1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <asm/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 #include <asm/shmparam.h> 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 return err; 172 } while (pgd++, addr = next, addr != end); 173 174 return nr; 175 } 176 177 static int vmap_page_range(unsigned long start, unsigned long end, 178 pgprot_t prot, struct page **pages) 179 { 180 int ret; 181 182 ret = vmap_page_range_noflush(start, end, prot, pages); 183 flush_cache_vmap(start, end); 184 return ret; 185 } 186 187 int is_vmalloc_or_module_addr(const void *x) 188 { 189 /* 190 * ARM, x86-64 and sparc64 put modules in a special place, 191 * and fall back on vmalloc() if that fails. Others 192 * just put it in the vmalloc space. 193 */ 194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 195 unsigned long addr = (unsigned long)x; 196 if (addr >= MODULES_VADDR && addr < MODULES_END) 197 return 1; 198 #endif 199 return is_vmalloc_addr(x); 200 } 201 202 /* 203 * Walk a vmap address to the struct page it maps. 204 */ 205 struct page *vmalloc_to_page(const void *vmalloc_addr) 206 { 207 unsigned long addr = (unsigned long) vmalloc_addr; 208 struct page *page = NULL; 209 pgd_t *pgd = pgd_offset_k(addr); 210 211 /* 212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 213 * architectures that do not vmalloc module space 214 */ 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 216 217 if (!pgd_none(*pgd)) { 218 pud_t *pud = pud_offset(pgd, addr); 219 if (!pud_none(*pud)) { 220 pmd_t *pmd = pmd_offset(pud, addr); 221 if (!pmd_none(*pmd)) { 222 pte_t *ptep, pte; 223 224 ptep = pte_offset_map(pmd, addr); 225 pte = *ptep; 226 if (pte_present(pte)) 227 page = pte_page(pte); 228 pte_unmap(ptep); 229 } 230 } 231 } 232 return page; 233 } 234 EXPORT_SYMBOL(vmalloc_to_page); 235 236 /* 237 * Map a vmalloc()-space virtual address to the physical page frame number. 238 */ 239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 240 { 241 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 242 } 243 EXPORT_SYMBOL(vmalloc_to_pfn); 244 245 246 /*** Global kva allocator ***/ 247 248 #define VM_LAZY_FREE 0x01 249 #define VM_LAZY_FREEING 0x02 250 #define VM_VM_AREA 0x04 251 252 struct vmap_area { 253 unsigned long va_start; 254 unsigned long va_end; 255 unsigned long flags; 256 struct rb_node rb_node; /* address sorted rbtree */ 257 struct list_head list; /* address sorted list */ 258 struct list_head purge_list; /* "lazy purge" list */ 259 void *private; 260 struct rcu_head rcu_head; 261 }; 262 263 static DEFINE_SPINLOCK(vmap_area_lock); 264 static struct rb_root vmap_area_root = RB_ROOT; 265 static LIST_HEAD(vmap_area_list); 266 static unsigned long vmap_area_pcpu_hole; 267 268 static struct vmap_area *__find_vmap_area(unsigned long addr) 269 { 270 struct rb_node *n = vmap_area_root.rb_node; 271 272 while (n) { 273 struct vmap_area *va; 274 275 va = rb_entry(n, struct vmap_area, rb_node); 276 if (addr < va->va_start) 277 n = n->rb_left; 278 else if (addr > va->va_start) 279 n = n->rb_right; 280 else 281 return va; 282 } 283 284 return NULL; 285 } 286 287 static void __insert_vmap_area(struct vmap_area *va) 288 { 289 struct rb_node **p = &vmap_area_root.rb_node; 290 struct rb_node *parent = NULL; 291 struct rb_node *tmp; 292 293 while (*p) { 294 struct vmap_area *tmp_va; 295 296 parent = *p; 297 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 298 if (va->va_start < tmp_va->va_end) 299 p = &(*p)->rb_left; 300 else if (va->va_end > tmp_va->va_start) 301 p = &(*p)->rb_right; 302 else 303 BUG(); 304 } 305 306 rb_link_node(&va->rb_node, parent, p); 307 rb_insert_color(&va->rb_node, &vmap_area_root); 308 309 /* address-sort this list so it is usable like the vmlist */ 310 tmp = rb_prev(&va->rb_node); 311 if (tmp) { 312 struct vmap_area *prev; 313 prev = rb_entry(tmp, struct vmap_area, rb_node); 314 list_add_rcu(&va->list, &prev->list); 315 } else 316 list_add_rcu(&va->list, &vmap_area_list); 317 } 318 319 static void purge_vmap_area_lazy(void); 320 321 /* 322 * Allocate a region of KVA of the specified size and alignment, within the 323 * vstart and vend. 324 */ 325 static struct vmap_area *alloc_vmap_area(unsigned long size, 326 unsigned long align, 327 unsigned long vstart, unsigned long vend, 328 int node, gfp_t gfp_mask) 329 { 330 struct vmap_area *va; 331 struct rb_node *n; 332 unsigned long addr; 333 int purged = 0; 334 335 BUG_ON(!size); 336 BUG_ON(size & ~PAGE_MASK); 337 338 va = kmalloc_node(sizeof(struct vmap_area), 339 gfp_mask & GFP_RECLAIM_MASK, node); 340 if (unlikely(!va)) 341 return ERR_PTR(-ENOMEM); 342 343 retry: 344 addr = ALIGN(vstart, align); 345 346 spin_lock(&vmap_area_lock); 347 if (addr + size - 1 < addr) 348 goto overflow; 349 350 /* XXX: could have a last_hole cache */ 351 n = vmap_area_root.rb_node; 352 if (n) { 353 struct vmap_area *first = NULL; 354 355 do { 356 struct vmap_area *tmp; 357 tmp = rb_entry(n, struct vmap_area, rb_node); 358 if (tmp->va_end >= addr) { 359 if (!first && tmp->va_start < addr + size) 360 first = tmp; 361 n = n->rb_left; 362 } else { 363 first = tmp; 364 n = n->rb_right; 365 } 366 } while (n); 367 368 if (!first) 369 goto found; 370 371 if (first->va_end < addr) { 372 n = rb_next(&first->rb_node); 373 if (n) 374 first = rb_entry(n, struct vmap_area, rb_node); 375 else 376 goto found; 377 } 378 379 while (addr + size > first->va_start && addr + size <= vend) { 380 addr = ALIGN(first->va_end + PAGE_SIZE, align); 381 if (addr + size - 1 < addr) 382 goto overflow; 383 384 n = rb_next(&first->rb_node); 385 if (n) 386 first = rb_entry(n, struct vmap_area, rb_node); 387 else 388 goto found; 389 } 390 } 391 found: 392 if (addr + size > vend) { 393 overflow: 394 spin_unlock(&vmap_area_lock); 395 if (!purged) { 396 purge_vmap_area_lazy(); 397 purged = 1; 398 goto retry; 399 } 400 if (printk_ratelimit()) 401 printk(KERN_WARNING 402 "vmap allocation for size %lu failed: " 403 "use vmalloc=<size> to increase size.\n", size); 404 kfree(va); 405 return ERR_PTR(-EBUSY); 406 } 407 408 BUG_ON(addr & (align-1)); 409 410 va->va_start = addr; 411 va->va_end = addr + size; 412 va->flags = 0; 413 __insert_vmap_area(va); 414 spin_unlock(&vmap_area_lock); 415 416 return va; 417 } 418 419 static void rcu_free_va(struct rcu_head *head) 420 { 421 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 422 423 kfree(va); 424 } 425 426 static void __free_vmap_area(struct vmap_area *va) 427 { 428 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 429 rb_erase(&va->rb_node, &vmap_area_root); 430 RB_CLEAR_NODE(&va->rb_node); 431 list_del_rcu(&va->list); 432 433 /* 434 * Track the highest possible candidate for pcpu area 435 * allocation. Areas outside of vmalloc area can be returned 436 * here too, consider only end addresses which fall inside 437 * vmalloc area proper. 438 */ 439 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 440 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 441 442 call_rcu(&va->rcu_head, rcu_free_va); 443 } 444 445 /* 446 * Free a region of KVA allocated by alloc_vmap_area 447 */ 448 static void free_vmap_area(struct vmap_area *va) 449 { 450 spin_lock(&vmap_area_lock); 451 __free_vmap_area(va); 452 spin_unlock(&vmap_area_lock); 453 } 454 455 /* 456 * Clear the pagetable entries of a given vmap_area 457 */ 458 static void unmap_vmap_area(struct vmap_area *va) 459 { 460 vunmap_page_range(va->va_start, va->va_end); 461 } 462 463 static void vmap_debug_free_range(unsigned long start, unsigned long end) 464 { 465 /* 466 * Unmap page tables and force a TLB flush immediately if 467 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 468 * bugs similarly to those in linear kernel virtual address 469 * space after a page has been freed. 470 * 471 * All the lazy freeing logic is still retained, in order to 472 * minimise intrusiveness of this debugging feature. 473 * 474 * This is going to be *slow* (linear kernel virtual address 475 * debugging doesn't do a broadcast TLB flush so it is a lot 476 * faster). 477 */ 478 #ifdef CONFIG_DEBUG_PAGEALLOC 479 vunmap_page_range(start, end); 480 flush_tlb_kernel_range(start, end); 481 #endif 482 } 483 484 /* 485 * lazy_max_pages is the maximum amount of virtual address space we gather up 486 * before attempting to purge with a TLB flush. 487 * 488 * There is a tradeoff here: a larger number will cover more kernel page tables 489 * and take slightly longer to purge, but it will linearly reduce the number of 490 * global TLB flushes that must be performed. It would seem natural to scale 491 * this number up linearly with the number of CPUs (because vmapping activity 492 * could also scale linearly with the number of CPUs), however it is likely 493 * that in practice, workloads might be constrained in other ways that mean 494 * vmap activity will not scale linearly with CPUs. Also, I want to be 495 * conservative and not introduce a big latency on huge systems, so go with 496 * a less aggressive log scale. It will still be an improvement over the old 497 * code, and it will be simple to change the scale factor if we find that it 498 * becomes a problem on bigger systems. 499 */ 500 static unsigned long lazy_max_pages(void) 501 { 502 unsigned int log; 503 504 log = fls(num_online_cpus()); 505 506 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 507 } 508 509 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 510 511 /* for per-CPU blocks */ 512 static void purge_fragmented_blocks_allcpus(void); 513 514 /* 515 * called before a call to iounmap() if the caller wants vm_area_struct's 516 * immediately freed. 517 */ 518 void set_iounmap_nonlazy(void) 519 { 520 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 521 } 522 523 /* 524 * Purges all lazily-freed vmap areas. 525 * 526 * If sync is 0 then don't purge if there is already a purge in progress. 527 * If force_flush is 1, then flush kernel TLBs between *start and *end even 528 * if we found no lazy vmap areas to unmap (callers can use this to optimise 529 * their own TLB flushing). 530 * Returns with *start = min(*start, lowest purged address) 531 * *end = max(*end, highest purged address) 532 */ 533 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 534 int sync, int force_flush) 535 { 536 static DEFINE_SPINLOCK(purge_lock); 537 LIST_HEAD(valist); 538 struct vmap_area *va; 539 struct vmap_area *n_va; 540 int nr = 0; 541 542 /* 543 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 544 * should not expect such behaviour. This just simplifies locking for 545 * the case that isn't actually used at the moment anyway. 546 */ 547 if (!sync && !force_flush) { 548 if (!spin_trylock(&purge_lock)) 549 return; 550 } else 551 spin_lock(&purge_lock); 552 553 if (sync) 554 purge_fragmented_blocks_allcpus(); 555 556 rcu_read_lock(); 557 list_for_each_entry_rcu(va, &vmap_area_list, list) { 558 if (va->flags & VM_LAZY_FREE) { 559 if (va->va_start < *start) 560 *start = va->va_start; 561 if (va->va_end > *end) 562 *end = va->va_end; 563 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 564 list_add_tail(&va->purge_list, &valist); 565 va->flags |= VM_LAZY_FREEING; 566 va->flags &= ~VM_LAZY_FREE; 567 } 568 } 569 rcu_read_unlock(); 570 571 if (nr) 572 atomic_sub(nr, &vmap_lazy_nr); 573 574 if (nr || force_flush) 575 flush_tlb_kernel_range(*start, *end); 576 577 if (nr) { 578 spin_lock(&vmap_area_lock); 579 list_for_each_entry_safe(va, n_va, &valist, purge_list) 580 __free_vmap_area(va); 581 spin_unlock(&vmap_area_lock); 582 } 583 spin_unlock(&purge_lock); 584 } 585 586 /* 587 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 588 * is already purging. 589 */ 590 static void try_purge_vmap_area_lazy(void) 591 { 592 unsigned long start = ULONG_MAX, end = 0; 593 594 __purge_vmap_area_lazy(&start, &end, 0, 0); 595 } 596 597 /* 598 * Kick off a purge of the outstanding lazy areas. 599 */ 600 static void purge_vmap_area_lazy(void) 601 { 602 unsigned long start = ULONG_MAX, end = 0; 603 604 __purge_vmap_area_lazy(&start, &end, 1, 0); 605 } 606 607 /* 608 * Free a vmap area, caller ensuring that the area has been unmapped 609 * and flush_cache_vunmap had been called for the correct range 610 * previously. 611 */ 612 static void free_vmap_area_noflush(struct vmap_area *va) 613 { 614 va->flags |= VM_LAZY_FREE; 615 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 616 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 617 try_purge_vmap_area_lazy(); 618 } 619 620 /* 621 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 622 * called for the correct range previously. 623 */ 624 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 625 { 626 unmap_vmap_area(va); 627 free_vmap_area_noflush(va); 628 } 629 630 /* 631 * Free and unmap a vmap area 632 */ 633 static void free_unmap_vmap_area(struct vmap_area *va) 634 { 635 flush_cache_vunmap(va->va_start, va->va_end); 636 free_unmap_vmap_area_noflush(va); 637 } 638 639 static struct vmap_area *find_vmap_area(unsigned long addr) 640 { 641 struct vmap_area *va; 642 643 spin_lock(&vmap_area_lock); 644 va = __find_vmap_area(addr); 645 spin_unlock(&vmap_area_lock); 646 647 return va; 648 } 649 650 static void free_unmap_vmap_area_addr(unsigned long addr) 651 { 652 struct vmap_area *va; 653 654 va = find_vmap_area(addr); 655 BUG_ON(!va); 656 free_unmap_vmap_area(va); 657 } 658 659 660 /*** Per cpu kva allocator ***/ 661 662 /* 663 * vmap space is limited especially on 32 bit architectures. Ensure there is 664 * room for at least 16 percpu vmap blocks per CPU. 665 */ 666 /* 667 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 668 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 669 * instead (we just need a rough idea) 670 */ 671 #if BITS_PER_LONG == 32 672 #define VMALLOC_SPACE (128UL*1024*1024) 673 #else 674 #define VMALLOC_SPACE (128UL*1024*1024*1024) 675 #endif 676 677 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 678 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 679 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 680 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 681 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 682 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 683 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 684 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 685 VMALLOC_PAGES / NR_CPUS / 16)) 686 687 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 688 689 static bool vmap_initialized __read_mostly = false; 690 691 struct vmap_block_queue { 692 spinlock_t lock; 693 struct list_head free; 694 }; 695 696 struct vmap_block { 697 spinlock_t lock; 698 struct vmap_area *va; 699 struct vmap_block_queue *vbq; 700 unsigned long free, dirty; 701 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 702 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 703 struct list_head free_list; 704 struct rcu_head rcu_head; 705 struct list_head purge; 706 }; 707 708 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 709 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 710 711 /* 712 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 713 * in the free path. Could get rid of this if we change the API to return a 714 * "cookie" from alloc, to be passed to free. But no big deal yet. 715 */ 716 static DEFINE_SPINLOCK(vmap_block_tree_lock); 717 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 718 719 /* 720 * We should probably have a fallback mechanism to allocate virtual memory 721 * out of partially filled vmap blocks. However vmap block sizing should be 722 * fairly reasonable according to the vmalloc size, so it shouldn't be a 723 * big problem. 724 */ 725 726 static unsigned long addr_to_vb_idx(unsigned long addr) 727 { 728 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 729 addr /= VMAP_BLOCK_SIZE; 730 return addr; 731 } 732 733 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 734 { 735 struct vmap_block_queue *vbq; 736 struct vmap_block *vb; 737 struct vmap_area *va; 738 unsigned long vb_idx; 739 int node, err; 740 741 node = numa_node_id(); 742 743 vb = kmalloc_node(sizeof(struct vmap_block), 744 gfp_mask & GFP_RECLAIM_MASK, node); 745 if (unlikely(!vb)) 746 return ERR_PTR(-ENOMEM); 747 748 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 749 VMALLOC_START, VMALLOC_END, 750 node, gfp_mask); 751 if (unlikely(IS_ERR(va))) { 752 kfree(vb); 753 return ERR_CAST(va); 754 } 755 756 err = radix_tree_preload(gfp_mask); 757 if (unlikely(err)) { 758 kfree(vb); 759 free_vmap_area(va); 760 return ERR_PTR(err); 761 } 762 763 spin_lock_init(&vb->lock); 764 vb->va = va; 765 vb->free = VMAP_BBMAP_BITS; 766 vb->dirty = 0; 767 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 768 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 769 INIT_LIST_HEAD(&vb->free_list); 770 771 vb_idx = addr_to_vb_idx(va->va_start); 772 spin_lock(&vmap_block_tree_lock); 773 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 774 spin_unlock(&vmap_block_tree_lock); 775 BUG_ON(err); 776 radix_tree_preload_end(); 777 778 vbq = &get_cpu_var(vmap_block_queue); 779 vb->vbq = vbq; 780 spin_lock(&vbq->lock); 781 list_add_rcu(&vb->free_list, &vbq->free); 782 spin_unlock(&vbq->lock); 783 put_cpu_var(vmap_block_queue); 784 785 return vb; 786 } 787 788 static void rcu_free_vb(struct rcu_head *head) 789 { 790 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 791 792 kfree(vb); 793 } 794 795 static void free_vmap_block(struct vmap_block *vb) 796 { 797 struct vmap_block *tmp; 798 unsigned long vb_idx; 799 800 vb_idx = addr_to_vb_idx(vb->va->va_start); 801 spin_lock(&vmap_block_tree_lock); 802 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 803 spin_unlock(&vmap_block_tree_lock); 804 BUG_ON(tmp != vb); 805 806 free_vmap_area_noflush(vb->va); 807 call_rcu(&vb->rcu_head, rcu_free_vb); 808 } 809 810 static void purge_fragmented_blocks(int cpu) 811 { 812 LIST_HEAD(purge); 813 struct vmap_block *vb; 814 struct vmap_block *n_vb; 815 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 816 817 rcu_read_lock(); 818 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 819 820 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 821 continue; 822 823 spin_lock(&vb->lock); 824 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 825 vb->free = 0; /* prevent further allocs after releasing lock */ 826 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 827 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); 828 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 829 spin_lock(&vbq->lock); 830 list_del_rcu(&vb->free_list); 831 spin_unlock(&vbq->lock); 832 spin_unlock(&vb->lock); 833 list_add_tail(&vb->purge, &purge); 834 } else 835 spin_unlock(&vb->lock); 836 } 837 rcu_read_unlock(); 838 839 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 840 list_del(&vb->purge); 841 free_vmap_block(vb); 842 } 843 } 844 845 static void purge_fragmented_blocks_thiscpu(void) 846 { 847 purge_fragmented_blocks(smp_processor_id()); 848 } 849 850 static void purge_fragmented_blocks_allcpus(void) 851 { 852 int cpu; 853 854 for_each_possible_cpu(cpu) 855 purge_fragmented_blocks(cpu); 856 } 857 858 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 859 { 860 struct vmap_block_queue *vbq; 861 struct vmap_block *vb; 862 unsigned long addr = 0; 863 unsigned int order; 864 int purge = 0; 865 866 BUG_ON(size & ~PAGE_MASK); 867 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 868 order = get_order(size); 869 870 again: 871 rcu_read_lock(); 872 vbq = &get_cpu_var(vmap_block_queue); 873 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 874 int i; 875 876 spin_lock(&vb->lock); 877 if (vb->free < 1UL << order) 878 goto next; 879 880 i = bitmap_find_free_region(vb->alloc_map, 881 VMAP_BBMAP_BITS, order); 882 883 if (i < 0) { 884 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { 885 /* fragmented and no outstanding allocations */ 886 BUG_ON(vb->dirty != VMAP_BBMAP_BITS); 887 purge = 1; 888 } 889 goto next; 890 } 891 addr = vb->va->va_start + (i << PAGE_SHIFT); 892 BUG_ON(addr_to_vb_idx(addr) != 893 addr_to_vb_idx(vb->va->va_start)); 894 vb->free -= 1UL << order; 895 if (vb->free == 0) { 896 spin_lock(&vbq->lock); 897 list_del_rcu(&vb->free_list); 898 spin_unlock(&vbq->lock); 899 } 900 spin_unlock(&vb->lock); 901 break; 902 next: 903 spin_unlock(&vb->lock); 904 } 905 906 if (purge) 907 purge_fragmented_blocks_thiscpu(); 908 909 put_cpu_var(vmap_block_queue); 910 rcu_read_unlock(); 911 912 if (!addr) { 913 vb = new_vmap_block(gfp_mask); 914 if (IS_ERR(vb)) 915 return vb; 916 goto again; 917 } 918 919 return (void *)addr; 920 } 921 922 static void vb_free(const void *addr, unsigned long size) 923 { 924 unsigned long offset; 925 unsigned long vb_idx; 926 unsigned int order; 927 struct vmap_block *vb; 928 929 BUG_ON(size & ~PAGE_MASK); 930 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 931 932 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 933 934 order = get_order(size); 935 936 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 937 938 vb_idx = addr_to_vb_idx((unsigned long)addr); 939 rcu_read_lock(); 940 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 941 rcu_read_unlock(); 942 BUG_ON(!vb); 943 944 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 945 946 spin_lock(&vb->lock); 947 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 948 949 vb->dirty += 1UL << order; 950 if (vb->dirty == VMAP_BBMAP_BITS) { 951 BUG_ON(vb->free); 952 spin_unlock(&vb->lock); 953 free_vmap_block(vb); 954 } else 955 spin_unlock(&vb->lock); 956 } 957 958 /** 959 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 960 * 961 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 962 * to amortize TLB flushing overheads. What this means is that any page you 963 * have now, may, in a former life, have been mapped into kernel virtual 964 * address by the vmap layer and so there might be some CPUs with TLB entries 965 * still referencing that page (additional to the regular 1:1 kernel mapping). 966 * 967 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 968 * be sure that none of the pages we have control over will have any aliases 969 * from the vmap layer. 970 */ 971 void vm_unmap_aliases(void) 972 { 973 unsigned long start = ULONG_MAX, end = 0; 974 int cpu; 975 int flush = 0; 976 977 if (unlikely(!vmap_initialized)) 978 return; 979 980 for_each_possible_cpu(cpu) { 981 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 982 struct vmap_block *vb; 983 984 rcu_read_lock(); 985 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 986 int i; 987 988 spin_lock(&vb->lock); 989 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 990 while (i < VMAP_BBMAP_BITS) { 991 unsigned long s, e; 992 int j; 993 j = find_next_zero_bit(vb->dirty_map, 994 VMAP_BBMAP_BITS, i); 995 996 s = vb->va->va_start + (i << PAGE_SHIFT); 997 e = vb->va->va_start + (j << PAGE_SHIFT); 998 flush = 1; 999 1000 if (s < start) 1001 start = s; 1002 if (e > end) 1003 end = e; 1004 1005 i = j; 1006 i = find_next_bit(vb->dirty_map, 1007 VMAP_BBMAP_BITS, i); 1008 } 1009 spin_unlock(&vb->lock); 1010 } 1011 rcu_read_unlock(); 1012 } 1013 1014 __purge_vmap_area_lazy(&start, &end, 1, flush); 1015 } 1016 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1017 1018 /** 1019 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1020 * @mem: the pointer returned by vm_map_ram 1021 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1022 */ 1023 void vm_unmap_ram(const void *mem, unsigned int count) 1024 { 1025 unsigned long size = count << PAGE_SHIFT; 1026 unsigned long addr = (unsigned long)mem; 1027 1028 BUG_ON(!addr); 1029 BUG_ON(addr < VMALLOC_START); 1030 BUG_ON(addr > VMALLOC_END); 1031 BUG_ON(addr & (PAGE_SIZE-1)); 1032 1033 debug_check_no_locks_freed(mem, size); 1034 vmap_debug_free_range(addr, addr+size); 1035 1036 if (likely(count <= VMAP_MAX_ALLOC)) 1037 vb_free(mem, size); 1038 else 1039 free_unmap_vmap_area_addr(addr); 1040 } 1041 EXPORT_SYMBOL(vm_unmap_ram); 1042 1043 /** 1044 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1045 * @pages: an array of pointers to the pages to be mapped 1046 * @count: number of pages 1047 * @node: prefer to allocate data structures on this node 1048 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1049 * 1050 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1051 */ 1052 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1053 { 1054 unsigned long size = count << PAGE_SHIFT; 1055 unsigned long addr; 1056 void *mem; 1057 1058 if (likely(count <= VMAP_MAX_ALLOC)) { 1059 mem = vb_alloc(size, GFP_KERNEL); 1060 if (IS_ERR(mem)) 1061 return NULL; 1062 addr = (unsigned long)mem; 1063 } else { 1064 struct vmap_area *va; 1065 va = alloc_vmap_area(size, PAGE_SIZE, 1066 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1067 if (IS_ERR(va)) 1068 return NULL; 1069 1070 addr = va->va_start; 1071 mem = (void *)addr; 1072 } 1073 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1074 vm_unmap_ram(mem, count); 1075 return NULL; 1076 } 1077 return mem; 1078 } 1079 EXPORT_SYMBOL(vm_map_ram); 1080 1081 /** 1082 * vm_area_register_early - register vmap area early during boot 1083 * @vm: vm_struct to register 1084 * @align: requested alignment 1085 * 1086 * This function is used to register kernel vm area before 1087 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1088 * proper values on entry and other fields should be zero. On return, 1089 * vm->addr contains the allocated address. 1090 * 1091 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1092 */ 1093 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1094 { 1095 static size_t vm_init_off __initdata; 1096 unsigned long addr; 1097 1098 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1099 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1100 1101 vm->addr = (void *)addr; 1102 1103 vm->next = vmlist; 1104 vmlist = vm; 1105 } 1106 1107 void __init vmalloc_init(void) 1108 { 1109 struct vmap_area *va; 1110 struct vm_struct *tmp; 1111 int i; 1112 1113 for_each_possible_cpu(i) { 1114 struct vmap_block_queue *vbq; 1115 1116 vbq = &per_cpu(vmap_block_queue, i); 1117 spin_lock_init(&vbq->lock); 1118 INIT_LIST_HEAD(&vbq->free); 1119 } 1120 1121 /* Import existing vmlist entries. */ 1122 for (tmp = vmlist; tmp; tmp = tmp->next) { 1123 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1124 va->flags = tmp->flags | VM_VM_AREA; 1125 va->va_start = (unsigned long)tmp->addr; 1126 va->va_end = va->va_start + tmp->size; 1127 __insert_vmap_area(va); 1128 } 1129 1130 vmap_area_pcpu_hole = VMALLOC_END; 1131 1132 vmap_initialized = true; 1133 } 1134 1135 /** 1136 * map_kernel_range_noflush - map kernel VM area with the specified pages 1137 * @addr: start of the VM area to map 1138 * @size: size of the VM area to map 1139 * @prot: page protection flags to use 1140 * @pages: pages to map 1141 * 1142 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1143 * specify should have been allocated using get_vm_area() and its 1144 * friends. 1145 * 1146 * NOTE: 1147 * This function does NOT do any cache flushing. The caller is 1148 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1149 * before calling this function. 1150 * 1151 * RETURNS: 1152 * The number of pages mapped on success, -errno on failure. 1153 */ 1154 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1155 pgprot_t prot, struct page **pages) 1156 { 1157 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1158 } 1159 1160 /** 1161 * unmap_kernel_range_noflush - unmap kernel VM area 1162 * @addr: start of the VM area to unmap 1163 * @size: size of the VM area to unmap 1164 * 1165 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1166 * specify should have been allocated using get_vm_area() and its 1167 * friends. 1168 * 1169 * NOTE: 1170 * This function does NOT do any cache flushing. The caller is 1171 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1172 * before calling this function and flush_tlb_kernel_range() after. 1173 */ 1174 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1175 { 1176 vunmap_page_range(addr, addr + size); 1177 } 1178 1179 /** 1180 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1181 * @addr: start of the VM area to unmap 1182 * @size: size of the VM area to unmap 1183 * 1184 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1185 * the unmapping and tlb after. 1186 */ 1187 void unmap_kernel_range(unsigned long addr, unsigned long size) 1188 { 1189 unsigned long end = addr + size; 1190 1191 flush_cache_vunmap(addr, end); 1192 vunmap_page_range(addr, end); 1193 flush_tlb_kernel_range(addr, end); 1194 } 1195 1196 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1197 { 1198 unsigned long addr = (unsigned long)area->addr; 1199 unsigned long end = addr + area->size - PAGE_SIZE; 1200 int err; 1201 1202 err = vmap_page_range(addr, end, prot, *pages); 1203 if (err > 0) { 1204 *pages += err; 1205 err = 0; 1206 } 1207 1208 return err; 1209 } 1210 EXPORT_SYMBOL_GPL(map_vm_area); 1211 1212 /*** Old vmalloc interfaces ***/ 1213 DEFINE_RWLOCK(vmlist_lock); 1214 struct vm_struct *vmlist; 1215 1216 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1217 unsigned long flags, void *caller) 1218 { 1219 struct vm_struct *tmp, **p; 1220 1221 vm->flags = flags; 1222 vm->addr = (void *)va->va_start; 1223 vm->size = va->va_end - va->va_start; 1224 vm->caller = caller; 1225 va->private = vm; 1226 va->flags |= VM_VM_AREA; 1227 1228 write_lock(&vmlist_lock); 1229 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1230 if (tmp->addr >= vm->addr) 1231 break; 1232 } 1233 vm->next = *p; 1234 *p = vm; 1235 write_unlock(&vmlist_lock); 1236 } 1237 1238 static struct vm_struct *__get_vm_area_node(unsigned long size, 1239 unsigned long align, unsigned long flags, unsigned long start, 1240 unsigned long end, int node, gfp_t gfp_mask, void *caller) 1241 { 1242 static struct vmap_area *va; 1243 struct vm_struct *area; 1244 1245 BUG_ON(in_interrupt()); 1246 if (flags & VM_IOREMAP) { 1247 int bit = fls(size); 1248 1249 if (bit > IOREMAP_MAX_ORDER) 1250 bit = IOREMAP_MAX_ORDER; 1251 else if (bit < PAGE_SHIFT) 1252 bit = PAGE_SHIFT; 1253 1254 align = 1ul << bit; 1255 } 1256 1257 size = PAGE_ALIGN(size); 1258 if (unlikely(!size)) 1259 return NULL; 1260 1261 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1262 if (unlikely(!area)) 1263 return NULL; 1264 1265 /* 1266 * We always allocate a guard page. 1267 */ 1268 size += PAGE_SIZE; 1269 1270 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1271 if (IS_ERR(va)) { 1272 kfree(area); 1273 return NULL; 1274 } 1275 1276 insert_vmalloc_vm(area, va, flags, caller); 1277 return area; 1278 } 1279 1280 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1281 unsigned long start, unsigned long end) 1282 { 1283 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1284 __builtin_return_address(0)); 1285 } 1286 EXPORT_SYMBOL_GPL(__get_vm_area); 1287 1288 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1289 unsigned long start, unsigned long end, 1290 void *caller) 1291 { 1292 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1293 caller); 1294 } 1295 1296 /** 1297 * get_vm_area - reserve a contiguous kernel virtual area 1298 * @size: size of the area 1299 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1300 * 1301 * Search an area of @size in the kernel virtual mapping area, 1302 * and reserved it for out purposes. Returns the area descriptor 1303 * on success or %NULL on failure. 1304 */ 1305 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1306 { 1307 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1308 -1, GFP_KERNEL, __builtin_return_address(0)); 1309 } 1310 1311 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1312 void *caller) 1313 { 1314 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1315 -1, GFP_KERNEL, caller); 1316 } 1317 1318 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1319 int node, gfp_t gfp_mask) 1320 { 1321 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1322 node, gfp_mask, __builtin_return_address(0)); 1323 } 1324 1325 static struct vm_struct *find_vm_area(const void *addr) 1326 { 1327 struct vmap_area *va; 1328 1329 va = find_vmap_area((unsigned long)addr); 1330 if (va && va->flags & VM_VM_AREA) 1331 return va->private; 1332 1333 return NULL; 1334 } 1335 1336 /** 1337 * remove_vm_area - find and remove a continuous kernel virtual area 1338 * @addr: base address 1339 * 1340 * Search for the kernel VM area starting at @addr, and remove it. 1341 * This function returns the found VM area, but using it is NOT safe 1342 * on SMP machines, except for its size or flags. 1343 */ 1344 struct vm_struct *remove_vm_area(const void *addr) 1345 { 1346 struct vmap_area *va; 1347 1348 va = find_vmap_area((unsigned long)addr); 1349 if (va && va->flags & VM_VM_AREA) { 1350 struct vm_struct *vm = va->private; 1351 struct vm_struct *tmp, **p; 1352 /* 1353 * remove from list and disallow access to this vm_struct 1354 * before unmap. (address range confliction is maintained by 1355 * vmap.) 1356 */ 1357 write_lock(&vmlist_lock); 1358 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1359 ; 1360 *p = tmp->next; 1361 write_unlock(&vmlist_lock); 1362 1363 vmap_debug_free_range(va->va_start, va->va_end); 1364 free_unmap_vmap_area(va); 1365 vm->size -= PAGE_SIZE; 1366 1367 return vm; 1368 } 1369 return NULL; 1370 } 1371 1372 static void __vunmap(const void *addr, int deallocate_pages) 1373 { 1374 struct vm_struct *area; 1375 1376 if (!addr) 1377 return; 1378 1379 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1380 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1381 return; 1382 } 1383 1384 area = remove_vm_area(addr); 1385 if (unlikely(!area)) { 1386 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1387 addr); 1388 return; 1389 } 1390 1391 debug_check_no_locks_freed(addr, area->size); 1392 debug_check_no_obj_freed(addr, area->size); 1393 1394 if (deallocate_pages) { 1395 int i; 1396 1397 for (i = 0; i < area->nr_pages; i++) { 1398 struct page *page = area->pages[i]; 1399 1400 BUG_ON(!page); 1401 __free_page(page); 1402 } 1403 1404 if (area->flags & VM_VPAGES) 1405 vfree(area->pages); 1406 else 1407 kfree(area->pages); 1408 } 1409 1410 kfree(area); 1411 return; 1412 } 1413 1414 /** 1415 * vfree - release memory allocated by vmalloc() 1416 * @addr: memory base address 1417 * 1418 * Free the virtually continuous memory area starting at @addr, as 1419 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1420 * NULL, no operation is performed. 1421 * 1422 * Must not be called in interrupt context. 1423 */ 1424 void vfree(const void *addr) 1425 { 1426 BUG_ON(in_interrupt()); 1427 1428 kmemleak_free(addr); 1429 1430 __vunmap(addr, 1); 1431 } 1432 EXPORT_SYMBOL(vfree); 1433 1434 /** 1435 * vunmap - release virtual mapping obtained by vmap() 1436 * @addr: memory base address 1437 * 1438 * Free the virtually contiguous memory area starting at @addr, 1439 * which was created from the page array passed to vmap(). 1440 * 1441 * Must not be called in interrupt context. 1442 */ 1443 void vunmap(const void *addr) 1444 { 1445 BUG_ON(in_interrupt()); 1446 might_sleep(); 1447 __vunmap(addr, 0); 1448 } 1449 EXPORT_SYMBOL(vunmap); 1450 1451 /** 1452 * vmap - map an array of pages into virtually contiguous space 1453 * @pages: array of page pointers 1454 * @count: number of pages to map 1455 * @flags: vm_area->flags 1456 * @prot: page protection for the mapping 1457 * 1458 * Maps @count pages from @pages into contiguous kernel virtual 1459 * space. 1460 */ 1461 void *vmap(struct page **pages, unsigned int count, 1462 unsigned long flags, pgprot_t prot) 1463 { 1464 struct vm_struct *area; 1465 1466 might_sleep(); 1467 1468 if (count > totalram_pages) 1469 return NULL; 1470 1471 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1472 __builtin_return_address(0)); 1473 if (!area) 1474 return NULL; 1475 1476 if (map_vm_area(area, prot, &pages)) { 1477 vunmap(area->addr); 1478 return NULL; 1479 } 1480 1481 return area->addr; 1482 } 1483 EXPORT_SYMBOL(vmap); 1484 1485 static void *__vmalloc_node(unsigned long size, unsigned long align, 1486 gfp_t gfp_mask, pgprot_t prot, 1487 int node, void *caller); 1488 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1489 pgprot_t prot, int node, void *caller) 1490 { 1491 struct page **pages; 1492 unsigned int nr_pages, array_size, i; 1493 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1494 1495 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1496 array_size = (nr_pages * sizeof(struct page *)); 1497 1498 area->nr_pages = nr_pages; 1499 /* Please note that the recursion is strictly bounded. */ 1500 if (array_size > PAGE_SIZE) { 1501 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1502 PAGE_KERNEL, node, caller); 1503 area->flags |= VM_VPAGES; 1504 } else { 1505 pages = kmalloc_node(array_size, nested_gfp, node); 1506 } 1507 area->pages = pages; 1508 area->caller = caller; 1509 if (!area->pages) { 1510 remove_vm_area(area->addr); 1511 kfree(area); 1512 return NULL; 1513 } 1514 1515 for (i = 0; i < area->nr_pages; i++) { 1516 struct page *page; 1517 1518 if (node < 0) 1519 page = alloc_page(gfp_mask); 1520 else 1521 page = alloc_pages_node(node, gfp_mask, 0); 1522 1523 if (unlikely(!page)) { 1524 /* Successfully allocated i pages, free them in __vunmap() */ 1525 area->nr_pages = i; 1526 goto fail; 1527 } 1528 area->pages[i] = page; 1529 } 1530 1531 if (map_vm_area(area, prot, &pages)) 1532 goto fail; 1533 return area->addr; 1534 1535 fail: 1536 vfree(area->addr); 1537 return NULL; 1538 } 1539 1540 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1541 { 1542 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1, 1543 __builtin_return_address(0)); 1544 1545 /* 1546 * A ref_count = 3 is needed because the vm_struct and vmap_area 1547 * structures allocated in the __get_vm_area_node() function contain 1548 * references to the virtual address of the vmalloc'ed block. 1549 */ 1550 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask); 1551 1552 return addr; 1553 } 1554 1555 /** 1556 * __vmalloc_node - allocate virtually contiguous memory 1557 * @size: allocation size 1558 * @align: desired alignment 1559 * @gfp_mask: flags for the page level allocator 1560 * @prot: protection mask for the allocated pages 1561 * @node: node to use for allocation or -1 1562 * @caller: caller's return address 1563 * 1564 * Allocate enough pages to cover @size from the page level 1565 * allocator with @gfp_mask flags. Map them into contiguous 1566 * kernel virtual space, using a pagetable protection of @prot. 1567 */ 1568 static void *__vmalloc_node(unsigned long size, unsigned long align, 1569 gfp_t gfp_mask, pgprot_t prot, 1570 int node, void *caller) 1571 { 1572 struct vm_struct *area; 1573 void *addr; 1574 unsigned long real_size = size; 1575 1576 size = PAGE_ALIGN(size); 1577 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1578 return NULL; 1579 1580 area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START, 1581 VMALLOC_END, node, gfp_mask, caller); 1582 1583 if (!area) 1584 return NULL; 1585 1586 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1587 1588 /* 1589 * A ref_count = 3 is needed because the vm_struct and vmap_area 1590 * structures allocated in the __get_vm_area_node() function contain 1591 * references to the virtual address of the vmalloc'ed block. 1592 */ 1593 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1594 1595 return addr; 1596 } 1597 1598 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1599 { 1600 return __vmalloc_node(size, 1, gfp_mask, prot, -1, 1601 __builtin_return_address(0)); 1602 } 1603 EXPORT_SYMBOL(__vmalloc); 1604 1605 static inline void *__vmalloc_node_flags(unsigned long size, 1606 int node, gfp_t flags) 1607 { 1608 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1609 node, __builtin_return_address(0)); 1610 } 1611 1612 /** 1613 * vmalloc - allocate virtually contiguous memory 1614 * @size: allocation size 1615 * Allocate enough pages to cover @size from the page level 1616 * allocator and map them into contiguous kernel virtual space. 1617 * 1618 * For tight control over page level allocator and protection flags 1619 * use __vmalloc() instead. 1620 */ 1621 void *vmalloc(unsigned long size) 1622 { 1623 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM); 1624 } 1625 EXPORT_SYMBOL(vmalloc); 1626 1627 /** 1628 * vzalloc - allocate virtually contiguous memory with zero fill 1629 * @size: allocation size 1630 * Allocate enough pages to cover @size from the page level 1631 * allocator and map them into contiguous kernel virtual space. 1632 * The memory allocated is set to zero. 1633 * 1634 * For tight control over page level allocator and protection flags 1635 * use __vmalloc() instead. 1636 */ 1637 void *vzalloc(unsigned long size) 1638 { 1639 return __vmalloc_node_flags(size, -1, 1640 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1641 } 1642 EXPORT_SYMBOL(vzalloc); 1643 1644 /** 1645 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1646 * @size: allocation size 1647 * 1648 * The resulting memory area is zeroed so it can be mapped to userspace 1649 * without leaking data. 1650 */ 1651 void *vmalloc_user(unsigned long size) 1652 { 1653 struct vm_struct *area; 1654 void *ret; 1655 1656 ret = __vmalloc_node(size, SHMLBA, 1657 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1658 PAGE_KERNEL, -1, __builtin_return_address(0)); 1659 if (ret) { 1660 area = find_vm_area(ret); 1661 area->flags |= VM_USERMAP; 1662 } 1663 return ret; 1664 } 1665 EXPORT_SYMBOL(vmalloc_user); 1666 1667 /** 1668 * vmalloc_node - allocate memory on a specific node 1669 * @size: allocation size 1670 * @node: numa node 1671 * 1672 * Allocate enough pages to cover @size from the page level 1673 * allocator and map them into contiguous kernel virtual space. 1674 * 1675 * For tight control over page level allocator and protection flags 1676 * use __vmalloc() instead. 1677 */ 1678 void *vmalloc_node(unsigned long size, int node) 1679 { 1680 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1681 node, __builtin_return_address(0)); 1682 } 1683 EXPORT_SYMBOL(vmalloc_node); 1684 1685 /** 1686 * vzalloc_node - allocate memory on a specific node with zero fill 1687 * @size: allocation size 1688 * @node: numa node 1689 * 1690 * Allocate enough pages to cover @size from the page level 1691 * allocator and map them into contiguous kernel virtual space. 1692 * The memory allocated is set to zero. 1693 * 1694 * For tight control over page level allocator and protection flags 1695 * use __vmalloc_node() instead. 1696 */ 1697 void *vzalloc_node(unsigned long size, int node) 1698 { 1699 return __vmalloc_node_flags(size, node, 1700 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1701 } 1702 EXPORT_SYMBOL(vzalloc_node); 1703 1704 #ifndef PAGE_KERNEL_EXEC 1705 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1706 #endif 1707 1708 /** 1709 * vmalloc_exec - allocate virtually contiguous, executable memory 1710 * @size: allocation size 1711 * 1712 * Kernel-internal function to allocate enough pages to cover @size 1713 * the page level allocator and map them into contiguous and 1714 * executable kernel virtual space. 1715 * 1716 * For tight control over page level allocator and protection flags 1717 * use __vmalloc() instead. 1718 */ 1719 1720 void *vmalloc_exec(unsigned long size) 1721 { 1722 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1723 -1, __builtin_return_address(0)); 1724 } 1725 1726 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1727 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1728 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1729 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1730 #else 1731 #define GFP_VMALLOC32 GFP_KERNEL 1732 #endif 1733 1734 /** 1735 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1736 * @size: allocation size 1737 * 1738 * Allocate enough 32bit PA addressable pages to cover @size from the 1739 * page level allocator and map them into contiguous kernel virtual space. 1740 */ 1741 void *vmalloc_32(unsigned long size) 1742 { 1743 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1744 -1, __builtin_return_address(0)); 1745 } 1746 EXPORT_SYMBOL(vmalloc_32); 1747 1748 /** 1749 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1750 * @size: allocation size 1751 * 1752 * The resulting memory area is 32bit addressable and zeroed so it can be 1753 * mapped to userspace without leaking data. 1754 */ 1755 void *vmalloc_32_user(unsigned long size) 1756 { 1757 struct vm_struct *area; 1758 void *ret; 1759 1760 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1761 -1, __builtin_return_address(0)); 1762 if (ret) { 1763 area = find_vm_area(ret); 1764 area->flags |= VM_USERMAP; 1765 } 1766 return ret; 1767 } 1768 EXPORT_SYMBOL(vmalloc_32_user); 1769 1770 /* 1771 * small helper routine , copy contents to buf from addr. 1772 * If the page is not present, fill zero. 1773 */ 1774 1775 static int aligned_vread(char *buf, char *addr, unsigned long count) 1776 { 1777 struct page *p; 1778 int copied = 0; 1779 1780 while (count) { 1781 unsigned long offset, length; 1782 1783 offset = (unsigned long)addr & ~PAGE_MASK; 1784 length = PAGE_SIZE - offset; 1785 if (length > count) 1786 length = count; 1787 p = vmalloc_to_page(addr); 1788 /* 1789 * To do safe access to this _mapped_ area, we need 1790 * lock. But adding lock here means that we need to add 1791 * overhead of vmalloc()/vfree() calles for this _debug_ 1792 * interface, rarely used. Instead of that, we'll use 1793 * kmap() and get small overhead in this access function. 1794 */ 1795 if (p) { 1796 /* 1797 * we can expect USER0 is not used (see vread/vwrite's 1798 * function description) 1799 */ 1800 void *map = kmap_atomic(p, KM_USER0); 1801 memcpy(buf, map + offset, length); 1802 kunmap_atomic(map, KM_USER0); 1803 } else 1804 memset(buf, 0, length); 1805 1806 addr += length; 1807 buf += length; 1808 copied += length; 1809 count -= length; 1810 } 1811 return copied; 1812 } 1813 1814 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1815 { 1816 struct page *p; 1817 int copied = 0; 1818 1819 while (count) { 1820 unsigned long offset, length; 1821 1822 offset = (unsigned long)addr & ~PAGE_MASK; 1823 length = PAGE_SIZE - offset; 1824 if (length > count) 1825 length = count; 1826 p = vmalloc_to_page(addr); 1827 /* 1828 * To do safe access to this _mapped_ area, we need 1829 * lock. But adding lock here means that we need to add 1830 * overhead of vmalloc()/vfree() calles for this _debug_ 1831 * interface, rarely used. Instead of that, we'll use 1832 * kmap() and get small overhead in this access function. 1833 */ 1834 if (p) { 1835 /* 1836 * we can expect USER0 is not used (see vread/vwrite's 1837 * function description) 1838 */ 1839 void *map = kmap_atomic(p, KM_USER0); 1840 memcpy(map + offset, buf, length); 1841 kunmap_atomic(map, KM_USER0); 1842 } 1843 addr += length; 1844 buf += length; 1845 copied += length; 1846 count -= length; 1847 } 1848 return copied; 1849 } 1850 1851 /** 1852 * vread() - read vmalloc area in a safe way. 1853 * @buf: buffer for reading data 1854 * @addr: vm address. 1855 * @count: number of bytes to be read. 1856 * 1857 * Returns # of bytes which addr and buf should be increased. 1858 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1859 * includes any intersect with alive vmalloc area. 1860 * 1861 * This function checks that addr is a valid vmalloc'ed area, and 1862 * copy data from that area to a given buffer. If the given memory range 1863 * of [addr...addr+count) includes some valid address, data is copied to 1864 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1865 * IOREMAP area is treated as memory hole and no copy is done. 1866 * 1867 * If [addr...addr+count) doesn't includes any intersects with alive 1868 * vm_struct area, returns 0. 1869 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1870 * the caller should guarantee KM_USER0 is not used. 1871 * 1872 * Note: In usual ops, vread() is never necessary because the caller 1873 * should know vmalloc() area is valid and can use memcpy(). 1874 * This is for routines which have to access vmalloc area without 1875 * any informaion, as /dev/kmem. 1876 * 1877 */ 1878 1879 long vread(char *buf, char *addr, unsigned long count) 1880 { 1881 struct vm_struct *tmp; 1882 char *vaddr, *buf_start = buf; 1883 unsigned long buflen = count; 1884 unsigned long n; 1885 1886 /* Don't allow overflow */ 1887 if ((unsigned long) addr + count < count) 1888 count = -(unsigned long) addr; 1889 1890 read_lock(&vmlist_lock); 1891 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 1892 vaddr = (char *) tmp->addr; 1893 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1894 continue; 1895 while (addr < vaddr) { 1896 if (count == 0) 1897 goto finished; 1898 *buf = '\0'; 1899 buf++; 1900 addr++; 1901 count--; 1902 } 1903 n = vaddr + tmp->size - PAGE_SIZE - addr; 1904 if (n > count) 1905 n = count; 1906 if (!(tmp->flags & VM_IOREMAP)) 1907 aligned_vread(buf, addr, n); 1908 else /* IOREMAP area is treated as memory hole */ 1909 memset(buf, 0, n); 1910 buf += n; 1911 addr += n; 1912 count -= n; 1913 } 1914 finished: 1915 read_unlock(&vmlist_lock); 1916 1917 if (buf == buf_start) 1918 return 0; 1919 /* zero-fill memory holes */ 1920 if (buf != buf_start + buflen) 1921 memset(buf, 0, buflen - (buf - buf_start)); 1922 1923 return buflen; 1924 } 1925 1926 /** 1927 * vwrite() - write vmalloc area in a safe way. 1928 * @buf: buffer for source data 1929 * @addr: vm address. 1930 * @count: number of bytes to be read. 1931 * 1932 * Returns # of bytes which addr and buf should be incresed. 1933 * (same number to @count). 1934 * If [addr...addr+count) doesn't includes any intersect with valid 1935 * vmalloc area, returns 0. 1936 * 1937 * This function checks that addr is a valid vmalloc'ed area, and 1938 * copy data from a buffer to the given addr. If specified range of 1939 * [addr...addr+count) includes some valid address, data is copied from 1940 * proper area of @buf. If there are memory holes, no copy to hole. 1941 * IOREMAP area is treated as memory hole and no copy is done. 1942 * 1943 * If [addr...addr+count) doesn't includes any intersects with alive 1944 * vm_struct area, returns 0. 1945 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1946 * the caller should guarantee KM_USER0 is not used. 1947 * 1948 * Note: In usual ops, vwrite() is never necessary because the caller 1949 * should know vmalloc() area is valid and can use memcpy(). 1950 * This is for routines which have to access vmalloc area without 1951 * any informaion, as /dev/kmem. 1952 * 1953 * The caller should guarantee KM_USER1 is not used. 1954 */ 1955 1956 long vwrite(char *buf, char *addr, unsigned long count) 1957 { 1958 struct vm_struct *tmp; 1959 char *vaddr; 1960 unsigned long n, buflen; 1961 int copied = 0; 1962 1963 /* Don't allow overflow */ 1964 if ((unsigned long) addr + count < count) 1965 count = -(unsigned long) addr; 1966 buflen = count; 1967 1968 read_lock(&vmlist_lock); 1969 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 1970 vaddr = (char *) tmp->addr; 1971 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1972 continue; 1973 while (addr < vaddr) { 1974 if (count == 0) 1975 goto finished; 1976 buf++; 1977 addr++; 1978 count--; 1979 } 1980 n = vaddr + tmp->size - PAGE_SIZE - addr; 1981 if (n > count) 1982 n = count; 1983 if (!(tmp->flags & VM_IOREMAP)) { 1984 aligned_vwrite(buf, addr, n); 1985 copied++; 1986 } 1987 buf += n; 1988 addr += n; 1989 count -= n; 1990 } 1991 finished: 1992 read_unlock(&vmlist_lock); 1993 if (!copied) 1994 return 0; 1995 return buflen; 1996 } 1997 1998 /** 1999 * remap_vmalloc_range - map vmalloc pages to userspace 2000 * @vma: vma to cover (map full range of vma) 2001 * @addr: vmalloc memory 2002 * @pgoff: number of pages into addr before first page to map 2003 * 2004 * Returns: 0 for success, -Exxx on failure 2005 * 2006 * This function checks that addr is a valid vmalloc'ed area, and 2007 * that it is big enough to cover the vma. Will return failure if 2008 * that criteria isn't met. 2009 * 2010 * Similar to remap_pfn_range() (see mm/memory.c) 2011 */ 2012 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2013 unsigned long pgoff) 2014 { 2015 struct vm_struct *area; 2016 unsigned long uaddr = vma->vm_start; 2017 unsigned long usize = vma->vm_end - vma->vm_start; 2018 2019 if ((PAGE_SIZE-1) & (unsigned long)addr) 2020 return -EINVAL; 2021 2022 area = find_vm_area(addr); 2023 if (!area) 2024 return -EINVAL; 2025 2026 if (!(area->flags & VM_USERMAP)) 2027 return -EINVAL; 2028 2029 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 2030 return -EINVAL; 2031 2032 addr += pgoff << PAGE_SHIFT; 2033 do { 2034 struct page *page = vmalloc_to_page(addr); 2035 int ret; 2036 2037 ret = vm_insert_page(vma, uaddr, page); 2038 if (ret) 2039 return ret; 2040 2041 uaddr += PAGE_SIZE; 2042 addr += PAGE_SIZE; 2043 usize -= PAGE_SIZE; 2044 } while (usize > 0); 2045 2046 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 2047 vma->vm_flags |= VM_RESERVED; 2048 2049 return 0; 2050 } 2051 EXPORT_SYMBOL(remap_vmalloc_range); 2052 2053 /* 2054 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2055 * have one. 2056 */ 2057 void __attribute__((weak)) vmalloc_sync_all(void) 2058 { 2059 } 2060 2061 2062 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2063 { 2064 /* apply_to_page_range() does all the hard work. */ 2065 return 0; 2066 } 2067 2068 /** 2069 * alloc_vm_area - allocate a range of kernel address space 2070 * @size: size of the area 2071 * 2072 * Returns: NULL on failure, vm_struct on success 2073 * 2074 * This function reserves a range of kernel address space, and 2075 * allocates pagetables to map that range. No actual mappings 2076 * are created. If the kernel address space is not shared 2077 * between processes, it syncs the pagetable across all 2078 * processes. 2079 */ 2080 struct vm_struct *alloc_vm_area(size_t size) 2081 { 2082 struct vm_struct *area; 2083 2084 area = get_vm_area_caller(size, VM_IOREMAP, 2085 __builtin_return_address(0)); 2086 if (area == NULL) 2087 return NULL; 2088 2089 /* 2090 * This ensures that page tables are constructed for this region 2091 * of kernel virtual address space and mapped into init_mm. 2092 */ 2093 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2094 area->size, f, NULL)) { 2095 free_vm_area(area); 2096 return NULL; 2097 } 2098 2099 /* Make sure the pagetables are constructed in process kernel 2100 mappings */ 2101 vmalloc_sync_all(); 2102 2103 return area; 2104 } 2105 EXPORT_SYMBOL_GPL(alloc_vm_area); 2106 2107 void free_vm_area(struct vm_struct *area) 2108 { 2109 struct vm_struct *ret; 2110 ret = remove_vm_area(area->addr); 2111 BUG_ON(ret != area); 2112 kfree(area); 2113 } 2114 EXPORT_SYMBOL_GPL(free_vm_area); 2115 2116 #ifdef CONFIG_SMP 2117 static struct vmap_area *node_to_va(struct rb_node *n) 2118 { 2119 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2120 } 2121 2122 /** 2123 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2124 * @end: target address 2125 * @pnext: out arg for the next vmap_area 2126 * @pprev: out arg for the previous vmap_area 2127 * 2128 * Returns: %true if either or both of next and prev are found, 2129 * %false if no vmap_area exists 2130 * 2131 * Find vmap_areas end addresses of which enclose @end. ie. if not 2132 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2133 */ 2134 static bool pvm_find_next_prev(unsigned long end, 2135 struct vmap_area **pnext, 2136 struct vmap_area **pprev) 2137 { 2138 struct rb_node *n = vmap_area_root.rb_node; 2139 struct vmap_area *va = NULL; 2140 2141 while (n) { 2142 va = rb_entry(n, struct vmap_area, rb_node); 2143 if (end < va->va_end) 2144 n = n->rb_left; 2145 else if (end > va->va_end) 2146 n = n->rb_right; 2147 else 2148 break; 2149 } 2150 2151 if (!va) 2152 return false; 2153 2154 if (va->va_end > end) { 2155 *pnext = va; 2156 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2157 } else { 2158 *pprev = va; 2159 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2160 } 2161 return true; 2162 } 2163 2164 /** 2165 * pvm_determine_end - find the highest aligned address between two vmap_areas 2166 * @pnext: in/out arg for the next vmap_area 2167 * @pprev: in/out arg for the previous vmap_area 2168 * @align: alignment 2169 * 2170 * Returns: determined end address 2171 * 2172 * Find the highest aligned address between *@pnext and *@pprev below 2173 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2174 * down address is between the end addresses of the two vmap_areas. 2175 * 2176 * Please note that the address returned by this function may fall 2177 * inside *@pnext vmap_area. The caller is responsible for checking 2178 * that. 2179 */ 2180 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2181 struct vmap_area **pprev, 2182 unsigned long align) 2183 { 2184 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2185 unsigned long addr; 2186 2187 if (*pnext) 2188 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2189 else 2190 addr = vmalloc_end; 2191 2192 while (*pprev && (*pprev)->va_end > addr) { 2193 *pnext = *pprev; 2194 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2195 } 2196 2197 return addr; 2198 } 2199 2200 /** 2201 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2202 * @offsets: array containing offset of each area 2203 * @sizes: array containing size of each area 2204 * @nr_vms: the number of areas to allocate 2205 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2206 * @gfp_mask: allocation mask 2207 * 2208 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2209 * vm_structs on success, %NULL on failure 2210 * 2211 * Percpu allocator wants to use congruent vm areas so that it can 2212 * maintain the offsets among percpu areas. This function allocates 2213 * congruent vmalloc areas for it. These areas tend to be scattered 2214 * pretty far, distance between two areas easily going up to 2215 * gigabytes. To avoid interacting with regular vmallocs, these areas 2216 * are allocated from top. 2217 * 2218 * Despite its complicated look, this allocator is rather simple. It 2219 * does everything top-down and scans areas from the end looking for 2220 * matching slot. While scanning, if any of the areas overlaps with 2221 * existing vmap_area, the base address is pulled down to fit the 2222 * area. Scanning is repeated till all the areas fit and then all 2223 * necessary data structres are inserted and the result is returned. 2224 */ 2225 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2226 const size_t *sizes, int nr_vms, 2227 size_t align, gfp_t gfp_mask) 2228 { 2229 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2230 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2231 struct vmap_area **vas, *prev, *next; 2232 struct vm_struct **vms; 2233 int area, area2, last_area, term_area; 2234 unsigned long base, start, end, last_end; 2235 bool purged = false; 2236 2237 gfp_mask &= GFP_RECLAIM_MASK; 2238 2239 /* verify parameters and allocate data structures */ 2240 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2241 for (last_area = 0, area = 0; area < nr_vms; area++) { 2242 start = offsets[area]; 2243 end = start + sizes[area]; 2244 2245 /* is everything aligned properly? */ 2246 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2247 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2248 2249 /* detect the area with the highest address */ 2250 if (start > offsets[last_area]) 2251 last_area = area; 2252 2253 for (area2 = 0; area2 < nr_vms; area2++) { 2254 unsigned long start2 = offsets[area2]; 2255 unsigned long end2 = start2 + sizes[area2]; 2256 2257 if (area2 == area) 2258 continue; 2259 2260 BUG_ON(start2 >= start && start2 < end); 2261 BUG_ON(end2 <= end && end2 > start); 2262 } 2263 } 2264 last_end = offsets[last_area] + sizes[last_area]; 2265 2266 if (vmalloc_end - vmalloc_start < last_end) { 2267 WARN_ON(true); 2268 return NULL; 2269 } 2270 2271 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask); 2272 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask); 2273 if (!vas || !vms) 2274 goto err_free; 2275 2276 for (area = 0; area < nr_vms; area++) { 2277 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask); 2278 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask); 2279 if (!vas[area] || !vms[area]) 2280 goto err_free; 2281 } 2282 retry: 2283 spin_lock(&vmap_area_lock); 2284 2285 /* start scanning - we scan from the top, begin with the last area */ 2286 area = term_area = last_area; 2287 start = offsets[area]; 2288 end = start + sizes[area]; 2289 2290 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2291 base = vmalloc_end - last_end; 2292 goto found; 2293 } 2294 base = pvm_determine_end(&next, &prev, align) - end; 2295 2296 while (true) { 2297 BUG_ON(next && next->va_end <= base + end); 2298 BUG_ON(prev && prev->va_end > base + end); 2299 2300 /* 2301 * base might have underflowed, add last_end before 2302 * comparing. 2303 */ 2304 if (base + last_end < vmalloc_start + last_end) { 2305 spin_unlock(&vmap_area_lock); 2306 if (!purged) { 2307 purge_vmap_area_lazy(); 2308 purged = true; 2309 goto retry; 2310 } 2311 goto err_free; 2312 } 2313 2314 /* 2315 * If next overlaps, move base downwards so that it's 2316 * right below next and then recheck. 2317 */ 2318 if (next && next->va_start < base + end) { 2319 base = pvm_determine_end(&next, &prev, align) - end; 2320 term_area = area; 2321 continue; 2322 } 2323 2324 /* 2325 * If prev overlaps, shift down next and prev and move 2326 * base so that it's right below new next and then 2327 * recheck. 2328 */ 2329 if (prev && prev->va_end > base + start) { 2330 next = prev; 2331 prev = node_to_va(rb_prev(&next->rb_node)); 2332 base = pvm_determine_end(&next, &prev, align) - end; 2333 term_area = area; 2334 continue; 2335 } 2336 2337 /* 2338 * This area fits, move on to the previous one. If 2339 * the previous one is the terminal one, we're done. 2340 */ 2341 area = (area + nr_vms - 1) % nr_vms; 2342 if (area == term_area) 2343 break; 2344 start = offsets[area]; 2345 end = start + sizes[area]; 2346 pvm_find_next_prev(base + end, &next, &prev); 2347 } 2348 found: 2349 /* we've found a fitting base, insert all va's */ 2350 for (area = 0; area < nr_vms; area++) { 2351 struct vmap_area *va = vas[area]; 2352 2353 va->va_start = base + offsets[area]; 2354 va->va_end = va->va_start + sizes[area]; 2355 __insert_vmap_area(va); 2356 } 2357 2358 vmap_area_pcpu_hole = base + offsets[last_area]; 2359 2360 spin_unlock(&vmap_area_lock); 2361 2362 /* insert all vm's */ 2363 for (area = 0; area < nr_vms; area++) 2364 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2365 pcpu_get_vm_areas); 2366 2367 kfree(vas); 2368 return vms; 2369 2370 err_free: 2371 for (area = 0; area < nr_vms; area++) { 2372 if (vas) 2373 kfree(vas[area]); 2374 if (vms) 2375 kfree(vms[area]); 2376 } 2377 kfree(vas); 2378 kfree(vms); 2379 return NULL; 2380 } 2381 2382 /** 2383 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2384 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2385 * @nr_vms: the number of allocated areas 2386 * 2387 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2388 */ 2389 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2390 { 2391 int i; 2392 2393 for (i = 0; i < nr_vms; i++) 2394 free_vm_area(vms[i]); 2395 kfree(vms); 2396 } 2397 #endif /* CONFIG_SMP */ 2398 2399 #ifdef CONFIG_PROC_FS 2400 static void *s_start(struct seq_file *m, loff_t *pos) 2401 __acquires(&vmlist_lock) 2402 { 2403 loff_t n = *pos; 2404 struct vm_struct *v; 2405 2406 read_lock(&vmlist_lock); 2407 v = vmlist; 2408 while (n > 0 && v) { 2409 n--; 2410 v = v->next; 2411 } 2412 if (!n) 2413 return v; 2414 2415 return NULL; 2416 2417 } 2418 2419 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2420 { 2421 struct vm_struct *v = p; 2422 2423 ++*pos; 2424 return v->next; 2425 } 2426 2427 static void s_stop(struct seq_file *m, void *p) 2428 __releases(&vmlist_lock) 2429 { 2430 read_unlock(&vmlist_lock); 2431 } 2432 2433 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2434 { 2435 if (NUMA_BUILD) { 2436 unsigned int nr, *counters = m->private; 2437 2438 if (!counters) 2439 return; 2440 2441 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2442 2443 for (nr = 0; nr < v->nr_pages; nr++) 2444 counters[page_to_nid(v->pages[nr])]++; 2445 2446 for_each_node_state(nr, N_HIGH_MEMORY) 2447 if (counters[nr]) 2448 seq_printf(m, " N%u=%u", nr, counters[nr]); 2449 } 2450 } 2451 2452 static int s_show(struct seq_file *m, void *p) 2453 { 2454 struct vm_struct *v = p; 2455 2456 seq_printf(m, "0x%p-0x%p %7ld", 2457 v->addr, v->addr + v->size, v->size); 2458 2459 if (v->caller) { 2460 char buff[KSYM_SYMBOL_LEN]; 2461 2462 seq_putc(m, ' '); 2463 sprint_symbol(buff, (unsigned long)v->caller); 2464 seq_puts(m, buff); 2465 } 2466 2467 if (v->nr_pages) 2468 seq_printf(m, " pages=%d", v->nr_pages); 2469 2470 if (v->phys_addr) 2471 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2472 2473 if (v->flags & VM_IOREMAP) 2474 seq_printf(m, " ioremap"); 2475 2476 if (v->flags & VM_ALLOC) 2477 seq_printf(m, " vmalloc"); 2478 2479 if (v->flags & VM_MAP) 2480 seq_printf(m, " vmap"); 2481 2482 if (v->flags & VM_USERMAP) 2483 seq_printf(m, " user"); 2484 2485 if (v->flags & VM_VPAGES) 2486 seq_printf(m, " vpages"); 2487 2488 show_numa_info(m, v); 2489 seq_putc(m, '\n'); 2490 return 0; 2491 } 2492 2493 static const struct seq_operations vmalloc_op = { 2494 .start = s_start, 2495 .next = s_next, 2496 .stop = s_stop, 2497 .show = s_show, 2498 }; 2499 2500 static int vmalloc_open(struct inode *inode, struct file *file) 2501 { 2502 unsigned int *ptr = NULL; 2503 int ret; 2504 2505 if (NUMA_BUILD) { 2506 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2507 if (ptr == NULL) 2508 return -ENOMEM; 2509 } 2510 ret = seq_open(file, &vmalloc_op); 2511 if (!ret) { 2512 struct seq_file *m = file->private_data; 2513 m->private = ptr; 2514 } else 2515 kfree(ptr); 2516 return ret; 2517 } 2518 2519 static const struct file_operations proc_vmalloc_operations = { 2520 .open = vmalloc_open, 2521 .read = seq_read, 2522 .llseek = seq_lseek, 2523 .release = seq_release_private, 2524 }; 2525 2526 static int __init proc_vmalloc_init(void) 2527 { 2528 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2529 return 0; 2530 } 2531 module_init(proc_vmalloc_init); 2532 #endif 2533 2534