserted only on the final step
3904 	 * and when pcpu_get_vm_areas() is success.
3905 	 */
3906 	while (area--) {
3907 		orig_start = vas[area]->va_start;
3908 		orig_end = vas[area]->va_end;
3909 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3910 				&free_vmap_area_list);
3911 		if (va)
3912 			kasan_release_vmalloc(orig_start, orig_end,
3913 				va->va_start, va->va_end);
3914 		vas[area] = NULL;
3915 	}
3916 
3917 overflow:
3918 	spin_unlock(&free_vmap_area_lock);
3919 	if (!purged) {
3920 		purge_vmap_area_lazy();
3921 		purged = true;
3922 
3923 		/* Before "retry", check if we recover. */
3924 		for (area = 0; area < nr_vms; area++) {
3925 			if (vas[area])
3926 				continue;
3927 
3928 			vas[area] = kmem_cache_zalloc(
3929 				vmap_area_cachep, GFP_KERNEL);
3930 			if (!vas[area])
3931 				goto err_free;
3932 		}
3933 
3934 		goto retry;
3935 	}
3936 
3937 err_free:
3938 	for (area = 0; area < nr_vms; area++) {
3939 		if (vas[area])
3940 			kmem_cache_free(vmap_area_cachep, vas[area]);
3941 
3942 		kfree(vms[area]);
3943 	}
3944 err_free2:
3945 	kfree(vas);
3946 	kfree(vms);
3947 	return NULL;
3948 
3949 err_free_shadow:
3950 	spin_lock(&free_vmap_area_lock);
3951 	/*
3952 	 * We release all the vmalloc shadows, even the ones for regions that
3953 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3954 	 * being able to tolerate this case.
3955 	 */
3956 	for (area = 0; area < nr_vms; area++) {
3957 		orig_start = vas[area]->va_start;
3958 		orig_end = vas[area]->va_end;
3959 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3960 				&free_vmap_area_list);
3961 		if (va)
3962 			kasan_release_vmalloc(orig_start, orig_end,
3963 				va->va_start, va->va_end);
3964 		vas[area] = NULL;
3965 		kfree(vms[area]);
3966 	}
3967 	spin_unlock(&free_vmap_area_lock);
3968 	kfree(vas);
3969 	kfree(vms);
3970 	return NULL;
3971 }
3972 
3973 /**
3974  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3975  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3976  * @nr_vms: the number of allocated areas
3977  *
3978  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3979  */
3980 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3981 {
3982 	int i;
3983 
3984 	for (i = 0; i < nr_vms; i++)
3985 		free_vm_area(vms[i]);
3986 	kfree(vms);
3987 }
3988 #endif	/* CONFIG_SMP */
3989 
3990 #ifdef CONFIG_PRINTK
3991 bool vmalloc_dump_obj(void *object)
3992 {
3993 	struct vm_struct *vm;
3994 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3995 
3996 	vm = find_vm_area(objp);
3997 	if (!vm)
3998 		return false;
3999 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4000 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4001 	return true;
4002 }
4003 #endif
4004 
4005 #ifdef CONFIG_PROC_FS
4006 static void *s_start(struct seq_file *m, loff_t *pos)
4007 	__acquires(&vmap_purge_lock)
4008 	__acquires(&vmap_area_lock)
4009 {
4010 	mutex_lock(&vmap_purge_lock);
4011 	spin_lock(&vmap_area_lock);
4012 
4013 	return seq_list_start(&vmap_area_list, *pos);
4014 }
4015 
4016 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4017 {
4018 	return seq_list_next(p, &vmap_area_list, pos);
4019 }
4020 
4021 static void s_stop(struct seq_file *m, void *p)
4022 	__releases(&vmap_area_lock)
4023 	__releases(&vmap_purge_lock)
4024 {
4025 	spin_unlock(&vmap_area_lock);
4026 	mutex_unlock(&vmap_purge_lock);
4027 }
4028 
4029 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4030 {
4031 	if (IS_ENABLED(CONFIG_NUMA)) {
4032 		unsigned int nr, *counters = m->private;
4033 		unsigned int step = 1U << vm_area_page_order(v);
4034 
4035 		if (!counters)
4036 			return;
4037 
4038 		if (v->flags & VM_UNINITIALIZED)
4039 			return;
4040 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4041 		smp_rmb();
4042 
4043 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4044 
4045 		for (nr = 0; nr < v->nr_pages; nr += step)
4046 			counters[page_to_nid(v->pages[nr])] += step;
4047 		for_each_node_state(nr, N_HIGH_MEMORY)
4048 			if (counters[nr])
4049 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4050 	}
4051 }
4052 
4053 static void show_purge_info(struct seq_file *m)
4054 {
4055 	struct vmap_area *va;
4056 
4057 	spin_lock(&purge_vmap_area_lock);
4058 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4059 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4060 			(void *)va->va_start, (void *)va->va_end,
4061 			va->va_end - va->va_start);
4062 	}
4063 	spin_unlock(&purge_vmap_area_lock);
4064 }
4065 
4066 static int s_show(struct seq_file *m, void *p)
4067 {
4068 	struct vmap_area *va;
4069 	struct vm_struct *v;
4070 
4071 	va = list_entry(p, struct vmap_area, list);
4072 
4073 	/*
4074 	 * s_show can encounter race with remove_vm_area, !vm on behalf
4075 	 * of vmap area is being tear down or vm_map_ram allocation.
4076 	 */
4077 	if (!va->vm) {
4078 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4079 			(void *)va->va_start, (void *)va->va_end,
4080 			va->va_end - va->va_start);
4081 
4082 		goto final;
4083 	}
4084 
4085 	v = va->vm;
4086 
4087 	seq_printf(m, "0x%pK-0x%pK %7ld",
4088 		v->addr, v->addr + v->size, v->size);
4089 
4090 	if (v->caller)
4091 		seq_printf(m, " %pS", v->caller);
4092 
4093 	if (v->nr_pages)
4094 		seq_printf(m, " pages=%d", v->nr_pages);
4095 
4096 	if (v->phys_addr)
4097 		seq_printf(m, " phys=%pa", &v->phys_addr);
4098 
4099 	if (v->flags & VM_IOREMAP)
4100 		seq_puts(m, " ioremap");
4101 
4102 	if (v->flags & VM_ALLOC)
4103 		seq_puts(m, " vmalloc");
4104 
4105 	if (v->flags & VM_MAP)
4106 		seq_puts(m, " vmap");
4107 
4108 	if (v->flags & VM_USERMAP)
4109 		seq_puts(m, " user");
4110 
4111 	if (v->flags & VM_DMA_COHERENT)
4112 		seq_puts(m, " dma-coherent");
4113 
4114 	if (is_vmalloc_addr(v->pages))
4115 		seq_puts(m, " vpages");
4116 
4117 	show_numa_info(m, v);
4118 	seq_putc(m, '\n');
4119 
4120 	/*
4121 	 * As a final step, dump "unpurged" areas.
4122 	 */
4123 final:
4124 	if (list_is_last(&va->list, &vmap_area_list))
4125 		show_purge_info(m);
4126 
4127 	return 0;
4128 }
4129 
4130 static const struct seq_operations vmalloc_op = {
4131 	.start = s_start,
4132 	.next = s_next,
4133 	.stop = s_stop,
4134 	.show = s_show,
4135 };
4136 
4137 static int __init proc_vmalloc_init(void)
4138 {
4139 	if (IS_ENABLED(CONFIG_NUMA))
4140 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4141 				&vmalloc_op,
4142 				nr_node_ids * sizeof(unsigned int), NULL);
4143 	else
4144 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4145 	return 0;
4146 }
4147 module_init(proc_vmalloc_init);
4148 
4149 #endif
4150