xref: /openbmc/linux/mm/vmalloc.c (revision bec36eca)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/bootmem.h>
27 #include <linux/pfn.h>
28 
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 
33 
34 /*** Page table manipulation functions ***/
35 
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 {
38 	pte_t *pte;
39 
40 	pte = pte_offset_kernel(pmd, addr);
41 	do {
42 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 	} while (pte++, addr += PAGE_SIZE, addr != end);
45 }
46 
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 {
49 	pmd_t *pmd;
50 	unsigned long next;
51 
52 	pmd = pmd_offset(pud, addr);
53 	do {
54 		next = pmd_addr_end(addr, end);
55 		if (pmd_none_or_clear_bad(pmd))
56 			continue;
57 		vunmap_pte_range(pmd, addr, next);
58 	} while (pmd++, addr = next, addr != end);
59 }
60 
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 {
63 	pud_t *pud;
64 	unsigned long next;
65 
66 	pud = pud_offset(pgd, addr);
67 	do {
68 		next = pud_addr_end(addr, end);
69 		if (pud_none_or_clear_bad(pud))
70 			continue;
71 		vunmap_pmd_range(pud, addr, next);
72 	} while (pud++, addr = next, addr != end);
73 }
74 
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 {
77 	pgd_t *pgd;
78 	unsigned long next;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	do {
83 		next = pgd_addr_end(addr, end);
84 		if (pgd_none_or_clear_bad(pgd))
85 			continue;
86 		vunmap_pud_range(pgd, addr, next);
87 	} while (pgd++, addr = next, addr != end);
88 }
89 
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 {
93 	pte_t *pte;
94 
95 	/*
96 	 * nr is a running index into the array which helps higher level
97 	 * callers keep track of where we're up to.
98 	 */
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = pages[*nr];
105 
106 		if (WARN_ON(!pte_none(*pte)))
107 			return -EBUSY;
108 		if (WARN_ON(!page))
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*nr)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 /*
151  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152  * will have pfns corresponding to the "pages" array.
153  *
154  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155  */
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 				   pgprot_t prot, struct page **pages)
158 {
159 	pgd_t *pgd;
160 	unsigned long next;
161 	unsigned long addr = start;
162 	int err = 0;
163 	int nr = 0;
164 
165 	BUG_ON(addr >= end);
166 	pgd = pgd_offset_k(addr);
167 	do {
168 		next = pgd_addr_end(addr, end);
169 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 		if (err)
171 			break;
172 	} while (pgd++, addr = next, addr != end);
173 
174 	if (unlikely(err))
175 		return err;
176 	return nr;
177 }
178 
179 static int vmap_page_range(unsigned long start, unsigned long end,
180 			   pgprot_t prot, struct page **pages)
181 {
182 	int ret;
183 
184 	ret = vmap_page_range_noflush(start, end, prot, pages);
185 	flush_cache_vmap(start, end);
186 	return ret;
187 }
188 
189 static inline int is_vmalloc_or_module_addr(const void *x)
190 {
191 	/*
192 	 * ARM, x86-64 and sparc64 put modules in a special place,
193 	 * and fall back on vmalloc() if that fails. Others
194 	 * just put it in the vmalloc space.
195 	 */
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 	unsigned long addr = (unsigned long)x;
198 	if (addr >= MODULES_VADDR && addr < MODULES_END)
199 		return 1;
200 #endif
201 	return is_vmalloc_addr(x);
202 }
203 
204 /*
205  * Walk a vmap address to the struct page it maps.
206  */
207 struct page *vmalloc_to_page(const void *vmalloc_addr)
208 {
209 	unsigned long addr = (unsigned long) vmalloc_addr;
210 	struct page *page = NULL;
211 	pgd_t *pgd = pgd_offset_k(addr);
212 
213 	/*
214 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 	 * architectures that do not vmalloc module space
216 	 */
217 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
218 
219 	if (!pgd_none(*pgd)) {
220 		pud_t *pud = pud_offset(pgd, addr);
221 		if (!pud_none(*pud)) {
222 			pmd_t *pmd = pmd_offset(pud, addr);
223 			if (!pmd_none(*pmd)) {
224 				pte_t *ptep, pte;
225 
226 				ptep = pte_offset_map(pmd, addr);
227 				pte = *ptep;
228 				if (pte_present(pte))
229 					page = pte_page(pte);
230 				pte_unmap(ptep);
231 			}
232 		}
233 	}
234 	return page;
235 }
236 EXPORT_SYMBOL(vmalloc_to_page);
237 
238 /*
239  * Map a vmalloc()-space virtual address to the physical page frame number.
240  */
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
242 {
243 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
244 }
245 EXPORT_SYMBOL(vmalloc_to_pfn);
246 
247 
248 /*** Global kva allocator ***/
249 
250 #define VM_LAZY_FREE	0x01
251 #define VM_LAZY_FREEING	0x02
252 #define VM_VM_AREA	0x04
253 
254 struct vmap_area {
255 	unsigned long va_start;
256 	unsigned long va_end;
257 	unsigned long flags;
258 	struct rb_node rb_node;		/* address sorted rbtree */
259 	struct list_head list;		/* address sorted list */
260 	struct list_head purge_list;	/* "lazy purge" list */
261 	void *private;
262 	struct rcu_head rcu_head;
263 };
264 
265 static DEFINE_SPINLOCK(vmap_area_lock);
266 static struct rb_root vmap_area_root = RB_ROOT;
267 static LIST_HEAD(vmap_area_list);
268 
269 static struct vmap_area *__find_vmap_area(unsigned long addr)
270 {
271 	struct rb_node *n = vmap_area_root.rb_node;
272 
273 	while (n) {
274 		struct vmap_area *va;
275 
276 		va = rb_entry(n, struct vmap_area, rb_node);
277 		if (addr < va->va_start)
278 			n = n->rb_left;
279 		else if (addr > va->va_start)
280 			n = n->rb_right;
281 		else
282 			return va;
283 	}
284 
285 	return NULL;
286 }
287 
288 static void __insert_vmap_area(struct vmap_area *va)
289 {
290 	struct rb_node **p = &vmap_area_root.rb_node;
291 	struct rb_node *parent = NULL;
292 	struct rb_node *tmp;
293 
294 	while (*p) {
295 		struct vmap_area *tmp;
296 
297 		parent = *p;
298 		tmp = rb_entry(parent, struct vmap_area, rb_node);
299 		if (va->va_start < tmp->va_end)
300 			p = &(*p)->rb_left;
301 		else if (va->va_end > tmp->va_start)
302 			p = &(*p)->rb_right;
303 		else
304 			BUG();
305 	}
306 
307 	rb_link_node(&va->rb_node, parent, p);
308 	rb_insert_color(&va->rb_node, &vmap_area_root);
309 
310 	/* address-sort this list so it is usable like the vmlist */
311 	tmp = rb_prev(&va->rb_node);
312 	if (tmp) {
313 		struct vmap_area *prev;
314 		prev = rb_entry(tmp, struct vmap_area, rb_node);
315 		list_add_rcu(&va->list, &prev->list);
316 	} else
317 		list_add_rcu(&va->list, &vmap_area_list);
318 }
319 
320 static void purge_vmap_area_lazy(void);
321 
322 /*
323  * Allocate a region of KVA of the specified size and alignment, within the
324  * vstart and vend.
325  */
326 static struct vmap_area *alloc_vmap_area(unsigned long size,
327 				unsigned long align,
328 				unsigned long vstart, unsigned long vend,
329 				int node, gfp_t gfp_mask)
330 {
331 	struct vmap_area *va;
332 	struct rb_node *n;
333 	unsigned long addr;
334 	int purged = 0;
335 
336 	BUG_ON(!size);
337 	BUG_ON(size & ~PAGE_MASK);
338 
339 	va = kmalloc_node(sizeof(struct vmap_area),
340 			gfp_mask & GFP_RECLAIM_MASK, node);
341 	if (unlikely(!va))
342 		return ERR_PTR(-ENOMEM);
343 
344 retry:
345 	addr = ALIGN(vstart, align);
346 
347 	spin_lock(&vmap_area_lock);
348 	if (addr + size - 1 < addr)
349 		goto overflow;
350 
351 	/* XXX: could have a last_hole cache */
352 	n = vmap_area_root.rb_node;
353 	if (n) {
354 		struct vmap_area *first = NULL;
355 
356 		do {
357 			struct vmap_area *tmp;
358 			tmp = rb_entry(n, struct vmap_area, rb_node);
359 			if (tmp->va_end >= addr) {
360 				if (!first && tmp->va_start < addr + size)
361 					first = tmp;
362 				n = n->rb_left;
363 			} else {
364 				first = tmp;
365 				n = n->rb_right;
366 			}
367 		} while (n);
368 
369 		if (!first)
370 			goto found;
371 
372 		if (first->va_end < addr) {
373 			n = rb_next(&first->rb_node);
374 			if (n)
375 				first = rb_entry(n, struct vmap_area, rb_node);
376 			else
377 				goto found;
378 		}
379 
380 		while (addr + size > first->va_start && addr + size <= vend) {
381 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
382 			if (addr + size - 1 < addr)
383 				goto overflow;
384 
385 			n = rb_next(&first->rb_node);
386 			if (n)
387 				first = rb_entry(n, struct vmap_area, rb_node);
388 			else
389 				goto found;
390 		}
391 	}
392 found:
393 	if (addr + size > vend) {
394 overflow:
395 		spin_unlock(&vmap_area_lock);
396 		if (!purged) {
397 			purge_vmap_area_lazy();
398 			purged = 1;
399 			goto retry;
400 		}
401 		if (printk_ratelimit())
402 			printk(KERN_WARNING
403 				"vmap allocation for size %lu failed: "
404 				"use vmalloc=<size> to increase size.\n", size);
405 		return ERR_PTR(-EBUSY);
406 	}
407 
408 	BUG_ON(addr & (align-1));
409 
410 	va->va_start = addr;
411 	va->va_end = addr + size;
412 	va->flags = 0;
413 	__insert_vmap_area(va);
414 	spin_unlock(&vmap_area_lock);
415 
416 	return va;
417 }
418 
419 static void rcu_free_va(struct rcu_head *head)
420 {
421 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
422 
423 	kfree(va);
424 }
425 
426 static void __free_vmap_area(struct vmap_area *va)
427 {
428 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
429 	rb_erase(&va->rb_node, &vmap_area_root);
430 	RB_CLEAR_NODE(&va->rb_node);
431 	list_del_rcu(&va->list);
432 
433 	call_rcu(&va->rcu_head, rcu_free_va);
434 }
435 
436 /*
437  * Free a region of KVA allocated by alloc_vmap_area
438  */
439 static void free_vmap_area(struct vmap_area *va)
440 {
441 	spin_lock(&vmap_area_lock);
442 	__free_vmap_area(va);
443 	spin_unlock(&vmap_area_lock);
444 }
445 
446 /*
447  * Clear the pagetable entries of a given vmap_area
448  */
449 static void unmap_vmap_area(struct vmap_area *va)
450 {
451 	vunmap_page_range(va->va_start, va->va_end);
452 }
453 
454 static void vmap_debug_free_range(unsigned long start, unsigned long end)
455 {
456 	/*
457 	 * Unmap page tables and force a TLB flush immediately if
458 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
459 	 * bugs similarly to those in linear kernel virtual address
460 	 * space after a page has been freed.
461 	 *
462 	 * All the lazy freeing logic is still retained, in order to
463 	 * minimise intrusiveness of this debugging feature.
464 	 *
465 	 * This is going to be *slow* (linear kernel virtual address
466 	 * debugging doesn't do a broadcast TLB flush so it is a lot
467 	 * faster).
468 	 */
469 #ifdef CONFIG_DEBUG_PAGEALLOC
470 	vunmap_page_range(start, end);
471 	flush_tlb_kernel_range(start, end);
472 #endif
473 }
474 
475 /*
476  * lazy_max_pages is the maximum amount of virtual address space we gather up
477  * before attempting to purge with a TLB flush.
478  *
479  * There is a tradeoff here: a larger number will cover more kernel page tables
480  * and take slightly longer to purge, but it will linearly reduce the number of
481  * global TLB flushes that must be performed. It would seem natural to scale
482  * this number up linearly with the number of CPUs (because vmapping activity
483  * could also scale linearly with the number of CPUs), however it is likely
484  * that in practice, workloads might be constrained in other ways that mean
485  * vmap activity will not scale linearly with CPUs. Also, I want to be
486  * conservative and not introduce a big latency on huge systems, so go with
487  * a less aggressive log scale. It will still be an improvement over the old
488  * code, and it will be simple to change the scale factor if we find that it
489  * becomes a problem on bigger systems.
490  */
491 static unsigned long lazy_max_pages(void)
492 {
493 	unsigned int log;
494 
495 	log = fls(num_online_cpus());
496 
497 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
498 }
499 
500 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
501 
502 /*
503  * Purges all lazily-freed vmap areas.
504  *
505  * If sync is 0 then don't purge if there is already a purge in progress.
506  * If force_flush is 1, then flush kernel TLBs between *start and *end even
507  * if we found no lazy vmap areas to unmap (callers can use this to optimise
508  * their own TLB flushing).
509  * Returns with *start = min(*start, lowest purged address)
510  *              *end = max(*end, highest purged address)
511  */
512 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
513 					int sync, int force_flush)
514 {
515 	static DEFINE_SPINLOCK(purge_lock);
516 	LIST_HEAD(valist);
517 	struct vmap_area *va;
518 	struct vmap_area *n_va;
519 	int nr = 0;
520 
521 	/*
522 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
523 	 * should not expect such behaviour. This just simplifies locking for
524 	 * the case that isn't actually used at the moment anyway.
525 	 */
526 	if (!sync && !force_flush) {
527 		if (!spin_trylock(&purge_lock))
528 			return;
529 	} else
530 		spin_lock(&purge_lock);
531 
532 	rcu_read_lock();
533 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
534 		if (va->flags & VM_LAZY_FREE) {
535 			if (va->va_start < *start)
536 				*start = va->va_start;
537 			if (va->va_end > *end)
538 				*end = va->va_end;
539 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
540 			unmap_vmap_area(va);
541 			list_add_tail(&va->purge_list, &valist);
542 			va->flags |= VM_LAZY_FREEING;
543 			va->flags &= ~VM_LAZY_FREE;
544 		}
545 	}
546 	rcu_read_unlock();
547 
548 	if (nr) {
549 		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
550 		atomic_sub(nr, &vmap_lazy_nr);
551 	}
552 
553 	if (nr || force_flush)
554 		flush_tlb_kernel_range(*start, *end);
555 
556 	if (nr) {
557 		spin_lock(&vmap_area_lock);
558 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
559 			__free_vmap_area(va);
560 		spin_unlock(&vmap_area_lock);
561 	}
562 	spin_unlock(&purge_lock);
563 }
564 
565 /*
566  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
567  * is already purging.
568  */
569 static void try_purge_vmap_area_lazy(void)
570 {
571 	unsigned long start = ULONG_MAX, end = 0;
572 
573 	__purge_vmap_area_lazy(&start, &end, 0, 0);
574 }
575 
576 /*
577  * Kick off a purge of the outstanding lazy areas.
578  */
579 static void purge_vmap_area_lazy(void)
580 {
581 	unsigned long start = ULONG_MAX, end = 0;
582 
583 	__purge_vmap_area_lazy(&start, &end, 1, 0);
584 }
585 
586 /*
587  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
588  * called for the correct range previously.
589  */
590 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
591 {
592 	va->flags |= VM_LAZY_FREE;
593 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
594 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
595 		try_purge_vmap_area_lazy();
596 }
597 
598 /*
599  * Free and unmap a vmap area
600  */
601 static void free_unmap_vmap_area(struct vmap_area *va)
602 {
603 	flush_cache_vunmap(va->va_start, va->va_end);
604 	free_unmap_vmap_area_noflush(va);
605 }
606 
607 static struct vmap_area *find_vmap_area(unsigned long addr)
608 {
609 	struct vmap_area *va;
610 
611 	spin_lock(&vmap_area_lock);
612 	va = __find_vmap_area(addr);
613 	spin_unlock(&vmap_area_lock);
614 
615 	return va;
616 }
617 
618 static void free_unmap_vmap_area_addr(unsigned long addr)
619 {
620 	struct vmap_area *va;
621 
622 	va = find_vmap_area(addr);
623 	BUG_ON(!va);
624 	free_unmap_vmap_area(va);
625 }
626 
627 
628 /*** Per cpu kva allocator ***/
629 
630 /*
631  * vmap space is limited especially on 32 bit architectures. Ensure there is
632  * room for at least 16 percpu vmap blocks per CPU.
633  */
634 /*
635  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
636  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
637  * instead (we just need a rough idea)
638  */
639 #if BITS_PER_LONG == 32
640 #define VMALLOC_SPACE		(128UL*1024*1024)
641 #else
642 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
643 #endif
644 
645 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
646 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
647 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
648 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
649 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
650 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
651 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
652 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
653 						VMALLOC_PAGES / NR_CPUS / 16))
654 
655 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
656 
657 static bool vmap_initialized __read_mostly = false;
658 
659 struct vmap_block_queue {
660 	spinlock_t lock;
661 	struct list_head free;
662 	struct list_head dirty;
663 	unsigned int nr_dirty;
664 };
665 
666 struct vmap_block {
667 	spinlock_t lock;
668 	struct vmap_area *va;
669 	struct vmap_block_queue *vbq;
670 	unsigned long free, dirty;
671 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
672 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
673 	union {
674 		struct list_head free_list;
675 		struct rcu_head rcu_head;
676 	};
677 };
678 
679 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
680 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
681 
682 /*
683  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
684  * in the free path. Could get rid of this if we change the API to return a
685  * "cookie" from alloc, to be passed to free. But no big deal yet.
686  */
687 static DEFINE_SPINLOCK(vmap_block_tree_lock);
688 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
689 
690 /*
691  * We should probably have a fallback mechanism to allocate virtual memory
692  * out of partially filled vmap blocks. However vmap block sizing should be
693  * fairly reasonable according to the vmalloc size, so it shouldn't be a
694  * big problem.
695  */
696 
697 static unsigned long addr_to_vb_idx(unsigned long addr)
698 {
699 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
700 	addr /= VMAP_BLOCK_SIZE;
701 	return addr;
702 }
703 
704 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
705 {
706 	struct vmap_block_queue *vbq;
707 	struct vmap_block *vb;
708 	struct vmap_area *va;
709 	unsigned long vb_idx;
710 	int node, err;
711 
712 	node = numa_node_id();
713 
714 	vb = kmalloc_node(sizeof(struct vmap_block),
715 			gfp_mask & GFP_RECLAIM_MASK, node);
716 	if (unlikely(!vb))
717 		return ERR_PTR(-ENOMEM);
718 
719 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
720 					VMALLOC_START, VMALLOC_END,
721 					node, gfp_mask);
722 	if (unlikely(IS_ERR(va))) {
723 		kfree(vb);
724 		return ERR_PTR(PTR_ERR(va));
725 	}
726 
727 	err = radix_tree_preload(gfp_mask);
728 	if (unlikely(err)) {
729 		kfree(vb);
730 		free_vmap_area(va);
731 		return ERR_PTR(err);
732 	}
733 
734 	spin_lock_init(&vb->lock);
735 	vb->va = va;
736 	vb->free = VMAP_BBMAP_BITS;
737 	vb->dirty = 0;
738 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
739 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
740 	INIT_LIST_HEAD(&vb->free_list);
741 
742 	vb_idx = addr_to_vb_idx(va->va_start);
743 	spin_lock(&vmap_block_tree_lock);
744 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
745 	spin_unlock(&vmap_block_tree_lock);
746 	BUG_ON(err);
747 	radix_tree_preload_end();
748 
749 	vbq = &get_cpu_var(vmap_block_queue);
750 	vb->vbq = vbq;
751 	spin_lock(&vbq->lock);
752 	list_add(&vb->free_list, &vbq->free);
753 	spin_unlock(&vbq->lock);
754 	put_cpu_var(vmap_cpu_blocks);
755 
756 	return vb;
757 }
758 
759 static void rcu_free_vb(struct rcu_head *head)
760 {
761 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
762 
763 	kfree(vb);
764 }
765 
766 static void free_vmap_block(struct vmap_block *vb)
767 {
768 	struct vmap_block *tmp;
769 	unsigned long vb_idx;
770 
771 	BUG_ON(!list_empty(&vb->free_list));
772 
773 	vb_idx = addr_to_vb_idx(vb->va->va_start);
774 	spin_lock(&vmap_block_tree_lock);
775 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
776 	spin_unlock(&vmap_block_tree_lock);
777 	BUG_ON(tmp != vb);
778 
779 	free_unmap_vmap_area_noflush(vb->va);
780 	call_rcu(&vb->rcu_head, rcu_free_vb);
781 }
782 
783 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
784 {
785 	struct vmap_block_queue *vbq;
786 	struct vmap_block *vb;
787 	unsigned long addr = 0;
788 	unsigned int order;
789 
790 	BUG_ON(size & ~PAGE_MASK);
791 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
792 	order = get_order(size);
793 
794 again:
795 	rcu_read_lock();
796 	vbq = &get_cpu_var(vmap_block_queue);
797 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
798 		int i;
799 
800 		spin_lock(&vb->lock);
801 		i = bitmap_find_free_region(vb->alloc_map,
802 						VMAP_BBMAP_BITS, order);
803 
804 		if (i >= 0) {
805 			addr = vb->va->va_start + (i << PAGE_SHIFT);
806 			BUG_ON(addr_to_vb_idx(addr) !=
807 					addr_to_vb_idx(vb->va->va_start));
808 			vb->free -= 1UL << order;
809 			if (vb->free == 0) {
810 				spin_lock(&vbq->lock);
811 				list_del_init(&vb->free_list);
812 				spin_unlock(&vbq->lock);
813 			}
814 			spin_unlock(&vb->lock);
815 			break;
816 		}
817 		spin_unlock(&vb->lock);
818 	}
819 	put_cpu_var(vmap_cpu_blocks);
820 	rcu_read_unlock();
821 
822 	if (!addr) {
823 		vb = new_vmap_block(gfp_mask);
824 		if (IS_ERR(vb))
825 			return vb;
826 		goto again;
827 	}
828 
829 	return (void *)addr;
830 }
831 
832 static void vb_free(const void *addr, unsigned long size)
833 {
834 	unsigned long offset;
835 	unsigned long vb_idx;
836 	unsigned int order;
837 	struct vmap_block *vb;
838 
839 	BUG_ON(size & ~PAGE_MASK);
840 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
841 
842 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
843 
844 	order = get_order(size);
845 
846 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
847 
848 	vb_idx = addr_to_vb_idx((unsigned long)addr);
849 	rcu_read_lock();
850 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
851 	rcu_read_unlock();
852 	BUG_ON(!vb);
853 
854 	spin_lock(&vb->lock);
855 	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
856 
857 	vb->dirty += 1UL << order;
858 	if (vb->dirty == VMAP_BBMAP_BITS) {
859 		BUG_ON(vb->free || !list_empty(&vb->free_list));
860 		spin_unlock(&vb->lock);
861 		free_vmap_block(vb);
862 	} else
863 		spin_unlock(&vb->lock);
864 }
865 
866 /**
867  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
868  *
869  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
870  * to amortize TLB flushing overheads. What this means is that any page you
871  * have now, may, in a former life, have been mapped into kernel virtual
872  * address by the vmap layer and so there might be some CPUs with TLB entries
873  * still referencing that page (additional to the regular 1:1 kernel mapping).
874  *
875  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
876  * be sure that none of the pages we have control over will have any aliases
877  * from the vmap layer.
878  */
879 void vm_unmap_aliases(void)
880 {
881 	unsigned long start = ULONG_MAX, end = 0;
882 	int cpu;
883 	int flush = 0;
884 
885 	if (unlikely(!vmap_initialized))
886 		return;
887 
888 	for_each_possible_cpu(cpu) {
889 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
890 		struct vmap_block *vb;
891 
892 		rcu_read_lock();
893 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
894 			int i;
895 
896 			spin_lock(&vb->lock);
897 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
898 			while (i < VMAP_BBMAP_BITS) {
899 				unsigned long s, e;
900 				int j;
901 				j = find_next_zero_bit(vb->dirty_map,
902 					VMAP_BBMAP_BITS, i);
903 
904 				s = vb->va->va_start + (i << PAGE_SHIFT);
905 				e = vb->va->va_start + (j << PAGE_SHIFT);
906 				vunmap_page_range(s, e);
907 				flush = 1;
908 
909 				if (s < start)
910 					start = s;
911 				if (e > end)
912 					end = e;
913 
914 				i = j;
915 				i = find_next_bit(vb->dirty_map,
916 							VMAP_BBMAP_BITS, i);
917 			}
918 			spin_unlock(&vb->lock);
919 		}
920 		rcu_read_unlock();
921 	}
922 
923 	__purge_vmap_area_lazy(&start, &end, 1, flush);
924 }
925 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
926 
927 /**
928  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
929  * @mem: the pointer returned by vm_map_ram
930  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
931  */
932 void vm_unmap_ram(const void *mem, unsigned int count)
933 {
934 	unsigned long size = count << PAGE_SHIFT;
935 	unsigned long addr = (unsigned long)mem;
936 
937 	BUG_ON(!addr);
938 	BUG_ON(addr < VMALLOC_START);
939 	BUG_ON(addr > VMALLOC_END);
940 	BUG_ON(addr & (PAGE_SIZE-1));
941 
942 	debug_check_no_locks_freed(mem, size);
943 	vmap_debug_free_range(addr, addr+size);
944 
945 	if (likely(count <= VMAP_MAX_ALLOC))
946 		vb_free(mem, size);
947 	else
948 		free_unmap_vmap_area_addr(addr);
949 }
950 EXPORT_SYMBOL(vm_unmap_ram);
951 
952 /**
953  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
954  * @pages: an array of pointers to the pages to be mapped
955  * @count: number of pages
956  * @node: prefer to allocate data structures on this node
957  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
958  *
959  * Returns: a pointer to the address that has been mapped, or %NULL on failure
960  */
961 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
962 {
963 	unsigned long size = count << PAGE_SHIFT;
964 	unsigned long addr;
965 	void *mem;
966 
967 	if (likely(count <= VMAP_MAX_ALLOC)) {
968 		mem = vb_alloc(size, GFP_KERNEL);
969 		if (IS_ERR(mem))
970 			return NULL;
971 		addr = (unsigned long)mem;
972 	} else {
973 		struct vmap_area *va;
974 		va = alloc_vmap_area(size, PAGE_SIZE,
975 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
976 		if (IS_ERR(va))
977 			return NULL;
978 
979 		addr = va->va_start;
980 		mem = (void *)addr;
981 	}
982 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
983 		vm_unmap_ram(mem, count);
984 		return NULL;
985 	}
986 	return mem;
987 }
988 EXPORT_SYMBOL(vm_map_ram);
989 
990 /**
991  * vm_area_register_early - register vmap area early during boot
992  * @vm: vm_struct to register
993  * @align: requested alignment
994  *
995  * This function is used to register kernel vm area before
996  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
997  * proper values on entry and other fields should be zero.  On return,
998  * vm->addr contains the allocated address.
999  *
1000  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1001  */
1002 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1003 {
1004 	static size_t vm_init_off __initdata;
1005 	unsigned long addr;
1006 
1007 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1008 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1009 
1010 	vm->addr = (void *)addr;
1011 
1012 	vm->next = vmlist;
1013 	vmlist = vm;
1014 }
1015 
1016 void __init vmalloc_init(void)
1017 {
1018 	struct vmap_area *va;
1019 	struct vm_struct *tmp;
1020 	int i;
1021 
1022 	for_each_possible_cpu(i) {
1023 		struct vmap_block_queue *vbq;
1024 
1025 		vbq = &per_cpu(vmap_block_queue, i);
1026 		spin_lock_init(&vbq->lock);
1027 		INIT_LIST_HEAD(&vbq->free);
1028 		INIT_LIST_HEAD(&vbq->dirty);
1029 		vbq->nr_dirty = 0;
1030 	}
1031 
1032 	/* Import existing vmlist entries. */
1033 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1034 		va = alloc_bootmem(sizeof(struct vmap_area));
1035 		va->flags = tmp->flags | VM_VM_AREA;
1036 		va->va_start = (unsigned long)tmp->addr;
1037 		va->va_end = va->va_start + tmp->size;
1038 		__insert_vmap_area(va);
1039 	}
1040 	vmap_initialized = true;
1041 }
1042 
1043 /**
1044  * map_kernel_range_noflush - map kernel VM area with the specified pages
1045  * @addr: start of the VM area to map
1046  * @size: size of the VM area to map
1047  * @prot: page protection flags to use
1048  * @pages: pages to map
1049  *
1050  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1051  * specify should have been allocated using get_vm_area() and its
1052  * friends.
1053  *
1054  * NOTE:
1055  * This function does NOT do any cache flushing.  The caller is
1056  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1057  * before calling this function.
1058  *
1059  * RETURNS:
1060  * The number of pages mapped on success, -errno on failure.
1061  */
1062 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1063 			     pgprot_t prot, struct page **pages)
1064 {
1065 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1066 }
1067 
1068 /**
1069  * unmap_kernel_range_noflush - unmap kernel VM area
1070  * @addr: start of the VM area to unmap
1071  * @size: size of the VM area to unmap
1072  *
1073  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1074  * specify should have been allocated using get_vm_area() and its
1075  * friends.
1076  *
1077  * NOTE:
1078  * This function does NOT do any cache flushing.  The caller is
1079  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1080  * before calling this function and flush_tlb_kernel_range() after.
1081  */
1082 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1083 {
1084 	vunmap_page_range(addr, addr + size);
1085 }
1086 
1087 /**
1088  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1089  * @addr: start of the VM area to unmap
1090  * @size: size of the VM area to unmap
1091  *
1092  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1093  * the unmapping and tlb after.
1094  */
1095 void unmap_kernel_range(unsigned long addr, unsigned long size)
1096 {
1097 	unsigned long end = addr + size;
1098 
1099 	flush_cache_vunmap(addr, end);
1100 	vunmap_page_range(addr, end);
1101 	flush_tlb_kernel_range(addr, end);
1102 }
1103 
1104 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1105 {
1106 	unsigned long addr = (unsigned long)area->addr;
1107 	unsigned long end = addr + area->size - PAGE_SIZE;
1108 	int err;
1109 
1110 	err = vmap_page_range(addr, end, prot, *pages);
1111 	if (err > 0) {
1112 		*pages += err;
1113 		err = 0;
1114 	}
1115 
1116 	return err;
1117 }
1118 EXPORT_SYMBOL_GPL(map_vm_area);
1119 
1120 /*** Old vmalloc interfaces ***/
1121 DEFINE_RWLOCK(vmlist_lock);
1122 struct vm_struct *vmlist;
1123 
1124 static struct vm_struct *__get_vm_area_node(unsigned long size,
1125 		unsigned long flags, unsigned long start, unsigned long end,
1126 		int node, gfp_t gfp_mask, void *caller)
1127 {
1128 	static struct vmap_area *va;
1129 	struct vm_struct *area;
1130 	struct vm_struct *tmp, **p;
1131 	unsigned long align = 1;
1132 
1133 	BUG_ON(in_interrupt());
1134 	if (flags & VM_IOREMAP) {
1135 		int bit = fls(size);
1136 
1137 		if (bit > IOREMAP_MAX_ORDER)
1138 			bit = IOREMAP_MAX_ORDER;
1139 		else if (bit < PAGE_SHIFT)
1140 			bit = PAGE_SHIFT;
1141 
1142 		align = 1ul << bit;
1143 	}
1144 
1145 	size = PAGE_ALIGN(size);
1146 	if (unlikely(!size))
1147 		return NULL;
1148 
1149 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1150 	if (unlikely(!area))
1151 		return NULL;
1152 
1153 	/*
1154 	 * We always allocate a guard page.
1155 	 */
1156 	size += PAGE_SIZE;
1157 
1158 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1159 	if (IS_ERR(va)) {
1160 		kfree(area);
1161 		return NULL;
1162 	}
1163 
1164 	area->flags = flags;
1165 	area->addr = (void *)va->va_start;
1166 	area->size = size;
1167 	area->pages = NULL;
1168 	area->nr_pages = 0;
1169 	area->phys_addr = 0;
1170 	area->caller = caller;
1171 	va->private = area;
1172 	va->flags |= VM_VM_AREA;
1173 
1174 	write_lock(&vmlist_lock);
1175 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1176 		if (tmp->addr >= area->addr)
1177 			break;
1178 	}
1179 	area->next = *p;
1180 	*p = area;
1181 	write_unlock(&vmlist_lock);
1182 
1183 	return area;
1184 }
1185 
1186 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1187 				unsigned long start, unsigned long end)
1188 {
1189 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1190 						__builtin_return_address(0));
1191 }
1192 EXPORT_SYMBOL_GPL(__get_vm_area);
1193 
1194 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1195 				       unsigned long start, unsigned long end,
1196 				       void *caller)
1197 {
1198 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1199 				  caller);
1200 }
1201 
1202 /**
1203  *	get_vm_area  -  reserve a contiguous kernel virtual area
1204  *	@size:		size of the area
1205  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1206  *
1207  *	Search an area of @size in the kernel virtual mapping area,
1208  *	and reserved it for out purposes.  Returns the area descriptor
1209  *	on success or %NULL on failure.
1210  */
1211 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1212 {
1213 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1214 				-1, GFP_KERNEL, __builtin_return_address(0));
1215 }
1216 
1217 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1218 				void *caller)
1219 {
1220 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1221 						-1, GFP_KERNEL, caller);
1222 }
1223 
1224 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1225 				   int node, gfp_t gfp_mask)
1226 {
1227 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1228 				  gfp_mask, __builtin_return_address(0));
1229 }
1230 
1231 static struct vm_struct *find_vm_area(const void *addr)
1232 {
1233 	struct vmap_area *va;
1234 
1235 	va = find_vmap_area((unsigned long)addr);
1236 	if (va && va->flags & VM_VM_AREA)
1237 		return va->private;
1238 
1239 	return NULL;
1240 }
1241 
1242 /**
1243  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1244  *	@addr:		base address
1245  *
1246  *	Search for the kernel VM area starting at @addr, and remove it.
1247  *	This function returns the found VM area, but using it is NOT safe
1248  *	on SMP machines, except for its size or flags.
1249  */
1250 struct vm_struct *remove_vm_area(const void *addr)
1251 {
1252 	struct vmap_area *va;
1253 
1254 	va = find_vmap_area((unsigned long)addr);
1255 	if (va && va->flags & VM_VM_AREA) {
1256 		struct vm_struct *vm = va->private;
1257 		struct vm_struct *tmp, **p;
1258 
1259 		vmap_debug_free_range(va->va_start, va->va_end);
1260 		free_unmap_vmap_area(va);
1261 		vm->size -= PAGE_SIZE;
1262 
1263 		write_lock(&vmlist_lock);
1264 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1265 			;
1266 		*p = tmp->next;
1267 		write_unlock(&vmlist_lock);
1268 
1269 		return vm;
1270 	}
1271 	return NULL;
1272 }
1273 
1274 static void __vunmap(const void *addr, int deallocate_pages)
1275 {
1276 	struct vm_struct *area;
1277 
1278 	if (!addr)
1279 		return;
1280 
1281 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1282 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1283 		return;
1284 	}
1285 
1286 	area = remove_vm_area(addr);
1287 	if (unlikely(!area)) {
1288 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1289 				addr);
1290 		return;
1291 	}
1292 
1293 	debug_check_no_locks_freed(addr, area->size);
1294 	debug_check_no_obj_freed(addr, area->size);
1295 
1296 	if (deallocate_pages) {
1297 		int i;
1298 
1299 		for (i = 0; i < area->nr_pages; i++) {
1300 			struct page *page = area->pages[i];
1301 
1302 			BUG_ON(!page);
1303 			__free_page(page);
1304 		}
1305 
1306 		if (area->flags & VM_VPAGES)
1307 			vfree(area->pages);
1308 		else
1309 			kfree(area->pages);
1310 	}
1311 
1312 	kfree(area);
1313 	return;
1314 }
1315 
1316 /**
1317  *	vfree  -  release memory allocated by vmalloc()
1318  *	@addr:		memory base address
1319  *
1320  *	Free the virtually continuous memory area starting at @addr, as
1321  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1322  *	NULL, no operation is performed.
1323  *
1324  *	Must not be called in interrupt context.
1325  */
1326 void vfree(const void *addr)
1327 {
1328 	BUG_ON(in_interrupt());
1329 	__vunmap(addr, 1);
1330 }
1331 EXPORT_SYMBOL(vfree);
1332 
1333 /**
1334  *	vunmap  -  release virtual mapping obtained by vmap()
1335  *	@addr:		memory base address
1336  *
1337  *	Free the virtually contiguous memory area starting at @addr,
1338  *	which was created from the page array passed to vmap().
1339  *
1340  *	Must not be called in interrupt context.
1341  */
1342 void vunmap(const void *addr)
1343 {
1344 	BUG_ON(in_interrupt());
1345 	might_sleep();
1346 	__vunmap(addr, 0);
1347 }
1348 EXPORT_SYMBOL(vunmap);
1349 
1350 /**
1351  *	vmap  -  map an array of pages into virtually contiguous space
1352  *	@pages:		array of page pointers
1353  *	@count:		number of pages to map
1354  *	@flags:		vm_area->flags
1355  *	@prot:		page protection for the mapping
1356  *
1357  *	Maps @count pages from @pages into contiguous kernel virtual
1358  *	space.
1359  */
1360 void *vmap(struct page **pages, unsigned int count,
1361 		unsigned long flags, pgprot_t prot)
1362 {
1363 	struct vm_struct *area;
1364 
1365 	might_sleep();
1366 
1367 	if (count > num_physpages)
1368 		return NULL;
1369 
1370 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1371 					__builtin_return_address(0));
1372 	if (!area)
1373 		return NULL;
1374 
1375 	if (map_vm_area(area, prot, &pages)) {
1376 		vunmap(area->addr);
1377 		return NULL;
1378 	}
1379 
1380 	return area->addr;
1381 }
1382 EXPORT_SYMBOL(vmap);
1383 
1384 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1385 			    int node, void *caller);
1386 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1387 				 pgprot_t prot, int node, void *caller)
1388 {
1389 	struct page **pages;
1390 	unsigned int nr_pages, array_size, i;
1391 
1392 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1393 	array_size = (nr_pages * sizeof(struct page *));
1394 
1395 	area->nr_pages = nr_pages;
1396 	/* Please note that the recursion is strictly bounded. */
1397 	if (array_size > PAGE_SIZE) {
1398 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1399 				PAGE_KERNEL, node, caller);
1400 		area->flags |= VM_VPAGES;
1401 	} else {
1402 		pages = kmalloc_node(array_size,
1403 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1404 				node);
1405 	}
1406 	area->pages = pages;
1407 	area->caller = caller;
1408 	if (!area->pages) {
1409 		remove_vm_area(area->addr);
1410 		kfree(area);
1411 		return NULL;
1412 	}
1413 
1414 	for (i = 0; i < area->nr_pages; i++) {
1415 		struct page *page;
1416 
1417 		if (node < 0)
1418 			page = alloc_page(gfp_mask);
1419 		else
1420 			page = alloc_pages_node(node, gfp_mask, 0);
1421 
1422 		if (unlikely(!page)) {
1423 			/* Successfully allocated i pages, free them in __vunmap() */
1424 			area->nr_pages = i;
1425 			goto fail;
1426 		}
1427 		area->pages[i] = page;
1428 	}
1429 
1430 	if (map_vm_area(area, prot, &pages))
1431 		goto fail;
1432 	return area->addr;
1433 
1434 fail:
1435 	vfree(area->addr);
1436 	return NULL;
1437 }
1438 
1439 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1440 {
1441 	return __vmalloc_area_node(area, gfp_mask, prot, -1,
1442 					__builtin_return_address(0));
1443 }
1444 
1445 /**
1446  *	__vmalloc_node  -  allocate virtually contiguous memory
1447  *	@size:		allocation size
1448  *	@gfp_mask:	flags for the page level allocator
1449  *	@prot:		protection mask for the allocated pages
1450  *	@node:		node to use for allocation or -1
1451  *	@caller:	caller's return address
1452  *
1453  *	Allocate enough pages to cover @size from the page level
1454  *	allocator with @gfp_mask flags.  Map them into contiguous
1455  *	kernel virtual space, using a pagetable protection of @prot.
1456  */
1457 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1458 						int node, void *caller)
1459 {
1460 	struct vm_struct *area;
1461 
1462 	size = PAGE_ALIGN(size);
1463 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
1464 		return NULL;
1465 
1466 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1467 						node, gfp_mask, caller);
1468 
1469 	if (!area)
1470 		return NULL;
1471 
1472 	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1473 }
1474 
1475 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1476 {
1477 	return __vmalloc_node(size, gfp_mask, prot, -1,
1478 				__builtin_return_address(0));
1479 }
1480 EXPORT_SYMBOL(__vmalloc);
1481 
1482 /**
1483  *	vmalloc  -  allocate virtually contiguous memory
1484  *	@size:		allocation size
1485  *	Allocate enough pages to cover @size from the page level
1486  *	allocator and map them into contiguous kernel virtual space.
1487  *
1488  *	For tight control over page level allocator and protection flags
1489  *	use __vmalloc() instead.
1490  */
1491 void *vmalloc(unsigned long size)
1492 {
1493 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1494 					-1, __builtin_return_address(0));
1495 }
1496 EXPORT_SYMBOL(vmalloc);
1497 
1498 /**
1499  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1500  * @size: allocation size
1501  *
1502  * The resulting memory area is zeroed so it can be mapped to userspace
1503  * without leaking data.
1504  */
1505 void *vmalloc_user(unsigned long size)
1506 {
1507 	struct vm_struct *area;
1508 	void *ret;
1509 
1510 	ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1511 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1512 	if (ret) {
1513 		area = find_vm_area(ret);
1514 		area->flags |= VM_USERMAP;
1515 	}
1516 	return ret;
1517 }
1518 EXPORT_SYMBOL(vmalloc_user);
1519 
1520 /**
1521  *	vmalloc_node  -  allocate memory on a specific node
1522  *	@size:		allocation size
1523  *	@node:		numa node
1524  *
1525  *	Allocate enough pages to cover @size from the page level
1526  *	allocator and map them into contiguous kernel virtual space.
1527  *
1528  *	For tight control over page level allocator and protection flags
1529  *	use __vmalloc() instead.
1530  */
1531 void *vmalloc_node(unsigned long size, int node)
1532 {
1533 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1534 					node, __builtin_return_address(0));
1535 }
1536 EXPORT_SYMBOL(vmalloc_node);
1537 
1538 #ifndef PAGE_KERNEL_EXEC
1539 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1540 #endif
1541 
1542 /**
1543  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1544  *	@size:		allocation size
1545  *
1546  *	Kernel-internal function to allocate enough pages to cover @size
1547  *	the page level allocator and map them into contiguous and
1548  *	executable kernel virtual space.
1549  *
1550  *	For tight control over page level allocator and protection flags
1551  *	use __vmalloc() instead.
1552  */
1553 
1554 void *vmalloc_exec(unsigned long size)
1555 {
1556 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1557 			      -1, __builtin_return_address(0));
1558 }
1559 
1560 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1561 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1562 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1563 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1564 #else
1565 #define GFP_VMALLOC32 GFP_KERNEL
1566 #endif
1567 
1568 /**
1569  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1570  *	@size:		allocation size
1571  *
1572  *	Allocate enough 32bit PA addressable pages to cover @size from the
1573  *	page level allocator and map them into contiguous kernel virtual space.
1574  */
1575 void *vmalloc_32(unsigned long size)
1576 {
1577 	return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1578 			      -1, __builtin_return_address(0));
1579 }
1580 EXPORT_SYMBOL(vmalloc_32);
1581 
1582 /**
1583  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1584  *	@size:		allocation size
1585  *
1586  * The resulting memory area is 32bit addressable and zeroed so it can be
1587  * mapped to userspace without leaking data.
1588  */
1589 void *vmalloc_32_user(unsigned long size)
1590 {
1591 	struct vm_struct *area;
1592 	void *ret;
1593 
1594 	ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1595 			     -1, __builtin_return_address(0));
1596 	if (ret) {
1597 		area = find_vm_area(ret);
1598 		area->flags |= VM_USERMAP;
1599 	}
1600 	return ret;
1601 }
1602 EXPORT_SYMBOL(vmalloc_32_user);
1603 
1604 long vread(char *buf, char *addr, unsigned long count)
1605 {
1606 	struct vm_struct *tmp;
1607 	char *vaddr, *buf_start = buf;
1608 	unsigned long n;
1609 
1610 	/* Don't allow overflow */
1611 	if ((unsigned long) addr + count < count)
1612 		count = -(unsigned long) addr;
1613 
1614 	read_lock(&vmlist_lock);
1615 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1616 		vaddr = (char *) tmp->addr;
1617 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1618 			continue;
1619 		while (addr < vaddr) {
1620 			if (count == 0)
1621 				goto finished;
1622 			*buf = '\0';
1623 			buf++;
1624 			addr++;
1625 			count--;
1626 		}
1627 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1628 		do {
1629 			if (count == 0)
1630 				goto finished;
1631 			*buf = *addr;
1632 			buf++;
1633 			addr++;
1634 			count--;
1635 		} while (--n > 0);
1636 	}
1637 finished:
1638 	read_unlock(&vmlist_lock);
1639 	return buf - buf_start;
1640 }
1641 
1642 long vwrite(char *buf, char *addr, unsigned long count)
1643 {
1644 	struct vm_struct *tmp;
1645 	char *vaddr, *buf_start = buf;
1646 	unsigned long n;
1647 
1648 	/* Don't allow overflow */
1649 	if ((unsigned long) addr + count < count)
1650 		count = -(unsigned long) addr;
1651 
1652 	read_lock(&vmlist_lock);
1653 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1654 		vaddr = (char *) tmp->addr;
1655 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1656 			continue;
1657 		while (addr < vaddr) {
1658 			if (count == 0)
1659 				goto finished;
1660 			buf++;
1661 			addr++;
1662 			count--;
1663 		}
1664 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1665 		do {
1666 			if (count == 0)
1667 				goto finished;
1668 			*addr = *buf;
1669 			buf++;
1670 			addr++;
1671 			count--;
1672 		} while (--n > 0);
1673 	}
1674 finished:
1675 	read_unlock(&vmlist_lock);
1676 	return buf - buf_start;
1677 }
1678 
1679 /**
1680  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1681  *	@vma:		vma to cover (map full range of vma)
1682  *	@addr:		vmalloc memory
1683  *	@pgoff:		number of pages into addr before first page to map
1684  *
1685  *	Returns:	0 for success, -Exxx on failure
1686  *
1687  *	This function checks that addr is a valid vmalloc'ed area, and
1688  *	that it is big enough to cover the vma. Will return failure if
1689  *	that criteria isn't met.
1690  *
1691  *	Similar to remap_pfn_range() (see mm/memory.c)
1692  */
1693 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1694 						unsigned long pgoff)
1695 {
1696 	struct vm_struct *area;
1697 	unsigned long uaddr = vma->vm_start;
1698 	unsigned long usize = vma->vm_end - vma->vm_start;
1699 
1700 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1701 		return -EINVAL;
1702 
1703 	area = find_vm_area(addr);
1704 	if (!area)
1705 		return -EINVAL;
1706 
1707 	if (!(area->flags & VM_USERMAP))
1708 		return -EINVAL;
1709 
1710 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1711 		return -EINVAL;
1712 
1713 	addr += pgoff << PAGE_SHIFT;
1714 	do {
1715 		struct page *page = vmalloc_to_page(addr);
1716 		int ret;
1717 
1718 		ret = vm_insert_page(vma, uaddr, page);
1719 		if (ret)
1720 			return ret;
1721 
1722 		uaddr += PAGE_SIZE;
1723 		addr += PAGE_SIZE;
1724 		usize -= PAGE_SIZE;
1725 	} while (usize > 0);
1726 
1727 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1728 	vma->vm_flags |= VM_RESERVED;
1729 
1730 	return 0;
1731 }
1732 EXPORT_SYMBOL(remap_vmalloc_range);
1733 
1734 /*
1735  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1736  * have one.
1737  */
1738 void  __attribute__((weak)) vmalloc_sync_all(void)
1739 {
1740 }
1741 
1742 
1743 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1744 {
1745 	/* apply_to_page_range() does all the hard work. */
1746 	return 0;
1747 }
1748 
1749 /**
1750  *	alloc_vm_area - allocate a range of kernel address space
1751  *	@size:		size of the area
1752  *
1753  *	Returns:	NULL on failure, vm_struct on success
1754  *
1755  *	This function reserves a range of kernel address space, and
1756  *	allocates pagetables to map that range.  No actual mappings
1757  *	are created.  If the kernel address space is not shared
1758  *	between processes, it syncs the pagetable across all
1759  *	processes.
1760  */
1761 struct vm_struct *alloc_vm_area(size_t size)
1762 {
1763 	struct vm_struct *area;
1764 
1765 	area = get_vm_area_caller(size, VM_IOREMAP,
1766 				__builtin_return_address(0));
1767 	if (area == NULL)
1768 		return NULL;
1769 
1770 	/*
1771 	 * This ensures that page tables are constructed for this region
1772 	 * of kernel virtual address space and mapped into init_mm.
1773 	 */
1774 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1775 				area->size, f, NULL)) {
1776 		free_vm_area(area);
1777 		return NULL;
1778 	}
1779 
1780 	/* Make sure the pagetables are constructed in process kernel
1781 	   mappings */
1782 	vmalloc_sync_all();
1783 
1784 	return area;
1785 }
1786 EXPORT_SYMBOL_GPL(alloc_vm_area);
1787 
1788 void free_vm_area(struct vm_struct *area)
1789 {
1790 	struct vm_struct *ret;
1791 	ret = remove_vm_area(area->addr);
1792 	BUG_ON(ret != area);
1793 	kfree(area);
1794 }
1795 EXPORT_SYMBOL_GPL(free_vm_area);
1796 
1797 
1798 #ifdef CONFIG_PROC_FS
1799 static void *s_start(struct seq_file *m, loff_t *pos)
1800 {
1801 	loff_t n = *pos;
1802 	struct vm_struct *v;
1803 
1804 	read_lock(&vmlist_lock);
1805 	v = vmlist;
1806 	while (n > 0 && v) {
1807 		n--;
1808 		v = v->next;
1809 	}
1810 	if (!n)
1811 		return v;
1812 
1813 	return NULL;
1814 
1815 }
1816 
1817 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1818 {
1819 	struct vm_struct *v = p;
1820 
1821 	++*pos;
1822 	return v->next;
1823 }
1824 
1825 static void s_stop(struct seq_file *m, void *p)
1826 {
1827 	read_unlock(&vmlist_lock);
1828 }
1829 
1830 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1831 {
1832 	if (NUMA_BUILD) {
1833 		unsigned int nr, *counters = m->private;
1834 
1835 		if (!counters)
1836 			return;
1837 
1838 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1839 
1840 		for (nr = 0; nr < v->nr_pages; nr++)
1841 			counters[page_to_nid(v->pages[nr])]++;
1842 
1843 		for_each_node_state(nr, N_HIGH_MEMORY)
1844 			if (counters[nr])
1845 				seq_printf(m, " N%u=%u", nr, counters[nr]);
1846 	}
1847 }
1848 
1849 static int s_show(struct seq_file *m, void *p)
1850 {
1851 	struct vm_struct *v = p;
1852 
1853 	seq_printf(m, "0x%p-0x%p %7ld",
1854 		v->addr, v->addr + v->size, v->size);
1855 
1856 	if (v->caller) {
1857 		char buff[KSYM_SYMBOL_LEN];
1858 
1859 		seq_putc(m, ' ');
1860 		sprint_symbol(buff, (unsigned long)v->caller);
1861 		seq_puts(m, buff);
1862 	}
1863 
1864 	if (v->nr_pages)
1865 		seq_printf(m, " pages=%d", v->nr_pages);
1866 
1867 	if (v->phys_addr)
1868 		seq_printf(m, " phys=%lx", v->phys_addr);
1869 
1870 	if (v->flags & VM_IOREMAP)
1871 		seq_printf(m, " ioremap");
1872 
1873 	if (v->flags & VM_ALLOC)
1874 		seq_printf(m, " vmalloc");
1875 
1876 	if (v->flags & VM_MAP)
1877 		seq_printf(m, " vmap");
1878 
1879 	if (v->flags & VM_USERMAP)
1880 		seq_printf(m, " user");
1881 
1882 	if (v->flags & VM_VPAGES)
1883 		seq_printf(m, " vpages");
1884 
1885 	show_numa_info(m, v);
1886 	seq_putc(m, '\n');
1887 	return 0;
1888 }
1889 
1890 static const struct seq_operations vmalloc_op = {
1891 	.start = s_start,
1892 	.next = s_next,
1893 	.stop = s_stop,
1894 	.show = s_show,
1895 };
1896 
1897 static int vmalloc_open(struct inode *inode, struct file *file)
1898 {
1899 	unsigned int *ptr = NULL;
1900 	int ret;
1901 
1902 	if (NUMA_BUILD)
1903 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1904 	ret = seq_open(file, &vmalloc_op);
1905 	if (!ret) {
1906 		struct seq_file *m = file->private_data;
1907 		m->private = ptr;
1908 	} else
1909 		kfree(ptr);
1910 	return ret;
1911 }
1912 
1913 static const struct file_operations proc_vmalloc_operations = {
1914 	.open		= vmalloc_open,
1915 	.read		= seq_read,
1916 	.llseek		= seq_lseek,
1917 	.release	= seq_release_private,
1918 };
1919 
1920 static int __init proc_vmalloc_init(void)
1921 {
1922 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1923 	return 0;
1924 }
1925 module_init(proc_vmalloc_init);
1926 #endif
1927 
1928