1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 #include <linux/pgtable.h> 40 #include <linux/uaccess.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #include "internal.h" 47 #include "pgalloc-track.h" 48 49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 51 52 static int __init set_nohugeiomap(char *str) 53 { 54 ioremap_max_page_shift = PAGE_SHIFT; 55 return 0; 56 } 57 early_param("nohugeiomap", set_nohugeiomap); 58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 60 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 61 62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 63 static bool __ro_after_init vmap_allow_huge = true; 64 65 static int __init set_nohugevmalloc(char *str) 66 { 67 vmap_allow_huge = false; 68 return 0; 69 } 70 early_param("nohugevmalloc", set_nohugevmalloc); 71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 72 static const bool vmap_allow_huge = false; 73 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 74 75 bool is_vmalloc_addr(const void *x) 76 { 77 unsigned long addr = (unsigned long)kasan_reset_tag(x); 78 79 return addr >= VMALLOC_START && addr < VMALLOC_END; 80 } 81 EXPORT_SYMBOL(is_vmalloc_addr); 82 83 struct vfree_deferred { 84 struct llist_head list; 85 struct work_struct wq; 86 }; 87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 88 89 static void __vunmap(const void *, int); 90 91 static void free_work(struct work_struct *w) 92 { 93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 94 struct llist_node *t, *llnode; 95 96 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 97 __vunmap((void *)llnode, 1); 98 } 99 100 /*** Page table manipulation functions ***/ 101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 102 phys_addr_t phys_addr, pgprot_t prot, 103 unsigned int max_page_shift, pgtbl_mod_mask *mask) 104 { 105 pte_t *pte; 106 u64 pfn; 107 unsigned long size = PAGE_SIZE; 108 109 pfn = phys_addr >> PAGE_SHIFT; 110 pte = pte_alloc_kernel_track(pmd, addr, mask); 111 if (!pte) 112 return -ENOMEM; 113 do { 114 BUG_ON(!pte_none(*pte)); 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int ioremap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 return err; 324 } 325 326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 327 pgtbl_mod_mask *mask) 328 { 329 pte_t *pte; 330 331 pte = pte_offset_kernel(pmd, addr); 332 do { 333 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 334 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 335 } while (pte++, addr += PAGE_SIZE, addr != end); 336 *mask |= PGTBL_PTE_MODIFIED; 337 } 338 339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 340 pgtbl_mod_mask *mask) 341 { 342 pmd_t *pmd; 343 unsigned long next; 344 int cleared; 345 346 pmd = pmd_offset(pud, addr); 347 do { 348 next = pmd_addr_end(addr, end); 349 350 cleared = pmd_clear_huge(pmd); 351 if (cleared || pmd_bad(*pmd)) 352 *mask |= PGTBL_PMD_MODIFIED; 353 354 if (cleared) 355 continue; 356 if (pmd_none_or_clear_bad(pmd)) 357 continue; 358 vunmap_pte_range(pmd, addr, next, mask); 359 360 cond_resched(); 361 } while (pmd++, addr = next, addr != end); 362 } 363 364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 365 pgtbl_mod_mask *mask) 366 { 367 pud_t *pud; 368 unsigned long next; 369 int cleared; 370 371 pud = pud_offset(p4d, addr); 372 do { 373 next = pud_addr_end(addr, end); 374 375 cleared = pud_clear_huge(pud); 376 if (cleared || pud_bad(*pud)) 377 *mask |= PGTBL_PUD_MODIFIED; 378 379 if (cleared) 380 continue; 381 if (pud_none_or_clear_bad(pud)) 382 continue; 383 vunmap_pmd_range(pud, addr, next, mask); 384 } while (pud++, addr = next, addr != end); 385 } 386 387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 388 pgtbl_mod_mask *mask) 389 { 390 p4d_t *p4d; 391 unsigned long next; 392 393 p4d = p4d_offset(pgd, addr); 394 do { 395 next = p4d_addr_end(addr, end); 396 397 p4d_clear_huge(p4d); 398 if (p4d_bad(*p4d)) 399 *mask |= PGTBL_P4D_MODIFIED; 400 401 if (p4d_none_or_clear_bad(p4d)) 402 continue; 403 vunmap_pud_range(p4d, addr, next, mask); 404 } while (p4d++, addr = next, addr != end); 405 } 406 407 /* 408 * vunmap_range_noflush is similar to vunmap_range, but does not 409 * flush caches or TLBs. 410 * 411 * The caller is responsible for calling flush_cache_vmap() before calling 412 * this function, and flush_tlb_kernel_range after it has returned 413 * successfully (and before the addresses are expected to cause a page fault 414 * or be re-mapped for something else, if TLB flushes are being delayed or 415 * coalesced). 416 * 417 * This is an internal function only. Do not use outside mm/. 418 */ 419 void vunmap_range_noflush(unsigned long start, unsigned long end) 420 { 421 unsigned long next; 422 pgd_t *pgd; 423 unsigned long addr = start; 424 pgtbl_mod_mask mask = 0; 425 426 BUG_ON(addr >= end); 427 pgd = pgd_offset_k(addr); 428 do { 429 next = pgd_addr_end(addr, end); 430 if (pgd_bad(*pgd)) 431 mask |= PGTBL_PGD_MODIFIED; 432 if (pgd_none_or_clear_bad(pgd)) 433 continue; 434 vunmap_p4d_range(pgd, addr, next, &mask); 435 } while (pgd++, addr = next, addr != end); 436 437 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 438 arch_sync_kernel_mappings(start, end); 439 } 440 441 /** 442 * vunmap_range - unmap kernel virtual addresses 443 * @addr: start of the VM area to unmap 444 * @end: end of the VM area to unmap (non-inclusive) 445 * 446 * Clears any present PTEs in the virtual address range, flushes TLBs and 447 * caches. Any subsequent access to the address before it has been re-mapped 448 * is a kernel bug. 449 */ 450 void vunmap_range(unsigned long addr, unsigned long end) 451 { 452 flush_cache_vunmap(addr, end); 453 vunmap_range_noflush(addr, end); 454 flush_tlb_kernel_range(addr, end); 455 } 456 457 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 458 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 459 pgtbl_mod_mask *mask) 460 { 461 pte_t *pte; 462 463 /* 464 * nr is a running index into the array which helps higher level 465 * callers keep track of where we're up to. 466 */ 467 468 pte = pte_alloc_kernel_track(pmd, addr, mask); 469 if (!pte) 470 return -ENOMEM; 471 do { 472 struct page *page = pages[*nr]; 473 474 if (WARN_ON(!pte_none(*pte))) 475 return -EBUSY; 476 if (WARN_ON(!page)) 477 return -ENOMEM; 478 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 479 return -EINVAL; 480 481 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 482 (*nr)++; 483 } while (pte++, addr += PAGE_SIZE, addr != end); 484 *mask |= PGTBL_PTE_MODIFIED; 485 return 0; 486 } 487 488 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 489 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 490 pgtbl_mod_mask *mask) 491 { 492 pmd_t *pmd; 493 unsigned long next; 494 495 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 496 if (!pmd) 497 return -ENOMEM; 498 do { 499 next = pmd_addr_end(addr, end); 500 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 501 return -ENOMEM; 502 } while (pmd++, addr = next, addr != end); 503 return 0; 504 } 505 506 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 507 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 508 pgtbl_mod_mask *mask) 509 { 510 pud_t *pud; 511 unsigned long next; 512 513 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 514 if (!pud) 515 return -ENOMEM; 516 do { 517 next = pud_addr_end(addr, end); 518 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 519 return -ENOMEM; 520 } while (pud++, addr = next, addr != end); 521 return 0; 522 } 523 524 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 525 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 526 pgtbl_mod_mask *mask) 527 { 528 p4d_t *p4d; 529 unsigned long next; 530 531 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 532 if (!p4d) 533 return -ENOMEM; 534 do { 535 next = p4d_addr_end(addr, end); 536 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 537 return -ENOMEM; 538 } while (p4d++, addr = next, addr != end); 539 return 0; 540 } 541 542 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 543 pgprot_t prot, struct page **pages) 544 { 545 unsigned long start = addr; 546 pgd_t *pgd; 547 unsigned long next; 548 int err = 0; 549 int nr = 0; 550 pgtbl_mod_mask mask = 0; 551 552 BUG_ON(addr >= end); 553 pgd = pgd_offset_k(addr); 554 do { 555 next = pgd_addr_end(addr, end); 556 if (pgd_bad(*pgd)) 557 mask |= PGTBL_PGD_MODIFIED; 558 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 559 if (err) 560 return err; 561 } while (pgd++, addr = next, addr != end); 562 563 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 564 arch_sync_kernel_mappings(start, end); 565 566 return 0; 567 } 568 569 /* 570 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 571 * flush caches. 572 * 573 * The caller is responsible for calling flush_cache_vmap() after this 574 * function returns successfully and before the addresses are accessed. 575 * 576 * This is an internal function only. Do not use outside mm/. 577 */ 578 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 579 pgprot_t prot, struct page **pages, unsigned int page_shift) 580 { 581 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 582 583 WARN_ON(page_shift < PAGE_SHIFT); 584 585 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 586 page_shift == PAGE_SHIFT) 587 return vmap_small_pages_range_noflush(addr, end, prot, pages); 588 589 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 590 int err; 591 592 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 593 __pa(page_address(pages[i])), prot, 594 page_shift); 595 if (err) 596 return err; 597 598 addr += 1UL << page_shift; 599 } 600 601 return 0; 602 } 603 604 /** 605 * vmap_pages_range - map pages to a kernel virtual address 606 * @addr: start of the VM area to map 607 * @end: end of the VM area to map (non-inclusive) 608 * @prot: page protection flags to use 609 * @pages: pages to map (always PAGE_SIZE pages) 610 * @page_shift: maximum shift that the pages may be mapped with, @pages must 611 * be aligned and contiguous up to at least this shift. 612 * 613 * RETURNS: 614 * 0 on success, -errno on failure. 615 */ 616 static int vmap_pages_range(unsigned long addr, unsigned long end, 617 pgprot_t prot, struct page **pages, unsigned int page_shift) 618 { 619 int err; 620 621 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 622 flush_cache_vmap(addr, end); 623 return err; 624 } 625 626 int is_vmalloc_or_module_addr(const void *x) 627 { 628 /* 629 * ARM, x86-64 and sparc64 put modules in a special place, 630 * and fall back on vmalloc() if that fails. Others 631 * just put it in the vmalloc space. 632 */ 633 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 634 unsigned long addr = (unsigned long)kasan_reset_tag(x); 635 if (addr >= MODULES_VADDR && addr < MODULES_END) 636 return 1; 637 #endif 638 return is_vmalloc_addr(x); 639 } 640 641 /* 642 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 643 * return the tail page that corresponds to the base page address, which 644 * matches small vmap mappings. 645 */ 646 struct page *vmalloc_to_page(const void *vmalloc_addr) 647 { 648 unsigned long addr = (unsigned long) vmalloc_addr; 649 struct page *page = NULL; 650 pgd_t *pgd = pgd_offset_k(addr); 651 p4d_t *p4d; 652 pud_t *pud; 653 pmd_t *pmd; 654 pte_t *ptep, pte; 655 656 /* 657 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 658 * architectures that do not vmalloc module space 659 */ 660 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 661 662 if (pgd_none(*pgd)) 663 return NULL; 664 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 665 return NULL; /* XXX: no allowance for huge pgd */ 666 if (WARN_ON_ONCE(pgd_bad(*pgd))) 667 return NULL; 668 669 p4d = p4d_offset(pgd, addr); 670 if (p4d_none(*p4d)) 671 return NULL; 672 if (p4d_leaf(*p4d)) 673 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 674 if (WARN_ON_ONCE(p4d_bad(*p4d))) 675 return NULL; 676 677 pud = pud_offset(p4d, addr); 678 if (pud_none(*pud)) 679 return NULL; 680 if (pud_leaf(*pud)) 681 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 682 if (WARN_ON_ONCE(pud_bad(*pud))) 683 return NULL; 684 685 pmd = pmd_offset(pud, addr); 686 if (pmd_none(*pmd)) 687 return NULL; 688 if (pmd_leaf(*pmd)) 689 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 690 if (WARN_ON_ONCE(pmd_bad(*pmd))) 691 return NULL; 692 693 ptep = pte_offset_map(pmd, addr); 694 pte = *ptep; 695 if (pte_present(pte)) 696 page = pte_page(pte); 697 pte_unmap(ptep); 698 699 return page; 700 } 701 EXPORT_SYMBOL(vmalloc_to_page); 702 703 /* 704 * Map a vmalloc()-space virtual address to the physical page frame number. 705 */ 706 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 707 { 708 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 709 } 710 EXPORT_SYMBOL(vmalloc_to_pfn); 711 712 713 /*** Global kva allocator ***/ 714 715 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 716 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 717 718 719 static DEFINE_SPINLOCK(vmap_area_lock); 720 static DEFINE_SPINLOCK(free_vmap_area_lock); 721 /* Export for kexec only */ 722 LIST_HEAD(vmap_area_list); 723 static struct rb_root vmap_area_root = RB_ROOT; 724 static bool vmap_initialized __read_mostly; 725 726 static struct rb_root purge_vmap_area_root = RB_ROOT; 727 static LIST_HEAD(purge_vmap_area_list); 728 static DEFINE_SPINLOCK(purge_vmap_area_lock); 729 730 /* 731 * This kmem_cache is used for vmap_area objects. Instead of 732 * allocating from slab we reuse an object from this cache to 733 * make things faster. Especially in "no edge" splitting of 734 * free block. 735 */ 736 static struct kmem_cache *vmap_area_cachep; 737 738 /* 739 * This linked list is used in pair with free_vmap_area_root. 740 * It gives O(1) access to prev/next to perform fast coalescing. 741 */ 742 static LIST_HEAD(free_vmap_area_list); 743 744 /* 745 * This augment red-black tree represents the free vmap space. 746 * All vmap_area objects in this tree are sorted by va->va_start 747 * address. It is used for allocation and merging when a vmap 748 * object is released. 749 * 750 * Each vmap_area node contains a maximum available free block 751 * of its sub-tree, right or left. Therefore it is possible to 752 * find a lowest match of free area. 753 */ 754 static struct rb_root free_vmap_area_root = RB_ROOT; 755 756 /* 757 * Preload a CPU with one object for "no edge" split case. The 758 * aim is to get rid of allocations from the atomic context, thus 759 * to use more permissive allocation masks. 760 */ 761 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 762 763 static __always_inline unsigned long 764 va_size(struct vmap_area *va) 765 { 766 return (va->va_end - va->va_start); 767 } 768 769 static __always_inline unsigned long 770 get_subtree_max_size(struct rb_node *node) 771 { 772 struct vmap_area *va; 773 774 va = rb_entry_safe(node, struct vmap_area, rb_node); 775 return va ? va->subtree_max_size : 0; 776 } 777 778 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 779 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 780 781 static void purge_vmap_area_lazy(void); 782 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 783 static void drain_vmap_area_work(struct work_struct *work); 784 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 785 786 static atomic_long_t nr_vmalloc_pages; 787 788 unsigned long vmalloc_nr_pages(void) 789 { 790 return atomic_long_read(&nr_vmalloc_pages); 791 } 792 793 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 794 { 795 struct vmap_area *va = NULL; 796 struct rb_node *n = vmap_area_root.rb_node; 797 798 addr = (unsigned long)kasan_reset_tag((void *)addr); 799 800 while (n) { 801 struct vmap_area *tmp; 802 803 tmp = rb_entry(n, struct vmap_area, rb_node); 804 if (tmp->va_end > addr) { 805 va = tmp; 806 if (tmp->va_start <= addr) 807 break; 808 809 n = n->rb_left; 810 } else 811 n = n->rb_right; 812 } 813 814 return va; 815 } 816 817 static struct vmap_area *__find_vmap_area(unsigned long addr) 818 { 819 struct rb_node *n = vmap_area_root.rb_node; 820 821 addr = (unsigned long)kasan_reset_tag((void *)addr); 822 823 while (n) { 824 struct vmap_area *va; 825 826 va = rb_entry(n, struct vmap_area, rb_node); 827 if (addr < va->va_start) 828 n = n->rb_left; 829 else if (addr >= va->va_end) 830 n = n->rb_right; 831 else 832 return va; 833 } 834 835 return NULL; 836 } 837 838 /* 839 * This function returns back addresses of parent node 840 * and its left or right link for further processing. 841 * 842 * Otherwise NULL is returned. In that case all further 843 * steps regarding inserting of conflicting overlap range 844 * have to be declined and actually considered as a bug. 845 */ 846 static __always_inline struct rb_node ** 847 find_va_links(struct vmap_area *va, 848 struct rb_root *root, struct rb_node *from, 849 struct rb_node **parent) 850 { 851 struct vmap_area *tmp_va; 852 struct rb_node **link; 853 854 if (root) { 855 link = &root->rb_node; 856 if (unlikely(!*link)) { 857 *parent = NULL; 858 return link; 859 } 860 } else { 861 link = &from; 862 } 863 864 /* 865 * Go to the bottom of the tree. When we hit the last point 866 * we end up with parent rb_node and correct direction, i name 867 * it link, where the new va->rb_node will be attached to. 868 */ 869 do { 870 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 871 872 /* 873 * During the traversal we also do some sanity check. 874 * Trigger the BUG() if there are sides(left/right) 875 * or full overlaps. 876 */ 877 if (va->va_start < tmp_va->va_end && 878 va->va_end <= tmp_va->va_start) 879 link = &(*link)->rb_left; 880 else if (va->va_end > tmp_va->va_start && 881 va->va_start >= tmp_va->va_end) 882 link = &(*link)->rb_right; 883 else { 884 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 885 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 886 887 return NULL; 888 } 889 } while (*link); 890 891 *parent = &tmp_va->rb_node; 892 return link; 893 } 894 895 static __always_inline struct list_head * 896 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 897 { 898 struct list_head *list; 899 900 if (unlikely(!parent)) 901 /* 902 * The red-black tree where we try to find VA neighbors 903 * before merging or inserting is empty, i.e. it means 904 * there is no free vmap space. Normally it does not 905 * happen but we handle this case anyway. 906 */ 907 return NULL; 908 909 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 910 return (&parent->rb_right == link ? list->next : list); 911 } 912 913 static __always_inline void 914 link_va(struct vmap_area *va, struct rb_root *root, 915 struct rb_node *parent, struct rb_node **link, struct list_head *head) 916 { 917 /* 918 * VA is still not in the list, but we can 919 * identify its future previous list_head node. 920 */ 921 if (likely(parent)) { 922 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 923 if (&parent->rb_right != link) 924 head = head->prev; 925 } 926 927 /* Insert to the rb-tree */ 928 rb_link_node(&va->rb_node, parent, link); 929 if (root == &free_vmap_area_root) { 930 /* 931 * Some explanation here. Just perform simple insertion 932 * to the tree. We do not set va->subtree_max_size to 933 * its current size before calling rb_insert_augmented(). 934 * It is because of we populate the tree from the bottom 935 * to parent levels when the node _is_ in the tree. 936 * 937 * Therefore we set subtree_max_size to zero after insertion, 938 * to let __augment_tree_propagate_from() puts everything to 939 * the correct order later on. 940 */ 941 rb_insert_augmented(&va->rb_node, 942 root, &free_vmap_area_rb_augment_cb); 943 va->subtree_max_size = 0; 944 } else { 945 rb_insert_color(&va->rb_node, root); 946 } 947 948 /* Address-sort this list */ 949 list_add(&va->list, head); 950 } 951 952 static __always_inline void 953 unlink_va(struct vmap_area *va, struct rb_root *root) 954 { 955 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 956 return; 957 958 if (root == &free_vmap_area_root) 959 rb_erase_augmented(&va->rb_node, 960 root, &free_vmap_area_rb_augment_cb); 961 else 962 rb_erase(&va->rb_node, root); 963 964 list_del(&va->list); 965 RB_CLEAR_NODE(&va->rb_node); 966 } 967 968 #if DEBUG_AUGMENT_PROPAGATE_CHECK 969 /* 970 * Gets called when remove the node and rotate. 971 */ 972 static __always_inline unsigned long 973 compute_subtree_max_size(struct vmap_area *va) 974 { 975 return max3(va_size(va), 976 get_subtree_max_size(va->rb_node.rb_left), 977 get_subtree_max_size(va->rb_node.rb_right)); 978 } 979 980 static void 981 augment_tree_propagate_check(void) 982 { 983 struct vmap_area *va; 984 unsigned long computed_size; 985 986 list_for_each_entry(va, &free_vmap_area_list, list) { 987 computed_size = compute_subtree_max_size(va); 988 if (computed_size != va->subtree_max_size) 989 pr_emerg("tree is corrupted: %lu, %lu\n", 990 va_size(va), va->subtree_max_size); 991 } 992 } 993 #endif 994 995 /* 996 * This function populates subtree_max_size from bottom to upper 997 * levels starting from VA point. The propagation must be done 998 * when VA size is modified by changing its va_start/va_end. Or 999 * in case of newly inserting of VA to the tree. 1000 * 1001 * It means that __augment_tree_propagate_from() must be called: 1002 * - After VA has been inserted to the tree(free path); 1003 * - After VA has been shrunk(allocation path); 1004 * - After VA has been increased(merging path). 1005 * 1006 * Please note that, it does not mean that upper parent nodes 1007 * and their subtree_max_size are recalculated all the time up 1008 * to the root node. 1009 * 1010 * 4--8 1011 * /\ 1012 * / \ 1013 * / \ 1014 * 2--2 8--8 1015 * 1016 * For example if we modify the node 4, shrinking it to 2, then 1017 * no any modification is required. If we shrink the node 2 to 1 1018 * its subtree_max_size is updated only, and set to 1. If we shrink 1019 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1020 * node becomes 4--6. 1021 */ 1022 static __always_inline void 1023 augment_tree_propagate_from(struct vmap_area *va) 1024 { 1025 /* 1026 * Populate the tree from bottom towards the root until 1027 * the calculated maximum available size of checked node 1028 * is equal to its current one. 1029 */ 1030 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1031 1032 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1033 augment_tree_propagate_check(); 1034 #endif 1035 } 1036 1037 static void 1038 insert_vmap_area(struct vmap_area *va, 1039 struct rb_root *root, struct list_head *head) 1040 { 1041 struct rb_node **link; 1042 struct rb_node *parent; 1043 1044 link = find_va_links(va, root, NULL, &parent); 1045 if (link) 1046 link_va(va, root, parent, link, head); 1047 } 1048 1049 static void 1050 insert_vmap_area_augment(struct vmap_area *va, 1051 struct rb_node *from, struct rb_root *root, 1052 struct list_head *head) 1053 { 1054 struct rb_node **link; 1055 struct rb_node *parent; 1056 1057 if (from) 1058 link = find_va_links(va, NULL, from, &parent); 1059 else 1060 link = find_va_links(va, root, NULL, &parent); 1061 1062 if (link) { 1063 link_va(va, root, parent, link, head); 1064 augment_tree_propagate_from(va); 1065 } 1066 } 1067 1068 /* 1069 * Merge de-allocated chunk of VA memory with previous 1070 * and next free blocks. If coalesce is not done a new 1071 * free area is inserted. If VA has been merged, it is 1072 * freed. 1073 * 1074 * Please note, it can return NULL in case of overlap 1075 * ranges, followed by WARN() report. Despite it is a 1076 * buggy behaviour, a system can be alive and keep 1077 * ongoing. 1078 */ 1079 static __always_inline struct vmap_area * 1080 merge_or_add_vmap_area(struct vmap_area *va, 1081 struct rb_root *root, struct list_head *head) 1082 { 1083 struct vmap_area *sibling; 1084 struct list_head *next; 1085 struct rb_node **link; 1086 struct rb_node *parent; 1087 bool merged = false; 1088 1089 /* 1090 * Find a place in the tree where VA potentially will be 1091 * inserted, unless it is merged with its sibling/siblings. 1092 */ 1093 link = find_va_links(va, root, NULL, &parent); 1094 if (!link) 1095 return NULL; 1096 1097 /* 1098 * Get next node of VA to check if merging can be done. 1099 */ 1100 next = get_va_next_sibling(parent, link); 1101 if (unlikely(next == NULL)) 1102 goto insert; 1103 1104 /* 1105 * start end 1106 * | | 1107 * |<------VA------>|<-----Next----->| 1108 * | | 1109 * start end 1110 */ 1111 if (next != head) { 1112 sibling = list_entry(next, struct vmap_area, list); 1113 if (sibling->va_start == va->va_end) { 1114 sibling->va_start = va->va_start; 1115 1116 /* Free vmap_area object. */ 1117 kmem_cache_free(vmap_area_cachep, va); 1118 1119 /* Point to the new merged area. */ 1120 va = sibling; 1121 merged = true; 1122 } 1123 } 1124 1125 /* 1126 * start end 1127 * | | 1128 * |<-----Prev----->|<------VA------>| 1129 * | | 1130 * start end 1131 */ 1132 if (next->prev != head) { 1133 sibling = list_entry(next->prev, struct vmap_area, list); 1134 if (sibling->va_end == va->va_start) { 1135 /* 1136 * If both neighbors are coalesced, it is important 1137 * to unlink the "next" node first, followed by merging 1138 * with "previous" one. Otherwise the tree might not be 1139 * fully populated if a sibling's augmented value is 1140 * "normalized" because of rotation operations. 1141 */ 1142 if (merged) 1143 unlink_va(va, root); 1144 1145 sibling->va_end = va->va_end; 1146 1147 /* Free vmap_area object. */ 1148 kmem_cache_free(vmap_area_cachep, va); 1149 1150 /* Point to the new merged area. */ 1151 va = sibling; 1152 merged = true; 1153 } 1154 } 1155 1156 insert: 1157 if (!merged) 1158 link_va(va, root, parent, link, head); 1159 1160 return va; 1161 } 1162 1163 static __always_inline struct vmap_area * 1164 merge_or_add_vmap_area_augment(struct vmap_area *va, 1165 struct rb_root *root, struct list_head *head) 1166 { 1167 va = merge_or_add_vmap_area(va, root, head); 1168 if (va) 1169 augment_tree_propagate_from(va); 1170 1171 return va; 1172 } 1173 1174 static __always_inline bool 1175 is_within_this_va(struct vmap_area *va, unsigned long size, 1176 unsigned long align, unsigned long vstart) 1177 { 1178 unsigned long nva_start_addr; 1179 1180 if (va->va_start > vstart) 1181 nva_start_addr = ALIGN(va->va_start, align); 1182 else 1183 nva_start_addr = ALIGN(vstart, align); 1184 1185 /* Can be overflowed due to big size or alignment. */ 1186 if (nva_start_addr + size < nva_start_addr || 1187 nva_start_addr < vstart) 1188 return false; 1189 1190 return (nva_start_addr + size <= va->va_end); 1191 } 1192 1193 /* 1194 * Find the first free block(lowest start address) in the tree, 1195 * that will accomplish the request corresponding to passing 1196 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1197 * a search length is adjusted to account for worst case alignment 1198 * overhead. 1199 */ 1200 static __always_inline struct vmap_area * 1201 find_vmap_lowest_match(unsigned long size, unsigned long align, 1202 unsigned long vstart, bool adjust_search_size) 1203 { 1204 struct vmap_area *va; 1205 struct rb_node *node; 1206 unsigned long length; 1207 1208 /* Start from the root. */ 1209 node = free_vmap_area_root.rb_node; 1210 1211 /* Adjust the search size for alignment overhead. */ 1212 length = adjust_search_size ? size + align - 1 : size; 1213 1214 while (node) { 1215 va = rb_entry(node, struct vmap_area, rb_node); 1216 1217 if (get_subtree_max_size(node->rb_left) >= length && 1218 vstart < va->va_start) { 1219 node = node->rb_left; 1220 } else { 1221 if (is_within_this_va(va, size, align, vstart)) 1222 return va; 1223 1224 /* 1225 * Does not make sense to go deeper towards the right 1226 * sub-tree if it does not have a free block that is 1227 * equal or bigger to the requested search length. 1228 */ 1229 if (get_subtree_max_size(node->rb_right) >= length) { 1230 node = node->rb_right; 1231 continue; 1232 } 1233 1234 /* 1235 * OK. We roll back and find the first right sub-tree, 1236 * that will satisfy the search criteria. It can happen 1237 * due to "vstart" restriction or an alignment overhead 1238 * that is bigger then PAGE_SIZE. 1239 */ 1240 while ((node = rb_parent(node))) { 1241 va = rb_entry(node, struct vmap_area, rb_node); 1242 if (is_within_this_va(va, size, align, vstart)) 1243 return va; 1244 1245 if (get_subtree_max_size(node->rb_right) >= length && 1246 vstart <= va->va_start) { 1247 /* 1248 * Shift the vstart forward. Please note, we update it with 1249 * parent's start address adding "1" because we do not want 1250 * to enter same sub-tree after it has already been checked 1251 * and no suitable free block found there. 1252 */ 1253 vstart = va->va_start + 1; 1254 node = node->rb_right; 1255 break; 1256 } 1257 } 1258 } 1259 } 1260 1261 return NULL; 1262 } 1263 1264 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1265 #include <linux/random.h> 1266 1267 static struct vmap_area * 1268 find_vmap_lowest_linear_match(unsigned long size, 1269 unsigned long align, unsigned long vstart) 1270 { 1271 struct vmap_area *va; 1272 1273 list_for_each_entry(va, &free_vmap_area_list, list) { 1274 if (!is_within_this_va(va, size, align, vstart)) 1275 continue; 1276 1277 return va; 1278 } 1279 1280 return NULL; 1281 } 1282 1283 static void 1284 find_vmap_lowest_match_check(unsigned long size, unsigned long align) 1285 { 1286 struct vmap_area *va_1, *va_2; 1287 unsigned long vstart; 1288 unsigned int rnd; 1289 1290 get_random_bytes(&rnd, sizeof(rnd)); 1291 vstart = VMALLOC_START + rnd; 1292 1293 va_1 = find_vmap_lowest_match(size, align, vstart, false); 1294 va_2 = find_vmap_lowest_linear_match(size, align, vstart); 1295 1296 if (va_1 != va_2) 1297 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1298 va_1, va_2, vstart); 1299 } 1300 #endif 1301 1302 enum fit_type { 1303 NOTHING_FIT = 0, 1304 FL_FIT_TYPE = 1, /* full fit */ 1305 LE_FIT_TYPE = 2, /* left edge fit */ 1306 RE_FIT_TYPE = 3, /* right edge fit */ 1307 NE_FIT_TYPE = 4 /* no edge fit */ 1308 }; 1309 1310 static __always_inline enum fit_type 1311 classify_va_fit_type(struct vmap_area *va, 1312 unsigned long nva_start_addr, unsigned long size) 1313 { 1314 enum fit_type type; 1315 1316 /* Check if it is within VA. */ 1317 if (nva_start_addr < va->va_start || 1318 nva_start_addr + size > va->va_end) 1319 return NOTHING_FIT; 1320 1321 /* Now classify. */ 1322 if (va->va_start == nva_start_addr) { 1323 if (va->va_end == nva_start_addr + size) 1324 type = FL_FIT_TYPE; 1325 else 1326 type = LE_FIT_TYPE; 1327 } else if (va->va_end == nva_start_addr + size) { 1328 type = RE_FIT_TYPE; 1329 } else { 1330 type = NE_FIT_TYPE; 1331 } 1332 1333 return type; 1334 } 1335 1336 static __always_inline int 1337 adjust_va_to_fit_type(struct vmap_area *va, 1338 unsigned long nva_start_addr, unsigned long size, 1339 enum fit_type type) 1340 { 1341 struct vmap_area *lva = NULL; 1342 1343 if (type == FL_FIT_TYPE) { 1344 /* 1345 * No need to split VA, it fully fits. 1346 * 1347 * | | 1348 * V NVA V 1349 * |---------------| 1350 */ 1351 unlink_va(va, &free_vmap_area_root); 1352 kmem_cache_free(vmap_area_cachep, va); 1353 } else if (type == LE_FIT_TYPE) { 1354 /* 1355 * Split left edge of fit VA. 1356 * 1357 * | | 1358 * V NVA V R 1359 * |-------|-------| 1360 */ 1361 va->va_start += size; 1362 } else if (type == RE_FIT_TYPE) { 1363 /* 1364 * Split right edge of fit VA. 1365 * 1366 * | | 1367 * L V NVA V 1368 * |-------|-------| 1369 */ 1370 va->va_end = nva_start_addr; 1371 } else if (type == NE_FIT_TYPE) { 1372 /* 1373 * Split no edge of fit VA. 1374 * 1375 * | | 1376 * L V NVA V R 1377 * |---|-------|---| 1378 */ 1379 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1380 if (unlikely(!lva)) { 1381 /* 1382 * For percpu allocator we do not do any pre-allocation 1383 * and leave it as it is. The reason is it most likely 1384 * never ends up with NE_FIT_TYPE splitting. In case of 1385 * percpu allocations offsets and sizes are aligned to 1386 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1387 * are its main fitting cases. 1388 * 1389 * There are a few exceptions though, as an example it is 1390 * a first allocation (early boot up) when we have "one" 1391 * big free space that has to be split. 1392 * 1393 * Also we can hit this path in case of regular "vmap" 1394 * allocations, if "this" current CPU was not preloaded. 1395 * See the comment in alloc_vmap_area() why. If so, then 1396 * GFP_NOWAIT is used instead to get an extra object for 1397 * split purpose. That is rare and most time does not 1398 * occur. 1399 * 1400 * What happens if an allocation gets failed. Basically, 1401 * an "overflow" path is triggered to purge lazily freed 1402 * areas to free some memory, then, the "retry" path is 1403 * triggered to repeat one more time. See more details 1404 * in alloc_vmap_area() function. 1405 */ 1406 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1407 if (!lva) 1408 return -1; 1409 } 1410 1411 /* 1412 * Build the remainder. 1413 */ 1414 lva->va_start = va->va_start; 1415 lva->va_end = nva_start_addr; 1416 1417 /* 1418 * Shrink this VA to remaining size. 1419 */ 1420 va->va_start = nva_start_addr + size; 1421 } else { 1422 return -1; 1423 } 1424 1425 if (type != FL_FIT_TYPE) { 1426 augment_tree_propagate_from(va); 1427 1428 if (lva) /* type == NE_FIT_TYPE */ 1429 insert_vmap_area_augment(lva, &va->rb_node, 1430 &free_vmap_area_root, &free_vmap_area_list); 1431 } 1432 1433 return 0; 1434 } 1435 1436 /* 1437 * Returns a start address of the newly allocated area, if success. 1438 * Otherwise a vend is returned that indicates failure. 1439 */ 1440 static __always_inline unsigned long 1441 __alloc_vmap_area(unsigned long size, unsigned long align, 1442 unsigned long vstart, unsigned long vend) 1443 { 1444 bool adjust_search_size = true; 1445 unsigned long nva_start_addr; 1446 struct vmap_area *va; 1447 enum fit_type type; 1448 int ret; 1449 1450 /* 1451 * Do not adjust when: 1452 * a) align <= PAGE_SIZE, because it does not make any sense. 1453 * All blocks(their start addresses) are at least PAGE_SIZE 1454 * aligned anyway; 1455 * b) a short range where a requested size corresponds to exactly 1456 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1457 * With adjusted search length an allocation would not succeed. 1458 */ 1459 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1460 adjust_search_size = false; 1461 1462 va = find_vmap_lowest_match(size, align, vstart, adjust_search_size); 1463 if (unlikely(!va)) 1464 return vend; 1465 1466 if (va->va_start > vstart) 1467 nva_start_addr = ALIGN(va->va_start, align); 1468 else 1469 nva_start_addr = ALIGN(vstart, align); 1470 1471 /* Check the "vend" restriction. */ 1472 if (nva_start_addr + size > vend) 1473 return vend; 1474 1475 /* Classify what we have found. */ 1476 type = classify_va_fit_type(va, nva_start_addr, size); 1477 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1478 return vend; 1479 1480 /* Update the free vmap_area. */ 1481 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1482 if (ret) 1483 return vend; 1484 1485 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1486 find_vmap_lowest_match_check(size, align); 1487 #endif 1488 1489 return nva_start_addr; 1490 } 1491 1492 /* 1493 * Free a region of KVA allocated by alloc_vmap_area 1494 */ 1495 static void free_vmap_area(struct vmap_area *va) 1496 { 1497 /* 1498 * Remove from the busy tree/list. 1499 */ 1500 spin_lock(&vmap_area_lock); 1501 unlink_va(va, &vmap_area_root); 1502 spin_unlock(&vmap_area_lock); 1503 1504 /* 1505 * Insert/Merge it back to the free tree/list. 1506 */ 1507 spin_lock(&free_vmap_area_lock); 1508 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1509 spin_unlock(&free_vmap_area_lock); 1510 } 1511 1512 static inline void 1513 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1514 { 1515 struct vmap_area *va = NULL; 1516 1517 /* 1518 * Preload this CPU with one extra vmap_area object. It is used 1519 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1520 * a CPU that does an allocation is preloaded. 1521 * 1522 * We do it in non-atomic context, thus it allows us to use more 1523 * permissive allocation masks to be more stable under low memory 1524 * condition and high memory pressure. 1525 */ 1526 if (!this_cpu_read(ne_fit_preload_node)) 1527 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1528 1529 spin_lock(lock); 1530 1531 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1532 kmem_cache_free(vmap_area_cachep, va); 1533 } 1534 1535 /* 1536 * Allocate a region of KVA of the specified size and alignment, within the 1537 * vstart and vend. 1538 */ 1539 static struct vmap_area *alloc_vmap_area(unsigned long size, 1540 unsigned long align, 1541 unsigned long vstart, unsigned long vend, 1542 int node, gfp_t gfp_mask) 1543 { 1544 struct vmap_area *va; 1545 unsigned long freed; 1546 unsigned long addr; 1547 int purged = 0; 1548 int ret; 1549 1550 BUG_ON(!size); 1551 BUG_ON(offset_in_page(size)); 1552 BUG_ON(!is_power_of_2(align)); 1553 1554 if (unlikely(!vmap_initialized)) 1555 return ERR_PTR(-EBUSY); 1556 1557 might_sleep(); 1558 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1559 1560 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1561 if (unlikely(!va)) 1562 return ERR_PTR(-ENOMEM); 1563 1564 /* 1565 * Only scan the relevant parts containing pointers to other objects 1566 * to avoid false negatives. 1567 */ 1568 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1569 1570 retry: 1571 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1572 addr = __alloc_vmap_area(size, align, vstart, vend); 1573 spin_unlock(&free_vmap_area_lock); 1574 1575 /* 1576 * If an allocation fails, the "vend" address is 1577 * returned. Therefore trigger the overflow path. 1578 */ 1579 if (unlikely(addr == vend)) 1580 goto overflow; 1581 1582 va->va_start = addr; 1583 va->va_end = addr + size; 1584 va->vm = NULL; 1585 1586 spin_lock(&vmap_area_lock); 1587 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1588 spin_unlock(&vmap_area_lock); 1589 1590 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1591 BUG_ON(va->va_start < vstart); 1592 BUG_ON(va->va_end > vend); 1593 1594 ret = kasan_populate_vmalloc(addr, size); 1595 if (ret) { 1596 free_vmap_area(va); 1597 return ERR_PTR(ret); 1598 } 1599 1600 return va; 1601 1602 overflow: 1603 if (!purged) { 1604 purge_vmap_area_lazy(); 1605 purged = 1; 1606 goto retry; 1607 } 1608 1609 freed = 0; 1610 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1611 1612 if (freed > 0) { 1613 purged = 0; 1614 goto retry; 1615 } 1616 1617 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1618 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1619 size); 1620 1621 kmem_cache_free(vmap_area_cachep, va); 1622 return ERR_PTR(-EBUSY); 1623 } 1624 1625 int register_vmap_purge_notifier(struct notifier_block *nb) 1626 { 1627 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1628 } 1629 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1630 1631 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1632 { 1633 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1634 } 1635 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1636 1637 /* 1638 * lazy_max_pages is the maximum amount of virtual address space we gather up 1639 * before attempting to purge with a TLB flush. 1640 * 1641 * There is a tradeoff here: a larger number will cover more kernel page tables 1642 * and take slightly longer to purge, but it will linearly reduce the number of 1643 * global TLB flushes that must be performed. It would seem natural to scale 1644 * this number up linearly with the number of CPUs (because vmapping activity 1645 * could also scale linearly with the number of CPUs), however it is likely 1646 * that in practice, workloads might be constrained in other ways that mean 1647 * vmap activity will not scale linearly with CPUs. Also, I want to be 1648 * conservative and not introduce a big latency on huge systems, so go with 1649 * a less aggressive log scale. It will still be an improvement over the old 1650 * code, and it will be simple to change the scale factor if we find that it 1651 * becomes a problem on bigger systems. 1652 */ 1653 static unsigned long lazy_max_pages(void) 1654 { 1655 unsigned int log; 1656 1657 log = fls(num_online_cpus()); 1658 1659 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1660 } 1661 1662 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1663 1664 /* 1665 * Serialize vmap purging. There is no actual critical section protected 1666 * by this look, but we want to avoid concurrent calls for performance 1667 * reasons and to make the pcpu_get_vm_areas more deterministic. 1668 */ 1669 static DEFINE_MUTEX(vmap_purge_lock); 1670 1671 /* for per-CPU blocks */ 1672 static void purge_fragmented_blocks_allcpus(void); 1673 1674 /* 1675 * Purges all lazily-freed vmap areas. 1676 */ 1677 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1678 { 1679 unsigned long resched_threshold; 1680 struct list_head local_pure_list; 1681 struct vmap_area *va, *n_va; 1682 1683 lockdep_assert_held(&vmap_purge_lock); 1684 1685 spin_lock(&purge_vmap_area_lock); 1686 purge_vmap_area_root = RB_ROOT; 1687 list_replace_init(&purge_vmap_area_list, &local_pure_list); 1688 spin_unlock(&purge_vmap_area_lock); 1689 1690 if (unlikely(list_empty(&local_pure_list))) 1691 return false; 1692 1693 start = min(start, 1694 list_first_entry(&local_pure_list, 1695 struct vmap_area, list)->va_start); 1696 1697 end = max(end, 1698 list_last_entry(&local_pure_list, 1699 struct vmap_area, list)->va_end); 1700 1701 flush_tlb_kernel_range(start, end); 1702 resched_threshold = lazy_max_pages() << 1; 1703 1704 spin_lock(&free_vmap_area_lock); 1705 list_for_each_entry_safe(va, n_va, &local_pure_list, list) { 1706 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1707 unsigned long orig_start = va->va_start; 1708 unsigned long orig_end = va->va_end; 1709 1710 /* 1711 * Finally insert or merge lazily-freed area. It is 1712 * detached and there is no need to "unlink" it from 1713 * anything. 1714 */ 1715 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1716 &free_vmap_area_list); 1717 1718 if (!va) 1719 continue; 1720 1721 if (is_vmalloc_or_module_addr((void *)orig_start)) 1722 kasan_release_vmalloc(orig_start, orig_end, 1723 va->va_start, va->va_end); 1724 1725 atomic_long_sub(nr, &vmap_lazy_nr); 1726 1727 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1728 cond_resched_lock(&free_vmap_area_lock); 1729 } 1730 spin_unlock(&free_vmap_area_lock); 1731 return true; 1732 } 1733 1734 /* 1735 * Kick off a purge of the outstanding lazy areas. 1736 */ 1737 static void purge_vmap_area_lazy(void) 1738 { 1739 mutex_lock(&vmap_purge_lock); 1740 purge_fragmented_blocks_allcpus(); 1741 __purge_vmap_area_lazy(ULONG_MAX, 0); 1742 mutex_unlock(&vmap_purge_lock); 1743 } 1744 1745 static void drain_vmap_area_work(struct work_struct *work) 1746 { 1747 unsigned long nr_lazy; 1748 1749 do { 1750 mutex_lock(&vmap_purge_lock); 1751 __purge_vmap_area_lazy(ULONG_MAX, 0); 1752 mutex_unlock(&vmap_purge_lock); 1753 1754 /* Recheck if further work is required. */ 1755 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1756 } while (nr_lazy > lazy_max_pages()); 1757 } 1758 1759 /* 1760 * Free a vmap area, caller ensuring that the area has been unmapped 1761 * and flush_cache_vunmap had been called for the correct range 1762 * previously. 1763 */ 1764 static void free_vmap_area_noflush(struct vmap_area *va) 1765 { 1766 unsigned long nr_lazy; 1767 1768 spin_lock(&vmap_area_lock); 1769 unlink_va(va, &vmap_area_root); 1770 spin_unlock(&vmap_area_lock); 1771 1772 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1773 PAGE_SHIFT, &vmap_lazy_nr); 1774 1775 /* 1776 * Merge or place it to the purge tree/list. 1777 */ 1778 spin_lock(&purge_vmap_area_lock); 1779 merge_or_add_vmap_area(va, 1780 &purge_vmap_area_root, &purge_vmap_area_list); 1781 spin_unlock(&purge_vmap_area_lock); 1782 1783 /* After this point, we may free va at any time */ 1784 if (unlikely(nr_lazy > lazy_max_pages())) 1785 schedule_work(&drain_vmap_work); 1786 } 1787 1788 /* 1789 * Free and unmap a vmap area 1790 */ 1791 static void free_unmap_vmap_area(struct vmap_area *va) 1792 { 1793 flush_cache_vunmap(va->va_start, va->va_end); 1794 vunmap_range_noflush(va->va_start, va->va_end); 1795 if (debug_pagealloc_enabled_static()) 1796 flush_tlb_kernel_range(va->va_start, va->va_end); 1797 1798 free_vmap_area_noflush(va); 1799 } 1800 1801 struct vmap_area *find_vmap_area(unsigned long addr) 1802 { 1803 struct vmap_area *va; 1804 1805 spin_lock(&vmap_area_lock); 1806 va = __find_vmap_area(addr); 1807 spin_unlock(&vmap_area_lock); 1808 1809 return va; 1810 } 1811 1812 /*** Per cpu kva allocator ***/ 1813 1814 /* 1815 * vmap space is limited especially on 32 bit architectures. Ensure there is 1816 * room for at least 16 percpu vmap blocks per CPU. 1817 */ 1818 /* 1819 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1820 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1821 * instead (we just need a rough idea) 1822 */ 1823 #if BITS_PER_LONG == 32 1824 #define VMALLOC_SPACE (128UL*1024*1024) 1825 #else 1826 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1827 #endif 1828 1829 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1830 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1831 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1832 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1833 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1834 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1835 #define VMAP_BBMAP_BITS \ 1836 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1837 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1838 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1839 1840 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1841 1842 struct vmap_block_queue { 1843 spinlock_t lock; 1844 struct list_head free; 1845 }; 1846 1847 struct vmap_block { 1848 spinlock_t lock; 1849 struct vmap_area *va; 1850 unsigned long free, dirty; 1851 unsigned long dirty_min, dirty_max; /*< dirty range */ 1852 struct list_head free_list; 1853 struct rcu_head rcu_head; 1854 struct list_head purge; 1855 }; 1856 1857 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1858 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1859 1860 /* 1861 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1862 * in the free path. Could get rid of this if we change the API to return a 1863 * "cookie" from alloc, to be passed to free. But no big deal yet. 1864 */ 1865 static DEFINE_XARRAY(vmap_blocks); 1866 1867 /* 1868 * We should probably have a fallback mechanism to allocate virtual memory 1869 * out of partially filled vmap blocks. However vmap block sizing should be 1870 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1871 * big problem. 1872 */ 1873 1874 static unsigned long addr_to_vb_idx(unsigned long addr) 1875 { 1876 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1877 addr /= VMAP_BLOCK_SIZE; 1878 return addr; 1879 } 1880 1881 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1882 { 1883 unsigned long addr; 1884 1885 addr = va_start + (pages_off << PAGE_SHIFT); 1886 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1887 return (void *)addr; 1888 } 1889 1890 /** 1891 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1892 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1893 * @order: how many 2^order pages should be occupied in newly allocated block 1894 * @gfp_mask: flags for the page level allocator 1895 * 1896 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1897 */ 1898 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1899 { 1900 struct vmap_block_queue *vbq; 1901 struct vmap_block *vb; 1902 struct vmap_area *va; 1903 unsigned long vb_idx; 1904 int node, err; 1905 void *vaddr; 1906 1907 node = numa_node_id(); 1908 1909 vb = kmalloc_node(sizeof(struct vmap_block), 1910 gfp_mask & GFP_RECLAIM_MASK, node); 1911 if (unlikely(!vb)) 1912 return ERR_PTR(-ENOMEM); 1913 1914 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1915 VMALLOC_START, VMALLOC_END, 1916 node, gfp_mask); 1917 if (IS_ERR(va)) { 1918 kfree(vb); 1919 return ERR_CAST(va); 1920 } 1921 1922 vaddr = vmap_block_vaddr(va->va_start, 0); 1923 spin_lock_init(&vb->lock); 1924 vb->va = va; 1925 /* At least something should be left free */ 1926 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1927 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1928 vb->dirty = 0; 1929 vb->dirty_min = VMAP_BBMAP_BITS; 1930 vb->dirty_max = 0; 1931 INIT_LIST_HEAD(&vb->free_list); 1932 1933 vb_idx = addr_to_vb_idx(va->va_start); 1934 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1935 if (err) { 1936 kfree(vb); 1937 free_vmap_area(va); 1938 return ERR_PTR(err); 1939 } 1940 1941 vbq = raw_cpu_ptr(&vmap_block_queue); 1942 spin_lock(&vbq->lock); 1943 list_add_tail_rcu(&vb->free_list, &vbq->free); 1944 spin_unlock(&vbq->lock); 1945 1946 return vaddr; 1947 } 1948 1949 static void free_vmap_block(struct vmap_block *vb) 1950 { 1951 struct vmap_block *tmp; 1952 1953 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 1954 BUG_ON(tmp != vb); 1955 1956 free_vmap_area_noflush(vb->va); 1957 kfree_rcu(vb, rcu_head); 1958 } 1959 1960 static void purge_fragmented_blocks(int cpu) 1961 { 1962 LIST_HEAD(purge); 1963 struct vmap_block *vb; 1964 struct vmap_block *n_vb; 1965 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1966 1967 rcu_read_lock(); 1968 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1969 1970 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1971 continue; 1972 1973 spin_lock(&vb->lock); 1974 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1975 vb->free = 0; /* prevent further allocs after releasing lock */ 1976 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1977 vb->dirty_min = 0; 1978 vb->dirty_max = VMAP_BBMAP_BITS; 1979 spin_lock(&vbq->lock); 1980 list_del_rcu(&vb->free_list); 1981 spin_unlock(&vbq->lock); 1982 spin_unlock(&vb->lock); 1983 list_add_tail(&vb->purge, &purge); 1984 } else 1985 spin_unlock(&vb->lock); 1986 } 1987 rcu_read_unlock(); 1988 1989 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1990 list_del(&vb->purge); 1991 free_vmap_block(vb); 1992 } 1993 } 1994 1995 static void purge_fragmented_blocks_allcpus(void) 1996 { 1997 int cpu; 1998 1999 for_each_possible_cpu(cpu) 2000 purge_fragmented_blocks(cpu); 2001 } 2002 2003 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2004 { 2005 struct vmap_block_queue *vbq; 2006 struct vmap_block *vb; 2007 void *vaddr = NULL; 2008 unsigned int order; 2009 2010 BUG_ON(offset_in_page(size)); 2011 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2012 if (WARN_ON(size == 0)) { 2013 /* 2014 * Allocating 0 bytes isn't what caller wants since 2015 * get_order(0) returns funny result. Just warn and terminate 2016 * early. 2017 */ 2018 return NULL; 2019 } 2020 order = get_order(size); 2021 2022 rcu_read_lock(); 2023 vbq = raw_cpu_ptr(&vmap_block_queue); 2024 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2025 unsigned long pages_off; 2026 2027 spin_lock(&vb->lock); 2028 if (vb->free < (1UL << order)) { 2029 spin_unlock(&vb->lock); 2030 continue; 2031 } 2032 2033 pages_off = VMAP_BBMAP_BITS - vb->free; 2034 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2035 vb->free -= 1UL << order; 2036 if (vb->free == 0) { 2037 spin_lock(&vbq->lock); 2038 list_del_rcu(&vb->free_list); 2039 spin_unlock(&vbq->lock); 2040 } 2041 2042 spin_unlock(&vb->lock); 2043 break; 2044 } 2045 2046 rcu_read_unlock(); 2047 2048 /* Allocate new block if nothing was found */ 2049 if (!vaddr) 2050 vaddr = new_vmap_block(order, gfp_mask); 2051 2052 return vaddr; 2053 } 2054 2055 static void vb_free(unsigned long addr, unsigned long size) 2056 { 2057 unsigned long offset; 2058 unsigned int order; 2059 struct vmap_block *vb; 2060 2061 BUG_ON(offset_in_page(size)); 2062 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2063 2064 flush_cache_vunmap(addr, addr + size); 2065 2066 order = get_order(size); 2067 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2068 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2069 2070 vunmap_range_noflush(addr, addr + size); 2071 2072 if (debug_pagealloc_enabled_static()) 2073 flush_tlb_kernel_range(addr, addr + size); 2074 2075 spin_lock(&vb->lock); 2076 2077 /* Expand dirty range */ 2078 vb->dirty_min = min(vb->dirty_min, offset); 2079 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2080 2081 vb->dirty += 1UL << order; 2082 if (vb->dirty == VMAP_BBMAP_BITS) { 2083 BUG_ON(vb->free); 2084 spin_unlock(&vb->lock); 2085 free_vmap_block(vb); 2086 } else 2087 spin_unlock(&vb->lock); 2088 } 2089 2090 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2091 { 2092 int cpu; 2093 2094 if (unlikely(!vmap_initialized)) 2095 return; 2096 2097 might_sleep(); 2098 2099 for_each_possible_cpu(cpu) { 2100 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2101 struct vmap_block *vb; 2102 2103 rcu_read_lock(); 2104 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2105 spin_lock(&vb->lock); 2106 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2107 unsigned long va_start = vb->va->va_start; 2108 unsigned long s, e; 2109 2110 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2111 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2112 2113 start = min(s, start); 2114 end = max(e, end); 2115 2116 flush = 1; 2117 } 2118 spin_unlock(&vb->lock); 2119 } 2120 rcu_read_unlock(); 2121 } 2122 2123 mutex_lock(&vmap_purge_lock); 2124 purge_fragmented_blocks_allcpus(); 2125 if (!__purge_vmap_area_lazy(start, end) && flush) 2126 flush_tlb_kernel_range(start, end); 2127 mutex_unlock(&vmap_purge_lock); 2128 } 2129 2130 /** 2131 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2132 * 2133 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2134 * to amortize TLB flushing overheads. What this means is that any page you 2135 * have now, may, in a former life, have been mapped into kernel virtual 2136 * address by the vmap layer and so there might be some CPUs with TLB entries 2137 * still referencing that page (additional to the regular 1:1 kernel mapping). 2138 * 2139 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2140 * be sure that none of the pages we have control over will have any aliases 2141 * from the vmap layer. 2142 */ 2143 void vm_unmap_aliases(void) 2144 { 2145 unsigned long start = ULONG_MAX, end = 0; 2146 int flush = 0; 2147 2148 _vm_unmap_aliases(start, end, flush); 2149 } 2150 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2151 2152 /** 2153 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2154 * @mem: the pointer returned by vm_map_ram 2155 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2156 */ 2157 void vm_unmap_ram(const void *mem, unsigned int count) 2158 { 2159 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2160 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2161 struct vmap_area *va; 2162 2163 might_sleep(); 2164 BUG_ON(!addr); 2165 BUG_ON(addr < VMALLOC_START); 2166 BUG_ON(addr > VMALLOC_END); 2167 BUG_ON(!PAGE_ALIGNED(addr)); 2168 2169 kasan_poison_vmalloc(mem, size); 2170 2171 if (likely(count <= VMAP_MAX_ALLOC)) { 2172 debug_check_no_locks_freed(mem, size); 2173 vb_free(addr, size); 2174 return; 2175 } 2176 2177 va = find_vmap_area(addr); 2178 BUG_ON(!va); 2179 debug_check_no_locks_freed((void *)va->va_start, 2180 (va->va_end - va->va_start)); 2181 free_unmap_vmap_area(va); 2182 } 2183 EXPORT_SYMBOL(vm_unmap_ram); 2184 2185 /** 2186 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2187 * @pages: an array of pointers to the pages to be mapped 2188 * @count: number of pages 2189 * @node: prefer to allocate data structures on this node 2190 * 2191 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2192 * faster than vmap so it's good. But if you mix long-life and short-life 2193 * objects with vm_map_ram(), it could consume lots of address space through 2194 * fragmentation (especially on a 32bit machine). You could see failures in 2195 * the end. Please use this function for short-lived objects. 2196 * 2197 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2198 */ 2199 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2200 { 2201 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2202 unsigned long addr; 2203 void *mem; 2204 2205 if (likely(count <= VMAP_MAX_ALLOC)) { 2206 mem = vb_alloc(size, GFP_KERNEL); 2207 if (IS_ERR(mem)) 2208 return NULL; 2209 addr = (unsigned long)mem; 2210 } else { 2211 struct vmap_area *va; 2212 va = alloc_vmap_area(size, PAGE_SIZE, 2213 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2214 if (IS_ERR(va)) 2215 return NULL; 2216 2217 addr = va->va_start; 2218 mem = (void *)addr; 2219 } 2220 2221 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2222 pages, PAGE_SHIFT) < 0) { 2223 vm_unmap_ram(mem, count); 2224 return NULL; 2225 } 2226 2227 /* 2228 * Mark the pages as accessible, now that they are mapped. 2229 * With hardware tag-based KASAN, marking is skipped for 2230 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2231 */ 2232 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2233 2234 return mem; 2235 } 2236 EXPORT_SYMBOL(vm_map_ram); 2237 2238 static struct vm_struct *vmlist __initdata; 2239 2240 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2241 { 2242 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2243 return vm->page_order; 2244 #else 2245 return 0; 2246 #endif 2247 } 2248 2249 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2250 { 2251 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2252 vm->page_order = order; 2253 #else 2254 BUG_ON(order != 0); 2255 #endif 2256 } 2257 2258 /** 2259 * vm_area_add_early - add vmap area early during boot 2260 * @vm: vm_struct to add 2261 * 2262 * This function is used to add fixed kernel vm area to vmlist before 2263 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2264 * should contain proper values and the other fields should be zero. 2265 * 2266 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2267 */ 2268 void __init vm_area_add_early(struct vm_struct *vm) 2269 { 2270 struct vm_struct *tmp, **p; 2271 2272 BUG_ON(vmap_initialized); 2273 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2274 if (tmp->addr >= vm->addr) { 2275 BUG_ON(tmp->addr < vm->addr + vm->size); 2276 break; 2277 } else 2278 BUG_ON(tmp->addr + tmp->size > vm->addr); 2279 } 2280 vm->next = *p; 2281 *p = vm; 2282 } 2283 2284 /** 2285 * vm_area_register_early - register vmap area early during boot 2286 * @vm: vm_struct to register 2287 * @align: requested alignment 2288 * 2289 * This function is used to register kernel vm area before 2290 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2291 * proper values on entry and other fields should be zero. On return, 2292 * vm->addr contains the allocated address. 2293 * 2294 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2295 */ 2296 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2297 { 2298 unsigned long addr = ALIGN(VMALLOC_START, align); 2299 struct vm_struct *cur, **p; 2300 2301 BUG_ON(vmap_initialized); 2302 2303 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2304 if ((unsigned long)cur->addr - addr >= vm->size) 2305 break; 2306 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2307 } 2308 2309 BUG_ON(addr > VMALLOC_END - vm->size); 2310 vm->addr = (void *)addr; 2311 vm->next = *p; 2312 *p = vm; 2313 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2314 } 2315 2316 static void vmap_init_free_space(void) 2317 { 2318 unsigned long vmap_start = 1; 2319 const unsigned long vmap_end = ULONG_MAX; 2320 struct vmap_area *busy, *free; 2321 2322 /* 2323 * B F B B B F 2324 * -|-----|.....|-----|-----|-----|.....|- 2325 * | The KVA space | 2326 * |<--------------------------------->| 2327 */ 2328 list_for_each_entry(busy, &vmap_area_list, list) { 2329 if (busy->va_start - vmap_start > 0) { 2330 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2331 if (!WARN_ON_ONCE(!free)) { 2332 free->va_start = vmap_start; 2333 free->va_end = busy->va_start; 2334 2335 insert_vmap_area_augment(free, NULL, 2336 &free_vmap_area_root, 2337 &free_vmap_area_list); 2338 } 2339 } 2340 2341 vmap_start = busy->va_end; 2342 } 2343 2344 if (vmap_end - vmap_start > 0) { 2345 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2346 if (!WARN_ON_ONCE(!free)) { 2347 free->va_start = vmap_start; 2348 free->va_end = vmap_end; 2349 2350 insert_vmap_area_augment(free, NULL, 2351 &free_vmap_area_root, 2352 &free_vmap_area_list); 2353 } 2354 } 2355 } 2356 2357 void __init vmalloc_init(void) 2358 { 2359 struct vmap_area *va; 2360 struct vm_struct *tmp; 2361 int i; 2362 2363 /* 2364 * Create the cache for vmap_area objects. 2365 */ 2366 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2367 2368 for_each_possible_cpu(i) { 2369 struct vmap_block_queue *vbq; 2370 struct vfree_deferred *p; 2371 2372 vbq = &per_cpu(vmap_block_queue, i); 2373 spin_lock_init(&vbq->lock); 2374 INIT_LIST_HEAD(&vbq->free); 2375 p = &per_cpu(vfree_deferred, i); 2376 init_llist_head(&p->list); 2377 INIT_WORK(&p->wq, free_work); 2378 } 2379 2380 /* Import existing vmlist entries. */ 2381 for (tmp = vmlist; tmp; tmp = tmp->next) { 2382 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2383 if (WARN_ON_ONCE(!va)) 2384 continue; 2385 2386 va->va_start = (unsigned long)tmp->addr; 2387 va->va_end = va->va_start + tmp->size; 2388 va->vm = tmp; 2389 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2390 } 2391 2392 /* 2393 * Now we can initialize a free vmap space. 2394 */ 2395 vmap_init_free_space(); 2396 vmap_initialized = true; 2397 } 2398 2399 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2400 struct vmap_area *va, unsigned long flags, const void *caller) 2401 { 2402 vm->flags = flags; 2403 vm->addr = (void *)va->va_start; 2404 vm->size = va->va_end - va->va_start; 2405 vm->caller = caller; 2406 va->vm = vm; 2407 } 2408 2409 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2410 unsigned long flags, const void *caller) 2411 { 2412 spin_lock(&vmap_area_lock); 2413 setup_vmalloc_vm_locked(vm, va, flags, caller); 2414 spin_unlock(&vmap_area_lock); 2415 } 2416 2417 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2418 { 2419 /* 2420 * Before removing VM_UNINITIALIZED, 2421 * we should make sure that vm has proper values. 2422 * Pair with smp_rmb() in show_numa_info(). 2423 */ 2424 smp_wmb(); 2425 vm->flags &= ~VM_UNINITIALIZED; 2426 } 2427 2428 static struct vm_struct *__get_vm_area_node(unsigned long size, 2429 unsigned long align, unsigned long shift, unsigned long flags, 2430 unsigned long start, unsigned long end, int node, 2431 gfp_t gfp_mask, const void *caller) 2432 { 2433 struct vmap_area *va; 2434 struct vm_struct *area; 2435 unsigned long requested_size = size; 2436 2437 BUG_ON(in_interrupt()); 2438 size = ALIGN(size, 1ul << shift); 2439 if (unlikely(!size)) 2440 return NULL; 2441 2442 if (flags & VM_IOREMAP) 2443 align = 1ul << clamp_t(int, get_count_order_long(size), 2444 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2445 2446 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2447 if (unlikely(!area)) 2448 return NULL; 2449 2450 if (!(flags & VM_NO_GUARD)) 2451 size += PAGE_SIZE; 2452 2453 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2454 if (IS_ERR(va)) { 2455 kfree(area); 2456 return NULL; 2457 } 2458 2459 setup_vmalloc_vm(area, va, flags, caller); 2460 2461 /* 2462 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2463 * best-effort approach, as they can be mapped outside of vmalloc code. 2464 * For VM_ALLOC mappings, the pages are marked as accessible after 2465 * getting mapped in __vmalloc_node_range(). 2466 * With hardware tag-based KASAN, marking is skipped for 2467 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2468 */ 2469 if (!(flags & VM_ALLOC)) 2470 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2471 KASAN_VMALLOC_PROT_NORMAL); 2472 2473 return area; 2474 } 2475 2476 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2477 unsigned long start, unsigned long end, 2478 const void *caller) 2479 { 2480 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2481 NUMA_NO_NODE, GFP_KERNEL, caller); 2482 } 2483 2484 /** 2485 * get_vm_area - reserve a contiguous kernel virtual area 2486 * @size: size of the area 2487 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2488 * 2489 * Search an area of @size in the kernel virtual mapping area, 2490 * and reserved it for out purposes. Returns the area descriptor 2491 * on success or %NULL on failure. 2492 * 2493 * Return: the area descriptor on success or %NULL on failure. 2494 */ 2495 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2496 { 2497 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2498 VMALLOC_START, VMALLOC_END, 2499 NUMA_NO_NODE, GFP_KERNEL, 2500 __builtin_return_address(0)); 2501 } 2502 2503 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2504 const void *caller) 2505 { 2506 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2507 VMALLOC_START, VMALLOC_END, 2508 NUMA_NO_NODE, GFP_KERNEL, caller); 2509 } 2510 2511 /** 2512 * find_vm_area - find a continuous kernel virtual area 2513 * @addr: base address 2514 * 2515 * Search for the kernel VM area starting at @addr, and return it. 2516 * It is up to the caller to do all required locking to keep the returned 2517 * pointer valid. 2518 * 2519 * Return: the area descriptor on success or %NULL on failure. 2520 */ 2521 struct vm_struct *find_vm_area(const void *addr) 2522 { 2523 struct vmap_area *va; 2524 2525 va = find_vmap_area((unsigned long)addr); 2526 if (!va) 2527 return NULL; 2528 2529 return va->vm; 2530 } 2531 2532 /** 2533 * remove_vm_area - find and remove a continuous kernel virtual area 2534 * @addr: base address 2535 * 2536 * Search for the kernel VM area starting at @addr, and remove it. 2537 * This function returns the found VM area, but using it is NOT safe 2538 * on SMP machines, except for its size or flags. 2539 * 2540 * Return: the area descriptor on success or %NULL on failure. 2541 */ 2542 struct vm_struct *remove_vm_area(const void *addr) 2543 { 2544 struct vmap_area *va; 2545 2546 might_sleep(); 2547 2548 spin_lock(&vmap_area_lock); 2549 va = __find_vmap_area((unsigned long)addr); 2550 if (va && va->vm) { 2551 struct vm_struct *vm = va->vm; 2552 2553 va->vm = NULL; 2554 spin_unlock(&vmap_area_lock); 2555 2556 kasan_free_module_shadow(vm); 2557 free_unmap_vmap_area(va); 2558 2559 return vm; 2560 } 2561 2562 spin_unlock(&vmap_area_lock); 2563 return NULL; 2564 } 2565 2566 static inline void set_area_direct_map(const struct vm_struct *area, 2567 int (*set_direct_map)(struct page *page)) 2568 { 2569 int i; 2570 2571 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2572 for (i = 0; i < area->nr_pages; i++) 2573 if (page_address(area->pages[i])) 2574 set_direct_map(area->pages[i]); 2575 } 2576 2577 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2578 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2579 { 2580 unsigned long start = ULONG_MAX, end = 0; 2581 unsigned int page_order = vm_area_page_order(area); 2582 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2583 int flush_dmap = 0; 2584 int i; 2585 2586 remove_vm_area(area->addr); 2587 2588 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2589 if (!flush_reset) 2590 return; 2591 2592 /* 2593 * If not deallocating pages, just do the flush of the VM area and 2594 * return. 2595 */ 2596 if (!deallocate_pages) { 2597 vm_unmap_aliases(); 2598 return; 2599 } 2600 2601 /* 2602 * If execution gets here, flush the vm mapping and reset the direct 2603 * map. Find the start and end range of the direct mappings to make sure 2604 * the vm_unmap_aliases() flush includes the direct map. 2605 */ 2606 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2607 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2608 if (addr) { 2609 unsigned long page_size; 2610 2611 page_size = PAGE_SIZE << page_order; 2612 start = min(addr, start); 2613 end = max(addr + page_size, end); 2614 flush_dmap = 1; 2615 } 2616 } 2617 2618 /* 2619 * Set direct map to something invalid so that it won't be cached if 2620 * there are any accesses after the TLB flush, then flush the TLB and 2621 * reset the direct map permissions to the default. 2622 */ 2623 set_area_direct_map(area, set_direct_map_invalid_noflush); 2624 _vm_unmap_aliases(start, end, flush_dmap); 2625 set_area_direct_map(area, set_direct_map_default_noflush); 2626 } 2627 2628 static void __vunmap(const void *addr, int deallocate_pages) 2629 { 2630 struct vm_struct *area; 2631 2632 if (!addr) 2633 return; 2634 2635 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2636 addr)) 2637 return; 2638 2639 area = find_vm_area(addr); 2640 if (unlikely(!area)) { 2641 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2642 addr); 2643 return; 2644 } 2645 2646 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2647 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2648 2649 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2650 2651 vm_remove_mappings(area, deallocate_pages); 2652 2653 if (deallocate_pages) { 2654 int i; 2655 2656 for (i = 0; i < area->nr_pages; i++) { 2657 struct page *page = area->pages[i]; 2658 2659 BUG_ON(!page); 2660 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 2661 /* 2662 * High-order allocs for huge vmallocs are split, so 2663 * can be freed as an array of order-0 allocations 2664 */ 2665 __free_pages(page, 0); 2666 cond_resched(); 2667 } 2668 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2669 2670 kvfree(area->pages); 2671 } 2672 2673 kfree(area); 2674 } 2675 2676 static inline void __vfree_deferred(const void *addr) 2677 { 2678 /* 2679 * Use raw_cpu_ptr() because this can be called from preemptible 2680 * context. Preemption is absolutely fine here, because the llist_add() 2681 * implementation is lockless, so it works even if we are adding to 2682 * another cpu's list. schedule_work() should be fine with this too. 2683 */ 2684 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2685 2686 if (llist_add((struct llist_node *)addr, &p->list)) 2687 schedule_work(&p->wq); 2688 } 2689 2690 /** 2691 * vfree_atomic - release memory allocated by vmalloc() 2692 * @addr: memory base address 2693 * 2694 * This one is just like vfree() but can be called in any atomic context 2695 * except NMIs. 2696 */ 2697 void vfree_atomic(const void *addr) 2698 { 2699 BUG_ON(in_nmi()); 2700 2701 kmemleak_free(addr); 2702 2703 if (!addr) 2704 return; 2705 __vfree_deferred(addr); 2706 } 2707 2708 static void __vfree(const void *addr) 2709 { 2710 if (unlikely(in_interrupt())) 2711 __vfree_deferred(addr); 2712 else 2713 __vunmap(addr, 1); 2714 } 2715 2716 /** 2717 * vfree - Release memory allocated by vmalloc() 2718 * @addr: Memory base address 2719 * 2720 * Free the virtually continuous memory area starting at @addr, as obtained 2721 * from one of the vmalloc() family of APIs. This will usually also free the 2722 * physical memory underlying the virtual allocation, but that memory is 2723 * reference counted, so it will not be freed until the last user goes away. 2724 * 2725 * If @addr is NULL, no operation is performed. 2726 * 2727 * Context: 2728 * May sleep if called *not* from interrupt context. 2729 * Must not be called in NMI context (strictly speaking, it could be 2730 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2731 * conventions for vfree() arch-dependent would be a really bad idea). 2732 */ 2733 void vfree(const void *addr) 2734 { 2735 BUG_ON(in_nmi()); 2736 2737 kmemleak_free(addr); 2738 2739 might_sleep_if(!in_interrupt()); 2740 2741 if (!addr) 2742 return; 2743 2744 __vfree(addr); 2745 } 2746 EXPORT_SYMBOL(vfree); 2747 2748 /** 2749 * vunmap - release virtual mapping obtained by vmap() 2750 * @addr: memory base address 2751 * 2752 * Free the virtually contiguous memory area starting at @addr, 2753 * which was created from the page array passed to vmap(). 2754 * 2755 * Must not be called in interrupt context. 2756 */ 2757 void vunmap(const void *addr) 2758 { 2759 BUG_ON(in_interrupt()); 2760 might_sleep(); 2761 if (addr) 2762 __vunmap(addr, 0); 2763 } 2764 EXPORT_SYMBOL(vunmap); 2765 2766 /** 2767 * vmap - map an array of pages into virtually contiguous space 2768 * @pages: array of page pointers 2769 * @count: number of pages to map 2770 * @flags: vm_area->flags 2771 * @prot: page protection for the mapping 2772 * 2773 * Maps @count pages from @pages into contiguous kernel virtual space. 2774 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2775 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2776 * are transferred from the caller to vmap(), and will be freed / dropped when 2777 * vfree() is called on the return value. 2778 * 2779 * Return: the address of the area or %NULL on failure 2780 */ 2781 void *vmap(struct page **pages, unsigned int count, 2782 unsigned long flags, pgprot_t prot) 2783 { 2784 struct vm_struct *area; 2785 unsigned long addr; 2786 unsigned long size; /* In bytes */ 2787 2788 might_sleep(); 2789 2790 /* 2791 * Your top guard is someone else's bottom guard. Not having a top 2792 * guard compromises someone else's mappings too. 2793 */ 2794 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2795 flags &= ~VM_NO_GUARD; 2796 2797 if (count > totalram_pages()) 2798 return NULL; 2799 2800 size = (unsigned long)count << PAGE_SHIFT; 2801 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2802 if (!area) 2803 return NULL; 2804 2805 addr = (unsigned long)area->addr; 2806 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2807 pages, PAGE_SHIFT) < 0) { 2808 vunmap(area->addr); 2809 return NULL; 2810 } 2811 2812 if (flags & VM_MAP_PUT_PAGES) { 2813 area->pages = pages; 2814 area->nr_pages = count; 2815 } 2816 return area->addr; 2817 } 2818 EXPORT_SYMBOL(vmap); 2819 2820 #ifdef CONFIG_VMAP_PFN 2821 struct vmap_pfn_data { 2822 unsigned long *pfns; 2823 pgprot_t prot; 2824 unsigned int idx; 2825 }; 2826 2827 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2828 { 2829 struct vmap_pfn_data *data = private; 2830 2831 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2832 return -EINVAL; 2833 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2834 return 0; 2835 } 2836 2837 /** 2838 * vmap_pfn - map an array of PFNs into virtually contiguous space 2839 * @pfns: array of PFNs 2840 * @count: number of pages to map 2841 * @prot: page protection for the mapping 2842 * 2843 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2844 * the start address of the mapping. 2845 */ 2846 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2847 { 2848 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2849 struct vm_struct *area; 2850 2851 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2852 __builtin_return_address(0)); 2853 if (!area) 2854 return NULL; 2855 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2856 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2857 free_vm_area(area); 2858 return NULL; 2859 } 2860 return area->addr; 2861 } 2862 EXPORT_SYMBOL_GPL(vmap_pfn); 2863 #endif /* CONFIG_VMAP_PFN */ 2864 2865 static inline unsigned int 2866 vm_area_alloc_pages(gfp_t gfp, int nid, 2867 unsigned int order, unsigned int nr_pages, struct page **pages) 2868 { 2869 unsigned int nr_allocated = 0; 2870 struct page *page; 2871 int i; 2872 2873 /* 2874 * For order-0 pages we make use of bulk allocator, if 2875 * the page array is partly or not at all populated due 2876 * to fails, fallback to a single page allocator that is 2877 * more permissive. 2878 */ 2879 if (!order) { 2880 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2881 2882 while (nr_allocated < nr_pages) { 2883 unsigned int nr, nr_pages_request; 2884 2885 /* 2886 * A maximum allowed request is hard-coded and is 100 2887 * pages per call. That is done in order to prevent a 2888 * long preemption off scenario in the bulk-allocator 2889 * so the range is [1:100]. 2890 */ 2891 nr_pages_request = min(100U, nr_pages - nr_allocated); 2892 2893 /* memory allocation should consider mempolicy, we can't 2894 * wrongly use nearest node when nid == NUMA_NO_NODE, 2895 * otherwise memory may be allocated in only one node, 2896 * but mempolicy wants to alloc memory by interleaving. 2897 */ 2898 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2899 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2900 nr_pages_request, 2901 pages + nr_allocated); 2902 2903 else 2904 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2905 nr_pages_request, 2906 pages + nr_allocated); 2907 2908 nr_allocated += nr; 2909 cond_resched(); 2910 2911 /* 2912 * If zero or pages were obtained partly, 2913 * fallback to a single page allocator. 2914 */ 2915 if (nr != nr_pages_request) 2916 break; 2917 } 2918 } 2919 2920 /* High-order pages or fallback path if "bulk" fails. */ 2921 2922 while (nr_allocated < nr_pages) { 2923 if (fatal_signal_pending(current)) 2924 break; 2925 2926 if (nid == NUMA_NO_NODE) 2927 page = alloc_pages(gfp, order); 2928 else 2929 page = alloc_pages_node(nid, gfp, order); 2930 if (unlikely(!page)) 2931 break; 2932 /* 2933 * Higher order allocations must be able to be treated as 2934 * indepdenent small pages by callers (as they can with 2935 * small-page vmallocs). Some drivers do their own refcounting 2936 * on vmalloc_to_page() pages, some use page->mapping, 2937 * page->lru, etc. 2938 */ 2939 if (order) 2940 split_page(page, order); 2941 2942 /* 2943 * Careful, we allocate and map page-order pages, but 2944 * tracking is done per PAGE_SIZE page so as to keep the 2945 * vm_struct APIs independent of the physical/mapped size. 2946 */ 2947 for (i = 0; i < (1U << order); i++) 2948 pages[nr_allocated + i] = page + i; 2949 2950 cond_resched(); 2951 nr_allocated += 1U << order; 2952 } 2953 2954 return nr_allocated; 2955 } 2956 2957 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2958 pgprot_t prot, unsigned int page_shift, 2959 int node) 2960 { 2961 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2962 bool nofail = gfp_mask & __GFP_NOFAIL; 2963 unsigned long addr = (unsigned long)area->addr; 2964 unsigned long size = get_vm_area_size(area); 2965 unsigned long array_size; 2966 unsigned int nr_small_pages = size >> PAGE_SHIFT; 2967 unsigned int page_order; 2968 unsigned int flags; 2969 int ret; 2970 2971 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 2972 gfp_mask |= __GFP_NOWARN; 2973 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 2974 gfp_mask |= __GFP_HIGHMEM; 2975 2976 /* Please note that the recursion is strictly bounded. */ 2977 if (array_size > PAGE_SIZE) { 2978 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 2979 area->caller); 2980 } else { 2981 area->pages = kmalloc_node(array_size, nested_gfp, node); 2982 } 2983 2984 if (!area->pages) { 2985 warn_alloc(gfp_mask, NULL, 2986 "vmalloc error: size %lu, failed to allocated page array size %lu", 2987 nr_small_pages * PAGE_SIZE, array_size); 2988 free_vm_area(area); 2989 return NULL; 2990 } 2991 2992 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 2993 page_order = vm_area_page_order(area); 2994 2995 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 2996 node, page_order, nr_small_pages, area->pages); 2997 2998 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2999 if (gfp_mask & __GFP_ACCOUNT) { 3000 int i; 3001 3002 for (i = 0; i < area->nr_pages; i++) 3003 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3004 } 3005 3006 /* 3007 * If not enough pages were obtained to accomplish an 3008 * allocation request, free them via __vfree() if any. 3009 */ 3010 if (area->nr_pages != nr_small_pages) { 3011 warn_alloc(gfp_mask, NULL, 3012 "vmalloc error: size %lu, page order %u, failed to allocate pages", 3013 area->nr_pages * PAGE_SIZE, page_order); 3014 goto fail; 3015 } 3016 3017 /* 3018 * page tables allocations ignore external gfp mask, enforce it 3019 * by the scope API 3020 */ 3021 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3022 flags = memalloc_nofs_save(); 3023 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3024 flags = memalloc_noio_save(); 3025 3026 do { 3027 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3028 page_shift); 3029 if (nofail && (ret < 0)) 3030 schedule_timeout_uninterruptible(1); 3031 } while (nofail && (ret < 0)); 3032 3033 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3034 memalloc_nofs_restore(flags); 3035 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3036 memalloc_noio_restore(flags); 3037 3038 if (ret < 0) { 3039 warn_alloc(gfp_mask, NULL, 3040 "vmalloc error: size %lu, failed to map pages", 3041 area->nr_pages * PAGE_SIZE); 3042 goto fail; 3043 } 3044 3045 return area->addr; 3046 3047 fail: 3048 __vfree(area->addr); 3049 return NULL; 3050 } 3051 3052 /** 3053 * __vmalloc_node_range - allocate virtually contiguous memory 3054 * @size: allocation size 3055 * @align: desired alignment 3056 * @start: vm area range start 3057 * @end: vm area range end 3058 * @gfp_mask: flags for the page level allocator 3059 * @prot: protection mask for the allocated pages 3060 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3061 * @node: node to use for allocation or NUMA_NO_NODE 3062 * @caller: caller's return address 3063 * 3064 * Allocate enough pages to cover @size from the page level 3065 * allocator with @gfp_mask flags. Please note that the full set of gfp 3066 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3067 * supported. 3068 * Zone modifiers are not supported. From the reclaim modifiers 3069 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3070 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3071 * __GFP_RETRY_MAYFAIL are not supported). 3072 * 3073 * __GFP_NOWARN can be used to suppress failures messages. 3074 * 3075 * Map them into contiguous kernel virtual space, using a pagetable 3076 * protection of @prot. 3077 * 3078 * Return: the address of the area or %NULL on failure 3079 */ 3080 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3081 unsigned long start, unsigned long end, gfp_t gfp_mask, 3082 pgprot_t prot, unsigned long vm_flags, int node, 3083 const void *caller) 3084 { 3085 struct vm_struct *area; 3086 void *ret; 3087 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3088 unsigned long real_size = size; 3089 unsigned long real_align = align; 3090 unsigned int shift = PAGE_SHIFT; 3091 3092 if (WARN_ON_ONCE(!size)) 3093 return NULL; 3094 3095 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3096 warn_alloc(gfp_mask, NULL, 3097 "vmalloc error: size %lu, exceeds total pages", 3098 real_size); 3099 return NULL; 3100 } 3101 3102 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3103 unsigned long size_per_node; 3104 3105 /* 3106 * Try huge pages. Only try for PAGE_KERNEL allocations, 3107 * others like modules don't yet expect huge pages in 3108 * their allocations due to apply_to_page_range not 3109 * supporting them. 3110 */ 3111 3112 size_per_node = size; 3113 if (node == NUMA_NO_NODE) 3114 size_per_node /= num_online_nodes(); 3115 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3116 shift = PMD_SHIFT; 3117 else 3118 shift = arch_vmap_pte_supported_shift(size_per_node); 3119 3120 align = max(real_align, 1UL << shift); 3121 size = ALIGN(real_size, 1UL << shift); 3122 } 3123 3124 again: 3125 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3126 VM_UNINITIALIZED | vm_flags, start, end, node, 3127 gfp_mask, caller); 3128 if (!area) { 3129 bool nofail = gfp_mask & __GFP_NOFAIL; 3130 warn_alloc(gfp_mask, NULL, 3131 "vmalloc error: size %lu, vm_struct allocation failed%s", 3132 real_size, (nofail) ? ". Retrying." : ""); 3133 if (nofail) { 3134 schedule_timeout_uninterruptible(1); 3135 goto again; 3136 } 3137 goto fail; 3138 } 3139 3140 /* 3141 * Prepare arguments for __vmalloc_area_node() and 3142 * kasan_unpoison_vmalloc(). 3143 */ 3144 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3145 if (kasan_hw_tags_enabled()) { 3146 /* 3147 * Modify protection bits to allow tagging. 3148 * This must be done before mapping. 3149 */ 3150 prot = arch_vmap_pgprot_tagged(prot); 3151 3152 /* 3153 * Skip page_alloc poisoning and zeroing for physical 3154 * pages backing VM_ALLOC mapping. Memory is instead 3155 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3156 */ 3157 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; 3158 } 3159 3160 /* Take note that the mapping is PAGE_KERNEL. */ 3161 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3162 } 3163 3164 /* Allocate physical pages and map them into vmalloc space. */ 3165 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3166 if (!ret) 3167 goto fail; 3168 3169 /* 3170 * Mark the pages as accessible, now that they are mapped. 3171 * The init condition should match the one in post_alloc_hook() 3172 * (except for the should_skip_init() check) to make sure that memory 3173 * is initialized under the same conditions regardless of the enabled 3174 * KASAN mode. 3175 * Tag-based KASAN modes only assign tags to normal non-executable 3176 * allocations, see __kasan_unpoison_vmalloc(). 3177 */ 3178 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3179 if (!want_init_on_free() && want_init_on_alloc(gfp_mask)) 3180 kasan_flags |= KASAN_VMALLOC_INIT; 3181 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3182 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3183 3184 /* 3185 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3186 * flag. It means that vm_struct is not fully initialized. 3187 * Now, it is fully initialized, so remove this flag here. 3188 */ 3189 clear_vm_uninitialized_flag(area); 3190 3191 size = PAGE_ALIGN(size); 3192 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3193 kmemleak_vmalloc(area, size, gfp_mask); 3194 3195 return area->addr; 3196 3197 fail: 3198 if (shift > PAGE_SHIFT) { 3199 shift = PAGE_SHIFT; 3200 align = real_align; 3201 size = real_size; 3202 goto again; 3203 } 3204 3205 return NULL; 3206 } 3207 3208 /** 3209 * __vmalloc_node - allocate virtually contiguous memory 3210 * @size: allocation size 3211 * @align: desired alignment 3212 * @gfp_mask: flags for the page level allocator 3213 * @node: node to use for allocation or NUMA_NO_NODE 3214 * @caller: caller's return address 3215 * 3216 * Allocate enough pages to cover @size from the page level allocator with 3217 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3218 * 3219 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3220 * and __GFP_NOFAIL are not supported 3221 * 3222 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3223 * with mm people. 3224 * 3225 * Return: pointer to the allocated memory or %NULL on error 3226 */ 3227 void *__vmalloc_node(unsigned long size, unsigned long align, 3228 gfp_t gfp_mask, int node, const void *caller) 3229 { 3230 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3231 gfp_mask, PAGE_KERNEL, 0, node, caller); 3232 } 3233 /* 3234 * This is only for performance analysis of vmalloc and stress purpose. 3235 * It is required by vmalloc test module, therefore do not use it other 3236 * than that. 3237 */ 3238 #ifdef CONFIG_TEST_VMALLOC_MODULE 3239 EXPORT_SYMBOL_GPL(__vmalloc_node); 3240 #endif 3241 3242 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3243 { 3244 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3245 __builtin_return_address(0)); 3246 } 3247 EXPORT_SYMBOL(__vmalloc); 3248 3249 /** 3250 * vmalloc - allocate virtually contiguous memory 3251 * @size: allocation size 3252 * 3253 * Allocate enough pages to cover @size from the page level 3254 * allocator and map them into contiguous kernel virtual space. 3255 * 3256 * For tight control over page level allocator and protection flags 3257 * use __vmalloc() instead. 3258 * 3259 * Return: pointer to the allocated memory or %NULL on error 3260 */ 3261 void *vmalloc(unsigned long size) 3262 { 3263 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3264 __builtin_return_address(0)); 3265 } 3266 EXPORT_SYMBOL(vmalloc); 3267 3268 /** 3269 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3270 * @size: allocation size 3271 * @gfp_mask: flags for the page level allocator 3272 * 3273 * Allocate enough pages to cover @size from the page level 3274 * allocator and map them into contiguous kernel virtual space. 3275 * If @size is greater than or equal to PMD_SIZE, allow using 3276 * huge pages for the memory 3277 * 3278 * Return: pointer to the allocated memory or %NULL on error 3279 */ 3280 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3281 { 3282 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3283 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3284 NUMA_NO_NODE, __builtin_return_address(0)); 3285 } 3286 EXPORT_SYMBOL_GPL(vmalloc_huge); 3287 3288 /** 3289 * vzalloc - allocate virtually contiguous memory with zero fill 3290 * @size: allocation size 3291 * 3292 * Allocate enough pages to cover @size from the page level 3293 * allocator and map them into contiguous kernel virtual space. 3294 * The memory allocated is set to zero. 3295 * 3296 * For tight control over page level allocator and protection flags 3297 * use __vmalloc() instead. 3298 * 3299 * Return: pointer to the allocated memory or %NULL on error 3300 */ 3301 void *vzalloc(unsigned long size) 3302 { 3303 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3304 __builtin_return_address(0)); 3305 } 3306 EXPORT_SYMBOL(vzalloc); 3307 3308 /** 3309 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3310 * @size: allocation size 3311 * 3312 * The resulting memory area is zeroed so it can be mapped to userspace 3313 * without leaking data. 3314 * 3315 * Return: pointer to the allocated memory or %NULL on error 3316 */ 3317 void *vmalloc_user(unsigned long size) 3318 { 3319 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3320 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3321 VM_USERMAP, NUMA_NO_NODE, 3322 __builtin_return_address(0)); 3323 } 3324 EXPORT_SYMBOL(vmalloc_user); 3325 3326 /** 3327 * vmalloc_node - allocate memory on a specific node 3328 * @size: allocation size 3329 * @node: numa node 3330 * 3331 * Allocate enough pages to cover @size from the page level 3332 * allocator and map them into contiguous kernel virtual space. 3333 * 3334 * For tight control over page level allocator and protection flags 3335 * use __vmalloc() instead. 3336 * 3337 * Return: pointer to the allocated memory or %NULL on error 3338 */ 3339 void *vmalloc_node(unsigned long size, int node) 3340 { 3341 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3342 __builtin_return_address(0)); 3343 } 3344 EXPORT_SYMBOL(vmalloc_node); 3345 3346 /** 3347 * vzalloc_node - allocate memory on a specific node with zero fill 3348 * @size: allocation size 3349 * @node: numa node 3350 * 3351 * Allocate enough pages to cover @size from the page level 3352 * allocator and map them into contiguous kernel virtual space. 3353 * The memory allocated is set to zero. 3354 * 3355 * Return: pointer to the allocated memory or %NULL on error 3356 */ 3357 void *vzalloc_node(unsigned long size, int node) 3358 { 3359 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3360 __builtin_return_address(0)); 3361 } 3362 EXPORT_SYMBOL(vzalloc_node); 3363 3364 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3365 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3366 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3367 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3368 #else 3369 /* 3370 * 64b systems should always have either DMA or DMA32 zones. For others 3371 * GFP_DMA32 should do the right thing and use the normal zone. 3372 */ 3373 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3374 #endif 3375 3376 /** 3377 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3378 * @size: allocation size 3379 * 3380 * Allocate enough 32bit PA addressable pages to cover @size from the 3381 * page level allocator and map them into contiguous kernel virtual space. 3382 * 3383 * Return: pointer to the allocated memory or %NULL on error 3384 */ 3385 void *vmalloc_32(unsigned long size) 3386 { 3387 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3388 __builtin_return_address(0)); 3389 } 3390 EXPORT_SYMBOL(vmalloc_32); 3391 3392 /** 3393 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3394 * @size: allocation size 3395 * 3396 * The resulting memory area is 32bit addressable and zeroed so it can be 3397 * mapped to userspace without leaking data. 3398 * 3399 * Return: pointer to the allocated memory or %NULL on error 3400 */ 3401 void *vmalloc_32_user(unsigned long size) 3402 { 3403 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3404 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3405 VM_USERMAP, NUMA_NO_NODE, 3406 __builtin_return_address(0)); 3407 } 3408 EXPORT_SYMBOL(vmalloc_32_user); 3409 3410 /* 3411 * small helper routine , copy contents to buf from addr. 3412 * If the page is not present, fill zero. 3413 */ 3414 3415 static int aligned_vread(char *buf, char *addr, unsigned long count) 3416 { 3417 struct page *p; 3418 int copied = 0; 3419 3420 while (count) { 3421 unsigned long offset, length; 3422 3423 offset = offset_in_page(addr); 3424 length = PAGE_SIZE - offset; 3425 if (length > count) 3426 length = count; 3427 p = vmalloc_to_page(addr); 3428 /* 3429 * To do safe access to this _mapped_ area, we need 3430 * lock. But adding lock here means that we need to add 3431 * overhead of vmalloc()/vfree() calls for this _debug_ 3432 * interface, rarely used. Instead of that, we'll use 3433 * kmap() and get small overhead in this access function. 3434 */ 3435 if (p) { 3436 /* We can expect USER0 is not used -- see vread() */ 3437 void *map = kmap_atomic(p); 3438 memcpy(buf, map + offset, length); 3439 kunmap_atomic(map); 3440 } else 3441 memset(buf, 0, length); 3442 3443 addr += length; 3444 buf += length; 3445 copied += length; 3446 count -= length; 3447 } 3448 return copied; 3449 } 3450 3451 /** 3452 * vread() - read vmalloc area in a safe way. 3453 * @buf: buffer for reading data 3454 * @addr: vm address. 3455 * @count: number of bytes to be read. 3456 * 3457 * This function checks that addr is a valid vmalloc'ed area, and 3458 * copy data from that area to a given buffer. If the given memory range 3459 * of [addr...addr+count) includes some valid address, data is copied to 3460 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3461 * IOREMAP area is treated as memory hole and no copy is done. 3462 * 3463 * If [addr...addr+count) doesn't includes any intersects with alive 3464 * vm_struct area, returns 0. @buf should be kernel's buffer. 3465 * 3466 * Note: In usual ops, vread() is never necessary because the caller 3467 * should know vmalloc() area is valid and can use memcpy(). 3468 * This is for routines which have to access vmalloc area without 3469 * any information, as /proc/kcore. 3470 * 3471 * Return: number of bytes for which addr and buf should be increased 3472 * (same number as @count) or %0 if [addr...addr+count) doesn't 3473 * include any intersection with valid vmalloc area 3474 */ 3475 long vread(char *buf, char *addr, unsigned long count) 3476 { 3477 struct vmap_area *va; 3478 struct vm_struct *vm; 3479 char *vaddr, *buf_start = buf; 3480 unsigned long buflen = count; 3481 unsigned long n; 3482 3483 addr = kasan_reset_tag(addr); 3484 3485 /* Don't allow overflow */ 3486 if ((unsigned long) addr + count < count) 3487 count = -(unsigned long) addr; 3488 3489 spin_lock(&vmap_area_lock); 3490 va = find_vmap_area_exceed_addr((unsigned long)addr); 3491 if (!va) 3492 goto finished; 3493 3494 /* no intersects with alive vmap_area */ 3495 if ((unsigned long)addr + count <= va->va_start) 3496 goto finished; 3497 3498 list_for_each_entry_from(va, &vmap_area_list, list) { 3499 if (!count) 3500 break; 3501 3502 if (!va->vm) 3503 continue; 3504 3505 vm = va->vm; 3506 vaddr = (char *) vm->addr; 3507 if (addr >= vaddr + get_vm_area_size(vm)) 3508 continue; 3509 while (addr < vaddr) { 3510 if (count == 0) 3511 goto finished; 3512 *buf = '\0'; 3513 buf++; 3514 addr++; 3515 count--; 3516 } 3517 n = vaddr + get_vm_area_size(vm) - addr; 3518 if (n > count) 3519 n = count; 3520 if (!(vm->flags & VM_IOREMAP)) 3521 aligned_vread(buf, addr, n); 3522 else /* IOREMAP area is treated as memory hole */ 3523 memset(buf, 0, n); 3524 buf += n; 3525 addr += n; 3526 count -= n; 3527 } 3528 finished: 3529 spin_unlock(&vmap_area_lock); 3530 3531 if (buf == buf_start) 3532 return 0; 3533 /* zero-fill memory holes */ 3534 if (buf != buf_start + buflen) 3535 memset(buf, 0, buflen - (buf - buf_start)); 3536 3537 return buflen; 3538 } 3539 3540 /** 3541 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3542 * @vma: vma to cover 3543 * @uaddr: target user address to start at 3544 * @kaddr: virtual address of vmalloc kernel memory 3545 * @pgoff: offset from @kaddr to start at 3546 * @size: size of map area 3547 * 3548 * Returns: 0 for success, -Exxx on failure 3549 * 3550 * This function checks that @kaddr is a valid vmalloc'ed area, 3551 * and that it is big enough to cover the range starting at 3552 * @uaddr in @vma. Will return failure if that criteria isn't 3553 * met. 3554 * 3555 * Similar to remap_pfn_range() (see mm/memory.c) 3556 */ 3557 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3558 void *kaddr, unsigned long pgoff, 3559 unsigned long size) 3560 { 3561 struct vm_struct *area; 3562 unsigned long off; 3563 unsigned long end_index; 3564 3565 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3566 return -EINVAL; 3567 3568 size = PAGE_ALIGN(size); 3569 3570 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3571 return -EINVAL; 3572 3573 area = find_vm_area(kaddr); 3574 if (!area) 3575 return -EINVAL; 3576 3577 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3578 return -EINVAL; 3579 3580 if (check_add_overflow(size, off, &end_index) || 3581 end_index > get_vm_area_size(area)) 3582 return -EINVAL; 3583 kaddr += off; 3584 3585 do { 3586 struct page *page = vmalloc_to_page(kaddr); 3587 int ret; 3588 3589 ret = vm_insert_page(vma, uaddr, page); 3590 if (ret) 3591 return ret; 3592 3593 uaddr += PAGE_SIZE; 3594 kaddr += PAGE_SIZE; 3595 size -= PAGE_SIZE; 3596 } while (size > 0); 3597 3598 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3599 3600 return 0; 3601 } 3602 3603 /** 3604 * remap_vmalloc_range - map vmalloc pages to userspace 3605 * @vma: vma to cover (map full range of vma) 3606 * @addr: vmalloc memory 3607 * @pgoff: number of pages into addr before first page to map 3608 * 3609 * Returns: 0 for success, -Exxx on failure 3610 * 3611 * This function checks that addr is a valid vmalloc'ed area, and 3612 * that it is big enough to cover the vma. Will return failure if 3613 * that criteria isn't met. 3614 * 3615 * Similar to remap_pfn_range() (see mm/memory.c) 3616 */ 3617 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3618 unsigned long pgoff) 3619 { 3620 return remap_vmalloc_range_partial(vma, vma->vm_start, 3621 addr, pgoff, 3622 vma->vm_end - vma->vm_start); 3623 } 3624 EXPORT_SYMBOL(remap_vmalloc_range); 3625 3626 void free_vm_area(struct vm_struct *area) 3627 { 3628 struct vm_struct *ret; 3629 ret = remove_vm_area(area->addr); 3630 BUG_ON(ret != area); 3631 kfree(area); 3632 } 3633 EXPORT_SYMBOL_GPL(free_vm_area); 3634 3635 #ifdef CONFIG_SMP 3636 static struct vmap_area *node_to_va(struct rb_node *n) 3637 { 3638 return rb_entry_safe(n, struct vmap_area, rb_node); 3639 } 3640 3641 /** 3642 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3643 * @addr: target address 3644 * 3645 * Returns: vmap_area if it is found. If there is no such area 3646 * the first highest(reverse order) vmap_area is returned 3647 * i.e. va->va_start < addr && va->va_end < addr or NULL 3648 * if there are no any areas before @addr. 3649 */ 3650 static struct vmap_area * 3651 pvm_find_va_enclose_addr(unsigned long addr) 3652 { 3653 struct vmap_area *va, *tmp; 3654 struct rb_node *n; 3655 3656 n = free_vmap_area_root.rb_node; 3657 va = NULL; 3658 3659 while (n) { 3660 tmp = rb_entry(n, struct vmap_area, rb_node); 3661 if (tmp->va_start <= addr) { 3662 va = tmp; 3663 if (tmp->va_end >= addr) 3664 break; 3665 3666 n = n->rb_right; 3667 } else { 3668 n = n->rb_left; 3669 } 3670 } 3671 3672 return va; 3673 } 3674 3675 /** 3676 * pvm_determine_end_from_reverse - find the highest aligned address 3677 * of free block below VMALLOC_END 3678 * @va: 3679 * in - the VA we start the search(reverse order); 3680 * out - the VA with the highest aligned end address. 3681 * @align: alignment for required highest address 3682 * 3683 * Returns: determined end address within vmap_area 3684 */ 3685 static unsigned long 3686 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3687 { 3688 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3689 unsigned long addr; 3690 3691 if (likely(*va)) { 3692 list_for_each_entry_from_reverse((*va), 3693 &free_vmap_area_list, list) { 3694 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3695 if ((*va)->va_start < addr) 3696 return addr; 3697 } 3698 } 3699 3700 return 0; 3701 } 3702 3703 /** 3704 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3705 * @offsets: array containing offset of each area 3706 * @sizes: array containing size of each area 3707 * @nr_vms: the number of areas to allocate 3708 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3709 * 3710 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3711 * vm_structs on success, %NULL on failure 3712 * 3713 * Percpu allocator wants to use congruent vm areas so that it can 3714 * maintain the offsets among percpu areas. This function allocates 3715 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3716 * be scattered pretty far, distance between two areas easily going up 3717 * to gigabytes. To avoid interacting with regular vmallocs, these 3718 * areas are allocated from top. 3719 * 3720 * Despite its complicated look, this allocator is rather simple. It 3721 * does everything top-down and scans free blocks from the end looking 3722 * for matching base. While scanning, if any of the areas do not fit the 3723 * base address is pulled down to fit the area. Scanning is repeated till 3724 * all the areas fit and then all necessary data structures are inserted 3725 * and the result is returned. 3726 */ 3727 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3728 const size_t *sizes, int nr_vms, 3729 size_t align) 3730 { 3731 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3732 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3733 struct vmap_area **vas, *va; 3734 struct vm_struct **vms; 3735 int area, area2, last_area, term_area; 3736 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3737 bool purged = false; 3738 enum fit_type type; 3739 3740 /* verify parameters and allocate data structures */ 3741 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3742 for (last_area = 0, area = 0; area < nr_vms; area++) { 3743 start = offsets[area]; 3744 end = start + sizes[area]; 3745 3746 /* is everything aligned properly? */ 3747 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3748 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3749 3750 /* detect the area with the highest address */ 3751 if (start > offsets[last_area]) 3752 last_area = area; 3753 3754 for (area2 = area + 1; area2 < nr_vms; area2++) { 3755 unsigned long start2 = offsets[area2]; 3756 unsigned long end2 = start2 + sizes[area2]; 3757 3758 BUG_ON(start2 < end && start < end2); 3759 } 3760 } 3761 last_end = offsets[last_area] + sizes[last_area]; 3762 3763 if (vmalloc_end - vmalloc_start < last_end) { 3764 WARN_ON(true); 3765 return NULL; 3766 } 3767 3768 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3769 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3770 if (!vas || !vms) 3771 goto err_free2; 3772 3773 for (area = 0; area < nr_vms; area++) { 3774 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3775 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3776 if (!vas[area] || !vms[area]) 3777 goto err_free; 3778 } 3779 retry: 3780 spin_lock(&free_vmap_area_lock); 3781 3782 /* start scanning - we scan from the top, begin with the last area */ 3783 area = term_area = last_area; 3784 start = offsets[area]; 3785 end = start + sizes[area]; 3786 3787 va = pvm_find_va_enclose_addr(vmalloc_end); 3788 base = pvm_determine_end_from_reverse(&va, align) - end; 3789 3790 while (true) { 3791 /* 3792 * base might have underflowed, add last_end before 3793 * comparing. 3794 */ 3795 if (base + last_end < vmalloc_start + last_end) 3796 goto overflow; 3797 3798 /* 3799 * Fitting base has not been found. 3800 */ 3801 if (va == NULL) 3802 goto overflow; 3803 3804 /* 3805 * If required width exceeds current VA block, move 3806 * base downwards and then recheck. 3807 */ 3808 if (base + end > va->va_end) { 3809 base = pvm_determine_end_from_reverse(&va, align) - end; 3810 term_area = area; 3811 continue; 3812 } 3813 3814 /* 3815 * If this VA does not fit, move base downwards and recheck. 3816 */ 3817 if (base + start < va->va_start) { 3818 va = node_to_va(rb_prev(&va->rb_node)); 3819 base = pvm_determine_end_from_reverse(&va, align) - end; 3820 term_area = area; 3821 continue; 3822 } 3823 3824 /* 3825 * This area fits, move on to the previous one. If 3826 * the previous one is the terminal one, we're done. 3827 */ 3828 area = (area + nr_vms - 1) % nr_vms; 3829 if (area == term_area) 3830 break; 3831 3832 start = offsets[area]; 3833 end = start + sizes[area]; 3834 va = pvm_find_va_enclose_addr(base + end); 3835 } 3836 3837 /* we've found a fitting base, insert all va's */ 3838 for (area = 0; area < nr_vms; area++) { 3839 int ret; 3840 3841 start = base + offsets[area]; 3842 size = sizes[area]; 3843 3844 va = pvm_find_va_enclose_addr(start); 3845 if (WARN_ON_ONCE(va == NULL)) 3846 /* It is a BUG(), but trigger recovery instead. */ 3847 goto recovery; 3848 3849 type = classify_va_fit_type(va, start, size); 3850 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3851 /* It is a BUG(), but trigger recovery instead. */ 3852 goto recovery; 3853 3854 ret = adjust_va_to_fit_type(va, start, size, type); 3855 if (unlikely(ret)) 3856 goto recovery; 3857 3858 /* Allocated area. */ 3859 va = vas[area]; 3860 va->va_start = start; 3861 va->va_end = start + size; 3862 } 3863 3864 spin_unlock(&free_vmap_area_lock); 3865 3866 /* populate the kasan shadow space */ 3867 for (area = 0; area < nr_vms; area++) { 3868 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3869 goto err_free_shadow; 3870 } 3871 3872 /* insert all vm's */ 3873 spin_lock(&vmap_area_lock); 3874 for (area = 0; area < nr_vms; area++) { 3875 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3876 3877 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3878 pcpu_get_vm_areas); 3879 } 3880 spin_unlock(&vmap_area_lock); 3881 3882 /* 3883 * Mark allocated areas as accessible. Do it now as a best-effort 3884 * approach, as they can be mapped outside of vmalloc code. 3885 * With hardware tag-based KASAN, marking is skipped for 3886 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3887 */ 3888 for (area = 0; area < nr_vms; area++) 3889 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 3890 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 3891 3892 kfree(vas); 3893 return vms; 3894 3895 recovery: 3896 /* 3897 * Remove previously allocated areas. There is no 3898 * need in removing these areas from the busy tree, 3899 * because they are inserted only on the final step 3900 * and when pcpu_get_vm_areas() is success. 3901 */ 3902 while (area--) { 3903 orig_start = vas[area]->va_start; 3904 orig_end = vas[area]->va_end; 3905 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3906 &free_vmap_area_list); 3907 if (va) 3908 kasan_release_vmalloc(orig_start, orig_end, 3909 va->va_start, va->va_end); 3910 vas[area] = NULL; 3911 } 3912 3913 overflow: 3914 spin_unlock(&free_vmap_area_lock); 3915 if (!purged) { 3916 purge_vmap_area_lazy(); 3917 purged = true; 3918 3919 /* Before "retry", check if we recover. */ 3920 for (area = 0; area < nr_vms; area++) { 3921 if (vas[area]) 3922 continue; 3923 3924 vas[area] = kmem_cache_zalloc( 3925 vmap_area_cachep, GFP_KERNEL); 3926 if (!vas[area]) 3927 goto err_free; 3928 } 3929 3930 goto retry; 3931 } 3932 3933 err_free: 3934 for (area = 0; area < nr_vms; area++) { 3935 if (vas[area]) 3936 kmem_cache_free(vmap_area_cachep, vas[area]); 3937 3938 kfree(vms[area]); 3939 } 3940 err_free2: 3941 kfree(vas); 3942 kfree(vms); 3943 return NULL; 3944 3945 err_free_shadow: 3946 spin_lock(&free_vmap_area_lock); 3947 /* 3948 * We release all the vmalloc shadows, even the ones for regions that 3949 * hadn't been successfully added. This relies on kasan_release_vmalloc 3950 * being able to tolerate this case. 3951 */ 3952 for (area = 0; area < nr_vms; area++) { 3953 orig_start = vas[area]->va_start; 3954 orig_end = vas[area]->va_end; 3955 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3956 &free_vmap_area_list); 3957 if (va) 3958 kasan_release_vmalloc(orig_start, orig_end, 3959 va->va_start, va->va_end); 3960 vas[area] = NULL; 3961 kfree(vms[area]); 3962 } 3963 spin_unlock(&free_vmap_area_lock); 3964 kfree(vas); 3965 kfree(vms); 3966 return NULL; 3967 } 3968 3969 /** 3970 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3971 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3972 * @nr_vms: the number of allocated areas 3973 * 3974 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3975 */ 3976 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3977 { 3978 int i; 3979 3980 for (i = 0; i < nr_vms; i++) 3981 free_vm_area(vms[i]); 3982 kfree(vms); 3983 } 3984 #endif /* CONFIG_SMP */ 3985 3986 #ifdef CONFIG_PRINTK 3987 bool vmalloc_dump_obj(void *object) 3988 { 3989 struct vm_struct *vm; 3990 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 3991 3992 vm = find_vm_area(objp); 3993 if (!vm) 3994 return false; 3995 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 3996 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 3997 return true; 3998 } 3999 #endif 4000 4001 #ifdef CONFIG_PROC_FS 4002 static void *s_start(struct seq_file *m, loff_t *pos) 4003 __acquires(&vmap_purge_lock) 4004 __acquires(&vmap_area_lock) 4005 { 4006 mutex_lock(&vmap_purge_lock); 4007 spin_lock(&vmap_area_lock); 4008 4009 return seq_list_start(&vmap_area_list, *pos); 4010 } 4011 4012 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4013 { 4014 return seq_list_next(p, &vmap_area_list, pos); 4015 } 4016 4017 static void s_stop(struct seq_file *m, void *p) 4018 __releases(&vmap_area_lock) 4019 __releases(&vmap_purge_lock) 4020 { 4021 spin_unlock(&vmap_area_lock); 4022 mutex_unlock(&vmap_purge_lock); 4023 } 4024 4025 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4026 { 4027 if (IS_ENABLED(CONFIG_NUMA)) { 4028 unsigned int nr, *counters = m->private; 4029 unsigned int step = 1U << vm_area_page_order(v); 4030 4031 if (!counters) 4032 return; 4033 4034 if (v->flags & VM_UNINITIALIZED) 4035 return; 4036 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4037 smp_rmb(); 4038 4039 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4040 4041 for (nr = 0; nr < v->nr_pages; nr += step) 4042 counters[page_to_nid(v->pages[nr])] += step; 4043 for_each_node_state(nr, N_HIGH_MEMORY) 4044 if (counters[nr]) 4045 seq_printf(m, " N%u=%u", nr, counters[nr]); 4046 } 4047 } 4048 4049 static void show_purge_info(struct seq_file *m) 4050 { 4051 struct vmap_area *va; 4052 4053 spin_lock(&purge_vmap_area_lock); 4054 list_for_each_entry(va, &purge_vmap_area_list, list) { 4055 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4056 (void *)va->va_start, (void *)va->va_end, 4057 va->va_end - va->va_start); 4058 } 4059 spin_unlock(&purge_vmap_area_lock); 4060 } 4061 4062 static int s_show(struct seq_file *m, void *p) 4063 { 4064 struct vmap_area *va; 4065 struct vm_struct *v; 4066 4067 va = list_entry(p, struct vmap_area, list); 4068 4069 /* 4070 * s_show can encounter race with remove_vm_area, !vm on behalf 4071 * of vmap area is being tear down or vm_map_ram allocation. 4072 */ 4073 if (!va->vm) { 4074 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4075 (void *)va->va_start, (void *)va->va_end, 4076 va->va_end - va->va_start); 4077 4078 goto final; 4079 } 4080 4081 v = va->vm; 4082 4083 seq_printf(m, "0x%pK-0x%pK %7ld", 4084 v->addr, v->addr + v->size, v->size); 4085 4086 if (v->caller) 4087 seq_printf(m, " %pS", v->caller); 4088 4089 if (v->nr_pages) 4090 seq_printf(m, " pages=%d", v->nr_pages); 4091 4092 if (v->phys_addr) 4093 seq_printf(m, " phys=%pa", &v->phys_addr); 4094 4095 if (v->flags & VM_IOREMAP) 4096 seq_puts(m, " ioremap"); 4097 4098 if (v->flags & VM_ALLOC) 4099 seq_puts(m, " vmalloc"); 4100 4101 if (v->flags & VM_MAP) 4102 seq_puts(m, " vmap"); 4103 4104 if (v->flags & VM_USERMAP) 4105 seq_puts(m, " user"); 4106 4107 if (v->flags & VM_DMA_COHERENT) 4108 seq_puts(m, " dma-coherent"); 4109 4110 if (is_vmalloc_addr(v->pages)) 4111 seq_puts(m, " vpages"); 4112 4113 show_numa_info(m, v); 4114 seq_putc(m, '\n'); 4115 4116 /* 4117 * As a final step, dump "unpurged" areas. 4118 */ 4119 final: 4120 if (list_is_last(&va->list, &vmap_area_list)) 4121 show_purge_info(m); 4122 4123 return 0; 4124 } 4125 4126 static const struct seq_operations vmalloc_op = { 4127 .start = s_start, 4128 .next = s_next, 4129 .stop = s_stop, 4130 .show = s_show, 4131 }; 4132 4133 static int __init proc_vmalloc_init(void) 4134 { 4135 if (IS_ENABLED(CONFIG_NUMA)) 4136 proc_create_seq_private("vmallocinfo", 0400, NULL, 4137 &vmalloc_op, 4138 nr_node_ids * sizeof(unsigned int), NULL); 4139 else 4140 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4141 return 0; 4142 } 4143 module_init(proc_vmalloc_init); 4144 4145 #endif 4146