1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <linux/compiler.h> 31 #include <linux/llist.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlbflush.h> 35 #include <asm/shmparam.h> 36 37 struct vfree_deferred { 38 struct llist_head list; 39 struct work_struct wq; 40 }; 41 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 42 43 static void __vunmap(const void *, int); 44 45 static void free_work(struct work_struct *w) 46 { 47 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 48 struct llist_node *llnode = llist_del_all(&p->list); 49 while (llnode) { 50 void *p = llnode; 51 llnode = llist_next(llnode); 52 __vunmap(p, 1); 53 } 54 } 55 56 /*** Page table manipulation functions ***/ 57 58 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 59 { 60 pte_t *pte; 61 62 pte = pte_offset_kernel(pmd, addr); 63 do { 64 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 65 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 66 } while (pte++, addr += PAGE_SIZE, addr != end); 67 } 68 69 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 70 { 71 pmd_t *pmd; 72 unsigned long next; 73 74 pmd = pmd_offset(pud, addr); 75 do { 76 next = pmd_addr_end(addr, end); 77 if (pmd_none_or_clear_bad(pmd)) 78 continue; 79 vunmap_pte_range(pmd, addr, next); 80 } while (pmd++, addr = next, addr != end); 81 } 82 83 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 84 { 85 pud_t *pud; 86 unsigned long next; 87 88 pud = pud_offset(pgd, addr); 89 do { 90 next = pud_addr_end(addr, end); 91 if (pud_none_or_clear_bad(pud)) 92 continue; 93 vunmap_pmd_range(pud, addr, next); 94 } while (pud++, addr = next, addr != end); 95 } 96 97 static void vunmap_page_range(unsigned long addr, unsigned long end) 98 { 99 pgd_t *pgd; 100 unsigned long next; 101 102 BUG_ON(addr >= end); 103 pgd = pgd_offset_k(addr); 104 do { 105 next = pgd_addr_end(addr, end); 106 if (pgd_none_or_clear_bad(pgd)) 107 continue; 108 vunmap_pud_range(pgd, addr, next); 109 } while (pgd++, addr = next, addr != end); 110 } 111 112 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 113 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 114 { 115 pte_t *pte; 116 117 /* 118 * nr is a running index into the array which helps higher level 119 * callers keep track of where we're up to. 120 */ 121 122 pte = pte_alloc_kernel(pmd, addr); 123 if (!pte) 124 return -ENOMEM; 125 do { 126 struct page *page = pages[*nr]; 127 128 if (WARN_ON(!pte_none(*pte))) 129 return -EBUSY; 130 if (WARN_ON(!page)) 131 return -ENOMEM; 132 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 133 (*nr)++; 134 } while (pte++, addr += PAGE_SIZE, addr != end); 135 return 0; 136 } 137 138 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 139 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 140 { 141 pmd_t *pmd; 142 unsigned long next; 143 144 pmd = pmd_alloc(&init_mm, pud, addr); 145 if (!pmd) 146 return -ENOMEM; 147 do { 148 next = pmd_addr_end(addr, end); 149 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 150 return -ENOMEM; 151 } while (pmd++, addr = next, addr != end); 152 return 0; 153 } 154 155 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 156 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 157 { 158 pud_t *pud; 159 unsigned long next; 160 161 pud = pud_alloc(&init_mm, pgd, addr); 162 if (!pud) 163 return -ENOMEM; 164 do { 165 next = pud_addr_end(addr, end); 166 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 167 return -ENOMEM; 168 } while (pud++, addr = next, addr != end); 169 return 0; 170 } 171 172 /* 173 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 174 * will have pfns corresponding to the "pages" array. 175 * 176 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 177 */ 178 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 179 pgprot_t prot, struct page **pages) 180 { 181 pgd_t *pgd; 182 unsigned long next; 183 unsigned long addr = start; 184 int err = 0; 185 int nr = 0; 186 187 BUG_ON(addr >= end); 188 pgd = pgd_offset_k(addr); 189 do { 190 next = pgd_addr_end(addr, end); 191 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 192 if (err) 193 return err; 194 } while (pgd++, addr = next, addr != end); 195 196 return nr; 197 } 198 199 static int vmap_page_range(unsigned long start, unsigned long end, 200 pgprot_t prot, struct page **pages) 201 { 202 int ret; 203 204 ret = vmap_page_range_noflush(start, end, prot, pages); 205 flush_cache_vmap(start, end); 206 return ret; 207 } 208 209 int is_vmalloc_or_module_addr(const void *x) 210 { 211 /* 212 * ARM, x86-64 and sparc64 put modules in a special place, 213 * and fall back on vmalloc() if that fails. Others 214 * just put it in the vmalloc space. 215 */ 216 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 217 unsigned long addr = (unsigned long)x; 218 if (addr >= MODULES_VADDR && addr < MODULES_END) 219 return 1; 220 #endif 221 return is_vmalloc_addr(x); 222 } 223 224 /* 225 * Walk a vmap address to the struct page it maps. 226 */ 227 struct page *vmalloc_to_page(const void *vmalloc_addr) 228 { 229 unsigned long addr = (unsigned long) vmalloc_addr; 230 struct page *page = NULL; 231 pgd_t *pgd = pgd_offset_k(addr); 232 233 /* 234 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 235 * architectures that do not vmalloc module space 236 */ 237 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 238 239 if (!pgd_none(*pgd)) { 240 pud_t *pud = pud_offset(pgd, addr); 241 if (!pud_none(*pud)) { 242 pmd_t *pmd = pmd_offset(pud, addr); 243 if (!pmd_none(*pmd)) { 244 pte_t *ptep, pte; 245 246 ptep = pte_offset_map(pmd, addr); 247 pte = *ptep; 248 if (pte_present(pte)) 249 page = pte_page(pte); 250 pte_unmap(ptep); 251 } 252 } 253 } 254 return page; 255 } 256 EXPORT_SYMBOL(vmalloc_to_page); 257 258 /* 259 * Map a vmalloc()-space virtual address to the physical page frame number. 260 */ 261 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 262 { 263 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 264 } 265 EXPORT_SYMBOL(vmalloc_to_pfn); 266 267 268 /*** Global kva allocator ***/ 269 270 #define VM_LAZY_FREE 0x01 271 #define VM_LAZY_FREEING 0x02 272 #define VM_VM_AREA 0x04 273 274 static DEFINE_SPINLOCK(vmap_area_lock); 275 /* Export for kexec only */ 276 LIST_HEAD(vmap_area_list); 277 static struct rb_root vmap_area_root = RB_ROOT; 278 279 /* The vmap cache globals are protected by vmap_area_lock */ 280 static struct rb_node *free_vmap_cache; 281 static unsigned long cached_hole_size; 282 static unsigned long cached_vstart; 283 static unsigned long cached_align; 284 285 static unsigned long vmap_area_pcpu_hole; 286 287 static struct vmap_area *__find_vmap_area(unsigned long addr) 288 { 289 struct rb_node *n = vmap_area_root.rb_node; 290 291 while (n) { 292 struct vmap_area *va; 293 294 va = rb_entry(n, struct vmap_area, rb_node); 295 if (addr < va->va_start) 296 n = n->rb_left; 297 else if (addr >= va->va_end) 298 n = n->rb_right; 299 else 300 return va; 301 } 302 303 return NULL; 304 } 305 306 static void __insert_vmap_area(struct vmap_area *va) 307 { 308 struct rb_node **p = &vmap_area_root.rb_node; 309 struct rb_node *parent = NULL; 310 struct rb_node *tmp; 311 312 while (*p) { 313 struct vmap_area *tmp_va; 314 315 parent = *p; 316 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 317 if (va->va_start < tmp_va->va_end) 318 p = &(*p)->rb_left; 319 else if (va->va_end > tmp_va->va_start) 320 p = &(*p)->rb_right; 321 else 322 BUG(); 323 } 324 325 rb_link_node(&va->rb_node, parent, p); 326 rb_insert_color(&va->rb_node, &vmap_area_root); 327 328 /* address-sort this list */ 329 tmp = rb_prev(&va->rb_node); 330 if (tmp) { 331 struct vmap_area *prev; 332 prev = rb_entry(tmp, struct vmap_area, rb_node); 333 list_add_rcu(&va->list, &prev->list); 334 } else 335 list_add_rcu(&va->list, &vmap_area_list); 336 } 337 338 static void purge_vmap_area_lazy(void); 339 340 /* 341 * Allocate a region of KVA of the specified size and alignment, within the 342 * vstart and vend. 343 */ 344 static struct vmap_area *alloc_vmap_area(unsigned long size, 345 unsigned long align, 346 unsigned long vstart, unsigned long vend, 347 int node, gfp_t gfp_mask) 348 { 349 struct vmap_area *va; 350 struct rb_node *n; 351 unsigned long addr; 352 int purged = 0; 353 struct vmap_area *first; 354 355 BUG_ON(!size); 356 BUG_ON(size & ~PAGE_MASK); 357 BUG_ON(!is_power_of_2(align)); 358 359 va = kmalloc_node(sizeof(struct vmap_area), 360 gfp_mask & GFP_RECLAIM_MASK, node); 361 if (unlikely(!va)) 362 return ERR_PTR(-ENOMEM); 363 364 /* 365 * Only scan the relevant parts containing pointers to other objects 366 * to avoid false negatives. 367 */ 368 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 369 370 retry: 371 spin_lock(&vmap_area_lock); 372 /* 373 * Invalidate cache if we have more permissive parameters. 374 * cached_hole_size notes the largest hole noticed _below_ 375 * the vmap_area cached in free_vmap_cache: if size fits 376 * into that hole, we want to scan from vstart to reuse 377 * the hole instead of allocating above free_vmap_cache. 378 * Note that __free_vmap_area may update free_vmap_cache 379 * without updating cached_hole_size or cached_align. 380 */ 381 if (!free_vmap_cache || 382 size < cached_hole_size || 383 vstart < cached_vstart || 384 align < cached_align) { 385 nocache: 386 cached_hole_size = 0; 387 free_vmap_cache = NULL; 388 } 389 /* record if we encounter less permissive parameters */ 390 cached_vstart = vstart; 391 cached_align = align; 392 393 /* find starting point for our search */ 394 if (free_vmap_cache) { 395 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 396 addr = ALIGN(first->va_end, align); 397 if (addr < vstart) 398 goto nocache; 399 if (addr + size < addr) 400 goto overflow; 401 402 } else { 403 addr = ALIGN(vstart, align); 404 if (addr + size < addr) 405 goto overflow; 406 407 n = vmap_area_root.rb_node; 408 first = NULL; 409 410 while (n) { 411 struct vmap_area *tmp; 412 tmp = rb_entry(n, struct vmap_area, rb_node); 413 if (tmp->va_end >= addr) { 414 first = tmp; 415 if (tmp->va_start <= addr) 416 break; 417 n = n->rb_left; 418 } else 419 n = n->rb_right; 420 } 421 422 if (!first) 423 goto found; 424 } 425 426 /* from the starting point, walk areas until a suitable hole is found */ 427 while (addr + size > first->va_start && addr + size <= vend) { 428 if (addr + cached_hole_size < first->va_start) 429 cached_hole_size = first->va_start - addr; 430 addr = ALIGN(first->va_end, align); 431 if (addr + size < addr) 432 goto overflow; 433 434 if (list_is_last(&first->list, &vmap_area_list)) 435 goto found; 436 437 first = list_entry(first->list.next, 438 struct vmap_area, list); 439 } 440 441 found: 442 if (addr + size > vend) 443 goto overflow; 444 445 va->va_start = addr; 446 va->va_end = addr + size; 447 va->flags = 0; 448 __insert_vmap_area(va); 449 free_vmap_cache = &va->rb_node; 450 spin_unlock(&vmap_area_lock); 451 452 BUG_ON(va->va_start & (align-1)); 453 BUG_ON(va->va_start < vstart); 454 BUG_ON(va->va_end > vend); 455 456 return va; 457 458 overflow: 459 spin_unlock(&vmap_area_lock); 460 if (!purged) { 461 purge_vmap_area_lazy(); 462 purged = 1; 463 goto retry; 464 } 465 if (printk_ratelimit()) 466 printk(KERN_WARNING 467 "vmap allocation for size %lu failed: " 468 "use vmalloc=<size> to increase size.\n", size); 469 kfree(va); 470 return ERR_PTR(-EBUSY); 471 } 472 473 static void __free_vmap_area(struct vmap_area *va) 474 { 475 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 476 477 if (free_vmap_cache) { 478 if (va->va_end < cached_vstart) { 479 free_vmap_cache = NULL; 480 } else { 481 struct vmap_area *cache; 482 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 483 if (va->va_start <= cache->va_start) { 484 free_vmap_cache = rb_prev(&va->rb_node); 485 /* 486 * We don't try to update cached_hole_size or 487 * cached_align, but it won't go very wrong. 488 */ 489 } 490 } 491 } 492 rb_erase(&va->rb_node, &vmap_area_root); 493 RB_CLEAR_NODE(&va->rb_node); 494 list_del_rcu(&va->list); 495 496 /* 497 * Track the highest possible candidate for pcpu area 498 * allocation. Areas outside of vmalloc area can be returned 499 * here too, consider only end addresses which fall inside 500 * vmalloc area proper. 501 */ 502 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 503 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 504 505 kfree_rcu(va, rcu_head); 506 } 507 508 /* 509 * Free a region of KVA allocated by alloc_vmap_area 510 */ 511 static void free_vmap_area(struct vmap_area *va) 512 { 513 spin_lock(&vmap_area_lock); 514 __free_vmap_area(va); 515 spin_unlock(&vmap_area_lock); 516 } 517 518 /* 519 * Clear the pagetable entries of a given vmap_area 520 */ 521 static void unmap_vmap_area(struct vmap_area *va) 522 { 523 vunmap_page_range(va->va_start, va->va_end); 524 } 525 526 static void vmap_debug_free_range(unsigned long start, unsigned long end) 527 { 528 /* 529 * Unmap page tables and force a TLB flush immediately if 530 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 531 * bugs similarly to those in linear kernel virtual address 532 * space after a page has been freed. 533 * 534 * All the lazy freeing logic is still retained, in order to 535 * minimise intrusiveness of this debugging feature. 536 * 537 * This is going to be *slow* (linear kernel virtual address 538 * debugging doesn't do a broadcast TLB flush so it is a lot 539 * faster). 540 */ 541 #ifdef CONFIG_DEBUG_PAGEALLOC 542 vunmap_page_range(start, end); 543 flush_tlb_kernel_range(start, end); 544 #endif 545 } 546 547 /* 548 * lazy_max_pages is the maximum amount of virtual address space we gather up 549 * before attempting to purge with a TLB flush. 550 * 551 * There is a tradeoff here: a larger number will cover more kernel page tables 552 * and take slightly longer to purge, but it will linearly reduce the number of 553 * global TLB flushes that must be performed. It would seem natural to scale 554 * this number up linearly with the number of CPUs (because vmapping activity 555 * could also scale linearly with the number of CPUs), however it is likely 556 * that in practice, workloads might be constrained in other ways that mean 557 * vmap activity will not scale linearly with CPUs. Also, I want to be 558 * conservative and not introduce a big latency on huge systems, so go with 559 * a less aggressive log scale. It will still be an improvement over the old 560 * code, and it will be simple to change the scale factor if we find that it 561 * becomes a problem on bigger systems. 562 */ 563 static unsigned long lazy_max_pages(void) 564 { 565 unsigned int log; 566 567 log = fls(num_online_cpus()); 568 569 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 570 } 571 572 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 573 574 /* for per-CPU blocks */ 575 static void purge_fragmented_blocks_allcpus(void); 576 577 /* 578 * called before a call to iounmap() if the caller wants vm_area_struct's 579 * immediately freed. 580 */ 581 void set_iounmap_nonlazy(void) 582 { 583 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 584 } 585 586 /* 587 * Purges all lazily-freed vmap areas. 588 * 589 * If sync is 0 then don't purge if there is already a purge in progress. 590 * If force_flush is 1, then flush kernel TLBs between *start and *end even 591 * if we found no lazy vmap areas to unmap (callers can use this to optimise 592 * their own TLB flushing). 593 * Returns with *start = min(*start, lowest purged address) 594 * *end = max(*end, highest purged address) 595 */ 596 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 597 int sync, int force_flush) 598 { 599 static DEFINE_SPINLOCK(purge_lock); 600 LIST_HEAD(valist); 601 struct vmap_area *va; 602 struct vmap_area *n_va; 603 int nr = 0; 604 605 /* 606 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 607 * should not expect such behaviour. This just simplifies locking for 608 * the case that isn't actually used at the moment anyway. 609 */ 610 if (!sync && !force_flush) { 611 if (!spin_trylock(&purge_lock)) 612 return; 613 } else 614 spin_lock(&purge_lock); 615 616 if (sync) 617 purge_fragmented_blocks_allcpus(); 618 619 rcu_read_lock(); 620 list_for_each_entry_rcu(va, &vmap_area_list, list) { 621 if (va->flags & VM_LAZY_FREE) { 622 if (va->va_start < *start) 623 *start = va->va_start; 624 if (va->va_end > *end) 625 *end = va->va_end; 626 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 627 list_add_tail(&va->purge_list, &valist); 628 va->flags |= VM_LAZY_FREEING; 629 va->flags &= ~VM_LAZY_FREE; 630 } 631 } 632 rcu_read_unlock(); 633 634 if (nr) 635 atomic_sub(nr, &vmap_lazy_nr); 636 637 if (nr || force_flush) 638 flush_tlb_kernel_range(*start, *end); 639 640 if (nr) { 641 spin_lock(&vmap_area_lock); 642 list_for_each_entry_safe(va, n_va, &valist, purge_list) 643 __free_vmap_area(va); 644 spin_unlock(&vmap_area_lock); 645 } 646 spin_unlock(&purge_lock); 647 } 648 649 /* 650 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 651 * is already purging. 652 */ 653 static void try_purge_vmap_area_lazy(void) 654 { 655 unsigned long start = ULONG_MAX, end = 0; 656 657 __purge_vmap_area_lazy(&start, &end, 0, 0); 658 } 659 660 /* 661 * Kick off a purge of the outstanding lazy areas. 662 */ 663 static void purge_vmap_area_lazy(void) 664 { 665 unsigned long start = ULONG_MAX, end = 0; 666 667 __purge_vmap_area_lazy(&start, &end, 1, 0); 668 } 669 670 /* 671 * Free a vmap area, caller ensuring that the area has been unmapped 672 * and flush_cache_vunmap had been called for the correct range 673 * previously. 674 */ 675 static void free_vmap_area_noflush(struct vmap_area *va) 676 { 677 va->flags |= VM_LAZY_FREE; 678 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 679 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 680 try_purge_vmap_area_lazy(); 681 } 682 683 /* 684 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 685 * called for the correct range previously. 686 */ 687 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 688 { 689 unmap_vmap_area(va); 690 free_vmap_area_noflush(va); 691 } 692 693 /* 694 * Free and unmap a vmap area 695 */ 696 static void free_unmap_vmap_area(struct vmap_area *va) 697 { 698 flush_cache_vunmap(va->va_start, va->va_end); 699 free_unmap_vmap_area_noflush(va); 700 } 701 702 static struct vmap_area *find_vmap_area(unsigned long addr) 703 { 704 struct vmap_area *va; 705 706 spin_lock(&vmap_area_lock); 707 va = __find_vmap_area(addr); 708 spin_unlock(&vmap_area_lock); 709 710 return va; 711 } 712 713 static void free_unmap_vmap_area_addr(unsigned long addr) 714 { 715 struct vmap_area *va; 716 717 va = find_vmap_area(addr); 718 BUG_ON(!va); 719 free_unmap_vmap_area(va); 720 } 721 722 723 /*** Per cpu kva allocator ***/ 724 725 /* 726 * vmap space is limited especially on 32 bit architectures. Ensure there is 727 * room for at least 16 percpu vmap blocks per CPU. 728 */ 729 /* 730 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 731 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 732 * instead (we just need a rough idea) 733 */ 734 #if BITS_PER_LONG == 32 735 #define VMALLOC_SPACE (128UL*1024*1024) 736 #else 737 #define VMALLOC_SPACE (128UL*1024*1024*1024) 738 #endif 739 740 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 741 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 742 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 743 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 744 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 745 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 746 #define VMAP_BBMAP_BITS \ 747 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 748 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 749 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 750 751 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 752 753 static bool vmap_initialized __read_mostly = false; 754 755 struct vmap_block_queue { 756 spinlock_t lock; 757 struct list_head free; 758 }; 759 760 struct vmap_block { 761 spinlock_t lock; 762 struct vmap_area *va; 763 unsigned long free, dirty; 764 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 765 struct list_head free_list; 766 struct rcu_head rcu_head; 767 struct list_head purge; 768 }; 769 770 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 771 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 772 773 /* 774 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 775 * in the free path. Could get rid of this if we change the API to return a 776 * "cookie" from alloc, to be passed to free. But no big deal yet. 777 */ 778 static DEFINE_SPINLOCK(vmap_block_tree_lock); 779 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 780 781 /* 782 * We should probably have a fallback mechanism to allocate virtual memory 783 * out of partially filled vmap blocks. However vmap block sizing should be 784 * fairly reasonable according to the vmalloc size, so it shouldn't be a 785 * big problem. 786 */ 787 788 static unsigned long addr_to_vb_idx(unsigned long addr) 789 { 790 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 791 addr /= VMAP_BLOCK_SIZE; 792 return addr; 793 } 794 795 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 796 { 797 struct vmap_block_queue *vbq; 798 struct vmap_block *vb; 799 struct vmap_area *va; 800 unsigned long vb_idx; 801 int node, err; 802 803 node = numa_node_id(); 804 805 vb = kmalloc_node(sizeof(struct vmap_block), 806 gfp_mask & GFP_RECLAIM_MASK, node); 807 if (unlikely(!vb)) 808 return ERR_PTR(-ENOMEM); 809 810 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 811 VMALLOC_START, VMALLOC_END, 812 node, gfp_mask); 813 if (IS_ERR(va)) { 814 kfree(vb); 815 return ERR_CAST(va); 816 } 817 818 err = radix_tree_preload(gfp_mask); 819 if (unlikely(err)) { 820 kfree(vb); 821 free_vmap_area(va); 822 return ERR_PTR(err); 823 } 824 825 spin_lock_init(&vb->lock); 826 vb->va = va; 827 vb->free = VMAP_BBMAP_BITS; 828 vb->dirty = 0; 829 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 830 INIT_LIST_HEAD(&vb->free_list); 831 832 vb_idx = addr_to_vb_idx(va->va_start); 833 spin_lock(&vmap_block_tree_lock); 834 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 835 spin_unlock(&vmap_block_tree_lock); 836 BUG_ON(err); 837 radix_tree_preload_end(); 838 839 vbq = &get_cpu_var(vmap_block_queue); 840 spin_lock(&vbq->lock); 841 list_add_rcu(&vb->free_list, &vbq->free); 842 spin_unlock(&vbq->lock); 843 put_cpu_var(vmap_block_queue); 844 845 return vb; 846 } 847 848 static void free_vmap_block(struct vmap_block *vb) 849 { 850 struct vmap_block *tmp; 851 unsigned long vb_idx; 852 853 vb_idx = addr_to_vb_idx(vb->va->va_start); 854 spin_lock(&vmap_block_tree_lock); 855 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 856 spin_unlock(&vmap_block_tree_lock); 857 BUG_ON(tmp != vb); 858 859 free_vmap_area_noflush(vb->va); 860 kfree_rcu(vb, rcu_head); 861 } 862 863 static void purge_fragmented_blocks(int cpu) 864 { 865 LIST_HEAD(purge); 866 struct vmap_block *vb; 867 struct vmap_block *n_vb; 868 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 869 870 rcu_read_lock(); 871 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 872 873 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 874 continue; 875 876 spin_lock(&vb->lock); 877 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 878 vb->free = 0; /* prevent further allocs after releasing lock */ 879 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 880 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 881 spin_lock(&vbq->lock); 882 list_del_rcu(&vb->free_list); 883 spin_unlock(&vbq->lock); 884 spin_unlock(&vb->lock); 885 list_add_tail(&vb->purge, &purge); 886 } else 887 spin_unlock(&vb->lock); 888 } 889 rcu_read_unlock(); 890 891 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 892 list_del(&vb->purge); 893 free_vmap_block(vb); 894 } 895 } 896 897 static void purge_fragmented_blocks_allcpus(void) 898 { 899 int cpu; 900 901 for_each_possible_cpu(cpu) 902 purge_fragmented_blocks(cpu); 903 } 904 905 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 906 { 907 struct vmap_block_queue *vbq; 908 struct vmap_block *vb; 909 unsigned long addr = 0; 910 unsigned int order; 911 912 BUG_ON(size & ~PAGE_MASK); 913 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 914 if (WARN_ON(size == 0)) { 915 /* 916 * Allocating 0 bytes isn't what caller wants since 917 * get_order(0) returns funny result. Just warn and terminate 918 * early. 919 */ 920 return NULL; 921 } 922 order = get_order(size); 923 924 again: 925 rcu_read_lock(); 926 vbq = &get_cpu_var(vmap_block_queue); 927 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 928 int i; 929 930 spin_lock(&vb->lock); 931 if (vb->free < 1UL << order) 932 goto next; 933 934 i = VMAP_BBMAP_BITS - vb->free; 935 addr = vb->va->va_start + (i << PAGE_SHIFT); 936 BUG_ON(addr_to_vb_idx(addr) != 937 addr_to_vb_idx(vb->va->va_start)); 938 vb->free -= 1UL << order; 939 if (vb->free == 0) { 940 spin_lock(&vbq->lock); 941 list_del_rcu(&vb->free_list); 942 spin_unlock(&vbq->lock); 943 } 944 spin_unlock(&vb->lock); 945 break; 946 next: 947 spin_unlock(&vb->lock); 948 } 949 950 put_cpu_var(vmap_block_queue); 951 rcu_read_unlock(); 952 953 if (!addr) { 954 vb = new_vmap_block(gfp_mask); 955 if (IS_ERR(vb)) 956 return vb; 957 goto again; 958 } 959 960 return (void *)addr; 961 } 962 963 static void vb_free(const void *addr, unsigned long size) 964 { 965 unsigned long offset; 966 unsigned long vb_idx; 967 unsigned int order; 968 struct vmap_block *vb; 969 970 BUG_ON(size & ~PAGE_MASK); 971 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 972 973 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 974 975 order = get_order(size); 976 977 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 978 979 vb_idx = addr_to_vb_idx((unsigned long)addr); 980 rcu_read_lock(); 981 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 982 rcu_read_unlock(); 983 BUG_ON(!vb); 984 985 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 986 987 spin_lock(&vb->lock); 988 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 989 990 vb->dirty += 1UL << order; 991 if (vb->dirty == VMAP_BBMAP_BITS) { 992 BUG_ON(vb->free); 993 spin_unlock(&vb->lock); 994 free_vmap_block(vb); 995 } else 996 spin_unlock(&vb->lock); 997 } 998 999 /** 1000 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1001 * 1002 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1003 * to amortize TLB flushing overheads. What this means is that any page you 1004 * have now, may, in a former life, have been mapped into kernel virtual 1005 * address by the vmap layer and so there might be some CPUs with TLB entries 1006 * still referencing that page (additional to the regular 1:1 kernel mapping). 1007 * 1008 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1009 * be sure that none of the pages we have control over will have any aliases 1010 * from the vmap layer. 1011 */ 1012 void vm_unmap_aliases(void) 1013 { 1014 unsigned long start = ULONG_MAX, end = 0; 1015 int cpu; 1016 int flush = 0; 1017 1018 if (unlikely(!vmap_initialized)) 1019 return; 1020 1021 for_each_possible_cpu(cpu) { 1022 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1023 struct vmap_block *vb; 1024 1025 rcu_read_lock(); 1026 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1027 int i, j; 1028 1029 spin_lock(&vb->lock); 1030 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1031 if (i < VMAP_BBMAP_BITS) { 1032 unsigned long s, e; 1033 1034 j = find_last_bit(vb->dirty_map, 1035 VMAP_BBMAP_BITS); 1036 j = j + 1; /* need exclusive index */ 1037 1038 s = vb->va->va_start + (i << PAGE_SHIFT); 1039 e = vb->va->va_start + (j << PAGE_SHIFT); 1040 flush = 1; 1041 1042 if (s < start) 1043 start = s; 1044 if (e > end) 1045 end = e; 1046 } 1047 spin_unlock(&vb->lock); 1048 } 1049 rcu_read_unlock(); 1050 } 1051 1052 __purge_vmap_area_lazy(&start, &end, 1, flush); 1053 } 1054 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1055 1056 /** 1057 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1058 * @mem: the pointer returned by vm_map_ram 1059 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1060 */ 1061 void vm_unmap_ram(const void *mem, unsigned int count) 1062 { 1063 unsigned long size = count << PAGE_SHIFT; 1064 unsigned long addr = (unsigned long)mem; 1065 1066 BUG_ON(!addr); 1067 BUG_ON(addr < VMALLOC_START); 1068 BUG_ON(addr > VMALLOC_END); 1069 BUG_ON(addr & (PAGE_SIZE-1)); 1070 1071 debug_check_no_locks_freed(mem, size); 1072 vmap_debug_free_range(addr, addr+size); 1073 1074 if (likely(count <= VMAP_MAX_ALLOC)) 1075 vb_free(mem, size); 1076 else 1077 free_unmap_vmap_area_addr(addr); 1078 } 1079 EXPORT_SYMBOL(vm_unmap_ram); 1080 1081 /** 1082 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1083 * @pages: an array of pointers to the pages to be mapped 1084 * @count: number of pages 1085 * @node: prefer to allocate data structures on this node 1086 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1087 * 1088 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1089 * faster than vmap so it's good. But if you mix long-life and short-life 1090 * objects with vm_map_ram(), it could consume lots of address space through 1091 * fragmentation (especially on a 32bit machine). You could see failures in 1092 * the end. Please use this function for short-lived objects. 1093 * 1094 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1095 */ 1096 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1097 { 1098 unsigned long size = count << PAGE_SHIFT; 1099 unsigned long addr; 1100 void *mem; 1101 1102 if (likely(count <= VMAP_MAX_ALLOC)) { 1103 mem = vb_alloc(size, GFP_KERNEL); 1104 if (IS_ERR(mem)) 1105 return NULL; 1106 addr = (unsigned long)mem; 1107 } else { 1108 struct vmap_area *va; 1109 va = alloc_vmap_area(size, PAGE_SIZE, 1110 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1111 if (IS_ERR(va)) 1112 return NULL; 1113 1114 addr = va->va_start; 1115 mem = (void *)addr; 1116 } 1117 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1118 vm_unmap_ram(mem, count); 1119 return NULL; 1120 } 1121 return mem; 1122 } 1123 EXPORT_SYMBOL(vm_map_ram); 1124 1125 static struct vm_struct *vmlist __initdata; 1126 /** 1127 * vm_area_add_early - add vmap area early during boot 1128 * @vm: vm_struct to add 1129 * 1130 * This function is used to add fixed kernel vm area to vmlist before 1131 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1132 * should contain proper values and the other fields should be zero. 1133 * 1134 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1135 */ 1136 void __init vm_area_add_early(struct vm_struct *vm) 1137 { 1138 struct vm_struct *tmp, **p; 1139 1140 BUG_ON(vmap_initialized); 1141 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1142 if (tmp->addr >= vm->addr) { 1143 BUG_ON(tmp->addr < vm->addr + vm->size); 1144 break; 1145 } else 1146 BUG_ON(tmp->addr + tmp->size > vm->addr); 1147 } 1148 vm->next = *p; 1149 *p = vm; 1150 } 1151 1152 /** 1153 * vm_area_register_early - register vmap area early during boot 1154 * @vm: vm_struct to register 1155 * @align: requested alignment 1156 * 1157 * This function is used to register kernel vm area before 1158 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1159 * proper values on entry and other fields should be zero. On return, 1160 * vm->addr contains the allocated address. 1161 * 1162 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1163 */ 1164 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1165 { 1166 static size_t vm_init_off __initdata; 1167 unsigned long addr; 1168 1169 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1170 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1171 1172 vm->addr = (void *)addr; 1173 1174 vm_area_add_early(vm); 1175 } 1176 1177 void __init vmalloc_init(void) 1178 { 1179 struct vmap_area *va; 1180 struct vm_struct *tmp; 1181 int i; 1182 1183 for_each_possible_cpu(i) { 1184 struct vmap_block_queue *vbq; 1185 struct vfree_deferred *p; 1186 1187 vbq = &per_cpu(vmap_block_queue, i); 1188 spin_lock_init(&vbq->lock); 1189 INIT_LIST_HEAD(&vbq->free); 1190 p = &per_cpu(vfree_deferred, i); 1191 init_llist_head(&p->list); 1192 INIT_WORK(&p->wq, free_work); 1193 } 1194 1195 /* Import existing vmlist entries. */ 1196 for (tmp = vmlist; tmp; tmp = tmp->next) { 1197 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1198 va->flags = VM_VM_AREA; 1199 va->va_start = (unsigned long)tmp->addr; 1200 va->va_end = va->va_start + tmp->size; 1201 va->vm = tmp; 1202 __insert_vmap_area(va); 1203 } 1204 1205 vmap_area_pcpu_hole = VMALLOC_END; 1206 1207 vmap_initialized = true; 1208 } 1209 1210 /** 1211 * map_kernel_range_noflush - map kernel VM area with the specified pages 1212 * @addr: start of the VM area to map 1213 * @size: size of the VM area to map 1214 * @prot: page protection flags to use 1215 * @pages: pages to map 1216 * 1217 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1218 * specify should have been allocated using get_vm_area() and its 1219 * friends. 1220 * 1221 * NOTE: 1222 * This function does NOT do any cache flushing. The caller is 1223 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1224 * before calling this function. 1225 * 1226 * RETURNS: 1227 * The number of pages mapped on success, -errno on failure. 1228 */ 1229 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1230 pgprot_t prot, struct page **pages) 1231 { 1232 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1233 } 1234 1235 /** 1236 * unmap_kernel_range_noflush - unmap kernel VM area 1237 * @addr: start of the VM area to unmap 1238 * @size: size of the VM area to unmap 1239 * 1240 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1241 * specify should have been allocated using get_vm_area() and its 1242 * friends. 1243 * 1244 * NOTE: 1245 * This function does NOT do any cache flushing. The caller is 1246 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1247 * before calling this function and flush_tlb_kernel_range() after. 1248 */ 1249 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1250 { 1251 vunmap_page_range(addr, addr + size); 1252 } 1253 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1254 1255 /** 1256 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1257 * @addr: start of the VM area to unmap 1258 * @size: size of the VM area to unmap 1259 * 1260 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1261 * the unmapping and tlb after. 1262 */ 1263 void unmap_kernel_range(unsigned long addr, unsigned long size) 1264 { 1265 unsigned long end = addr + size; 1266 1267 flush_cache_vunmap(addr, end); 1268 vunmap_page_range(addr, end); 1269 flush_tlb_kernel_range(addr, end); 1270 } 1271 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1272 1273 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1274 { 1275 unsigned long addr = (unsigned long)area->addr; 1276 unsigned long end = addr + get_vm_area_size(area); 1277 int err; 1278 1279 err = vmap_page_range(addr, end, prot, *pages); 1280 if (err > 0) { 1281 *pages += err; 1282 err = 0; 1283 } 1284 1285 return err; 1286 } 1287 EXPORT_SYMBOL_GPL(map_vm_area); 1288 1289 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1290 unsigned long flags, const void *caller) 1291 { 1292 spin_lock(&vmap_area_lock); 1293 vm->flags = flags; 1294 vm->addr = (void *)va->va_start; 1295 vm->size = va->va_end - va->va_start; 1296 vm->caller = caller; 1297 va->vm = vm; 1298 va->flags |= VM_VM_AREA; 1299 spin_unlock(&vmap_area_lock); 1300 } 1301 1302 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1303 { 1304 /* 1305 * Before removing VM_UNINITIALIZED, 1306 * we should make sure that vm has proper values. 1307 * Pair with smp_rmb() in show_numa_info(). 1308 */ 1309 smp_wmb(); 1310 vm->flags &= ~VM_UNINITIALIZED; 1311 } 1312 1313 static struct vm_struct *__get_vm_area_node(unsigned long size, 1314 unsigned long align, unsigned long flags, unsigned long start, 1315 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1316 { 1317 struct vmap_area *va; 1318 struct vm_struct *area; 1319 1320 BUG_ON(in_interrupt()); 1321 if (flags & VM_IOREMAP) 1322 align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); 1323 1324 size = PAGE_ALIGN(size); 1325 if (unlikely(!size)) 1326 return NULL; 1327 1328 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1329 if (unlikely(!area)) 1330 return NULL; 1331 1332 /* 1333 * We always allocate a guard page. 1334 */ 1335 size += PAGE_SIZE; 1336 1337 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1338 if (IS_ERR(va)) { 1339 kfree(area); 1340 return NULL; 1341 } 1342 1343 setup_vmalloc_vm(area, va, flags, caller); 1344 1345 return area; 1346 } 1347 1348 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1349 unsigned long start, unsigned long end) 1350 { 1351 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1352 GFP_KERNEL, __builtin_return_address(0)); 1353 } 1354 EXPORT_SYMBOL_GPL(__get_vm_area); 1355 1356 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1357 unsigned long start, unsigned long end, 1358 const void *caller) 1359 { 1360 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1361 GFP_KERNEL, caller); 1362 } 1363 1364 /** 1365 * get_vm_area - reserve a contiguous kernel virtual area 1366 * @size: size of the area 1367 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1368 * 1369 * Search an area of @size in the kernel virtual mapping area, 1370 * and reserved it for out purposes. Returns the area descriptor 1371 * on success or %NULL on failure. 1372 */ 1373 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1374 { 1375 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1376 NUMA_NO_NODE, GFP_KERNEL, 1377 __builtin_return_address(0)); 1378 } 1379 1380 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1381 const void *caller) 1382 { 1383 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1384 NUMA_NO_NODE, GFP_KERNEL, caller); 1385 } 1386 1387 /** 1388 * find_vm_area - find a continuous kernel virtual area 1389 * @addr: base address 1390 * 1391 * Search for the kernel VM area starting at @addr, and return it. 1392 * It is up to the caller to do all required locking to keep the returned 1393 * pointer valid. 1394 */ 1395 struct vm_struct *find_vm_area(const void *addr) 1396 { 1397 struct vmap_area *va; 1398 1399 va = find_vmap_area((unsigned long)addr); 1400 if (va && va->flags & VM_VM_AREA) 1401 return va->vm; 1402 1403 return NULL; 1404 } 1405 1406 /** 1407 * remove_vm_area - find and remove a continuous kernel virtual area 1408 * @addr: base address 1409 * 1410 * Search for the kernel VM area starting at @addr, and remove it. 1411 * This function returns the found VM area, but using it is NOT safe 1412 * on SMP machines, except for its size or flags. 1413 */ 1414 struct vm_struct *remove_vm_area(const void *addr) 1415 { 1416 struct vmap_area *va; 1417 1418 va = find_vmap_area((unsigned long)addr); 1419 if (va && va->flags & VM_VM_AREA) { 1420 struct vm_struct *vm = va->vm; 1421 1422 spin_lock(&vmap_area_lock); 1423 va->vm = NULL; 1424 va->flags &= ~VM_VM_AREA; 1425 spin_unlock(&vmap_area_lock); 1426 1427 vmap_debug_free_range(va->va_start, va->va_end); 1428 free_unmap_vmap_area(va); 1429 vm->size -= PAGE_SIZE; 1430 1431 return vm; 1432 } 1433 return NULL; 1434 } 1435 1436 static void __vunmap(const void *addr, int deallocate_pages) 1437 { 1438 struct vm_struct *area; 1439 1440 if (!addr) 1441 return; 1442 1443 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1444 addr)) 1445 return; 1446 1447 area = remove_vm_area(addr); 1448 if (unlikely(!area)) { 1449 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1450 addr); 1451 return; 1452 } 1453 1454 debug_check_no_locks_freed(addr, area->size); 1455 debug_check_no_obj_freed(addr, area->size); 1456 1457 if (deallocate_pages) { 1458 int i; 1459 1460 for (i = 0; i < area->nr_pages; i++) { 1461 struct page *page = area->pages[i]; 1462 1463 BUG_ON(!page); 1464 __free_page(page); 1465 } 1466 1467 if (area->flags & VM_VPAGES) 1468 vfree(area->pages); 1469 else 1470 kfree(area->pages); 1471 } 1472 1473 kfree(area); 1474 return; 1475 } 1476 1477 /** 1478 * vfree - release memory allocated by vmalloc() 1479 * @addr: memory base address 1480 * 1481 * Free the virtually continuous memory area starting at @addr, as 1482 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1483 * NULL, no operation is performed. 1484 * 1485 * Must not be called in NMI context (strictly speaking, only if we don't 1486 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1487 * conventions for vfree() arch-depenedent would be a really bad idea) 1488 * 1489 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) 1490 */ 1491 void vfree(const void *addr) 1492 { 1493 BUG_ON(in_nmi()); 1494 1495 kmemleak_free(addr); 1496 1497 if (!addr) 1498 return; 1499 if (unlikely(in_interrupt())) { 1500 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred); 1501 if (llist_add((struct llist_node *)addr, &p->list)) 1502 schedule_work(&p->wq); 1503 } else 1504 __vunmap(addr, 1); 1505 } 1506 EXPORT_SYMBOL(vfree); 1507 1508 /** 1509 * vunmap - release virtual mapping obtained by vmap() 1510 * @addr: memory base address 1511 * 1512 * Free the virtually contiguous memory area starting at @addr, 1513 * which was created from the page array passed to vmap(). 1514 * 1515 * Must not be called in interrupt context. 1516 */ 1517 void vunmap(const void *addr) 1518 { 1519 BUG_ON(in_interrupt()); 1520 might_sleep(); 1521 if (addr) 1522 __vunmap(addr, 0); 1523 } 1524 EXPORT_SYMBOL(vunmap); 1525 1526 /** 1527 * vmap - map an array of pages into virtually contiguous space 1528 * @pages: array of page pointers 1529 * @count: number of pages to map 1530 * @flags: vm_area->flags 1531 * @prot: page protection for the mapping 1532 * 1533 * Maps @count pages from @pages into contiguous kernel virtual 1534 * space. 1535 */ 1536 void *vmap(struct page **pages, unsigned int count, 1537 unsigned long flags, pgprot_t prot) 1538 { 1539 struct vm_struct *area; 1540 1541 might_sleep(); 1542 1543 if (count > totalram_pages) 1544 return NULL; 1545 1546 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1547 __builtin_return_address(0)); 1548 if (!area) 1549 return NULL; 1550 1551 if (map_vm_area(area, prot, &pages)) { 1552 vunmap(area->addr); 1553 return NULL; 1554 } 1555 1556 return area->addr; 1557 } 1558 EXPORT_SYMBOL(vmap); 1559 1560 static void *__vmalloc_node(unsigned long size, unsigned long align, 1561 gfp_t gfp_mask, pgprot_t prot, 1562 int node, const void *caller); 1563 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1564 pgprot_t prot, int node) 1565 { 1566 const int order = 0; 1567 struct page **pages; 1568 unsigned int nr_pages, array_size, i; 1569 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1570 1571 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1572 array_size = (nr_pages * sizeof(struct page *)); 1573 1574 area->nr_pages = nr_pages; 1575 /* Please note that the recursion is strictly bounded. */ 1576 if (array_size > PAGE_SIZE) { 1577 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1578 PAGE_KERNEL, node, area->caller); 1579 area->flags |= VM_VPAGES; 1580 } else { 1581 pages = kmalloc_node(array_size, nested_gfp, node); 1582 } 1583 area->pages = pages; 1584 if (!area->pages) { 1585 remove_vm_area(area->addr); 1586 kfree(area); 1587 return NULL; 1588 } 1589 1590 for (i = 0; i < area->nr_pages; i++) { 1591 struct page *page; 1592 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; 1593 1594 if (node == NUMA_NO_NODE) 1595 page = alloc_page(tmp_mask); 1596 else 1597 page = alloc_pages_node(node, tmp_mask, order); 1598 1599 if (unlikely(!page)) { 1600 /* Successfully allocated i pages, free them in __vunmap() */ 1601 area->nr_pages = i; 1602 goto fail; 1603 } 1604 area->pages[i] = page; 1605 } 1606 1607 if (map_vm_area(area, prot, &pages)) 1608 goto fail; 1609 return area->addr; 1610 1611 fail: 1612 warn_alloc_failed(gfp_mask, order, 1613 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1614 (area->nr_pages*PAGE_SIZE), area->size); 1615 vfree(area->addr); 1616 return NULL; 1617 } 1618 1619 /** 1620 * __vmalloc_node_range - allocate virtually contiguous memory 1621 * @size: allocation size 1622 * @align: desired alignment 1623 * @start: vm area range start 1624 * @end: vm area range end 1625 * @gfp_mask: flags for the page level allocator 1626 * @prot: protection mask for the allocated pages 1627 * @node: node to use for allocation or NUMA_NO_NODE 1628 * @caller: caller's return address 1629 * 1630 * Allocate enough pages to cover @size from the page level 1631 * allocator with @gfp_mask flags. Map them into contiguous 1632 * kernel virtual space, using a pagetable protection of @prot. 1633 */ 1634 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1635 unsigned long start, unsigned long end, gfp_t gfp_mask, 1636 pgprot_t prot, int node, const void *caller) 1637 { 1638 struct vm_struct *area; 1639 void *addr; 1640 unsigned long real_size = size; 1641 1642 size = PAGE_ALIGN(size); 1643 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1644 goto fail; 1645 1646 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED, 1647 start, end, node, gfp_mask, caller); 1648 if (!area) 1649 goto fail; 1650 1651 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1652 if (!addr) 1653 return NULL; 1654 1655 /* 1656 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1657 * flag. It means that vm_struct is not fully initialized. 1658 * Now, it is fully initialized, so remove this flag here. 1659 */ 1660 clear_vm_uninitialized_flag(area); 1661 1662 /* 1663 * A ref_count = 2 is needed because vm_struct allocated in 1664 * __get_vm_area_node() contains a reference to the virtual address of 1665 * the vmalloc'ed block. 1666 */ 1667 kmemleak_alloc(addr, real_size, 2, gfp_mask); 1668 1669 return addr; 1670 1671 fail: 1672 warn_alloc_failed(gfp_mask, 0, 1673 "vmalloc: allocation failure: %lu bytes\n", 1674 real_size); 1675 return NULL; 1676 } 1677 1678 /** 1679 * __vmalloc_node - allocate virtually contiguous memory 1680 * @size: allocation size 1681 * @align: desired alignment 1682 * @gfp_mask: flags for the page level allocator 1683 * @prot: protection mask for the allocated pages 1684 * @node: node to use for allocation or NUMA_NO_NODE 1685 * @caller: caller's return address 1686 * 1687 * Allocate enough pages to cover @size from the page level 1688 * allocator with @gfp_mask flags. Map them into contiguous 1689 * kernel virtual space, using a pagetable protection of @prot. 1690 */ 1691 static void *__vmalloc_node(unsigned long size, unsigned long align, 1692 gfp_t gfp_mask, pgprot_t prot, 1693 int node, const void *caller) 1694 { 1695 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1696 gfp_mask, prot, node, caller); 1697 } 1698 1699 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1700 { 1701 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1702 __builtin_return_address(0)); 1703 } 1704 EXPORT_SYMBOL(__vmalloc); 1705 1706 static inline void *__vmalloc_node_flags(unsigned long size, 1707 int node, gfp_t flags) 1708 { 1709 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1710 node, __builtin_return_address(0)); 1711 } 1712 1713 /** 1714 * vmalloc - allocate virtually contiguous memory 1715 * @size: allocation size 1716 * Allocate enough pages to cover @size from the page level 1717 * allocator and map them into contiguous kernel virtual space. 1718 * 1719 * For tight control over page level allocator and protection flags 1720 * use __vmalloc() instead. 1721 */ 1722 void *vmalloc(unsigned long size) 1723 { 1724 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1725 GFP_KERNEL | __GFP_HIGHMEM); 1726 } 1727 EXPORT_SYMBOL(vmalloc); 1728 1729 /** 1730 * vzalloc - allocate virtually contiguous memory with zero fill 1731 * @size: allocation size 1732 * Allocate enough pages to cover @size from the page level 1733 * allocator and map them into contiguous kernel virtual space. 1734 * The memory allocated is set to zero. 1735 * 1736 * For tight control over page level allocator and protection flags 1737 * use __vmalloc() instead. 1738 */ 1739 void *vzalloc(unsigned long size) 1740 { 1741 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1742 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1743 } 1744 EXPORT_SYMBOL(vzalloc); 1745 1746 /** 1747 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1748 * @size: allocation size 1749 * 1750 * The resulting memory area is zeroed so it can be mapped to userspace 1751 * without leaking data. 1752 */ 1753 void *vmalloc_user(unsigned long size) 1754 { 1755 struct vm_struct *area; 1756 void *ret; 1757 1758 ret = __vmalloc_node(size, SHMLBA, 1759 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1760 PAGE_KERNEL, NUMA_NO_NODE, 1761 __builtin_return_address(0)); 1762 if (ret) { 1763 area = find_vm_area(ret); 1764 area->flags |= VM_USERMAP; 1765 } 1766 return ret; 1767 } 1768 EXPORT_SYMBOL(vmalloc_user); 1769 1770 /** 1771 * vmalloc_node - allocate memory on a specific node 1772 * @size: allocation size 1773 * @node: numa node 1774 * 1775 * Allocate enough pages to cover @size from the page level 1776 * allocator and map them into contiguous kernel virtual space. 1777 * 1778 * For tight control over page level allocator and protection flags 1779 * use __vmalloc() instead. 1780 */ 1781 void *vmalloc_node(unsigned long size, int node) 1782 { 1783 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1784 node, __builtin_return_address(0)); 1785 } 1786 EXPORT_SYMBOL(vmalloc_node); 1787 1788 /** 1789 * vzalloc_node - allocate memory on a specific node with zero fill 1790 * @size: allocation size 1791 * @node: numa node 1792 * 1793 * Allocate enough pages to cover @size from the page level 1794 * allocator and map them into contiguous kernel virtual space. 1795 * The memory allocated is set to zero. 1796 * 1797 * For tight control over page level allocator and protection flags 1798 * use __vmalloc_node() instead. 1799 */ 1800 void *vzalloc_node(unsigned long size, int node) 1801 { 1802 return __vmalloc_node_flags(size, node, 1803 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1804 } 1805 EXPORT_SYMBOL(vzalloc_node); 1806 1807 #ifndef PAGE_KERNEL_EXEC 1808 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1809 #endif 1810 1811 /** 1812 * vmalloc_exec - allocate virtually contiguous, executable memory 1813 * @size: allocation size 1814 * 1815 * Kernel-internal function to allocate enough pages to cover @size 1816 * the page level allocator and map them into contiguous and 1817 * executable kernel virtual space. 1818 * 1819 * For tight control over page level allocator and protection flags 1820 * use __vmalloc() instead. 1821 */ 1822 1823 void *vmalloc_exec(unsigned long size) 1824 { 1825 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1826 NUMA_NO_NODE, __builtin_return_address(0)); 1827 } 1828 1829 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1830 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1831 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1832 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1833 #else 1834 #define GFP_VMALLOC32 GFP_KERNEL 1835 #endif 1836 1837 /** 1838 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1839 * @size: allocation size 1840 * 1841 * Allocate enough 32bit PA addressable pages to cover @size from the 1842 * page level allocator and map them into contiguous kernel virtual space. 1843 */ 1844 void *vmalloc_32(unsigned long size) 1845 { 1846 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1847 NUMA_NO_NODE, __builtin_return_address(0)); 1848 } 1849 EXPORT_SYMBOL(vmalloc_32); 1850 1851 /** 1852 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1853 * @size: allocation size 1854 * 1855 * The resulting memory area is 32bit addressable and zeroed so it can be 1856 * mapped to userspace without leaking data. 1857 */ 1858 void *vmalloc_32_user(unsigned long size) 1859 { 1860 struct vm_struct *area; 1861 void *ret; 1862 1863 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1864 NUMA_NO_NODE, __builtin_return_address(0)); 1865 if (ret) { 1866 area = find_vm_area(ret); 1867 area->flags |= VM_USERMAP; 1868 } 1869 return ret; 1870 } 1871 EXPORT_SYMBOL(vmalloc_32_user); 1872 1873 /* 1874 * small helper routine , copy contents to buf from addr. 1875 * If the page is not present, fill zero. 1876 */ 1877 1878 static int aligned_vread(char *buf, char *addr, unsigned long count) 1879 { 1880 struct page *p; 1881 int copied = 0; 1882 1883 while (count) { 1884 unsigned long offset, length; 1885 1886 offset = (unsigned long)addr & ~PAGE_MASK; 1887 length = PAGE_SIZE - offset; 1888 if (length > count) 1889 length = count; 1890 p = vmalloc_to_page(addr); 1891 /* 1892 * To do safe access to this _mapped_ area, we need 1893 * lock. But adding lock here means that we need to add 1894 * overhead of vmalloc()/vfree() calles for this _debug_ 1895 * interface, rarely used. Instead of that, we'll use 1896 * kmap() and get small overhead in this access function. 1897 */ 1898 if (p) { 1899 /* 1900 * we can expect USER0 is not used (see vread/vwrite's 1901 * function description) 1902 */ 1903 void *map = kmap_atomic(p); 1904 memcpy(buf, map + offset, length); 1905 kunmap_atomic(map); 1906 } else 1907 memset(buf, 0, length); 1908 1909 addr += length; 1910 buf += length; 1911 copied += length; 1912 count -= length; 1913 } 1914 return copied; 1915 } 1916 1917 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1918 { 1919 struct page *p; 1920 int copied = 0; 1921 1922 while (count) { 1923 unsigned long offset, length; 1924 1925 offset = (unsigned long)addr & ~PAGE_MASK; 1926 length = PAGE_SIZE - offset; 1927 if (length > count) 1928 length = count; 1929 p = vmalloc_to_page(addr); 1930 /* 1931 * To do safe access to this _mapped_ area, we need 1932 * lock. But adding lock here means that we need to add 1933 * overhead of vmalloc()/vfree() calles for this _debug_ 1934 * interface, rarely used. Instead of that, we'll use 1935 * kmap() and get small overhead in this access function. 1936 */ 1937 if (p) { 1938 /* 1939 * we can expect USER0 is not used (see vread/vwrite's 1940 * function description) 1941 */ 1942 void *map = kmap_atomic(p); 1943 memcpy(map + offset, buf, length); 1944 kunmap_atomic(map); 1945 } 1946 addr += length; 1947 buf += length; 1948 copied += length; 1949 count -= length; 1950 } 1951 return copied; 1952 } 1953 1954 /** 1955 * vread() - read vmalloc area in a safe way. 1956 * @buf: buffer for reading data 1957 * @addr: vm address. 1958 * @count: number of bytes to be read. 1959 * 1960 * Returns # of bytes which addr and buf should be increased. 1961 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1962 * includes any intersect with alive vmalloc area. 1963 * 1964 * This function checks that addr is a valid vmalloc'ed area, and 1965 * copy data from that area to a given buffer. If the given memory range 1966 * of [addr...addr+count) includes some valid address, data is copied to 1967 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1968 * IOREMAP area is treated as memory hole and no copy is done. 1969 * 1970 * If [addr...addr+count) doesn't includes any intersects with alive 1971 * vm_struct area, returns 0. @buf should be kernel's buffer. 1972 * 1973 * Note: In usual ops, vread() is never necessary because the caller 1974 * should know vmalloc() area is valid and can use memcpy(). 1975 * This is for routines which have to access vmalloc area without 1976 * any informaion, as /dev/kmem. 1977 * 1978 */ 1979 1980 long vread(char *buf, char *addr, unsigned long count) 1981 { 1982 struct vmap_area *va; 1983 struct vm_struct *vm; 1984 char *vaddr, *buf_start = buf; 1985 unsigned long buflen = count; 1986 unsigned long n; 1987 1988 /* Don't allow overflow */ 1989 if ((unsigned long) addr + count < count) 1990 count = -(unsigned long) addr; 1991 1992 spin_lock(&vmap_area_lock); 1993 list_for_each_entry(va, &vmap_area_list, list) { 1994 if (!count) 1995 break; 1996 1997 if (!(va->flags & VM_VM_AREA)) 1998 continue; 1999 2000 vm = va->vm; 2001 vaddr = (char *) vm->addr; 2002 if (addr >= vaddr + get_vm_area_size(vm)) 2003 continue; 2004 while (addr < vaddr) { 2005 if (count == 0) 2006 goto finished; 2007 *buf = '\0'; 2008 buf++; 2009 addr++; 2010 count--; 2011 } 2012 n = vaddr + get_vm_area_size(vm) - addr; 2013 if (n > count) 2014 n = count; 2015 if (!(vm->flags & VM_IOREMAP)) 2016 aligned_vread(buf, addr, n); 2017 else /* IOREMAP area is treated as memory hole */ 2018 memset(buf, 0, n); 2019 buf += n; 2020 addr += n; 2021 count -= n; 2022 } 2023 finished: 2024 spin_unlock(&vmap_area_lock); 2025 2026 if (buf == buf_start) 2027 return 0; 2028 /* zero-fill memory holes */ 2029 if (buf != buf_start + buflen) 2030 memset(buf, 0, buflen - (buf - buf_start)); 2031 2032 return buflen; 2033 } 2034 2035 /** 2036 * vwrite() - write vmalloc area in a safe way. 2037 * @buf: buffer for source data 2038 * @addr: vm address. 2039 * @count: number of bytes to be read. 2040 * 2041 * Returns # of bytes which addr and buf should be incresed. 2042 * (same number to @count). 2043 * If [addr...addr+count) doesn't includes any intersect with valid 2044 * vmalloc area, returns 0. 2045 * 2046 * This function checks that addr is a valid vmalloc'ed area, and 2047 * copy data from a buffer to the given addr. If specified range of 2048 * [addr...addr+count) includes some valid address, data is copied from 2049 * proper area of @buf. If there are memory holes, no copy to hole. 2050 * IOREMAP area is treated as memory hole and no copy is done. 2051 * 2052 * If [addr...addr+count) doesn't includes any intersects with alive 2053 * vm_struct area, returns 0. @buf should be kernel's buffer. 2054 * 2055 * Note: In usual ops, vwrite() is never necessary because the caller 2056 * should know vmalloc() area is valid and can use memcpy(). 2057 * This is for routines which have to access vmalloc area without 2058 * any informaion, as /dev/kmem. 2059 */ 2060 2061 long vwrite(char *buf, char *addr, unsigned long count) 2062 { 2063 struct vmap_area *va; 2064 struct vm_struct *vm; 2065 char *vaddr; 2066 unsigned long n, buflen; 2067 int copied = 0; 2068 2069 /* Don't allow overflow */ 2070 if ((unsigned long) addr + count < count) 2071 count = -(unsigned long) addr; 2072 buflen = count; 2073 2074 spin_lock(&vmap_area_lock); 2075 list_for_each_entry(va, &vmap_area_list, list) { 2076 if (!count) 2077 break; 2078 2079 if (!(va->flags & VM_VM_AREA)) 2080 continue; 2081 2082 vm = va->vm; 2083 vaddr = (char *) vm->addr; 2084 if (addr >= vaddr + get_vm_area_size(vm)) 2085 continue; 2086 while (addr < vaddr) { 2087 if (count == 0) 2088 goto finished; 2089 buf++; 2090 addr++; 2091 count--; 2092 } 2093 n = vaddr + get_vm_area_size(vm) - addr; 2094 if (n > count) 2095 n = count; 2096 if (!(vm->flags & VM_IOREMAP)) { 2097 aligned_vwrite(buf, addr, n); 2098 copied++; 2099 } 2100 buf += n; 2101 addr += n; 2102 count -= n; 2103 } 2104 finished: 2105 spin_unlock(&vmap_area_lock); 2106 if (!copied) 2107 return 0; 2108 return buflen; 2109 } 2110 2111 /** 2112 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2113 * @vma: vma to cover 2114 * @uaddr: target user address to start at 2115 * @kaddr: virtual address of vmalloc kernel memory 2116 * @size: size of map area 2117 * 2118 * Returns: 0 for success, -Exxx on failure 2119 * 2120 * This function checks that @kaddr is a valid vmalloc'ed area, 2121 * and that it is big enough to cover the range starting at 2122 * @uaddr in @vma. Will return failure if that criteria isn't 2123 * met. 2124 * 2125 * Similar to remap_pfn_range() (see mm/memory.c) 2126 */ 2127 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2128 void *kaddr, unsigned long size) 2129 { 2130 struct vm_struct *area; 2131 2132 size = PAGE_ALIGN(size); 2133 2134 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2135 return -EINVAL; 2136 2137 area = find_vm_area(kaddr); 2138 if (!area) 2139 return -EINVAL; 2140 2141 if (!(area->flags & VM_USERMAP)) 2142 return -EINVAL; 2143 2144 if (kaddr + size > area->addr + area->size) 2145 return -EINVAL; 2146 2147 do { 2148 struct page *page = vmalloc_to_page(kaddr); 2149 int ret; 2150 2151 ret = vm_insert_page(vma, uaddr, page); 2152 if (ret) 2153 return ret; 2154 2155 uaddr += PAGE_SIZE; 2156 kaddr += PAGE_SIZE; 2157 size -= PAGE_SIZE; 2158 } while (size > 0); 2159 2160 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2161 2162 return 0; 2163 } 2164 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2165 2166 /** 2167 * remap_vmalloc_range - map vmalloc pages to userspace 2168 * @vma: vma to cover (map full range of vma) 2169 * @addr: vmalloc memory 2170 * @pgoff: number of pages into addr before first page to map 2171 * 2172 * Returns: 0 for success, -Exxx on failure 2173 * 2174 * This function checks that addr is a valid vmalloc'ed area, and 2175 * that it is big enough to cover the vma. Will return failure if 2176 * that criteria isn't met. 2177 * 2178 * Similar to remap_pfn_range() (see mm/memory.c) 2179 */ 2180 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2181 unsigned long pgoff) 2182 { 2183 return remap_vmalloc_range_partial(vma, vma->vm_start, 2184 addr + (pgoff << PAGE_SHIFT), 2185 vma->vm_end - vma->vm_start); 2186 } 2187 EXPORT_SYMBOL(remap_vmalloc_range); 2188 2189 /* 2190 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2191 * have one. 2192 */ 2193 void __weak vmalloc_sync_all(void) 2194 { 2195 } 2196 2197 2198 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2199 { 2200 pte_t ***p = data; 2201 2202 if (p) { 2203 *(*p) = pte; 2204 (*p)++; 2205 } 2206 return 0; 2207 } 2208 2209 /** 2210 * alloc_vm_area - allocate a range of kernel address space 2211 * @size: size of the area 2212 * @ptes: returns the PTEs for the address space 2213 * 2214 * Returns: NULL on failure, vm_struct on success 2215 * 2216 * This function reserves a range of kernel address space, and 2217 * allocates pagetables to map that range. No actual mappings 2218 * are created. 2219 * 2220 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2221 * allocated for the VM area are returned. 2222 */ 2223 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2224 { 2225 struct vm_struct *area; 2226 2227 area = get_vm_area_caller(size, VM_IOREMAP, 2228 __builtin_return_address(0)); 2229 if (area == NULL) 2230 return NULL; 2231 2232 /* 2233 * This ensures that page tables are constructed for this region 2234 * of kernel virtual address space and mapped into init_mm. 2235 */ 2236 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2237 size, f, ptes ? &ptes : NULL)) { 2238 free_vm_area(area); 2239 return NULL; 2240 } 2241 2242 return area; 2243 } 2244 EXPORT_SYMBOL_GPL(alloc_vm_area); 2245 2246 void free_vm_area(struct vm_struct *area) 2247 { 2248 struct vm_struct *ret; 2249 ret = remove_vm_area(area->addr); 2250 BUG_ON(ret != area); 2251 kfree(area); 2252 } 2253 EXPORT_SYMBOL_GPL(free_vm_area); 2254 2255 #ifdef CONFIG_SMP 2256 static struct vmap_area *node_to_va(struct rb_node *n) 2257 { 2258 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2259 } 2260 2261 /** 2262 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2263 * @end: target address 2264 * @pnext: out arg for the next vmap_area 2265 * @pprev: out arg for the previous vmap_area 2266 * 2267 * Returns: %true if either or both of next and prev are found, 2268 * %false if no vmap_area exists 2269 * 2270 * Find vmap_areas end addresses of which enclose @end. ie. if not 2271 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2272 */ 2273 static bool pvm_find_next_prev(unsigned long end, 2274 struct vmap_area **pnext, 2275 struct vmap_area **pprev) 2276 { 2277 struct rb_node *n = vmap_area_root.rb_node; 2278 struct vmap_area *va = NULL; 2279 2280 while (n) { 2281 va = rb_entry(n, struct vmap_area, rb_node); 2282 if (end < va->va_end) 2283 n = n->rb_left; 2284 else if (end > va->va_end) 2285 n = n->rb_right; 2286 else 2287 break; 2288 } 2289 2290 if (!va) 2291 return false; 2292 2293 if (va->va_end > end) { 2294 *pnext = va; 2295 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2296 } else { 2297 *pprev = va; 2298 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2299 } 2300 return true; 2301 } 2302 2303 /** 2304 * pvm_determine_end - find the highest aligned address between two vmap_areas 2305 * @pnext: in/out arg for the next vmap_area 2306 * @pprev: in/out arg for the previous vmap_area 2307 * @align: alignment 2308 * 2309 * Returns: determined end address 2310 * 2311 * Find the highest aligned address between *@pnext and *@pprev below 2312 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2313 * down address is between the end addresses of the two vmap_areas. 2314 * 2315 * Please note that the address returned by this function may fall 2316 * inside *@pnext vmap_area. The caller is responsible for checking 2317 * that. 2318 */ 2319 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2320 struct vmap_area **pprev, 2321 unsigned long align) 2322 { 2323 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2324 unsigned long addr; 2325 2326 if (*pnext) 2327 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2328 else 2329 addr = vmalloc_end; 2330 2331 while (*pprev && (*pprev)->va_end > addr) { 2332 *pnext = *pprev; 2333 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2334 } 2335 2336 return addr; 2337 } 2338 2339 /** 2340 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2341 * @offsets: array containing offset of each area 2342 * @sizes: array containing size of each area 2343 * @nr_vms: the number of areas to allocate 2344 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2345 * 2346 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2347 * vm_structs on success, %NULL on failure 2348 * 2349 * Percpu allocator wants to use congruent vm areas so that it can 2350 * maintain the offsets among percpu areas. This function allocates 2351 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2352 * be scattered pretty far, distance between two areas easily going up 2353 * to gigabytes. To avoid interacting with regular vmallocs, these 2354 * areas are allocated from top. 2355 * 2356 * Despite its complicated look, this allocator is rather simple. It 2357 * does everything top-down and scans areas from the end looking for 2358 * matching slot. While scanning, if any of the areas overlaps with 2359 * existing vmap_area, the base address is pulled down to fit the 2360 * area. Scanning is repeated till all the areas fit and then all 2361 * necessary data structres are inserted and the result is returned. 2362 */ 2363 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2364 const size_t *sizes, int nr_vms, 2365 size_t align) 2366 { 2367 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2368 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2369 struct vmap_area **vas, *prev, *next; 2370 struct vm_struct **vms; 2371 int area, area2, last_area, term_area; 2372 unsigned long base, start, end, last_end; 2373 bool purged = false; 2374 2375 /* verify parameters and allocate data structures */ 2376 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2377 for (last_area = 0, area = 0; area < nr_vms; area++) { 2378 start = offsets[area]; 2379 end = start + sizes[area]; 2380 2381 /* is everything aligned properly? */ 2382 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2383 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2384 2385 /* detect the area with the highest address */ 2386 if (start > offsets[last_area]) 2387 last_area = area; 2388 2389 for (area2 = 0; area2 < nr_vms; area2++) { 2390 unsigned long start2 = offsets[area2]; 2391 unsigned long end2 = start2 + sizes[area2]; 2392 2393 if (area2 == area) 2394 continue; 2395 2396 BUG_ON(start2 >= start && start2 < end); 2397 BUG_ON(end2 <= end && end2 > start); 2398 } 2399 } 2400 last_end = offsets[last_area] + sizes[last_area]; 2401 2402 if (vmalloc_end - vmalloc_start < last_end) { 2403 WARN_ON(true); 2404 return NULL; 2405 } 2406 2407 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2408 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2409 if (!vas || !vms) 2410 goto err_free2; 2411 2412 for (area = 0; area < nr_vms; area++) { 2413 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2414 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2415 if (!vas[area] || !vms[area]) 2416 goto err_free; 2417 } 2418 retry: 2419 spin_lock(&vmap_area_lock); 2420 2421 /* start scanning - we scan from the top, begin with the last area */ 2422 area = term_area = last_area; 2423 start = offsets[area]; 2424 end = start + sizes[area]; 2425 2426 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2427 base = vmalloc_end - last_end; 2428 goto found; 2429 } 2430 base = pvm_determine_end(&next, &prev, align) - end; 2431 2432 while (true) { 2433 BUG_ON(next && next->va_end <= base + end); 2434 BUG_ON(prev && prev->va_end > base + end); 2435 2436 /* 2437 * base might have underflowed, add last_end before 2438 * comparing. 2439 */ 2440 if (base + last_end < vmalloc_start + last_end) { 2441 spin_unlock(&vmap_area_lock); 2442 if (!purged) { 2443 purge_vmap_area_lazy(); 2444 purged = true; 2445 goto retry; 2446 } 2447 goto err_free; 2448 } 2449 2450 /* 2451 * If next overlaps, move base downwards so that it's 2452 * right below next and then recheck. 2453 */ 2454 if (next && next->va_start < base + end) { 2455 base = pvm_determine_end(&next, &prev, align) - end; 2456 term_area = area; 2457 continue; 2458 } 2459 2460 /* 2461 * If prev overlaps, shift down next and prev and move 2462 * base so that it's right below new next and then 2463 * recheck. 2464 */ 2465 if (prev && prev->va_end > base + start) { 2466 next = prev; 2467 prev = node_to_va(rb_prev(&next->rb_node)); 2468 base = pvm_determine_end(&next, &prev, align) - end; 2469 term_area = area; 2470 continue; 2471 } 2472 2473 /* 2474 * This area fits, move on to the previous one. If 2475 * the previous one is the terminal one, we're done. 2476 */ 2477 area = (area + nr_vms - 1) % nr_vms; 2478 if (area == term_area) 2479 break; 2480 start = offsets[area]; 2481 end = start + sizes[area]; 2482 pvm_find_next_prev(base + end, &next, &prev); 2483 } 2484 found: 2485 /* we've found a fitting base, insert all va's */ 2486 for (area = 0; area < nr_vms; area++) { 2487 struct vmap_area *va = vas[area]; 2488 2489 va->va_start = base + offsets[area]; 2490 va->va_end = va->va_start + sizes[area]; 2491 __insert_vmap_area(va); 2492 } 2493 2494 vmap_area_pcpu_hole = base + offsets[last_area]; 2495 2496 spin_unlock(&vmap_area_lock); 2497 2498 /* insert all vm's */ 2499 for (area = 0; area < nr_vms; area++) 2500 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2501 pcpu_get_vm_areas); 2502 2503 kfree(vas); 2504 return vms; 2505 2506 err_free: 2507 for (area = 0; area < nr_vms; area++) { 2508 kfree(vas[area]); 2509 kfree(vms[area]); 2510 } 2511 err_free2: 2512 kfree(vas); 2513 kfree(vms); 2514 return NULL; 2515 } 2516 2517 /** 2518 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2519 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2520 * @nr_vms: the number of allocated areas 2521 * 2522 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2523 */ 2524 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2525 { 2526 int i; 2527 2528 for (i = 0; i < nr_vms; i++) 2529 free_vm_area(vms[i]); 2530 kfree(vms); 2531 } 2532 #endif /* CONFIG_SMP */ 2533 2534 #ifdef CONFIG_PROC_FS 2535 static void *s_start(struct seq_file *m, loff_t *pos) 2536 __acquires(&vmap_area_lock) 2537 { 2538 loff_t n = *pos; 2539 struct vmap_area *va; 2540 2541 spin_lock(&vmap_area_lock); 2542 va = list_entry((&vmap_area_list)->next, typeof(*va), list); 2543 while (n > 0 && &va->list != &vmap_area_list) { 2544 n--; 2545 va = list_entry(va->list.next, typeof(*va), list); 2546 } 2547 if (!n && &va->list != &vmap_area_list) 2548 return va; 2549 2550 return NULL; 2551 2552 } 2553 2554 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2555 { 2556 struct vmap_area *va = p, *next; 2557 2558 ++*pos; 2559 next = list_entry(va->list.next, typeof(*va), list); 2560 if (&next->list != &vmap_area_list) 2561 return next; 2562 2563 return NULL; 2564 } 2565 2566 static void s_stop(struct seq_file *m, void *p) 2567 __releases(&vmap_area_lock) 2568 { 2569 spin_unlock(&vmap_area_lock); 2570 } 2571 2572 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2573 { 2574 if (IS_ENABLED(CONFIG_NUMA)) { 2575 unsigned int nr, *counters = m->private; 2576 2577 if (!counters) 2578 return; 2579 2580 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2581 smp_rmb(); 2582 if (v->flags & VM_UNINITIALIZED) 2583 return; 2584 2585 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2586 2587 for (nr = 0; nr < v->nr_pages; nr++) 2588 counters[page_to_nid(v->pages[nr])]++; 2589 2590 for_each_node_state(nr, N_HIGH_MEMORY) 2591 if (counters[nr]) 2592 seq_printf(m, " N%u=%u", nr, counters[nr]); 2593 } 2594 } 2595 2596 static int s_show(struct seq_file *m, void *p) 2597 { 2598 struct vmap_area *va = p; 2599 struct vm_struct *v; 2600 2601 /* 2602 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2603 * behalf of vmap area is being tear down or vm_map_ram allocation. 2604 */ 2605 if (!(va->flags & VM_VM_AREA)) 2606 return 0; 2607 2608 v = va->vm; 2609 2610 seq_printf(m, "0x%pK-0x%pK %7ld", 2611 v->addr, v->addr + v->size, v->size); 2612 2613 if (v->caller) 2614 seq_printf(m, " %pS", v->caller); 2615 2616 if (v->nr_pages) 2617 seq_printf(m, " pages=%d", v->nr_pages); 2618 2619 if (v->phys_addr) 2620 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2621 2622 if (v->flags & VM_IOREMAP) 2623 seq_puts(m, " ioremap"); 2624 2625 if (v->flags & VM_ALLOC) 2626 seq_puts(m, " vmalloc"); 2627 2628 if (v->flags & VM_MAP) 2629 seq_puts(m, " vmap"); 2630 2631 if (v->flags & VM_USERMAP) 2632 seq_puts(m, " user"); 2633 2634 if (v->flags & VM_VPAGES) 2635 seq_puts(m, " vpages"); 2636 2637 show_numa_info(m, v); 2638 seq_putc(m, '\n'); 2639 return 0; 2640 } 2641 2642 static const struct seq_operations vmalloc_op = { 2643 .start = s_start, 2644 .next = s_next, 2645 .stop = s_stop, 2646 .show = s_show, 2647 }; 2648 2649 static int vmalloc_open(struct inode *inode, struct file *file) 2650 { 2651 unsigned int *ptr = NULL; 2652 int ret; 2653 2654 if (IS_ENABLED(CONFIG_NUMA)) { 2655 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2656 if (ptr == NULL) 2657 return -ENOMEM; 2658 } 2659 ret = seq_open(file, &vmalloc_op); 2660 if (!ret) { 2661 struct seq_file *m = file->private_data; 2662 m->private = ptr; 2663 } else 2664 kfree(ptr); 2665 return ret; 2666 } 2667 2668 static const struct file_operations proc_vmalloc_operations = { 2669 .open = vmalloc_open, 2670 .read = seq_read, 2671 .llseek = seq_lseek, 2672 .release = seq_release_private, 2673 }; 2674 2675 static int __init proc_vmalloc_init(void) 2676 { 2677 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2678 return 0; 2679 } 2680 module_init(proc_vmalloc_init); 2681 2682 void get_vmalloc_info(struct vmalloc_info *vmi) 2683 { 2684 struct vmap_area *va; 2685 unsigned long free_area_size; 2686 unsigned long prev_end; 2687 2688 vmi->used = 0; 2689 vmi->largest_chunk = 0; 2690 2691 prev_end = VMALLOC_START; 2692 2693 spin_lock(&vmap_area_lock); 2694 2695 if (list_empty(&vmap_area_list)) { 2696 vmi->largest_chunk = VMALLOC_TOTAL; 2697 goto out; 2698 } 2699 2700 list_for_each_entry(va, &vmap_area_list, list) { 2701 unsigned long addr = va->va_start; 2702 2703 /* 2704 * Some archs keep another range for modules in vmalloc space 2705 */ 2706 if (addr < VMALLOC_START) 2707 continue; 2708 if (addr >= VMALLOC_END) 2709 break; 2710 2711 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) 2712 continue; 2713 2714 vmi->used += (va->va_end - va->va_start); 2715 2716 free_area_size = addr - prev_end; 2717 if (vmi->largest_chunk < free_area_size) 2718 vmi->largest_chunk = free_area_size; 2719 2720 prev_end = va->va_end; 2721 } 2722 2723 if (VMALLOC_END - prev_end > vmi->largest_chunk) 2724 vmi->largest_chunk = VMALLOC_END - prev_end; 2725 2726 out: 2727 spin_unlock(&vmap_area_lock); 2728 } 2729 #endif 2730 2731