xref: /openbmc/linux/mm/vmalloc.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *llnode = llist_del_all(&p->list);
53 	while (llnode) {
54 		void *p = llnode;
55 		llnode = llist_next(llnode);
56 		__vunmap(p, 1);
57 	}
58 }
59 
60 /*** Page table manipulation functions ***/
61 
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 	pte_t *pte;
65 
66 	pte = pte_offset_kernel(pmd, addr);
67 	do {
68 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 	} while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72 
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 	pmd_t *pmd;
76 	unsigned long next;
77 
78 	pmd = pmd_offset(pud, addr);
79 	do {
80 		next = pmd_addr_end(addr, end);
81 		if (pmd_clear_huge(pmd))
82 			continue;
83 		if (pmd_none_or_clear_bad(pmd))
84 			continue;
85 		vunmap_pte_range(pmd, addr, next);
86 	} while (pmd++, addr = next, addr != end);
87 }
88 
89 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
90 {
91 	pud_t *pud;
92 	unsigned long next;
93 
94 	pud = pud_offset(pgd, addr);
95 	do {
96 		next = pud_addr_end(addr, end);
97 		if (pud_clear_huge(pud))
98 			continue;
99 		if (pud_none_or_clear_bad(pud))
100 			continue;
101 		vunmap_pmd_range(pud, addr, next);
102 	} while (pud++, addr = next, addr != end);
103 }
104 
105 static void vunmap_page_range(unsigned long addr, unsigned long end)
106 {
107 	pgd_t *pgd;
108 	unsigned long next;
109 
110 	BUG_ON(addr >= end);
111 	pgd = pgd_offset_k(addr);
112 	do {
113 		next = pgd_addr_end(addr, end);
114 		if (pgd_none_or_clear_bad(pgd))
115 			continue;
116 		vunmap_pud_range(pgd, addr, next);
117 	} while (pgd++, addr = next, addr != end);
118 }
119 
120 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
121 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
122 {
123 	pte_t *pte;
124 
125 	/*
126 	 * nr is a running index into the array which helps higher level
127 	 * callers keep track of where we're up to.
128 	 */
129 
130 	pte = pte_alloc_kernel(pmd, addr);
131 	if (!pte)
132 		return -ENOMEM;
133 	do {
134 		struct page *page = pages[*nr];
135 
136 		if (WARN_ON(!pte_none(*pte)))
137 			return -EBUSY;
138 		if (WARN_ON(!page))
139 			return -ENOMEM;
140 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
141 		(*nr)++;
142 	} while (pte++, addr += PAGE_SIZE, addr != end);
143 	return 0;
144 }
145 
146 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
148 {
149 	pmd_t *pmd;
150 	unsigned long next;
151 
152 	pmd = pmd_alloc(&init_mm, pud, addr);
153 	if (!pmd)
154 		return -ENOMEM;
155 	do {
156 		next = pmd_addr_end(addr, end);
157 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
158 			return -ENOMEM;
159 	} while (pmd++, addr = next, addr != end);
160 	return 0;
161 }
162 
163 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 	pud_t *pud;
167 	unsigned long next;
168 
169 	pud = pud_alloc(&init_mm, pgd, addr);
170 	if (!pud)
171 		return -ENOMEM;
172 	do {
173 		next = pud_addr_end(addr, end);
174 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
175 			return -ENOMEM;
176 	} while (pud++, addr = next, addr != end);
177 	return 0;
178 }
179 
180 /*
181  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182  * will have pfns corresponding to the "pages" array.
183  *
184  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185  */
186 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 				   pgprot_t prot, struct page **pages)
188 {
189 	pgd_t *pgd;
190 	unsigned long next;
191 	unsigned long addr = start;
192 	int err = 0;
193 	int nr = 0;
194 
195 	BUG_ON(addr >= end);
196 	pgd = pgd_offset_k(addr);
197 	do {
198 		next = pgd_addr_end(addr, end);
199 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
200 		if (err)
201 			return err;
202 	} while (pgd++, addr = next, addr != end);
203 
204 	return nr;
205 }
206 
207 static int vmap_page_range(unsigned long start, unsigned long end,
208 			   pgprot_t prot, struct page **pages)
209 {
210 	int ret;
211 
212 	ret = vmap_page_range_noflush(start, end, prot, pages);
213 	flush_cache_vmap(start, end);
214 	return ret;
215 }
216 
217 int is_vmalloc_or_module_addr(const void *x)
218 {
219 	/*
220 	 * ARM, x86-64 and sparc64 put modules in a special place,
221 	 * and fall back on vmalloc() if that fails. Others
222 	 * just put it in the vmalloc space.
223 	 */
224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 	unsigned long addr = (unsigned long)x;
226 	if (addr >= MODULES_VADDR && addr < MODULES_END)
227 		return 1;
228 #endif
229 	return is_vmalloc_addr(x);
230 }
231 
232 /*
233  * Walk a vmap address to the struct page it maps.
234  */
235 struct page *vmalloc_to_page(const void *vmalloc_addr)
236 {
237 	unsigned long addr = (unsigned long) vmalloc_addr;
238 	struct page *page = NULL;
239 	pgd_t *pgd = pgd_offset_k(addr);
240 
241 	/*
242 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 	 * architectures that do not vmalloc module space
244 	 */
245 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
246 
247 	if (!pgd_none(*pgd)) {
248 		pud_t *pud = pud_offset(pgd, addr);
249 		if (!pud_none(*pud)) {
250 			pmd_t *pmd = pmd_offset(pud, addr);
251 			if (!pmd_none(*pmd)) {
252 				pte_t *ptep, pte;
253 
254 				ptep = pte_offset_map(pmd, addr);
255 				pte = *ptep;
256 				if (pte_present(pte))
257 					page = pte_page(pte);
258 				pte_unmap(ptep);
259 			}
260 		}
261 	}
262 	return page;
263 }
264 EXPORT_SYMBOL(vmalloc_to_page);
265 
266 /*
267  * Map a vmalloc()-space virtual address to the physical page frame number.
268  */
269 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
270 {
271 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
272 }
273 EXPORT_SYMBOL(vmalloc_to_pfn);
274 
275 
276 /*** Global kva allocator ***/
277 
278 #define VM_VM_AREA	0x04
279 
280 static DEFINE_SPINLOCK(vmap_area_lock);
281 /* Export for kexec only */
282 LIST_HEAD(vmap_area_list);
283 static LLIST_HEAD(vmap_purge_list);
284 static struct rb_root vmap_area_root = RB_ROOT;
285 
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node *free_vmap_cache;
288 static unsigned long cached_hole_size;
289 static unsigned long cached_vstart;
290 static unsigned long cached_align;
291 
292 static unsigned long vmap_area_pcpu_hole;
293 
294 static struct vmap_area *__find_vmap_area(unsigned long addr)
295 {
296 	struct rb_node *n = vmap_area_root.rb_node;
297 
298 	while (n) {
299 		struct vmap_area *va;
300 
301 		va = rb_entry(n, struct vmap_area, rb_node);
302 		if (addr < va->va_start)
303 			n = n->rb_left;
304 		else if (addr >= va->va_end)
305 			n = n->rb_right;
306 		else
307 			return va;
308 	}
309 
310 	return NULL;
311 }
312 
313 static void __insert_vmap_area(struct vmap_area *va)
314 {
315 	struct rb_node **p = &vmap_area_root.rb_node;
316 	struct rb_node *parent = NULL;
317 	struct rb_node *tmp;
318 
319 	while (*p) {
320 		struct vmap_area *tmp_va;
321 
322 		parent = *p;
323 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 		if (va->va_start < tmp_va->va_end)
325 			p = &(*p)->rb_left;
326 		else if (va->va_end > tmp_va->va_start)
327 			p = &(*p)->rb_right;
328 		else
329 			BUG();
330 	}
331 
332 	rb_link_node(&va->rb_node, parent, p);
333 	rb_insert_color(&va->rb_node, &vmap_area_root);
334 
335 	/* address-sort this list */
336 	tmp = rb_prev(&va->rb_node);
337 	if (tmp) {
338 		struct vmap_area *prev;
339 		prev = rb_entry(tmp, struct vmap_area, rb_node);
340 		list_add_rcu(&va->list, &prev->list);
341 	} else
342 		list_add_rcu(&va->list, &vmap_area_list);
343 }
344 
345 static void purge_vmap_area_lazy(void);
346 
347 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
348 
349 /*
350  * Allocate a region of KVA of the specified size and alignment, within the
351  * vstart and vend.
352  */
353 static struct vmap_area *alloc_vmap_area(unsigned long size,
354 				unsigned long align,
355 				unsigned long vstart, unsigned long vend,
356 				int node, gfp_t gfp_mask)
357 {
358 	struct vmap_area *va;
359 	struct rb_node *n;
360 	unsigned long addr;
361 	int purged = 0;
362 	struct vmap_area *first;
363 
364 	BUG_ON(!size);
365 	BUG_ON(offset_in_page(size));
366 	BUG_ON(!is_power_of_2(align));
367 
368 	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
369 
370 	va = kmalloc_node(sizeof(struct vmap_area),
371 			gfp_mask & GFP_RECLAIM_MASK, node);
372 	if (unlikely(!va))
373 		return ERR_PTR(-ENOMEM);
374 
375 	/*
376 	 * Only scan the relevant parts containing pointers to other objects
377 	 * to avoid false negatives.
378 	 */
379 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
380 
381 retry:
382 	spin_lock(&vmap_area_lock);
383 	/*
384 	 * Invalidate cache if we have more permissive parameters.
385 	 * cached_hole_size notes the largest hole noticed _below_
386 	 * the vmap_area cached in free_vmap_cache: if size fits
387 	 * into that hole, we want to scan from vstart to reuse
388 	 * the hole instead of allocating above free_vmap_cache.
389 	 * Note that __free_vmap_area may update free_vmap_cache
390 	 * without updating cached_hole_size or cached_align.
391 	 */
392 	if (!free_vmap_cache ||
393 			size < cached_hole_size ||
394 			vstart < cached_vstart ||
395 			align < cached_align) {
396 nocache:
397 		cached_hole_size = 0;
398 		free_vmap_cache = NULL;
399 	}
400 	/* record if we encounter less permissive parameters */
401 	cached_vstart = vstart;
402 	cached_align = align;
403 
404 	/* find starting point for our search */
405 	if (free_vmap_cache) {
406 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
407 		addr = ALIGN(first->va_end, align);
408 		if (addr < vstart)
409 			goto nocache;
410 		if (addr + size < addr)
411 			goto overflow;
412 
413 	} else {
414 		addr = ALIGN(vstart, align);
415 		if (addr + size < addr)
416 			goto overflow;
417 
418 		n = vmap_area_root.rb_node;
419 		first = NULL;
420 
421 		while (n) {
422 			struct vmap_area *tmp;
423 			tmp = rb_entry(n, struct vmap_area, rb_node);
424 			if (tmp->va_end >= addr) {
425 				first = tmp;
426 				if (tmp->va_start <= addr)
427 					break;
428 				n = n->rb_left;
429 			} else
430 				n = n->rb_right;
431 		}
432 
433 		if (!first)
434 			goto found;
435 	}
436 
437 	/* from the starting point, walk areas until a suitable hole is found */
438 	while (addr + size > first->va_start && addr + size <= vend) {
439 		if (addr + cached_hole_size < first->va_start)
440 			cached_hole_size = first->va_start - addr;
441 		addr = ALIGN(first->va_end, align);
442 		if (addr + size < addr)
443 			goto overflow;
444 
445 		if (list_is_last(&first->list, &vmap_area_list))
446 			goto found;
447 
448 		first = list_next_entry(first, list);
449 	}
450 
451 found:
452 	if (addr + size > vend)
453 		goto overflow;
454 
455 	va->va_start = addr;
456 	va->va_end = addr + size;
457 	va->flags = 0;
458 	__insert_vmap_area(va);
459 	free_vmap_cache = &va->rb_node;
460 	spin_unlock(&vmap_area_lock);
461 
462 	BUG_ON(!IS_ALIGNED(va->va_start, align));
463 	BUG_ON(va->va_start < vstart);
464 	BUG_ON(va->va_end > vend);
465 
466 	return va;
467 
468 overflow:
469 	spin_unlock(&vmap_area_lock);
470 	if (!purged) {
471 		purge_vmap_area_lazy();
472 		purged = 1;
473 		goto retry;
474 	}
475 
476 	if (gfpflags_allow_blocking(gfp_mask)) {
477 		unsigned long freed = 0;
478 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
479 		if (freed > 0) {
480 			purged = 0;
481 			goto retry;
482 		}
483 	}
484 
485 	if (printk_ratelimit())
486 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
487 			size);
488 	kfree(va);
489 	return ERR_PTR(-EBUSY);
490 }
491 
492 int register_vmap_purge_notifier(struct notifier_block *nb)
493 {
494 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
495 }
496 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
497 
498 int unregister_vmap_purge_notifier(struct notifier_block *nb)
499 {
500 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
501 }
502 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
503 
504 static void __free_vmap_area(struct vmap_area *va)
505 {
506 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
507 
508 	if (free_vmap_cache) {
509 		if (va->va_end < cached_vstart) {
510 			free_vmap_cache = NULL;
511 		} else {
512 			struct vmap_area *cache;
513 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
514 			if (va->va_start <= cache->va_start) {
515 				free_vmap_cache = rb_prev(&va->rb_node);
516 				/*
517 				 * We don't try to update cached_hole_size or
518 				 * cached_align, but it won't go very wrong.
519 				 */
520 			}
521 		}
522 	}
523 	rb_erase(&va->rb_node, &vmap_area_root);
524 	RB_CLEAR_NODE(&va->rb_node);
525 	list_del_rcu(&va->list);
526 
527 	/*
528 	 * Track the highest possible candidate for pcpu area
529 	 * allocation.  Areas outside of vmalloc area can be returned
530 	 * here too, consider only end addresses which fall inside
531 	 * vmalloc area proper.
532 	 */
533 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
534 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
535 
536 	kfree_rcu(va, rcu_head);
537 }
538 
539 /*
540  * Free a region of KVA allocated by alloc_vmap_area
541  */
542 static void free_vmap_area(struct vmap_area *va)
543 {
544 	spin_lock(&vmap_area_lock);
545 	__free_vmap_area(va);
546 	spin_unlock(&vmap_area_lock);
547 }
548 
549 /*
550  * Clear the pagetable entries of a given vmap_area
551  */
552 static void unmap_vmap_area(struct vmap_area *va)
553 {
554 	vunmap_page_range(va->va_start, va->va_end);
555 }
556 
557 static void vmap_debug_free_range(unsigned long start, unsigned long end)
558 {
559 	/*
560 	 * Unmap page tables and force a TLB flush immediately if pagealloc
561 	 * debugging is enabled.  This catches use after free bugs similarly to
562 	 * those in linear kernel virtual address space after a page has been
563 	 * freed.
564 	 *
565 	 * All the lazy freeing logic is still retained, in order to minimise
566 	 * intrusiveness of this debugging feature.
567 	 *
568 	 * This is going to be *slow* (linear kernel virtual address debugging
569 	 * doesn't do a broadcast TLB flush so it is a lot faster).
570 	 */
571 	if (debug_pagealloc_enabled()) {
572 		vunmap_page_range(start, end);
573 		flush_tlb_kernel_range(start, end);
574 	}
575 }
576 
577 /*
578  * lazy_max_pages is the maximum amount of virtual address space we gather up
579  * before attempting to purge with a TLB flush.
580  *
581  * There is a tradeoff here: a larger number will cover more kernel page tables
582  * and take slightly longer to purge, but it will linearly reduce the number of
583  * global TLB flushes that must be performed. It would seem natural to scale
584  * this number up linearly with the number of CPUs (because vmapping activity
585  * could also scale linearly with the number of CPUs), however it is likely
586  * that in practice, workloads might be constrained in other ways that mean
587  * vmap activity will not scale linearly with CPUs. Also, I want to be
588  * conservative and not introduce a big latency on huge systems, so go with
589  * a less aggressive log scale. It will still be an improvement over the old
590  * code, and it will be simple to change the scale factor if we find that it
591  * becomes a problem on bigger systems.
592  */
593 static unsigned long lazy_max_pages(void)
594 {
595 	unsigned int log;
596 
597 	log = fls(num_online_cpus());
598 
599 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
600 }
601 
602 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
603 
604 /* for per-CPU blocks */
605 static void purge_fragmented_blocks_allcpus(void);
606 
607 /*
608  * called before a call to iounmap() if the caller wants vm_area_struct's
609  * immediately freed.
610  */
611 void set_iounmap_nonlazy(void)
612 {
613 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
614 }
615 
616 /*
617  * Purges all lazily-freed vmap areas.
618  *
619  * If sync is 0 then don't purge if there is already a purge in progress.
620  * If force_flush is 1, then flush kernel TLBs between *start and *end even
621  * if we found no lazy vmap areas to unmap (callers can use this to optimise
622  * their own TLB flushing).
623  * Returns with *start = min(*start, lowest purged address)
624  *              *end = max(*end, highest purged address)
625  */
626 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
627 					int sync, int force_flush)
628 {
629 	static DEFINE_SPINLOCK(purge_lock);
630 	struct llist_node *valist;
631 	struct vmap_area *va;
632 	struct vmap_area *n_va;
633 	int nr = 0;
634 
635 	/*
636 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
637 	 * should not expect such behaviour. This just simplifies locking for
638 	 * the case that isn't actually used at the moment anyway.
639 	 */
640 	if (!sync && !force_flush) {
641 		if (!spin_trylock(&purge_lock))
642 			return;
643 	} else
644 		spin_lock(&purge_lock);
645 
646 	if (sync)
647 		purge_fragmented_blocks_allcpus();
648 
649 	valist = llist_del_all(&vmap_purge_list);
650 	llist_for_each_entry(va, valist, purge_list) {
651 		if (va->va_start < *start)
652 			*start = va->va_start;
653 		if (va->va_end > *end)
654 			*end = va->va_end;
655 		nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
656 	}
657 
658 	if (nr)
659 		atomic_sub(nr, &vmap_lazy_nr);
660 
661 	if (nr || force_flush)
662 		flush_tlb_kernel_range(*start, *end);
663 
664 	if (nr) {
665 		spin_lock(&vmap_area_lock);
666 		llist_for_each_entry_safe(va, n_va, valist, purge_list)
667 			__free_vmap_area(va);
668 		spin_unlock(&vmap_area_lock);
669 	}
670 	spin_unlock(&purge_lock);
671 }
672 
673 /*
674  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
675  * is already purging.
676  */
677 static void try_purge_vmap_area_lazy(void)
678 {
679 	unsigned long start = ULONG_MAX, end = 0;
680 
681 	__purge_vmap_area_lazy(&start, &end, 0, 0);
682 }
683 
684 /*
685  * Kick off a purge of the outstanding lazy areas.
686  */
687 static void purge_vmap_area_lazy(void)
688 {
689 	unsigned long start = ULONG_MAX, end = 0;
690 
691 	__purge_vmap_area_lazy(&start, &end, 1, 0);
692 }
693 
694 /*
695  * Free a vmap area, caller ensuring that the area has been unmapped
696  * and flush_cache_vunmap had been called for the correct range
697  * previously.
698  */
699 static void free_vmap_area_noflush(struct vmap_area *va)
700 {
701 	int nr_lazy;
702 
703 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
704 				    &vmap_lazy_nr);
705 
706 	/* After this point, we may free va at any time */
707 	llist_add(&va->purge_list, &vmap_purge_list);
708 
709 	if (unlikely(nr_lazy > lazy_max_pages()))
710 		try_purge_vmap_area_lazy();
711 }
712 
713 /*
714  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
715  * called for the correct range previously.
716  */
717 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
718 {
719 	unmap_vmap_area(va);
720 	free_vmap_area_noflush(va);
721 }
722 
723 /*
724  * Free and unmap a vmap area
725  */
726 static void free_unmap_vmap_area(struct vmap_area *va)
727 {
728 	flush_cache_vunmap(va->va_start, va->va_end);
729 	free_unmap_vmap_area_noflush(va);
730 }
731 
732 static struct vmap_area *find_vmap_area(unsigned long addr)
733 {
734 	struct vmap_area *va;
735 
736 	spin_lock(&vmap_area_lock);
737 	va = __find_vmap_area(addr);
738 	spin_unlock(&vmap_area_lock);
739 
740 	return va;
741 }
742 
743 static void free_unmap_vmap_area_addr(unsigned long addr)
744 {
745 	struct vmap_area *va;
746 
747 	va = find_vmap_area(addr);
748 	BUG_ON(!va);
749 	free_unmap_vmap_area(va);
750 }
751 
752 
753 /*** Per cpu kva allocator ***/
754 
755 /*
756  * vmap space is limited especially on 32 bit architectures. Ensure there is
757  * room for at least 16 percpu vmap blocks per CPU.
758  */
759 /*
760  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
761  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
762  * instead (we just need a rough idea)
763  */
764 #if BITS_PER_LONG == 32
765 #define VMALLOC_SPACE		(128UL*1024*1024)
766 #else
767 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
768 #endif
769 
770 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
771 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
772 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
773 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
774 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
775 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
776 #define VMAP_BBMAP_BITS		\
777 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
778 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
779 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
780 
781 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
782 
783 static bool vmap_initialized __read_mostly = false;
784 
785 struct vmap_block_queue {
786 	spinlock_t lock;
787 	struct list_head free;
788 };
789 
790 struct vmap_block {
791 	spinlock_t lock;
792 	struct vmap_area *va;
793 	unsigned long free, dirty;
794 	unsigned long dirty_min, dirty_max; /*< dirty range */
795 	struct list_head free_list;
796 	struct rcu_head rcu_head;
797 	struct list_head purge;
798 };
799 
800 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
801 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
802 
803 /*
804  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
805  * in the free path. Could get rid of this if we change the API to return a
806  * "cookie" from alloc, to be passed to free. But no big deal yet.
807  */
808 static DEFINE_SPINLOCK(vmap_block_tree_lock);
809 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
810 
811 /*
812  * We should probably have a fallback mechanism to allocate virtual memory
813  * out of partially filled vmap blocks. However vmap block sizing should be
814  * fairly reasonable according to the vmalloc size, so it shouldn't be a
815  * big problem.
816  */
817 
818 static unsigned long addr_to_vb_idx(unsigned long addr)
819 {
820 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
821 	addr /= VMAP_BLOCK_SIZE;
822 	return addr;
823 }
824 
825 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
826 {
827 	unsigned long addr;
828 
829 	addr = va_start + (pages_off << PAGE_SHIFT);
830 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
831 	return (void *)addr;
832 }
833 
834 /**
835  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
836  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
837  * @order:    how many 2^order pages should be occupied in newly allocated block
838  * @gfp_mask: flags for the page level allocator
839  *
840  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
841  */
842 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
843 {
844 	struct vmap_block_queue *vbq;
845 	struct vmap_block *vb;
846 	struct vmap_area *va;
847 	unsigned long vb_idx;
848 	int node, err;
849 	void *vaddr;
850 
851 	node = numa_node_id();
852 
853 	vb = kmalloc_node(sizeof(struct vmap_block),
854 			gfp_mask & GFP_RECLAIM_MASK, node);
855 	if (unlikely(!vb))
856 		return ERR_PTR(-ENOMEM);
857 
858 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
859 					VMALLOC_START, VMALLOC_END,
860 					node, gfp_mask);
861 	if (IS_ERR(va)) {
862 		kfree(vb);
863 		return ERR_CAST(va);
864 	}
865 
866 	err = radix_tree_preload(gfp_mask);
867 	if (unlikely(err)) {
868 		kfree(vb);
869 		free_vmap_area(va);
870 		return ERR_PTR(err);
871 	}
872 
873 	vaddr = vmap_block_vaddr(va->va_start, 0);
874 	spin_lock_init(&vb->lock);
875 	vb->va = va;
876 	/* At least something should be left free */
877 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
878 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
879 	vb->dirty = 0;
880 	vb->dirty_min = VMAP_BBMAP_BITS;
881 	vb->dirty_max = 0;
882 	INIT_LIST_HEAD(&vb->free_list);
883 
884 	vb_idx = addr_to_vb_idx(va->va_start);
885 	spin_lock(&vmap_block_tree_lock);
886 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
887 	spin_unlock(&vmap_block_tree_lock);
888 	BUG_ON(err);
889 	radix_tree_preload_end();
890 
891 	vbq = &get_cpu_var(vmap_block_queue);
892 	spin_lock(&vbq->lock);
893 	list_add_tail_rcu(&vb->free_list, &vbq->free);
894 	spin_unlock(&vbq->lock);
895 	put_cpu_var(vmap_block_queue);
896 
897 	return vaddr;
898 }
899 
900 static void free_vmap_block(struct vmap_block *vb)
901 {
902 	struct vmap_block *tmp;
903 	unsigned long vb_idx;
904 
905 	vb_idx = addr_to_vb_idx(vb->va->va_start);
906 	spin_lock(&vmap_block_tree_lock);
907 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
908 	spin_unlock(&vmap_block_tree_lock);
909 	BUG_ON(tmp != vb);
910 
911 	free_vmap_area_noflush(vb->va);
912 	kfree_rcu(vb, rcu_head);
913 }
914 
915 static void purge_fragmented_blocks(int cpu)
916 {
917 	LIST_HEAD(purge);
918 	struct vmap_block *vb;
919 	struct vmap_block *n_vb;
920 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
921 
922 	rcu_read_lock();
923 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
924 
925 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
926 			continue;
927 
928 		spin_lock(&vb->lock);
929 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
930 			vb->free = 0; /* prevent further allocs after releasing lock */
931 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
932 			vb->dirty_min = 0;
933 			vb->dirty_max = VMAP_BBMAP_BITS;
934 			spin_lock(&vbq->lock);
935 			list_del_rcu(&vb->free_list);
936 			spin_unlock(&vbq->lock);
937 			spin_unlock(&vb->lock);
938 			list_add_tail(&vb->purge, &purge);
939 		} else
940 			spin_unlock(&vb->lock);
941 	}
942 	rcu_read_unlock();
943 
944 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
945 		list_del(&vb->purge);
946 		free_vmap_block(vb);
947 	}
948 }
949 
950 static void purge_fragmented_blocks_allcpus(void)
951 {
952 	int cpu;
953 
954 	for_each_possible_cpu(cpu)
955 		purge_fragmented_blocks(cpu);
956 }
957 
958 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
959 {
960 	struct vmap_block_queue *vbq;
961 	struct vmap_block *vb;
962 	void *vaddr = NULL;
963 	unsigned int order;
964 
965 	BUG_ON(offset_in_page(size));
966 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
967 	if (WARN_ON(size == 0)) {
968 		/*
969 		 * Allocating 0 bytes isn't what caller wants since
970 		 * get_order(0) returns funny result. Just warn and terminate
971 		 * early.
972 		 */
973 		return NULL;
974 	}
975 	order = get_order(size);
976 
977 	rcu_read_lock();
978 	vbq = &get_cpu_var(vmap_block_queue);
979 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
980 		unsigned long pages_off;
981 
982 		spin_lock(&vb->lock);
983 		if (vb->free < (1UL << order)) {
984 			spin_unlock(&vb->lock);
985 			continue;
986 		}
987 
988 		pages_off = VMAP_BBMAP_BITS - vb->free;
989 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
990 		vb->free -= 1UL << order;
991 		if (vb->free == 0) {
992 			spin_lock(&vbq->lock);
993 			list_del_rcu(&vb->free_list);
994 			spin_unlock(&vbq->lock);
995 		}
996 
997 		spin_unlock(&vb->lock);
998 		break;
999 	}
1000 
1001 	put_cpu_var(vmap_block_queue);
1002 	rcu_read_unlock();
1003 
1004 	/* Allocate new block if nothing was found */
1005 	if (!vaddr)
1006 		vaddr = new_vmap_block(order, gfp_mask);
1007 
1008 	return vaddr;
1009 }
1010 
1011 static void vb_free(const void *addr, unsigned long size)
1012 {
1013 	unsigned long offset;
1014 	unsigned long vb_idx;
1015 	unsigned int order;
1016 	struct vmap_block *vb;
1017 
1018 	BUG_ON(offset_in_page(size));
1019 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1020 
1021 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1022 
1023 	order = get_order(size);
1024 
1025 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1026 	offset >>= PAGE_SHIFT;
1027 
1028 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1029 	rcu_read_lock();
1030 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1031 	rcu_read_unlock();
1032 	BUG_ON(!vb);
1033 
1034 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1035 
1036 	spin_lock(&vb->lock);
1037 
1038 	/* Expand dirty range */
1039 	vb->dirty_min = min(vb->dirty_min, offset);
1040 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1041 
1042 	vb->dirty += 1UL << order;
1043 	if (vb->dirty == VMAP_BBMAP_BITS) {
1044 		BUG_ON(vb->free);
1045 		spin_unlock(&vb->lock);
1046 		free_vmap_block(vb);
1047 	} else
1048 		spin_unlock(&vb->lock);
1049 }
1050 
1051 /**
1052  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1053  *
1054  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1055  * to amortize TLB flushing overheads. What this means is that any page you
1056  * have now, may, in a former life, have been mapped into kernel virtual
1057  * address by the vmap layer and so there might be some CPUs with TLB entries
1058  * still referencing that page (additional to the regular 1:1 kernel mapping).
1059  *
1060  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1061  * be sure that none of the pages we have control over will have any aliases
1062  * from the vmap layer.
1063  */
1064 void vm_unmap_aliases(void)
1065 {
1066 	unsigned long start = ULONG_MAX, end = 0;
1067 	int cpu;
1068 	int flush = 0;
1069 
1070 	if (unlikely(!vmap_initialized))
1071 		return;
1072 
1073 	for_each_possible_cpu(cpu) {
1074 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1075 		struct vmap_block *vb;
1076 
1077 		rcu_read_lock();
1078 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1079 			spin_lock(&vb->lock);
1080 			if (vb->dirty) {
1081 				unsigned long va_start = vb->va->va_start;
1082 				unsigned long s, e;
1083 
1084 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1085 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1086 
1087 				start = min(s, start);
1088 				end   = max(e, end);
1089 
1090 				flush = 1;
1091 			}
1092 			spin_unlock(&vb->lock);
1093 		}
1094 		rcu_read_unlock();
1095 	}
1096 
1097 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1098 }
1099 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1100 
1101 /**
1102  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1103  * @mem: the pointer returned by vm_map_ram
1104  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1105  */
1106 void vm_unmap_ram(const void *mem, unsigned int count)
1107 {
1108 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1109 	unsigned long addr = (unsigned long)mem;
1110 
1111 	BUG_ON(!addr);
1112 	BUG_ON(addr < VMALLOC_START);
1113 	BUG_ON(addr > VMALLOC_END);
1114 	BUG_ON(!PAGE_ALIGNED(addr));
1115 
1116 	debug_check_no_locks_freed(mem, size);
1117 	vmap_debug_free_range(addr, addr+size);
1118 
1119 	if (likely(count <= VMAP_MAX_ALLOC))
1120 		vb_free(mem, size);
1121 	else
1122 		free_unmap_vmap_area_addr(addr);
1123 }
1124 EXPORT_SYMBOL(vm_unmap_ram);
1125 
1126 /**
1127  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1128  * @pages: an array of pointers to the pages to be mapped
1129  * @count: number of pages
1130  * @node: prefer to allocate data structures on this node
1131  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1132  *
1133  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1134  * faster than vmap so it's good.  But if you mix long-life and short-life
1135  * objects with vm_map_ram(), it could consume lots of address space through
1136  * fragmentation (especially on a 32bit machine).  You could see failures in
1137  * the end.  Please use this function for short-lived objects.
1138  *
1139  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1140  */
1141 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1142 {
1143 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1144 	unsigned long addr;
1145 	void *mem;
1146 
1147 	if (likely(count <= VMAP_MAX_ALLOC)) {
1148 		mem = vb_alloc(size, GFP_KERNEL);
1149 		if (IS_ERR(mem))
1150 			return NULL;
1151 		addr = (unsigned long)mem;
1152 	} else {
1153 		struct vmap_area *va;
1154 		va = alloc_vmap_area(size, PAGE_SIZE,
1155 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1156 		if (IS_ERR(va))
1157 			return NULL;
1158 
1159 		addr = va->va_start;
1160 		mem = (void *)addr;
1161 	}
1162 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1163 		vm_unmap_ram(mem, count);
1164 		return NULL;
1165 	}
1166 	return mem;
1167 }
1168 EXPORT_SYMBOL(vm_map_ram);
1169 
1170 static struct vm_struct *vmlist __initdata;
1171 /**
1172  * vm_area_add_early - add vmap area early during boot
1173  * @vm: vm_struct to add
1174  *
1175  * This function is used to add fixed kernel vm area to vmlist before
1176  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1177  * should contain proper values and the other fields should be zero.
1178  *
1179  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1180  */
1181 void __init vm_area_add_early(struct vm_struct *vm)
1182 {
1183 	struct vm_struct *tmp, **p;
1184 
1185 	BUG_ON(vmap_initialized);
1186 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1187 		if (tmp->addr >= vm->addr) {
1188 			BUG_ON(tmp->addr < vm->addr + vm->size);
1189 			break;
1190 		} else
1191 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1192 	}
1193 	vm->next = *p;
1194 	*p = vm;
1195 }
1196 
1197 /**
1198  * vm_area_register_early - register vmap area early during boot
1199  * @vm: vm_struct to register
1200  * @align: requested alignment
1201  *
1202  * This function is used to register kernel vm area before
1203  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1204  * proper values on entry and other fields should be zero.  On return,
1205  * vm->addr contains the allocated address.
1206  *
1207  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1208  */
1209 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1210 {
1211 	static size_t vm_init_off __initdata;
1212 	unsigned long addr;
1213 
1214 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1215 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1216 
1217 	vm->addr = (void *)addr;
1218 
1219 	vm_area_add_early(vm);
1220 }
1221 
1222 void __init vmalloc_init(void)
1223 {
1224 	struct vmap_area *va;
1225 	struct vm_struct *tmp;
1226 	int i;
1227 
1228 	for_each_possible_cpu(i) {
1229 		struct vmap_block_queue *vbq;
1230 		struct vfree_deferred *p;
1231 
1232 		vbq = &per_cpu(vmap_block_queue, i);
1233 		spin_lock_init(&vbq->lock);
1234 		INIT_LIST_HEAD(&vbq->free);
1235 		p = &per_cpu(vfree_deferred, i);
1236 		init_llist_head(&p->list);
1237 		INIT_WORK(&p->wq, free_work);
1238 	}
1239 
1240 	/* Import existing vmlist entries. */
1241 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1242 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1243 		va->flags = VM_VM_AREA;
1244 		va->va_start = (unsigned long)tmp->addr;
1245 		va->va_end = va->va_start + tmp->size;
1246 		va->vm = tmp;
1247 		__insert_vmap_area(va);
1248 	}
1249 
1250 	vmap_area_pcpu_hole = VMALLOC_END;
1251 
1252 	vmap_initialized = true;
1253 }
1254 
1255 /**
1256  * map_kernel_range_noflush - map kernel VM area with the specified pages
1257  * @addr: start of the VM area to map
1258  * @size: size of the VM area to map
1259  * @prot: page protection flags to use
1260  * @pages: pages to map
1261  *
1262  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1263  * specify should have been allocated using get_vm_area() and its
1264  * friends.
1265  *
1266  * NOTE:
1267  * This function does NOT do any cache flushing.  The caller is
1268  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1269  * before calling this function.
1270  *
1271  * RETURNS:
1272  * The number of pages mapped on success, -errno on failure.
1273  */
1274 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1275 			     pgprot_t prot, struct page **pages)
1276 {
1277 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1278 }
1279 
1280 /**
1281  * unmap_kernel_range_noflush - unmap kernel VM area
1282  * @addr: start of the VM area to unmap
1283  * @size: size of the VM area to unmap
1284  *
1285  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1286  * specify should have been allocated using get_vm_area() and its
1287  * friends.
1288  *
1289  * NOTE:
1290  * This function does NOT do any cache flushing.  The caller is
1291  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1292  * before calling this function and flush_tlb_kernel_range() after.
1293  */
1294 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1295 {
1296 	vunmap_page_range(addr, addr + size);
1297 }
1298 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1299 
1300 /**
1301  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1302  * @addr: start of the VM area to unmap
1303  * @size: size of the VM area to unmap
1304  *
1305  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1306  * the unmapping and tlb after.
1307  */
1308 void unmap_kernel_range(unsigned long addr, unsigned long size)
1309 {
1310 	unsigned long end = addr + size;
1311 
1312 	flush_cache_vunmap(addr, end);
1313 	vunmap_page_range(addr, end);
1314 	flush_tlb_kernel_range(addr, end);
1315 }
1316 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1317 
1318 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1319 {
1320 	unsigned long addr = (unsigned long)area->addr;
1321 	unsigned long end = addr + get_vm_area_size(area);
1322 	int err;
1323 
1324 	err = vmap_page_range(addr, end, prot, pages);
1325 
1326 	return err > 0 ? 0 : err;
1327 }
1328 EXPORT_SYMBOL_GPL(map_vm_area);
1329 
1330 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1331 			      unsigned long flags, const void *caller)
1332 {
1333 	spin_lock(&vmap_area_lock);
1334 	vm->flags = flags;
1335 	vm->addr = (void *)va->va_start;
1336 	vm->size = va->va_end - va->va_start;
1337 	vm->caller = caller;
1338 	va->vm = vm;
1339 	va->flags |= VM_VM_AREA;
1340 	spin_unlock(&vmap_area_lock);
1341 }
1342 
1343 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1344 {
1345 	/*
1346 	 * Before removing VM_UNINITIALIZED,
1347 	 * we should make sure that vm has proper values.
1348 	 * Pair with smp_rmb() in show_numa_info().
1349 	 */
1350 	smp_wmb();
1351 	vm->flags &= ~VM_UNINITIALIZED;
1352 }
1353 
1354 static struct vm_struct *__get_vm_area_node(unsigned long size,
1355 		unsigned long align, unsigned long flags, unsigned long start,
1356 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1357 {
1358 	struct vmap_area *va;
1359 	struct vm_struct *area;
1360 
1361 	BUG_ON(in_interrupt());
1362 	size = PAGE_ALIGN(size);
1363 	if (unlikely(!size))
1364 		return NULL;
1365 
1366 	if (flags & VM_IOREMAP)
1367 		align = 1ul << clamp_t(int, get_count_order_long(size),
1368 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1369 
1370 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1371 	if (unlikely(!area))
1372 		return NULL;
1373 
1374 	if (!(flags & VM_NO_GUARD))
1375 		size += PAGE_SIZE;
1376 
1377 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1378 	if (IS_ERR(va)) {
1379 		kfree(area);
1380 		return NULL;
1381 	}
1382 
1383 	setup_vmalloc_vm(area, va, flags, caller);
1384 
1385 	return area;
1386 }
1387 
1388 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1389 				unsigned long start, unsigned long end)
1390 {
1391 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1392 				  GFP_KERNEL, __builtin_return_address(0));
1393 }
1394 EXPORT_SYMBOL_GPL(__get_vm_area);
1395 
1396 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1397 				       unsigned long start, unsigned long end,
1398 				       const void *caller)
1399 {
1400 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1401 				  GFP_KERNEL, caller);
1402 }
1403 
1404 /**
1405  *	get_vm_area  -  reserve a contiguous kernel virtual area
1406  *	@size:		size of the area
1407  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1408  *
1409  *	Search an area of @size in the kernel virtual mapping area,
1410  *	and reserved it for out purposes.  Returns the area descriptor
1411  *	on success or %NULL on failure.
1412  */
1413 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1414 {
1415 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1416 				  NUMA_NO_NODE, GFP_KERNEL,
1417 				  __builtin_return_address(0));
1418 }
1419 
1420 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1421 				const void *caller)
1422 {
1423 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1424 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1425 }
1426 
1427 /**
1428  *	find_vm_area  -  find a continuous kernel virtual area
1429  *	@addr:		base address
1430  *
1431  *	Search for the kernel VM area starting at @addr, and return it.
1432  *	It is up to the caller to do all required locking to keep the returned
1433  *	pointer valid.
1434  */
1435 struct vm_struct *find_vm_area(const void *addr)
1436 {
1437 	struct vmap_area *va;
1438 
1439 	va = find_vmap_area((unsigned long)addr);
1440 	if (va && va->flags & VM_VM_AREA)
1441 		return va->vm;
1442 
1443 	return NULL;
1444 }
1445 
1446 /**
1447  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1448  *	@addr:		base address
1449  *
1450  *	Search for the kernel VM area starting at @addr, and remove it.
1451  *	This function returns the found VM area, but using it is NOT safe
1452  *	on SMP machines, except for its size or flags.
1453  */
1454 struct vm_struct *remove_vm_area(const void *addr)
1455 {
1456 	struct vmap_area *va;
1457 
1458 	va = find_vmap_area((unsigned long)addr);
1459 	if (va && va->flags & VM_VM_AREA) {
1460 		struct vm_struct *vm = va->vm;
1461 
1462 		spin_lock(&vmap_area_lock);
1463 		va->vm = NULL;
1464 		va->flags &= ~VM_VM_AREA;
1465 		spin_unlock(&vmap_area_lock);
1466 
1467 		vmap_debug_free_range(va->va_start, va->va_end);
1468 		kasan_free_shadow(vm);
1469 		free_unmap_vmap_area(va);
1470 
1471 		return vm;
1472 	}
1473 	return NULL;
1474 }
1475 
1476 static void __vunmap(const void *addr, int deallocate_pages)
1477 {
1478 	struct vm_struct *area;
1479 
1480 	if (!addr)
1481 		return;
1482 
1483 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1484 			addr))
1485 		return;
1486 
1487 	area = remove_vm_area(addr);
1488 	if (unlikely(!area)) {
1489 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1490 				addr);
1491 		return;
1492 	}
1493 
1494 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1495 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1496 
1497 	if (deallocate_pages) {
1498 		int i;
1499 
1500 		for (i = 0; i < area->nr_pages; i++) {
1501 			struct page *page = area->pages[i];
1502 
1503 			BUG_ON(!page);
1504 			__free_pages(page, 0);
1505 		}
1506 
1507 		kvfree(area->pages);
1508 	}
1509 
1510 	kfree(area);
1511 	return;
1512 }
1513 
1514 /**
1515  *	vfree  -  release memory allocated by vmalloc()
1516  *	@addr:		memory base address
1517  *
1518  *	Free the virtually continuous memory area starting at @addr, as
1519  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1520  *	NULL, no operation is performed.
1521  *
1522  *	Must not be called in NMI context (strictly speaking, only if we don't
1523  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1524  *	conventions for vfree() arch-depenedent would be a really bad idea)
1525  *
1526  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1527  */
1528 void vfree(const void *addr)
1529 {
1530 	BUG_ON(in_nmi());
1531 
1532 	kmemleak_free(addr);
1533 
1534 	if (!addr)
1535 		return;
1536 	if (unlikely(in_interrupt())) {
1537 		struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1538 		if (llist_add((struct llist_node *)addr, &p->list))
1539 			schedule_work(&p->wq);
1540 	} else
1541 		__vunmap(addr, 1);
1542 }
1543 EXPORT_SYMBOL(vfree);
1544 
1545 /**
1546  *	vunmap  -  release virtual mapping obtained by vmap()
1547  *	@addr:		memory base address
1548  *
1549  *	Free the virtually contiguous memory area starting at @addr,
1550  *	which was created from the page array passed to vmap().
1551  *
1552  *	Must not be called in interrupt context.
1553  */
1554 void vunmap(const void *addr)
1555 {
1556 	BUG_ON(in_interrupt());
1557 	might_sleep();
1558 	if (addr)
1559 		__vunmap(addr, 0);
1560 }
1561 EXPORT_SYMBOL(vunmap);
1562 
1563 /**
1564  *	vmap  -  map an array of pages into virtually contiguous space
1565  *	@pages:		array of page pointers
1566  *	@count:		number of pages to map
1567  *	@flags:		vm_area->flags
1568  *	@prot:		page protection for the mapping
1569  *
1570  *	Maps @count pages from @pages into contiguous kernel virtual
1571  *	space.
1572  */
1573 void *vmap(struct page **pages, unsigned int count,
1574 		unsigned long flags, pgprot_t prot)
1575 {
1576 	struct vm_struct *area;
1577 	unsigned long size;		/* In bytes */
1578 
1579 	might_sleep();
1580 
1581 	if (count > totalram_pages)
1582 		return NULL;
1583 
1584 	size = (unsigned long)count << PAGE_SHIFT;
1585 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1586 	if (!area)
1587 		return NULL;
1588 
1589 	if (map_vm_area(area, prot, pages)) {
1590 		vunmap(area->addr);
1591 		return NULL;
1592 	}
1593 
1594 	return area->addr;
1595 }
1596 EXPORT_SYMBOL(vmap);
1597 
1598 static void *__vmalloc_node(unsigned long size, unsigned long align,
1599 			    gfp_t gfp_mask, pgprot_t prot,
1600 			    int node, const void *caller);
1601 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1602 				 pgprot_t prot, int node)
1603 {
1604 	struct page **pages;
1605 	unsigned int nr_pages, array_size, i;
1606 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1607 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1608 
1609 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1610 	array_size = (nr_pages * sizeof(struct page *));
1611 
1612 	area->nr_pages = nr_pages;
1613 	/* Please note that the recursion is strictly bounded. */
1614 	if (array_size > PAGE_SIZE) {
1615 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1616 				PAGE_KERNEL, node, area->caller);
1617 	} else {
1618 		pages = kmalloc_node(array_size, nested_gfp, node);
1619 	}
1620 	area->pages = pages;
1621 	if (!area->pages) {
1622 		remove_vm_area(area->addr);
1623 		kfree(area);
1624 		return NULL;
1625 	}
1626 
1627 	for (i = 0; i < area->nr_pages; i++) {
1628 		struct page *page;
1629 
1630 		if (node == NUMA_NO_NODE)
1631 			page = alloc_page(alloc_mask);
1632 		else
1633 			page = alloc_pages_node(node, alloc_mask, 0);
1634 
1635 		if (unlikely(!page)) {
1636 			/* Successfully allocated i pages, free them in __vunmap() */
1637 			area->nr_pages = i;
1638 			goto fail;
1639 		}
1640 		area->pages[i] = page;
1641 		if (gfpflags_allow_blocking(gfp_mask))
1642 			cond_resched();
1643 	}
1644 
1645 	if (map_vm_area(area, prot, pages))
1646 		goto fail;
1647 	return area->addr;
1648 
1649 fail:
1650 	warn_alloc(gfp_mask,
1651 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1652 			  (area->nr_pages*PAGE_SIZE), area->size);
1653 	vfree(area->addr);
1654 	return NULL;
1655 }
1656 
1657 /**
1658  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1659  *	@size:		allocation size
1660  *	@align:		desired alignment
1661  *	@start:		vm area range start
1662  *	@end:		vm area range end
1663  *	@gfp_mask:	flags for the page level allocator
1664  *	@prot:		protection mask for the allocated pages
1665  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1666  *	@node:		node to use for allocation or NUMA_NO_NODE
1667  *	@caller:	caller's return address
1668  *
1669  *	Allocate enough pages to cover @size from the page level
1670  *	allocator with @gfp_mask flags.  Map them into contiguous
1671  *	kernel virtual space, using a pagetable protection of @prot.
1672  */
1673 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1674 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1675 			pgprot_t prot, unsigned long vm_flags, int node,
1676 			const void *caller)
1677 {
1678 	struct vm_struct *area;
1679 	void *addr;
1680 	unsigned long real_size = size;
1681 
1682 	size = PAGE_ALIGN(size);
1683 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1684 		goto fail;
1685 
1686 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1687 				vm_flags, start, end, node, gfp_mask, caller);
1688 	if (!area)
1689 		goto fail;
1690 
1691 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1692 	if (!addr)
1693 		return NULL;
1694 
1695 	/*
1696 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1697 	 * flag. It means that vm_struct is not fully initialized.
1698 	 * Now, it is fully initialized, so remove this flag here.
1699 	 */
1700 	clear_vm_uninitialized_flag(area);
1701 
1702 	/*
1703 	 * A ref_count = 2 is needed because vm_struct allocated in
1704 	 * __get_vm_area_node() contains a reference to the virtual address of
1705 	 * the vmalloc'ed block.
1706 	 */
1707 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1708 
1709 	return addr;
1710 
1711 fail:
1712 	warn_alloc(gfp_mask,
1713 			  "vmalloc: allocation failure: %lu bytes", real_size);
1714 	return NULL;
1715 }
1716 
1717 /**
1718  *	__vmalloc_node  -  allocate virtually contiguous memory
1719  *	@size:		allocation size
1720  *	@align:		desired alignment
1721  *	@gfp_mask:	flags for the page level allocator
1722  *	@prot:		protection mask for the allocated pages
1723  *	@node:		node to use for allocation or NUMA_NO_NODE
1724  *	@caller:	caller's return address
1725  *
1726  *	Allocate enough pages to cover @size from the page level
1727  *	allocator with @gfp_mask flags.  Map them into contiguous
1728  *	kernel virtual space, using a pagetable protection of @prot.
1729  */
1730 static void *__vmalloc_node(unsigned long size, unsigned long align,
1731 			    gfp_t gfp_mask, pgprot_t prot,
1732 			    int node, const void *caller)
1733 {
1734 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1735 				gfp_mask, prot, 0, node, caller);
1736 }
1737 
1738 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1739 {
1740 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1741 				__builtin_return_address(0));
1742 }
1743 EXPORT_SYMBOL(__vmalloc);
1744 
1745 static inline void *__vmalloc_node_flags(unsigned long size,
1746 					int node, gfp_t flags)
1747 {
1748 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1749 					node, __builtin_return_address(0));
1750 }
1751 
1752 /**
1753  *	vmalloc  -  allocate virtually contiguous memory
1754  *	@size:		allocation size
1755  *	Allocate enough pages to cover @size from the page level
1756  *	allocator and map them into contiguous kernel virtual space.
1757  *
1758  *	For tight control over page level allocator and protection flags
1759  *	use __vmalloc() instead.
1760  */
1761 void *vmalloc(unsigned long size)
1762 {
1763 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1764 				    GFP_KERNEL | __GFP_HIGHMEM);
1765 }
1766 EXPORT_SYMBOL(vmalloc);
1767 
1768 /**
1769  *	vzalloc - allocate virtually contiguous memory with zero fill
1770  *	@size:	allocation size
1771  *	Allocate enough pages to cover @size from the page level
1772  *	allocator and map them into contiguous kernel virtual space.
1773  *	The memory allocated is set to zero.
1774  *
1775  *	For tight control over page level allocator and protection flags
1776  *	use __vmalloc() instead.
1777  */
1778 void *vzalloc(unsigned long size)
1779 {
1780 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1781 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1782 }
1783 EXPORT_SYMBOL(vzalloc);
1784 
1785 /**
1786  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1787  * @size: allocation size
1788  *
1789  * The resulting memory area is zeroed so it can be mapped to userspace
1790  * without leaking data.
1791  */
1792 void *vmalloc_user(unsigned long size)
1793 {
1794 	struct vm_struct *area;
1795 	void *ret;
1796 
1797 	ret = __vmalloc_node(size, SHMLBA,
1798 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1799 			     PAGE_KERNEL, NUMA_NO_NODE,
1800 			     __builtin_return_address(0));
1801 	if (ret) {
1802 		area = find_vm_area(ret);
1803 		area->flags |= VM_USERMAP;
1804 	}
1805 	return ret;
1806 }
1807 EXPORT_SYMBOL(vmalloc_user);
1808 
1809 /**
1810  *	vmalloc_node  -  allocate memory on a specific node
1811  *	@size:		allocation size
1812  *	@node:		numa node
1813  *
1814  *	Allocate enough pages to cover @size from the page level
1815  *	allocator and map them into contiguous kernel virtual space.
1816  *
1817  *	For tight control over page level allocator and protection flags
1818  *	use __vmalloc() instead.
1819  */
1820 void *vmalloc_node(unsigned long size, int node)
1821 {
1822 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1823 					node, __builtin_return_address(0));
1824 }
1825 EXPORT_SYMBOL(vmalloc_node);
1826 
1827 /**
1828  * vzalloc_node - allocate memory on a specific node with zero fill
1829  * @size:	allocation size
1830  * @node:	numa node
1831  *
1832  * Allocate enough pages to cover @size from the page level
1833  * allocator and map them into contiguous kernel virtual space.
1834  * The memory allocated is set to zero.
1835  *
1836  * For tight control over page level allocator and protection flags
1837  * use __vmalloc_node() instead.
1838  */
1839 void *vzalloc_node(unsigned long size, int node)
1840 {
1841 	return __vmalloc_node_flags(size, node,
1842 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1843 }
1844 EXPORT_SYMBOL(vzalloc_node);
1845 
1846 #ifndef PAGE_KERNEL_EXEC
1847 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1848 #endif
1849 
1850 /**
1851  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1852  *	@size:		allocation size
1853  *
1854  *	Kernel-internal function to allocate enough pages to cover @size
1855  *	the page level allocator and map them into contiguous and
1856  *	executable kernel virtual space.
1857  *
1858  *	For tight control over page level allocator and protection flags
1859  *	use __vmalloc() instead.
1860  */
1861 
1862 void *vmalloc_exec(unsigned long size)
1863 {
1864 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1865 			      NUMA_NO_NODE, __builtin_return_address(0));
1866 }
1867 
1868 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1869 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1870 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1871 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1872 #else
1873 #define GFP_VMALLOC32 GFP_KERNEL
1874 #endif
1875 
1876 /**
1877  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1878  *	@size:		allocation size
1879  *
1880  *	Allocate enough 32bit PA addressable pages to cover @size from the
1881  *	page level allocator and map them into contiguous kernel virtual space.
1882  */
1883 void *vmalloc_32(unsigned long size)
1884 {
1885 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1886 			      NUMA_NO_NODE, __builtin_return_address(0));
1887 }
1888 EXPORT_SYMBOL(vmalloc_32);
1889 
1890 /**
1891  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1892  *	@size:		allocation size
1893  *
1894  * The resulting memory area is 32bit addressable and zeroed so it can be
1895  * mapped to userspace without leaking data.
1896  */
1897 void *vmalloc_32_user(unsigned long size)
1898 {
1899 	struct vm_struct *area;
1900 	void *ret;
1901 
1902 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1903 			     NUMA_NO_NODE, __builtin_return_address(0));
1904 	if (ret) {
1905 		area = find_vm_area(ret);
1906 		area->flags |= VM_USERMAP;
1907 	}
1908 	return ret;
1909 }
1910 EXPORT_SYMBOL(vmalloc_32_user);
1911 
1912 /*
1913  * small helper routine , copy contents to buf from addr.
1914  * If the page is not present, fill zero.
1915  */
1916 
1917 static int aligned_vread(char *buf, char *addr, unsigned long count)
1918 {
1919 	struct page *p;
1920 	int copied = 0;
1921 
1922 	while (count) {
1923 		unsigned long offset, length;
1924 
1925 		offset = offset_in_page(addr);
1926 		length = PAGE_SIZE - offset;
1927 		if (length > count)
1928 			length = count;
1929 		p = vmalloc_to_page(addr);
1930 		/*
1931 		 * To do safe access to this _mapped_ area, we need
1932 		 * lock. But adding lock here means that we need to add
1933 		 * overhead of vmalloc()/vfree() calles for this _debug_
1934 		 * interface, rarely used. Instead of that, we'll use
1935 		 * kmap() and get small overhead in this access function.
1936 		 */
1937 		if (p) {
1938 			/*
1939 			 * we can expect USER0 is not used (see vread/vwrite's
1940 			 * function description)
1941 			 */
1942 			void *map = kmap_atomic(p);
1943 			memcpy(buf, map + offset, length);
1944 			kunmap_atomic(map);
1945 		} else
1946 			memset(buf, 0, length);
1947 
1948 		addr += length;
1949 		buf += length;
1950 		copied += length;
1951 		count -= length;
1952 	}
1953 	return copied;
1954 }
1955 
1956 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1957 {
1958 	struct page *p;
1959 	int copied = 0;
1960 
1961 	while (count) {
1962 		unsigned long offset, length;
1963 
1964 		offset = offset_in_page(addr);
1965 		length = PAGE_SIZE - offset;
1966 		if (length > count)
1967 			length = count;
1968 		p = vmalloc_to_page(addr);
1969 		/*
1970 		 * To do safe access to this _mapped_ area, we need
1971 		 * lock. But adding lock here means that we need to add
1972 		 * overhead of vmalloc()/vfree() calles for this _debug_
1973 		 * interface, rarely used. Instead of that, we'll use
1974 		 * kmap() and get small overhead in this access function.
1975 		 */
1976 		if (p) {
1977 			/*
1978 			 * we can expect USER0 is not used (see vread/vwrite's
1979 			 * function description)
1980 			 */
1981 			void *map = kmap_atomic(p);
1982 			memcpy(map + offset, buf, length);
1983 			kunmap_atomic(map);
1984 		}
1985 		addr += length;
1986 		buf += length;
1987 		copied += length;
1988 		count -= length;
1989 	}
1990 	return copied;
1991 }
1992 
1993 /**
1994  *	vread() -  read vmalloc area in a safe way.
1995  *	@buf:		buffer for reading data
1996  *	@addr:		vm address.
1997  *	@count:		number of bytes to be read.
1998  *
1999  *	Returns # of bytes which addr and buf should be increased.
2000  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2001  *	includes any intersect with alive vmalloc area.
2002  *
2003  *	This function checks that addr is a valid vmalloc'ed area, and
2004  *	copy data from that area to a given buffer. If the given memory range
2005  *	of [addr...addr+count) includes some valid address, data is copied to
2006  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2007  *	IOREMAP area is treated as memory hole and no copy is done.
2008  *
2009  *	If [addr...addr+count) doesn't includes any intersects with alive
2010  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2011  *
2012  *	Note: In usual ops, vread() is never necessary because the caller
2013  *	should know vmalloc() area is valid and can use memcpy().
2014  *	This is for routines which have to access vmalloc area without
2015  *	any informaion, as /dev/kmem.
2016  *
2017  */
2018 
2019 long vread(char *buf, char *addr, unsigned long count)
2020 {
2021 	struct vmap_area *va;
2022 	struct vm_struct *vm;
2023 	char *vaddr, *buf_start = buf;
2024 	unsigned long buflen = count;
2025 	unsigned long n;
2026 
2027 	/* Don't allow overflow */
2028 	if ((unsigned long) addr + count < count)
2029 		count = -(unsigned long) addr;
2030 
2031 	spin_lock(&vmap_area_lock);
2032 	list_for_each_entry(va, &vmap_area_list, list) {
2033 		if (!count)
2034 			break;
2035 
2036 		if (!(va->flags & VM_VM_AREA))
2037 			continue;
2038 
2039 		vm = va->vm;
2040 		vaddr = (char *) vm->addr;
2041 		if (addr >= vaddr + get_vm_area_size(vm))
2042 			continue;
2043 		while (addr < vaddr) {
2044 			if (count == 0)
2045 				goto finished;
2046 			*buf = '\0';
2047 			buf++;
2048 			addr++;
2049 			count--;
2050 		}
2051 		n = vaddr + get_vm_area_size(vm) - addr;
2052 		if (n > count)
2053 			n = count;
2054 		if (!(vm->flags & VM_IOREMAP))
2055 			aligned_vread(buf, addr, n);
2056 		else /* IOREMAP area is treated as memory hole */
2057 			memset(buf, 0, n);
2058 		buf += n;
2059 		addr += n;
2060 		count -= n;
2061 	}
2062 finished:
2063 	spin_unlock(&vmap_area_lock);
2064 
2065 	if (buf == buf_start)
2066 		return 0;
2067 	/* zero-fill memory holes */
2068 	if (buf != buf_start + buflen)
2069 		memset(buf, 0, buflen - (buf - buf_start));
2070 
2071 	return buflen;
2072 }
2073 
2074 /**
2075  *	vwrite() -  write vmalloc area in a safe way.
2076  *	@buf:		buffer for source data
2077  *	@addr:		vm address.
2078  *	@count:		number of bytes to be read.
2079  *
2080  *	Returns # of bytes which addr and buf should be incresed.
2081  *	(same number to @count).
2082  *	If [addr...addr+count) doesn't includes any intersect with valid
2083  *	vmalloc area, returns 0.
2084  *
2085  *	This function checks that addr is a valid vmalloc'ed area, and
2086  *	copy data from a buffer to the given addr. If specified range of
2087  *	[addr...addr+count) includes some valid address, data is copied from
2088  *	proper area of @buf. If there are memory holes, no copy to hole.
2089  *	IOREMAP area is treated as memory hole and no copy is done.
2090  *
2091  *	If [addr...addr+count) doesn't includes any intersects with alive
2092  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2093  *
2094  *	Note: In usual ops, vwrite() is never necessary because the caller
2095  *	should know vmalloc() area is valid and can use memcpy().
2096  *	This is for routines which have to access vmalloc area without
2097  *	any informaion, as /dev/kmem.
2098  */
2099 
2100 long vwrite(char *buf, char *addr, unsigned long count)
2101 {
2102 	struct vmap_area *va;
2103 	struct vm_struct *vm;
2104 	char *vaddr;
2105 	unsigned long n, buflen;
2106 	int copied = 0;
2107 
2108 	/* Don't allow overflow */
2109 	if ((unsigned long) addr + count < count)
2110 		count = -(unsigned long) addr;
2111 	buflen = count;
2112 
2113 	spin_lock(&vmap_area_lock);
2114 	list_for_each_entry(va, &vmap_area_list, list) {
2115 		if (!count)
2116 			break;
2117 
2118 		if (!(va->flags & VM_VM_AREA))
2119 			continue;
2120 
2121 		vm = va->vm;
2122 		vaddr = (char *) vm->addr;
2123 		if (addr >= vaddr + get_vm_area_size(vm))
2124 			continue;
2125 		while (addr < vaddr) {
2126 			if (count == 0)
2127 				goto finished;
2128 			buf++;
2129 			addr++;
2130 			count--;
2131 		}
2132 		n = vaddr + get_vm_area_size(vm) - addr;
2133 		if (n > count)
2134 			n = count;
2135 		if (!(vm->flags & VM_IOREMAP)) {
2136 			aligned_vwrite(buf, addr, n);
2137 			copied++;
2138 		}
2139 		buf += n;
2140 		addr += n;
2141 		count -= n;
2142 	}
2143 finished:
2144 	spin_unlock(&vmap_area_lock);
2145 	if (!copied)
2146 		return 0;
2147 	return buflen;
2148 }
2149 
2150 /**
2151  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2152  *	@vma:		vma to cover
2153  *	@uaddr:		target user address to start at
2154  *	@kaddr:		virtual address of vmalloc kernel memory
2155  *	@size:		size of map area
2156  *
2157  *	Returns:	0 for success, -Exxx on failure
2158  *
2159  *	This function checks that @kaddr is a valid vmalloc'ed area,
2160  *	and that it is big enough to cover the range starting at
2161  *	@uaddr in @vma. Will return failure if that criteria isn't
2162  *	met.
2163  *
2164  *	Similar to remap_pfn_range() (see mm/memory.c)
2165  */
2166 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2167 				void *kaddr, unsigned long size)
2168 {
2169 	struct vm_struct *area;
2170 
2171 	size = PAGE_ALIGN(size);
2172 
2173 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2174 		return -EINVAL;
2175 
2176 	area = find_vm_area(kaddr);
2177 	if (!area)
2178 		return -EINVAL;
2179 
2180 	if (!(area->flags & VM_USERMAP))
2181 		return -EINVAL;
2182 
2183 	if (kaddr + size > area->addr + area->size)
2184 		return -EINVAL;
2185 
2186 	do {
2187 		struct page *page = vmalloc_to_page(kaddr);
2188 		int ret;
2189 
2190 		ret = vm_insert_page(vma, uaddr, page);
2191 		if (ret)
2192 			return ret;
2193 
2194 		uaddr += PAGE_SIZE;
2195 		kaddr += PAGE_SIZE;
2196 		size -= PAGE_SIZE;
2197 	} while (size > 0);
2198 
2199 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2200 
2201 	return 0;
2202 }
2203 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2204 
2205 /**
2206  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2207  *	@vma:		vma to cover (map full range of vma)
2208  *	@addr:		vmalloc memory
2209  *	@pgoff:		number of pages into addr before first page to map
2210  *
2211  *	Returns:	0 for success, -Exxx on failure
2212  *
2213  *	This function checks that addr is a valid vmalloc'ed area, and
2214  *	that it is big enough to cover the vma. Will return failure if
2215  *	that criteria isn't met.
2216  *
2217  *	Similar to remap_pfn_range() (see mm/memory.c)
2218  */
2219 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2220 						unsigned long pgoff)
2221 {
2222 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2223 					   addr + (pgoff << PAGE_SHIFT),
2224 					   vma->vm_end - vma->vm_start);
2225 }
2226 EXPORT_SYMBOL(remap_vmalloc_range);
2227 
2228 /*
2229  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2230  * have one.
2231  */
2232 void __weak vmalloc_sync_all(void)
2233 {
2234 }
2235 
2236 
2237 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2238 {
2239 	pte_t ***p = data;
2240 
2241 	if (p) {
2242 		*(*p) = pte;
2243 		(*p)++;
2244 	}
2245 	return 0;
2246 }
2247 
2248 /**
2249  *	alloc_vm_area - allocate a range of kernel address space
2250  *	@size:		size of the area
2251  *	@ptes:		returns the PTEs for the address space
2252  *
2253  *	Returns:	NULL on failure, vm_struct on success
2254  *
2255  *	This function reserves a range of kernel address space, and
2256  *	allocates pagetables to map that range.  No actual mappings
2257  *	are created.
2258  *
2259  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2260  *	allocated for the VM area are returned.
2261  */
2262 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2263 {
2264 	struct vm_struct *area;
2265 
2266 	area = get_vm_area_caller(size, VM_IOREMAP,
2267 				__builtin_return_address(0));
2268 	if (area == NULL)
2269 		return NULL;
2270 
2271 	/*
2272 	 * This ensures that page tables are constructed for this region
2273 	 * of kernel virtual address space and mapped into init_mm.
2274 	 */
2275 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2276 				size, f, ptes ? &ptes : NULL)) {
2277 		free_vm_area(area);
2278 		return NULL;
2279 	}
2280 
2281 	return area;
2282 }
2283 EXPORT_SYMBOL_GPL(alloc_vm_area);
2284 
2285 void free_vm_area(struct vm_struct *area)
2286 {
2287 	struct vm_struct *ret;
2288 	ret = remove_vm_area(area->addr);
2289 	BUG_ON(ret != area);
2290 	kfree(area);
2291 }
2292 EXPORT_SYMBOL_GPL(free_vm_area);
2293 
2294 #ifdef CONFIG_SMP
2295 static struct vmap_area *node_to_va(struct rb_node *n)
2296 {
2297 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2298 }
2299 
2300 /**
2301  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2302  * @end: target address
2303  * @pnext: out arg for the next vmap_area
2304  * @pprev: out arg for the previous vmap_area
2305  *
2306  * Returns: %true if either or both of next and prev are found,
2307  *	    %false if no vmap_area exists
2308  *
2309  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2310  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2311  */
2312 static bool pvm_find_next_prev(unsigned long end,
2313 			       struct vmap_area **pnext,
2314 			       struct vmap_area **pprev)
2315 {
2316 	struct rb_node *n = vmap_area_root.rb_node;
2317 	struct vmap_area *va = NULL;
2318 
2319 	while (n) {
2320 		va = rb_entry(n, struct vmap_area, rb_node);
2321 		if (end < va->va_end)
2322 			n = n->rb_left;
2323 		else if (end > va->va_end)
2324 			n = n->rb_right;
2325 		else
2326 			break;
2327 	}
2328 
2329 	if (!va)
2330 		return false;
2331 
2332 	if (va->va_end > end) {
2333 		*pnext = va;
2334 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2335 	} else {
2336 		*pprev = va;
2337 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2338 	}
2339 	return true;
2340 }
2341 
2342 /**
2343  * pvm_determine_end - find the highest aligned address between two vmap_areas
2344  * @pnext: in/out arg for the next vmap_area
2345  * @pprev: in/out arg for the previous vmap_area
2346  * @align: alignment
2347  *
2348  * Returns: determined end address
2349  *
2350  * Find the highest aligned address between *@pnext and *@pprev below
2351  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2352  * down address is between the end addresses of the two vmap_areas.
2353  *
2354  * Please note that the address returned by this function may fall
2355  * inside *@pnext vmap_area.  The caller is responsible for checking
2356  * that.
2357  */
2358 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2359 				       struct vmap_area **pprev,
2360 				       unsigned long align)
2361 {
2362 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2363 	unsigned long addr;
2364 
2365 	if (*pnext)
2366 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2367 	else
2368 		addr = vmalloc_end;
2369 
2370 	while (*pprev && (*pprev)->va_end > addr) {
2371 		*pnext = *pprev;
2372 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2373 	}
2374 
2375 	return addr;
2376 }
2377 
2378 /**
2379  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2380  * @offsets: array containing offset of each area
2381  * @sizes: array containing size of each area
2382  * @nr_vms: the number of areas to allocate
2383  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2384  *
2385  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2386  *	    vm_structs on success, %NULL on failure
2387  *
2388  * Percpu allocator wants to use congruent vm areas so that it can
2389  * maintain the offsets among percpu areas.  This function allocates
2390  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2391  * be scattered pretty far, distance between two areas easily going up
2392  * to gigabytes.  To avoid interacting with regular vmallocs, these
2393  * areas are allocated from top.
2394  *
2395  * Despite its complicated look, this allocator is rather simple.  It
2396  * does everything top-down and scans areas from the end looking for
2397  * matching slot.  While scanning, if any of the areas overlaps with
2398  * existing vmap_area, the base address is pulled down to fit the
2399  * area.  Scanning is repeated till all the areas fit and then all
2400  * necessary data structres are inserted and the result is returned.
2401  */
2402 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2403 				     const size_t *sizes, int nr_vms,
2404 				     size_t align)
2405 {
2406 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2407 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2408 	struct vmap_area **vas, *prev, *next;
2409 	struct vm_struct **vms;
2410 	int area, area2, last_area, term_area;
2411 	unsigned long base, start, end, last_end;
2412 	bool purged = false;
2413 
2414 	/* verify parameters and allocate data structures */
2415 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2416 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2417 		start = offsets[area];
2418 		end = start + sizes[area];
2419 
2420 		/* is everything aligned properly? */
2421 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2422 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2423 
2424 		/* detect the area with the highest address */
2425 		if (start > offsets[last_area])
2426 			last_area = area;
2427 
2428 		for (area2 = 0; area2 < nr_vms; area2++) {
2429 			unsigned long start2 = offsets[area2];
2430 			unsigned long end2 = start2 + sizes[area2];
2431 
2432 			if (area2 == area)
2433 				continue;
2434 
2435 			BUG_ON(start2 >= start && start2 < end);
2436 			BUG_ON(end2 <= end && end2 > start);
2437 		}
2438 	}
2439 	last_end = offsets[last_area] + sizes[last_area];
2440 
2441 	if (vmalloc_end - vmalloc_start < last_end) {
2442 		WARN_ON(true);
2443 		return NULL;
2444 	}
2445 
2446 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2447 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2448 	if (!vas || !vms)
2449 		goto err_free2;
2450 
2451 	for (area = 0; area < nr_vms; area++) {
2452 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2453 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2454 		if (!vas[area] || !vms[area])
2455 			goto err_free;
2456 	}
2457 retry:
2458 	spin_lock(&vmap_area_lock);
2459 
2460 	/* start scanning - we scan from the top, begin with the last area */
2461 	area = term_area = last_area;
2462 	start = offsets[area];
2463 	end = start + sizes[area];
2464 
2465 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2466 		base = vmalloc_end - last_end;
2467 		goto found;
2468 	}
2469 	base = pvm_determine_end(&next, &prev, align) - end;
2470 
2471 	while (true) {
2472 		BUG_ON(next && next->va_end <= base + end);
2473 		BUG_ON(prev && prev->va_end > base + end);
2474 
2475 		/*
2476 		 * base might have underflowed, add last_end before
2477 		 * comparing.
2478 		 */
2479 		if (base + last_end < vmalloc_start + last_end) {
2480 			spin_unlock(&vmap_area_lock);
2481 			if (!purged) {
2482 				purge_vmap_area_lazy();
2483 				purged = true;
2484 				goto retry;
2485 			}
2486 			goto err_free;
2487 		}
2488 
2489 		/*
2490 		 * If next overlaps, move base downwards so that it's
2491 		 * right below next and then recheck.
2492 		 */
2493 		if (next && next->va_start < base + end) {
2494 			base = pvm_determine_end(&next, &prev, align) - end;
2495 			term_area = area;
2496 			continue;
2497 		}
2498 
2499 		/*
2500 		 * If prev overlaps, shift down next and prev and move
2501 		 * base so that it's right below new next and then
2502 		 * recheck.
2503 		 */
2504 		if (prev && prev->va_end > base + start)  {
2505 			next = prev;
2506 			prev = node_to_va(rb_prev(&next->rb_node));
2507 			base = pvm_determine_end(&next, &prev, align) - end;
2508 			term_area = area;
2509 			continue;
2510 		}
2511 
2512 		/*
2513 		 * This area fits, move on to the previous one.  If
2514 		 * the previous one is the terminal one, we're done.
2515 		 */
2516 		area = (area + nr_vms - 1) % nr_vms;
2517 		if (area == term_area)
2518 			break;
2519 		start = offsets[area];
2520 		end = start + sizes[area];
2521 		pvm_find_next_prev(base + end, &next, &prev);
2522 	}
2523 found:
2524 	/* we've found a fitting base, insert all va's */
2525 	for (area = 0; area < nr_vms; area++) {
2526 		struct vmap_area *va = vas[area];
2527 
2528 		va->va_start = base + offsets[area];
2529 		va->va_end = va->va_start + sizes[area];
2530 		__insert_vmap_area(va);
2531 	}
2532 
2533 	vmap_area_pcpu_hole = base + offsets[last_area];
2534 
2535 	spin_unlock(&vmap_area_lock);
2536 
2537 	/* insert all vm's */
2538 	for (area = 0; area < nr_vms; area++)
2539 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2540 				 pcpu_get_vm_areas);
2541 
2542 	kfree(vas);
2543 	return vms;
2544 
2545 err_free:
2546 	for (area = 0; area < nr_vms; area++) {
2547 		kfree(vas[area]);
2548 		kfree(vms[area]);
2549 	}
2550 err_free2:
2551 	kfree(vas);
2552 	kfree(vms);
2553 	return NULL;
2554 }
2555 
2556 /**
2557  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2558  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2559  * @nr_vms: the number of allocated areas
2560  *
2561  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2562  */
2563 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2564 {
2565 	int i;
2566 
2567 	for (i = 0; i < nr_vms; i++)
2568 		free_vm_area(vms[i]);
2569 	kfree(vms);
2570 }
2571 #endif	/* CONFIG_SMP */
2572 
2573 #ifdef CONFIG_PROC_FS
2574 static void *s_start(struct seq_file *m, loff_t *pos)
2575 	__acquires(&vmap_area_lock)
2576 {
2577 	loff_t n = *pos;
2578 	struct vmap_area *va;
2579 
2580 	spin_lock(&vmap_area_lock);
2581 	va = list_first_entry(&vmap_area_list, typeof(*va), list);
2582 	while (n > 0 && &va->list != &vmap_area_list) {
2583 		n--;
2584 		va = list_next_entry(va, list);
2585 	}
2586 	if (!n && &va->list != &vmap_area_list)
2587 		return va;
2588 
2589 	return NULL;
2590 
2591 }
2592 
2593 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2594 {
2595 	struct vmap_area *va = p, *next;
2596 
2597 	++*pos;
2598 	next = list_next_entry(va, list);
2599 	if (&next->list != &vmap_area_list)
2600 		return next;
2601 
2602 	return NULL;
2603 }
2604 
2605 static void s_stop(struct seq_file *m, void *p)
2606 	__releases(&vmap_area_lock)
2607 {
2608 	spin_unlock(&vmap_area_lock);
2609 }
2610 
2611 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2612 {
2613 	if (IS_ENABLED(CONFIG_NUMA)) {
2614 		unsigned int nr, *counters = m->private;
2615 
2616 		if (!counters)
2617 			return;
2618 
2619 		if (v->flags & VM_UNINITIALIZED)
2620 			return;
2621 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2622 		smp_rmb();
2623 
2624 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2625 
2626 		for (nr = 0; nr < v->nr_pages; nr++)
2627 			counters[page_to_nid(v->pages[nr])]++;
2628 
2629 		for_each_node_state(nr, N_HIGH_MEMORY)
2630 			if (counters[nr])
2631 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2632 	}
2633 }
2634 
2635 static int s_show(struct seq_file *m, void *p)
2636 {
2637 	struct vmap_area *va = p;
2638 	struct vm_struct *v;
2639 
2640 	/*
2641 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2642 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2643 	 */
2644 	if (!(va->flags & VM_VM_AREA))
2645 		return 0;
2646 
2647 	v = va->vm;
2648 
2649 	seq_printf(m, "0x%pK-0x%pK %7ld",
2650 		v->addr, v->addr + v->size, v->size);
2651 
2652 	if (v->caller)
2653 		seq_printf(m, " %pS", v->caller);
2654 
2655 	if (v->nr_pages)
2656 		seq_printf(m, " pages=%d", v->nr_pages);
2657 
2658 	if (v->phys_addr)
2659 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2660 
2661 	if (v->flags & VM_IOREMAP)
2662 		seq_puts(m, " ioremap");
2663 
2664 	if (v->flags & VM_ALLOC)
2665 		seq_puts(m, " vmalloc");
2666 
2667 	if (v->flags & VM_MAP)
2668 		seq_puts(m, " vmap");
2669 
2670 	if (v->flags & VM_USERMAP)
2671 		seq_puts(m, " user");
2672 
2673 	if (is_vmalloc_addr(v->pages))
2674 		seq_puts(m, " vpages");
2675 
2676 	show_numa_info(m, v);
2677 	seq_putc(m, '\n');
2678 	return 0;
2679 }
2680 
2681 static const struct seq_operations vmalloc_op = {
2682 	.start = s_start,
2683 	.next = s_next,
2684 	.stop = s_stop,
2685 	.show = s_show,
2686 };
2687 
2688 static int vmalloc_open(struct inode *inode, struct file *file)
2689 {
2690 	if (IS_ENABLED(CONFIG_NUMA))
2691 		return seq_open_private(file, &vmalloc_op,
2692 					nr_node_ids * sizeof(unsigned int));
2693 	else
2694 		return seq_open(file, &vmalloc_op);
2695 }
2696 
2697 static const struct file_operations proc_vmalloc_operations = {
2698 	.open		= vmalloc_open,
2699 	.read		= seq_read,
2700 	.llseek		= seq_lseek,
2701 	.release	= seq_release_private,
2702 };
2703 
2704 static int __init proc_vmalloc_init(void)
2705 {
2706 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2707 	return 0;
2708 }
2709 module_init(proc_vmalloc_init);
2710 
2711 #endif
2712 
2713