xref: /openbmc/linux/mm/vmalloc.c (revision c94b731d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #include "internal.h"
47 #include "pgalloc-track.h"
48 
49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
51 
52 static int __init set_nohugeiomap(char *str)
53 {
54 	ioremap_max_page_shift = PAGE_SHIFT;
55 	return 0;
56 }
57 early_param("nohugeiomap", set_nohugeiomap);
58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
61 
62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63 static bool __ro_after_init vmap_allow_huge = true;
64 
65 static int __init set_nohugevmalloc(char *str)
66 {
67 	vmap_allow_huge = false;
68 	return 0;
69 }
70 early_param("nohugevmalloc", set_nohugevmalloc);
71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 static const bool vmap_allow_huge = false;
73 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
74 
75 bool is_vmalloc_addr(const void *x)
76 {
77 	unsigned long addr = (unsigned long)x;
78 
79 	return addr >= VMALLOC_START && addr < VMALLOC_END;
80 }
81 EXPORT_SYMBOL(is_vmalloc_addr);
82 
83 struct vfree_deferred {
84 	struct llist_head list;
85 	struct work_struct wq;
86 };
87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
88 
89 static void __vunmap(const void *, int);
90 
91 static void free_work(struct work_struct *w)
92 {
93 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
94 	struct llist_node *t, *llnode;
95 
96 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97 		__vunmap((void *)llnode, 1);
98 }
99 
100 /*** Page table manipulation functions ***/
101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102 			phys_addr_t phys_addr, pgprot_t prot,
103 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
104 {
105 	pte_t *pte;
106 	u64 pfn;
107 	unsigned long size = PAGE_SIZE;
108 
109 	pfn = phys_addr >> PAGE_SHIFT;
110 	pte = pte_alloc_kernel_track(pmd, addr, mask);
111 	if (!pte)
112 		return -ENOMEM;
113 	do {
114 		BUG_ON(!pte_none(*pte));
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 		if (size != PAGE_SIZE) {
119 			pte_t entry = pfn_pte(pfn, prot);
120 
121 			entry = pte_mkhuge(entry);
122 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
123 			set_huge_pte_at(&init_mm, addr, pte, entry);
124 			pfn += PFN_DOWN(size);
125 			continue;
126 		}
127 #endif
128 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
129 		pfn++;
130 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
131 	*mask |= PGTBL_PTE_MODIFIED;
132 	return 0;
133 }
134 
135 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
136 			phys_addr_t phys_addr, pgprot_t prot,
137 			unsigned int max_page_shift)
138 {
139 	if (max_page_shift < PMD_SHIFT)
140 		return 0;
141 
142 	if (!arch_vmap_pmd_supported(prot))
143 		return 0;
144 
145 	if ((end - addr) != PMD_SIZE)
146 		return 0;
147 
148 	if (!IS_ALIGNED(addr, PMD_SIZE))
149 		return 0;
150 
151 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
152 		return 0;
153 
154 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
155 		return 0;
156 
157 	return pmd_set_huge(pmd, phys_addr, prot);
158 }
159 
160 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
161 			phys_addr_t phys_addr, pgprot_t prot,
162 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
163 {
164 	pmd_t *pmd;
165 	unsigned long next;
166 
167 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
168 	if (!pmd)
169 		return -ENOMEM;
170 	do {
171 		next = pmd_addr_end(addr, end);
172 
173 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
174 					max_page_shift)) {
175 			*mask |= PGTBL_PMD_MODIFIED;
176 			continue;
177 		}
178 
179 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
180 			return -ENOMEM;
181 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
182 	return 0;
183 }
184 
185 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
186 			phys_addr_t phys_addr, pgprot_t prot,
187 			unsigned int max_page_shift)
188 {
189 	if (max_page_shift < PUD_SHIFT)
190 		return 0;
191 
192 	if (!arch_vmap_pud_supported(prot))
193 		return 0;
194 
195 	if ((end - addr) != PUD_SIZE)
196 		return 0;
197 
198 	if (!IS_ALIGNED(addr, PUD_SIZE))
199 		return 0;
200 
201 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
202 		return 0;
203 
204 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
205 		return 0;
206 
207 	return pud_set_huge(pud, phys_addr, prot);
208 }
209 
210 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
211 			phys_addr_t phys_addr, pgprot_t prot,
212 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
213 {
214 	pud_t *pud;
215 	unsigned long next;
216 
217 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
218 	if (!pud)
219 		return -ENOMEM;
220 	do {
221 		next = pud_addr_end(addr, end);
222 
223 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
224 					max_page_shift)) {
225 			*mask |= PGTBL_PUD_MODIFIED;
226 			continue;
227 		}
228 
229 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
230 					max_page_shift, mask))
231 			return -ENOMEM;
232 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
233 	return 0;
234 }
235 
236 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
237 			phys_addr_t phys_addr, pgprot_t prot,
238 			unsigned int max_page_shift)
239 {
240 	if (max_page_shift < P4D_SHIFT)
241 		return 0;
242 
243 	if (!arch_vmap_p4d_supported(prot))
244 		return 0;
245 
246 	if ((end - addr) != P4D_SIZE)
247 		return 0;
248 
249 	if (!IS_ALIGNED(addr, P4D_SIZE))
250 		return 0;
251 
252 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
253 		return 0;
254 
255 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
256 		return 0;
257 
258 	return p4d_set_huge(p4d, phys_addr, prot);
259 }
260 
261 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
262 			phys_addr_t phys_addr, pgprot_t prot,
263 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
264 {
265 	p4d_t *p4d;
266 	unsigned long next;
267 
268 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
269 	if (!p4d)
270 		return -ENOMEM;
271 	do {
272 		next = p4d_addr_end(addr, end);
273 
274 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
275 					max_page_shift)) {
276 			*mask |= PGTBL_P4D_MODIFIED;
277 			continue;
278 		}
279 
280 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
281 					max_page_shift, mask))
282 			return -ENOMEM;
283 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
284 	return 0;
285 }
286 
287 static int vmap_range_noflush(unsigned long addr, unsigned long end,
288 			phys_addr_t phys_addr, pgprot_t prot,
289 			unsigned int max_page_shift)
290 {
291 	pgd_t *pgd;
292 	unsigned long start;
293 	unsigned long next;
294 	int err;
295 	pgtbl_mod_mask mask = 0;
296 
297 	might_sleep();
298 	BUG_ON(addr >= end);
299 
300 	start = addr;
301 	pgd = pgd_offset_k(addr);
302 	do {
303 		next = pgd_addr_end(addr, end);
304 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
305 					max_page_shift, &mask);
306 		if (err)
307 			break;
308 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
309 
310 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
311 		arch_sync_kernel_mappings(start, end);
312 
313 	return err;
314 }
315 
316 int ioremap_page_range(unsigned long addr, unsigned long end,
317 		phys_addr_t phys_addr, pgprot_t prot)
318 {
319 	int err;
320 
321 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
322 				 ioremap_max_page_shift);
323 	flush_cache_vmap(addr, end);
324 	return err;
325 }
326 
327 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
328 			     pgtbl_mod_mask *mask)
329 {
330 	pte_t *pte;
331 
332 	pte = pte_offset_kernel(pmd, addr);
333 	do {
334 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
335 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
336 	} while (pte++, addr += PAGE_SIZE, addr != end);
337 	*mask |= PGTBL_PTE_MODIFIED;
338 }
339 
340 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
341 			     pgtbl_mod_mask *mask)
342 {
343 	pmd_t *pmd;
344 	unsigned long next;
345 	int cleared;
346 
347 	pmd = pmd_offset(pud, addr);
348 	do {
349 		next = pmd_addr_end(addr, end);
350 
351 		cleared = pmd_clear_huge(pmd);
352 		if (cleared || pmd_bad(*pmd))
353 			*mask |= PGTBL_PMD_MODIFIED;
354 
355 		if (cleared)
356 			continue;
357 		if (pmd_none_or_clear_bad(pmd))
358 			continue;
359 		vunmap_pte_range(pmd, addr, next, mask);
360 
361 		cond_resched();
362 	} while (pmd++, addr = next, addr != end);
363 }
364 
365 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
366 			     pgtbl_mod_mask *mask)
367 {
368 	pud_t *pud;
369 	unsigned long next;
370 	int cleared;
371 
372 	pud = pud_offset(p4d, addr);
373 	do {
374 		next = pud_addr_end(addr, end);
375 
376 		cleared = pud_clear_huge(pud);
377 		if (cleared || pud_bad(*pud))
378 			*mask |= PGTBL_PUD_MODIFIED;
379 
380 		if (cleared)
381 			continue;
382 		if (pud_none_or_clear_bad(pud))
383 			continue;
384 		vunmap_pmd_range(pud, addr, next, mask);
385 	} while (pud++, addr = next, addr != end);
386 }
387 
388 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
389 			     pgtbl_mod_mask *mask)
390 {
391 	p4d_t *p4d;
392 	unsigned long next;
393 	int cleared;
394 
395 	p4d = p4d_offset(pgd, addr);
396 	do {
397 		next = p4d_addr_end(addr, end);
398 
399 		cleared = p4d_clear_huge(p4d);
400 		if (cleared || p4d_bad(*p4d))
401 			*mask |= PGTBL_P4D_MODIFIED;
402 
403 		if (cleared)
404 			continue;
405 		if (p4d_none_or_clear_bad(p4d))
406 			continue;
407 		vunmap_pud_range(p4d, addr, next, mask);
408 	} while (p4d++, addr = next, addr != end);
409 }
410 
411 /*
412  * vunmap_range_noflush is similar to vunmap_range, but does not
413  * flush caches or TLBs.
414  *
415  * The caller is responsible for calling flush_cache_vmap() before calling
416  * this function, and flush_tlb_kernel_range after it has returned
417  * successfully (and before the addresses are expected to cause a page fault
418  * or be re-mapped for something else, if TLB flushes are being delayed or
419  * coalesced).
420  *
421  * This is an internal function only. Do not use outside mm/.
422  */
423 void vunmap_range_noflush(unsigned long start, unsigned long end)
424 {
425 	unsigned long next;
426 	pgd_t *pgd;
427 	unsigned long addr = start;
428 	pgtbl_mod_mask mask = 0;
429 
430 	BUG_ON(addr >= end);
431 	pgd = pgd_offset_k(addr);
432 	do {
433 		next = pgd_addr_end(addr, end);
434 		if (pgd_bad(*pgd))
435 			mask |= PGTBL_PGD_MODIFIED;
436 		if (pgd_none_or_clear_bad(pgd))
437 			continue;
438 		vunmap_p4d_range(pgd, addr, next, &mask);
439 	} while (pgd++, addr = next, addr != end);
440 
441 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
442 		arch_sync_kernel_mappings(start, end);
443 }
444 
445 /**
446  * vunmap_range - unmap kernel virtual addresses
447  * @addr: start of the VM area to unmap
448  * @end: end of the VM area to unmap (non-inclusive)
449  *
450  * Clears any present PTEs in the virtual address range, flushes TLBs and
451  * caches. Any subsequent access to the address before it has been re-mapped
452  * is a kernel bug.
453  */
454 void vunmap_range(unsigned long addr, unsigned long end)
455 {
456 	flush_cache_vunmap(addr, end);
457 	vunmap_range_noflush(addr, end);
458 	flush_tlb_kernel_range(addr, end);
459 }
460 
461 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
462 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
463 		pgtbl_mod_mask *mask)
464 {
465 	pte_t *pte;
466 
467 	/*
468 	 * nr is a running index into the array which helps higher level
469 	 * callers keep track of where we're up to.
470 	 */
471 
472 	pte = pte_alloc_kernel_track(pmd, addr, mask);
473 	if (!pte)
474 		return -ENOMEM;
475 	do {
476 		struct page *page = pages[*nr];
477 
478 		if (WARN_ON(!pte_none(*pte)))
479 			return -EBUSY;
480 		if (WARN_ON(!page))
481 			return -ENOMEM;
482 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
483 		(*nr)++;
484 	} while (pte++, addr += PAGE_SIZE, addr != end);
485 	*mask |= PGTBL_PTE_MODIFIED;
486 	return 0;
487 }
488 
489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
490 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 		pgtbl_mod_mask *mask)
492 {
493 	pmd_t *pmd;
494 	unsigned long next;
495 
496 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
497 	if (!pmd)
498 		return -ENOMEM;
499 	do {
500 		next = pmd_addr_end(addr, end);
501 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
502 			return -ENOMEM;
503 	} while (pmd++, addr = next, addr != end);
504 	return 0;
505 }
506 
507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
508 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 		pgtbl_mod_mask *mask)
510 {
511 	pud_t *pud;
512 	unsigned long next;
513 
514 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
515 	if (!pud)
516 		return -ENOMEM;
517 	do {
518 		next = pud_addr_end(addr, end);
519 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
520 			return -ENOMEM;
521 	} while (pud++, addr = next, addr != end);
522 	return 0;
523 }
524 
525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
526 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 		pgtbl_mod_mask *mask)
528 {
529 	p4d_t *p4d;
530 	unsigned long next;
531 
532 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
533 	if (!p4d)
534 		return -ENOMEM;
535 	do {
536 		next = p4d_addr_end(addr, end);
537 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
538 			return -ENOMEM;
539 	} while (p4d++, addr = next, addr != end);
540 	return 0;
541 }
542 
543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 		pgprot_t prot, struct page **pages)
545 {
546 	unsigned long start = addr;
547 	pgd_t *pgd;
548 	unsigned long next;
549 	int err = 0;
550 	int nr = 0;
551 	pgtbl_mod_mask mask = 0;
552 
553 	BUG_ON(addr >= end);
554 	pgd = pgd_offset_k(addr);
555 	do {
556 		next = pgd_addr_end(addr, end);
557 		if (pgd_bad(*pgd))
558 			mask |= PGTBL_PGD_MODIFIED;
559 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
560 		if (err)
561 			return err;
562 	} while (pgd++, addr = next, addr != end);
563 
564 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 		arch_sync_kernel_mappings(start, end);
566 
567 	return 0;
568 }
569 
570 /*
571  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572  * flush caches.
573  *
574  * The caller is responsible for calling flush_cache_vmap() after this
575  * function returns successfully and before the addresses are accessed.
576  *
577  * This is an internal function only. Do not use outside mm/.
578  */
579 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
580 		pgprot_t prot, struct page **pages, unsigned int page_shift)
581 {
582 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583 
584 	WARN_ON(page_shift < PAGE_SHIFT);
585 
586 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 			page_shift == PAGE_SHIFT)
588 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
589 
590 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 		int err;
592 
593 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
594 					__pa(page_address(pages[i])), prot,
595 					page_shift);
596 		if (err)
597 			return err;
598 
599 		addr += 1UL << page_shift;
600 	}
601 
602 	return 0;
603 }
604 
605 /**
606  * vmap_pages_range - map pages to a kernel virtual address
607  * @addr: start of the VM area to map
608  * @end: end of the VM area to map (non-inclusive)
609  * @prot: page protection flags to use
610  * @pages: pages to map (always PAGE_SIZE pages)
611  * @page_shift: maximum shift that the pages may be mapped with, @pages must
612  * be aligned and contiguous up to at least this shift.
613  *
614  * RETURNS:
615  * 0 on success, -errno on failure.
616  */
617 static int vmap_pages_range(unsigned long addr, unsigned long end,
618 		pgprot_t prot, struct page **pages, unsigned int page_shift)
619 {
620 	int err;
621 
622 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
623 	flush_cache_vmap(addr, end);
624 	return err;
625 }
626 
627 int is_vmalloc_or_module_addr(const void *x)
628 {
629 	/*
630 	 * ARM, x86-64 and sparc64 put modules in a special place,
631 	 * and fall back on vmalloc() if that fails. Others
632 	 * just put it in the vmalloc space.
633 	 */
634 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
635 	unsigned long addr = (unsigned long)x;
636 	if (addr >= MODULES_VADDR && addr < MODULES_END)
637 		return 1;
638 #endif
639 	return is_vmalloc_addr(x);
640 }
641 
642 /*
643  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
644  * return the tail page that corresponds to the base page address, which
645  * matches small vmap mappings.
646  */
647 struct page *vmalloc_to_page(const void *vmalloc_addr)
648 {
649 	unsigned long addr = (unsigned long) vmalloc_addr;
650 	struct page *page = NULL;
651 	pgd_t *pgd = pgd_offset_k(addr);
652 	p4d_t *p4d;
653 	pud_t *pud;
654 	pmd_t *pmd;
655 	pte_t *ptep, pte;
656 
657 	/*
658 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
659 	 * architectures that do not vmalloc module space
660 	 */
661 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
662 
663 	if (pgd_none(*pgd))
664 		return NULL;
665 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
666 		return NULL; /* XXX: no allowance for huge pgd */
667 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
668 		return NULL;
669 
670 	p4d = p4d_offset(pgd, addr);
671 	if (p4d_none(*p4d))
672 		return NULL;
673 	if (p4d_leaf(*p4d))
674 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
675 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
676 		return NULL;
677 
678 	pud = pud_offset(p4d, addr);
679 	if (pud_none(*pud))
680 		return NULL;
681 	if (pud_leaf(*pud))
682 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
683 	if (WARN_ON_ONCE(pud_bad(*pud)))
684 		return NULL;
685 
686 	pmd = pmd_offset(pud, addr);
687 	if (pmd_none(*pmd))
688 		return NULL;
689 	if (pmd_leaf(*pmd))
690 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
691 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
692 		return NULL;
693 
694 	ptep = pte_offset_map(pmd, addr);
695 	pte = *ptep;
696 	if (pte_present(pte))
697 		page = pte_page(pte);
698 	pte_unmap(ptep);
699 
700 	return page;
701 }
702 EXPORT_SYMBOL(vmalloc_to_page);
703 
704 /*
705  * Map a vmalloc()-space virtual address to the physical page frame number.
706  */
707 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
708 {
709 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
710 }
711 EXPORT_SYMBOL(vmalloc_to_pfn);
712 
713 
714 /*** Global kva allocator ***/
715 
716 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
717 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
718 
719 
720 static DEFINE_SPINLOCK(vmap_area_lock);
721 static DEFINE_SPINLOCK(free_vmap_area_lock);
722 /* Export for kexec only */
723 LIST_HEAD(vmap_area_list);
724 static struct rb_root vmap_area_root = RB_ROOT;
725 static bool vmap_initialized __read_mostly;
726 
727 static struct rb_root purge_vmap_area_root = RB_ROOT;
728 static LIST_HEAD(purge_vmap_area_list);
729 static DEFINE_SPINLOCK(purge_vmap_area_lock);
730 
731 /*
732  * This kmem_cache is used for vmap_area objects. Instead of
733  * allocating from slab we reuse an object from this cache to
734  * make things faster. Especially in "no edge" splitting of
735  * free block.
736  */
737 static struct kmem_cache *vmap_area_cachep;
738 
739 /*
740  * This linked list is used in pair with free_vmap_area_root.
741  * It gives O(1) access to prev/next to perform fast coalescing.
742  */
743 static LIST_HEAD(free_vmap_area_list);
744 
745 /*
746  * This augment red-black tree represents the free vmap space.
747  * All vmap_area objects in this tree are sorted by va->va_start
748  * address. It is used for allocation and merging when a vmap
749  * object is released.
750  *
751  * Each vmap_area node contains a maximum available free block
752  * of its sub-tree, right or left. Therefore it is possible to
753  * find a lowest match of free area.
754  */
755 static struct rb_root free_vmap_area_root = RB_ROOT;
756 
757 /*
758  * Preload a CPU with one object for "no edge" split case. The
759  * aim is to get rid of allocations from the atomic context, thus
760  * to use more permissive allocation masks.
761  */
762 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
763 
764 static __always_inline unsigned long
765 va_size(struct vmap_area *va)
766 {
767 	return (va->va_end - va->va_start);
768 }
769 
770 static __always_inline unsigned long
771 get_subtree_max_size(struct rb_node *node)
772 {
773 	struct vmap_area *va;
774 
775 	va = rb_entry_safe(node, struct vmap_area, rb_node);
776 	return va ? va->subtree_max_size : 0;
777 }
778 
779 /*
780  * Gets called when remove the node and rotate.
781  */
782 static __always_inline unsigned long
783 compute_subtree_max_size(struct vmap_area *va)
784 {
785 	return max3(va_size(va),
786 		get_subtree_max_size(va->rb_node.rb_left),
787 		get_subtree_max_size(va->rb_node.rb_right));
788 }
789 
790 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
791 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
792 
793 static void purge_vmap_area_lazy(void);
794 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
795 static unsigned long lazy_max_pages(void);
796 
797 static atomic_long_t nr_vmalloc_pages;
798 
799 unsigned long vmalloc_nr_pages(void)
800 {
801 	return atomic_long_read(&nr_vmalloc_pages);
802 }
803 
804 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
805 {
806 	struct vmap_area *va = NULL;
807 	struct rb_node *n = vmap_area_root.rb_node;
808 
809 	while (n) {
810 		struct vmap_area *tmp;
811 
812 		tmp = rb_entry(n, struct vmap_area, rb_node);
813 		if (tmp->va_end > addr) {
814 			va = tmp;
815 			if (tmp->va_start <= addr)
816 				break;
817 
818 			n = n->rb_left;
819 		} else
820 			n = n->rb_right;
821 	}
822 
823 	return va;
824 }
825 
826 static struct vmap_area *__find_vmap_area(unsigned long addr)
827 {
828 	struct rb_node *n = vmap_area_root.rb_node;
829 
830 	while (n) {
831 		struct vmap_area *va;
832 
833 		va = rb_entry(n, struct vmap_area, rb_node);
834 		if (addr < va->va_start)
835 			n = n->rb_left;
836 		else if (addr >= va->va_end)
837 			n = n->rb_right;
838 		else
839 			return va;
840 	}
841 
842 	return NULL;
843 }
844 
845 /*
846  * This function returns back addresses of parent node
847  * and its left or right link for further processing.
848  *
849  * Otherwise NULL is returned. In that case all further
850  * steps regarding inserting of conflicting overlap range
851  * have to be declined and actually considered as a bug.
852  */
853 static __always_inline struct rb_node **
854 find_va_links(struct vmap_area *va,
855 	struct rb_root *root, struct rb_node *from,
856 	struct rb_node **parent)
857 {
858 	struct vmap_area *tmp_va;
859 	struct rb_node **link;
860 
861 	if (root) {
862 		link = &root->rb_node;
863 		if (unlikely(!*link)) {
864 			*parent = NULL;
865 			return link;
866 		}
867 	} else {
868 		link = &from;
869 	}
870 
871 	/*
872 	 * Go to the bottom of the tree. When we hit the last point
873 	 * we end up with parent rb_node and correct direction, i name
874 	 * it link, where the new va->rb_node will be attached to.
875 	 */
876 	do {
877 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
878 
879 		/*
880 		 * During the traversal we also do some sanity check.
881 		 * Trigger the BUG() if there are sides(left/right)
882 		 * or full overlaps.
883 		 */
884 		if (va->va_start < tmp_va->va_end &&
885 				va->va_end <= tmp_va->va_start)
886 			link = &(*link)->rb_left;
887 		else if (va->va_end > tmp_va->va_start &&
888 				va->va_start >= tmp_va->va_end)
889 			link = &(*link)->rb_right;
890 		else {
891 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
892 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
893 
894 			return NULL;
895 		}
896 	} while (*link);
897 
898 	*parent = &tmp_va->rb_node;
899 	return link;
900 }
901 
902 static __always_inline struct list_head *
903 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
904 {
905 	struct list_head *list;
906 
907 	if (unlikely(!parent))
908 		/*
909 		 * The red-black tree where we try to find VA neighbors
910 		 * before merging or inserting is empty, i.e. it means
911 		 * there is no free vmap space. Normally it does not
912 		 * happen but we handle this case anyway.
913 		 */
914 		return NULL;
915 
916 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
917 	return (&parent->rb_right == link ? list->next : list);
918 }
919 
920 static __always_inline void
921 link_va(struct vmap_area *va, struct rb_root *root,
922 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
923 {
924 	/*
925 	 * VA is still not in the list, but we can
926 	 * identify its future previous list_head node.
927 	 */
928 	if (likely(parent)) {
929 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
930 		if (&parent->rb_right != link)
931 			head = head->prev;
932 	}
933 
934 	/* Insert to the rb-tree */
935 	rb_link_node(&va->rb_node, parent, link);
936 	if (root == &free_vmap_area_root) {
937 		/*
938 		 * Some explanation here. Just perform simple insertion
939 		 * to the tree. We do not set va->subtree_max_size to
940 		 * its current size before calling rb_insert_augmented().
941 		 * It is because of we populate the tree from the bottom
942 		 * to parent levels when the node _is_ in the tree.
943 		 *
944 		 * Therefore we set subtree_max_size to zero after insertion,
945 		 * to let __augment_tree_propagate_from() puts everything to
946 		 * the correct order later on.
947 		 */
948 		rb_insert_augmented(&va->rb_node,
949 			root, &free_vmap_area_rb_augment_cb);
950 		va->subtree_max_size = 0;
951 	} else {
952 		rb_insert_color(&va->rb_node, root);
953 	}
954 
955 	/* Address-sort this list */
956 	list_add(&va->list, head);
957 }
958 
959 static __always_inline void
960 unlink_va(struct vmap_area *va, struct rb_root *root)
961 {
962 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
963 		return;
964 
965 	if (root == &free_vmap_area_root)
966 		rb_erase_augmented(&va->rb_node,
967 			root, &free_vmap_area_rb_augment_cb);
968 	else
969 		rb_erase(&va->rb_node, root);
970 
971 	list_del(&va->list);
972 	RB_CLEAR_NODE(&va->rb_node);
973 }
974 
975 #if DEBUG_AUGMENT_PROPAGATE_CHECK
976 static void
977 augment_tree_propagate_check(void)
978 {
979 	struct vmap_area *va;
980 	unsigned long computed_size;
981 
982 	list_for_each_entry(va, &free_vmap_area_list, list) {
983 		computed_size = compute_subtree_max_size(va);
984 		if (computed_size != va->subtree_max_size)
985 			pr_emerg("tree is corrupted: %lu, %lu\n",
986 				va_size(va), va->subtree_max_size);
987 	}
988 }
989 #endif
990 
991 /*
992  * This function populates subtree_max_size from bottom to upper
993  * levels starting from VA point. The propagation must be done
994  * when VA size is modified by changing its va_start/va_end. Or
995  * in case of newly inserting of VA to the tree.
996  *
997  * It means that __augment_tree_propagate_from() must be called:
998  * - After VA has been inserted to the tree(free path);
999  * - After VA has been shrunk(allocation path);
1000  * - After VA has been increased(merging path).
1001  *
1002  * Please note that, it does not mean that upper parent nodes
1003  * and their subtree_max_size are recalculated all the time up
1004  * to the root node.
1005  *
1006  *       4--8
1007  *        /\
1008  *       /  \
1009  *      /    \
1010  *    2--2  8--8
1011  *
1012  * For example if we modify the node 4, shrinking it to 2, then
1013  * no any modification is required. If we shrink the node 2 to 1
1014  * its subtree_max_size is updated only, and set to 1. If we shrink
1015  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1016  * node becomes 4--6.
1017  */
1018 static __always_inline void
1019 augment_tree_propagate_from(struct vmap_area *va)
1020 {
1021 	/*
1022 	 * Populate the tree from bottom towards the root until
1023 	 * the calculated maximum available size of checked node
1024 	 * is equal to its current one.
1025 	 */
1026 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1027 
1028 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1029 	augment_tree_propagate_check();
1030 #endif
1031 }
1032 
1033 static void
1034 insert_vmap_area(struct vmap_area *va,
1035 	struct rb_root *root, struct list_head *head)
1036 {
1037 	struct rb_node **link;
1038 	struct rb_node *parent;
1039 
1040 	link = find_va_links(va, root, NULL, &parent);
1041 	if (link)
1042 		link_va(va, root, parent, link, head);
1043 }
1044 
1045 static void
1046 insert_vmap_area_augment(struct vmap_area *va,
1047 	struct rb_node *from, struct rb_root *root,
1048 	struct list_head *head)
1049 {
1050 	struct rb_node **link;
1051 	struct rb_node *parent;
1052 
1053 	if (from)
1054 		link = find_va_links(va, NULL, from, &parent);
1055 	else
1056 		link = find_va_links(va, root, NULL, &parent);
1057 
1058 	if (link) {
1059 		link_va(va, root, parent, link, head);
1060 		augment_tree_propagate_from(va);
1061 	}
1062 }
1063 
1064 /*
1065  * Merge de-allocated chunk of VA memory with previous
1066  * and next free blocks. If coalesce is not done a new
1067  * free area is inserted. If VA has been merged, it is
1068  * freed.
1069  *
1070  * Please note, it can return NULL in case of overlap
1071  * ranges, followed by WARN() report. Despite it is a
1072  * buggy behaviour, a system can be alive and keep
1073  * ongoing.
1074  */
1075 static __always_inline struct vmap_area *
1076 merge_or_add_vmap_area(struct vmap_area *va,
1077 	struct rb_root *root, struct list_head *head)
1078 {
1079 	struct vmap_area *sibling;
1080 	struct list_head *next;
1081 	struct rb_node **link;
1082 	struct rb_node *parent;
1083 	bool merged = false;
1084 
1085 	/*
1086 	 * Find a place in the tree where VA potentially will be
1087 	 * inserted, unless it is merged with its sibling/siblings.
1088 	 */
1089 	link = find_va_links(va, root, NULL, &parent);
1090 	if (!link)
1091 		return NULL;
1092 
1093 	/*
1094 	 * Get next node of VA to check if merging can be done.
1095 	 */
1096 	next = get_va_next_sibling(parent, link);
1097 	if (unlikely(next == NULL))
1098 		goto insert;
1099 
1100 	/*
1101 	 * start            end
1102 	 * |                |
1103 	 * |<------VA------>|<-----Next----->|
1104 	 *                  |                |
1105 	 *                  start            end
1106 	 */
1107 	if (next != head) {
1108 		sibling = list_entry(next, struct vmap_area, list);
1109 		if (sibling->va_start == va->va_end) {
1110 			sibling->va_start = va->va_start;
1111 
1112 			/* Free vmap_area object. */
1113 			kmem_cache_free(vmap_area_cachep, va);
1114 
1115 			/* Point to the new merged area. */
1116 			va = sibling;
1117 			merged = true;
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * start            end
1123 	 * |                |
1124 	 * |<-----Prev----->|<------VA------>|
1125 	 *                  |                |
1126 	 *                  start            end
1127 	 */
1128 	if (next->prev != head) {
1129 		sibling = list_entry(next->prev, struct vmap_area, list);
1130 		if (sibling->va_end == va->va_start) {
1131 			/*
1132 			 * If both neighbors are coalesced, it is important
1133 			 * to unlink the "next" node first, followed by merging
1134 			 * with "previous" one. Otherwise the tree might not be
1135 			 * fully populated if a sibling's augmented value is
1136 			 * "normalized" because of rotation operations.
1137 			 */
1138 			if (merged)
1139 				unlink_va(va, root);
1140 
1141 			sibling->va_end = va->va_end;
1142 
1143 			/* Free vmap_area object. */
1144 			kmem_cache_free(vmap_area_cachep, va);
1145 
1146 			/* Point to the new merged area. */
1147 			va = sibling;
1148 			merged = true;
1149 		}
1150 	}
1151 
1152 insert:
1153 	if (!merged)
1154 		link_va(va, root, parent, link, head);
1155 
1156 	return va;
1157 }
1158 
1159 static __always_inline struct vmap_area *
1160 merge_or_add_vmap_area_augment(struct vmap_area *va,
1161 	struct rb_root *root, struct list_head *head)
1162 {
1163 	va = merge_or_add_vmap_area(va, root, head);
1164 	if (va)
1165 		augment_tree_propagate_from(va);
1166 
1167 	return va;
1168 }
1169 
1170 static __always_inline bool
1171 is_within_this_va(struct vmap_area *va, unsigned long size,
1172 	unsigned long align, unsigned long vstart)
1173 {
1174 	unsigned long nva_start_addr;
1175 
1176 	if (va->va_start > vstart)
1177 		nva_start_addr = ALIGN(va->va_start, align);
1178 	else
1179 		nva_start_addr = ALIGN(vstart, align);
1180 
1181 	/* Can be overflowed due to big size or alignment. */
1182 	if (nva_start_addr + size < nva_start_addr ||
1183 			nva_start_addr < vstart)
1184 		return false;
1185 
1186 	return (nva_start_addr + size <= va->va_end);
1187 }
1188 
1189 /*
1190  * Find the first free block(lowest start address) in the tree,
1191  * that will accomplish the request corresponding to passing
1192  * parameters.
1193  */
1194 static __always_inline struct vmap_area *
1195 find_vmap_lowest_match(unsigned long size,
1196 	unsigned long align, unsigned long vstart)
1197 {
1198 	struct vmap_area *va;
1199 	struct rb_node *node;
1200 
1201 	/* Start from the root. */
1202 	node = free_vmap_area_root.rb_node;
1203 
1204 	while (node) {
1205 		va = rb_entry(node, struct vmap_area, rb_node);
1206 
1207 		if (get_subtree_max_size(node->rb_left) >= size &&
1208 				vstart < va->va_start) {
1209 			node = node->rb_left;
1210 		} else {
1211 			if (is_within_this_va(va, size, align, vstart))
1212 				return va;
1213 
1214 			/*
1215 			 * Does not make sense to go deeper towards the right
1216 			 * sub-tree if it does not have a free block that is
1217 			 * equal or bigger to the requested search size.
1218 			 */
1219 			if (get_subtree_max_size(node->rb_right) >= size) {
1220 				node = node->rb_right;
1221 				continue;
1222 			}
1223 
1224 			/*
1225 			 * OK. We roll back and find the first right sub-tree,
1226 			 * that will satisfy the search criteria. It can happen
1227 			 * due to "vstart" restriction or an alignment overhead
1228 			 * that is bigger then PAGE_SIZE.
1229 			 */
1230 			while ((node = rb_parent(node))) {
1231 				va = rb_entry(node, struct vmap_area, rb_node);
1232 				if (is_within_this_va(va, size, align, vstart))
1233 					return va;
1234 
1235 				if (get_subtree_max_size(node->rb_right) >= size &&
1236 						vstart <= va->va_start) {
1237 					/*
1238 					 * Shift the vstart forward. Please note, we update it with
1239 					 * parent's start address adding "1" because we do not want
1240 					 * to enter same sub-tree after it has already been checked
1241 					 * and no suitable free block found there.
1242 					 */
1243 					vstart = va->va_start + 1;
1244 					node = node->rb_right;
1245 					break;
1246 				}
1247 			}
1248 		}
1249 	}
1250 
1251 	return NULL;
1252 }
1253 
1254 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1255 #include <linux/random.h>
1256 
1257 static struct vmap_area *
1258 find_vmap_lowest_linear_match(unsigned long size,
1259 	unsigned long align, unsigned long vstart)
1260 {
1261 	struct vmap_area *va;
1262 
1263 	list_for_each_entry(va, &free_vmap_area_list, list) {
1264 		if (!is_within_this_va(va, size, align, vstart))
1265 			continue;
1266 
1267 		return va;
1268 	}
1269 
1270 	return NULL;
1271 }
1272 
1273 static void
1274 find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1275 {
1276 	struct vmap_area *va_1, *va_2;
1277 	unsigned long vstart;
1278 	unsigned int rnd;
1279 
1280 	get_random_bytes(&rnd, sizeof(rnd));
1281 	vstart = VMALLOC_START + rnd;
1282 
1283 	va_1 = find_vmap_lowest_match(size, align, vstart);
1284 	va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1285 
1286 	if (va_1 != va_2)
1287 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1288 			va_1, va_2, vstart);
1289 }
1290 #endif
1291 
1292 enum fit_type {
1293 	NOTHING_FIT = 0,
1294 	FL_FIT_TYPE = 1,	/* full fit */
1295 	LE_FIT_TYPE = 2,	/* left edge fit */
1296 	RE_FIT_TYPE = 3,	/* right edge fit */
1297 	NE_FIT_TYPE = 4		/* no edge fit */
1298 };
1299 
1300 static __always_inline enum fit_type
1301 classify_va_fit_type(struct vmap_area *va,
1302 	unsigned long nva_start_addr, unsigned long size)
1303 {
1304 	enum fit_type type;
1305 
1306 	/* Check if it is within VA. */
1307 	if (nva_start_addr < va->va_start ||
1308 			nva_start_addr + size > va->va_end)
1309 		return NOTHING_FIT;
1310 
1311 	/* Now classify. */
1312 	if (va->va_start == nva_start_addr) {
1313 		if (va->va_end == nva_start_addr + size)
1314 			type = FL_FIT_TYPE;
1315 		else
1316 			type = LE_FIT_TYPE;
1317 	} else if (va->va_end == nva_start_addr + size) {
1318 		type = RE_FIT_TYPE;
1319 	} else {
1320 		type = NE_FIT_TYPE;
1321 	}
1322 
1323 	return type;
1324 }
1325 
1326 static __always_inline int
1327 adjust_va_to_fit_type(struct vmap_area *va,
1328 	unsigned long nva_start_addr, unsigned long size,
1329 	enum fit_type type)
1330 {
1331 	struct vmap_area *lva = NULL;
1332 
1333 	if (type == FL_FIT_TYPE) {
1334 		/*
1335 		 * No need to split VA, it fully fits.
1336 		 *
1337 		 * |               |
1338 		 * V      NVA      V
1339 		 * |---------------|
1340 		 */
1341 		unlink_va(va, &free_vmap_area_root);
1342 		kmem_cache_free(vmap_area_cachep, va);
1343 	} else if (type == LE_FIT_TYPE) {
1344 		/*
1345 		 * Split left edge of fit VA.
1346 		 *
1347 		 * |       |
1348 		 * V  NVA  V   R
1349 		 * |-------|-------|
1350 		 */
1351 		va->va_start += size;
1352 	} else if (type == RE_FIT_TYPE) {
1353 		/*
1354 		 * Split right edge of fit VA.
1355 		 *
1356 		 *         |       |
1357 		 *     L   V  NVA  V
1358 		 * |-------|-------|
1359 		 */
1360 		va->va_end = nva_start_addr;
1361 	} else if (type == NE_FIT_TYPE) {
1362 		/*
1363 		 * Split no edge of fit VA.
1364 		 *
1365 		 *     |       |
1366 		 *   L V  NVA  V R
1367 		 * |---|-------|---|
1368 		 */
1369 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1370 		if (unlikely(!lva)) {
1371 			/*
1372 			 * For percpu allocator we do not do any pre-allocation
1373 			 * and leave it as it is. The reason is it most likely
1374 			 * never ends up with NE_FIT_TYPE splitting. In case of
1375 			 * percpu allocations offsets and sizes are aligned to
1376 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1377 			 * are its main fitting cases.
1378 			 *
1379 			 * There are a few exceptions though, as an example it is
1380 			 * a first allocation (early boot up) when we have "one"
1381 			 * big free space that has to be split.
1382 			 *
1383 			 * Also we can hit this path in case of regular "vmap"
1384 			 * allocations, if "this" current CPU was not preloaded.
1385 			 * See the comment in alloc_vmap_area() why. If so, then
1386 			 * GFP_NOWAIT is used instead to get an extra object for
1387 			 * split purpose. That is rare and most time does not
1388 			 * occur.
1389 			 *
1390 			 * What happens if an allocation gets failed. Basically,
1391 			 * an "overflow" path is triggered to purge lazily freed
1392 			 * areas to free some memory, then, the "retry" path is
1393 			 * triggered to repeat one more time. See more details
1394 			 * in alloc_vmap_area() function.
1395 			 */
1396 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1397 			if (!lva)
1398 				return -1;
1399 		}
1400 
1401 		/*
1402 		 * Build the remainder.
1403 		 */
1404 		lva->va_start = va->va_start;
1405 		lva->va_end = nva_start_addr;
1406 
1407 		/*
1408 		 * Shrink this VA to remaining size.
1409 		 */
1410 		va->va_start = nva_start_addr + size;
1411 	} else {
1412 		return -1;
1413 	}
1414 
1415 	if (type != FL_FIT_TYPE) {
1416 		augment_tree_propagate_from(va);
1417 
1418 		if (lva)	/* type == NE_FIT_TYPE */
1419 			insert_vmap_area_augment(lva, &va->rb_node,
1420 				&free_vmap_area_root, &free_vmap_area_list);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /*
1427  * Returns a start address of the newly allocated area, if success.
1428  * Otherwise a vend is returned that indicates failure.
1429  */
1430 static __always_inline unsigned long
1431 __alloc_vmap_area(unsigned long size, unsigned long align,
1432 	unsigned long vstart, unsigned long vend)
1433 {
1434 	unsigned long nva_start_addr;
1435 	struct vmap_area *va;
1436 	enum fit_type type;
1437 	int ret;
1438 
1439 	va = find_vmap_lowest_match(size, align, vstart);
1440 	if (unlikely(!va))
1441 		return vend;
1442 
1443 	if (va->va_start > vstart)
1444 		nva_start_addr = ALIGN(va->va_start, align);
1445 	else
1446 		nva_start_addr = ALIGN(vstart, align);
1447 
1448 	/* Check the "vend" restriction. */
1449 	if (nva_start_addr + size > vend)
1450 		return vend;
1451 
1452 	/* Classify what we have found. */
1453 	type = classify_va_fit_type(va, nva_start_addr, size);
1454 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1455 		return vend;
1456 
1457 	/* Update the free vmap_area. */
1458 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1459 	if (ret)
1460 		return vend;
1461 
1462 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1463 	find_vmap_lowest_match_check(size, align);
1464 #endif
1465 
1466 	return nva_start_addr;
1467 }
1468 
1469 /*
1470  * Free a region of KVA allocated by alloc_vmap_area
1471  */
1472 static void free_vmap_area(struct vmap_area *va)
1473 {
1474 	/*
1475 	 * Remove from the busy tree/list.
1476 	 */
1477 	spin_lock(&vmap_area_lock);
1478 	unlink_va(va, &vmap_area_root);
1479 	spin_unlock(&vmap_area_lock);
1480 
1481 	/*
1482 	 * Insert/Merge it back to the free tree/list.
1483 	 */
1484 	spin_lock(&free_vmap_area_lock);
1485 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1486 	spin_unlock(&free_vmap_area_lock);
1487 }
1488 
1489 static inline void
1490 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1491 {
1492 	struct vmap_area *va = NULL;
1493 
1494 	/*
1495 	 * Preload this CPU with one extra vmap_area object. It is used
1496 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1497 	 * a CPU that does an allocation is preloaded.
1498 	 *
1499 	 * We do it in non-atomic context, thus it allows us to use more
1500 	 * permissive allocation masks to be more stable under low memory
1501 	 * condition and high memory pressure.
1502 	 */
1503 	if (!this_cpu_read(ne_fit_preload_node))
1504 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1505 
1506 	spin_lock(lock);
1507 
1508 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1509 		kmem_cache_free(vmap_area_cachep, va);
1510 }
1511 
1512 /*
1513  * Allocate a region of KVA of the specified size and alignment, within the
1514  * vstart and vend.
1515  */
1516 static struct vmap_area *alloc_vmap_area(unsigned long size,
1517 				unsigned long align,
1518 				unsigned long vstart, unsigned long vend,
1519 				int node, gfp_t gfp_mask)
1520 {
1521 	struct vmap_area *va;
1522 	unsigned long freed;
1523 	unsigned long addr;
1524 	int purged = 0;
1525 	int ret;
1526 
1527 	BUG_ON(!size);
1528 	BUG_ON(offset_in_page(size));
1529 	BUG_ON(!is_power_of_2(align));
1530 
1531 	if (unlikely(!vmap_initialized))
1532 		return ERR_PTR(-EBUSY);
1533 
1534 	might_sleep();
1535 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1536 
1537 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1538 	if (unlikely(!va))
1539 		return ERR_PTR(-ENOMEM);
1540 
1541 	/*
1542 	 * Only scan the relevant parts containing pointers to other objects
1543 	 * to avoid false negatives.
1544 	 */
1545 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1546 
1547 retry:
1548 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1549 	addr = __alloc_vmap_area(size, align, vstart, vend);
1550 	spin_unlock(&free_vmap_area_lock);
1551 
1552 	/*
1553 	 * If an allocation fails, the "vend" address is
1554 	 * returned. Therefore trigger the overflow path.
1555 	 */
1556 	if (unlikely(addr == vend))
1557 		goto overflow;
1558 
1559 	va->va_start = addr;
1560 	va->va_end = addr + size;
1561 	va->vm = NULL;
1562 
1563 	spin_lock(&vmap_area_lock);
1564 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1565 	spin_unlock(&vmap_area_lock);
1566 
1567 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1568 	BUG_ON(va->va_start < vstart);
1569 	BUG_ON(va->va_end > vend);
1570 
1571 	ret = kasan_populate_vmalloc(addr, size);
1572 	if (ret) {
1573 		free_vmap_area(va);
1574 		return ERR_PTR(ret);
1575 	}
1576 
1577 	return va;
1578 
1579 overflow:
1580 	if (!purged) {
1581 		purge_vmap_area_lazy();
1582 		purged = 1;
1583 		goto retry;
1584 	}
1585 
1586 	freed = 0;
1587 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1588 
1589 	if (freed > 0) {
1590 		purged = 0;
1591 		goto retry;
1592 	}
1593 
1594 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1595 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1596 			size);
1597 
1598 	kmem_cache_free(vmap_area_cachep, va);
1599 	return ERR_PTR(-EBUSY);
1600 }
1601 
1602 int register_vmap_purge_notifier(struct notifier_block *nb)
1603 {
1604 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1605 }
1606 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1607 
1608 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1609 {
1610 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1611 }
1612 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1613 
1614 /*
1615  * lazy_max_pages is the maximum amount of virtual address space we gather up
1616  * before attempting to purge with a TLB flush.
1617  *
1618  * There is a tradeoff here: a larger number will cover more kernel page tables
1619  * and take slightly longer to purge, but it will linearly reduce the number of
1620  * global TLB flushes that must be performed. It would seem natural to scale
1621  * this number up linearly with the number of CPUs (because vmapping activity
1622  * could also scale linearly with the number of CPUs), however it is likely
1623  * that in practice, workloads might be constrained in other ways that mean
1624  * vmap activity will not scale linearly with CPUs. Also, I want to be
1625  * conservative and not introduce a big latency on huge systems, so go with
1626  * a less aggressive log scale. It will still be an improvement over the old
1627  * code, and it will be simple to change the scale factor if we find that it
1628  * becomes a problem on bigger systems.
1629  */
1630 static unsigned long lazy_max_pages(void)
1631 {
1632 	unsigned int log;
1633 
1634 	log = fls(num_online_cpus());
1635 
1636 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1637 }
1638 
1639 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1640 
1641 /*
1642  * Serialize vmap purging.  There is no actual critical section protected
1643  * by this look, but we want to avoid concurrent calls for performance
1644  * reasons and to make the pcpu_get_vm_areas more deterministic.
1645  */
1646 static DEFINE_MUTEX(vmap_purge_lock);
1647 
1648 /* for per-CPU blocks */
1649 static void purge_fragmented_blocks_allcpus(void);
1650 
1651 #ifdef CONFIG_X86_64
1652 /*
1653  * called before a call to iounmap() if the caller wants vm_area_struct's
1654  * immediately freed.
1655  */
1656 void set_iounmap_nonlazy(void)
1657 {
1658 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1659 }
1660 #endif /* CONFIG_X86_64 */
1661 
1662 /*
1663  * Purges all lazily-freed vmap areas.
1664  */
1665 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1666 {
1667 	unsigned long resched_threshold;
1668 	struct list_head local_pure_list;
1669 	struct vmap_area *va, *n_va;
1670 
1671 	lockdep_assert_held(&vmap_purge_lock);
1672 
1673 	spin_lock(&purge_vmap_area_lock);
1674 	purge_vmap_area_root = RB_ROOT;
1675 	list_replace_init(&purge_vmap_area_list, &local_pure_list);
1676 	spin_unlock(&purge_vmap_area_lock);
1677 
1678 	if (unlikely(list_empty(&local_pure_list)))
1679 		return false;
1680 
1681 	start = min(start,
1682 		list_first_entry(&local_pure_list,
1683 			struct vmap_area, list)->va_start);
1684 
1685 	end = max(end,
1686 		list_last_entry(&local_pure_list,
1687 			struct vmap_area, list)->va_end);
1688 
1689 	flush_tlb_kernel_range(start, end);
1690 	resched_threshold = lazy_max_pages() << 1;
1691 
1692 	spin_lock(&free_vmap_area_lock);
1693 	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1694 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1695 		unsigned long orig_start = va->va_start;
1696 		unsigned long orig_end = va->va_end;
1697 
1698 		/*
1699 		 * Finally insert or merge lazily-freed area. It is
1700 		 * detached and there is no need to "unlink" it from
1701 		 * anything.
1702 		 */
1703 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1704 				&free_vmap_area_list);
1705 
1706 		if (!va)
1707 			continue;
1708 
1709 		if (is_vmalloc_or_module_addr((void *)orig_start))
1710 			kasan_release_vmalloc(orig_start, orig_end,
1711 					      va->va_start, va->va_end);
1712 
1713 		atomic_long_sub(nr, &vmap_lazy_nr);
1714 
1715 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1716 			cond_resched_lock(&free_vmap_area_lock);
1717 	}
1718 	spin_unlock(&free_vmap_area_lock);
1719 	return true;
1720 }
1721 
1722 /*
1723  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1724  * is already purging.
1725  */
1726 static void try_purge_vmap_area_lazy(void)
1727 {
1728 	if (mutex_trylock(&vmap_purge_lock)) {
1729 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1730 		mutex_unlock(&vmap_purge_lock);
1731 	}
1732 }
1733 
1734 /*
1735  * Kick off a purge of the outstanding lazy areas.
1736  */
1737 static void purge_vmap_area_lazy(void)
1738 {
1739 	mutex_lock(&vmap_purge_lock);
1740 	purge_fragmented_blocks_allcpus();
1741 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1742 	mutex_unlock(&vmap_purge_lock);
1743 }
1744 
1745 /*
1746  * Free a vmap area, caller ensuring that the area has been unmapped
1747  * and flush_cache_vunmap had been called for the correct range
1748  * previously.
1749  */
1750 static void free_vmap_area_noflush(struct vmap_area *va)
1751 {
1752 	unsigned long nr_lazy;
1753 
1754 	spin_lock(&vmap_area_lock);
1755 	unlink_va(va, &vmap_area_root);
1756 	spin_unlock(&vmap_area_lock);
1757 
1758 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1759 				PAGE_SHIFT, &vmap_lazy_nr);
1760 
1761 	/*
1762 	 * Merge or place it to the purge tree/list.
1763 	 */
1764 	spin_lock(&purge_vmap_area_lock);
1765 	merge_or_add_vmap_area(va,
1766 		&purge_vmap_area_root, &purge_vmap_area_list);
1767 	spin_unlock(&purge_vmap_area_lock);
1768 
1769 	/* After this point, we may free va at any time */
1770 	if (unlikely(nr_lazy > lazy_max_pages()))
1771 		try_purge_vmap_area_lazy();
1772 }
1773 
1774 /*
1775  * Free and unmap a vmap area
1776  */
1777 static void free_unmap_vmap_area(struct vmap_area *va)
1778 {
1779 	flush_cache_vunmap(va->va_start, va->va_end);
1780 	vunmap_range_noflush(va->va_start, va->va_end);
1781 	if (debug_pagealloc_enabled_static())
1782 		flush_tlb_kernel_range(va->va_start, va->va_end);
1783 
1784 	free_vmap_area_noflush(va);
1785 }
1786 
1787 static struct vmap_area *find_vmap_area(unsigned long addr)
1788 {
1789 	struct vmap_area *va;
1790 
1791 	spin_lock(&vmap_area_lock);
1792 	va = __find_vmap_area(addr);
1793 	spin_unlock(&vmap_area_lock);
1794 
1795 	return va;
1796 }
1797 
1798 /*** Per cpu kva allocator ***/
1799 
1800 /*
1801  * vmap space is limited especially on 32 bit architectures. Ensure there is
1802  * room for at least 16 percpu vmap blocks per CPU.
1803  */
1804 /*
1805  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1806  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1807  * instead (we just need a rough idea)
1808  */
1809 #if BITS_PER_LONG == 32
1810 #define VMALLOC_SPACE		(128UL*1024*1024)
1811 #else
1812 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1813 #endif
1814 
1815 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1816 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1817 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1818 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1819 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1820 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1821 #define VMAP_BBMAP_BITS		\
1822 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1823 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1824 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1825 
1826 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1827 
1828 struct vmap_block_queue {
1829 	spinlock_t lock;
1830 	struct list_head free;
1831 };
1832 
1833 struct vmap_block {
1834 	spinlock_t lock;
1835 	struct vmap_area *va;
1836 	unsigned long free, dirty;
1837 	unsigned long dirty_min, dirty_max; /*< dirty range */
1838 	struct list_head free_list;
1839 	struct rcu_head rcu_head;
1840 	struct list_head purge;
1841 };
1842 
1843 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1844 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1845 
1846 /*
1847  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1848  * in the free path. Could get rid of this if we change the API to return a
1849  * "cookie" from alloc, to be passed to free. But no big deal yet.
1850  */
1851 static DEFINE_XARRAY(vmap_blocks);
1852 
1853 /*
1854  * We should probably have a fallback mechanism to allocate virtual memory
1855  * out of partially filled vmap blocks. However vmap block sizing should be
1856  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1857  * big problem.
1858  */
1859 
1860 static unsigned long addr_to_vb_idx(unsigned long addr)
1861 {
1862 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1863 	addr /= VMAP_BLOCK_SIZE;
1864 	return addr;
1865 }
1866 
1867 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1868 {
1869 	unsigned long addr;
1870 
1871 	addr = va_start + (pages_off << PAGE_SHIFT);
1872 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1873 	return (void *)addr;
1874 }
1875 
1876 /**
1877  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1878  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1879  * @order:    how many 2^order pages should be occupied in newly allocated block
1880  * @gfp_mask: flags for the page level allocator
1881  *
1882  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1883  */
1884 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1885 {
1886 	struct vmap_block_queue *vbq;
1887 	struct vmap_block *vb;
1888 	struct vmap_area *va;
1889 	unsigned long vb_idx;
1890 	int node, err;
1891 	void *vaddr;
1892 
1893 	node = numa_node_id();
1894 
1895 	vb = kmalloc_node(sizeof(struct vmap_block),
1896 			gfp_mask & GFP_RECLAIM_MASK, node);
1897 	if (unlikely(!vb))
1898 		return ERR_PTR(-ENOMEM);
1899 
1900 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1901 					VMALLOC_START, VMALLOC_END,
1902 					node, gfp_mask);
1903 	if (IS_ERR(va)) {
1904 		kfree(vb);
1905 		return ERR_CAST(va);
1906 	}
1907 
1908 	vaddr = vmap_block_vaddr(va->va_start, 0);
1909 	spin_lock_init(&vb->lock);
1910 	vb->va = va;
1911 	/* At least something should be left free */
1912 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1913 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1914 	vb->dirty = 0;
1915 	vb->dirty_min = VMAP_BBMAP_BITS;
1916 	vb->dirty_max = 0;
1917 	INIT_LIST_HEAD(&vb->free_list);
1918 
1919 	vb_idx = addr_to_vb_idx(va->va_start);
1920 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1921 	if (err) {
1922 		kfree(vb);
1923 		free_vmap_area(va);
1924 		return ERR_PTR(err);
1925 	}
1926 
1927 	vbq = &get_cpu_var(vmap_block_queue);
1928 	spin_lock(&vbq->lock);
1929 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1930 	spin_unlock(&vbq->lock);
1931 	put_cpu_var(vmap_block_queue);
1932 
1933 	return vaddr;
1934 }
1935 
1936 static void free_vmap_block(struct vmap_block *vb)
1937 {
1938 	struct vmap_block *tmp;
1939 
1940 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1941 	BUG_ON(tmp != vb);
1942 
1943 	free_vmap_area_noflush(vb->va);
1944 	kfree_rcu(vb, rcu_head);
1945 }
1946 
1947 static void purge_fragmented_blocks(int cpu)
1948 {
1949 	LIST_HEAD(purge);
1950 	struct vmap_block *vb;
1951 	struct vmap_block *n_vb;
1952 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1953 
1954 	rcu_read_lock();
1955 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1956 
1957 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1958 			continue;
1959 
1960 		spin_lock(&vb->lock);
1961 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1962 			vb->free = 0; /* prevent further allocs after releasing lock */
1963 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1964 			vb->dirty_min = 0;
1965 			vb->dirty_max = VMAP_BBMAP_BITS;
1966 			spin_lock(&vbq->lock);
1967 			list_del_rcu(&vb->free_list);
1968 			spin_unlock(&vbq->lock);
1969 			spin_unlock(&vb->lock);
1970 			list_add_tail(&vb->purge, &purge);
1971 		} else
1972 			spin_unlock(&vb->lock);
1973 	}
1974 	rcu_read_unlock();
1975 
1976 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1977 		list_del(&vb->purge);
1978 		free_vmap_block(vb);
1979 	}
1980 }
1981 
1982 static void purge_fragmented_blocks_allcpus(void)
1983 {
1984 	int cpu;
1985 
1986 	for_each_possible_cpu(cpu)
1987 		purge_fragmented_blocks(cpu);
1988 }
1989 
1990 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1991 {
1992 	struct vmap_block_queue *vbq;
1993 	struct vmap_block *vb;
1994 	void *vaddr = NULL;
1995 	unsigned int order;
1996 
1997 	BUG_ON(offset_in_page(size));
1998 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1999 	if (WARN_ON(size == 0)) {
2000 		/*
2001 		 * Allocating 0 bytes isn't what caller wants since
2002 		 * get_order(0) returns funny result. Just warn and terminate
2003 		 * early.
2004 		 */
2005 		return NULL;
2006 	}
2007 	order = get_order(size);
2008 
2009 	rcu_read_lock();
2010 	vbq = &get_cpu_var(vmap_block_queue);
2011 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2012 		unsigned long pages_off;
2013 
2014 		spin_lock(&vb->lock);
2015 		if (vb->free < (1UL << order)) {
2016 			spin_unlock(&vb->lock);
2017 			continue;
2018 		}
2019 
2020 		pages_off = VMAP_BBMAP_BITS - vb->free;
2021 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2022 		vb->free -= 1UL << order;
2023 		if (vb->free == 0) {
2024 			spin_lock(&vbq->lock);
2025 			list_del_rcu(&vb->free_list);
2026 			spin_unlock(&vbq->lock);
2027 		}
2028 
2029 		spin_unlock(&vb->lock);
2030 		break;
2031 	}
2032 
2033 	put_cpu_var(vmap_block_queue);
2034 	rcu_read_unlock();
2035 
2036 	/* Allocate new block if nothing was found */
2037 	if (!vaddr)
2038 		vaddr = new_vmap_block(order, gfp_mask);
2039 
2040 	return vaddr;
2041 }
2042 
2043 static void vb_free(unsigned long addr, unsigned long size)
2044 {
2045 	unsigned long offset;
2046 	unsigned int order;
2047 	struct vmap_block *vb;
2048 
2049 	BUG_ON(offset_in_page(size));
2050 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2051 
2052 	flush_cache_vunmap(addr, addr + size);
2053 
2054 	order = get_order(size);
2055 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2056 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2057 
2058 	vunmap_range_noflush(addr, addr + size);
2059 
2060 	if (debug_pagealloc_enabled_static())
2061 		flush_tlb_kernel_range(addr, addr + size);
2062 
2063 	spin_lock(&vb->lock);
2064 
2065 	/* Expand dirty range */
2066 	vb->dirty_min = min(vb->dirty_min, offset);
2067 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2068 
2069 	vb->dirty += 1UL << order;
2070 	if (vb->dirty == VMAP_BBMAP_BITS) {
2071 		BUG_ON(vb->free);
2072 		spin_unlock(&vb->lock);
2073 		free_vmap_block(vb);
2074 	} else
2075 		spin_unlock(&vb->lock);
2076 }
2077 
2078 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2079 {
2080 	int cpu;
2081 
2082 	if (unlikely(!vmap_initialized))
2083 		return;
2084 
2085 	might_sleep();
2086 
2087 	for_each_possible_cpu(cpu) {
2088 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2089 		struct vmap_block *vb;
2090 
2091 		rcu_read_lock();
2092 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2093 			spin_lock(&vb->lock);
2094 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2095 				unsigned long va_start = vb->va->va_start;
2096 				unsigned long s, e;
2097 
2098 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2099 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2100 
2101 				start = min(s, start);
2102 				end   = max(e, end);
2103 
2104 				flush = 1;
2105 			}
2106 			spin_unlock(&vb->lock);
2107 		}
2108 		rcu_read_unlock();
2109 	}
2110 
2111 	mutex_lock(&vmap_purge_lock);
2112 	purge_fragmented_blocks_allcpus();
2113 	if (!__purge_vmap_area_lazy(start, end) && flush)
2114 		flush_tlb_kernel_range(start, end);
2115 	mutex_unlock(&vmap_purge_lock);
2116 }
2117 
2118 /**
2119  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2120  *
2121  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2122  * to amortize TLB flushing overheads. What this means is that any page you
2123  * have now, may, in a former life, have been mapped into kernel virtual
2124  * address by the vmap layer and so there might be some CPUs with TLB entries
2125  * still referencing that page (additional to the regular 1:1 kernel mapping).
2126  *
2127  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2128  * be sure that none of the pages we have control over will have any aliases
2129  * from the vmap layer.
2130  */
2131 void vm_unmap_aliases(void)
2132 {
2133 	unsigned long start = ULONG_MAX, end = 0;
2134 	int flush = 0;
2135 
2136 	_vm_unmap_aliases(start, end, flush);
2137 }
2138 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2139 
2140 /**
2141  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2142  * @mem: the pointer returned by vm_map_ram
2143  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2144  */
2145 void vm_unmap_ram(const void *mem, unsigned int count)
2146 {
2147 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2148 	unsigned long addr = (unsigned long)mem;
2149 	struct vmap_area *va;
2150 
2151 	might_sleep();
2152 	BUG_ON(!addr);
2153 	BUG_ON(addr < VMALLOC_START);
2154 	BUG_ON(addr > VMALLOC_END);
2155 	BUG_ON(!PAGE_ALIGNED(addr));
2156 
2157 	kasan_poison_vmalloc(mem, size);
2158 
2159 	if (likely(count <= VMAP_MAX_ALLOC)) {
2160 		debug_check_no_locks_freed(mem, size);
2161 		vb_free(addr, size);
2162 		return;
2163 	}
2164 
2165 	va = find_vmap_area(addr);
2166 	BUG_ON(!va);
2167 	debug_check_no_locks_freed((void *)va->va_start,
2168 				    (va->va_end - va->va_start));
2169 	free_unmap_vmap_area(va);
2170 }
2171 EXPORT_SYMBOL(vm_unmap_ram);
2172 
2173 /**
2174  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2175  * @pages: an array of pointers to the pages to be mapped
2176  * @count: number of pages
2177  * @node: prefer to allocate data structures on this node
2178  *
2179  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2180  * faster than vmap so it's good.  But if you mix long-life and short-life
2181  * objects with vm_map_ram(), it could consume lots of address space through
2182  * fragmentation (especially on a 32bit machine).  You could see failures in
2183  * the end.  Please use this function for short-lived objects.
2184  *
2185  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2186  */
2187 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2188 {
2189 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2190 	unsigned long addr;
2191 	void *mem;
2192 
2193 	if (likely(count <= VMAP_MAX_ALLOC)) {
2194 		mem = vb_alloc(size, GFP_KERNEL);
2195 		if (IS_ERR(mem))
2196 			return NULL;
2197 		addr = (unsigned long)mem;
2198 	} else {
2199 		struct vmap_area *va;
2200 		va = alloc_vmap_area(size, PAGE_SIZE,
2201 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2202 		if (IS_ERR(va))
2203 			return NULL;
2204 
2205 		addr = va->va_start;
2206 		mem = (void *)addr;
2207 	}
2208 
2209 	kasan_unpoison_vmalloc(mem, size);
2210 
2211 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2212 				pages, PAGE_SHIFT) < 0) {
2213 		vm_unmap_ram(mem, count);
2214 		return NULL;
2215 	}
2216 
2217 	return mem;
2218 }
2219 EXPORT_SYMBOL(vm_map_ram);
2220 
2221 static struct vm_struct *vmlist __initdata;
2222 
2223 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2224 {
2225 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2226 	return vm->page_order;
2227 #else
2228 	return 0;
2229 #endif
2230 }
2231 
2232 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2233 {
2234 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2235 	vm->page_order = order;
2236 #else
2237 	BUG_ON(order != 0);
2238 #endif
2239 }
2240 
2241 /**
2242  * vm_area_add_early - add vmap area early during boot
2243  * @vm: vm_struct to add
2244  *
2245  * This function is used to add fixed kernel vm area to vmlist before
2246  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2247  * should contain proper values and the other fields should be zero.
2248  *
2249  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2250  */
2251 void __init vm_area_add_early(struct vm_struct *vm)
2252 {
2253 	struct vm_struct *tmp, **p;
2254 
2255 	BUG_ON(vmap_initialized);
2256 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2257 		if (tmp->addr >= vm->addr) {
2258 			BUG_ON(tmp->addr < vm->addr + vm->size);
2259 			break;
2260 		} else
2261 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2262 	}
2263 	vm->next = *p;
2264 	*p = vm;
2265 }
2266 
2267 /**
2268  * vm_area_register_early - register vmap area early during boot
2269  * @vm: vm_struct to register
2270  * @align: requested alignment
2271  *
2272  * This function is used to register kernel vm area before
2273  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2274  * proper values on entry and other fields should be zero.  On return,
2275  * vm->addr contains the allocated address.
2276  *
2277  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2278  */
2279 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2280 {
2281 	unsigned long addr = ALIGN(VMALLOC_START, align);
2282 	struct vm_struct *cur, **p;
2283 
2284 	BUG_ON(vmap_initialized);
2285 
2286 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2287 		if ((unsigned long)cur->addr - addr >= vm->size)
2288 			break;
2289 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2290 	}
2291 
2292 	BUG_ON(addr > VMALLOC_END - vm->size);
2293 	vm->addr = (void *)addr;
2294 	vm->next = *p;
2295 	*p = vm;
2296 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2297 }
2298 
2299 static void vmap_init_free_space(void)
2300 {
2301 	unsigned long vmap_start = 1;
2302 	const unsigned long vmap_end = ULONG_MAX;
2303 	struct vmap_area *busy, *free;
2304 
2305 	/*
2306 	 *     B     F     B     B     B     F
2307 	 * -|-----|.....|-----|-----|-----|.....|-
2308 	 *  |           The KVA space           |
2309 	 *  |<--------------------------------->|
2310 	 */
2311 	list_for_each_entry(busy, &vmap_area_list, list) {
2312 		if (busy->va_start - vmap_start > 0) {
2313 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2314 			if (!WARN_ON_ONCE(!free)) {
2315 				free->va_start = vmap_start;
2316 				free->va_end = busy->va_start;
2317 
2318 				insert_vmap_area_augment(free, NULL,
2319 					&free_vmap_area_root,
2320 						&free_vmap_area_list);
2321 			}
2322 		}
2323 
2324 		vmap_start = busy->va_end;
2325 	}
2326 
2327 	if (vmap_end - vmap_start > 0) {
2328 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2329 		if (!WARN_ON_ONCE(!free)) {
2330 			free->va_start = vmap_start;
2331 			free->va_end = vmap_end;
2332 
2333 			insert_vmap_area_augment(free, NULL,
2334 				&free_vmap_area_root,
2335 					&free_vmap_area_list);
2336 		}
2337 	}
2338 }
2339 
2340 void __init vmalloc_init(void)
2341 {
2342 	struct vmap_area *va;
2343 	struct vm_struct *tmp;
2344 	int i;
2345 
2346 	/*
2347 	 * Create the cache for vmap_area objects.
2348 	 */
2349 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2350 
2351 	for_each_possible_cpu(i) {
2352 		struct vmap_block_queue *vbq;
2353 		struct vfree_deferred *p;
2354 
2355 		vbq = &per_cpu(vmap_block_queue, i);
2356 		spin_lock_init(&vbq->lock);
2357 		INIT_LIST_HEAD(&vbq->free);
2358 		p = &per_cpu(vfree_deferred, i);
2359 		init_llist_head(&p->list);
2360 		INIT_WORK(&p->wq, free_work);
2361 	}
2362 
2363 	/* Import existing vmlist entries. */
2364 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2365 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2366 		if (WARN_ON_ONCE(!va))
2367 			continue;
2368 
2369 		va->va_start = (unsigned long)tmp->addr;
2370 		va->va_end = va->va_start + tmp->size;
2371 		va->vm = tmp;
2372 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2373 	}
2374 
2375 	/*
2376 	 * Now we can initialize a free vmap space.
2377 	 */
2378 	vmap_init_free_space();
2379 	vmap_initialized = true;
2380 }
2381 
2382 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2383 	struct vmap_area *va, unsigned long flags, const void *caller)
2384 {
2385 	vm->flags = flags;
2386 	vm->addr = (void *)va->va_start;
2387 	vm->size = va->va_end - va->va_start;
2388 	vm->caller = caller;
2389 	va->vm = vm;
2390 }
2391 
2392 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2393 			      unsigned long flags, const void *caller)
2394 {
2395 	spin_lock(&vmap_area_lock);
2396 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2397 	spin_unlock(&vmap_area_lock);
2398 }
2399 
2400 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2401 {
2402 	/*
2403 	 * Before removing VM_UNINITIALIZED,
2404 	 * we should make sure that vm has proper values.
2405 	 * Pair with smp_rmb() in show_numa_info().
2406 	 */
2407 	smp_wmb();
2408 	vm->flags &= ~VM_UNINITIALIZED;
2409 }
2410 
2411 static struct vm_struct *__get_vm_area_node(unsigned long size,
2412 		unsigned long align, unsigned long shift, unsigned long flags,
2413 		unsigned long start, unsigned long end, int node,
2414 		gfp_t gfp_mask, const void *caller)
2415 {
2416 	struct vmap_area *va;
2417 	struct vm_struct *area;
2418 	unsigned long requested_size = size;
2419 
2420 	BUG_ON(in_interrupt());
2421 	size = ALIGN(size, 1ul << shift);
2422 	if (unlikely(!size))
2423 		return NULL;
2424 
2425 	if (flags & VM_IOREMAP)
2426 		align = 1ul << clamp_t(int, get_count_order_long(size),
2427 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2428 
2429 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2430 	if (unlikely(!area))
2431 		return NULL;
2432 
2433 	if (!(flags & VM_NO_GUARD))
2434 		size += PAGE_SIZE;
2435 
2436 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2437 	if (IS_ERR(va)) {
2438 		kfree(area);
2439 		return NULL;
2440 	}
2441 
2442 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2443 
2444 	setup_vmalloc_vm(area, va, flags, caller);
2445 
2446 	return area;
2447 }
2448 
2449 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2450 				       unsigned long start, unsigned long end,
2451 				       const void *caller)
2452 {
2453 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2454 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2455 }
2456 
2457 /**
2458  * get_vm_area - reserve a contiguous kernel virtual area
2459  * @size:	 size of the area
2460  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2461  *
2462  * Search an area of @size in the kernel virtual mapping area,
2463  * and reserved it for out purposes.  Returns the area descriptor
2464  * on success or %NULL on failure.
2465  *
2466  * Return: the area descriptor on success or %NULL on failure.
2467  */
2468 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2469 {
2470 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2471 				  VMALLOC_START, VMALLOC_END,
2472 				  NUMA_NO_NODE, GFP_KERNEL,
2473 				  __builtin_return_address(0));
2474 }
2475 
2476 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2477 				const void *caller)
2478 {
2479 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2480 				  VMALLOC_START, VMALLOC_END,
2481 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2482 }
2483 
2484 /**
2485  * find_vm_area - find a continuous kernel virtual area
2486  * @addr:	  base address
2487  *
2488  * Search for the kernel VM area starting at @addr, and return it.
2489  * It is up to the caller to do all required locking to keep the returned
2490  * pointer valid.
2491  *
2492  * Return: the area descriptor on success or %NULL on failure.
2493  */
2494 struct vm_struct *find_vm_area(const void *addr)
2495 {
2496 	struct vmap_area *va;
2497 
2498 	va = find_vmap_area((unsigned long)addr);
2499 	if (!va)
2500 		return NULL;
2501 
2502 	return va->vm;
2503 }
2504 
2505 /**
2506  * remove_vm_area - find and remove a continuous kernel virtual area
2507  * @addr:	    base address
2508  *
2509  * Search for the kernel VM area starting at @addr, and remove it.
2510  * This function returns the found VM area, but using it is NOT safe
2511  * on SMP machines, except for its size or flags.
2512  *
2513  * Return: the area descriptor on success or %NULL on failure.
2514  */
2515 struct vm_struct *remove_vm_area(const void *addr)
2516 {
2517 	struct vmap_area *va;
2518 
2519 	might_sleep();
2520 
2521 	spin_lock(&vmap_area_lock);
2522 	va = __find_vmap_area((unsigned long)addr);
2523 	if (va && va->vm) {
2524 		struct vm_struct *vm = va->vm;
2525 
2526 		va->vm = NULL;
2527 		spin_unlock(&vmap_area_lock);
2528 
2529 		kasan_free_shadow(vm);
2530 		free_unmap_vmap_area(va);
2531 
2532 		return vm;
2533 	}
2534 
2535 	spin_unlock(&vmap_area_lock);
2536 	return NULL;
2537 }
2538 
2539 static inline void set_area_direct_map(const struct vm_struct *area,
2540 				       int (*set_direct_map)(struct page *page))
2541 {
2542 	int i;
2543 
2544 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2545 	for (i = 0; i < area->nr_pages; i++)
2546 		if (page_address(area->pages[i]))
2547 			set_direct_map(area->pages[i]);
2548 }
2549 
2550 /* Handle removing and resetting vm mappings related to the vm_struct. */
2551 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2552 {
2553 	unsigned long start = ULONG_MAX, end = 0;
2554 	unsigned int page_order = vm_area_page_order(area);
2555 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2556 	int flush_dmap = 0;
2557 	int i;
2558 
2559 	remove_vm_area(area->addr);
2560 
2561 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2562 	if (!flush_reset)
2563 		return;
2564 
2565 	/*
2566 	 * If not deallocating pages, just do the flush of the VM area and
2567 	 * return.
2568 	 */
2569 	if (!deallocate_pages) {
2570 		vm_unmap_aliases();
2571 		return;
2572 	}
2573 
2574 	/*
2575 	 * If execution gets here, flush the vm mapping and reset the direct
2576 	 * map. Find the start and end range of the direct mappings to make sure
2577 	 * the vm_unmap_aliases() flush includes the direct map.
2578 	 */
2579 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2580 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2581 		if (addr) {
2582 			unsigned long page_size;
2583 
2584 			page_size = PAGE_SIZE << page_order;
2585 			start = min(addr, start);
2586 			end = max(addr + page_size, end);
2587 			flush_dmap = 1;
2588 		}
2589 	}
2590 
2591 	/*
2592 	 * Set direct map to something invalid so that it won't be cached if
2593 	 * there are any accesses after the TLB flush, then flush the TLB and
2594 	 * reset the direct map permissions to the default.
2595 	 */
2596 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2597 	_vm_unmap_aliases(start, end, flush_dmap);
2598 	set_area_direct_map(area, set_direct_map_default_noflush);
2599 }
2600 
2601 static void __vunmap(const void *addr, int deallocate_pages)
2602 {
2603 	struct vm_struct *area;
2604 
2605 	if (!addr)
2606 		return;
2607 
2608 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2609 			addr))
2610 		return;
2611 
2612 	area = find_vm_area(addr);
2613 	if (unlikely(!area)) {
2614 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2615 				addr);
2616 		return;
2617 	}
2618 
2619 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2620 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2621 
2622 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2623 
2624 	vm_remove_mappings(area, deallocate_pages);
2625 
2626 	if (deallocate_pages) {
2627 		unsigned int page_order = vm_area_page_order(area);
2628 		int i, step = 1U << page_order;
2629 
2630 		for (i = 0; i < area->nr_pages; i += step) {
2631 			struct page *page = area->pages[i];
2632 
2633 			BUG_ON(!page);
2634 			mod_memcg_page_state(page, MEMCG_VMALLOC, -step);
2635 			__free_pages(page, page_order);
2636 			cond_resched();
2637 		}
2638 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2639 
2640 		kvfree(area->pages);
2641 	}
2642 
2643 	kfree(area);
2644 }
2645 
2646 static inline void __vfree_deferred(const void *addr)
2647 {
2648 	/*
2649 	 * Use raw_cpu_ptr() because this can be called from preemptible
2650 	 * context. Preemption is absolutely fine here, because the llist_add()
2651 	 * implementation is lockless, so it works even if we are adding to
2652 	 * another cpu's list. schedule_work() should be fine with this too.
2653 	 */
2654 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2655 
2656 	if (llist_add((struct llist_node *)addr, &p->list))
2657 		schedule_work(&p->wq);
2658 }
2659 
2660 /**
2661  * vfree_atomic - release memory allocated by vmalloc()
2662  * @addr:	  memory base address
2663  *
2664  * This one is just like vfree() but can be called in any atomic context
2665  * except NMIs.
2666  */
2667 void vfree_atomic(const void *addr)
2668 {
2669 	BUG_ON(in_nmi());
2670 
2671 	kmemleak_free(addr);
2672 
2673 	if (!addr)
2674 		return;
2675 	__vfree_deferred(addr);
2676 }
2677 
2678 static void __vfree(const void *addr)
2679 {
2680 	if (unlikely(in_interrupt()))
2681 		__vfree_deferred(addr);
2682 	else
2683 		__vunmap(addr, 1);
2684 }
2685 
2686 /**
2687  * vfree - Release memory allocated by vmalloc()
2688  * @addr:  Memory base address
2689  *
2690  * Free the virtually continuous memory area starting at @addr, as obtained
2691  * from one of the vmalloc() family of APIs.  This will usually also free the
2692  * physical memory underlying the virtual allocation, but that memory is
2693  * reference counted, so it will not be freed until the last user goes away.
2694  *
2695  * If @addr is NULL, no operation is performed.
2696  *
2697  * Context:
2698  * May sleep if called *not* from interrupt context.
2699  * Must not be called in NMI context (strictly speaking, it could be
2700  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2701  * conventions for vfree() arch-dependent would be a really bad idea).
2702  */
2703 void vfree(const void *addr)
2704 {
2705 	BUG_ON(in_nmi());
2706 
2707 	kmemleak_free(addr);
2708 
2709 	might_sleep_if(!in_interrupt());
2710 
2711 	if (!addr)
2712 		return;
2713 
2714 	__vfree(addr);
2715 }
2716 EXPORT_SYMBOL(vfree);
2717 
2718 /**
2719  * vunmap - release virtual mapping obtained by vmap()
2720  * @addr:   memory base address
2721  *
2722  * Free the virtually contiguous memory area starting at @addr,
2723  * which was created from the page array passed to vmap().
2724  *
2725  * Must not be called in interrupt context.
2726  */
2727 void vunmap(const void *addr)
2728 {
2729 	BUG_ON(in_interrupt());
2730 	might_sleep();
2731 	if (addr)
2732 		__vunmap(addr, 0);
2733 }
2734 EXPORT_SYMBOL(vunmap);
2735 
2736 /**
2737  * vmap - map an array of pages into virtually contiguous space
2738  * @pages: array of page pointers
2739  * @count: number of pages to map
2740  * @flags: vm_area->flags
2741  * @prot: page protection for the mapping
2742  *
2743  * Maps @count pages from @pages into contiguous kernel virtual space.
2744  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2745  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2746  * are transferred from the caller to vmap(), and will be freed / dropped when
2747  * vfree() is called on the return value.
2748  *
2749  * Return: the address of the area or %NULL on failure
2750  */
2751 void *vmap(struct page **pages, unsigned int count,
2752 	   unsigned long flags, pgprot_t prot)
2753 {
2754 	struct vm_struct *area;
2755 	unsigned long addr;
2756 	unsigned long size;		/* In bytes */
2757 
2758 	might_sleep();
2759 
2760 	/*
2761 	 * Your top guard is someone else's bottom guard. Not having a top
2762 	 * guard compromises someone else's mappings too.
2763 	 */
2764 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2765 		flags &= ~VM_NO_GUARD;
2766 
2767 	if (count > totalram_pages())
2768 		return NULL;
2769 
2770 	size = (unsigned long)count << PAGE_SHIFT;
2771 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2772 	if (!area)
2773 		return NULL;
2774 
2775 	addr = (unsigned long)area->addr;
2776 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2777 				pages, PAGE_SHIFT) < 0) {
2778 		vunmap(area->addr);
2779 		return NULL;
2780 	}
2781 
2782 	if (flags & VM_MAP_PUT_PAGES) {
2783 		area->pages = pages;
2784 		area->nr_pages = count;
2785 	}
2786 	return area->addr;
2787 }
2788 EXPORT_SYMBOL(vmap);
2789 
2790 #ifdef CONFIG_VMAP_PFN
2791 struct vmap_pfn_data {
2792 	unsigned long	*pfns;
2793 	pgprot_t	prot;
2794 	unsigned int	idx;
2795 };
2796 
2797 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2798 {
2799 	struct vmap_pfn_data *data = private;
2800 
2801 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2802 		return -EINVAL;
2803 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2804 	return 0;
2805 }
2806 
2807 /**
2808  * vmap_pfn - map an array of PFNs into virtually contiguous space
2809  * @pfns: array of PFNs
2810  * @count: number of pages to map
2811  * @prot: page protection for the mapping
2812  *
2813  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2814  * the start address of the mapping.
2815  */
2816 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2817 {
2818 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2819 	struct vm_struct *area;
2820 
2821 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2822 			__builtin_return_address(0));
2823 	if (!area)
2824 		return NULL;
2825 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2826 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2827 		free_vm_area(area);
2828 		return NULL;
2829 	}
2830 	return area->addr;
2831 }
2832 EXPORT_SYMBOL_GPL(vmap_pfn);
2833 #endif /* CONFIG_VMAP_PFN */
2834 
2835 static inline unsigned int
2836 vm_area_alloc_pages(gfp_t gfp, int nid,
2837 		unsigned int order, unsigned int nr_pages, struct page **pages)
2838 {
2839 	unsigned int nr_allocated = 0;
2840 	struct page *page;
2841 	int i;
2842 
2843 	/*
2844 	 * For order-0 pages we make use of bulk allocator, if
2845 	 * the page array is partly or not at all populated due
2846 	 * to fails, fallback to a single page allocator that is
2847 	 * more permissive.
2848 	 */
2849 	if (!order) {
2850 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2851 
2852 		while (nr_allocated < nr_pages) {
2853 			unsigned int nr, nr_pages_request;
2854 
2855 			/*
2856 			 * A maximum allowed request is hard-coded and is 100
2857 			 * pages per call. That is done in order to prevent a
2858 			 * long preemption off scenario in the bulk-allocator
2859 			 * so the range is [1:100].
2860 			 */
2861 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2862 
2863 			/* memory allocation should consider mempolicy, we can't
2864 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
2865 			 * otherwise memory may be allocated in only one node,
2866 			 * but mempolcy want to alloc memory by interleaving.
2867 			 */
2868 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2869 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2870 							nr_pages_request,
2871 							pages + nr_allocated);
2872 
2873 			else
2874 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2875 							nr_pages_request,
2876 							pages + nr_allocated);
2877 
2878 			nr_allocated += nr;
2879 			cond_resched();
2880 
2881 			/*
2882 			 * If zero or pages were obtained partly,
2883 			 * fallback to a single page allocator.
2884 			 */
2885 			if (nr != nr_pages_request)
2886 				break;
2887 		}
2888 	} else
2889 		/*
2890 		 * Compound pages required for remap_vmalloc_page if
2891 		 * high-order pages.
2892 		 */
2893 		gfp |= __GFP_COMP;
2894 
2895 	/* High-order pages or fallback path if "bulk" fails. */
2896 
2897 	while (nr_allocated < nr_pages) {
2898 		if (fatal_signal_pending(current))
2899 			break;
2900 
2901 		if (nid == NUMA_NO_NODE)
2902 			page = alloc_pages(gfp, order);
2903 		else
2904 			page = alloc_pages_node(nid, gfp, order);
2905 		if (unlikely(!page))
2906 			break;
2907 
2908 		/*
2909 		 * Careful, we allocate and map page-order pages, but
2910 		 * tracking is done per PAGE_SIZE page so as to keep the
2911 		 * vm_struct APIs independent of the physical/mapped size.
2912 		 */
2913 		for (i = 0; i < (1U << order); i++)
2914 			pages[nr_allocated + i] = page + i;
2915 
2916 		cond_resched();
2917 		nr_allocated += 1U << order;
2918 	}
2919 
2920 	return nr_allocated;
2921 }
2922 
2923 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2924 				 pgprot_t prot, unsigned int page_shift,
2925 				 int node)
2926 {
2927 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2928 	const gfp_t orig_gfp_mask = gfp_mask;
2929 	bool nofail = gfp_mask & __GFP_NOFAIL;
2930 	unsigned long addr = (unsigned long)area->addr;
2931 	unsigned long size = get_vm_area_size(area);
2932 	unsigned long array_size;
2933 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
2934 	unsigned int page_order;
2935 	unsigned int flags;
2936 	int ret;
2937 
2938 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2939 	gfp_mask |= __GFP_NOWARN;
2940 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2941 		gfp_mask |= __GFP_HIGHMEM;
2942 
2943 	/* Please note that the recursion is strictly bounded. */
2944 	if (array_size > PAGE_SIZE) {
2945 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2946 					area->caller);
2947 	} else {
2948 		area->pages = kmalloc_node(array_size, nested_gfp, node);
2949 	}
2950 
2951 	if (!area->pages) {
2952 		warn_alloc(orig_gfp_mask, NULL,
2953 			"vmalloc error: size %lu, failed to allocated page array size %lu",
2954 			nr_small_pages * PAGE_SIZE, array_size);
2955 		free_vm_area(area);
2956 		return NULL;
2957 	}
2958 
2959 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2960 	page_order = vm_area_page_order(area);
2961 
2962 	area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2963 		page_order, nr_small_pages, area->pages);
2964 
2965 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2966 	if (gfp_mask & __GFP_ACCOUNT) {
2967 		int i, step = 1U << page_order;
2968 
2969 		for (i = 0; i < area->nr_pages; i += step)
2970 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC,
2971 					     step);
2972 	}
2973 
2974 	/*
2975 	 * If not enough pages were obtained to accomplish an
2976 	 * allocation request, free them via __vfree() if any.
2977 	 */
2978 	if (area->nr_pages != nr_small_pages) {
2979 		warn_alloc(orig_gfp_mask, NULL,
2980 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
2981 			area->nr_pages * PAGE_SIZE, page_order);
2982 		goto fail;
2983 	}
2984 
2985 	/*
2986 	 * page tables allocations ignore external gfp mask, enforce it
2987 	 * by the scope API
2988 	 */
2989 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
2990 		flags = memalloc_nofs_save();
2991 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
2992 		flags = memalloc_noio_save();
2993 
2994 	do {
2995 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
2996 			page_shift);
2997 		if (nofail && (ret < 0))
2998 			schedule_timeout_uninterruptible(1);
2999 	} while (nofail && (ret < 0));
3000 
3001 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3002 		memalloc_nofs_restore(flags);
3003 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3004 		memalloc_noio_restore(flags);
3005 
3006 	if (ret < 0) {
3007 		warn_alloc(orig_gfp_mask, NULL,
3008 			"vmalloc error: size %lu, failed to map pages",
3009 			area->nr_pages * PAGE_SIZE);
3010 		goto fail;
3011 	}
3012 
3013 	return area->addr;
3014 
3015 fail:
3016 	__vfree(area->addr);
3017 	return NULL;
3018 }
3019 
3020 /**
3021  * __vmalloc_node_range - allocate virtually contiguous memory
3022  * @size:		  allocation size
3023  * @align:		  desired alignment
3024  * @start:		  vm area range start
3025  * @end:		  vm area range end
3026  * @gfp_mask:		  flags for the page level allocator
3027  * @prot:		  protection mask for the allocated pages
3028  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3029  * @node:		  node to use for allocation or NUMA_NO_NODE
3030  * @caller:		  caller's return address
3031  *
3032  * Allocate enough pages to cover @size from the page level
3033  * allocator with @gfp_mask flags. Please note that the full set of gfp
3034  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3035  * supported.
3036  * Zone modifiers are not supported. From the reclaim modifiers
3037  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3038  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3039  * __GFP_RETRY_MAYFAIL are not supported).
3040  *
3041  * __GFP_NOWARN can be used to suppress failures messages.
3042  *
3043  * Map them into contiguous kernel virtual space, using a pagetable
3044  * protection of @prot.
3045  *
3046  * Return: the address of the area or %NULL on failure
3047  */
3048 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3049 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3050 			pgprot_t prot, unsigned long vm_flags, int node,
3051 			const void *caller)
3052 {
3053 	struct vm_struct *area;
3054 	void *addr;
3055 	unsigned long real_size = size;
3056 	unsigned long real_align = align;
3057 	unsigned int shift = PAGE_SHIFT;
3058 
3059 	if (WARN_ON_ONCE(!size))
3060 		return NULL;
3061 
3062 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3063 		warn_alloc(gfp_mask, NULL,
3064 			"vmalloc error: size %lu, exceeds total pages",
3065 			real_size);
3066 		return NULL;
3067 	}
3068 
3069 	if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
3070 		unsigned long size_per_node;
3071 
3072 		/*
3073 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3074 		 * others like modules don't yet expect huge pages in
3075 		 * their allocations due to apply_to_page_range not
3076 		 * supporting them.
3077 		 */
3078 
3079 		size_per_node = size;
3080 		if (node == NUMA_NO_NODE)
3081 			size_per_node /= num_online_nodes();
3082 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3083 			shift = PMD_SHIFT;
3084 		else
3085 			shift = arch_vmap_pte_supported_shift(size_per_node);
3086 
3087 		align = max(real_align, 1UL << shift);
3088 		size = ALIGN(real_size, 1UL << shift);
3089 	}
3090 
3091 again:
3092 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3093 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3094 				  gfp_mask, caller);
3095 	if (!area) {
3096 		bool nofail = gfp_mask & __GFP_NOFAIL;
3097 		warn_alloc(gfp_mask, NULL,
3098 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3099 			real_size, (nofail) ? ". Retrying." : "");
3100 		if (nofail) {
3101 			schedule_timeout_uninterruptible(1);
3102 			goto again;
3103 		}
3104 		goto fail;
3105 	}
3106 
3107 	addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3108 	if (!addr)
3109 		goto fail;
3110 
3111 	/*
3112 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3113 	 * flag. It means that vm_struct is not fully initialized.
3114 	 * Now, it is fully initialized, so remove this flag here.
3115 	 */
3116 	clear_vm_uninitialized_flag(area);
3117 
3118 	size = PAGE_ALIGN(size);
3119 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3120 		kmemleak_vmalloc(area, size, gfp_mask);
3121 
3122 	return addr;
3123 
3124 fail:
3125 	if (shift > PAGE_SHIFT) {
3126 		shift = PAGE_SHIFT;
3127 		align = real_align;
3128 		size = real_size;
3129 		goto again;
3130 	}
3131 
3132 	return NULL;
3133 }
3134 
3135 /**
3136  * __vmalloc_node - allocate virtually contiguous memory
3137  * @size:	    allocation size
3138  * @align:	    desired alignment
3139  * @gfp_mask:	    flags for the page level allocator
3140  * @node:	    node to use for allocation or NUMA_NO_NODE
3141  * @caller:	    caller's return address
3142  *
3143  * Allocate enough pages to cover @size from the page level allocator with
3144  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3145  *
3146  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3147  * and __GFP_NOFAIL are not supported
3148  *
3149  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3150  * with mm people.
3151  *
3152  * Return: pointer to the allocated memory or %NULL on error
3153  */
3154 void *__vmalloc_node(unsigned long size, unsigned long align,
3155 			    gfp_t gfp_mask, int node, const void *caller)
3156 {
3157 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3158 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3159 }
3160 /*
3161  * This is only for performance analysis of vmalloc and stress purpose.
3162  * It is required by vmalloc test module, therefore do not use it other
3163  * than that.
3164  */
3165 #ifdef CONFIG_TEST_VMALLOC_MODULE
3166 EXPORT_SYMBOL_GPL(__vmalloc_node);
3167 #endif
3168 
3169 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3170 {
3171 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3172 				__builtin_return_address(0));
3173 }
3174 EXPORT_SYMBOL(__vmalloc);
3175 
3176 /**
3177  * vmalloc - allocate virtually contiguous memory
3178  * @size:    allocation size
3179  *
3180  * Allocate enough pages to cover @size from the page level
3181  * allocator and map them into contiguous kernel virtual space.
3182  *
3183  * For tight control over page level allocator and protection flags
3184  * use __vmalloc() instead.
3185  *
3186  * Return: pointer to the allocated memory or %NULL on error
3187  */
3188 void *vmalloc(unsigned long size)
3189 {
3190 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3191 				__builtin_return_address(0));
3192 }
3193 EXPORT_SYMBOL(vmalloc);
3194 
3195 /**
3196  * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3197  * @size:    allocation size
3198  *
3199  * Allocate enough non-huge pages to cover @size from the page level
3200  * allocator and map them into contiguous kernel virtual space.
3201  *
3202  * Return: pointer to the allocated memory or %NULL on error
3203  */
3204 void *vmalloc_no_huge(unsigned long size)
3205 {
3206 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3207 				    GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3208 				    NUMA_NO_NODE, __builtin_return_address(0));
3209 }
3210 EXPORT_SYMBOL(vmalloc_no_huge);
3211 
3212 /**
3213  * vzalloc - allocate virtually contiguous memory with zero fill
3214  * @size:    allocation size
3215  *
3216  * Allocate enough pages to cover @size from the page level
3217  * allocator and map them into contiguous kernel virtual space.
3218  * The memory allocated is set to zero.
3219  *
3220  * For tight control over page level allocator and protection flags
3221  * use __vmalloc() instead.
3222  *
3223  * Return: pointer to the allocated memory or %NULL on error
3224  */
3225 void *vzalloc(unsigned long size)
3226 {
3227 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3228 				__builtin_return_address(0));
3229 }
3230 EXPORT_SYMBOL(vzalloc);
3231 
3232 /**
3233  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3234  * @size: allocation size
3235  *
3236  * The resulting memory area is zeroed so it can be mapped to userspace
3237  * without leaking data.
3238  *
3239  * Return: pointer to the allocated memory or %NULL on error
3240  */
3241 void *vmalloc_user(unsigned long size)
3242 {
3243 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3244 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3245 				    VM_USERMAP, NUMA_NO_NODE,
3246 				    __builtin_return_address(0));
3247 }
3248 EXPORT_SYMBOL(vmalloc_user);
3249 
3250 /**
3251  * vmalloc_node - allocate memory on a specific node
3252  * @size:	  allocation size
3253  * @node:	  numa node
3254  *
3255  * Allocate enough pages to cover @size from the page level
3256  * allocator and map them into contiguous kernel virtual space.
3257  *
3258  * For tight control over page level allocator and protection flags
3259  * use __vmalloc() instead.
3260  *
3261  * Return: pointer to the allocated memory or %NULL on error
3262  */
3263 void *vmalloc_node(unsigned long size, int node)
3264 {
3265 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3266 			__builtin_return_address(0));
3267 }
3268 EXPORT_SYMBOL(vmalloc_node);
3269 
3270 /**
3271  * vzalloc_node - allocate memory on a specific node with zero fill
3272  * @size:	allocation size
3273  * @node:	numa node
3274  *
3275  * Allocate enough pages to cover @size from the page level
3276  * allocator and map them into contiguous kernel virtual space.
3277  * The memory allocated is set to zero.
3278  *
3279  * Return: pointer to the allocated memory or %NULL on error
3280  */
3281 void *vzalloc_node(unsigned long size, int node)
3282 {
3283 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3284 				__builtin_return_address(0));
3285 }
3286 EXPORT_SYMBOL(vzalloc_node);
3287 
3288 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3289 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3290 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3291 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3292 #else
3293 /*
3294  * 64b systems should always have either DMA or DMA32 zones. For others
3295  * GFP_DMA32 should do the right thing and use the normal zone.
3296  */
3297 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3298 #endif
3299 
3300 /**
3301  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3302  * @size:	allocation size
3303  *
3304  * Allocate enough 32bit PA addressable pages to cover @size from the
3305  * page level allocator and map them into contiguous kernel virtual space.
3306  *
3307  * Return: pointer to the allocated memory or %NULL on error
3308  */
3309 void *vmalloc_32(unsigned long size)
3310 {
3311 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3312 			__builtin_return_address(0));
3313 }
3314 EXPORT_SYMBOL(vmalloc_32);
3315 
3316 /**
3317  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3318  * @size:	     allocation size
3319  *
3320  * The resulting memory area is 32bit addressable and zeroed so it can be
3321  * mapped to userspace without leaking data.
3322  *
3323  * Return: pointer to the allocated memory or %NULL on error
3324  */
3325 void *vmalloc_32_user(unsigned long size)
3326 {
3327 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3328 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3329 				    VM_USERMAP, NUMA_NO_NODE,
3330 				    __builtin_return_address(0));
3331 }
3332 EXPORT_SYMBOL(vmalloc_32_user);
3333 
3334 /*
3335  * small helper routine , copy contents to buf from addr.
3336  * If the page is not present, fill zero.
3337  */
3338 
3339 static int aligned_vread(char *buf, char *addr, unsigned long count)
3340 {
3341 	struct page *p;
3342 	int copied = 0;
3343 
3344 	while (count) {
3345 		unsigned long offset, length;
3346 
3347 		offset = offset_in_page(addr);
3348 		length = PAGE_SIZE - offset;
3349 		if (length > count)
3350 			length = count;
3351 		p = vmalloc_to_page(addr);
3352 		/*
3353 		 * To do safe access to this _mapped_ area, we need
3354 		 * lock. But adding lock here means that we need to add
3355 		 * overhead of vmalloc()/vfree() calls for this _debug_
3356 		 * interface, rarely used. Instead of that, we'll use
3357 		 * kmap() and get small overhead in this access function.
3358 		 */
3359 		if (p) {
3360 			/* We can expect USER0 is not used -- see vread() */
3361 			void *map = kmap_atomic(p);
3362 			memcpy(buf, map + offset, length);
3363 			kunmap_atomic(map);
3364 		} else
3365 			memset(buf, 0, length);
3366 
3367 		addr += length;
3368 		buf += length;
3369 		copied += length;
3370 		count -= length;
3371 	}
3372 	return copied;
3373 }
3374 
3375 /**
3376  * vread() - read vmalloc area in a safe way.
3377  * @buf:     buffer for reading data
3378  * @addr:    vm address.
3379  * @count:   number of bytes to be read.
3380  *
3381  * This function checks that addr is a valid vmalloc'ed area, and
3382  * copy data from that area to a given buffer. If the given memory range
3383  * of [addr...addr+count) includes some valid address, data is copied to
3384  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3385  * IOREMAP area is treated as memory hole and no copy is done.
3386  *
3387  * If [addr...addr+count) doesn't includes any intersects with alive
3388  * vm_struct area, returns 0. @buf should be kernel's buffer.
3389  *
3390  * Note: In usual ops, vread() is never necessary because the caller
3391  * should know vmalloc() area is valid and can use memcpy().
3392  * This is for routines which have to access vmalloc area without
3393  * any information, as /proc/kcore.
3394  *
3395  * Return: number of bytes for which addr and buf should be increased
3396  * (same number as @count) or %0 if [addr...addr+count) doesn't
3397  * include any intersection with valid vmalloc area
3398  */
3399 long vread(char *buf, char *addr, unsigned long count)
3400 {
3401 	struct vmap_area *va;
3402 	struct vm_struct *vm;
3403 	char *vaddr, *buf_start = buf;
3404 	unsigned long buflen = count;
3405 	unsigned long n;
3406 
3407 	/* Don't allow overflow */
3408 	if ((unsigned long) addr + count < count)
3409 		count = -(unsigned long) addr;
3410 
3411 	spin_lock(&vmap_area_lock);
3412 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3413 	if (!va)
3414 		goto finished;
3415 
3416 	/* no intersects with alive vmap_area */
3417 	if ((unsigned long)addr + count <= va->va_start)
3418 		goto finished;
3419 
3420 	list_for_each_entry_from(va, &vmap_area_list, list) {
3421 		if (!count)
3422 			break;
3423 
3424 		if (!va->vm)
3425 			continue;
3426 
3427 		vm = va->vm;
3428 		vaddr = (char *) vm->addr;
3429 		if (addr >= vaddr + get_vm_area_size(vm))
3430 			continue;
3431 		while (addr < vaddr) {
3432 			if (count == 0)
3433 				goto finished;
3434 			*buf = '\0';
3435 			buf++;
3436 			addr++;
3437 			count--;
3438 		}
3439 		n = vaddr + get_vm_area_size(vm) - addr;
3440 		if (n > count)
3441 			n = count;
3442 		if (!(vm->flags & VM_IOREMAP))
3443 			aligned_vread(buf, addr, n);
3444 		else /* IOREMAP area is treated as memory hole */
3445 			memset(buf, 0, n);
3446 		buf += n;
3447 		addr += n;
3448 		count -= n;
3449 	}
3450 finished:
3451 	spin_unlock(&vmap_area_lock);
3452 
3453 	if (buf == buf_start)
3454 		return 0;
3455 	/* zero-fill memory holes */
3456 	if (buf != buf_start + buflen)
3457 		memset(buf, 0, buflen - (buf - buf_start));
3458 
3459 	return buflen;
3460 }
3461 
3462 /**
3463  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3464  * @vma:		vma to cover
3465  * @uaddr:		target user address to start at
3466  * @kaddr:		virtual address of vmalloc kernel memory
3467  * @pgoff:		offset from @kaddr to start at
3468  * @size:		size of map area
3469  *
3470  * Returns:	0 for success, -Exxx on failure
3471  *
3472  * This function checks that @kaddr is a valid vmalloc'ed area,
3473  * and that it is big enough to cover the range starting at
3474  * @uaddr in @vma. Will return failure if that criteria isn't
3475  * met.
3476  *
3477  * Similar to remap_pfn_range() (see mm/memory.c)
3478  */
3479 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3480 				void *kaddr, unsigned long pgoff,
3481 				unsigned long size)
3482 {
3483 	struct vm_struct *area;
3484 	unsigned long off;
3485 	unsigned long end_index;
3486 
3487 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3488 		return -EINVAL;
3489 
3490 	size = PAGE_ALIGN(size);
3491 
3492 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3493 		return -EINVAL;
3494 
3495 	area = find_vm_area(kaddr);
3496 	if (!area)
3497 		return -EINVAL;
3498 
3499 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3500 		return -EINVAL;
3501 
3502 	if (check_add_overflow(size, off, &end_index) ||
3503 	    end_index > get_vm_area_size(area))
3504 		return -EINVAL;
3505 	kaddr += off;
3506 
3507 	do {
3508 		struct page *page = vmalloc_to_page(kaddr);
3509 		int ret;
3510 
3511 		ret = vm_insert_page(vma, uaddr, page);
3512 		if (ret)
3513 			return ret;
3514 
3515 		uaddr += PAGE_SIZE;
3516 		kaddr += PAGE_SIZE;
3517 		size -= PAGE_SIZE;
3518 	} while (size > 0);
3519 
3520 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3521 
3522 	return 0;
3523 }
3524 
3525 /**
3526  * remap_vmalloc_range - map vmalloc pages to userspace
3527  * @vma:		vma to cover (map full range of vma)
3528  * @addr:		vmalloc memory
3529  * @pgoff:		number of pages into addr before first page to map
3530  *
3531  * Returns:	0 for success, -Exxx on failure
3532  *
3533  * This function checks that addr is a valid vmalloc'ed area, and
3534  * that it is big enough to cover the vma. Will return failure if
3535  * that criteria isn't met.
3536  *
3537  * Similar to remap_pfn_range() (see mm/memory.c)
3538  */
3539 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3540 						unsigned long pgoff)
3541 {
3542 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3543 					   addr, pgoff,
3544 					   vma->vm_end - vma->vm_start);
3545 }
3546 EXPORT_SYMBOL(remap_vmalloc_range);
3547 
3548 void free_vm_area(struct vm_struct *area)
3549 {
3550 	struct vm_struct *ret;
3551 	ret = remove_vm_area(area->addr);
3552 	BUG_ON(ret != area);
3553 	kfree(area);
3554 }
3555 EXPORT_SYMBOL_GPL(free_vm_area);
3556 
3557 #ifdef CONFIG_SMP
3558 static struct vmap_area *node_to_va(struct rb_node *n)
3559 {
3560 	return rb_entry_safe(n, struct vmap_area, rb_node);
3561 }
3562 
3563 /**
3564  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3565  * @addr: target address
3566  *
3567  * Returns: vmap_area if it is found. If there is no such area
3568  *   the first highest(reverse order) vmap_area is returned
3569  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3570  *   if there are no any areas before @addr.
3571  */
3572 static struct vmap_area *
3573 pvm_find_va_enclose_addr(unsigned long addr)
3574 {
3575 	struct vmap_area *va, *tmp;
3576 	struct rb_node *n;
3577 
3578 	n = free_vmap_area_root.rb_node;
3579 	va = NULL;
3580 
3581 	while (n) {
3582 		tmp = rb_entry(n, struct vmap_area, rb_node);
3583 		if (tmp->va_start <= addr) {
3584 			va = tmp;
3585 			if (tmp->va_end >= addr)
3586 				break;
3587 
3588 			n = n->rb_right;
3589 		} else {
3590 			n = n->rb_left;
3591 		}
3592 	}
3593 
3594 	return va;
3595 }
3596 
3597 /**
3598  * pvm_determine_end_from_reverse - find the highest aligned address
3599  * of free block below VMALLOC_END
3600  * @va:
3601  *   in - the VA we start the search(reverse order);
3602  *   out - the VA with the highest aligned end address.
3603  * @align: alignment for required highest address
3604  *
3605  * Returns: determined end address within vmap_area
3606  */
3607 static unsigned long
3608 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3609 {
3610 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3611 	unsigned long addr;
3612 
3613 	if (likely(*va)) {
3614 		list_for_each_entry_from_reverse((*va),
3615 				&free_vmap_area_list, list) {
3616 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3617 			if ((*va)->va_start < addr)
3618 				return addr;
3619 		}
3620 	}
3621 
3622 	return 0;
3623 }
3624 
3625 /**
3626  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3627  * @offsets: array containing offset of each area
3628  * @sizes: array containing size of each area
3629  * @nr_vms: the number of areas to allocate
3630  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3631  *
3632  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3633  *	    vm_structs on success, %NULL on failure
3634  *
3635  * Percpu allocator wants to use congruent vm areas so that it can
3636  * maintain the offsets among percpu areas.  This function allocates
3637  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3638  * be scattered pretty far, distance between two areas easily going up
3639  * to gigabytes.  To avoid interacting with regular vmallocs, these
3640  * areas are allocated from top.
3641  *
3642  * Despite its complicated look, this allocator is rather simple. It
3643  * does everything top-down and scans free blocks from the end looking
3644  * for matching base. While scanning, if any of the areas do not fit the
3645  * base address is pulled down to fit the area. Scanning is repeated till
3646  * all the areas fit and then all necessary data structures are inserted
3647  * and the result is returned.
3648  */
3649 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3650 				     const size_t *sizes, int nr_vms,
3651 				     size_t align)
3652 {
3653 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3654 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3655 	struct vmap_area **vas, *va;
3656 	struct vm_struct **vms;
3657 	int area, area2, last_area, term_area;
3658 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3659 	bool purged = false;
3660 	enum fit_type type;
3661 
3662 	/* verify parameters and allocate data structures */
3663 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3664 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3665 		start = offsets[area];
3666 		end = start + sizes[area];
3667 
3668 		/* is everything aligned properly? */
3669 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3670 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3671 
3672 		/* detect the area with the highest address */
3673 		if (start > offsets[last_area])
3674 			last_area = area;
3675 
3676 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3677 			unsigned long start2 = offsets[area2];
3678 			unsigned long end2 = start2 + sizes[area2];
3679 
3680 			BUG_ON(start2 < end && start < end2);
3681 		}
3682 	}
3683 	last_end = offsets[last_area] + sizes[last_area];
3684 
3685 	if (vmalloc_end - vmalloc_start < last_end) {
3686 		WARN_ON(true);
3687 		return NULL;
3688 	}
3689 
3690 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3691 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3692 	if (!vas || !vms)
3693 		goto err_free2;
3694 
3695 	for (area = 0; area < nr_vms; area++) {
3696 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3697 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3698 		if (!vas[area] || !vms[area])
3699 			goto err_free;
3700 	}
3701 retry:
3702 	spin_lock(&free_vmap_area_lock);
3703 
3704 	/* start scanning - we scan from the top, begin with the last area */
3705 	area = term_area = last_area;
3706 	start = offsets[area];
3707 	end = start + sizes[area];
3708 
3709 	va = pvm_find_va_enclose_addr(vmalloc_end);
3710 	base = pvm_determine_end_from_reverse(&va, align) - end;
3711 
3712 	while (true) {
3713 		/*
3714 		 * base might have underflowed, add last_end before
3715 		 * comparing.
3716 		 */
3717 		if (base + last_end < vmalloc_start + last_end)
3718 			goto overflow;
3719 
3720 		/*
3721 		 * Fitting base has not been found.
3722 		 */
3723 		if (va == NULL)
3724 			goto overflow;
3725 
3726 		/*
3727 		 * If required width exceeds current VA block, move
3728 		 * base downwards and then recheck.
3729 		 */
3730 		if (base + end > va->va_end) {
3731 			base = pvm_determine_end_from_reverse(&va, align) - end;
3732 			term_area = area;
3733 			continue;
3734 		}
3735 
3736 		/*
3737 		 * If this VA does not fit, move base downwards and recheck.
3738 		 */
3739 		if (base + start < va->va_start) {
3740 			va = node_to_va(rb_prev(&va->rb_node));
3741 			base = pvm_determine_end_from_reverse(&va, align) - end;
3742 			term_area = area;
3743 			continue;
3744 		}
3745 
3746 		/*
3747 		 * This area fits, move on to the previous one.  If
3748 		 * the previous one is the terminal one, we're done.
3749 		 */
3750 		area = (area + nr_vms - 1) % nr_vms;
3751 		if (area == term_area)
3752 			break;
3753 
3754 		start = offsets[area];
3755 		end = start + sizes[area];
3756 		va = pvm_find_va_enclose_addr(base + end);
3757 	}
3758 
3759 	/* we've found a fitting base, insert all va's */
3760 	for (area = 0; area < nr_vms; area++) {
3761 		int ret;
3762 
3763 		start = base + offsets[area];
3764 		size = sizes[area];
3765 
3766 		va = pvm_find_va_enclose_addr(start);
3767 		if (WARN_ON_ONCE(va == NULL))
3768 			/* It is a BUG(), but trigger recovery instead. */
3769 			goto recovery;
3770 
3771 		type = classify_va_fit_type(va, start, size);
3772 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3773 			/* It is a BUG(), but trigger recovery instead. */
3774 			goto recovery;
3775 
3776 		ret = adjust_va_to_fit_type(va, start, size, type);
3777 		if (unlikely(ret))
3778 			goto recovery;
3779 
3780 		/* Allocated area. */
3781 		va = vas[area];
3782 		va->va_start = start;
3783 		va->va_end = start + size;
3784 	}
3785 
3786 	spin_unlock(&free_vmap_area_lock);
3787 
3788 	/* populate the kasan shadow space */
3789 	for (area = 0; area < nr_vms; area++) {
3790 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3791 			goto err_free_shadow;
3792 
3793 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3794 				       sizes[area]);
3795 	}
3796 
3797 	/* insert all vm's */
3798 	spin_lock(&vmap_area_lock);
3799 	for (area = 0; area < nr_vms; area++) {
3800 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3801 
3802 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3803 				 pcpu_get_vm_areas);
3804 	}
3805 	spin_unlock(&vmap_area_lock);
3806 
3807 	kfree(vas);
3808 	return vms;
3809 
3810 recovery:
3811 	/*
3812 	 * Remove previously allocated areas. There is no
3813 	 * need in removing these areas from the busy tree,
3814 	 * because they are inserted only on the final step
3815 	 * and when pcpu_get_vm_areas() is success.
3816 	 */
3817 	while (area--) {
3818 		orig_start = vas[area]->va_start;
3819 		orig_end = vas[area]->va_end;
3820 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3821 				&free_vmap_area_list);
3822 		if (va)
3823 			kasan_release_vmalloc(orig_start, orig_end,
3824 				va->va_start, va->va_end);
3825 		vas[area] = NULL;
3826 	}
3827 
3828 overflow:
3829 	spin_unlock(&free_vmap_area_lock);
3830 	if (!purged) {
3831 		purge_vmap_area_lazy();
3832 		purged = true;
3833 
3834 		/* Before "retry", check if we recover. */
3835 		for (area = 0; area < nr_vms; area++) {
3836 			if (vas[area])
3837 				continue;
3838 
3839 			vas[area] = kmem_cache_zalloc(
3840 				vmap_area_cachep, GFP_KERNEL);
3841 			if (!vas[area])
3842 				goto err_free;
3843 		}
3844 
3845 		goto retry;
3846 	}
3847 
3848 err_free:
3849 	for (area = 0; area < nr_vms; area++) {
3850 		if (vas[area])
3851 			kmem_cache_free(vmap_area_cachep, vas[area]);
3852 
3853 		kfree(vms[area]);
3854 	}
3855 err_free2:
3856 	kfree(vas);
3857 	kfree(vms);
3858 	return NULL;
3859 
3860 err_free_shadow:
3861 	spin_lock(&free_vmap_area_lock);
3862 	/*
3863 	 * We release all the vmalloc shadows, even the ones for regions that
3864 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3865 	 * being able to tolerate this case.
3866 	 */
3867 	for (area = 0; area < nr_vms; area++) {
3868 		orig_start = vas[area]->va_start;
3869 		orig_end = vas[area]->va_end;
3870 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3871 				&free_vmap_area_list);
3872 		if (va)
3873 			kasan_release_vmalloc(orig_start, orig_end,
3874 				va->va_start, va->va_end);
3875 		vas[area] = NULL;
3876 		kfree(vms[area]);
3877 	}
3878 	spin_unlock(&free_vmap_area_lock);
3879 	kfree(vas);
3880 	kfree(vms);
3881 	return NULL;
3882 }
3883 
3884 /**
3885  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3886  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3887  * @nr_vms: the number of allocated areas
3888  *
3889  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3890  */
3891 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3892 {
3893 	int i;
3894 
3895 	for (i = 0; i < nr_vms; i++)
3896 		free_vm_area(vms[i]);
3897 	kfree(vms);
3898 }
3899 #endif	/* CONFIG_SMP */
3900 
3901 #ifdef CONFIG_PRINTK
3902 bool vmalloc_dump_obj(void *object)
3903 {
3904 	struct vm_struct *vm;
3905 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3906 
3907 	vm = find_vm_area(objp);
3908 	if (!vm)
3909 		return false;
3910 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3911 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3912 	return true;
3913 }
3914 #endif
3915 
3916 #ifdef CONFIG_PROC_FS
3917 static void *s_start(struct seq_file *m, loff_t *pos)
3918 	__acquires(&vmap_purge_lock)
3919 	__acquires(&vmap_area_lock)
3920 {
3921 	mutex_lock(&vmap_purge_lock);
3922 	spin_lock(&vmap_area_lock);
3923 
3924 	return seq_list_start(&vmap_area_list, *pos);
3925 }
3926 
3927 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3928 {
3929 	return seq_list_next(p, &vmap_area_list, pos);
3930 }
3931 
3932 static void s_stop(struct seq_file *m, void *p)
3933 	__releases(&vmap_area_lock)
3934 	__releases(&vmap_purge_lock)
3935 {
3936 	spin_unlock(&vmap_area_lock);
3937 	mutex_unlock(&vmap_purge_lock);
3938 }
3939 
3940 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3941 {
3942 	if (IS_ENABLED(CONFIG_NUMA)) {
3943 		unsigned int nr, *counters = m->private;
3944 		unsigned int step = 1U << vm_area_page_order(v);
3945 
3946 		if (!counters)
3947 			return;
3948 
3949 		if (v->flags & VM_UNINITIALIZED)
3950 			return;
3951 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3952 		smp_rmb();
3953 
3954 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3955 
3956 		for (nr = 0; nr < v->nr_pages; nr += step)
3957 			counters[page_to_nid(v->pages[nr])] += step;
3958 		for_each_node_state(nr, N_HIGH_MEMORY)
3959 			if (counters[nr])
3960 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3961 	}
3962 }
3963 
3964 static void show_purge_info(struct seq_file *m)
3965 {
3966 	struct vmap_area *va;
3967 
3968 	spin_lock(&purge_vmap_area_lock);
3969 	list_for_each_entry(va, &purge_vmap_area_list, list) {
3970 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3971 			(void *)va->va_start, (void *)va->va_end,
3972 			va->va_end - va->va_start);
3973 	}
3974 	spin_unlock(&purge_vmap_area_lock);
3975 }
3976 
3977 static int s_show(struct seq_file *m, void *p)
3978 {
3979 	struct vmap_area *va;
3980 	struct vm_struct *v;
3981 
3982 	va = list_entry(p, struct vmap_area, list);
3983 
3984 	/*
3985 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3986 	 * of vmap area is being tear down or vm_map_ram allocation.
3987 	 */
3988 	if (!va->vm) {
3989 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3990 			(void *)va->va_start, (void *)va->va_end,
3991 			va->va_end - va->va_start);
3992 
3993 		goto final;
3994 	}
3995 
3996 	v = va->vm;
3997 
3998 	seq_printf(m, "0x%pK-0x%pK %7ld",
3999 		v->addr, v->addr + v->size, v->size);
4000 
4001 	if (v->caller)
4002 		seq_printf(m, " %pS", v->caller);
4003 
4004 	if (v->nr_pages)
4005 		seq_printf(m, " pages=%d", v->nr_pages);
4006 
4007 	if (v->phys_addr)
4008 		seq_printf(m, " phys=%pa", &v->phys_addr);
4009 
4010 	if (v->flags & VM_IOREMAP)
4011 		seq_puts(m, " ioremap");
4012 
4013 	if (v->flags & VM_ALLOC)
4014 		seq_puts(m, " vmalloc");
4015 
4016 	if (v->flags & VM_MAP)
4017 		seq_puts(m, " vmap");
4018 
4019 	if (v->flags & VM_USERMAP)
4020 		seq_puts(m, " user");
4021 
4022 	if (v->flags & VM_DMA_COHERENT)
4023 		seq_puts(m, " dma-coherent");
4024 
4025 	if (is_vmalloc_addr(v->pages))
4026 		seq_puts(m, " vpages");
4027 
4028 	show_numa_info(m, v);
4029 	seq_putc(m, '\n');
4030 
4031 	/*
4032 	 * As a final step, dump "unpurged" areas.
4033 	 */
4034 final:
4035 	if (list_is_last(&va->list, &vmap_area_list))
4036 		show_purge_info(m);
4037 
4038 	return 0;
4039 }
4040 
4041 static const struct seq_operations vmalloc_op = {
4042 	.start = s_start,
4043 	.next = s_next,
4044 	.stop = s_stop,
4045 	.show = s_show,
4046 };
4047 
4048 static int __init proc_vmalloc_init(void)
4049 {
4050 	if (IS_ENABLED(CONFIG_NUMA))
4051 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4052 				&vmalloc_op,
4053 				nr_node_ids * sizeof(unsigned int), NULL);
4054 	else
4055 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4056 	return 0;
4057 }
4058 module_init(proc_vmalloc_init);
4059 
4060 #endif
4061