xref: /openbmc/linux/mm/vmalloc.c (revision c21b37f6)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 
18 #include <linux/vmalloc.h>
19 
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 
23 
24 DEFINE_RWLOCK(vmlist_lock);
25 struct vm_struct *vmlist;
26 
27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
28 			    int node);
29 
30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
31 {
32 	pte_t *pte;
33 
34 	pte = pte_offset_kernel(pmd, addr);
35 	do {
36 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
37 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
38 	} while (pte++, addr += PAGE_SIZE, addr != end);
39 }
40 
41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
42 						unsigned long end)
43 {
44 	pmd_t *pmd;
45 	unsigned long next;
46 
47 	pmd = pmd_offset(pud, addr);
48 	do {
49 		next = pmd_addr_end(addr, end);
50 		if (pmd_none_or_clear_bad(pmd))
51 			continue;
52 		vunmap_pte_range(pmd, addr, next);
53 	} while (pmd++, addr = next, addr != end);
54 }
55 
56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
57 						unsigned long end)
58 {
59 	pud_t *pud;
60 	unsigned long next;
61 
62 	pud = pud_offset(pgd, addr);
63 	do {
64 		next = pud_addr_end(addr, end);
65 		if (pud_none_or_clear_bad(pud))
66 			continue;
67 		vunmap_pmd_range(pud, addr, next);
68 	} while (pud++, addr = next, addr != end);
69 }
70 
71 void unmap_kernel_range(unsigned long addr, unsigned long size)
72 {
73 	pgd_t *pgd;
74 	unsigned long next;
75 	unsigned long start = addr;
76 	unsigned long end = addr + size;
77 
78 	BUG_ON(addr >= end);
79 	pgd = pgd_offset_k(addr);
80 	flush_cache_vunmap(addr, end);
81 	do {
82 		next = pgd_addr_end(addr, end);
83 		if (pgd_none_or_clear_bad(pgd))
84 			continue;
85 		vunmap_pud_range(pgd, addr, next);
86 	} while (pgd++, addr = next, addr != end);
87 	flush_tlb_kernel_range(start, end);
88 }
89 
90 static void unmap_vm_area(struct vm_struct *area)
91 {
92 	unmap_kernel_range((unsigned long)area->addr, area->size);
93 }
94 
95 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
96 			unsigned long end, pgprot_t prot, struct page ***pages)
97 {
98 	pte_t *pte;
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = **pages;
105 		WARN_ON(!pte_none(*pte));
106 		if (!page)
107 			return -ENOMEM;
108 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
109 		(*pages)++;
110 	} while (pte++, addr += PAGE_SIZE, addr != end);
111 	return 0;
112 }
113 
114 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
115 			unsigned long end, pgprot_t prot, struct page ***pages)
116 {
117 	pmd_t *pmd;
118 	unsigned long next;
119 
120 	pmd = pmd_alloc(&init_mm, pud, addr);
121 	if (!pmd)
122 		return -ENOMEM;
123 	do {
124 		next = pmd_addr_end(addr, end);
125 		if (vmap_pte_range(pmd, addr, next, prot, pages))
126 			return -ENOMEM;
127 	} while (pmd++, addr = next, addr != end);
128 	return 0;
129 }
130 
131 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
132 			unsigned long end, pgprot_t prot, struct page ***pages)
133 {
134 	pud_t *pud;
135 	unsigned long next;
136 
137 	pud = pud_alloc(&init_mm, pgd, addr);
138 	if (!pud)
139 		return -ENOMEM;
140 	do {
141 		next = pud_addr_end(addr, end);
142 		if (vmap_pmd_range(pud, addr, next, prot, pages))
143 			return -ENOMEM;
144 	} while (pud++, addr = next, addr != end);
145 	return 0;
146 }
147 
148 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
149 {
150 	pgd_t *pgd;
151 	unsigned long next;
152 	unsigned long addr = (unsigned long) area->addr;
153 	unsigned long end = addr + area->size - PAGE_SIZE;
154 	int err;
155 
156 	BUG_ON(addr >= end);
157 	pgd = pgd_offset_k(addr);
158 	do {
159 		next = pgd_addr_end(addr, end);
160 		err = vmap_pud_range(pgd, addr, next, prot, pages);
161 		if (err)
162 			break;
163 	} while (pgd++, addr = next, addr != end);
164 	flush_cache_vmap((unsigned long) area->addr, end);
165 	return err;
166 }
167 EXPORT_SYMBOL_GPL(map_vm_area);
168 
169 static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
170 					    unsigned long start, unsigned long end,
171 					    int node, gfp_t gfp_mask)
172 {
173 	struct vm_struct **p, *tmp, *area;
174 	unsigned long align = 1;
175 	unsigned long addr;
176 
177 	BUG_ON(in_interrupt());
178 	if (flags & VM_IOREMAP) {
179 		int bit = fls(size);
180 
181 		if (bit > IOREMAP_MAX_ORDER)
182 			bit = IOREMAP_MAX_ORDER;
183 		else if (bit < PAGE_SHIFT)
184 			bit = PAGE_SHIFT;
185 
186 		align = 1ul << bit;
187 	}
188 	addr = ALIGN(start, align);
189 	size = PAGE_ALIGN(size);
190 	if (unlikely(!size))
191 		return NULL;
192 
193 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_LEVEL_MASK, node);
194 	if (unlikely(!area))
195 		return NULL;
196 
197 	/*
198 	 * We always allocate a guard page.
199 	 */
200 	size += PAGE_SIZE;
201 
202 	write_lock(&vmlist_lock);
203 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
204 		if ((unsigned long)tmp->addr < addr) {
205 			if((unsigned long)tmp->addr + tmp->size >= addr)
206 				addr = ALIGN(tmp->size +
207 					     (unsigned long)tmp->addr, align);
208 			continue;
209 		}
210 		if ((size + addr) < addr)
211 			goto out;
212 		if (size + addr <= (unsigned long)tmp->addr)
213 			goto found;
214 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
215 		if (addr > end - size)
216 			goto out;
217 	}
218 
219 found:
220 	area->next = *p;
221 	*p = area;
222 
223 	area->flags = flags;
224 	area->addr = (void *)addr;
225 	area->size = size;
226 	area->pages = NULL;
227 	area->nr_pages = 0;
228 	area->phys_addr = 0;
229 	write_unlock(&vmlist_lock);
230 
231 	return area;
232 
233 out:
234 	write_unlock(&vmlist_lock);
235 	kfree(area);
236 	if (printk_ratelimit())
237 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
238 	return NULL;
239 }
240 
241 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
242 				unsigned long start, unsigned long end)
243 {
244 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL);
245 }
246 EXPORT_SYMBOL_GPL(__get_vm_area);
247 
248 /**
249  *	get_vm_area  -  reserve a contingous kernel virtual area
250  *	@size:		size of the area
251  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
252  *
253  *	Search an area of @size in the kernel virtual mapping area,
254  *	and reserved it for out purposes.  Returns the area descriptor
255  *	on success or %NULL on failure.
256  */
257 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
258 {
259 	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
260 }
261 
262 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
263 				   int node, gfp_t gfp_mask)
264 {
265 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
266 				  gfp_mask);
267 }
268 
269 /* Caller must hold vmlist_lock */
270 static struct vm_struct *__find_vm_area(void *addr)
271 {
272 	struct vm_struct *tmp;
273 
274 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
275 		 if (tmp->addr == addr)
276 			break;
277 	}
278 
279 	return tmp;
280 }
281 
282 /* Caller must hold vmlist_lock */
283 static struct vm_struct *__remove_vm_area(void *addr)
284 {
285 	struct vm_struct **p, *tmp;
286 
287 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
288 		 if (tmp->addr == addr)
289 			 goto found;
290 	}
291 	return NULL;
292 
293 found:
294 	unmap_vm_area(tmp);
295 	*p = tmp->next;
296 
297 	/*
298 	 * Remove the guard page.
299 	 */
300 	tmp->size -= PAGE_SIZE;
301 	return tmp;
302 }
303 
304 /**
305  *	remove_vm_area  -  find and remove a contingous kernel virtual area
306  *	@addr:		base address
307  *
308  *	Search for the kernel VM area starting at @addr, and remove it.
309  *	This function returns the found VM area, but using it is NOT safe
310  *	on SMP machines, except for its size or flags.
311  */
312 struct vm_struct *remove_vm_area(void *addr)
313 {
314 	struct vm_struct *v;
315 	write_lock(&vmlist_lock);
316 	v = __remove_vm_area(addr);
317 	write_unlock(&vmlist_lock);
318 	return v;
319 }
320 
321 static void __vunmap(void *addr, int deallocate_pages)
322 {
323 	struct vm_struct *area;
324 
325 	if (!addr)
326 		return;
327 
328 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
329 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
330 		WARN_ON(1);
331 		return;
332 	}
333 
334 	area = remove_vm_area(addr);
335 	if (unlikely(!area)) {
336 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
337 				addr);
338 		WARN_ON(1);
339 		return;
340 	}
341 
342 	debug_check_no_locks_freed(addr, area->size);
343 
344 	if (deallocate_pages) {
345 		int i;
346 
347 		for (i = 0; i < area->nr_pages; i++) {
348 			BUG_ON(!area->pages[i]);
349 			__free_page(area->pages[i]);
350 		}
351 
352 		if (area->flags & VM_VPAGES)
353 			vfree(area->pages);
354 		else
355 			kfree(area->pages);
356 	}
357 
358 	kfree(area);
359 	return;
360 }
361 
362 /**
363  *	vfree  -  release memory allocated by vmalloc()
364  *	@addr:		memory base address
365  *
366  *	Free the virtually contiguous memory area starting at @addr, as
367  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
368  *	NULL, no operation is performed.
369  *
370  *	Must not be called in interrupt context.
371  */
372 void vfree(void *addr)
373 {
374 	BUG_ON(in_interrupt());
375 	__vunmap(addr, 1);
376 }
377 EXPORT_SYMBOL(vfree);
378 
379 /**
380  *	vunmap  -  release virtual mapping obtained by vmap()
381  *	@addr:		memory base address
382  *
383  *	Free the virtually contiguous memory area starting at @addr,
384  *	which was created from the page array passed to vmap().
385  *
386  *	Must not be called in interrupt context.
387  */
388 void vunmap(void *addr)
389 {
390 	BUG_ON(in_interrupt());
391 	__vunmap(addr, 0);
392 }
393 EXPORT_SYMBOL(vunmap);
394 
395 /**
396  *	vmap  -  map an array of pages into virtually contiguous space
397  *	@pages:		array of page pointers
398  *	@count:		number of pages to map
399  *	@flags:		vm_area->flags
400  *	@prot:		page protection for the mapping
401  *
402  *	Maps @count pages from @pages into contiguous kernel virtual
403  *	space.
404  */
405 void *vmap(struct page **pages, unsigned int count,
406 		unsigned long flags, pgprot_t prot)
407 {
408 	struct vm_struct *area;
409 
410 	if (count > num_physpages)
411 		return NULL;
412 
413 	area = get_vm_area((count << PAGE_SHIFT), flags);
414 	if (!area)
415 		return NULL;
416 	if (map_vm_area(area, prot, &pages)) {
417 		vunmap(area->addr);
418 		return NULL;
419 	}
420 
421 	return area->addr;
422 }
423 EXPORT_SYMBOL(vmap);
424 
425 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
426 				pgprot_t prot, int node)
427 {
428 	struct page **pages;
429 	unsigned int nr_pages, array_size, i;
430 
431 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
432 	array_size = (nr_pages * sizeof(struct page *));
433 
434 	area->nr_pages = nr_pages;
435 	/* Please note that the recursion is strictly bounded. */
436 	if (array_size > PAGE_SIZE) {
437 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
438 					PAGE_KERNEL, node);
439 		area->flags |= VM_VPAGES;
440 	} else {
441 		pages = kmalloc_node(array_size,
442 				(gfp_mask & GFP_LEVEL_MASK) | __GFP_ZERO,
443 				node);
444 	}
445 	area->pages = pages;
446 	if (!area->pages) {
447 		remove_vm_area(area->addr);
448 		kfree(area);
449 		return NULL;
450 	}
451 
452 	for (i = 0; i < area->nr_pages; i++) {
453 		if (node < 0)
454 			area->pages[i] = alloc_page(gfp_mask);
455 		else
456 			area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
457 		if (unlikely(!area->pages[i])) {
458 			/* Successfully allocated i pages, free them in __vunmap() */
459 			area->nr_pages = i;
460 			goto fail;
461 		}
462 	}
463 
464 	if (map_vm_area(area, prot, &pages))
465 		goto fail;
466 	return area->addr;
467 
468 fail:
469 	vfree(area->addr);
470 	return NULL;
471 }
472 
473 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
474 {
475 	return __vmalloc_area_node(area, gfp_mask, prot, -1);
476 }
477 
478 /**
479  *	__vmalloc_node  -  allocate virtually contiguous memory
480  *	@size:		allocation size
481  *	@gfp_mask:	flags for the page level allocator
482  *	@prot:		protection mask for the allocated pages
483  *	@node:		node to use for allocation or -1
484  *
485  *	Allocate enough pages to cover @size from the page level
486  *	allocator with @gfp_mask flags.  Map them into contiguous
487  *	kernel virtual space, using a pagetable protection of @prot.
488  */
489 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
490 			    int node)
491 {
492 	struct vm_struct *area;
493 
494 	size = PAGE_ALIGN(size);
495 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
496 		return NULL;
497 
498 	area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask);
499 	if (!area)
500 		return NULL;
501 
502 	return __vmalloc_area_node(area, gfp_mask, prot, node);
503 }
504 
505 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
506 {
507 	return __vmalloc_node(size, gfp_mask, prot, -1);
508 }
509 EXPORT_SYMBOL(__vmalloc);
510 
511 /**
512  *	vmalloc  -  allocate virtually contiguous memory
513  *	@size:		allocation size
514  *	Allocate enough pages to cover @size from the page level
515  *	allocator and map them into contiguous kernel virtual space.
516  *
517  *	For tight control over page level allocator and protection flags
518  *	use __vmalloc() instead.
519  */
520 void *vmalloc(unsigned long size)
521 {
522 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
523 }
524 EXPORT_SYMBOL(vmalloc);
525 
526 /**
527  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
528  * @size: allocation size
529  *
530  * The resulting memory area is zeroed so it can be mapped to userspace
531  * without leaking data.
532  */
533 void *vmalloc_user(unsigned long size)
534 {
535 	struct vm_struct *area;
536 	void *ret;
537 
538 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
539 	if (ret) {
540 		write_lock(&vmlist_lock);
541 		area = __find_vm_area(ret);
542 		area->flags |= VM_USERMAP;
543 		write_unlock(&vmlist_lock);
544 	}
545 	return ret;
546 }
547 EXPORT_SYMBOL(vmalloc_user);
548 
549 /**
550  *	vmalloc_node  -  allocate memory on a specific node
551  *	@size:		allocation size
552  *	@node:		numa node
553  *
554  *	Allocate enough pages to cover @size from the page level
555  *	allocator and map them into contiguous kernel virtual space.
556  *
557  *	For tight control over page level allocator and protection flags
558  *	use __vmalloc() instead.
559  */
560 void *vmalloc_node(unsigned long size, int node)
561 {
562 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
563 }
564 EXPORT_SYMBOL(vmalloc_node);
565 
566 #ifndef PAGE_KERNEL_EXEC
567 # define PAGE_KERNEL_EXEC PAGE_KERNEL
568 #endif
569 
570 /**
571  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
572  *	@size:		allocation size
573  *
574  *	Kernel-internal function to allocate enough pages to cover @size
575  *	the page level allocator and map them into contiguous and
576  *	executable kernel virtual space.
577  *
578  *	For tight control over page level allocator and protection flags
579  *	use __vmalloc() instead.
580  */
581 
582 void *vmalloc_exec(unsigned long size)
583 {
584 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
585 }
586 
587 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
588 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
589 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
590 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
591 #else
592 #define GFP_VMALLOC32 GFP_KERNEL
593 #endif
594 
595 /**
596  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
597  *	@size:		allocation size
598  *
599  *	Allocate enough 32bit PA addressable pages to cover @size from the
600  *	page level allocator and map them into contiguous kernel virtual space.
601  */
602 void *vmalloc_32(unsigned long size)
603 {
604 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
605 }
606 EXPORT_SYMBOL(vmalloc_32);
607 
608 /**
609  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
610  *	@size:		allocation size
611  *
612  * The resulting memory area is 32bit addressable and zeroed so it can be
613  * mapped to userspace without leaking data.
614  */
615 void *vmalloc_32_user(unsigned long size)
616 {
617 	struct vm_struct *area;
618 	void *ret;
619 
620 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
621 	if (ret) {
622 		write_lock(&vmlist_lock);
623 		area = __find_vm_area(ret);
624 		area->flags |= VM_USERMAP;
625 		write_unlock(&vmlist_lock);
626 	}
627 	return ret;
628 }
629 EXPORT_SYMBOL(vmalloc_32_user);
630 
631 long vread(char *buf, char *addr, unsigned long count)
632 {
633 	struct vm_struct *tmp;
634 	char *vaddr, *buf_start = buf;
635 	unsigned long n;
636 
637 	/* Don't allow overflow */
638 	if ((unsigned long) addr + count < count)
639 		count = -(unsigned long) addr;
640 
641 	read_lock(&vmlist_lock);
642 	for (tmp = vmlist; tmp; tmp = tmp->next) {
643 		vaddr = (char *) tmp->addr;
644 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
645 			continue;
646 		while (addr < vaddr) {
647 			if (count == 0)
648 				goto finished;
649 			*buf = '\0';
650 			buf++;
651 			addr++;
652 			count--;
653 		}
654 		n = vaddr + tmp->size - PAGE_SIZE - addr;
655 		do {
656 			if (count == 0)
657 				goto finished;
658 			*buf = *addr;
659 			buf++;
660 			addr++;
661 			count--;
662 		} while (--n > 0);
663 	}
664 finished:
665 	read_unlock(&vmlist_lock);
666 	return buf - buf_start;
667 }
668 
669 long vwrite(char *buf, char *addr, unsigned long count)
670 {
671 	struct vm_struct *tmp;
672 	char *vaddr, *buf_start = buf;
673 	unsigned long n;
674 
675 	/* Don't allow overflow */
676 	if ((unsigned long) addr + count < count)
677 		count = -(unsigned long) addr;
678 
679 	read_lock(&vmlist_lock);
680 	for (tmp = vmlist; tmp; tmp = tmp->next) {
681 		vaddr = (char *) tmp->addr;
682 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
683 			continue;
684 		while (addr < vaddr) {
685 			if (count == 0)
686 				goto finished;
687 			buf++;
688 			addr++;
689 			count--;
690 		}
691 		n = vaddr + tmp->size - PAGE_SIZE - addr;
692 		do {
693 			if (count == 0)
694 				goto finished;
695 			*addr = *buf;
696 			buf++;
697 			addr++;
698 			count--;
699 		} while (--n > 0);
700 	}
701 finished:
702 	read_unlock(&vmlist_lock);
703 	return buf - buf_start;
704 }
705 
706 /**
707  *	remap_vmalloc_range  -  map vmalloc pages to userspace
708  *	@vma:		vma to cover (map full range of vma)
709  *	@addr:		vmalloc memory
710  *	@pgoff:		number of pages into addr before first page to map
711  *	@returns:	0 for success, -Exxx on failure
712  *
713  *	This function checks that addr is a valid vmalloc'ed area, and
714  *	that it is big enough to cover the vma. Will return failure if
715  *	that criteria isn't met.
716  *
717  *	Similar to remap_pfn_range() (see mm/memory.c)
718  */
719 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
720 						unsigned long pgoff)
721 {
722 	struct vm_struct *area;
723 	unsigned long uaddr = vma->vm_start;
724 	unsigned long usize = vma->vm_end - vma->vm_start;
725 	int ret;
726 
727 	if ((PAGE_SIZE-1) & (unsigned long)addr)
728 		return -EINVAL;
729 
730 	read_lock(&vmlist_lock);
731 	area = __find_vm_area(addr);
732 	if (!area)
733 		goto out_einval_locked;
734 
735 	if (!(area->flags & VM_USERMAP))
736 		goto out_einval_locked;
737 
738 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
739 		goto out_einval_locked;
740 	read_unlock(&vmlist_lock);
741 
742 	addr += pgoff << PAGE_SHIFT;
743 	do {
744 		struct page *page = vmalloc_to_page(addr);
745 		ret = vm_insert_page(vma, uaddr, page);
746 		if (ret)
747 			return ret;
748 
749 		uaddr += PAGE_SIZE;
750 		addr += PAGE_SIZE;
751 		usize -= PAGE_SIZE;
752 	} while (usize > 0);
753 
754 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
755 	vma->vm_flags |= VM_RESERVED;
756 
757 	return ret;
758 
759 out_einval_locked:
760 	read_unlock(&vmlist_lock);
761 	return -EINVAL;
762 }
763 EXPORT_SYMBOL(remap_vmalloc_range);
764 
765 /*
766  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
767  * have one.
768  */
769 void  __attribute__((weak)) vmalloc_sync_all(void)
770 {
771 }
772 
773 
774 static int f(pte_t *pte, struct page *pmd_page, unsigned long addr, void *data)
775 {
776 	/* apply_to_page_range() does all the hard work. */
777 	return 0;
778 }
779 
780 /**
781  *	alloc_vm_area - allocate a range of kernel address space
782  *	@size:		size of the area
783  *	@returns:	NULL on failure, vm_struct on success
784  *
785  *	This function reserves a range of kernel address space, and
786  *	allocates pagetables to map that range.  No actual mappings
787  *	are created.  If the kernel address space is not shared
788  *	between processes, it syncs the pagetable across all
789  *	processes.
790  */
791 struct vm_struct *alloc_vm_area(size_t size)
792 {
793 	struct vm_struct *area;
794 
795 	area = get_vm_area(size, VM_IOREMAP);
796 	if (area == NULL)
797 		return NULL;
798 
799 	/*
800 	 * This ensures that page tables are constructed for this region
801 	 * of kernel virtual address space and mapped into init_mm.
802 	 */
803 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
804 				area->size, f, NULL)) {
805 		free_vm_area(area);
806 		return NULL;
807 	}
808 
809 	/* Make sure the pagetables are constructed in process kernel
810 	   mappings */
811 	vmalloc_sync_all();
812 
813 	return area;
814 }
815 EXPORT_SYMBOL_GPL(alloc_vm_area);
816 
817 void free_vm_area(struct vm_struct *area)
818 {
819 	struct vm_struct *ret;
820 	ret = remove_vm_area(area->addr);
821 	BUG_ON(ret != area);
822 	kfree(area);
823 }
824 EXPORT_SYMBOL_GPL(free_vm_area);
825