xref: /openbmc/linux/mm/vmalloc.c (revision cd5d5810)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/llist.h>
31 #include <asm/uaccess.h>
32 #include <asm/tlbflush.h>
33 #include <asm/shmparam.h>
34 
35 struct vfree_deferred {
36 	struct llist_head list;
37 	struct work_struct wq;
38 };
39 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
40 
41 static void __vunmap(const void *, int);
42 
43 static void free_work(struct work_struct *w)
44 {
45 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
46 	struct llist_node *llnode = llist_del_all(&p->list);
47 	while (llnode) {
48 		void *p = llnode;
49 		llnode = llist_next(llnode);
50 		__vunmap(p, 1);
51 	}
52 }
53 
54 /*** Page table manipulation functions ***/
55 
56 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
57 {
58 	pte_t *pte;
59 
60 	pte = pte_offset_kernel(pmd, addr);
61 	do {
62 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
63 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
64 	} while (pte++, addr += PAGE_SIZE, addr != end);
65 }
66 
67 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
68 {
69 	pmd_t *pmd;
70 	unsigned long next;
71 
72 	pmd = pmd_offset(pud, addr);
73 	do {
74 		next = pmd_addr_end(addr, end);
75 		if (pmd_none_or_clear_bad(pmd))
76 			continue;
77 		vunmap_pte_range(pmd, addr, next);
78 	} while (pmd++, addr = next, addr != end);
79 }
80 
81 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
82 {
83 	pud_t *pud;
84 	unsigned long next;
85 
86 	pud = pud_offset(pgd, addr);
87 	do {
88 		next = pud_addr_end(addr, end);
89 		if (pud_none_or_clear_bad(pud))
90 			continue;
91 		vunmap_pmd_range(pud, addr, next);
92 	} while (pud++, addr = next, addr != end);
93 }
94 
95 static void vunmap_page_range(unsigned long addr, unsigned long end)
96 {
97 	pgd_t *pgd;
98 	unsigned long next;
99 
100 	BUG_ON(addr >= end);
101 	pgd = pgd_offset_k(addr);
102 	do {
103 		next = pgd_addr_end(addr, end);
104 		if (pgd_none_or_clear_bad(pgd))
105 			continue;
106 		vunmap_pud_range(pgd, addr, next);
107 	} while (pgd++, addr = next, addr != end);
108 }
109 
110 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
111 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
112 {
113 	pte_t *pte;
114 
115 	/*
116 	 * nr is a running index into the array which helps higher level
117 	 * callers keep track of where we're up to.
118 	 */
119 
120 	pte = pte_alloc_kernel(pmd, addr);
121 	if (!pte)
122 		return -ENOMEM;
123 	do {
124 		struct page *page = pages[*nr];
125 
126 		if (WARN_ON(!pte_none(*pte)))
127 			return -EBUSY;
128 		if (WARN_ON(!page))
129 			return -ENOMEM;
130 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
131 		(*nr)++;
132 	} while (pte++, addr += PAGE_SIZE, addr != end);
133 	return 0;
134 }
135 
136 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
137 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 	pmd_t *pmd;
140 	unsigned long next;
141 
142 	pmd = pmd_alloc(&init_mm, pud, addr);
143 	if (!pmd)
144 		return -ENOMEM;
145 	do {
146 		next = pmd_addr_end(addr, end);
147 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
148 			return -ENOMEM;
149 	} while (pmd++, addr = next, addr != end);
150 	return 0;
151 }
152 
153 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
154 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
155 {
156 	pud_t *pud;
157 	unsigned long next;
158 
159 	pud = pud_alloc(&init_mm, pgd, addr);
160 	if (!pud)
161 		return -ENOMEM;
162 	do {
163 		next = pud_addr_end(addr, end);
164 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
165 			return -ENOMEM;
166 	} while (pud++, addr = next, addr != end);
167 	return 0;
168 }
169 
170 /*
171  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172  * will have pfns corresponding to the "pages" array.
173  *
174  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
175  */
176 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
177 				   pgprot_t prot, struct page **pages)
178 {
179 	pgd_t *pgd;
180 	unsigned long next;
181 	unsigned long addr = start;
182 	int err = 0;
183 	int nr = 0;
184 
185 	BUG_ON(addr >= end);
186 	pgd = pgd_offset_k(addr);
187 	do {
188 		next = pgd_addr_end(addr, end);
189 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
190 		if (err)
191 			return err;
192 	} while (pgd++, addr = next, addr != end);
193 
194 	return nr;
195 }
196 
197 static int vmap_page_range(unsigned long start, unsigned long end,
198 			   pgprot_t prot, struct page **pages)
199 {
200 	int ret;
201 
202 	ret = vmap_page_range_noflush(start, end, prot, pages);
203 	flush_cache_vmap(start, end);
204 	return ret;
205 }
206 
207 int is_vmalloc_or_module_addr(const void *x)
208 {
209 	/*
210 	 * ARM, x86-64 and sparc64 put modules in a special place,
211 	 * and fall back on vmalloc() if that fails. Others
212 	 * just put it in the vmalloc space.
213 	 */
214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 	unsigned long addr = (unsigned long)x;
216 	if (addr >= MODULES_VADDR && addr < MODULES_END)
217 		return 1;
218 #endif
219 	return is_vmalloc_addr(x);
220 }
221 
222 /*
223  * Walk a vmap address to the struct page it maps.
224  */
225 struct page *vmalloc_to_page(const void *vmalloc_addr)
226 {
227 	unsigned long addr = (unsigned long) vmalloc_addr;
228 	struct page *page = NULL;
229 	pgd_t *pgd = pgd_offset_k(addr);
230 
231 	/*
232 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 	 * architectures that do not vmalloc module space
234 	 */
235 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
236 
237 	if (!pgd_none(*pgd)) {
238 		pud_t *pud = pud_offset(pgd, addr);
239 		if (!pud_none(*pud)) {
240 			pmd_t *pmd = pmd_offset(pud, addr);
241 			if (!pmd_none(*pmd)) {
242 				pte_t *ptep, pte;
243 
244 				ptep = pte_offset_map(pmd, addr);
245 				pte = *ptep;
246 				if (pte_present(pte))
247 					page = pte_page(pte);
248 				pte_unmap(ptep);
249 			}
250 		}
251 	}
252 	return page;
253 }
254 EXPORT_SYMBOL(vmalloc_to_page);
255 
256 /*
257  * Map a vmalloc()-space virtual address to the physical page frame number.
258  */
259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
260 {
261 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
262 }
263 EXPORT_SYMBOL(vmalloc_to_pfn);
264 
265 
266 /*** Global kva allocator ***/
267 
268 #define VM_LAZY_FREE	0x01
269 #define VM_LAZY_FREEING	0x02
270 #define VM_VM_AREA	0x04
271 
272 static DEFINE_SPINLOCK(vmap_area_lock);
273 /* Export for kexec only */
274 LIST_HEAD(vmap_area_list);
275 static struct rb_root vmap_area_root = RB_ROOT;
276 
277 /* The vmap cache globals are protected by vmap_area_lock */
278 static struct rb_node *free_vmap_cache;
279 static unsigned long cached_hole_size;
280 static unsigned long cached_vstart;
281 static unsigned long cached_align;
282 
283 static unsigned long vmap_area_pcpu_hole;
284 
285 static struct vmap_area *__find_vmap_area(unsigned long addr)
286 {
287 	struct rb_node *n = vmap_area_root.rb_node;
288 
289 	while (n) {
290 		struct vmap_area *va;
291 
292 		va = rb_entry(n, struct vmap_area, rb_node);
293 		if (addr < va->va_start)
294 			n = n->rb_left;
295 		else if (addr >= va->va_end)
296 			n = n->rb_right;
297 		else
298 			return va;
299 	}
300 
301 	return NULL;
302 }
303 
304 static void __insert_vmap_area(struct vmap_area *va)
305 {
306 	struct rb_node **p = &vmap_area_root.rb_node;
307 	struct rb_node *parent = NULL;
308 	struct rb_node *tmp;
309 
310 	while (*p) {
311 		struct vmap_area *tmp_va;
312 
313 		parent = *p;
314 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
315 		if (va->va_start < tmp_va->va_end)
316 			p = &(*p)->rb_left;
317 		else if (va->va_end > tmp_va->va_start)
318 			p = &(*p)->rb_right;
319 		else
320 			BUG();
321 	}
322 
323 	rb_link_node(&va->rb_node, parent, p);
324 	rb_insert_color(&va->rb_node, &vmap_area_root);
325 
326 	/* address-sort this list */
327 	tmp = rb_prev(&va->rb_node);
328 	if (tmp) {
329 		struct vmap_area *prev;
330 		prev = rb_entry(tmp, struct vmap_area, rb_node);
331 		list_add_rcu(&va->list, &prev->list);
332 	} else
333 		list_add_rcu(&va->list, &vmap_area_list);
334 }
335 
336 static void purge_vmap_area_lazy(void);
337 
338 /*
339  * Allocate a region of KVA of the specified size and alignment, within the
340  * vstart and vend.
341  */
342 static struct vmap_area *alloc_vmap_area(unsigned long size,
343 				unsigned long align,
344 				unsigned long vstart, unsigned long vend,
345 				int node, gfp_t gfp_mask)
346 {
347 	struct vmap_area *va;
348 	struct rb_node *n;
349 	unsigned long addr;
350 	int purged = 0;
351 	struct vmap_area *first;
352 
353 	BUG_ON(!size);
354 	BUG_ON(size & ~PAGE_MASK);
355 	BUG_ON(!is_power_of_2(align));
356 
357 	va = kmalloc_node(sizeof(struct vmap_area),
358 			gfp_mask & GFP_RECLAIM_MASK, node);
359 	if (unlikely(!va))
360 		return ERR_PTR(-ENOMEM);
361 
362 retry:
363 	spin_lock(&vmap_area_lock);
364 	/*
365 	 * Invalidate cache if we have more permissive parameters.
366 	 * cached_hole_size notes the largest hole noticed _below_
367 	 * the vmap_area cached in free_vmap_cache: if size fits
368 	 * into that hole, we want to scan from vstart to reuse
369 	 * the hole instead of allocating above free_vmap_cache.
370 	 * Note that __free_vmap_area may update free_vmap_cache
371 	 * without updating cached_hole_size or cached_align.
372 	 */
373 	if (!free_vmap_cache ||
374 			size < cached_hole_size ||
375 			vstart < cached_vstart ||
376 			align < cached_align) {
377 nocache:
378 		cached_hole_size = 0;
379 		free_vmap_cache = NULL;
380 	}
381 	/* record if we encounter less permissive parameters */
382 	cached_vstart = vstart;
383 	cached_align = align;
384 
385 	/* find starting point for our search */
386 	if (free_vmap_cache) {
387 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
388 		addr = ALIGN(first->va_end, align);
389 		if (addr < vstart)
390 			goto nocache;
391 		if (addr + size < addr)
392 			goto overflow;
393 
394 	} else {
395 		addr = ALIGN(vstart, align);
396 		if (addr + size < addr)
397 			goto overflow;
398 
399 		n = vmap_area_root.rb_node;
400 		first = NULL;
401 
402 		while (n) {
403 			struct vmap_area *tmp;
404 			tmp = rb_entry(n, struct vmap_area, rb_node);
405 			if (tmp->va_end >= addr) {
406 				first = tmp;
407 				if (tmp->va_start <= addr)
408 					break;
409 				n = n->rb_left;
410 			} else
411 				n = n->rb_right;
412 		}
413 
414 		if (!first)
415 			goto found;
416 	}
417 
418 	/* from the starting point, walk areas until a suitable hole is found */
419 	while (addr + size > first->va_start && addr + size <= vend) {
420 		if (addr + cached_hole_size < first->va_start)
421 			cached_hole_size = first->va_start - addr;
422 		addr = ALIGN(first->va_end, align);
423 		if (addr + size < addr)
424 			goto overflow;
425 
426 		if (list_is_last(&first->list, &vmap_area_list))
427 			goto found;
428 
429 		first = list_entry(first->list.next,
430 				struct vmap_area, list);
431 	}
432 
433 found:
434 	if (addr + size > vend)
435 		goto overflow;
436 
437 	va->va_start = addr;
438 	va->va_end = addr + size;
439 	va->flags = 0;
440 	__insert_vmap_area(va);
441 	free_vmap_cache = &va->rb_node;
442 	spin_unlock(&vmap_area_lock);
443 
444 	BUG_ON(va->va_start & (align-1));
445 	BUG_ON(va->va_start < vstart);
446 	BUG_ON(va->va_end > vend);
447 
448 	return va;
449 
450 overflow:
451 	spin_unlock(&vmap_area_lock);
452 	if (!purged) {
453 		purge_vmap_area_lazy();
454 		purged = 1;
455 		goto retry;
456 	}
457 	if (printk_ratelimit())
458 		printk(KERN_WARNING
459 			"vmap allocation for size %lu failed: "
460 			"use vmalloc=<size> to increase size.\n", size);
461 	kfree(va);
462 	return ERR_PTR(-EBUSY);
463 }
464 
465 static void __free_vmap_area(struct vmap_area *va)
466 {
467 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
468 
469 	if (free_vmap_cache) {
470 		if (va->va_end < cached_vstart) {
471 			free_vmap_cache = NULL;
472 		} else {
473 			struct vmap_area *cache;
474 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
475 			if (va->va_start <= cache->va_start) {
476 				free_vmap_cache = rb_prev(&va->rb_node);
477 				/*
478 				 * We don't try to update cached_hole_size or
479 				 * cached_align, but it won't go very wrong.
480 				 */
481 			}
482 		}
483 	}
484 	rb_erase(&va->rb_node, &vmap_area_root);
485 	RB_CLEAR_NODE(&va->rb_node);
486 	list_del_rcu(&va->list);
487 
488 	/*
489 	 * Track the highest possible candidate for pcpu area
490 	 * allocation.  Areas outside of vmalloc area can be returned
491 	 * here too, consider only end addresses which fall inside
492 	 * vmalloc area proper.
493 	 */
494 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
495 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
496 
497 	kfree_rcu(va, rcu_head);
498 }
499 
500 /*
501  * Free a region of KVA allocated by alloc_vmap_area
502  */
503 static void free_vmap_area(struct vmap_area *va)
504 {
505 	spin_lock(&vmap_area_lock);
506 	__free_vmap_area(va);
507 	spin_unlock(&vmap_area_lock);
508 }
509 
510 /*
511  * Clear the pagetable entries of a given vmap_area
512  */
513 static void unmap_vmap_area(struct vmap_area *va)
514 {
515 	vunmap_page_range(va->va_start, va->va_end);
516 }
517 
518 static void vmap_debug_free_range(unsigned long start, unsigned long end)
519 {
520 	/*
521 	 * Unmap page tables and force a TLB flush immediately if
522 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
523 	 * bugs similarly to those in linear kernel virtual address
524 	 * space after a page has been freed.
525 	 *
526 	 * All the lazy freeing logic is still retained, in order to
527 	 * minimise intrusiveness of this debugging feature.
528 	 *
529 	 * This is going to be *slow* (linear kernel virtual address
530 	 * debugging doesn't do a broadcast TLB flush so it is a lot
531 	 * faster).
532 	 */
533 #ifdef CONFIG_DEBUG_PAGEALLOC
534 	vunmap_page_range(start, end);
535 	flush_tlb_kernel_range(start, end);
536 #endif
537 }
538 
539 /*
540  * lazy_max_pages is the maximum amount of virtual address space we gather up
541  * before attempting to purge with a TLB flush.
542  *
543  * There is a tradeoff here: a larger number will cover more kernel page tables
544  * and take slightly longer to purge, but it will linearly reduce the number of
545  * global TLB flushes that must be performed. It would seem natural to scale
546  * this number up linearly with the number of CPUs (because vmapping activity
547  * could also scale linearly with the number of CPUs), however it is likely
548  * that in practice, workloads might be constrained in other ways that mean
549  * vmap activity will not scale linearly with CPUs. Also, I want to be
550  * conservative and not introduce a big latency on huge systems, so go with
551  * a less aggressive log scale. It will still be an improvement over the old
552  * code, and it will be simple to change the scale factor if we find that it
553  * becomes a problem on bigger systems.
554  */
555 static unsigned long lazy_max_pages(void)
556 {
557 	unsigned int log;
558 
559 	log = fls(num_online_cpus());
560 
561 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
562 }
563 
564 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
565 
566 /* for per-CPU blocks */
567 static void purge_fragmented_blocks_allcpus(void);
568 
569 /*
570  * called before a call to iounmap() if the caller wants vm_area_struct's
571  * immediately freed.
572  */
573 void set_iounmap_nonlazy(void)
574 {
575 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
576 }
577 
578 /*
579  * Purges all lazily-freed vmap areas.
580  *
581  * If sync is 0 then don't purge if there is already a purge in progress.
582  * If force_flush is 1, then flush kernel TLBs between *start and *end even
583  * if we found no lazy vmap areas to unmap (callers can use this to optimise
584  * their own TLB flushing).
585  * Returns with *start = min(*start, lowest purged address)
586  *              *end = max(*end, highest purged address)
587  */
588 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
589 					int sync, int force_flush)
590 {
591 	static DEFINE_SPINLOCK(purge_lock);
592 	LIST_HEAD(valist);
593 	struct vmap_area *va;
594 	struct vmap_area *n_va;
595 	int nr = 0;
596 
597 	/*
598 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
599 	 * should not expect such behaviour. This just simplifies locking for
600 	 * the case that isn't actually used at the moment anyway.
601 	 */
602 	if (!sync && !force_flush) {
603 		if (!spin_trylock(&purge_lock))
604 			return;
605 	} else
606 		spin_lock(&purge_lock);
607 
608 	if (sync)
609 		purge_fragmented_blocks_allcpus();
610 
611 	rcu_read_lock();
612 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
613 		if (va->flags & VM_LAZY_FREE) {
614 			if (va->va_start < *start)
615 				*start = va->va_start;
616 			if (va->va_end > *end)
617 				*end = va->va_end;
618 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
619 			list_add_tail(&va->purge_list, &valist);
620 			va->flags |= VM_LAZY_FREEING;
621 			va->flags &= ~VM_LAZY_FREE;
622 		}
623 	}
624 	rcu_read_unlock();
625 
626 	if (nr)
627 		atomic_sub(nr, &vmap_lazy_nr);
628 
629 	if (nr || force_flush)
630 		flush_tlb_kernel_range(*start, *end);
631 
632 	if (nr) {
633 		spin_lock(&vmap_area_lock);
634 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
635 			__free_vmap_area(va);
636 		spin_unlock(&vmap_area_lock);
637 	}
638 	spin_unlock(&purge_lock);
639 }
640 
641 /*
642  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
643  * is already purging.
644  */
645 static void try_purge_vmap_area_lazy(void)
646 {
647 	unsigned long start = ULONG_MAX, end = 0;
648 
649 	__purge_vmap_area_lazy(&start, &end, 0, 0);
650 }
651 
652 /*
653  * Kick off a purge of the outstanding lazy areas.
654  */
655 static void purge_vmap_area_lazy(void)
656 {
657 	unsigned long start = ULONG_MAX, end = 0;
658 
659 	__purge_vmap_area_lazy(&start, &end, 1, 0);
660 }
661 
662 /*
663  * Free a vmap area, caller ensuring that the area has been unmapped
664  * and flush_cache_vunmap had been called for the correct range
665  * previously.
666  */
667 static void free_vmap_area_noflush(struct vmap_area *va)
668 {
669 	va->flags |= VM_LAZY_FREE;
670 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
671 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
672 		try_purge_vmap_area_lazy();
673 }
674 
675 /*
676  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
677  * called for the correct range previously.
678  */
679 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
680 {
681 	unmap_vmap_area(va);
682 	free_vmap_area_noflush(va);
683 }
684 
685 /*
686  * Free and unmap a vmap area
687  */
688 static void free_unmap_vmap_area(struct vmap_area *va)
689 {
690 	flush_cache_vunmap(va->va_start, va->va_end);
691 	free_unmap_vmap_area_noflush(va);
692 }
693 
694 static struct vmap_area *find_vmap_area(unsigned long addr)
695 {
696 	struct vmap_area *va;
697 
698 	spin_lock(&vmap_area_lock);
699 	va = __find_vmap_area(addr);
700 	spin_unlock(&vmap_area_lock);
701 
702 	return va;
703 }
704 
705 static void free_unmap_vmap_area_addr(unsigned long addr)
706 {
707 	struct vmap_area *va;
708 
709 	va = find_vmap_area(addr);
710 	BUG_ON(!va);
711 	free_unmap_vmap_area(va);
712 }
713 
714 
715 /*** Per cpu kva allocator ***/
716 
717 /*
718  * vmap space is limited especially on 32 bit architectures. Ensure there is
719  * room for at least 16 percpu vmap blocks per CPU.
720  */
721 /*
722  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
723  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
724  * instead (we just need a rough idea)
725  */
726 #if BITS_PER_LONG == 32
727 #define VMALLOC_SPACE		(128UL*1024*1024)
728 #else
729 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
730 #endif
731 
732 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
733 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
734 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
735 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
736 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
737 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
738 #define VMAP_BBMAP_BITS		\
739 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
740 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
741 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
742 
743 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
744 
745 static bool vmap_initialized __read_mostly = false;
746 
747 struct vmap_block_queue {
748 	spinlock_t lock;
749 	struct list_head free;
750 };
751 
752 struct vmap_block {
753 	spinlock_t lock;
754 	struct vmap_area *va;
755 	unsigned long free, dirty;
756 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
757 	struct list_head free_list;
758 	struct rcu_head rcu_head;
759 	struct list_head purge;
760 };
761 
762 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
763 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
764 
765 /*
766  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
767  * in the free path. Could get rid of this if we change the API to return a
768  * "cookie" from alloc, to be passed to free. But no big deal yet.
769  */
770 static DEFINE_SPINLOCK(vmap_block_tree_lock);
771 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
772 
773 /*
774  * We should probably have a fallback mechanism to allocate virtual memory
775  * out of partially filled vmap blocks. However vmap block sizing should be
776  * fairly reasonable according to the vmalloc size, so it shouldn't be a
777  * big problem.
778  */
779 
780 static unsigned long addr_to_vb_idx(unsigned long addr)
781 {
782 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
783 	addr /= VMAP_BLOCK_SIZE;
784 	return addr;
785 }
786 
787 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
788 {
789 	struct vmap_block_queue *vbq;
790 	struct vmap_block *vb;
791 	struct vmap_area *va;
792 	unsigned long vb_idx;
793 	int node, err;
794 
795 	node = numa_node_id();
796 
797 	vb = kmalloc_node(sizeof(struct vmap_block),
798 			gfp_mask & GFP_RECLAIM_MASK, node);
799 	if (unlikely(!vb))
800 		return ERR_PTR(-ENOMEM);
801 
802 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
803 					VMALLOC_START, VMALLOC_END,
804 					node, gfp_mask);
805 	if (IS_ERR(va)) {
806 		kfree(vb);
807 		return ERR_CAST(va);
808 	}
809 
810 	err = radix_tree_preload(gfp_mask);
811 	if (unlikely(err)) {
812 		kfree(vb);
813 		free_vmap_area(va);
814 		return ERR_PTR(err);
815 	}
816 
817 	spin_lock_init(&vb->lock);
818 	vb->va = va;
819 	vb->free = VMAP_BBMAP_BITS;
820 	vb->dirty = 0;
821 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
822 	INIT_LIST_HEAD(&vb->free_list);
823 
824 	vb_idx = addr_to_vb_idx(va->va_start);
825 	spin_lock(&vmap_block_tree_lock);
826 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
827 	spin_unlock(&vmap_block_tree_lock);
828 	BUG_ON(err);
829 	radix_tree_preload_end();
830 
831 	vbq = &get_cpu_var(vmap_block_queue);
832 	spin_lock(&vbq->lock);
833 	list_add_rcu(&vb->free_list, &vbq->free);
834 	spin_unlock(&vbq->lock);
835 	put_cpu_var(vmap_block_queue);
836 
837 	return vb;
838 }
839 
840 static void free_vmap_block(struct vmap_block *vb)
841 {
842 	struct vmap_block *tmp;
843 	unsigned long vb_idx;
844 
845 	vb_idx = addr_to_vb_idx(vb->va->va_start);
846 	spin_lock(&vmap_block_tree_lock);
847 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
848 	spin_unlock(&vmap_block_tree_lock);
849 	BUG_ON(tmp != vb);
850 
851 	free_vmap_area_noflush(vb->va);
852 	kfree_rcu(vb, rcu_head);
853 }
854 
855 static void purge_fragmented_blocks(int cpu)
856 {
857 	LIST_HEAD(purge);
858 	struct vmap_block *vb;
859 	struct vmap_block *n_vb;
860 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
861 
862 	rcu_read_lock();
863 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
864 
865 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
866 			continue;
867 
868 		spin_lock(&vb->lock);
869 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
870 			vb->free = 0; /* prevent further allocs after releasing lock */
871 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
872 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
873 			spin_lock(&vbq->lock);
874 			list_del_rcu(&vb->free_list);
875 			spin_unlock(&vbq->lock);
876 			spin_unlock(&vb->lock);
877 			list_add_tail(&vb->purge, &purge);
878 		} else
879 			spin_unlock(&vb->lock);
880 	}
881 	rcu_read_unlock();
882 
883 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
884 		list_del(&vb->purge);
885 		free_vmap_block(vb);
886 	}
887 }
888 
889 static void purge_fragmented_blocks_allcpus(void)
890 {
891 	int cpu;
892 
893 	for_each_possible_cpu(cpu)
894 		purge_fragmented_blocks(cpu);
895 }
896 
897 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
898 {
899 	struct vmap_block_queue *vbq;
900 	struct vmap_block *vb;
901 	unsigned long addr = 0;
902 	unsigned int order;
903 
904 	BUG_ON(size & ~PAGE_MASK);
905 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
906 	if (WARN_ON(size == 0)) {
907 		/*
908 		 * Allocating 0 bytes isn't what caller wants since
909 		 * get_order(0) returns funny result. Just warn and terminate
910 		 * early.
911 		 */
912 		return NULL;
913 	}
914 	order = get_order(size);
915 
916 again:
917 	rcu_read_lock();
918 	vbq = &get_cpu_var(vmap_block_queue);
919 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
920 		int i;
921 
922 		spin_lock(&vb->lock);
923 		if (vb->free < 1UL << order)
924 			goto next;
925 
926 		i = VMAP_BBMAP_BITS - vb->free;
927 		addr = vb->va->va_start + (i << PAGE_SHIFT);
928 		BUG_ON(addr_to_vb_idx(addr) !=
929 				addr_to_vb_idx(vb->va->va_start));
930 		vb->free -= 1UL << order;
931 		if (vb->free == 0) {
932 			spin_lock(&vbq->lock);
933 			list_del_rcu(&vb->free_list);
934 			spin_unlock(&vbq->lock);
935 		}
936 		spin_unlock(&vb->lock);
937 		break;
938 next:
939 		spin_unlock(&vb->lock);
940 	}
941 
942 	put_cpu_var(vmap_block_queue);
943 	rcu_read_unlock();
944 
945 	if (!addr) {
946 		vb = new_vmap_block(gfp_mask);
947 		if (IS_ERR(vb))
948 			return vb;
949 		goto again;
950 	}
951 
952 	return (void *)addr;
953 }
954 
955 static void vb_free(const void *addr, unsigned long size)
956 {
957 	unsigned long offset;
958 	unsigned long vb_idx;
959 	unsigned int order;
960 	struct vmap_block *vb;
961 
962 	BUG_ON(size & ~PAGE_MASK);
963 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
964 
965 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
966 
967 	order = get_order(size);
968 
969 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
970 
971 	vb_idx = addr_to_vb_idx((unsigned long)addr);
972 	rcu_read_lock();
973 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
974 	rcu_read_unlock();
975 	BUG_ON(!vb);
976 
977 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
978 
979 	spin_lock(&vb->lock);
980 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
981 
982 	vb->dirty += 1UL << order;
983 	if (vb->dirty == VMAP_BBMAP_BITS) {
984 		BUG_ON(vb->free);
985 		spin_unlock(&vb->lock);
986 		free_vmap_block(vb);
987 	} else
988 		spin_unlock(&vb->lock);
989 }
990 
991 /**
992  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
993  *
994  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
995  * to amortize TLB flushing overheads. What this means is that any page you
996  * have now, may, in a former life, have been mapped into kernel virtual
997  * address by the vmap layer and so there might be some CPUs with TLB entries
998  * still referencing that page (additional to the regular 1:1 kernel mapping).
999  *
1000  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1001  * be sure that none of the pages we have control over will have any aliases
1002  * from the vmap layer.
1003  */
1004 void vm_unmap_aliases(void)
1005 {
1006 	unsigned long start = ULONG_MAX, end = 0;
1007 	int cpu;
1008 	int flush = 0;
1009 
1010 	if (unlikely(!vmap_initialized))
1011 		return;
1012 
1013 	for_each_possible_cpu(cpu) {
1014 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1015 		struct vmap_block *vb;
1016 
1017 		rcu_read_lock();
1018 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1019 			int i, j;
1020 
1021 			spin_lock(&vb->lock);
1022 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1023 			if (i < VMAP_BBMAP_BITS) {
1024 				unsigned long s, e;
1025 
1026 				j = find_last_bit(vb->dirty_map,
1027 							VMAP_BBMAP_BITS);
1028 				j = j + 1; /* need exclusive index */
1029 
1030 				s = vb->va->va_start + (i << PAGE_SHIFT);
1031 				e = vb->va->va_start + (j << PAGE_SHIFT);
1032 				flush = 1;
1033 
1034 				if (s < start)
1035 					start = s;
1036 				if (e > end)
1037 					end = e;
1038 			}
1039 			spin_unlock(&vb->lock);
1040 		}
1041 		rcu_read_unlock();
1042 	}
1043 
1044 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1045 }
1046 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1047 
1048 /**
1049  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1050  * @mem: the pointer returned by vm_map_ram
1051  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1052  */
1053 void vm_unmap_ram(const void *mem, unsigned int count)
1054 {
1055 	unsigned long size = count << PAGE_SHIFT;
1056 	unsigned long addr = (unsigned long)mem;
1057 
1058 	BUG_ON(!addr);
1059 	BUG_ON(addr < VMALLOC_START);
1060 	BUG_ON(addr > VMALLOC_END);
1061 	BUG_ON(addr & (PAGE_SIZE-1));
1062 
1063 	debug_check_no_locks_freed(mem, size);
1064 	vmap_debug_free_range(addr, addr+size);
1065 
1066 	if (likely(count <= VMAP_MAX_ALLOC))
1067 		vb_free(mem, size);
1068 	else
1069 		free_unmap_vmap_area_addr(addr);
1070 }
1071 EXPORT_SYMBOL(vm_unmap_ram);
1072 
1073 /**
1074  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1075  * @pages: an array of pointers to the pages to be mapped
1076  * @count: number of pages
1077  * @node: prefer to allocate data structures on this node
1078  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1079  *
1080  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1081  */
1082 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1083 {
1084 	unsigned long size = count << PAGE_SHIFT;
1085 	unsigned long addr;
1086 	void *mem;
1087 
1088 	if (likely(count <= VMAP_MAX_ALLOC)) {
1089 		mem = vb_alloc(size, GFP_KERNEL);
1090 		if (IS_ERR(mem))
1091 			return NULL;
1092 		addr = (unsigned long)mem;
1093 	} else {
1094 		struct vmap_area *va;
1095 		va = alloc_vmap_area(size, PAGE_SIZE,
1096 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1097 		if (IS_ERR(va))
1098 			return NULL;
1099 
1100 		addr = va->va_start;
1101 		mem = (void *)addr;
1102 	}
1103 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1104 		vm_unmap_ram(mem, count);
1105 		return NULL;
1106 	}
1107 	return mem;
1108 }
1109 EXPORT_SYMBOL(vm_map_ram);
1110 
1111 static struct vm_struct *vmlist __initdata;
1112 /**
1113  * vm_area_add_early - add vmap area early during boot
1114  * @vm: vm_struct to add
1115  *
1116  * This function is used to add fixed kernel vm area to vmlist before
1117  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1118  * should contain proper values and the other fields should be zero.
1119  *
1120  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1121  */
1122 void __init vm_area_add_early(struct vm_struct *vm)
1123 {
1124 	struct vm_struct *tmp, **p;
1125 
1126 	BUG_ON(vmap_initialized);
1127 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1128 		if (tmp->addr >= vm->addr) {
1129 			BUG_ON(tmp->addr < vm->addr + vm->size);
1130 			break;
1131 		} else
1132 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1133 	}
1134 	vm->next = *p;
1135 	*p = vm;
1136 }
1137 
1138 /**
1139  * vm_area_register_early - register vmap area early during boot
1140  * @vm: vm_struct to register
1141  * @align: requested alignment
1142  *
1143  * This function is used to register kernel vm area before
1144  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1145  * proper values on entry and other fields should be zero.  On return,
1146  * vm->addr contains the allocated address.
1147  *
1148  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1149  */
1150 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1151 {
1152 	static size_t vm_init_off __initdata;
1153 	unsigned long addr;
1154 
1155 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1156 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1157 
1158 	vm->addr = (void *)addr;
1159 
1160 	vm_area_add_early(vm);
1161 }
1162 
1163 void __init vmalloc_init(void)
1164 {
1165 	struct vmap_area *va;
1166 	struct vm_struct *tmp;
1167 	int i;
1168 
1169 	for_each_possible_cpu(i) {
1170 		struct vmap_block_queue *vbq;
1171 		struct vfree_deferred *p;
1172 
1173 		vbq = &per_cpu(vmap_block_queue, i);
1174 		spin_lock_init(&vbq->lock);
1175 		INIT_LIST_HEAD(&vbq->free);
1176 		p = &per_cpu(vfree_deferred, i);
1177 		init_llist_head(&p->list);
1178 		INIT_WORK(&p->wq, free_work);
1179 	}
1180 
1181 	/* Import existing vmlist entries. */
1182 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1183 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1184 		va->flags = VM_VM_AREA;
1185 		va->va_start = (unsigned long)tmp->addr;
1186 		va->va_end = va->va_start + tmp->size;
1187 		va->vm = tmp;
1188 		__insert_vmap_area(va);
1189 	}
1190 
1191 	vmap_area_pcpu_hole = VMALLOC_END;
1192 
1193 	vmap_initialized = true;
1194 }
1195 
1196 /**
1197  * map_kernel_range_noflush - map kernel VM area with the specified pages
1198  * @addr: start of the VM area to map
1199  * @size: size of the VM area to map
1200  * @prot: page protection flags to use
1201  * @pages: pages to map
1202  *
1203  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1204  * specify should have been allocated using get_vm_area() and its
1205  * friends.
1206  *
1207  * NOTE:
1208  * This function does NOT do any cache flushing.  The caller is
1209  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1210  * before calling this function.
1211  *
1212  * RETURNS:
1213  * The number of pages mapped on success, -errno on failure.
1214  */
1215 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1216 			     pgprot_t prot, struct page **pages)
1217 {
1218 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1219 }
1220 
1221 /**
1222  * unmap_kernel_range_noflush - unmap kernel VM area
1223  * @addr: start of the VM area to unmap
1224  * @size: size of the VM area to unmap
1225  *
1226  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1227  * specify should have been allocated using get_vm_area() and its
1228  * friends.
1229  *
1230  * NOTE:
1231  * This function does NOT do any cache flushing.  The caller is
1232  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1233  * before calling this function and flush_tlb_kernel_range() after.
1234  */
1235 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1236 {
1237 	vunmap_page_range(addr, addr + size);
1238 }
1239 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1240 
1241 /**
1242  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1243  * @addr: start of the VM area to unmap
1244  * @size: size of the VM area to unmap
1245  *
1246  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1247  * the unmapping and tlb after.
1248  */
1249 void unmap_kernel_range(unsigned long addr, unsigned long size)
1250 {
1251 	unsigned long end = addr + size;
1252 
1253 	flush_cache_vunmap(addr, end);
1254 	vunmap_page_range(addr, end);
1255 	flush_tlb_kernel_range(addr, end);
1256 }
1257 
1258 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1259 {
1260 	unsigned long addr = (unsigned long)area->addr;
1261 	unsigned long end = addr + get_vm_area_size(area);
1262 	int err;
1263 
1264 	err = vmap_page_range(addr, end, prot, *pages);
1265 	if (err > 0) {
1266 		*pages += err;
1267 		err = 0;
1268 	}
1269 
1270 	return err;
1271 }
1272 EXPORT_SYMBOL_GPL(map_vm_area);
1273 
1274 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1275 			      unsigned long flags, const void *caller)
1276 {
1277 	spin_lock(&vmap_area_lock);
1278 	vm->flags = flags;
1279 	vm->addr = (void *)va->va_start;
1280 	vm->size = va->va_end - va->va_start;
1281 	vm->caller = caller;
1282 	va->vm = vm;
1283 	va->flags |= VM_VM_AREA;
1284 	spin_unlock(&vmap_area_lock);
1285 }
1286 
1287 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1288 {
1289 	/*
1290 	 * Before removing VM_UNINITIALIZED,
1291 	 * we should make sure that vm has proper values.
1292 	 * Pair with smp_rmb() in show_numa_info().
1293 	 */
1294 	smp_wmb();
1295 	vm->flags &= ~VM_UNINITIALIZED;
1296 }
1297 
1298 static struct vm_struct *__get_vm_area_node(unsigned long size,
1299 		unsigned long align, unsigned long flags, unsigned long start,
1300 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1301 {
1302 	struct vmap_area *va;
1303 	struct vm_struct *area;
1304 
1305 	BUG_ON(in_interrupt());
1306 	if (flags & VM_IOREMAP)
1307 		align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1308 
1309 	size = PAGE_ALIGN(size);
1310 	if (unlikely(!size))
1311 		return NULL;
1312 
1313 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1314 	if (unlikely(!area))
1315 		return NULL;
1316 
1317 	/*
1318 	 * We always allocate a guard page.
1319 	 */
1320 	size += PAGE_SIZE;
1321 
1322 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1323 	if (IS_ERR(va)) {
1324 		kfree(area);
1325 		return NULL;
1326 	}
1327 
1328 	setup_vmalloc_vm(area, va, flags, caller);
1329 
1330 	return area;
1331 }
1332 
1333 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1334 				unsigned long start, unsigned long end)
1335 {
1336 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1337 				  GFP_KERNEL, __builtin_return_address(0));
1338 }
1339 EXPORT_SYMBOL_GPL(__get_vm_area);
1340 
1341 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1342 				       unsigned long start, unsigned long end,
1343 				       const void *caller)
1344 {
1345 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1346 				  GFP_KERNEL, caller);
1347 }
1348 
1349 /**
1350  *	get_vm_area  -  reserve a contiguous kernel virtual area
1351  *	@size:		size of the area
1352  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1353  *
1354  *	Search an area of @size in the kernel virtual mapping area,
1355  *	and reserved it for out purposes.  Returns the area descriptor
1356  *	on success or %NULL on failure.
1357  */
1358 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1359 {
1360 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1361 				  NUMA_NO_NODE, GFP_KERNEL,
1362 				  __builtin_return_address(0));
1363 }
1364 
1365 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1366 				const void *caller)
1367 {
1368 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1369 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1370 }
1371 
1372 /**
1373  *	find_vm_area  -  find a continuous kernel virtual area
1374  *	@addr:		base address
1375  *
1376  *	Search for the kernel VM area starting at @addr, and return it.
1377  *	It is up to the caller to do all required locking to keep the returned
1378  *	pointer valid.
1379  */
1380 struct vm_struct *find_vm_area(const void *addr)
1381 {
1382 	struct vmap_area *va;
1383 
1384 	va = find_vmap_area((unsigned long)addr);
1385 	if (va && va->flags & VM_VM_AREA)
1386 		return va->vm;
1387 
1388 	return NULL;
1389 }
1390 
1391 /**
1392  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1393  *	@addr:		base address
1394  *
1395  *	Search for the kernel VM area starting at @addr, and remove it.
1396  *	This function returns the found VM area, but using it is NOT safe
1397  *	on SMP machines, except for its size or flags.
1398  */
1399 struct vm_struct *remove_vm_area(const void *addr)
1400 {
1401 	struct vmap_area *va;
1402 
1403 	va = find_vmap_area((unsigned long)addr);
1404 	if (va && va->flags & VM_VM_AREA) {
1405 		struct vm_struct *vm = va->vm;
1406 
1407 		spin_lock(&vmap_area_lock);
1408 		va->vm = NULL;
1409 		va->flags &= ~VM_VM_AREA;
1410 		spin_unlock(&vmap_area_lock);
1411 
1412 		vmap_debug_free_range(va->va_start, va->va_end);
1413 		free_unmap_vmap_area(va);
1414 		vm->size -= PAGE_SIZE;
1415 
1416 		return vm;
1417 	}
1418 	return NULL;
1419 }
1420 
1421 static void __vunmap(const void *addr, int deallocate_pages)
1422 {
1423 	struct vm_struct *area;
1424 
1425 	if (!addr)
1426 		return;
1427 
1428 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1429 			addr))
1430 		return;
1431 
1432 	area = remove_vm_area(addr);
1433 	if (unlikely(!area)) {
1434 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1435 				addr);
1436 		return;
1437 	}
1438 
1439 	debug_check_no_locks_freed(addr, area->size);
1440 	debug_check_no_obj_freed(addr, area->size);
1441 
1442 	if (deallocate_pages) {
1443 		int i;
1444 
1445 		for (i = 0; i < area->nr_pages; i++) {
1446 			struct page *page = area->pages[i];
1447 
1448 			BUG_ON(!page);
1449 			__free_page(page);
1450 		}
1451 
1452 		if (area->flags & VM_VPAGES)
1453 			vfree(area->pages);
1454 		else
1455 			kfree(area->pages);
1456 	}
1457 
1458 	kfree(area);
1459 	return;
1460 }
1461 
1462 /**
1463  *	vfree  -  release memory allocated by vmalloc()
1464  *	@addr:		memory base address
1465  *
1466  *	Free the virtually continuous memory area starting at @addr, as
1467  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1468  *	NULL, no operation is performed.
1469  *
1470  *	Must not be called in NMI context (strictly speaking, only if we don't
1471  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1472  *	conventions for vfree() arch-depenedent would be a really bad idea)
1473  *
1474  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1475  */
1476 void vfree(const void *addr)
1477 {
1478 	BUG_ON(in_nmi());
1479 
1480 	kmemleak_free(addr);
1481 
1482 	if (!addr)
1483 		return;
1484 	if (unlikely(in_interrupt())) {
1485 		struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1486 		if (llist_add((struct llist_node *)addr, &p->list))
1487 			schedule_work(&p->wq);
1488 	} else
1489 		__vunmap(addr, 1);
1490 }
1491 EXPORT_SYMBOL(vfree);
1492 
1493 /**
1494  *	vunmap  -  release virtual mapping obtained by vmap()
1495  *	@addr:		memory base address
1496  *
1497  *	Free the virtually contiguous memory area starting at @addr,
1498  *	which was created from the page array passed to vmap().
1499  *
1500  *	Must not be called in interrupt context.
1501  */
1502 void vunmap(const void *addr)
1503 {
1504 	BUG_ON(in_interrupt());
1505 	might_sleep();
1506 	if (addr)
1507 		__vunmap(addr, 0);
1508 }
1509 EXPORT_SYMBOL(vunmap);
1510 
1511 /**
1512  *	vmap  -  map an array of pages into virtually contiguous space
1513  *	@pages:		array of page pointers
1514  *	@count:		number of pages to map
1515  *	@flags:		vm_area->flags
1516  *	@prot:		page protection for the mapping
1517  *
1518  *	Maps @count pages from @pages into contiguous kernel virtual
1519  *	space.
1520  */
1521 void *vmap(struct page **pages, unsigned int count,
1522 		unsigned long flags, pgprot_t prot)
1523 {
1524 	struct vm_struct *area;
1525 
1526 	might_sleep();
1527 
1528 	if (count > totalram_pages)
1529 		return NULL;
1530 
1531 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1532 					__builtin_return_address(0));
1533 	if (!area)
1534 		return NULL;
1535 
1536 	if (map_vm_area(area, prot, &pages)) {
1537 		vunmap(area->addr);
1538 		return NULL;
1539 	}
1540 
1541 	return area->addr;
1542 }
1543 EXPORT_SYMBOL(vmap);
1544 
1545 static void *__vmalloc_node(unsigned long size, unsigned long align,
1546 			    gfp_t gfp_mask, pgprot_t prot,
1547 			    int node, const void *caller);
1548 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1549 				 pgprot_t prot, int node, const void *caller)
1550 {
1551 	const int order = 0;
1552 	struct page **pages;
1553 	unsigned int nr_pages, array_size, i;
1554 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1555 
1556 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1557 	array_size = (nr_pages * sizeof(struct page *));
1558 
1559 	area->nr_pages = nr_pages;
1560 	/* Please note that the recursion is strictly bounded. */
1561 	if (array_size > PAGE_SIZE) {
1562 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1563 				PAGE_KERNEL, node, caller);
1564 		area->flags |= VM_VPAGES;
1565 	} else {
1566 		pages = kmalloc_node(array_size, nested_gfp, node);
1567 	}
1568 	area->pages = pages;
1569 	area->caller = caller;
1570 	if (!area->pages) {
1571 		remove_vm_area(area->addr);
1572 		kfree(area);
1573 		return NULL;
1574 	}
1575 
1576 	for (i = 0; i < area->nr_pages; i++) {
1577 		struct page *page;
1578 		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1579 
1580 		if (node < 0)
1581 			page = alloc_page(tmp_mask);
1582 		else
1583 			page = alloc_pages_node(node, tmp_mask, order);
1584 
1585 		if (unlikely(!page)) {
1586 			/* Successfully allocated i pages, free them in __vunmap() */
1587 			area->nr_pages = i;
1588 			goto fail;
1589 		}
1590 		area->pages[i] = page;
1591 	}
1592 
1593 	if (map_vm_area(area, prot, &pages))
1594 		goto fail;
1595 	return area->addr;
1596 
1597 fail:
1598 	warn_alloc_failed(gfp_mask, order,
1599 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1600 			  (area->nr_pages*PAGE_SIZE), area->size);
1601 	vfree(area->addr);
1602 	return NULL;
1603 }
1604 
1605 /**
1606  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1607  *	@size:		allocation size
1608  *	@align:		desired alignment
1609  *	@start:		vm area range start
1610  *	@end:		vm area range end
1611  *	@gfp_mask:	flags for the page level allocator
1612  *	@prot:		protection mask for the allocated pages
1613  *	@node:		node to use for allocation or NUMA_NO_NODE
1614  *	@caller:	caller's return address
1615  *
1616  *	Allocate enough pages to cover @size from the page level
1617  *	allocator with @gfp_mask flags.  Map them into contiguous
1618  *	kernel virtual space, using a pagetable protection of @prot.
1619  */
1620 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1621 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1622 			pgprot_t prot, int node, const void *caller)
1623 {
1624 	struct vm_struct *area;
1625 	void *addr;
1626 	unsigned long real_size = size;
1627 
1628 	size = PAGE_ALIGN(size);
1629 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1630 		goto fail;
1631 
1632 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
1633 				  start, end, node, gfp_mask, caller);
1634 	if (!area)
1635 		goto fail;
1636 
1637 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1638 	if (!addr)
1639 		goto fail;
1640 
1641 	/*
1642 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1643 	 * flag. It means that vm_struct is not fully initialized.
1644 	 * Now, it is fully initialized, so remove this flag here.
1645 	 */
1646 	clear_vm_uninitialized_flag(area);
1647 
1648 	/*
1649 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1650 	 * structures allocated in the __get_vm_area_node() function contain
1651 	 * references to the virtual address of the vmalloc'ed block.
1652 	 */
1653 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1654 
1655 	return addr;
1656 
1657 fail:
1658 	warn_alloc_failed(gfp_mask, 0,
1659 			  "vmalloc: allocation failure: %lu bytes\n",
1660 			  real_size);
1661 	return NULL;
1662 }
1663 
1664 /**
1665  *	__vmalloc_node  -  allocate virtually contiguous memory
1666  *	@size:		allocation size
1667  *	@align:		desired alignment
1668  *	@gfp_mask:	flags for the page level allocator
1669  *	@prot:		protection mask for the allocated pages
1670  *	@node:		node to use for allocation or NUMA_NO_NODE
1671  *	@caller:	caller's return address
1672  *
1673  *	Allocate enough pages to cover @size from the page level
1674  *	allocator with @gfp_mask flags.  Map them into contiguous
1675  *	kernel virtual space, using a pagetable protection of @prot.
1676  */
1677 static void *__vmalloc_node(unsigned long size, unsigned long align,
1678 			    gfp_t gfp_mask, pgprot_t prot,
1679 			    int node, const void *caller)
1680 {
1681 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1682 				gfp_mask, prot, node, caller);
1683 }
1684 
1685 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1686 {
1687 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1688 				__builtin_return_address(0));
1689 }
1690 EXPORT_SYMBOL(__vmalloc);
1691 
1692 static inline void *__vmalloc_node_flags(unsigned long size,
1693 					int node, gfp_t flags)
1694 {
1695 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1696 					node, __builtin_return_address(0));
1697 }
1698 
1699 /**
1700  *	vmalloc  -  allocate virtually contiguous memory
1701  *	@size:		allocation size
1702  *	Allocate enough pages to cover @size from the page level
1703  *	allocator and map them into contiguous kernel virtual space.
1704  *
1705  *	For tight control over page level allocator and protection flags
1706  *	use __vmalloc() instead.
1707  */
1708 void *vmalloc(unsigned long size)
1709 {
1710 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1711 				    GFP_KERNEL | __GFP_HIGHMEM);
1712 }
1713 EXPORT_SYMBOL(vmalloc);
1714 
1715 /**
1716  *	vzalloc - allocate virtually contiguous memory with zero fill
1717  *	@size:	allocation size
1718  *	Allocate enough pages to cover @size from the page level
1719  *	allocator and map them into contiguous kernel virtual space.
1720  *	The memory allocated is set to zero.
1721  *
1722  *	For tight control over page level allocator and protection flags
1723  *	use __vmalloc() instead.
1724  */
1725 void *vzalloc(unsigned long size)
1726 {
1727 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1728 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1729 }
1730 EXPORT_SYMBOL(vzalloc);
1731 
1732 /**
1733  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1734  * @size: allocation size
1735  *
1736  * The resulting memory area is zeroed so it can be mapped to userspace
1737  * without leaking data.
1738  */
1739 void *vmalloc_user(unsigned long size)
1740 {
1741 	struct vm_struct *area;
1742 	void *ret;
1743 
1744 	ret = __vmalloc_node(size, SHMLBA,
1745 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1746 			     PAGE_KERNEL, NUMA_NO_NODE,
1747 			     __builtin_return_address(0));
1748 	if (ret) {
1749 		area = find_vm_area(ret);
1750 		area->flags |= VM_USERMAP;
1751 	}
1752 	return ret;
1753 }
1754 EXPORT_SYMBOL(vmalloc_user);
1755 
1756 /**
1757  *	vmalloc_node  -  allocate memory on a specific node
1758  *	@size:		allocation size
1759  *	@node:		numa node
1760  *
1761  *	Allocate enough pages to cover @size from the page level
1762  *	allocator and map them into contiguous kernel virtual space.
1763  *
1764  *	For tight control over page level allocator and protection flags
1765  *	use __vmalloc() instead.
1766  */
1767 void *vmalloc_node(unsigned long size, int node)
1768 {
1769 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1770 					node, __builtin_return_address(0));
1771 }
1772 EXPORT_SYMBOL(vmalloc_node);
1773 
1774 /**
1775  * vzalloc_node - allocate memory on a specific node with zero fill
1776  * @size:	allocation size
1777  * @node:	numa node
1778  *
1779  * Allocate enough pages to cover @size from the page level
1780  * allocator and map them into contiguous kernel virtual space.
1781  * The memory allocated is set to zero.
1782  *
1783  * For tight control over page level allocator and protection flags
1784  * use __vmalloc_node() instead.
1785  */
1786 void *vzalloc_node(unsigned long size, int node)
1787 {
1788 	return __vmalloc_node_flags(size, node,
1789 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1790 }
1791 EXPORT_SYMBOL(vzalloc_node);
1792 
1793 #ifndef PAGE_KERNEL_EXEC
1794 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1795 #endif
1796 
1797 /**
1798  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1799  *	@size:		allocation size
1800  *
1801  *	Kernel-internal function to allocate enough pages to cover @size
1802  *	the page level allocator and map them into contiguous and
1803  *	executable kernel virtual space.
1804  *
1805  *	For tight control over page level allocator and protection flags
1806  *	use __vmalloc() instead.
1807  */
1808 
1809 void *vmalloc_exec(unsigned long size)
1810 {
1811 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1812 			      NUMA_NO_NODE, __builtin_return_address(0));
1813 }
1814 
1815 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1816 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1817 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1818 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1819 #else
1820 #define GFP_VMALLOC32 GFP_KERNEL
1821 #endif
1822 
1823 /**
1824  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1825  *	@size:		allocation size
1826  *
1827  *	Allocate enough 32bit PA addressable pages to cover @size from the
1828  *	page level allocator and map them into contiguous kernel virtual space.
1829  */
1830 void *vmalloc_32(unsigned long size)
1831 {
1832 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1833 			      NUMA_NO_NODE, __builtin_return_address(0));
1834 }
1835 EXPORT_SYMBOL(vmalloc_32);
1836 
1837 /**
1838  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1839  *	@size:		allocation size
1840  *
1841  * The resulting memory area is 32bit addressable and zeroed so it can be
1842  * mapped to userspace without leaking data.
1843  */
1844 void *vmalloc_32_user(unsigned long size)
1845 {
1846 	struct vm_struct *area;
1847 	void *ret;
1848 
1849 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1850 			     NUMA_NO_NODE, __builtin_return_address(0));
1851 	if (ret) {
1852 		area = find_vm_area(ret);
1853 		area->flags |= VM_USERMAP;
1854 	}
1855 	return ret;
1856 }
1857 EXPORT_SYMBOL(vmalloc_32_user);
1858 
1859 /*
1860  * small helper routine , copy contents to buf from addr.
1861  * If the page is not present, fill zero.
1862  */
1863 
1864 static int aligned_vread(char *buf, char *addr, unsigned long count)
1865 {
1866 	struct page *p;
1867 	int copied = 0;
1868 
1869 	while (count) {
1870 		unsigned long offset, length;
1871 
1872 		offset = (unsigned long)addr & ~PAGE_MASK;
1873 		length = PAGE_SIZE - offset;
1874 		if (length > count)
1875 			length = count;
1876 		p = vmalloc_to_page(addr);
1877 		/*
1878 		 * To do safe access to this _mapped_ area, we need
1879 		 * lock. But adding lock here means that we need to add
1880 		 * overhead of vmalloc()/vfree() calles for this _debug_
1881 		 * interface, rarely used. Instead of that, we'll use
1882 		 * kmap() and get small overhead in this access function.
1883 		 */
1884 		if (p) {
1885 			/*
1886 			 * we can expect USER0 is not used (see vread/vwrite's
1887 			 * function description)
1888 			 */
1889 			void *map = kmap_atomic(p);
1890 			memcpy(buf, map + offset, length);
1891 			kunmap_atomic(map);
1892 		} else
1893 			memset(buf, 0, length);
1894 
1895 		addr += length;
1896 		buf += length;
1897 		copied += length;
1898 		count -= length;
1899 	}
1900 	return copied;
1901 }
1902 
1903 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1904 {
1905 	struct page *p;
1906 	int copied = 0;
1907 
1908 	while (count) {
1909 		unsigned long offset, length;
1910 
1911 		offset = (unsigned long)addr & ~PAGE_MASK;
1912 		length = PAGE_SIZE - offset;
1913 		if (length > count)
1914 			length = count;
1915 		p = vmalloc_to_page(addr);
1916 		/*
1917 		 * To do safe access to this _mapped_ area, we need
1918 		 * lock. But adding lock here means that we need to add
1919 		 * overhead of vmalloc()/vfree() calles for this _debug_
1920 		 * interface, rarely used. Instead of that, we'll use
1921 		 * kmap() and get small overhead in this access function.
1922 		 */
1923 		if (p) {
1924 			/*
1925 			 * we can expect USER0 is not used (see vread/vwrite's
1926 			 * function description)
1927 			 */
1928 			void *map = kmap_atomic(p);
1929 			memcpy(map + offset, buf, length);
1930 			kunmap_atomic(map);
1931 		}
1932 		addr += length;
1933 		buf += length;
1934 		copied += length;
1935 		count -= length;
1936 	}
1937 	return copied;
1938 }
1939 
1940 /**
1941  *	vread() -  read vmalloc area in a safe way.
1942  *	@buf:		buffer for reading data
1943  *	@addr:		vm address.
1944  *	@count:		number of bytes to be read.
1945  *
1946  *	Returns # of bytes which addr and buf should be increased.
1947  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1948  *	includes any intersect with alive vmalloc area.
1949  *
1950  *	This function checks that addr is a valid vmalloc'ed area, and
1951  *	copy data from that area to a given buffer. If the given memory range
1952  *	of [addr...addr+count) includes some valid address, data is copied to
1953  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1954  *	IOREMAP area is treated as memory hole and no copy is done.
1955  *
1956  *	If [addr...addr+count) doesn't includes any intersects with alive
1957  *	vm_struct area, returns 0. @buf should be kernel's buffer.
1958  *
1959  *	Note: In usual ops, vread() is never necessary because the caller
1960  *	should know vmalloc() area is valid and can use memcpy().
1961  *	This is for routines which have to access vmalloc area without
1962  *	any informaion, as /dev/kmem.
1963  *
1964  */
1965 
1966 long vread(char *buf, char *addr, unsigned long count)
1967 {
1968 	struct vmap_area *va;
1969 	struct vm_struct *vm;
1970 	char *vaddr, *buf_start = buf;
1971 	unsigned long buflen = count;
1972 	unsigned long n;
1973 
1974 	/* Don't allow overflow */
1975 	if ((unsigned long) addr + count < count)
1976 		count = -(unsigned long) addr;
1977 
1978 	spin_lock(&vmap_area_lock);
1979 	list_for_each_entry(va, &vmap_area_list, list) {
1980 		if (!count)
1981 			break;
1982 
1983 		if (!(va->flags & VM_VM_AREA))
1984 			continue;
1985 
1986 		vm = va->vm;
1987 		vaddr = (char *) vm->addr;
1988 		if (addr >= vaddr + get_vm_area_size(vm))
1989 			continue;
1990 		while (addr < vaddr) {
1991 			if (count == 0)
1992 				goto finished;
1993 			*buf = '\0';
1994 			buf++;
1995 			addr++;
1996 			count--;
1997 		}
1998 		n = vaddr + get_vm_area_size(vm) - addr;
1999 		if (n > count)
2000 			n = count;
2001 		if (!(vm->flags & VM_IOREMAP))
2002 			aligned_vread(buf, addr, n);
2003 		else /* IOREMAP area is treated as memory hole */
2004 			memset(buf, 0, n);
2005 		buf += n;
2006 		addr += n;
2007 		count -= n;
2008 	}
2009 finished:
2010 	spin_unlock(&vmap_area_lock);
2011 
2012 	if (buf == buf_start)
2013 		return 0;
2014 	/* zero-fill memory holes */
2015 	if (buf != buf_start + buflen)
2016 		memset(buf, 0, buflen - (buf - buf_start));
2017 
2018 	return buflen;
2019 }
2020 
2021 /**
2022  *	vwrite() -  write vmalloc area in a safe way.
2023  *	@buf:		buffer for source data
2024  *	@addr:		vm address.
2025  *	@count:		number of bytes to be read.
2026  *
2027  *	Returns # of bytes which addr and buf should be incresed.
2028  *	(same number to @count).
2029  *	If [addr...addr+count) doesn't includes any intersect with valid
2030  *	vmalloc area, returns 0.
2031  *
2032  *	This function checks that addr is a valid vmalloc'ed area, and
2033  *	copy data from a buffer to the given addr. If specified range of
2034  *	[addr...addr+count) includes some valid address, data is copied from
2035  *	proper area of @buf. If there are memory holes, no copy to hole.
2036  *	IOREMAP area is treated as memory hole and no copy is done.
2037  *
2038  *	If [addr...addr+count) doesn't includes any intersects with alive
2039  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2040  *
2041  *	Note: In usual ops, vwrite() is never necessary because the caller
2042  *	should know vmalloc() area is valid and can use memcpy().
2043  *	This is for routines which have to access vmalloc area without
2044  *	any informaion, as /dev/kmem.
2045  */
2046 
2047 long vwrite(char *buf, char *addr, unsigned long count)
2048 {
2049 	struct vmap_area *va;
2050 	struct vm_struct *vm;
2051 	char *vaddr;
2052 	unsigned long n, buflen;
2053 	int copied = 0;
2054 
2055 	/* Don't allow overflow */
2056 	if ((unsigned long) addr + count < count)
2057 		count = -(unsigned long) addr;
2058 	buflen = count;
2059 
2060 	spin_lock(&vmap_area_lock);
2061 	list_for_each_entry(va, &vmap_area_list, list) {
2062 		if (!count)
2063 			break;
2064 
2065 		if (!(va->flags & VM_VM_AREA))
2066 			continue;
2067 
2068 		vm = va->vm;
2069 		vaddr = (char *) vm->addr;
2070 		if (addr >= vaddr + get_vm_area_size(vm))
2071 			continue;
2072 		while (addr < vaddr) {
2073 			if (count == 0)
2074 				goto finished;
2075 			buf++;
2076 			addr++;
2077 			count--;
2078 		}
2079 		n = vaddr + get_vm_area_size(vm) - addr;
2080 		if (n > count)
2081 			n = count;
2082 		if (!(vm->flags & VM_IOREMAP)) {
2083 			aligned_vwrite(buf, addr, n);
2084 			copied++;
2085 		}
2086 		buf += n;
2087 		addr += n;
2088 		count -= n;
2089 	}
2090 finished:
2091 	spin_unlock(&vmap_area_lock);
2092 	if (!copied)
2093 		return 0;
2094 	return buflen;
2095 }
2096 
2097 /**
2098  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2099  *	@vma:		vma to cover
2100  *	@uaddr:		target user address to start at
2101  *	@kaddr:		virtual address of vmalloc kernel memory
2102  *	@size:		size of map area
2103  *
2104  *	Returns:	0 for success, -Exxx on failure
2105  *
2106  *	This function checks that @kaddr is a valid vmalloc'ed area,
2107  *	and that it is big enough to cover the range starting at
2108  *	@uaddr in @vma. Will return failure if that criteria isn't
2109  *	met.
2110  *
2111  *	Similar to remap_pfn_range() (see mm/memory.c)
2112  */
2113 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2114 				void *kaddr, unsigned long size)
2115 {
2116 	struct vm_struct *area;
2117 
2118 	size = PAGE_ALIGN(size);
2119 
2120 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2121 		return -EINVAL;
2122 
2123 	area = find_vm_area(kaddr);
2124 	if (!area)
2125 		return -EINVAL;
2126 
2127 	if (!(area->flags & VM_USERMAP))
2128 		return -EINVAL;
2129 
2130 	if (kaddr + size > area->addr + area->size)
2131 		return -EINVAL;
2132 
2133 	do {
2134 		struct page *page = vmalloc_to_page(kaddr);
2135 		int ret;
2136 
2137 		ret = vm_insert_page(vma, uaddr, page);
2138 		if (ret)
2139 			return ret;
2140 
2141 		uaddr += PAGE_SIZE;
2142 		kaddr += PAGE_SIZE;
2143 		size -= PAGE_SIZE;
2144 	} while (size > 0);
2145 
2146 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2147 
2148 	return 0;
2149 }
2150 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2151 
2152 /**
2153  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2154  *	@vma:		vma to cover (map full range of vma)
2155  *	@addr:		vmalloc memory
2156  *	@pgoff:		number of pages into addr before first page to map
2157  *
2158  *	Returns:	0 for success, -Exxx on failure
2159  *
2160  *	This function checks that addr is a valid vmalloc'ed area, and
2161  *	that it is big enough to cover the vma. Will return failure if
2162  *	that criteria isn't met.
2163  *
2164  *	Similar to remap_pfn_range() (see mm/memory.c)
2165  */
2166 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2167 						unsigned long pgoff)
2168 {
2169 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2170 					   addr + (pgoff << PAGE_SHIFT),
2171 					   vma->vm_end - vma->vm_start);
2172 }
2173 EXPORT_SYMBOL(remap_vmalloc_range);
2174 
2175 /*
2176  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2177  * have one.
2178  */
2179 void  __attribute__((weak)) vmalloc_sync_all(void)
2180 {
2181 }
2182 
2183 
2184 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2185 {
2186 	pte_t ***p = data;
2187 
2188 	if (p) {
2189 		*(*p) = pte;
2190 		(*p)++;
2191 	}
2192 	return 0;
2193 }
2194 
2195 /**
2196  *	alloc_vm_area - allocate a range of kernel address space
2197  *	@size:		size of the area
2198  *	@ptes:		returns the PTEs for the address space
2199  *
2200  *	Returns:	NULL on failure, vm_struct on success
2201  *
2202  *	This function reserves a range of kernel address space, and
2203  *	allocates pagetables to map that range.  No actual mappings
2204  *	are created.
2205  *
2206  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2207  *	allocated for the VM area are returned.
2208  */
2209 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2210 {
2211 	struct vm_struct *area;
2212 
2213 	area = get_vm_area_caller(size, VM_IOREMAP,
2214 				__builtin_return_address(0));
2215 	if (area == NULL)
2216 		return NULL;
2217 
2218 	/*
2219 	 * This ensures that page tables are constructed for this region
2220 	 * of kernel virtual address space and mapped into init_mm.
2221 	 */
2222 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2223 				size, f, ptes ? &ptes : NULL)) {
2224 		free_vm_area(area);
2225 		return NULL;
2226 	}
2227 
2228 	return area;
2229 }
2230 EXPORT_SYMBOL_GPL(alloc_vm_area);
2231 
2232 void free_vm_area(struct vm_struct *area)
2233 {
2234 	struct vm_struct *ret;
2235 	ret = remove_vm_area(area->addr);
2236 	BUG_ON(ret != area);
2237 	kfree(area);
2238 }
2239 EXPORT_SYMBOL_GPL(free_vm_area);
2240 
2241 #ifdef CONFIG_SMP
2242 static struct vmap_area *node_to_va(struct rb_node *n)
2243 {
2244 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2245 }
2246 
2247 /**
2248  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2249  * @end: target address
2250  * @pnext: out arg for the next vmap_area
2251  * @pprev: out arg for the previous vmap_area
2252  *
2253  * Returns: %true if either or both of next and prev are found,
2254  *	    %false if no vmap_area exists
2255  *
2256  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2257  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2258  */
2259 static bool pvm_find_next_prev(unsigned long end,
2260 			       struct vmap_area **pnext,
2261 			       struct vmap_area **pprev)
2262 {
2263 	struct rb_node *n = vmap_area_root.rb_node;
2264 	struct vmap_area *va = NULL;
2265 
2266 	while (n) {
2267 		va = rb_entry(n, struct vmap_area, rb_node);
2268 		if (end < va->va_end)
2269 			n = n->rb_left;
2270 		else if (end > va->va_end)
2271 			n = n->rb_right;
2272 		else
2273 			break;
2274 	}
2275 
2276 	if (!va)
2277 		return false;
2278 
2279 	if (va->va_end > end) {
2280 		*pnext = va;
2281 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2282 	} else {
2283 		*pprev = va;
2284 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2285 	}
2286 	return true;
2287 }
2288 
2289 /**
2290  * pvm_determine_end - find the highest aligned address between two vmap_areas
2291  * @pnext: in/out arg for the next vmap_area
2292  * @pprev: in/out arg for the previous vmap_area
2293  * @align: alignment
2294  *
2295  * Returns: determined end address
2296  *
2297  * Find the highest aligned address between *@pnext and *@pprev below
2298  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2299  * down address is between the end addresses of the two vmap_areas.
2300  *
2301  * Please note that the address returned by this function may fall
2302  * inside *@pnext vmap_area.  The caller is responsible for checking
2303  * that.
2304  */
2305 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2306 				       struct vmap_area **pprev,
2307 				       unsigned long align)
2308 {
2309 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2310 	unsigned long addr;
2311 
2312 	if (*pnext)
2313 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2314 	else
2315 		addr = vmalloc_end;
2316 
2317 	while (*pprev && (*pprev)->va_end > addr) {
2318 		*pnext = *pprev;
2319 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2320 	}
2321 
2322 	return addr;
2323 }
2324 
2325 /**
2326  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2327  * @offsets: array containing offset of each area
2328  * @sizes: array containing size of each area
2329  * @nr_vms: the number of areas to allocate
2330  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2331  *
2332  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2333  *	    vm_structs on success, %NULL on failure
2334  *
2335  * Percpu allocator wants to use congruent vm areas so that it can
2336  * maintain the offsets among percpu areas.  This function allocates
2337  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2338  * be scattered pretty far, distance between two areas easily going up
2339  * to gigabytes.  To avoid interacting with regular vmallocs, these
2340  * areas are allocated from top.
2341  *
2342  * Despite its complicated look, this allocator is rather simple.  It
2343  * does everything top-down and scans areas from the end looking for
2344  * matching slot.  While scanning, if any of the areas overlaps with
2345  * existing vmap_area, the base address is pulled down to fit the
2346  * area.  Scanning is repeated till all the areas fit and then all
2347  * necessary data structres are inserted and the result is returned.
2348  */
2349 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2350 				     const size_t *sizes, int nr_vms,
2351 				     size_t align)
2352 {
2353 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2354 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2355 	struct vmap_area **vas, *prev, *next;
2356 	struct vm_struct **vms;
2357 	int area, area2, last_area, term_area;
2358 	unsigned long base, start, end, last_end;
2359 	bool purged = false;
2360 
2361 	/* verify parameters and allocate data structures */
2362 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2363 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2364 		start = offsets[area];
2365 		end = start + sizes[area];
2366 
2367 		/* is everything aligned properly? */
2368 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2369 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2370 
2371 		/* detect the area with the highest address */
2372 		if (start > offsets[last_area])
2373 			last_area = area;
2374 
2375 		for (area2 = 0; area2 < nr_vms; area2++) {
2376 			unsigned long start2 = offsets[area2];
2377 			unsigned long end2 = start2 + sizes[area2];
2378 
2379 			if (area2 == area)
2380 				continue;
2381 
2382 			BUG_ON(start2 >= start && start2 < end);
2383 			BUG_ON(end2 <= end && end2 > start);
2384 		}
2385 	}
2386 	last_end = offsets[last_area] + sizes[last_area];
2387 
2388 	if (vmalloc_end - vmalloc_start < last_end) {
2389 		WARN_ON(true);
2390 		return NULL;
2391 	}
2392 
2393 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2394 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2395 	if (!vas || !vms)
2396 		goto err_free2;
2397 
2398 	for (area = 0; area < nr_vms; area++) {
2399 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2400 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2401 		if (!vas[area] || !vms[area])
2402 			goto err_free;
2403 	}
2404 retry:
2405 	spin_lock(&vmap_area_lock);
2406 
2407 	/* start scanning - we scan from the top, begin with the last area */
2408 	area = term_area = last_area;
2409 	start = offsets[area];
2410 	end = start + sizes[area];
2411 
2412 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2413 		base = vmalloc_end - last_end;
2414 		goto found;
2415 	}
2416 	base = pvm_determine_end(&next, &prev, align) - end;
2417 
2418 	while (true) {
2419 		BUG_ON(next && next->va_end <= base + end);
2420 		BUG_ON(prev && prev->va_end > base + end);
2421 
2422 		/*
2423 		 * base might have underflowed, add last_end before
2424 		 * comparing.
2425 		 */
2426 		if (base + last_end < vmalloc_start + last_end) {
2427 			spin_unlock(&vmap_area_lock);
2428 			if (!purged) {
2429 				purge_vmap_area_lazy();
2430 				purged = true;
2431 				goto retry;
2432 			}
2433 			goto err_free;
2434 		}
2435 
2436 		/*
2437 		 * If next overlaps, move base downwards so that it's
2438 		 * right below next and then recheck.
2439 		 */
2440 		if (next && next->va_start < base + end) {
2441 			base = pvm_determine_end(&next, &prev, align) - end;
2442 			term_area = area;
2443 			continue;
2444 		}
2445 
2446 		/*
2447 		 * If prev overlaps, shift down next and prev and move
2448 		 * base so that it's right below new next and then
2449 		 * recheck.
2450 		 */
2451 		if (prev && prev->va_end > base + start)  {
2452 			next = prev;
2453 			prev = node_to_va(rb_prev(&next->rb_node));
2454 			base = pvm_determine_end(&next, &prev, align) - end;
2455 			term_area = area;
2456 			continue;
2457 		}
2458 
2459 		/*
2460 		 * This area fits, move on to the previous one.  If
2461 		 * the previous one is the terminal one, we're done.
2462 		 */
2463 		area = (area + nr_vms - 1) % nr_vms;
2464 		if (area == term_area)
2465 			break;
2466 		start = offsets[area];
2467 		end = start + sizes[area];
2468 		pvm_find_next_prev(base + end, &next, &prev);
2469 	}
2470 found:
2471 	/* we've found a fitting base, insert all va's */
2472 	for (area = 0; area < nr_vms; area++) {
2473 		struct vmap_area *va = vas[area];
2474 
2475 		va->va_start = base + offsets[area];
2476 		va->va_end = va->va_start + sizes[area];
2477 		__insert_vmap_area(va);
2478 	}
2479 
2480 	vmap_area_pcpu_hole = base + offsets[last_area];
2481 
2482 	spin_unlock(&vmap_area_lock);
2483 
2484 	/* insert all vm's */
2485 	for (area = 0; area < nr_vms; area++)
2486 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2487 				 pcpu_get_vm_areas);
2488 
2489 	kfree(vas);
2490 	return vms;
2491 
2492 err_free:
2493 	for (area = 0; area < nr_vms; area++) {
2494 		kfree(vas[area]);
2495 		kfree(vms[area]);
2496 	}
2497 err_free2:
2498 	kfree(vas);
2499 	kfree(vms);
2500 	return NULL;
2501 }
2502 
2503 /**
2504  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2505  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2506  * @nr_vms: the number of allocated areas
2507  *
2508  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2509  */
2510 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2511 {
2512 	int i;
2513 
2514 	for (i = 0; i < nr_vms; i++)
2515 		free_vm_area(vms[i]);
2516 	kfree(vms);
2517 }
2518 #endif	/* CONFIG_SMP */
2519 
2520 #ifdef CONFIG_PROC_FS
2521 static void *s_start(struct seq_file *m, loff_t *pos)
2522 	__acquires(&vmap_area_lock)
2523 {
2524 	loff_t n = *pos;
2525 	struct vmap_area *va;
2526 
2527 	spin_lock(&vmap_area_lock);
2528 	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2529 	while (n > 0 && &va->list != &vmap_area_list) {
2530 		n--;
2531 		va = list_entry(va->list.next, typeof(*va), list);
2532 	}
2533 	if (!n && &va->list != &vmap_area_list)
2534 		return va;
2535 
2536 	return NULL;
2537 
2538 }
2539 
2540 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2541 {
2542 	struct vmap_area *va = p, *next;
2543 
2544 	++*pos;
2545 	next = list_entry(va->list.next, typeof(*va), list);
2546 	if (&next->list != &vmap_area_list)
2547 		return next;
2548 
2549 	return NULL;
2550 }
2551 
2552 static void s_stop(struct seq_file *m, void *p)
2553 	__releases(&vmap_area_lock)
2554 {
2555 	spin_unlock(&vmap_area_lock);
2556 }
2557 
2558 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2559 {
2560 	if (IS_ENABLED(CONFIG_NUMA)) {
2561 		unsigned int nr, *counters = m->private;
2562 
2563 		if (!counters)
2564 			return;
2565 
2566 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2567 
2568 		for (nr = 0; nr < v->nr_pages; nr++)
2569 			counters[page_to_nid(v->pages[nr])]++;
2570 
2571 		for_each_node_state(nr, N_HIGH_MEMORY)
2572 			if (counters[nr])
2573 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2574 	}
2575 }
2576 
2577 static int s_show(struct seq_file *m, void *p)
2578 {
2579 	struct vmap_area *va = p;
2580 	struct vm_struct *v;
2581 
2582 	if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2583 		return 0;
2584 
2585 	if (!(va->flags & VM_VM_AREA)) {
2586 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
2587 			(void *)va->va_start, (void *)va->va_end,
2588 					va->va_end - va->va_start);
2589 		return 0;
2590 	}
2591 
2592 	v = va->vm;
2593 
2594 	/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2595 	smp_rmb();
2596 	if (v->flags & VM_UNINITIALIZED)
2597 		return 0;
2598 
2599 	seq_printf(m, "0x%pK-0x%pK %7ld",
2600 		v->addr, v->addr + v->size, v->size);
2601 
2602 	if (v->caller)
2603 		seq_printf(m, " %pS", v->caller);
2604 
2605 	if (v->nr_pages)
2606 		seq_printf(m, " pages=%d", v->nr_pages);
2607 
2608 	if (v->phys_addr)
2609 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2610 
2611 	if (v->flags & VM_IOREMAP)
2612 		seq_printf(m, " ioremap");
2613 
2614 	if (v->flags & VM_ALLOC)
2615 		seq_printf(m, " vmalloc");
2616 
2617 	if (v->flags & VM_MAP)
2618 		seq_printf(m, " vmap");
2619 
2620 	if (v->flags & VM_USERMAP)
2621 		seq_printf(m, " user");
2622 
2623 	if (v->flags & VM_VPAGES)
2624 		seq_printf(m, " vpages");
2625 
2626 	show_numa_info(m, v);
2627 	seq_putc(m, '\n');
2628 	return 0;
2629 }
2630 
2631 static const struct seq_operations vmalloc_op = {
2632 	.start = s_start,
2633 	.next = s_next,
2634 	.stop = s_stop,
2635 	.show = s_show,
2636 };
2637 
2638 static int vmalloc_open(struct inode *inode, struct file *file)
2639 {
2640 	unsigned int *ptr = NULL;
2641 	int ret;
2642 
2643 	if (IS_ENABLED(CONFIG_NUMA)) {
2644 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2645 		if (ptr == NULL)
2646 			return -ENOMEM;
2647 	}
2648 	ret = seq_open(file, &vmalloc_op);
2649 	if (!ret) {
2650 		struct seq_file *m = file->private_data;
2651 		m->private = ptr;
2652 	} else
2653 		kfree(ptr);
2654 	return ret;
2655 }
2656 
2657 static const struct file_operations proc_vmalloc_operations = {
2658 	.open		= vmalloc_open,
2659 	.read		= seq_read,
2660 	.llseek		= seq_lseek,
2661 	.release	= seq_release_private,
2662 };
2663 
2664 static int __init proc_vmalloc_init(void)
2665 {
2666 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2667 	return 0;
2668 }
2669 module_init(proc_vmalloc_init);
2670 
2671 void get_vmalloc_info(struct vmalloc_info *vmi)
2672 {
2673 	struct vmap_area *va;
2674 	unsigned long free_area_size;
2675 	unsigned long prev_end;
2676 
2677 	vmi->used = 0;
2678 	vmi->largest_chunk = 0;
2679 
2680 	prev_end = VMALLOC_START;
2681 
2682 	spin_lock(&vmap_area_lock);
2683 
2684 	if (list_empty(&vmap_area_list)) {
2685 		vmi->largest_chunk = VMALLOC_TOTAL;
2686 		goto out;
2687 	}
2688 
2689 	list_for_each_entry(va, &vmap_area_list, list) {
2690 		unsigned long addr = va->va_start;
2691 
2692 		/*
2693 		 * Some archs keep another range for modules in vmalloc space
2694 		 */
2695 		if (addr < VMALLOC_START)
2696 			continue;
2697 		if (addr >= VMALLOC_END)
2698 			break;
2699 
2700 		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2701 			continue;
2702 
2703 		vmi->used += (va->va_end - va->va_start);
2704 
2705 		free_area_size = addr - prev_end;
2706 		if (vmi->largest_chunk < free_area_size)
2707 			vmi->largest_chunk = free_area_size;
2708 
2709 		prev_end = va->va_end;
2710 	}
2711 
2712 	if (VMALLOC_END - prev_end > vmi->largest_chunk)
2713 		vmi->largest_chunk = VMALLOC_END - prev_end;
2714 
2715 out:
2716 	spin_unlock(&vmap_area_lock);
2717 }
2718 #endif
2719 
2720