1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/uio.h> 37 #include <linux/bitops.h> 38 #include <linux/rbtree_augmented.h> 39 #include <linux/overflow.h> 40 #include <linux/pgtable.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/vmalloc.h> 48 49 #include "internal.h" 50 #include "pgalloc-track.h" 51 52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 54 55 static int __init set_nohugeiomap(char *str) 56 { 57 ioremap_max_page_shift = PAGE_SHIFT; 58 return 0; 59 } 60 early_param("nohugeiomap", set_nohugeiomap); 61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 63 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 64 65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 66 static bool __ro_after_init vmap_allow_huge = true; 67 68 static int __init set_nohugevmalloc(char *str) 69 { 70 vmap_allow_huge = false; 71 return 0; 72 } 73 early_param("nohugevmalloc", set_nohugevmalloc); 74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 75 static const bool vmap_allow_huge = false; 76 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 77 78 bool is_vmalloc_addr(const void *x) 79 { 80 unsigned long addr = (unsigned long)kasan_reset_tag(x); 81 82 return addr >= VMALLOC_START && addr < VMALLOC_END; 83 } 84 EXPORT_SYMBOL(is_vmalloc_addr); 85 86 struct vfree_deferred { 87 struct llist_head list; 88 struct work_struct wq; 89 }; 90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 91 92 /*** Page table manipulation functions ***/ 93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 94 phys_addr_t phys_addr, pgprot_t prot, 95 unsigned int max_page_shift, pgtbl_mod_mask *mask) 96 { 97 pte_t *pte; 98 u64 pfn; 99 unsigned long size = PAGE_SIZE; 100 101 pfn = phys_addr >> PAGE_SHIFT; 102 pte = pte_alloc_kernel_track(pmd, addr, mask); 103 if (!pte) 104 return -ENOMEM; 105 do { 106 BUG_ON(!pte_none(*pte)); 107 108 #ifdef CONFIG_HUGETLB_PAGE 109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 110 if (size != PAGE_SIZE) { 111 pte_t entry = pfn_pte(pfn, prot); 112 113 entry = arch_make_huge_pte(entry, ilog2(size), 0); 114 set_huge_pte_at(&init_mm, addr, pte, entry); 115 pfn += PFN_DOWN(size); 116 continue; 117 } 118 #endif 119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 120 pfn++; 121 } while (pte += PFN_DOWN(size), addr += size, addr != end); 122 *mask |= PGTBL_PTE_MODIFIED; 123 return 0; 124 } 125 126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 127 phys_addr_t phys_addr, pgprot_t prot, 128 unsigned int max_page_shift) 129 { 130 if (max_page_shift < PMD_SHIFT) 131 return 0; 132 133 if (!arch_vmap_pmd_supported(prot)) 134 return 0; 135 136 if ((end - addr) != PMD_SIZE) 137 return 0; 138 139 if (!IS_ALIGNED(addr, PMD_SIZE)) 140 return 0; 141 142 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 143 return 0; 144 145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 146 return 0; 147 148 return pmd_set_huge(pmd, phys_addr, prot); 149 } 150 151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 152 phys_addr_t phys_addr, pgprot_t prot, 153 unsigned int max_page_shift, pgtbl_mod_mask *mask) 154 { 155 pmd_t *pmd; 156 unsigned long next; 157 158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 159 if (!pmd) 160 return -ENOMEM; 161 do { 162 next = pmd_addr_end(addr, end); 163 164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 165 max_page_shift)) { 166 *mask |= PGTBL_PMD_MODIFIED; 167 continue; 168 } 169 170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 171 return -ENOMEM; 172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 173 return 0; 174 } 175 176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 177 phys_addr_t phys_addr, pgprot_t prot, 178 unsigned int max_page_shift) 179 { 180 if (max_page_shift < PUD_SHIFT) 181 return 0; 182 183 if (!arch_vmap_pud_supported(prot)) 184 return 0; 185 186 if ((end - addr) != PUD_SIZE) 187 return 0; 188 189 if (!IS_ALIGNED(addr, PUD_SIZE)) 190 return 0; 191 192 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 193 return 0; 194 195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 196 return 0; 197 198 return pud_set_huge(pud, phys_addr, prot); 199 } 200 201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 202 phys_addr_t phys_addr, pgprot_t prot, 203 unsigned int max_page_shift, pgtbl_mod_mask *mask) 204 { 205 pud_t *pud; 206 unsigned long next; 207 208 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 209 if (!pud) 210 return -ENOMEM; 211 do { 212 next = pud_addr_end(addr, end); 213 214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 215 max_page_shift)) { 216 *mask |= PGTBL_PUD_MODIFIED; 217 continue; 218 } 219 220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 221 max_page_shift, mask)) 222 return -ENOMEM; 223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 224 return 0; 225 } 226 227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 228 phys_addr_t phys_addr, pgprot_t prot, 229 unsigned int max_page_shift) 230 { 231 if (max_page_shift < P4D_SHIFT) 232 return 0; 233 234 if (!arch_vmap_p4d_supported(prot)) 235 return 0; 236 237 if ((end - addr) != P4D_SIZE) 238 return 0; 239 240 if (!IS_ALIGNED(addr, P4D_SIZE)) 241 return 0; 242 243 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 244 return 0; 245 246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 247 return 0; 248 249 return p4d_set_huge(p4d, phys_addr, prot); 250 } 251 252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 253 phys_addr_t phys_addr, pgprot_t prot, 254 unsigned int max_page_shift, pgtbl_mod_mask *mask) 255 { 256 p4d_t *p4d; 257 unsigned long next; 258 259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 260 if (!p4d) 261 return -ENOMEM; 262 do { 263 next = p4d_addr_end(addr, end); 264 265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 266 max_page_shift)) { 267 *mask |= PGTBL_P4D_MODIFIED; 268 continue; 269 } 270 271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 272 max_page_shift, mask)) 273 return -ENOMEM; 274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 275 return 0; 276 } 277 278 static int vmap_range_noflush(unsigned long addr, unsigned long end, 279 phys_addr_t phys_addr, pgprot_t prot, 280 unsigned int max_page_shift) 281 { 282 pgd_t *pgd; 283 unsigned long start; 284 unsigned long next; 285 int err; 286 pgtbl_mod_mask mask = 0; 287 288 might_sleep(); 289 BUG_ON(addr >= end); 290 291 start = addr; 292 pgd = pgd_offset_k(addr); 293 do { 294 next = pgd_addr_end(addr, end); 295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 296 max_page_shift, &mask); 297 if (err) 298 break; 299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 300 301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 302 arch_sync_kernel_mappings(start, end); 303 304 return err; 305 } 306 307 int ioremap_page_range(unsigned long addr, unsigned long end, 308 phys_addr_t phys_addr, pgprot_t prot) 309 { 310 int err; 311 312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 313 ioremap_max_page_shift); 314 flush_cache_vmap(addr, end); 315 if (!err) 316 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, 317 ioremap_max_page_shift); 318 return err; 319 } 320 321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 322 pgtbl_mod_mask *mask) 323 { 324 pte_t *pte; 325 326 pte = pte_offset_kernel(pmd, addr); 327 do { 328 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 329 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 330 } while (pte++, addr += PAGE_SIZE, addr != end); 331 *mask |= PGTBL_PTE_MODIFIED; 332 } 333 334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 335 pgtbl_mod_mask *mask) 336 { 337 pmd_t *pmd; 338 unsigned long next; 339 int cleared; 340 341 pmd = pmd_offset(pud, addr); 342 do { 343 next = pmd_addr_end(addr, end); 344 345 cleared = pmd_clear_huge(pmd); 346 if (cleared || pmd_bad(*pmd)) 347 *mask |= PGTBL_PMD_MODIFIED; 348 349 if (cleared) 350 continue; 351 if (pmd_none_or_clear_bad(pmd)) 352 continue; 353 vunmap_pte_range(pmd, addr, next, mask); 354 355 cond_resched(); 356 } while (pmd++, addr = next, addr != end); 357 } 358 359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 360 pgtbl_mod_mask *mask) 361 { 362 pud_t *pud; 363 unsigned long next; 364 int cleared; 365 366 pud = pud_offset(p4d, addr); 367 do { 368 next = pud_addr_end(addr, end); 369 370 cleared = pud_clear_huge(pud); 371 if (cleared || pud_bad(*pud)) 372 *mask |= PGTBL_PUD_MODIFIED; 373 374 if (cleared) 375 continue; 376 if (pud_none_or_clear_bad(pud)) 377 continue; 378 vunmap_pmd_range(pud, addr, next, mask); 379 } while (pud++, addr = next, addr != end); 380 } 381 382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 383 pgtbl_mod_mask *mask) 384 { 385 p4d_t *p4d; 386 unsigned long next; 387 388 p4d = p4d_offset(pgd, addr); 389 do { 390 next = p4d_addr_end(addr, end); 391 392 p4d_clear_huge(p4d); 393 if (p4d_bad(*p4d)) 394 *mask |= PGTBL_P4D_MODIFIED; 395 396 if (p4d_none_or_clear_bad(p4d)) 397 continue; 398 vunmap_pud_range(p4d, addr, next, mask); 399 } while (p4d++, addr = next, addr != end); 400 } 401 402 /* 403 * vunmap_range_noflush is similar to vunmap_range, but does not 404 * flush caches or TLBs. 405 * 406 * The caller is responsible for calling flush_cache_vmap() before calling 407 * this function, and flush_tlb_kernel_range after it has returned 408 * successfully (and before the addresses are expected to cause a page fault 409 * or be re-mapped for something else, if TLB flushes are being delayed or 410 * coalesced). 411 * 412 * This is an internal function only. Do not use outside mm/. 413 */ 414 void __vunmap_range_noflush(unsigned long start, unsigned long end) 415 { 416 unsigned long next; 417 pgd_t *pgd; 418 unsigned long addr = start; 419 pgtbl_mod_mask mask = 0; 420 421 BUG_ON(addr >= end); 422 pgd = pgd_offset_k(addr); 423 do { 424 next = pgd_addr_end(addr, end); 425 if (pgd_bad(*pgd)) 426 mask |= PGTBL_PGD_MODIFIED; 427 if (pgd_none_or_clear_bad(pgd)) 428 continue; 429 vunmap_p4d_range(pgd, addr, next, &mask); 430 } while (pgd++, addr = next, addr != end); 431 432 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 433 arch_sync_kernel_mappings(start, end); 434 } 435 436 void vunmap_range_noflush(unsigned long start, unsigned long end) 437 { 438 kmsan_vunmap_range_noflush(start, end); 439 __vunmap_range_noflush(start, end); 440 } 441 442 /** 443 * vunmap_range - unmap kernel virtual addresses 444 * @addr: start of the VM area to unmap 445 * @end: end of the VM area to unmap (non-inclusive) 446 * 447 * Clears any present PTEs in the virtual address range, flushes TLBs and 448 * caches. Any subsequent access to the address before it has been re-mapped 449 * is a kernel bug. 450 */ 451 void vunmap_range(unsigned long addr, unsigned long end) 452 { 453 flush_cache_vunmap(addr, end); 454 vunmap_range_noflush(addr, end); 455 flush_tlb_kernel_range(addr, end); 456 } 457 458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 459 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 460 pgtbl_mod_mask *mask) 461 { 462 pte_t *pte; 463 464 /* 465 * nr is a running index into the array which helps higher level 466 * callers keep track of where we're up to. 467 */ 468 469 pte = pte_alloc_kernel_track(pmd, addr, mask); 470 if (!pte) 471 return -ENOMEM; 472 do { 473 struct page *page = pages[*nr]; 474 475 if (WARN_ON(!pte_none(*pte))) 476 return -EBUSY; 477 if (WARN_ON(!page)) 478 return -ENOMEM; 479 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 480 return -EINVAL; 481 482 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 483 (*nr)++; 484 } while (pte++, addr += PAGE_SIZE, addr != end); 485 *mask |= PGTBL_PTE_MODIFIED; 486 return 0; 487 } 488 489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 490 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 491 pgtbl_mod_mask *mask) 492 { 493 pmd_t *pmd; 494 unsigned long next; 495 496 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 497 if (!pmd) 498 return -ENOMEM; 499 do { 500 next = pmd_addr_end(addr, end); 501 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 502 return -ENOMEM; 503 } while (pmd++, addr = next, addr != end); 504 return 0; 505 } 506 507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 508 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 509 pgtbl_mod_mask *mask) 510 { 511 pud_t *pud; 512 unsigned long next; 513 514 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 515 if (!pud) 516 return -ENOMEM; 517 do { 518 next = pud_addr_end(addr, end); 519 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 520 return -ENOMEM; 521 } while (pud++, addr = next, addr != end); 522 return 0; 523 } 524 525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 526 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 527 pgtbl_mod_mask *mask) 528 { 529 p4d_t *p4d; 530 unsigned long next; 531 532 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 533 if (!p4d) 534 return -ENOMEM; 535 do { 536 next = p4d_addr_end(addr, end); 537 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 538 return -ENOMEM; 539 } while (p4d++, addr = next, addr != end); 540 return 0; 541 } 542 543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 544 pgprot_t prot, struct page **pages) 545 { 546 unsigned long start = addr; 547 pgd_t *pgd; 548 unsigned long next; 549 int err = 0; 550 int nr = 0; 551 pgtbl_mod_mask mask = 0; 552 553 BUG_ON(addr >= end); 554 pgd = pgd_offset_k(addr); 555 do { 556 next = pgd_addr_end(addr, end); 557 if (pgd_bad(*pgd)) 558 mask |= PGTBL_PGD_MODIFIED; 559 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 560 if (err) 561 return err; 562 } while (pgd++, addr = next, addr != end); 563 564 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 565 arch_sync_kernel_mappings(start, end); 566 567 return 0; 568 } 569 570 /* 571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 572 * flush caches. 573 * 574 * The caller is responsible for calling flush_cache_vmap() after this 575 * function returns successfully and before the addresses are accessed. 576 * 577 * This is an internal function only. Do not use outside mm/. 578 */ 579 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 580 pgprot_t prot, struct page **pages, unsigned int page_shift) 581 { 582 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 583 584 WARN_ON(page_shift < PAGE_SHIFT); 585 586 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 587 page_shift == PAGE_SHIFT) 588 return vmap_small_pages_range_noflush(addr, end, prot, pages); 589 590 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 591 int err; 592 593 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 594 page_to_phys(pages[i]), prot, 595 page_shift); 596 if (err) 597 return err; 598 599 addr += 1UL << page_shift; 600 } 601 602 return 0; 603 } 604 605 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 606 pgprot_t prot, struct page **pages, unsigned int page_shift) 607 { 608 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, 609 page_shift); 610 611 if (ret) 612 return ret; 613 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 614 } 615 616 /** 617 * vmap_pages_range - map pages to a kernel virtual address 618 * @addr: start of the VM area to map 619 * @end: end of the VM area to map (non-inclusive) 620 * @prot: page protection flags to use 621 * @pages: pages to map (always PAGE_SIZE pages) 622 * @page_shift: maximum shift that the pages may be mapped with, @pages must 623 * be aligned and contiguous up to at least this shift. 624 * 625 * RETURNS: 626 * 0 on success, -errno on failure. 627 */ 628 static int vmap_pages_range(unsigned long addr, unsigned long end, 629 pgprot_t prot, struct page **pages, unsigned int page_shift) 630 { 631 int err; 632 633 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 634 flush_cache_vmap(addr, end); 635 return err; 636 } 637 638 int is_vmalloc_or_module_addr(const void *x) 639 { 640 /* 641 * ARM, x86-64 and sparc64 put modules in a special place, 642 * and fall back on vmalloc() if that fails. Others 643 * just put it in the vmalloc space. 644 */ 645 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 646 unsigned long addr = (unsigned long)kasan_reset_tag(x); 647 if (addr >= MODULES_VADDR && addr < MODULES_END) 648 return 1; 649 #endif 650 return is_vmalloc_addr(x); 651 } 652 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); 653 654 /* 655 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 656 * return the tail page that corresponds to the base page address, which 657 * matches small vmap mappings. 658 */ 659 struct page *vmalloc_to_page(const void *vmalloc_addr) 660 { 661 unsigned long addr = (unsigned long) vmalloc_addr; 662 struct page *page = NULL; 663 pgd_t *pgd = pgd_offset_k(addr); 664 p4d_t *p4d; 665 pud_t *pud; 666 pmd_t *pmd; 667 pte_t *ptep, pte; 668 669 /* 670 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 671 * architectures that do not vmalloc module space 672 */ 673 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 674 675 if (pgd_none(*pgd)) 676 return NULL; 677 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 678 return NULL; /* XXX: no allowance for huge pgd */ 679 if (WARN_ON_ONCE(pgd_bad(*pgd))) 680 return NULL; 681 682 p4d = p4d_offset(pgd, addr); 683 if (p4d_none(*p4d)) 684 return NULL; 685 if (p4d_leaf(*p4d)) 686 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 687 if (WARN_ON_ONCE(p4d_bad(*p4d))) 688 return NULL; 689 690 pud = pud_offset(p4d, addr); 691 if (pud_none(*pud)) 692 return NULL; 693 if (pud_leaf(*pud)) 694 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 695 if (WARN_ON_ONCE(pud_bad(*pud))) 696 return NULL; 697 698 pmd = pmd_offset(pud, addr); 699 if (pmd_none(*pmd)) 700 return NULL; 701 if (pmd_leaf(*pmd)) 702 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 703 if (WARN_ON_ONCE(pmd_bad(*pmd))) 704 return NULL; 705 706 ptep = pte_offset_map(pmd, addr); 707 pte = *ptep; 708 if (pte_present(pte)) 709 page = pte_page(pte); 710 pte_unmap(ptep); 711 712 return page; 713 } 714 EXPORT_SYMBOL(vmalloc_to_page); 715 716 /* 717 * Map a vmalloc()-space virtual address to the physical page frame number. 718 */ 719 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 720 { 721 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 722 } 723 EXPORT_SYMBOL(vmalloc_to_pfn); 724 725 726 /*** Global kva allocator ***/ 727 728 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 729 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 730 731 732 static DEFINE_SPINLOCK(vmap_area_lock); 733 static DEFINE_SPINLOCK(free_vmap_area_lock); 734 /* Export for kexec only */ 735 LIST_HEAD(vmap_area_list); 736 static struct rb_root vmap_area_root = RB_ROOT; 737 static bool vmap_initialized __read_mostly; 738 739 static struct rb_root purge_vmap_area_root = RB_ROOT; 740 static LIST_HEAD(purge_vmap_area_list); 741 static DEFINE_SPINLOCK(purge_vmap_area_lock); 742 743 /* 744 * This kmem_cache is used for vmap_area objects. Instead of 745 * allocating from slab we reuse an object from this cache to 746 * make things faster. Especially in "no edge" splitting of 747 * free block. 748 */ 749 static struct kmem_cache *vmap_area_cachep; 750 751 /* 752 * This linked list is used in pair with free_vmap_area_root. 753 * It gives O(1) access to prev/next to perform fast coalescing. 754 */ 755 static LIST_HEAD(free_vmap_area_list); 756 757 /* 758 * This augment red-black tree represents the free vmap space. 759 * All vmap_area objects in this tree are sorted by va->va_start 760 * address. It is used for allocation and merging when a vmap 761 * object is released. 762 * 763 * Each vmap_area node contains a maximum available free block 764 * of its sub-tree, right or left. Therefore it is possible to 765 * find a lowest match of free area. 766 */ 767 static struct rb_root free_vmap_area_root = RB_ROOT; 768 769 /* 770 * Preload a CPU with one object for "no edge" split case. The 771 * aim is to get rid of allocations from the atomic context, thus 772 * to use more permissive allocation masks. 773 */ 774 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 775 776 static __always_inline unsigned long 777 va_size(struct vmap_area *va) 778 { 779 return (va->va_end - va->va_start); 780 } 781 782 static __always_inline unsigned long 783 get_subtree_max_size(struct rb_node *node) 784 { 785 struct vmap_area *va; 786 787 va = rb_entry_safe(node, struct vmap_area, rb_node); 788 return va ? va->subtree_max_size : 0; 789 } 790 791 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 792 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 793 794 static void purge_vmap_area_lazy(void); 795 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 796 static void drain_vmap_area_work(struct work_struct *work); 797 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 798 799 static atomic_long_t nr_vmalloc_pages; 800 801 unsigned long vmalloc_nr_pages(void) 802 { 803 return atomic_long_read(&nr_vmalloc_pages); 804 } 805 806 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 807 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 808 { 809 struct vmap_area *va = NULL; 810 struct rb_node *n = vmap_area_root.rb_node; 811 812 addr = (unsigned long)kasan_reset_tag((void *)addr); 813 814 while (n) { 815 struct vmap_area *tmp; 816 817 tmp = rb_entry(n, struct vmap_area, rb_node); 818 if (tmp->va_end > addr) { 819 va = tmp; 820 if (tmp->va_start <= addr) 821 break; 822 823 n = n->rb_left; 824 } else 825 n = n->rb_right; 826 } 827 828 return va; 829 } 830 831 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 832 { 833 struct rb_node *n = root->rb_node; 834 835 addr = (unsigned long)kasan_reset_tag((void *)addr); 836 837 while (n) { 838 struct vmap_area *va; 839 840 va = rb_entry(n, struct vmap_area, rb_node); 841 if (addr < va->va_start) 842 n = n->rb_left; 843 else if (addr >= va->va_end) 844 n = n->rb_right; 845 else 846 return va; 847 } 848 849 return NULL; 850 } 851 852 /* 853 * This function returns back addresses of parent node 854 * and its left or right link for further processing. 855 * 856 * Otherwise NULL is returned. In that case all further 857 * steps regarding inserting of conflicting overlap range 858 * have to be declined and actually considered as a bug. 859 */ 860 static __always_inline struct rb_node ** 861 find_va_links(struct vmap_area *va, 862 struct rb_root *root, struct rb_node *from, 863 struct rb_node **parent) 864 { 865 struct vmap_area *tmp_va; 866 struct rb_node **link; 867 868 if (root) { 869 link = &root->rb_node; 870 if (unlikely(!*link)) { 871 *parent = NULL; 872 return link; 873 } 874 } else { 875 link = &from; 876 } 877 878 /* 879 * Go to the bottom of the tree. When we hit the last point 880 * we end up with parent rb_node and correct direction, i name 881 * it link, where the new va->rb_node will be attached to. 882 */ 883 do { 884 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 885 886 /* 887 * During the traversal we also do some sanity check. 888 * Trigger the BUG() if there are sides(left/right) 889 * or full overlaps. 890 */ 891 if (va->va_end <= tmp_va->va_start) 892 link = &(*link)->rb_left; 893 else if (va->va_start >= tmp_va->va_end) 894 link = &(*link)->rb_right; 895 else { 896 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 897 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 898 899 return NULL; 900 } 901 } while (*link); 902 903 *parent = &tmp_va->rb_node; 904 return link; 905 } 906 907 static __always_inline struct list_head * 908 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 909 { 910 struct list_head *list; 911 912 if (unlikely(!parent)) 913 /* 914 * The red-black tree where we try to find VA neighbors 915 * before merging or inserting is empty, i.e. it means 916 * there is no free vmap space. Normally it does not 917 * happen but we handle this case anyway. 918 */ 919 return NULL; 920 921 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 922 return (&parent->rb_right == link ? list->next : list); 923 } 924 925 static __always_inline void 926 __link_va(struct vmap_area *va, struct rb_root *root, 927 struct rb_node *parent, struct rb_node **link, 928 struct list_head *head, bool augment) 929 { 930 /* 931 * VA is still not in the list, but we can 932 * identify its future previous list_head node. 933 */ 934 if (likely(parent)) { 935 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 936 if (&parent->rb_right != link) 937 head = head->prev; 938 } 939 940 /* Insert to the rb-tree */ 941 rb_link_node(&va->rb_node, parent, link); 942 if (augment) { 943 /* 944 * Some explanation here. Just perform simple insertion 945 * to the tree. We do not set va->subtree_max_size to 946 * its current size before calling rb_insert_augmented(). 947 * It is because we populate the tree from the bottom 948 * to parent levels when the node _is_ in the tree. 949 * 950 * Therefore we set subtree_max_size to zero after insertion, 951 * to let __augment_tree_propagate_from() puts everything to 952 * the correct order later on. 953 */ 954 rb_insert_augmented(&va->rb_node, 955 root, &free_vmap_area_rb_augment_cb); 956 va->subtree_max_size = 0; 957 } else { 958 rb_insert_color(&va->rb_node, root); 959 } 960 961 /* Address-sort this list */ 962 list_add(&va->list, head); 963 } 964 965 static __always_inline void 966 link_va(struct vmap_area *va, struct rb_root *root, 967 struct rb_node *parent, struct rb_node **link, 968 struct list_head *head) 969 { 970 __link_va(va, root, parent, link, head, false); 971 } 972 973 static __always_inline void 974 link_va_augment(struct vmap_area *va, struct rb_root *root, 975 struct rb_node *parent, struct rb_node **link, 976 struct list_head *head) 977 { 978 __link_va(va, root, parent, link, head, true); 979 } 980 981 static __always_inline void 982 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 983 { 984 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 985 return; 986 987 if (augment) 988 rb_erase_augmented(&va->rb_node, 989 root, &free_vmap_area_rb_augment_cb); 990 else 991 rb_erase(&va->rb_node, root); 992 993 list_del_init(&va->list); 994 RB_CLEAR_NODE(&va->rb_node); 995 } 996 997 static __always_inline void 998 unlink_va(struct vmap_area *va, struct rb_root *root) 999 { 1000 __unlink_va(va, root, false); 1001 } 1002 1003 static __always_inline void 1004 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1005 { 1006 __unlink_va(va, root, true); 1007 } 1008 1009 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1010 /* 1011 * Gets called when remove the node and rotate. 1012 */ 1013 static __always_inline unsigned long 1014 compute_subtree_max_size(struct vmap_area *va) 1015 { 1016 return max3(va_size(va), 1017 get_subtree_max_size(va->rb_node.rb_left), 1018 get_subtree_max_size(va->rb_node.rb_right)); 1019 } 1020 1021 static void 1022 augment_tree_propagate_check(void) 1023 { 1024 struct vmap_area *va; 1025 unsigned long computed_size; 1026 1027 list_for_each_entry(va, &free_vmap_area_list, list) { 1028 computed_size = compute_subtree_max_size(va); 1029 if (computed_size != va->subtree_max_size) 1030 pr_emerg("tree is corrupted: %lu, %lu\n", 1031 va_size(va), va->subtree_max_size); 1032 } 1033 } 1034 #endif 1035 1036 /* 1037 * This function populates subtree_max_size from bottom to upper 1038 * levels starting from VA point. The propagation must be done 1039 * when VA size is modified by changing its va_start/va_end. Or 1040 * in case of newly inserting of VA to the tree. 1041 * 1042 * It means that __augment_tree_propagate_from() must be called: 1043 * - After VA has been inserted to the tree(free path); 1044 * - After VA has been shrunk(allocation path); 1045 * - After VA has been increased(merging path). 1046 * 1047 * Please note that, it does not mean that upper parent nodes 1048 * and their subtree_max_size are recalculated all the time up 1049 * to the root node. 1050 * 1051 * 4--8 1052 * /\ 1053 * / \ 1054 * / \ 1055 * 2--2 8--8 1056 * 1057 * For example if we modify the node 4, shrinking it to 2, then 1058 * no any modification is required. If we shrink the node 2 to 1 1059 * its subtree_max_size is updated only, and set to 1. If we shrink 1060 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1061 * node becomes 4--6. 1062 */ 1063 static __always_inline void 1064 augment_tree_propagate_from(struct vmap_area *va) 1065 { 1066 /* 1067 * Populate the tree from bottom towards the root until 1068 * the calculated maximum available size of checked node 1069 * is equal to its current one. 1070 */ 1071 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1072 1073 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1074 augment_tree_propagate_check(); 1075 #endif 1076 } 1077 1078 static void 1079 insert_vmap_area(struct vmap_area *va, 1080 struct rb_root *root, struct list_head *head) 1081 { 1082 struct rb_node **link; 1083 struct rb_node *parent; 1084 1085 link = find_va_links(va, root, NULL, &parent); 1086 if (link) 1087 link_va(va, root, parent, link, head); 1088 } 1089 1090 static void 1091 insert_vmap_area_augment(struct vmap_area *va, 1092 struct rb_node *from, struct rb_root *root, 1093 struct list_head *head) 1094 { 1095 struct rb_node **link; 1096 struct rb_node *parent; 1097 1098 if (from) 1099 link = find_va_links(va, NULL, from, &parent); 1100 else 1101 link = find_va_links(va, root, NULL, &parent); 1102 1103 if (link) { 1104 link_va_augment(va, root, parent, link, head); 1105 augment_tree_propagate_from(va); 1106 } 1107 } 1108 1109 /* 1110 * Merge de-allocated chunk of VA memory with previous 1111 * and next free blocks. If coalesce is not done a new 1112 * free area is inserted. If VA has been merged, it is 1113 * freed. 1114 * 1115 * Please note, it can return NULL in case of overlap 1116 * ranges, followed by WARN() report. Despite it is a 1117 * buggy behaviour, a system can be alive and keep 1118 * ongoing. 1119 */ 1120 static __always_inline struct vmap_area * 1121 __merge_or_add_vmap_area(struct vmap_area *va, 1122 struct rb_root *root, struct list_head *head, bool augment) 1123 { 1124 struct vmap_area *sibling; 1125 struct list_head *next; 1126 struct rb_node **link; 1127 struct rb_node *parent; 1128 bool merged = false; 1129 1130 /* 1131 * Find a place in the tree where VA potentially will be 1132 * inserted, unless it is merged with its sibling/siblings. 1133 */ 1134 link = find_va_links(va, root, NULL, &parent); 1135 if (!link) 1136 return NULL; 1137 1138 /* 1139 * Get next node of VA to check if merging can be done. 1140 */ 1141 next = get_va_next_sibling(parent, link); 1142 if (unlikely(next == NULL)) 1143 goto insert; 1144 1145 /* 1146 * start end 1147 * | | 1148 * |<------VA------>|<-----Next----->| 1149 * | | 1150 * start end 1151 */ 1152 if (next != head) { 1153 sibling = list_entry(next, struct vmap_area, list); 1154 if (sibling->va_start == va->va_end) { 1155 sibling->va_start = va->va_start; 1156 1157 /* Free vmap_area object. */ 1158 kmem_cache_free(vmap_area_cachep, va); 1159 1160 /* Point to the new merged area. */ 1161 va = sibling; 1162 merged = true; 1163 } 1164 } 1165 1166 /* 1167 * start end 1168 * | | 1169 * |<-----Prev----->|<------VA------>| 1170 * | | 1171 * start end 1172 */ 1173 if (next->prev != head) { 1174 sibling = list_entry(next->prev, struct vmap_area, list); 1175 if (sibling->va_end == va->va_start) { 1176 /* 1177 * If both neighbors are coalesced, it is important 1178 * to unlink the "next" node first, followed by merging 1179 * with "previous" one. Otherwise the tree might not be 1180 * fully populated if a sibling's augmented value is 1181 * "normalized" because of rotation operations. 1182 */ 1183 if (merged) 1184 __unlink_va(va, root, augment); 1185 1186 sibling->va_end = va->va_end; 1187 1188 /* Free vmap_area object. */ 1189 kmem_cache_free(vmap_area_cachep, va); 1190 1191 /* Point to the new merged area. */ 1192 va = sibling; 1193 merged = true; 1194 } 1195 } 1196 1197 insert: 1198 if (!merged) 1199 __link_va(va, root, parent, link, head, augment); 1200 1201 return va; 1202 } 1203 1204 static __always_inline struct vmap_area * 1205 merge_or_add_vmap_area(struct vmap_area *va, 1206 struct rb_root *root, struct list_head *head) 1207 { 1208 return __merge_or_add_vmap_area(va, root, head, false); 1209 } 1210 1211 static __always_inline struct vmap_area * 1212 merge_or_add_vmap_area_augment(struct vmap_area *va, 1213 struct rb_root *root, struct list_head *head) 1214 { 1215 va = __merge_or_add_vmap_area(va, root, head, true); 1216 if (va) 1217 augment_tree_propagate_from(va); 1218 1219 return va; 1220 } 1221 1222 static __always_inline bool 1223 is_within_this_va(struct vmap_area *va, unsigned long size, 1224 unsigned long align, unsigned long vstart) 1225 { 1226 unsigned long nva_start_addr; 1227 1228 if (va->va_start > vstart) 1229 nva_start_addr = ALIGN(va->va_start, align); 1230 else 1231 nva_start_addr = ALIGN(vstart, align); 1232 1233 /* Can be overflowed due to big size or alignment. */ 1234 if (nva_start_addr + size < nva_start_addr || 1235 nva_start_addr < vstart) 1236 return false; 1237 1238 return (nva_start_addr + size <= va->va_end); 1239 } 1240 1241 /* 1242 * Find the first free block(lowest start address) in the tree, 1243 * that will accomplish the request corresponding to passing 1244 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1245 * a search length is adjusted to account for worst case alignment 1246 * overhead. 1247 */ 1248 static __always_inline struct vmap_area * 1249 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1250 unsigned long align, unsigned long vstart, bool adjust_search_size) 1251 { 1252 struct vmap_area *va; 1253 struct rb_node *node; 1254 unsigned long length; 1255 1256 /* Start from the root. */ 1257 node = root->rb_node; 1258 1259 /* Adjust the search size for alignment overhead. */ 1260 length = adjust_search_size ? size + align - 1 : size; 1261 1262 while (node) { 1263 va = rb_entry(node, struct vmap_area, rb_node); 1264 1265 if (get_subtree_max_size(node->rb_left) >= length && 1266 vstart < va->va_start) { 1267 node = node->rb_left; 1268 } else { 1269 if (is_within_this_va(va, size, align, vstart)) 1270 return va; 1271 1272 /* 1273 * Does not make sense to go deeper towards the right 1274 * sub-tree if it does not have a free block that is 1275 * equal or bigger to the requested search length. 1276 */ 1277 if (get_subtree_max_size(node->rb_right) >= length) { 1278 node = node->rb_right; 1279 continue; 1280 } 1281 1282 /* 1283 * OK. We roll back and find the first right sub-tree, 1284 * that will satisfy the search criteria. It can happen 1285 * due to "vstart" restriction or an alignment overhead 1286 * that is bigger then PAGE_SIZE. 1287 */ 1288 while ((node = rb_parent(node))) { 1289 va = rb_entry(node, struct vmap_area, rb_node); 1290 if (is_within_this_va(va, size, align, vstart)) 1291 return va; 1292 1293 if (get_subtree_max_size(node->rb_right) >= length && 1294 vstart <= va->va_start) { 1295 /* 1296 * Shift the vstart forward. Please note, we update it with 1297 * parent's start address adding "1" because we do not want 1298 * to enter same sub-tree after it has already been checked 1299 * and no suitable free block found there. 1300 */ 1301 vstart = va->va_start + 1; 1302 node = node->rb_right; 1303 break; 1304 } 1305 } 1306 } 1307 } 1308 1309 return NULL; 1310 } 1311 1312 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1313 #include <linux/random.h> 1314 1315 static struct vmap_area * 1316 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1317 unsigned long align, unsigned long vstart) 1318 { 1319 struct vmap_area *va; 1320 1321 list_for_each_entry(va, head, list) { 1322 if (!is_within_this_va(va, size, align, vstart)) 1323 continue; 1324 1325 return va; 1326 } 1327 1328 return NULL; 1329 } 1330 1331 static void 1332 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1333 unsigned long size, unsigned long align) 1334 { 1335 struct vmap_area *va_1, *va_2; 1336 unsigned long vstart; 1337 unsigned int rnd; 1338 1339 get_random_bytes(&rnd, sizeof(rnd)); 1340 vstart = VMALLOC_START + rnd; 1341 1342 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1343 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1344 1345 if (va_1 != va_2) 1346 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1347 va_1, va_2, vstart); 1348 } 1349 #endif 1350 1351 enum fit_type { 1352 NOTHING_FIT = 0, 1353 FL_FIT_TYPE = 1, /* full fit */ 1354 LE_FIT_TYPE = 2, /* left edge fit */ 1355 RE_FIT_TYPE = 3, /* right edge fit */ 1356 NE_FIT_TYPE = 4 /* no edge fit */ 1357 }; 1358 1359 static __always_inline enum fit_type 1360 classify_va_fit_type(struct vmap_area *va, 1361 unsigned long nva_start_addr, unsigned long size) 1362 { 1363 enum fit_type type; 1364 1365 /* Check if it is within VA. */ 1366 if (nva_start_addr < va->va_start || 1367 nva_start_addr + size > va->va_end) 1368 return NOTHING_FIT; 1369 1370 /* Now classify. */ 1371 if (va->va_start == nva_start_addr) { 1372 if (va->va_end == nva_start_addr + size) 1373 type = FL_FIT_TYPE; 1374 else 1375 type = LE_FIT_TYPE; 1376 } else if (va->va_end == nva_start_addr + size) { 1377 type = RE_FIT_TYPE; 1378 } else { 1379 type = NE_FIT_TYPE; 1380 } 1381 1382 return type; 1383 } 1384 1385 static __always_inline int 1386 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head, 1387 struct vmap_area *va, unsigned long nva_start_addr, 1388 unsigned long size) 1389 { 1390 struct vmap_area *lva = NULL; 1391 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1392 1393 if (type == FL_FIT_TYPE) { 1394 /* 1395 * No need to split VA, it fully fits. 1396 * 1397 * | | 1398 * V NVA V 1399 * |---------------| 1400 */ 1401 unlink_va_augment(va, root); 1402 kmem_cache_free(vmap_area_cachep, va); 1403 } else if (type == LE_FIT_TYPE) { 1404 /* 1405 * Split left edge of fit VA. 1406 * 1407 * | | 1408 * V NVA V R 1409 * |-------|-------| 1410 */ 1411 va->va_start += size; 1412 } else if (type == RE_FIT_TYPE) { 1413 /* 1414 * Split right edge of fit VA. 1415 * 1416 * | | 1417 * L V NVA V 1418 * |-------|-------| 1419 */ 1420 va->va_end = nva_start_addr; 1421 } else if (type == NE_FIT_TYPE) { 1422 /* 1423 * Split no edge of fit VA. 1424 * 1425 * | | 1426 * L V NVA V R 1427 * |---|-------|---| 1428 */ 1429 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1430 if (unlikely(!lva)) { 1431 /* 1432 * For percpu allocator we do not do any pre-allocation 1433 * and leave it as it is. The reason is it most likely 1434 * never ends up with NE_FIT_TYPE splitting. In case of 1435 * percpu allocations offsets and sizes are aligned to 1436 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1437 * are its main fitting cases. 1438 * 1439 * There are a few exceptions though, as an example it is 1440 * a first allocation (early boot up) when we have "one" 1441 * big free space that has to be split. 1442 * 1443 * Also we can hit this path in case of regular "vmap" 1444 * allocations, if "this" current CPU was not preloaded. 1445 * See the comment in alloc_vmap_area() why. If so, then 1446 * GFP_NOWAIT is used instead to get an extra object for 1447 * split purpose. That is rare and most time does not 1448 * occur. 1449 * 1450 * What happens if an allocation gets failed. Basically, 1451 * an "overflow" path is triggered to purge lazily freed 1452 * areas to free some memory, then, the "retry" path is 1453 * triggered to repeat one more time. See more details 1454 * in alloc_vmap_area() function. 1455 */ 1456 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1457 if (!lva) 1458 return -1; 1459 } 1460 1461 /* 1462 * Build the remainder. 1463 */ 1464 lva->va_start = va->va_start; 1465 lva->va_end = nva_start_addr; 1466 1467 /* 1468 * Shrink this VA to remaining size. 1469 */ 1470 va->va_start = nva_start_addr + size; 1471 } else { 1472 return -1; 1473 } 1474 1475 if (type != FL_FIT_TYPE) { 1476 augment_tree_propagate_from(va); 1477 1478 if (lva) /* type == NE_FIT_TYPE */ 1479 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1480 } 1481 1482 return 0; 1483 } 1484 1485 /* 1486 * Returns a start address of the newly allocated area, if success. 1487 * Otherwise a vend is returned that indicates failure. 1488 */ 1489 static __always_inline unsigned long 1490 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1491 unsigned long size, unsigned long align, 1492 unsigned long vstart, unsigned long vend) 1493 { 1494 bool adjust_search_size = true; 1495 unsigned long nva_start_addr; 1496 struct vmap_area *va; 1497 int ret; 1498 1499 /* 1500 * Do not adjust when: 1501 * a) align <= PAGE_SIZE, because it does not make any sense. 1502 * All blocks(their start addresses) are at least PAGE_SIZE 1503 * aligned anyway; 1504 * b) a short range where a requested size corresponds to exactly 1505 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1506 * With adjusted search length an allocation would not succeed. 1507 */ 1508 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1509 adjust_search_size = false; 1510 1511 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1512 if (unlikely(!va)) 1513 return vend; 1514 1515 if (va->va_start > vstart) 1516 nva_start_addr = ALIGN(va->va_start, align); 1517 else 1518 nva_start_addr = ALIGN(vstart, align); 1519 1520 /* Check the "vend" restriction. */ 1521 if (nva_start_addr + size > vend) 1522 return vend; 1523 1524 /* Update the free vmap_area. */ 1525 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size); 1526 if (WARN_ON_ONCE(ret)) 1527 return vend; 1528 1529 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1530 find_vmap_lowest_match_check(root, head, size, align); 1531 #endif 1532 1533 return nva_start_addr; 1534 } 1535 1536 /* 1537 * Free a region of KVA allocated by alloc_vmap_area 1538 */ 1539 static void free_vmap_area(struct vmap_area *va) 1540 { 1541 /* 1542 * Remove from the busy tree/list. 1543 */ 1544 spin_lock(&vmap_area_lock); 1545 unlink_va(va, &vmap_area_root); 1546 spin_unlock(&vmap_area_lock); 1547 1548 /* 1549 * Insert/Merge it back to the free tree/list. 1550 */ 1551 spin_lock(&free_vmap_area_lock); 1552 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1553 spin_unlock(&free_vmap_area_lock); 1554 } 1555 1556 static inline void 1557 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1558 { 1559 struct vmap_area *va = NULL; 1560 1561 /* 1562 * Preload this CPU with one extra vmap_area object. It is used 1563 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1564 * a CPU that does an allocation is preloaded. 1565 * 1566 * We do it in non-atomic context, thus it allows us to use more 1567 * permissive allocation masks to be more stable under low memory 1568 * condition and high memory pressure. 1569 */ 1570 if (!this_cpu_read(ne_fit_preload_node)) 1571 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1572 1573 spin_lock(lock); 1574 1575 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1576 kmem_cache_free(vmap_area_cachep, va); 1577 } 1578 1579 /* 1580 * Allocate a region of KVA of the specified size and alignment, within the 1581 * vstart and vend. 1582 */ 1583 static struct vmap_area *alloc_vmap_area(unsigned long size, 1584 unsigned long align, 1585 unsigned long vstart, unsigned long vend, 1586 int node, gfp_t gfp_mask, 1587 unsigned long va_flags) 1588 { 1589 struct vmap_area *va; 1590 unsigned long freed; 1591 unsigned long addr; 1592 int purged = 0; 1593 int ret; 1594 1595 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) 1596 return ERR_PTR(-EINVAL); 1597 1598 if (unlikely(!vmap_initialized)) 1599 return ERR_PTR(-EBUSY); 1600 1601 might_sleep(); 1602 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1603 1604 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1605 if (unlikely(!va)) 1606 return ERR_PTR(-ENOMEM); 1607 1608 /* 1609 * Only scan the relevant parts containing pointers to other objects 1610 * to avoid false negatives. 1611 */ 1612 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1613 1614 retry: 1615 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1616 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 1617 size, align, vstart, vend); 1618 spin_unlock(&free_vmap_area_lock); 1619 1620 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); 1621 1622 /* 1623 * If an allocation fails, the "vend" address is 1624 * returned. Therefore trigger the overflow path. 1625 */ 1626 if (unlikely(addr == vend)) 1627 goto overflow; 1628 1629 va->va_start = addr; 1630 va->va_end = addr + size; 1631 va->vm = NULL; 1632 va->flags = va_flags; 1633 1634 spin_lock(&vmap_area_lock); 1635 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1636 spin_unlock(&vmap_area_lock); 1637 1638 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1639 BUG_ON(va->va_start < vstart); 1640 BUG_ON(va->va_end > vend); 1641 1642 ret = kasan_populate_vmalloc(addr, size); 1643 if (ret) { 1644 free_vmap_area(va); 1645 return ERR_PTR(ret); 1646 } 1647 1648 return va; 1649 1650 overflow: 1651 if (!purged) { 1652 purge_vmap_area_lazy(); 1653 purged = 1; 1654 goto retry; 1655 } 1656 1657 freed = 0; 1658 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1659 1660 if (freed > 0) { 1661 purged = 0; 1662 goto retry; 1663 } 1664 1665 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1666 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1667 size); 1668 1669 kmem_cache_free(vmap_area_cachep, va); 1670 return ERR_PTR(-EBUSY); 1671 } 1672 1673 int register_vmap_purge_notifier(struct notifier_block *nb) 1674 { 1675 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1676 } 1677 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1678 1679 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1680 { 1681 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1682 } 1683 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1684 1685 /* 1686 * lazy_max_pages is the maximum amount of virtual address space we gather up 1687 * before attempting to purge with a TLB flush. 1688 * 1689 * There is a tradeoff here: a larger number will cover more kernel page tables 1690 * and take slightly longer to purge, but it will linearly reduce the number of 1691 * global TLB flushes that must be performed. It would seem natural to scale 1692 * this number up linearly with the number of CPUs (because vmapping activity 1693 * could also scale linearly with the number of CPUs), however it is likely 1694 * that in practice, workloads might be constrained in other ways that mean 1695 * vmap activity will not scale linearly with CPUs. Also, I want to be 1696 * conservative and not introduce a big latency on huge systems, so go with 1697 * a less aggressive log scale. It will still be an improvement over the old 1698 * code, and it will be simple to change the scale factor if we find that it 1699 * becomes a problem on bigger systems. 1700 */ 1701 static unsigned long lazy_max_pages(void) 1702 { 1703 unsigned int log; 1704 1705 log = fls(num_online_cpus()); 1706 1707 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1708 } 1709 1710 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1711 1712 /* 1713 * Serialize vmap purging. There is no actual critical section protected 1714 * by this lock, but we want to avoid concurrent calls for performance 1715 * reasons and to make the pcpu_get_vm_areas more deterministic. 1716 */ 1717 static DEFINE_MUTEX(vmap_purge_lock); 1718 1719 /* for per-CPU blocks */ 1720 static void purge_fragmented_blocks_allcpus(void); 1721 1722 /* 1723 * Purges all lazily-freed vmap areas. 1724 */ 1725 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1726 { 1727 unsigned long resched_threshold; 1728 unsigned int num_purged_areas = 0; 1729 struct list_head local_purge_list; 1730 struct vmap_area *va, *n_va; 1731 1732 lockdep_assert_held(&vmap_purge_lock); 1733 1734 spin_lock(&purge_vmap_area_lock); 1735 purge_vmap_area_root = RB_ROOT; 1736 list_replace_init(&purge_vmap_area_list, &local_purge_list); 1737 spin_unlock(&purge_vmap_area_lock); 1738 1739 if (unlikely(list_empty(&local_purge_list))) 1740 goto out; 1741 1742 start = min(start, 1743 list_first_entry(&local_purge_list, 1744 struct vmap_area, list)->va_start); 1745 1746 end = max(end, 1747 list_last_entry(&local_purge_list, 1748 struct vmap_area, list)->va_end); 1749 1750 flush_tlb_kernel_range(start, end); 1751 resched_threshold = lazy_max_pages() << 1; 1752 1753 spin_lock(&free_vmap_area_lock); 1754 list_for_each_entry_safe(va, n_va, &local_purge_list, list) { 1755 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1756 unsigned long orig_start = va->va_start; 1757 unsigned long orig_end = va->va_end; 1758 1759 /* 1760 * Finally insert or merge lazily-freed area. It is 1761 * detached and there is no need to "unlink" it from 1762 * anything. 1763 */ 1764 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1765 &free_vmap_area_list); 1766 1767 if (!va) 1768 continue; 1769 1770 if (is_vmalloc_or_module_addr((void *)orig_start)) 1771 kasan_release_vmalloc(orig_start, orig_end, 1772 va->va_start, va->va_end); 1773 1774 atomic_long_sub(nr, &vmap_lazy_nr); 1775 num_purged_areas++; 1776 1777 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1778 cond_resched_lock(&free_vmap_area_lock); 1779 } 1780 spin_unlock(&free_vmap_area_lock); 1781 1782 out: 1783 trace_purge_vmap_area_lazy(start, end, num_purged_areas); 1784 return num_purged_areas > 0; 1785 } 1786 1787 /* 1788 * Kick off a purge of the outstanding lazy areas. 1789 */ 1790 static void purge_vmap_area_lazy(void) 1791 { 1792 mutex_lock(&vmap_purge_lock); 1793 purge_fragmented_blocks_allcpus(); 1794 __purge_vmap_area_lazy(ULONG_MAX, 0); 1795 mutex_unlock(&vmap_purge_lock); 1796 } 1797 1798 static void drain_vmap_area_work(struct work_struct *work) 1799 { 1800 unsigned long nr_lazy; 1801 1802 do { 1803 mutex_lock(&vmap_purge_lock); 1804 __purge_vmap_area_lazy(ULONG_MAX, 0); 1805 mutex_unlock(&vmap_purge_lock); 1806 1807 /* Recheck if further work is required. */ 1808 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1809 } while (nr_lazy > lazy_max_pages()); 1810 } 1811 1812 /* 1813 * Free a vmap area, caller ensuring that the area has been unmapped, 1814 * unlinked and flush_cache_vunmap had been called for the correct 1815 * range previously. 1816 */ 1817 static void free_vmap_area_noflush(struct vmap_area *va) 1818 { 1819 unsigned long nr_lazy_max = lazy_max_pages(); 1820 unsigned long va_start = va->va_start; 1821 unsigned long nr_lazy; 1822 1823 if (WARN_ON_ONCE(!list_empty(&va->list))) 1824 return; 1825 1826 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1827 PAGE_SHIFT, &vmap_lazy_nr); 1828 1829 /* 1830 * Merge or place it to the purge tree/list. 1831 */ 1832 spin_lock(&purge_vmap_area_lock); 1833 merge_or_add_vmap_area(va, 1834 &purge_vmap_area_root, &purge_vmap_area_list); 1835 spin_unlock(&purge_vmap_area_lock); 1836 1837 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); 1838 1839 /* After this point, we may free va at any time */ 1840 if (unlikely(nr_lazy > nr_lazy_max)) 1841 schedule_work(&drain_vmap_work); 1842 } 1843 1844 /* 1845 * Free and unmap a vmap area 1846 */ 1847 static void free_unmap_vmap_area(struct vmap_area *va) 1848 { 1849 flush_cache_vunmap(va->va_start, va->va_end); 1850 vunmap_range_noflush(va->va_start, va->va_end); 1851 if (debug_pagealloc_enabled_static()) 1852 flush_tlb_kernel_range(va->va_start, va->va_end); 1853 1854 free_vmap_area_noflush(va); 1855 } 1856 1857 struct vmap_area *find_vmap_area(unsigned long addr) 1858 { 1859 struct vmap_area *va; 1860 1861 spin_lock(&vmap_area_lock); 1862 va = __find_vmap_area(addr, &vmap_area_root); 1863 spin_unlock(&vmap_area_lock); 1864 1865 return va; 1866 } 1867 1868 static struct vmap_area *find_unlink_vmap_area(unsigned long addr) 1869 { 1870 struct vmap_area *va; 1871 1872 spin_lock(&vmap_area_lock); 1873 va = __find_vmap_area(addr, &vmap_area_root); 1874 if (va) 1875 unlink_va(va, &vmap_area_root); 1876 spin_unlock(&vmap_area_lock); 1877 1878 return va; 1879 } 1880 1881 /*** Per cpu kva allocator ***/ 1882 1883 /* 1884 * vmap space is limited especially on 32 bit architectures. Ensure there is 1885 * room for at least 16 percpu vmap blocks per CPU. 1886 */ 1887 /* 1888 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1889 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1890 * instead (we just need a rough idea) 1891 */ 1892 #if BITS_PER_LONG == 32 1893 #define VMALLOC_SPACE (128UL*1024*1024) 1894 #else 1895 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1896 #endif 1897 1898 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1899 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1900 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1901 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1902 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1903 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1904 #define VMAP_BBMAP_BITS \ 1905 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1906 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1907 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1908 1909 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1910 1911 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ 1912 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ 1913 #define VMAP_FLAGS_MASK 0x3 1914 1915 struct vmap_block_queue { 1916 spinlock_t lock; 1917 struct list_head free; 1918 1919 /* 1920 * An xarray requires an extra memory dynamically to 1921 * be allocated. If it is an issue, we can use rb-tree 1922 * instead. 1923 */ 1924 struct xarray vmap_blocks; 1925 }; 1926 1927 struct vmap_block { 1928 spinlock_t lock; 1929 struct vmap_area *va; 1930 unsigned long free, dirty; 1931 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); 1932 unsigned long dirty_min, dirty_max; /*< dirty range */ 1933 struct list_head free_list; 1934 struct rcu_head rcu_head; 1935 struct list_head purge; 1936 }; 1937 1938 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1939 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1940 1941 /* 1942 * In order to fast access to any "vmap_block" associated with a 1943 * specific address, we use a hash. 1944 * 1945 * A per-cpu vmap_block_queue is used in both ways, to serialize 1946 * an access to free block chains among CPUs(alloc path) and it 1947 * also acts as a vmap_block hash(alloc/free paths). It means we 1948 * overload it, since we already have the per-cpu array which is 1949 * used as a hash table. When used as a hash a 'cpu' passed to 1950 * per_cpu() is not actually a CPU but rather a hash index. 1951 * 1952 * A hash function is addr_to_vb_xa() which hashes any address 1953 * to a specific index(in a hash) it belongs to. This then uses a 1954 * per_cpu() macro to access an array with generated index. 1955 * 1956 * An example: 1957 * 1958 * CPU_1 CPU_2 CPU_0 1959 * | | | 1960 * V V V 1961 * 0 10 20 30 40 50 60 1962 * |------|------|------|------|------|------|...<vmap address space> 1963 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 1964 * 1965 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus 1966 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; 1967 * 1968 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus 1969 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; 1970 * 1971 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus 1972 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. 1973 * 1974 * This technique almost always avoids lock contention on insert/remove, 1975 * however xarray spinlocks protect against any contention that remains. 1976 */ 1977 static struct xarray * 1978 addr_to_vb_xa(unsigned long addr) 1979 { 1980 int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus(); 1981 1982 return &per_cpu(vmap_block_queue, index).vmap_blocks; 1983 } 1984 1985 /* 1986 * We should probably have a fallback mechanism to allocate virtual memory 1987 * out of partially filled vmap blocks. However vmap block sizing should be 1988 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1989 * big problem. 1990 */ 1991 1992 static unsigned long addr_to_vb_idx(unsigned long addr) 1993 { 1994 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1995 addr /= VMAP_BLOCK_SIZE; 1996 return addr; 1997 } 1998 1999 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 2000 { 2001 unsigned long addr; 2002 2003 addr = va_start + (pages_off << PAGE_SHIFT); 2004 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 2005 return (void *)addr; 2006 } 2007 2008 /** 2009 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 2010 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 2011 * @order: how many 2^order pages should be occupied in newly allocated block 2012 * @gfp_mask: flags for the page level allocator 2013 * 2014 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 2015 */ 2016 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 2017 { 2018 struct vmap_block_queue *vbq; 2019 struct vmap_block *vb; 2020 struct vmap_area *va; 2021 struct xarray *xa; 2022 unsigned long vb_idx; 2023 int node, err; 2024 void *vaddr; 2025 2026 node = numa_node_id(); 2027 2028 vb = kmalloc_node(sizeof(struct vmap_block), 2029 gfp_mask & GFP_RECLAIM_MASK, node); 2030 if (unlikely(!vb)) 2031 return ERR_PTR(-ENOMEM); 2032 2033 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 2034 VMALLOC_START, VMALLOC_END, 2035 node, gfp_mask, 2036 VMAP_RAM|VMAP_BLOCK); 2037 if (IS_ERR(va)) { 2038 kfree(vb); 2039 return ERR_CAST(va); 2040 } 2041 2042 vaddr = vmap_block_vaddr(va->va_start, 0); 2043 spin_lock_init(&vb->lock); 2044 vb->va = va; 2045 /* At least something should be left free */ 2046 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 2047 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); 2048 vb->free = VMAP_BBMAP_BITS - (1UL << order); 2049 vb->dirty = 0; 2050 vb->dirty_min = VMAP_BBMAP_BITS; 2051 vb->dirty_max = 0; 2052 bitmap_set(vb->used_map, 0, (1UL << order)); 2053 INIT_LIST_HEAD(&vb->free_list); 2054 2055 xa = addr_to_vb_xa(va->va_start); 2056 vb_idx = addr_to_vb_idx(va->va_start); 2057 err = xa_insert(xa, vb_idx, vb, gfp_mask); 2058 if (err) { 2059 kfree(vb); 2060 free_vmap_area(va); 2061 return ERR_PTR(err); 2062 } 2063 2064 vbq = raw_cpu_ptr(&vmap_block_queue); 2065 spin_lock(&vbq->lock); 2066 list_add_tail_rcu(&vb->free_list, &vbq->free); 2067 spin_unlock(&vbq->lock); 2068 2069 return vaddr; 2070 } 2071 2072 static void free_vmap_block(struct vmap_block *vb) 2073 { 2074 struct vmap_block *tmp; 2075 struct xarray *xa; 2076 2077 xa = addr_to_vb_xa(vb->va->va_start); 2078 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); 2079 BUG_ON(tmp != vb); 2080 2081 spin_lock(&vmap_area_lock); 2082 unlink_va(vb->va, &vmap_area_root); 2083 spin_unlock(&vmap_area_lock); 2084 2085 free_vmap_area_noflush(vb->va); 2086 kfree_rcu(vb, rcu_head); 2087 } 2088 2089 static void purge_fragmented_blocks(int cpu) 2090 { 2091 LIST_HEAD(purge); 2092 struct vmap_block *vb; 2093 struct vmap_block *n_vb; 2094 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2095 2096 rcu_read_lock(); 2097 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2098 2099 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 2100 continue; 2101 2102 spin_lock(&vb->lock); 2103 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 2104 vb->free = 0; /* prevent further allocs after releasing lock */ 2105 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 2106 vb->dirty_min = 0; 2107 vb->dirty_max = VMAP_BBMAP_BITS; 2108 spin_lock(&vbq->lock); 2109 list_del_rcu(&vb->free_list); 2110 spin_unlock(&vbq->lock); 2111 spin_unlock(&vb->lock); 2112 list_add_tail(&vb->purge, &purge); 2113 } else 2114 spin_unlock(&vb->lock); 2115 } 2116 rcu_read_unlock(); 2117 2118 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 2119 list_del(&vb->purge); 2120 free_vmap_block(vb); 2121 } 2122 } 2123 2124 static void purge_fragmented_blocks_allcpus(void) 2125 { 2126 int cpu; 2127 2128 for_each_possible_cpu(cpu) 2129 purge_fragmented_blocks(cpu); 2130 } 2131 2132 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2133 { 2134 struct vmap_block_queue *vbq; 2135 struct vmap_block *vb; 2136 void *vaddr = NULL; 2137 unsigned int order; 2138 2139 BUG_ON(offset_in_page(size)); 2140 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2141 if (WARN_ON(size == 0)) { 2142 /* 2143 * Allocating 0 bytes isn't what caller wants since 2144 * get_order(0) returns funny result. Just warn and terminate 2145 * early. 2146 */ 2147 return NULL; 2148 } 2149 order = get_order(size); 2150 2151 rcu_read_lock(); 2152 vbq = raw_cpu_ptr(&vmap_block_queue); 2153 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2154 unsigned long pages_off; 2155 2156 spin_lock(&vb->lock); 2157 if (vb->free < (1UL << order)) { 2158 spin_unlock(&vb->lock); 2159 continue; 2160 } 2161 2162 pages_off = VMAP_BBMAP_BITS - vb->free; 2163 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2164 vb->free -= 1UL << order; 2165 bitmap_set(vb->used_map, pages_off, (1UL << order)); 2166 if (vb->free == 0) { 2167 spin_lock(&vbq->lock); 2168 list_del_rcu(&vb->free_list); 2169 spin_unlock(&vbq->lock); 2170 } 2171 2172 spin_unlock(&vb->lock); 2173 break; 2174 } 2175 2176 rcu_read_unlock(); 2177 2178 /* Allocate new block if nothing was found */ 2179 if (!vaddr) 2180 vaddr = new_vmap_block(order, gfp_mask); 2181 2182 return vaddr; 2183 } 2184 2185 static void vb_free(unsigned long addr, unsigned long size) 2186 { 2187 unsigned long offset; 2188 unsigned int order; 2189 struct vmap_block *vb; 2190 struct xarray *xa; 2191 2192 BUG_ON(offset_in_page(size)); 2193 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2194 2195 flush_cache_vunmap(addr, addr + size); 2196 2197 order = get_order(size); 2198 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2199 2200 xa = addr_to_vb_xa(addr); 2201 vb = xa_load(xa, addr_to_vb_idx(addr)); 2202 2203 spin_lock(&vb->lock); 2204 bitmap_clear(vb->used_map, offset, (1UL << order)); 2205 spin_unlock(&vb->lock); 2206 2207 vunmap_range_noflush(addr, addr + size); 2208 2209 if (debug_pagealloc_enabled_static()) 2210 flush_tlb_kernel_range(addr, addr + size); 2211 2212 spin_lock(&vb->lock); 2213 2214 /* Expand dirty range */ 2215 vb->dirty_min = min(vb->dirty_min, offset); 2216 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2217 2218 vb->dirty += 1UL << order; 2219 if (vb->dirty == VMAP_BBMAP_BITS) { 2220 BUG_ON(vb->free); 2221 spin_unlock(&vb->lock); 2222 free_vmap_block(vb); 2223 } else 2224 spin_unlock(&vb->lock); 2225 } 2226 2227 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2228 { 2229 int cpu; 2230 2231 if (unlikely(!vmap_initialized)) 2232 return; 2233 2234 might_sleep(); 2235 2236 for_each_possible_cpu(cpu) { 2237 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2238 struct vmap_block *vb; 2239 2240 rcu_read_lock(); 2241 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2242 spin_lock(&vb->lock); 2243 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2244 unsigned long va_start = vb->va->va_start; 2245 unsigned long s, e; 2246 2247 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2248 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2249 2250 start = min(s, start); 2251 end = max(e, end); 2252 2253 flush = 1; 2254 } 2255 spin_unlock(&vb->lock); 2256 } 2257 rcu_read_unlock(); 2258 } 2259 2260 mutex_lock(&vmap_purge_lock); 2261 purge_fragmented_blocks_allcpus(); 2262 if (!__purge_vmap_area_lazy(start, end) && flush) 2263 flush_tlb_kernel_range(start, end); 2264 mutex_unlock(&vmap_purge_lock); 2265 } 2266 2267 /** 2268 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2269 * 2270 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2271 * to amortize TLB flushing overheads. What this means is that any page you 2272 * have now, may, in a former life, have been mapped into kernel virtual 2273 * address by the vmap layer and so there might be some CPUs with TLB entries 2274 * still referencing that page (additional to the regular 1:1 kernel mapping). 2275 * 2276 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2277 * be sure that none of the pages we have control over will have any aliases 2278 * from the vmap layer. 2279 */ 2280 void vm_unmap_aliases(void) 2281 { 2282 unsigned long start = ULONG_MAX, end = 0; 2283 int flush = 0; 2284 2285 _vm_unmap_aliases(start, end, flush); 2286 } 2287 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2288 2289 /** 2290 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2291 * @mem: the pointer returned by vm_map_ram 2292 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2293 */ 2294 void vm_unmap_ram(const void *mem, unsigned int count) 2295 { 2296 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2297 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2298 struct vmap_area *va; 2299 2300 might_sleep(); 2301 BUG_ON(!addr); 2302 BUG_ON(addr < VMALLOC_START); 2303 BUG_ON(addr > VMALLOC_END); 2304 BUG_ON(!PAGE_ALIGNED(addr)); 2305 2306 kasan_poison_vmalloc(mem, size); 2307 2308 if (likely(count <= VMAP_MAX_ALLOC)) { 2309 debug_check_no_locks_freed(mem, size); 2310 vb_free(addr, size); 2311 return; 2312 } 2313 2314 va = find_unlink_vmap_area(addr); 2315 if (WARN_ON_ONCE(!va)) 2316 return; 2317 2318 debug_check_no_locks_freed((void *)va->va_start, 2319 (va->va_end - va->va_start)); 2320 free_unmap_vmap_area(va); 2321 } 2322 EXPORT_SYMBOL(vm_unmap_ram); 2323 2324 /** 2325 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2326 * @pages: an array of pointers to the pages to be mapped 2327 * @count: number of pages 2328 * @node: prefer to allocate data structures on this node 2329 * 2330 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2331 * faster than vmap so it's good. But if you mix long-life and short-life 2332 * objects with vm_map_ram(), it could consume lots of address space through 2333 * fragmentation (especially on a 32bit machine). You could see failures in 2334 * the end. Please use this function for short-lived objects. 2335 * 2336 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2337 */ 2338 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2339 { 2340 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2341 unsigned long addr; 2342 void *mem; 2343 2344 if (likely(count <= VMAP_MAX_ALLOC)) { 2345 mem = vb_alloc(size, GFP_KERNEL); 2346 if (IS_ERR(mem)) 2347 return NULL; 2348 addr = (unsigned long)mem; 2349 } else { 2350 struct vmap_area *va; 2351 va = alloc_vmap_area(size, PAGE_SIZE, 2352 VMALLOC_START, VMALLOC_END, 2353 node, GFP_KERNEL, VMAP_RAM); 2354 if (IS_ERR(va)) 2355 return NULL; 2356 2357 addr = va->va_start; 2358 mem = (void *)addr; 2359 } 2360 2361 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2362 pages, PAGE_SHIFT) < 0) { 2363 vm_unmap_ram(mem, count); 2364 return NULL; 2365 } 2366 2367 /* 2368 * Mark the pages as accessible, now that they are mapped. 2369 * With hardware tag-based KASAN, marking is skipped for 2370 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2371 */ 2372 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2373 2374 return mem; 2375 } 2376 EXPORT_SYMBOL(vm_map_ram); 2377 2378 static struct vm_struct *vmlist __initdata; 2379 2380 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2381 { 2382 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2383 return vm->page_order; 2384 #else 2385 return 0; 2386 #endif 2387 } 2388 2389 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2390 { 2391 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2392 vm->page_order = order; 2393 #else 2394 BUG_ON(order != 0); 2395 #endif 2396 } 2397 2398 /** 2399 * vm_area_add_early - add vmap area early during boot 2400 * @vm: vm_struct to add 2401 * 2402 * This function is used to add fixed kernel vm area to vmlist before 2403 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2404 * should contain proper values and the other fields should be zero. 2405 * 2406 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2407 */ 2408 void __init vm_area_add_early(struct vm_struct *vm) 2409 { 2410 struct vm_struct *tmp, **p; 2411 2412 BUG_ON(vmap_initialized); 2413 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2414 if (tmp->addr >= vm->addr) { 2415 BUG_ON(tmp->addr < vm->addr + vm->size); 2416 break; 2417 } else 2418 BUG_ON(tmp->addr + tmp->size > vm->addr); 2419 } 2420 vm->next = *p; 2421 *p = vm; 2422 } 2423 2424 /** 2425 * vm_area_register_early - register vmap area early during boot 2426 * @vm: vm_struct to register 2427 * @align: requested alignment 2428 * 2429 * This function is used to register kernel vm area before 2430 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2431 * proper values on entry and other fields should be zero. On return, 2432 * vm->addr contains the allocated address. 2433 * 2434 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2435 */ 2436 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2437 { 2438 unsigned long addr = ALIGN(VMALLOC_START, align); 2439 struct vm_struct *cur, **p; 2440 2441 BUG_ON(vmap_initialized); 2442 2443 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2444 if ((unsigned long)cur->addr - addr >= vm->size) 2445 break; 2446 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2447 } 2448 2449 BUG_ON(addr > VMALLOC_END - vm->size); 2450 vm->addr = (void *)addr; 2451 vm->next = *p; 2452 *p = vm; 2453 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2454 } 2455 2456 static void vmap_init_free_space(void) 2457 { 2458 unsigned long vmap_start = 1; 2459 const unsigned long vmap_end = ULONG_MAX; 2460 struct vmap_area *busy, *free; 2461 2462 /* 2463 * B F B B B F 2464 * -|-----|.....|-----|-----|-----|.....|- 2465 * | The KVA space | 2466 * |<--------------------------------->| 2467 */ 2468 list_for_each_entry(busy, &vmap_area_list, list) { 2469 if (busy->va_start - vmap_start > 0) { 2470 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2471 if (!WARN_ON_ONCE(!free)) { 2472 free->va_start = vmap_start; 2473 free->va_end = busy->va_start; 2474 2475 insert_vmap_area_augment(free, NULL, 2476 &free_vmap_area_root, 2477 &free_vmap_area_list); 2478 } 2479 } 2480 2481 vmap_start = busy->va_end; 2482 } 2483 2484 if (vmap_end - vmap_start > 0) { 2485 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2486 if (!WARN_ON_ONCE(!free)) { 2487 free->va_start = vmap_start; 2488 free->va_end = vmap_end; 2489 2490 insert_vmap_area_augment(free, NULL, 2491 &free_vmap_area_root, 2492 &free_vmap_area_list); 2493 } 2494 } 2495 } 2496 2497 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2498 struct vmap_area *va, unsigned long flags, const void *caller) 2499 { 2500 vm->flags = flags; 2501 vm->addr = (void *)va->va_start; 2502 vm->size = va->va_end - va->va_start; 2503 vm->caller = caller; 2504 va->vm = vm; 2505 } 2506 2507 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2508 unsigned long flags, const void *caller) 2509 { 2510 spin_lock(&vmap_area_lock); 2511 setup_vmalloc_vm_locked(vm, va, flags, caller); 2512 spin_unlock(&vmap_area_lock); 2513 } 2514 2515 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2516 { 2517 /* 2518 * Before removing VM_UNINITIALIZED, 2519 * we should make sure that vm has proper values. 2520 * Pair with smp_rmb() in show_numa_info(). 2521 */ 2522 smp_wmb(); 2523 vm->flags &= ~VM_UNINITIALIZED; 2524 } 2525 2526 static struct vm_struct *__get_vm_area_node(unsigned long size, 2527 unsigned long align, unsigned long shift, unsigned long flags, 2528 unsigned long start, unsigned long end, int node, 2529 gfp_t gfp_mask, const void *caller) 2530 { 2531 struct vmap_area *va; 2532 struct vm_struct *area; 2533 unsigned long requested_size = size; 2534 2535 BUG_ON(in_interrupt()); 2536 size = ALIGN(size, 1ul << shift); 2537 if (unlikely(!size)) 2538 return NULL; 2539 2540 if (flags & VM_IOREMAP) 2541 align = 1ul << clamp_t(int, get_count_order_long(size), 2542 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2543 2544 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2545 if (unlikely(!area)) 2546 return NULL; 2547 2548 if (!(flags & VM_NO_GUARD)) 2549 size += PAGE_SIZE; 2550 2551 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0); 2552 if (IS_ERR(va)) { 2553 kfree(area); 2554 return NULL; 2555 } 2556 2557 setup_vmalloc_vm(area, va, flags, caller); 2558 2559 /* 2560 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2561 * best-effort approach, as they can be mapped outside of vmalloc code. 2562 * For VM_ALLOC mappings, the pages are marked as accessible after 2563 * getting mapped in __vmalloc_node_range(). 2564 * With hardware tag-based KASAN, marking is skipped for 2565 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2566 */ 2567 if (!(flags & VM_ALLOC)) 2568 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2569 KASAN_VMALLOC_PROT_NORMAL); 2570 2571 return area; 2572 } 2573 2574 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2575 unsigned long start, unsigned long end, 2576 const void *caller) 2577 { 2578 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2579 NUMA_NO_NODE, GFP_KERNEL, caller); 2580 } 2581 2582 /** 2583 * get_vm_area - reserve a contiguous kernel virtual area 2584 * @size: size of the area 2585 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2586 * 2587 * Search an area of @size in the kernel virtual mapping area, 2588 * and reserved it for out purposes. Returns the area descriptor 2589 * on success or %NULL on failure. 2590 * 2591 * Return: the area descriptor on success or %NULL on failure. 2592 */ 2593 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2594 { 2595 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2596 VMALLOC_START, VMALLOC_END, 2597 NUMA_NO_NODE, GFP_KERNEL, 2598 __builtin_return_address(0)); 2599 } 2600 2601 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2602 const void *caller) 2603 { 2604 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2605 VMALLOC_START, VMALLOC_END, 2606 NUMA_NO_NODE, GFP_KERNEL, caller); 2607 } 2608 2609 /** 2610 * find_vm_area - find a continuous kernel virtual area 2611 * @addr: base address 2612 * 2613 * Search for the kernel VM area starting at @addr, and return it. 2614 * It is up to the caller to do all required locking to keep the returned 2615 * pointer valid. 2616 * 2617 * Return: the area descriptor on success or %NULL on failure. 2618 */ 2619 struct vm_struct *find_vm_area(const void *addr) 2620 { 2621 struct vmap_area *va; 2622 2623 va = find_vmap_area((unsigned long)addr); 2624 if (!va) 2625 return NULL; 2626 2627 return va->vm; 2628 } 2629 2630 /** 2631 * remove_vm_area - find and remove a continuous kernel virtual area 2632 * @addr: base address 2633 * 2634 * Search for the kernel VM area starting at @addr, and remove it. 2635 * This function returns the found VM area, but using it is NOT safe 2636 * on SMP machines, except for its size or flags. 2637 * 2638 * Return: the area descriptor on success or %NULL on failure. 2639 */ 2640 struct vm_struct *remove_vm_area(const void *addr) 2641 { 2642 struct vmap_area *va; 2643 struct vm_struct *vm; 2644 2645 might_sleep(); 2646 2647 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2648 addr)) 2649 return NULL; 2650 2651 va = find_unlink_vmap_area((unsigned long)addr); 2652 if (!va || !va->vm) 2653 return NULL; 2654 vm = va->vm; 2655 2656 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); 2657 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); 2658 kasan_free_module_shadow(vm); 2659 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); 2660 2661 free_unmap_vmap_area(va); 2662 return vm; 2663 } 2664 2665 static inline void set_area_direct_map(const struct vm_struct *area, 2666 int (*set_direct_map)(struct page *page)) 2667 { 2668 int i; 2669 2670 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2671 for (i = 0; i < area->nr_pages; i++) 2672 if (page_address(area->pages[i])) 2673 set_direct_map(area->pages[i]); 2674 } 2675 2676 /* 2677 * Flush the vm mapping and reset the direct map. 2678 */ 2679 static void vm_reset_perms(struct vm_struct *area) 2680 { 2681 unsigned long start = ULONG_MAX, end = 0; 2682 unsigned int page_order = vm_area_page_order(area); 2683 int flush_dmap = 0; 2684 int i; 2685 2686 /* 2687 * Find the start and end range of the direct mappings to make sure that 2688 * the vm_unmap_aliases() flush includes the direct map. 2689 */ 2690 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2691 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2692 2693 if (addr) { 2694 unsigned long page_size; 2695 2696 page_size = PAGE_SIZE << page_order; 2697 start = min(addr, start); 2698 end = max(addr + page_size, end); 2699 flush_dmap = 1; 2700 } 2701 } 2702 2703 /* 2704 * Set direct map to something invalid so that it won't be cached if 2705 * there are any accesses after the TLB flush, then flush the TLB and 2706 * reset the direct map permissions to the default. 2707 */ 2708 set_area_direct_map(area, set_direct_map_invalid_noflush); 2709 _vm_unmap_aliases(start, end, flush_dmap); 2710 set_area_direct_map(area, set_direct_map_default_noflush); 2711 } 2712 2713 static void delayed_vfree_work(struct work_struct *w) 2714 { 2715 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 2716 struct llist_node *t, *llnode; 2717 2718 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 2719 vfree(llnode); 2720 } 2721 2722 /** 2723 * vfree_atomic - release memory allocated by vmalloc() 2724 * @addr: memory base address 2725 * 2726 * This one is just like vfree() but can be called in any atomic context 2727 * except NMIs. 2728 */ 2729 void vfree_atomic(const void *addr) 2730 { 2731 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2732 2733 BUG_ON(in_nmi()); 2734 kmemleak_free(addr); 2735 2736 /* 2737 * Use raw_cpu_ptr() because this can be called from preemptible 2738 * context. Preemption is absolutely fine here, because the llist_add() 2739 * implementation is lockless, so it works even if we are adding to 2740 * another cpu's list. schedule_work() should be fine with this too. 2741 */ 2742 if (addr && llist_add((struct llist_node *)addr, &p->list)) 2743 schedule_work(&p->wq); 2744 } 2745 2746 /** 2747 * vfree - Release memory allocated by vmalloc() 2748 * @addr: Memory base address 2749 * 2750 * Free the virtually continuous memory area starting at @addr, as obtained 2751 * from one of the vmalloc() family of APIs. This will usually also free the 2752 * physical memory underlying the virtual allocation, but that memory is 2753 * reference counted, so it will not be freed until the last user goes away. 2754 * 2755 * If @addr is NULL, no operation is performed. 2756 * 2757 * Context: 2758 * May sleep if called *not* from interrupt context. 2759 * Must not be called in NMI context (strictly speaking, it could be 2760 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2761 * conventions for vfree() arch-dependent would be a really bad idea). 2762 */ 2763 void vfree(const void *addr) 2764 { 2765 struct vm_struct *vm; 2766 int i; 2767 2768 if (unlikely(in_interrupt())) { 2769 vfree_atomic(addr); 2770 return; 2771 } 2772 2773 BUG_ON(in_nmi()); 2774 kmemleak_free(addr); 2775 might_sleep(); 2776 2777 if (!addr) 2778 return; 2779 2780 vm = remove_vm_area(addr); 2781 if (unlikely(!vm)) { 2782 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2783 addr); 2784 return; 2785 } 2786 2787 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) 2788 vm_reset_perms(vm); 2789 for (i = 0; i < vm->nr_pages; i++) { 2790 struct page *page = vm->pages[i]; 2791 2792 BUG_ON(!page); 2793 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 2794 /* 2795 * High-order allocs for huge vmallocs are split, so 2796 * can be freed as an array of order-0 allocations 2797 */ 2798 __free_page(page); 2799 cond_resched(); 2800 } 2801 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); 2802 kvfree(vm->pages); 2803 kfree(vm); 2804 } 2805 EXPORT_SYMBOL(vfree); 2806 2807 /** 2808 * vunmap - release virtual mapping obtained by vmap() 2809 * @addr: memory base address 2810 * 2811 * Free the virtually contiguous memory area starting at @addr, 2812 * which was created from the page array passed to vmap(). 2813 * 2814 * Must not be called in interrupt context. 2815 */ 2816 void vunmap(const void *addr) 2817 { 2818 struct vm_struct *vm; 2819 2820 BUG_ON(in_interrupt()); 2821 might_sleep(); 2822 2823 if (!addr) 2824 return; 2825 vm = remove_vm_area(addr); 2826 if (unlikely(!vm)) { 2827 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", 2828 addr); 2829 return; 2830 } 2831 kfree(vm); 2832 } 2833 EXPORT_SYMBOL(vunmap); 2834 2835 /** 2836 * vmap - map an array of pages into virtually contiguous space 2837 * @pages: array of page pointers 2838 * @count: number of pages to map 2839 * @flags: vm_area->flags 2840 * @prot: page protection for the mapping 2841 * 2842 * Maps @count pages from @pages into contiguous kernel virtual space. 2843 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2844 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2845 * are transferred from the caller to vmap(), and will be freed / dropped when 2846 * vfree() is called on the return value. 2847 * 2848 * Return: the address of the area or %NULL on failure 2849 */ 2850 void *vmap(struct page **pages, unsigned int count, 2851 unsigned long flags, pgprot_t prot) 2852 { 2853 struct vm_struct *area; 2854 unsigned long addr; 2855 unsigned long size; /* In bytes */ 2856 2857 might_sleep(); 2858 2859 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) 2860 return NULL; 2861 2862 /* 2863 * Your top guard is someone else's bottom guard. Not having a top 2864 * guard compromises someone else's mappings too. 2865 */ 2866 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2867 flags &= ~VM_NO_GUARD; 2868 2869 if (count > totalram_pages()) 2870 return NULL; 2871 2872 size = (unsigned long)count << PAGE_SHIFT; 2873 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2874 if (!area) 2875 return NULL; 2876 2877 addr = (unsigned long)area->addr; 2878 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2879 pages, PAGE_SHIFT) < 0) { 2880 vunmap(area->addr); 2881 return NULL; 2882 } 2883 2884 if (flags & VM_MAP_PUT_PAGES) { 2885 area->pages = pages; 2886 area->nr_pages = count; 2887 } 2888 return area->addr; 2889 } 2890 EXPORT_SYMBOL(vmap); 2891 2892 #ifdef CONFIG_VMAP_PFN 2893 struct vmap_pfn_data { 2894 unsigned long *pfns; 2895 pgprot_t prot; 2896 unsigned int idx; 2897 }; 2898 2899 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2900 { 2901 struct vmap_pfn_data *data = private; 2902 2903 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2904 return -EINVAL; 2905 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2906 return 0; 2907 } 2908 2909 /** 2910 * vmap_pfn - map an array of PFNs into virtually contiguous space 2911 * @pfns: array of PFNs 2912 * @count: number of pages to map 2913 * @prot: page protection for the mapping 2914 * 2915 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2916 * the start address of the mapping. 2917 */ 2918 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2919 { 2920 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2921 struct vm_struct *area; 2922 2923 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2924 __builtin_return_address(0)); 2925 if (!area) 2926 return NULL; 2927 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2928 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2929 free_vm_area(area); 2930 return NULL; 2931 } 2932 return area->addr; 2933 } 2934 EXPORT_SYMBOL_GPL(vmap_pfn); 2935 #endif /* CONFIG_VMAP_PFN */ 2936 2937 static inline unsigned int 2938 vm_area_alloc_pages(gfp_t gfp, int nid, 2939 unsigned int order, unsigned int nr_pages, struct page **pages) 2940 { 2941 unsigned int nr_allocated = 0; 2942 gfp_t alloc_gfp = gfp; 2943 bool nofail = false; 2944 struct page *page; 2945 int i; 2946 2947 /* 2948 * For order-0 pages we make use of bulk allocator, if 2949 * the page array is partly or not at all populated due 2950 * to fails, fallback to a single page allocator that is 2951 * more permissive. 2952 */ 2953 if (!order) { 2954 /* bulk allocator doesn't support nofail req. officially */ 2955 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2956 2957 while (nr_allocated < nr_pages) { 2958 unsigned int nr, nr_pages_request; 2959 2960 /* 2961 * A maximum allowed request is hard-coded and is 100 2962 * pages per call. That is done in order to prevent a 2963 * long preemption off scenario in the bulk-allocator 2964 * so the range is [1:100]. 2965 */ 2966 nr_pages_request = min(100U, nr_pages - nr_allocated); 2967 2968 /* memory allocation should consider mempolicy, we can't 2969 * wrongly use nearest node when nid == NUMA_NO_NODE, 2970 * otherwise memory may be allocated in only one node, 2971 * but mempolicy wants to alloc memory by interleaving. 2972 */ 2973 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2974 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2975 nr_pages_request, 2976 pages + nr_allocated); 2977 2978 else 2979 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2980 nr_pages_request, 2981 pages + nr_allocated); 2982 2983 nr_allocated += nr; 2984 cond_resched(); 2985 2986 /* 2987 * If zero or pages were obtained partly, 2988 * fallback to a single page allocator. 2989 */ 2990 if (nr != nr_pages_request) 2991 break; 2992 } 2993 } else if (gfp & __GFP_NOFAIL) { 2994 /* 2995 * Higher order nofail allocations are really expensive and 2996 * potentially dangerous (pre-mature OOM, disruptive reclaim 2997 * and compaction etc. 2998 */ 2999 alloc_gfp &= ~__GFP_NOFAIL; 3000 nofail = true; 3001 } 3002 3003 /* High-order pages or fallback path if "bulk" fails. */ 3004 while (nr_allocated < nr_pages) { 3005 if (fatal_signal_pending(current)) 3006 break; 3007 3008 if (nid == NUMA_NO_NODE) 3009 page = alloc_pages(alloc_gfp, order); 3010 else 3011 page = alloc_pages_node(nid, alloc_gfp, order); 3012 if (unlikely(!page)) { 3013 if (!nofail) 3014 break; 3015 3016 /* fall back to the zero order allocations */ 3017 alloc_gfp |= __GFP_NOFAIL; 3018 order = 0; 3019 continue; 3020 } 3021 3022 /* 3023 * Higher order allocations must be able to be treated as 3024 * indepdenent small pages by callers (as they can with 3025 * small-page vmallocs). Some drivers do their own refcounting 3026 * on vmalloc_to_page() pages, some use page->mapping, 3027 * page->lru, etc. 3028 */ 3029 if (order) 3030 split_page(page, order); 3031 3032 /* 3033 * Careful, we allocate and map page-order pages, but 3034 * tracking is done per PAGE_SIZE page so as to keep the 3035 * vm_struct APIs independent of the physical/mapped size. 3036 */ 3037 for (i = 0; i < (1U << order); i++) 3038 pages[nr_allocated + i] = page + i; 3039 3040 cond_resched(); 3041 nr_allocated += 1U << order; 3042 } 3043 3044 return nr_allocated; 3045 } 3046 3047 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 3048 pgprot_t prot, unsigned int page_shift, 3049 int node) 3050 { 3051 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 3052 bool nofail = gfp_mask & __GFP_NOFAIL; 3053 unsigned long addr = (unsigned long)area->addr; 3054 unsigned long size = get_vm_area_size(area); 3055 unsigned long array_size; 3056 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3057 unsigned int page_order; 3058 unsigned int flags; 3059 int ret; 3060 3061 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3062 3063 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3064 gfp_mask |= __GFP_HIGHMEM; 3065 3066 /* Please note that the recursion is strictly bounded. */ 3067 if (array_size > PAGE_SIZE) { 3068 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 3069 area->caller); 3070 } else { 3071 area->pages = kmalloc_node(array_size, nested_gfp, node); 3072 } 3073 3074 if (!area->pages) { 3075 warn_alloc(gfp_mask, NULL, 3076 "vmalloc error: size %lu, failed to allocated page array size %lu", 3077 nr_small_pages * PAGE_SIZE, array_size); 3078 free_vm_area(area); 3079 return NULL; 3080 } 3081 3082 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3083 page_order = vm_area_page_order(area); 3084 3085 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 3086 node, page_order, nr_small_pages, area->pages); 3087 3088 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3089 if (gfp_mask & __GFP_ACCOUNT) { 3090 int i; 3091 3092 for (i = 0; i < area->nr_pages; i++) 3093 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3094 } 3095 3096 /* 3097 * If not enough pages were obtained to accomplish an 3098 * allocation request, free them via vfree() if any. 3099 */ 3100 if (area->nr_pages != nr_small_pages) { 3101 /* 3102 * vm_area_alloc_pages() can fail due to insufficient memory but 3103 * also:- 3104 * 3105 * - a pending fatal signal 3106 * - insufficient huge page-order pages 3107 * 3108 * Since we always retry allocations at order-0 in the huge page 3109 * case a warning for either is spurious. 3110 */ 3111 if (!fatal_signal_pending(current) && page_order == 0) 3112 warn_alloc(gfp_mask, NULL, 3113 "vmalloc error: size %lu, failed to allocate pages", 3114 area->nr_pages * PAGE_SIZE); 3115 goto fail; 3116 } 3117 3118 /* 3119 * page tables allocations ignore external gfp mask, enforce it 3120 * by the scope API 3121 */ 3122 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3123 flags = memalloc_nofs_save(); 3124 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3125 flags = memalloc_noio_save(); 3126 3127 do { 3128 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3129 page_shift); 3130 if (nofail && (ret < 0)) 3131 schedule_timeout_uninterruptible(1); 3132 } while (nofail && (ret < 0)); 3133 3134 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3135 memalloc_nofs_restore(flags); 3136 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3137 memalloc_noio_restore(flags); 3138 3139 if (ret < 0) { 3140 warn_alloc(gfp_mask, NULL, 3141 "vmalloc error: size %lu, failed to map pages", 3142 area->nr_pages * PAGE_SIZE); 3143 goto fail; 3144 } 3145 3146 return area->addr; 3147 3148 fail: 3149 vfree(area->addr); 3150 return NULL; 3151 } 3152 3153 /** 3154 * __vmalloc_node_range - allocate virtually contiguous memory 3155 * @size: allocation size 3156 * @align: desired alignment 3157 * @start: vm area range start 3158 * @end: vm area range end 3159 * @gfp_mask: flags for the page level allocator 3160 * @prot: protection mask for the allocated pages 3161 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3162 * @node: node to use for allocation or NUMA_NO_NODE 3163 * @caller: caller's return address 3164 * 3165 * Allocate enough pages to cover @size from the page level 3166 * allocator with @gfp_mask flags. Please note that the full set of gfp 3167 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3168 * supported. 3169 * Zone modifiers are not supported. From the reclaim modifiers 3170 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3171 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3172 * __GFP_RETRY_MAYFAIL are not supported). 3173 * 3174 * __GFP_NOWARN can be used to suppress failures messages. 3175 * 3176 * Map them into contiguous kernel virtual space, using a pagetable 3177 * protection of @prot. 3178 * 3179 * Return: the address of the area or %NULL on failure 3180 */ 3181 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3182 unsigned long start, unsigned long end, gfp_t gfp_mask, 3183 pgprot_t prot, unsigned long vm_flags, int node, 3184 const void *caller) 3185 { 3186 struct vm_struct *area; 3187 void *ret; 3188 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3189 unsigned long real_size = size; 3190 unsigned long real_align = align; 3191 unsigned int shift = PAGE_SHIFT; 3192 3193 if (WARN_ON_ONCE(!size)) 3194 return NULL; 3195 3196 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3197 warn_alloc(gfp_mask, NULL, 3198 "vmalloc error: size %lu, exceeds total pages", 3199 real_size); 3200 return NULL; 3201 } 3202 3203 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3204 unsigned long size_per_node; 3205 3206 /* 3207 * Try huge pages. Only try for PAGE_KERNEL allocations, 3208 * others like modules don't yet expect huge pages in 3209 * their allocations due to apply_to_page_range not 3210 * supporting them. 3211 */ 3212 3213 size_per_node = size; 3214 if (node == NUMA_NO_NODE) 3215 size_per_node /= num_online_nodes(); 3216 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3217 shift = PMD_SHIFT; 3218 else 3219 shift = arch_vmap_pte_supported_shift(size_per_node); 3220 3221 align = max(real_align, 1UL << shift); 3222 size = ALIGN(real_size, 1UL << shift); 3223 } 3224 3225 again: 3226 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3227 VM_UNINITIALIZED | vm_flags, start, end, node, 3228 gfp_mask, caller); 3229 if (!area) { 3230 bool nofail = gfp_mask & __GFP_NOFAIL; 3231 warn_alloc(gfp_mask, NULL, 3232 "vmalloc error: size %lu, vm_struct allocation failed%s", 3233 real_size, (nofail) ? ". Retrying." : ""); 3234 if (nofail) { 3235 schedule_timeout_uninterruptible(1); 3236 goto again; 3237 } 3238 goto fail; 3239 } 3240 3241 /* 3242 * Prepare arguments for __vmalloc_area_node() and 3243 * kasan_unpoison_vmalloc(). 3244 */ 3245 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3246 if (kasan_hw_tags_enabled()) { 3247 /* 3248 * Modify protection bits to allow tagging. 3249 * This must be done before mapping. 3250 */ 3251 prot = arch_vmap_pgprot_tagged(prot); 3252 3253 /* 3254 * Skip page_alloc poisoning and zeroing for physical 3255 * pages backing VM_ALLOC mapping. Memory is instead 3256 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3257 */ 3258 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; 3259 } 3260 3261 /* Take note that the mapping is PAGE_KERNEL. */ 3262 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3263 } 3264 3265 /* Allocate physical pages and map them into vmalloc space. */ 3266 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3267 if (!ret) 3268 goto fail; 3269 3270 /* 3271 * Mark the pages as accessible, now that they are mapped. 3272 * The condition for setting KASAN_VMALLOC_INIT should complement the 3273 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3274 * to make sure that memory is initialized under the same conditions. 3275 * Tag-based KASAN modes only assign tags to normal non-executable 3276 * allocations, see __kasan_unpoison_vmalloc(). 3277 */ 3278 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3279 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3280 (gfp_mask & __GFP_SKIP_ZERO)) 3281 kasan_flags |= KASAN_VMALLOC_INIT; 3282 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3283 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3284 3285 /* 3286 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3287 * flag. It means that vm_struct is not fully initialized. 3288 * Now, it is fully initialized, so remove this flag here. 3289 */ 3290 clear_vm_uninitialized_flag(area); 3291 3292 size = PAGE_ALIGN(size); 3293 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3294 kmemleak_vmalloc(area, size, gfp_mask); 3295 3296 return area->addr; 3297 3298 fail: 3299 if (shift > PAGE_SHIFT) { 3300 shift = PAGE_SHIFT; 3301 align = real_align; 3302 size = real_size; 3303 goto again; 3304 } 3305 3306 return NULL; 3307 } 3308 3309 /** 3310 * __vmalloc_node - allocate virtually contiguous memory 3311 * @size: allocation size 3312 * @align: desired alignment 3313 * @gfp_mask: flags for the page level allocator 3314 * @node: node to use for allocation or NUMA_NO_NODE 3315 * @caller: caller's return address 3316 * 3317 * Allocate enough pages to cover @size from the page level allocator with 3318 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3319 * 3320 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3321 * and __GFP_NOFAIL are not supported 3322 * 3323 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3324 * with mm people. 3325 * 3326 * Return: pointer to the allocated memory or %NULL on error 3327 */ 3328 void *__vmalloc_node(unsigned long size, unsigned long align, 3329 gfp_t gfp_mask, int node, const void *caller) 3330 { 3331 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3332 gfp_mask, PAGE_KERNEL, 0, node, caller); 3333 } 3334 /* 3335 * This is only for performance analysis of vmalloc and stress purpose. 3336 * It is required by vmalloc test module, therefore do not use it other 3337 * than that. 3338 */ 3339 #ifdef CONFIG_TEST_VMALLOC_MODULE 3340 EXPORT_SYMBOL_GPL(__vmalloc_node); 3341 #endif 3342 3343 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3344 { 3345 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3346 __builtin_return_address(0)); 3347 } 3348 EXPORT_SYMBOL(__vmalloc); 3349 3350 /** 3351 * vmalloc - allocate virtually contiguous memory 3352 * @size: allocation size 3353 * 3354 * Allocate enough pages to cover @size from the page level 3355 * allocator and map them into contiguous kernel virtual space. 3356 * 3357 * For tight control over page level allocator and protection flags 3358 * use __vmalloc() instead. 3359 * 3360 * Return: pointer to the allocated memory or %NULL on error 3361 */ 3362 void *vmalloc(unsigned long size) 3363 { 3364 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3365 __builtin_return_address(0)); 3366 } 3367 EXPORT_SYMBOL(vmalloc); 3368 3369 /** 3370 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3371 * @size: allocation size 3372 * @gfp_mask: flags for the page level allocator 3373 * 3374 * Allocate enough pages to cover @size from the page level 3375 * allocator and map them into contiguous kernel virtual space. 3376 * If @size is greater than or equal to PMD_SIZE, allow using 3377 * huge pages for the memory 3378 * 3379 * Return: pointer to the allocated memory or %NULL on error 3380 */ 3381 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3382 { 3383 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3384 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3385 NUMA_NO_NODE, __builtin_return_address(0)); 3386 } 3387 EXPORT_SYMBOL_GPL(vmalloc_huge); 3388 3389 /** 3390 * vzalloc - allocate virtually contiguous memory with zero fill 3391 * @size: allocation size 3392 * 3393 * Allocate enough pages to cover @size from the page level 3394 * allocator and map them into contiguous kernel virtual space. 3395 * The memory allocated is set to zero. 3396 * 3397 * For tight control over page level allocator and protection flags 3398 * use __vmalloc() instead. 3399 * 3400 * Return: pointer to the allocated memory or %NULL on error 3401 */ 3402 void *vzalloc(unsigned long size) 3403 { 3404 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3405 __builtin_return_address(0)); 3406 } 3407 EXPORT_SYMBOL(vzalloc); 3408 3409 /** 3410 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3411 * @size: allocation size 3412 * 3413 * The resulting memory area is zeroed so it can be mapped to userspace 3414 * without leaking data. 3415 * 3416 * Return: pointer to the allocated memory or %NULL on error 3417 */ 3418 void *vmalloc_user(unsigned long size) 3419 { 3420 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3421 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3422 VM_USERMAP, NUMA_NO_NODE, 3423 __builtin_return_address(0)); 3424 } 3425 EXPORT_SYMBOL(vmalloc_user); 3426 3427 /** 3428 * vmalloc_node - allocate memory on a specific node 3429 * @size: allocation size 3430 * @node: numa node 3431 * 3432 * Allocate enough pages to cover @size from the page level 3433 * allocator and map them into contiguous kernel virtual space. 3434 * 3435 * For tight control over page level allocator and protection flags 3436 * use __vmalloc() instead. 3437 * 3438 * Return: pointer to the allocated memory or %NULL on error 3439 */ 3440 void *vmalloc_node(unsigned long size, int node) 3441 { 3442 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3443 __builtin_return_address(0)); 3444 } 3445 EXPORT_SYMBOL(vmalloc_node); 3446 3447 /** 3448 * vzalloc_node - allocate memory on a specific node with zero fill 3449 * @size: allocation size 3450 * @node: numa node 3451 * 3452 * Allocate enough pages to cover @size from the page level 3453 * allocator and map them into contiguous kernel virtual space. 3454 * The memory allocated is set to zero. 3455 * 3456 * Return: pointer to the allocated memory or %NULL on error 3457 */ 3458 void *vzalloc_node(unsigned long size, int node) 3459 { 3460 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3461 __builtin_return_address(0)); 3462 } 3463 EXPORT_SYMBOL(vzalloc_node); 3464 3465 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3466 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3467 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3468 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3469 #else 3470 /* 3471 * 64b systems should always have either DMA or DMA32 zones. For others 3472 * GFP_DMA32 should do the right thing and use the normal zone. 3473 */ 3474 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3475 #endif 3476 3477 /** 3478 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3479 * @size: allocation size 3480 * 3481 * Allocate enough 32bit PA addressable pages to cover @size from the 3482 * page level allocator and map them into contiguous kernel virtual space. 3483 * 3484 * Return: pointer to the allocated memory or %NULL on error 3485 */ 3486 void *vmalloc_32(unsigned long size) 3487 { 3488 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3489 __builtin_return_address(0)); 3490 } 3491 EXPORT_SYMBOL(vmalloc_32); 3492 3493 /** 3494 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3495 * @size: allocation size 3496 * 3497 * The resulting memory area is 32bit addressable and zeroed so it can be 3498 * mapped to userspace without leaking data. 3499 * 3500 * Return: pointer to the allocated memory or %NULL on error 3501 */ 3502 void *vmalloc_32_user(unsigned long size) 3503 { 3504 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3505 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3506 VM_USERMAP, NUMA_NO_NODE, 3507 __builtin_return_address(0)); 3508 } 3509 EXPORT_SYMBOL(vmalloc_32_user); 3510 3511 /* 3512 * Atomically zero bytes in the iterator. 3513 * 3514 * Returns the number of zeroed bytes. 3515 */ 3516 static size_t zero_iter(struct iov_iter *iter, size_t count) 3517 { 3518 size_t remains = count; 3519 3520 while (remains > 0) { 3521 size_t num, copied; 3522 3523 num = remains < PAGE_SIZE ? remains : PAGE_SIZE; 3524 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); 3525 remains -= copied; 3526 3527 if (copied < num) 3528 break; 3529 } 3530 3531 return count - remains; 3532 } 3533 3534 /* 3535 * small helper routine, copy contents to iter from addr. 3536 * If the page is not present, fill zero. 3537 * 3538 * Returns the number of copied bytes. 3539 */ 3540 static size_t aligned_vread_iter(struct iov_iter *iter, 3541 const char *addr, size_t count) 3542 { 3543 size_t remains = count; 3544 struct page *page; 3545 3546 while (remains > 0) { 3547 unsigned long offset, length; 3548 size_t copied = 0; 3549 3550 offset = offset_in_page(addr); 3551 length = PAGE_SIZE - offset; 3552 if (length > remains) 3553 length = remains; 3554 page = vmalloc_to_page(addr); 3555 /* 3556 * To do safe access to this _mapped_ area, we need lock. But 3557 * adding lock here means that we need to add overhead of 3558 * vmalloc()/vfree() calls for this _debug_ interface, rarely 3559 * used. Instead of that, we'll use an local mapping via 3560 * copy_page_to_iter_nofault() and accept a small overhead in 3561 * this access function. 3562 */ 3563 if (page) 3564 copied = copy_page_to_iter_nofault(page, offset, 3565 length, iter); 3566 else 3567 copied = zero_iter(iter, length); 3568 3569 addr += copied; 3570 remains -= copied; 3571 3572 if (copied != length) 3573 break; 3574 } 3575 3576 return count - remains; 3577 } 3578 3579 /* 3580 * Read from a vm_map_ram region of memory. 3581 * 3582 * Returns the number of copied bytes. 3583 */ 3584 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, 3585 size_t count, unsigned long flags) 3586 { 3587 char *start; 3588 struct vmap_block *vb; 3589 struct xarray *xa; 3590 unsigned long offset; 3591 unsigned int rs, re; 3592 size_t remains, n; 3593 3594 /* 3595 * If it's area created by vm_map_ram() interface directly, but 3596 * not further subdividing and delegating management to vmap_block, 3597 * handle it here. 3598 */ 3599 if (!(flags & VMAP_BLOCK)) 3600 return aligned_vread_iter(iter, addr, count); 3601 3602 remains = count; 3603 3604 /* 3605 * Area is split into regions and tracked with vmap_block, read out 3606 * each region and zero fill the hole between regions. 3607 */ 3608 xa = addr_to_vb_xa((unsigned long) addr); 3609 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); 3610 if (!vb) 3611 goto finished_zero; 3612 3613 spin_lock(&vb->lock); 3614 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { 3615 spin_unlock(&vb->lock); 3616 goto finished_zero; 3617 } 3618 3619 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { 3620 size_t copied; 3621 3622 if (remains == 0) 3623 goto finished; 3624 3625 start = vmap_block_vaddr(vb->va->va_start, rs); 3626 3627 if (addr < start) { 3628 size_t to_zero = min_t(size_t, start - addr, remains); 3629 size_t zeroed = zero_iter(iter, to_zero); 3630 3631 addr += zeroed; 3632 remains -= zeroed; 3633 3634 if (remains == 0 || zeroed != to_zero) 3635 goto finished; 3636 } 3637 3638 /*it could start reading from the middle of used region*/ 3639 offset = offset_in_page(addr); 3640 n = ((re - rs + 1) << PAGE_SHIFT) - offset; 3641 if (n > remains) 3642 n = remains; 3643 3644 copied = aligned_vread_iter(iter, start + offset, n); 3645 3646 addr += copied; 3647 remains -= copied; 3648 3649 if (copied != n) 3650 goto finished; 3651 } 3652 3653 spin_unlock(&vb->lock); 3654 3655 finished_zero: 3656 /* zero-fill the left dirty or free regions */ 3657 return count - remains + zero_iter(iter, remains); 3658 finished: 3659 /* We couldn't copy/zero everything */ 3660 spin_unlock(&vb->lock); 3661 return count - remains; 3662 } 3663 3664 /** 3665 * vread_iter() - read vmalloc area in a safe way to an iterator. 3666 * @iter: the iterator to which data should be written. 3667 * @addr: vm address. 3668 * @count: number of bytes to be read. 3669 * 3670 * This function checks that addr is a valid vmalloc'ed area, and 3671 * copy data from that area to a given buffer. If the given memory range 3672 * of [addr...addr+count) includes some valid address, data is copied to 3673 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3674 * IOREMAP area is treated as memory hole and no copy is done. 3675 * 3676 * If [addr...addr+count) doesn't includes any intersects with alive 3677 * vm_struct area, returns 0. @buf should be kernel's buffer. 3678 * 3679 * Note: In usual ops, vread() is never necessary because the caller 3680 * should know vmalloc() area is valid and can use memcpy(). 3681 * This is for routines which have to access vmalloc area without 3682 * any information, as /proc/kcore. 3683 * 3684 * Return: number of bytes for which addr and buf should be increased 3685 * (same number as @count) or %0 if [addr...addr+count) doesn't 3686 * include any intersection with valid vmalloc area 3687 */ 3688 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 3689 { 3690 struct vmap_area *va; 3691 struct vm_struct *vm; 3692 char *vaddr; 3693 size_t n, size, flags, remains; 3694 3695 addr = kasan_reset_tag(addr); 3696 3697 /* Don't allow overflow */ 3698 if ((unsigned long) addr + count < count) 3699 count = -(unsigned long) addr; 3700 3701 remains = count; 3702 3703 spin_lock(&vmap_area_lock); 3704 va = find_vmap_area_exceed_addr((unsigned long)addr); 3705 if (!va) 3706 goto finished_zero; 3707 3708 /* no intersects with alive vmap_area */ 3709 if ((unsigned long)addr + remains <= va->va_start) 3710 goto finished_zero; 3711 3712 list_for_each_entry_from(va, &vmap_area_list, list) { 3713 size_t copied; 3714 3715 if (remains == 0) 3716 goto finished; 3717 3718 vm = va->vm; 3719 flags = va->flags & VMAP_FLAGS_MASK; 3720 /* 3721 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need 3722 * be set together with VMAP_RAM. 3723 */ 3724 WARN_ON(flags == VMAP_BLOCK); 3725 3726 if (!vm && !flags) 3727 continue; 3728 3729 if (vm && (vm->flags & VM_UNINITIALIZED)) 3730 continue; 3731 3732 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3733 smp_rmb(); 3734 3735 vaddr = (char *) va->va_start; 3736 size = vm ? get_vm_area_size(vm) : va_size(va); 3737 3738 if (addr >= vaddr + size) 3739 continue; 3740 3741 if (addr < vaddr) { 3742 size_t to_zero = min_t(size_t, vaddr - addr, remains); 3743 size_t zeroed = zero_iter(iter, to_zero); 3744 3745 addr += zeroed; 3746 remains -= zeroed; 3747 3748 if (remains == 0 || zeroed != to_zero) 3749 goto finished; 3750 } 3751 3752 n = vaddr + size - addr; 3753 if (n > remains) 3754 n = remains; 3755 3756 if (flags & VMAP_RAM) 3757 copied = vmap_ram_vread_iter(iter, addr, n, flags); 3758 else if (!(vm->flags & VM_IOREMAP)) 3759 copied = aligned_vread_iter(iter, addr, n); 3760 else /* IOREMAP area is treated as memory hole */ 3761 copied = zero_iter(iter, n); 3762 3763 addr += copied; 3764 remains -= copied; 3765 3766 if (copied != n) 3767 goto finished; 3768 } 3769 3770 finished_zero: 3771 spin_unlock(&vmap_area_lock); 3772 /* zero-fill memory holes */ 3773 return count - remains + zero_iter(iter, remains); 3774 finished: 3775 /* Nothing remains, or We couldn't copy/zero everything. */ 3776 spin_unlock(&vmap_area_lock); 3777 3778 return count - remains; 3779 } 3780 3781 /** 3782 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3783 * @vma: vma to cover 3784 * @uaddr: target user address to start at 3785 * @kaddr: virtual address of vmalloc kernel memory 3786 * @pgoff: offset from @kaddr to start at 3787 * @size: size of map area 3788 * 3789 * Returns: 0 for success, -Exxx on failure 3790 * 3791 * This function checks that @kaddr is a valid vmalloc'ed area, 3792 * and that it is big enough to cover the range starting at 3793 * @uaddr in @vma. Will return failure if that criteria isn't 3794 * met. 3795 * 3796 * Similar to remap_pfn_range() (see mm/memory.c) 3797 */ 3798 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3799 void *kaddr, unsigned long pgoff, 3800 unsigned long size) 3801 { 3802 struct vm_struct *area; 3803 unsigned long off; 3804 unsigned long end_index; 3805 3806 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3807 return -EINVAL; 3808 3809 size = PAGE_ALIGN(size); 3810 3811 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3812 return -EINVAL; 3813 3814 area = find_vm_area(kaddr); 3815 if (!area) 3816 return -EINVAL; 3817 3818 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3819 return -EINVAL; 3820 3821 if (check_add_overflow(size, off, &end_index) || 3822 end_index > get_vm_area_size(area)) 3823 return -EINVAL; 3824 kaddr += off; 3825 3826 do { 3827 struct page *page = vmalloc_to_page(kaddr); 3828 int ret; 3829 3830 ret = vm_insert_page(vma, uaddr, page); 3831 if (ret) 3832 return ret; 3833 3834 uaddr += PAGE_SIZE; 3835 kaddr += PAGE_SIZE; 3836 size -= PAGE_SIZE; 3837 } while (size > 0); 3838 3839 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); 3840 3841 return 0; 3842 } 3843 3844 /** 3845 * remap_vmalloc_range - map vmalloc pages to userspace 3846 * @vma: vma to cover (map full range of vma) 3847 * @addr: vmalloc memory 3848 * @pgoff: number of pages into addr before first page to map 3849 * 3850 * Returns: 0 for success, -Exxx on failure 3851 * 3852 * This function checks that addr is a valid vmalloc'ed area, and 3853 * that it is big enough to cover the vma. Will return failure if 3854 * that criteria isn't met. 3855 * 3856 * Similar to remap_pfn_range() (see mm/memory.c) 3857 */ 3858 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3859 unsigned long pgoff) 3860 { 3861 return remap_vmalloc_range_partial(vma, vma->vm_start, 3862 addr, pgoff, 3863 vma->vm_end - vma->vm_start); 3864 } 3865 EXPORT_SYMBOL(remap_vmalloc_range); 3866 3867 void free_vm_area(struct vm_struct *area) 3868 { 3869 struct vm_struct *ret; 3870 ret = remove_vm_area(area->addr); 3871 BUG_ON(ret != area); 3872 kfree(area); 3873 } 3874 EXPORT_SYMBOL_GPL(free_vm_area); 3875 3876 #ifdef CONFIG_SMP 3877 static struct vmap_area *node_to_va(struct rb_node *n) 3878 { 3879 return rb_entry_safe(n, struct vmap_area, rb_node); 3880 } 3881 3882 /** 3883 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3884 * @addr: target address 3885 * 3886 * Returns: vmap_area if it is found. If there is no such area 3887 * the first highest(reverse order) vmap_area is returned 3888 * i.e. va->va_start < addr && va->va_end < addr or NULL 3889 * if there are no any areas before @addr. 3890 */ 3891 static struct vmap_area * 3892 pvm_find_va_enclose_addr(unsigned long addr) 3893 { 3894 struct vmap_area *va, *tmp; 3895 struct rb_node *n; 3896 3897 n = free_vmap_area_root.rb_node; 3898 va = NULL; 3899 3900 while (n) { 3901 tmp = rb_entry(n, struct vmap_area, rb_node); 3902 if (tmp->va_start <= addr) { 3903 va = tmp; 3904 if (tmp->va_end >= addr) 3905 break; 3906 3907 n = n->rb_right; 3908 } else { 3909 n = n->rb_left; 3910 } 3911 } 3912 3913 return va; 3914 } 3915 3916 /** 3917 * pvm_determine_end_from_reverse - find the highest aligned address 3918 * of free block below VMALLOC_END 3919 * @va: 3920 * in - the VA we start the search(reverse order); 3921 * out - the VA with the highest aligned end address. 3922 * @align: alignment for required highest address 3923 * 3924 * Returns: determined end address within vmap_area 3925 */ 3926 static unsigned long 3927 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3928 { 3929 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3930 unsigned long addr; 3931 3932 if (likely(*va)) { 3933 list_for_each_entry_from_reverse((*va), 3934 &free_vmap_area_list, list) { 3935 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3936 if ((*va)->va_start < addr) 3937 return addr; 3938 } 3939 } 3940 3941 return 0; 3942 } 3943 3944 /** 3945 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3946 * @offsets: array containing offset of each area 3947 * @sizes: array containing size of each area 3948 * @nr_vms: the number of areas to allocate 3949 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3950 * 3951 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3952 * vm_structs on success, %NULL on failure 3953 * 3954 * Percpu allocator wants to use congruent vm areas so that it can 3955 * maintain the offsets among percpu areas. This function allocates 3956 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3957 * be scattered pretty far, distance between two areas easily going up 3958 * to gigabytes. To avoid interacting with regular vmallocs, these 3959 * areas are allocated from top. 3960 * 3961 * Despite its complicated look, this allocator is rather simple. It 3962 * does everything top-down and scans free blocks from the end looking 3963 * for matching base. While scanning, if any of the areas do not fit the 3964 * base address is pulled down to fit the area. Scanning is repeated till 3965 * all the areas fit and then all necessary data structures are inserted 3966 * and the result is returned. 3967 */ 3968 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3969 const size_t *sizes, int nr_vms, 3970 size_t align) 3971 { 3972 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3973 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3974 struct vmap_area **vas, *va; 3975 struct vm_struct **vms; 3976 int area, area2, last_area, term_area; 3977 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3978 bool purged = false; 3979 3980 /* verify parameters and allocate data structures */ 3981 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3982 for (last_area = 0, area = 0; area < nr_vms; area++) { 3983 start = offsets[area]; 3984 end = start + sizes[area]; 3985 3986 /* is everything aligned properly? */ 3987 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3988 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3989 3990 /* detect the area with the highest address */ 3991 if (start > offsets[last_area]) 3992 last_area = area; 3993 3994 for (area2 = area + 1; area2 < nr_vms; area2++) { 3995 unsigned long start2 = offsets[area2]; 3996 unsigned long end2 = start2 + sizes[area2]; 3997 3998 BUG_ON(start2 < end && start < end2); 3999 } 4000 } 4001 last_end = offsets[last_area] + sizes[last_area]; 4002 4003 if (vmalloc_end - vmalloc_start < last_end) { 4004 WARN_ON(true); 4005 return NULL; 4006 } 4007 4008 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 4009 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 4010 if (!vas || !vms) 4011 goto err_free2; 4012 4013 for (area = 0; area < nr_vms; area++) { 4014 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 4015 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 4016 if (!vas[area] || !vms[area]) 4017 goto err_free; 4018 } 4019 retry: 4020 spin_lock(&free_vmap_area_lock); 4021 4022 /* start scanning - we scan from the top, begin with the last area */ 4023 area = term_area = last_area; 4024 start = offsets[area]; 4025 end = start + sizes[area]; 4026 4027 va = pvm_find_va_enclose_addr(vmalloc_end); 4028 base = pvm_determine_end_from_reverse(&va, align) - end; 4029 4030 while (true) { 4031 /* 4032 * base might have underflowed, add last_end before 4033 * comparing. 4034 */ 4035 if (base + last_end < vmalloc_start + last_end) 4036 goto overflow; 4037 4038 /* 4039 * Fitting base has not been found. 4040 */ 4041 if (va == NULL) 4042 goto overflow; 4043 4044 /* 4045 * If required width exceeds current VA block, move 4046 * base downwards and then recheck. 4047 */ 4048 if (base + end > va->va_end) { 4049 base = pvm_determine_end_from_reverse(&va, align) - end; 4050 term_area = area; 4051 continue; 4052 } 4053 4054 /* 4055 * If this VA does not fit, move base downwards and recheck. 4056 */ 4057 if (base + start < va->va_start) { 4058 va = node_to_va(rb_prev(&va->rb_node)); 4059 base = pvm_determine_end_from_reverse(&va, align) - end; 4060 term_area = area; 4061 continue; 4062 } 4063 4064 /* 4065 * This area fits, move on to the previous one. If 4066 * the previous one is the terminal one, we're done. 4067 */ 4068 area = (area + nr_vms - 1) % nr_vms; 4069 if (area == term_area) 4070 break; 4071 4072 start = offsets[area]; 4073 end = start + sizes[area]; 4074 va = pvm_find_va_enclose_addr(base + end); 4075 } 4076 4077 /* we've found a fitting base, insert all va's */ 4078 for (area = 0; area < nr_vms; area++) { 4079 int ret; 4080 4081 start = base + offsets[area]; 4082 size = sizes[area]; 4083 4084 va = pvm_find_va_enclose_addr(start); 4085 if (WARN_ON_ONCE(va == NULL)) 4086 /* It is a BUG(), but trigger recovery instead. */ 4087 goto recovery; 4088 4089 ret = adjust_va_to_fit_type(&free_vmap_area_root, 4090 &free_vmap_area_list, 4091 va, start, size); 4092 if (WARN_ON_ONCE(unlikely(ret))) 4093 /* It is a BUG(), but trigger recovery instead. */ 4094 goto recovery; 4095 4096 /* Allocated area. */ 4097 va = vas[area]; 4098 va->va_start = start; 4099 va->va_end = start + size; 4100 } 4101 4102 spin_unlock(&free_vmap_area_lock); 4103 4104 /* populate the kasan shadow space */ 4105 for (area = 0; area < nr_vms; area++) { 4106 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 4107 goto err_free_shadow; 4108 } 4109 4110 /* insert all vm's */ 4111 spin_lock(&vmap_area_lock); 4112 for (area = 0; area < nr_vms; area++) { 4113 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 4114 4115 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 4116 pcpu_get_vm_areas); 4117 } 4118 spin_unlock(&vmap_area_lock); 4119 4120 /* 4121 * Mark allocated areas as accessible. Do it now as a best-effort 4122 * approach, as they can be mapped outside of vmalloc code. 4123 * With hardware tag-based KASAN, marking is skipped for 4124 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 4125 */ 4126 for (area = 0; area < nr_vms; area++) 4127 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 4128 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 4129 4130 kfree(vas); 4131 return vms; 4132 4133 recovery: 4134 /* 4135 * Remove previously allocated areas. There is no 4136 * need in removing these areas from the busy tree, 4137 * because they are inserted only on the final step 4138 * and when pcpu_get_vm_areas() is success. 4139 */ 4140 while (area--) { 4141 orig_start = vas[area]->va_start; 4142 orig_end = vas[area]->va_end; 4143 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4144 &free_vmap_area_list); 4145 if (va) 4146 kasan_release_vmalloc(orig_start, orig_end, 4147 va->va_start, va->va_end); 4148 vas[area] = NULL; 4149 } 4150 4151 overflow: 4152 spin_unlock(&free_vmap_area_lock); 4153 if (!purged) { 4154 purge_vmap_area_lazy(); 4155 purged = true; 4156 4157 /* Before "retry", check if we recover. */ 4158 for (area = 0; area < nr_vms; area++) { 4159 if (vas[area]) 4160 continue; 4161 4162 vas[area] = kmem_cache_zalloc( 4163 vmap_area_cachep, GFP_KERNEL); 4164 if (!vas[area]) 4165 goto err_free; 4166 } 4167 4168 goto retry; 4169 } 4170 4171 err_free: 4172 for (area = 0; area < nr_vms; area++) { 4173 if (vas[area]) 4174 kmem_cache_free(vmap_area_cachep, vas[area]); 4175 4176 kfree(vms[area]); 4177 } 4178 err_free2: 4179 kfree(vas); 4180 kfree(vms); 4181 return NULL; 4182 4183 err_free_shadow: 4184 spin_lock(&free_vmap_area_lock); 4185 /* 4186 * We release all the vmalloc shadows, even the ones for regions that 4187 * hadn't been successfully added. This relies on kasan_release_vmalloc 4188 * being able to tolerate this case. 4189 */ 4190 for (area = 0; area < nr_vms; area++) { 4191 orig_start = vas[area]->va_start; 4192 orig_end = vas[area]->va_end; 4193 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4194 &free_vmap_area_list); 4195 if (va) 4196 kasan_release_vmalloc(orig_start, orig_end, 4197 va->va_start, va->va_end); 4198 vas[area] = NULL; 4199 kfree(vms[area]); 4200 } 4201 spin_unlock(&free_vmap_area_lock); 4202 kfree(vas); 4203 kfree(vms); 4204 return NULL; 4205 } 4206 4207 /** 4208 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4209 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4210 * @nr_vms: the number of allocated areas 4211 * 4212 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4213 */ 4214 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4215 { 4216 int i; 4217 4218 for (i = 0; i < nr_vms; i++) 4219 free_vm_area(vms[i]); 4220 kfree(vms); 4221 } 4222 #endif /* CONFIG_SMP */ 4223 4224 #ifdef CONFIG_PRINTK 4225 bool vmalloc_dump_obj(void *object) 4226 { 4227 struct vm_struct *vm; 4228 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 4229 4230 vm = find_vm_area(objp); 4231 if (!vm) 4232 return false; 4233 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4234 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 4235 return true; 4236 } 4237 #endif 4238 4239 #ifdef CONFIG_PROC_FS 4240 static void *s_start(struct seq_file *m, loff_t *pos) 4241 __acquires(&vmap_purge_lock) 4242 __acquires(&vmap_area_lock) 4243 { 4244 mutex_lock(&vmap_purge_lock); 4245 spin_lock(&vmap_area_lock); 4246 4247 return seq_list_start(&vmap_area_list, *pos); 4248 } 4249 4250 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4251 { 4252 return seq_list_next(p, &vmap_area_list, pos); 4253 } 4254 4255 static void s_stop(struct seq_file *m, void *p) 4256 __releases(&vmap_area_lock) 4257 __releases(&vmap_purge_lock) 4258 { 4259 spin_unlock(&vmap_area_lock); 4260 mutex_unlock(&vmap_purge_lock); 4261 } 4262 4263 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4264 { 4265 if (IS_ENABLED(CONFIG_NUMA)) { 4266 unsigned int nr, *counters = m->private; 4267 unsigned int step = 1U << vm_area_page_order(v); 4268 4269 if (!counters) 4270 return; 4271 4272 if (v->flags & VM_UNINITIALIZED) 4273 return; 4274 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4275 smp_rmb(); 4276 4277 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4278 4279 for (nr = 0; nr < v->nr_pages; nr += step) 4280 counters[page_to_nid(v->pages[nr])] += step; 4281 for_each_node_state(nr, N_HIGH_MEMORY) 4282 if (counters[nr]) 4283 seq_printf(m, " N%u=%u", nr, counters[nr]); 4284 } 4285 } 4286 4287 static void show_purge_info(struct seq_file *m) 4288 { 4289 struct vmap_area *va; 4290 4291 spin_lock(&purge_vmap_area_lock); 4292 list_for_each_entry(va, &purge_vmap_area_list, list) { 4293 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4294 (void *)va->va_start, (void *)va->va_end, 4295 va->va_end - va->va_start); 4296 } 4297 spin_unlock(&purge_vmap_area_lock); 4298 } 4299 4300 static int s_show(struct seq_file *m, void *p) 4301 { 4302 struct vmap_area *va; 4303 struct vm_struct *v; 4304 4305 va = list_entry(p, struct vmap_area, list); 4306 4307 if (!va->vm) { 4308 if (va->flags & VMAP_RAM) 4309 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4310 (void *)va->va_start, (void *)va->va_end, 4311 va->va_end - va->va_start); 4312 4313 goto final; 4314 } 4315 4316 v = va->vm; 4317 4318 seq_printf(m, "0x%pK-0x%pK %7ld", 4319 v->addr, v->addr + v->size, v->size); 4320 4321 if (v->caller) 4322 seq_printf(m, " %pS", v->caller); 4323 4324 if (v->nr_pages) 4325 seq_printf(m, " pages=%d", v->nr_pages); 4326 4327 if (v->phys_addr) 4328 seq_printf(m, " phys=%pa", &v->phys_addr); 4329 4330 if (v->flags & VM_IOREMAP) 4331 seq_puts(m, " ioremap"); 4332 4333 if (v->flags & VM_ALLOC) 4334 seq_puts(m, " vmalloc"); 4335 4336 if (v->flags & VM_MAP) 4337 seq_puts(m, " vmap"); 4338 4339 if (v->flags & VM_USERMAP) 4340 seq_puts(m, " user"); 4341 4342 if (v->flags & VM_DMA_COHERENT) 4343 seq_puts(m, " dma-coherent"); 4344 4345 if (is_vmalloc_addr(v->pages)) 4346 seq_puts(m, " vpages"); 4347 4348 show_numa_info(m, v); 4349 seq_putc(m, '\n'); 4350 4351 /* 4352 * As a final step, dump "unpurged" areas. 4353 */ 4354 final: 4355 if (list_is_last(&va->list, &vmap_area_list)) 4356 show_purge_info(m); 4357 4358 return 0; 4359 } 4360 4361 static const struct seq_operations vmalloc_op = { 4362 .start = s_start, 4363 .next = s_next, 4364 .stop = s_stop, 4365 .show = s_show, 4366 }; 4367 4368 static int __init proc_vmalloc_init(void) 4369 { 4370 if (IS_ENABLED(CONFIG_NUMA)) 4371 proc_create_seq_private("vmallocinfo", 0400, NULL, 4372 &vmalloc_op, 4373 nr_node_ids * sizeof(unsigned int), NULL); 4374 else 4375 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4376 return 0; 4377 } 4378 module_init(proc_vmalloc_init); 4379 4380 #endif 4381 4382 void __init vmalloc_init(void) 4383 { 4384 struct vmap_area *va; 4385 struct vm_struct *tmp; 4386 int i; 4387 4388 /* 4389 * Create the cache for vmap_area objects. 4390 */ 4391 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 4392 4393 for_each_possible_cpu(i) { 4394 struct vmap_block_queue *vbq; 4395 struct vfree_deferred *p; 4396 4397 vbq = &per_cpu(vmap_block_queue, i); 4398 spin_lock_init(&vbq->lock); 4399 INIT_LIST_HEAD(&vbq->free); 4400 p = &per_cpu(vfree_deferred, i); 4401 init_llist_head(&p->list); 4402 INIT_WORK(&p->wq, delayed_vfree_work); 4403 xa_init(&vbq->vmap_blocks); 4404 } 4405 4406 /* Import existing vmlist entries. */ 4407 for (tmp = vmlist; tmp; tmp = tmp->next) { 4408 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 4409 if (WARN_ON_ONCE(!va)) 4410 continue; 4411 4412 va->va_start = (unsigned long)tmp->addr; 4413 va->va_end = va->va_start + tmp->size; 4414 va->vm = tmp; 4415 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 4416 } 4417 4418 /* 4419 * Now we can initialize a free vmap space. 4420 */ 4421 vmap_init_free_space(); 4422 vmap_initialized = true; 4423 } 4424