1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmalloc.c 4 * 5 * Copyright (C) 1993 Linus Torvalds 6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 9 * Numa awareness, Christoph Lameter, SGI, June 2005 10 */ 11 12 #include <linux/vmalloc.h> 13 #include <linux/mm.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/sched/signal.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/interrupt.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/set_memory.h> 23 #include <linux/debugobjects.h> 24 #include <linux/kallsyms.h> 25 #include <linux/list.h> 26 #include <linux/notifier.h> 27 #include <linux/rbtree.h> 28 #include <linux/radix-tree.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/llist.h> 35 #include <linux/bitops.h> 36 #include <linux/rbtree_augmented.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/tlbflush.h> 40 #include <asm/shmparam.h> 41 42 #include "internal.h" 43 44 struct vfree_deferred { 45 struct llist_head list; 46 struct work_struct wq; 47 }; 48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 49 50 static void __vunmap(const void *, int); 51 52 static void free_work(struct work_struct *w) 53 { 54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 55 struct llist_node *t, *llnode; 56 57 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 58 __vunmap((void *)llnode, 1); 59 } 60 61 /*** Page table manipulation functions ***/ 62 63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 64 { 65 pte_t *pte; 66 67 pte = pte_offset_kernel(pmd, addr); 68 do { 69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 70 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 71 } while (pte++, addr += PAGE_SIZE, addr != end); 72 } 73 74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 75 { 76 pmd_t *pmd; 77 unsigned long next; 78 79 pmd = pmd_offset(pud, addr); 80 do { 81 next = pmd_addr_end(addr, end); 82 if (pmd_clear_huge(pmd)) 83 continue; 84 if (pmd_none_or_clear_bad(pmd)) 85 continue; 86 vunmap_pte_range(pmd, addr, next); 87 } while (pmd++, addr = next, addr != end); 88 } 89 90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 91 { 92 pud_t *pud; 93 unsigned long next; 94 95 pud = pud_offset(p4d, addr); 96 do { 97 next = pud_addr_end(addr, end); 98 if (pud_clear_huge(pud)) 99 continue; 100 if (pud_none_or_clear_bad(pud)) 101 continue; 102 vunmap_pmd_range(pud, addr, next); 103 } while (pud++, addr = next, addr != end); 104 } 105 106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 107 { 108 p4d_t *p4d; 109 unsigned long next; 110 111 p4d = p4d_offset(pgd, addr); 112 do { 113 next = p4d_addr_end(addr, end); 114 if (p4d_clear_huge(p4d)) 115 continue; 116 if (p4d_none_or_clear_bad(p4d)) 117 continue; 118 vunmap_pud_range(p4d, addr, next); 119 } while (p4d++, addr = next, addr != end); 120 } 121 122 static void vunmap_page_range(unsigned long addr, unsigned long end) 123 { 124 pgd_t *pgd; 125 unsigned long next; 126 127 BUG_ON(addr >= end); 128 pgd = pgd_offset_k(addr); 129 do { 130 next = pgd_addr_end(addr, end); 131 if (pgd_none_or_clear_bad(pgd)) 132 continue; 133 vunmap_p4d_range(pgd, addr, next); 134 } while (pgd++, addr = next, addr != end); 135 } 136 137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 139 { 140 pte_t *pte; 141 142 /* 143 * nr is a running index into the array which helps higher level 144 * callers keep track of where we're up to. 145 */ 146 147 pte = pte_alloc_kernel(pmd, addr); 148 if (!pte) 149 return -ENOMEM; 150 do { 151 struct page *page = pages[*nr]; 152 153 if (WARN_ON(!pte_none(*pte))) 154 return -EBUSY; 155 if (WARN_ON(!page)) 156 return -ENOMEM; 157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 158 (*nr)++; 159 } while (pte++, addr += PAGE_SIZE, addr != end); 160 return 0; 161 } 162 163 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 164 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 165 { 166 pmd_t *pmd; 167 unsigned long next; 168 169 pmd = pmd_alloc(&init_mm, pud, addr); 170 if (!pmd) 171 return -ENOMEM; 172 do { 173 next = pmd_addr_end(addr, end); 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 175 return -ENOMEM; 176 } while (pmd++, addr = next, addr != end); 177 return 0; 178 } 179 180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 182 { 183 pud_t *pud; 184 unsigned long next; 185 186 pud = pud_alloc(&init_mm, p4d, addr); 187 if (!pud) 188 return -ENOMEM; 189 do { 190 next = pud_addr_end(addr, end); 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 192 return -ENOMEM; 193 } while (pud++, addr = next, addr != end); 194 return 0; 195 } 196 197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 198 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 199 { 200 p4d_t *p4d; 201 unsigned long next; 202 203 p4d = p4d_alloc(&init_mm, pgd, addr); 204 if (!p4d) 205 return -ENOMEM; 206 do { 207 next = p4d_addr_end(addr, end); 208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 209 return -ENOMEM; 210 } while (p4d++, addr = next, addr != end); 211 return 0; 212 } 213 214 /* 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 216 * will have pfns corresponding to the "pages" array. 217 * 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 219 */ 220 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 221 pgprot_t prot, struct page **pages) 222 { 223 pgd_t *pgd; 224 unsigned long next; 225 unsigned long addr = start; 226 int err = 0; 227 int nr = 0; 228 229 BUG_ON(addr >= end); 230 pgd = pgd_offset_k(addr); 231 do { 232 next = pgd_addr_end(addr, end); 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 234 if (err) 235 return err; 236 } while (pgd++, addr = next, addr != end); 237 238 return nr; 239 } 240 241 static int vmap_page_range(unsigned long start, unsigned long end, 242 pgprot_t prot, struct page **pages) 243 { 244 int ret; 245 246 ret = vmap_page_range_noflush(start, end, prot, pages); 247 flush_cache_vmap(start, end); 248 return ret; 249 } 250 251 int is_vmalloc_or_module_addr(const void *x) 252 { 253 /* 254 * ARM, x86-64 and sparc64 put modules in a special place, 255 * and fall back on vmalloc() if that fails. Others 256 * just put it in the vmalloc space. 257 */ 258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 259 unsigned long addr = (unsigned long)x; 260 if (addr >= MODULES_VADDR && addr < MODULES_END) 261 return 1; 262 #endif 263 return is_vmalloc_addr(x); 264 } 265 266 /* 267 * Walk a vmap address to the struct page it maps. 268 */ 269 struct page *vmalloc_to_page(const void *vmalloc_addr) 270 { 271 unsigned long addr = (unsigned long) vmalloc_addr; 272 struct page *page = NULL; 273 pgd_t *pgd = pgd_offset_k(addr); 274 p4d_t *p4d; 275 pud_t *pud; 276 pmd_t *pmd; 277 pte_t *ptep, pte; 278 279 /* 280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 281 * architectures that do not vmalloc module space 282 */ 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 284 285 if (pgd_none(*pgd)) 286 return NULL; 287 p4d = p4d_offset(pgd, addr); 288 if (p4d_none(*p4d)) 289 return NULL; 290 pud = pud_offset(p4d, addr); 291 292 /* 293 * Don't dereference bad PUD or PMD (below) entries. This will also 294 * identify huge mappings, which we may encounter on architectures 295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 296 * identified as vmalloc addresses by is_vmalloc_addr(), but are 297 * not [unambiguously] associated with a struct page, so there is 298 * no correct value to return for them. 299 */ 300 WARN_ON_ONCE(pud_bad(*pud)); 301 if (pud_none(*pud) || pud_bad(*pud)) 302 return NULL; 303 pmd = pmd_offset(pud, addr); 304 WARN_ON_ONCE(pmd_bad(*pmd)); 305 if (pmd_none(*pmd) || pmd_bad(*pmd)) 306 return NULL; 307 308 ptep = pte_offset_map(pmd, addr); 309 pte = *ptep; 310 if (pte_present(pte)) 311 page = pte_page(pte); 312 pte_unmap(ptep); 313 return page; 314 } 315 EXPORT_SYMBOL(vmalloc_to_page); 316 317 /* 318 * Map a vmalloc()-space virtual address to the physical page frame number. 319 */ 320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 321 { 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 323 } 324 EXPORT_SYMBOL(vmalloc_to_pfn); 325 326 327 /*** Global kva allocator ***/ 328 329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 331 332 #define VM_LAZY_FREE 0x02 333 #define VM_VM_AREA 0x04 334 335 static DEFINE_SPINLOCK(vmap_area_lock); 336 /* Export for kexec only */ 337 LIST_HEAD(vmap_area_list); 338 static LLIST_HEAD(vmap_purge_list); 339 static struct rb_root vmap_area_root = RB_ROOT; 340 static bool vmap_initialized __read_mostly; 341 342 /* 343 * This kmem_cache is used for vmap_area objects. Instead of 344 * allocating from slab we reuse an object from this cache to 345 * make things faster. Especially in "no edge" splitting of 346 * free block. 347 */ 348 static struct kmem_cache *vmap_area_cachep; 349 350 /* 351 * This linked list is used in pair with free_vmap_area_root. 352 * It gives O(1) access to prev/next to perform fast coalescing. 353 */ 354 static LIST_HEAD(free_vmap_area_list); 355 356 /* 357 * This augment red-black tree represents the free vmap space. 358 * All vmap_area objects in this tree are sorted by va->va_start 359 * address. It is used for allocation and merging when a vmap 360 * object is released. 361 * 362 * Each vmap_area node contains a maximum available free block 363 * of its sub-tree, right or left. Therefore it is possible to 364 * find a lowest match of free area. 365 */ 366 static struct rb_root free_vmap_area_root = RB_ROOT; 367 368 /* 369 * Preload a CPU with one object for "no edge" split case. The 370 * aim is to get rid of allocations from the atomic context, thus 371 * to use more permissive allocation masks. 372 */ 373 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 374 375 static __always_inline unsigned long 376 va_size(struct vmap_area *va) 377 { 378 return (va->va_end - va->va_start); 379 } 380 381 static __always_inline unsigned long 382 get_subtree_max_size(struct rb_node *node) 383 { 384 struct vmap_area *va; 385 386 va = rb_entry_safe(node, struct vmap_area, rb_node); 387 return va ? va->subtree_max_size : 0; 388 } 389 390 /* 391 * Gets called when remove the node and rotate. 392 */ 393 static __always_inline unsigned long 394 compute_subtree_max_size(struct vmap_area *va) 395 { 396 return max3(va_size(va), 397 get_subtree_max_size(va->rb_node.rb_left), 398 get_subtree_max_size(va->rb_node.rb_right)); 399 } 400 401 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb, 402 struct vmap_area, rb_node, unsigned long, subtree_max_size, 403 compute_subtree_max_size) 404 405 static void purge_vmap_area_lazy(void); 406 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 407 static unsigned long lazy_max_pages(void); 408 409 static atomic_long_t nr_vmalloc_pages; 410 411 unsigned long vmalloc_nr_pages(void) 412 { 413 return atomic_long_read(&nr_vmalloc_pages); 414 } 415 416 static struct vmap_area *__find_vmap_area(unsigned long addr) 417 { 418 struct rb_node *n = vmap_area_root.rb_node; 419 420 while (n) { 421 struct vmap_area *va; 422 423 va = rb_entry(n, struct vmap_area, rb_node); 424 if (addr < va->va_start) 425 n = n->rb_left; 426 else if (addr >= va->va_end) 427 n = n->rb_right; 428 else 429 return va; 430 } 431 432 return NULL; 433 } 434 435 /* 436 * This function returns back addresses of parent node 437 * and its left or right link for further processing. 438 */ 439 static __always_inline struct rb_node ** 440 find_va_links(struct vmap_area *va, 441 struct rb_root *root, struct rb_node *from, 442 struct rb_node **parent) 443 { 444 struct vmap_area *tmp_va; 445 struct rb_node **link; 446 447 if (root) { 448 link = &root->rb_node; 449 if (unlikely(!*link)) { 450 *parent = NULL; 451 return link; 452 } 453 } else { 454 link = &from; 455 } 456 457 /* 458 * Go to the bottom of the tree. When we hit the last point 459 * we end up with parent rb_node and correct direction, i name 460 * it link, where the new va->rb_node will be attached to. 461 */ 462 do { 463 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 464 465 /* 466 * During the traversal we also do some sanity check. 467 * Trigger the BUG() if there are sides(left/right) 468 * or full overlaps. 469 */ 470 if (va->va_start < tmp_va->va_end && 471 va->va_end <= tmp_va->va_start) 472 link = &(*link)->rb_left; 473 else if (va->va_end > tmp_va->va_start && 474 va->va_start >= tmp_va->va_end) 475 link = &(*link)->rb_right; 476 else 477 BUG(); 478 } while (*link); 479 480 *parent = &tmp_va->rb_node; 481 return link; 482 } 483 484 static __always_inline struct list_head * 485 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 486 { 487 struct list_head *list; 488 489 if (unlikely(!parent)) 490 /* 491 * The red-black tree where we try to find VA neighbors 492 * before merging or inserting is empty, i.e. it means 493 * there is no free vmap space. Normally it does not 494 * happen but we handle this case anyway. 495 */ 496 return NULL; 497 498 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 499 return (&parent->rb_right == link ? list->next : list); 500 } 501 502 static __always_inline void 503 link_va(struct vmap_area *va, struct rb_root *root, 504 struct rb_node *parent, struct rb_node **link, struct list_head *head) 505 { 506 /* 507 * VA is still not in the list, but we can 508 * identify its future previous list_head node. 509 */ 510 if (likely(parent)) { 511 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 512 if (&parent->rb_right != link) 513 head = head->prev; 514 } 515 516 /* Insert to the rb-tree */ 517 rb_link_node(&va->rb_node, parent, link); 518 if (root == &free_vmap_area_root) { 519 /* 520 * Some explanation here. Just perform simple insertion 521 * to the tree. We do not set va->subtree_max_size to 522 * its current size before calling rb_insert_augmented(). 523 * It is because of we populate the tree from the bottom 524 * to parent levels when the node _is_ in the tree. 525 * 526 * Therefore we set subtree_max_size to zero after insertion, 527 * to let __augment_tree_propagate_from() puts everything to 528 * the correct order later on. 529 */ 530 rb_insert_augmented(&va->rb_node, 531 root, &free_vmap_area_rb_augment_cb); 532 va->subtree_max_size = 0; 533 } else { 534 rb_insert_color(&va->rb_node, root); 535 } 536 537 /* Address-sort this list */ 538 list_add(&va->list, head); 539 } 540 541 static __always_inline void 542 unlink_va(struct vmap_area *va, struct rb_root *root) 543 { 544 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 545 return; 546 547 if (root == &free_vmap_area_root) 548 rb_erase_augmented(&va->rb_node, 549 root, &free_vmap_area_rb_augment_cb); 550 else 551 rb_erase(&va->rb_node, root); 552 553 list_del(&va->list); 554 RB_CLEAR_NODE(&va->rb_node); 555 } 556 557 #if DEBUG_AUGMENT_PROPAGATE_CHECK 558 static void 559 augment_tree_propagate_check(struct rb_node *n) 560 { 561 struct vmap_area *va; 562 struct rb_node *node; 563 unsigned long size; 564 bool found = false; 565 566 if (n == NULL) 567 return; 568 569 va = rb_entry(n, struct vmap_area, rb_node); 570 size = va->subtree_max_size; 571 node = n; 572 573 while (node) { 574 va = rb_entry(node, struct vmap_area, rb_node); 575 576 if (get_subtree_max_size(node->rb_left) == size) { 577 node = node->rb_left; 578 } else { 579 if (va_size(va) == size) { 580 found = true; 581 break; 582 } 583 584 node = node->rb_right; 585 } 586 } 587 588 if (!found) { 589 va = rb_entry(n, struct vmap_area, rb_node); 590 pr_emerg("tree is corrupted: %lu, %lu\n", 591 va_size(va), va->subtree_max_size); 592 } 593 594 augment_tree_propagate_check(n->rb_left); 595 augment_tree_propagate_check(n->rb_right); 596 } 597 #endif 598 599 /* 600 * This function populates subtree_max_size from bottom to upper 601 * levels starting from VA point. The propagation must be done 602 * when VA size is modified by changing its va_start/va_end. Or 603 * in case of newly inserting of VA to the tree. 604 * 605 * It means that __augment_tree_propagate_from() must be called: 606 * - After VA has been inserted to the tree(free path); 607 * - After VA has been shrunk(allocation path); 608 * - After VA has been increased(merging path). 609 * 610 * Please note that, it does not mean that upper parent nodes 611 * and their subtree_max_size are recalculated all the time up 612 * to the root node. 613 * 614 * 4--8 615 * /\ 616 * / \ 617 * / \ 618 * 2--2 8--8 619 * 620 * For example if we modify the node 4, shrinking it to 2, then 621 * no any modification is required. If we shrink the node 2 to 1 622 * its subtree_max_size is updated only, and set to 1. If we shrink 623 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 624 * node becomes 4--6. 625 */ 626 static __always_inline void 627 augment_tree_propagate_from(struct vmap_area *va) 628 { 629 struct rb_node *node = &va->rb_node; 630 unsigned long new_va_sub_max_size; 631 632 while (node) { 633 va = rb_entry(node, struct vmap_area, rb_node); 634 new_va_sub_max_size = compute_subtree_max_size(va); 635 636 /* 637 * If the newly calculated maximum available size of the 638 * subtree is equal to the current one, then it means that 639 * the tree is propagated correctly. So we have to stop at 640 * this point to save cycles. 641 */ 642 if (va->subtree_max_size == new_va_sub_max_size) 643 break; 644 645 va->subtree_max_size = new_va_sub_max_size; 646 node = rb_parent(&va->rb_node); 647 } 648 649 #if DEBUG_AUGMENT_PROPAGATE_CHECK 650 augment_tree_propagate_check(free_vmap_area_root.rb_node); 651 #endif 652 } 653 654 static void 655 insert_vmap_area(struct vmap_area *va, 656 struct rb_root *root, struct list_head *head) 657 { 658 struct rb_node **link; 659 struct rb_node *parent; 660 661 link = find_va_links(va, root, NULL, &parent); 662 link_va(va, root, parent, link, head); 663 } 664 665 static void 666 insert_vmap_area_augment(struct vmap_area *va, 667 struct rb_node *from, struct rb_root *root, 668 struct list_head *head) 669 { 670 struct rb_node **link; 671 struct rb_node *parent; 672 673 if (from) 674 link = find_va_links(va, NULL, from, &parent); 675 else 676 link = find_va_links(va, root, NULL, &parent); 677 678 link_va(va, root, parent, link, head); 679 augment_tree_propagate_from(va); 680 } 681 682 /* 683 * Merge de-allocated chunk of VA memory with previous 684 * and next free blocks. If coalesce is not done a new 685 * free area is inserted. If VA has been merged, it is 686 * freed. 687 */ 688 static __always_inline void 689 merge_or_add_vmap_area(struct vmap_area *va, 690 struct rb_root *root, struct list_head *head) 691 { 692 struct vmap_area *sibling; 693 struct list_head *next; 694 struct rb_node **link; 695 struct rb_node *parent; 696 bool merged = false; 697 698 /* 699 * Find a place in the tree where VA potentially will be 700 * inserted, unless it is merged with its sibling/siblings. 701 */ 702 link = find_va_links(va, root, NULL, &parent); 703 704 /* 705 * Get next node of VA to check if merging can be done. 706 */ 707 next = get_va_next_sibling(parent, link); 708 if (unlikely(next == NULL)) 709 goto insert; 710 711 /* 712 * start end 713 * | | 714 * |<------VA------>|<-----Next----->| 715 * | | 716 * start end 717 */ 718 if (next != head) { 719 sibling = list_entry(next, struct vmap_area, list); 720 if (sibling->va_start == va->va_end) { 721 sibling->va_start = va->va_start; 722 723 /* Check and update the tree if needed. */ 724 augment_tree_propagate_from(sibling); 725 726 /* Free vmap_area object. */ 727 kmem_cache_free(vmap_area_cachep, va); 728 729 /* Point to the new merged area. */ 730 va = sibling; 731 merged = true; 732 } 733 } 734 735 /* 736 * start end 737 * | | 738 * |<-----Prev----->|<------VA------>| 739 * | | 740 * start end 741 */ 742 if (next->prev != head) { 743 sibling = list_entry(next->prev, struct vmap_area, list); 744 if (sibling->va_end == va->va_start) { 745 sibling->va_end = va->va_end; 746 747 /* Check and update the tree if needed. */ 748 augment_tree_propagate_from(sibling); 749 750 if (merged) 751 unlink_va(va, root); 752 753 /* Free vmap_area object. */ 754 kmem_cache_free(vmap_area_cachep, va); 755 return; 756 } 757 } 758 759 insert: 760 if (!merged) { 761 link_va(va, root, parent, link, head); 762 augment_tree_propagate_from(va); 763 } 764 } 765 766 static __always_inline bool 767 is_within_this_va(struct vmap_area *va, unsigned long size, 768 unsigned long align, unsigned long vstart) 769 { 770 unsigned long nva_start_addr; 771 772 if (va->va_start > vstart) 773 nva_start_addr = ALIGN(va->va_start, align); 774 else 775 nva_start_addr = ALIGN(vstart, align); 776 777 /* Can be overflowed due to big size or alignment. */ 778 if (nva_start_addr + size < nva_start_addr || 779 nva_start_addr < vstart) 780 return false; 781 782 return (nva_start_addr + size <= va->va_end); 783 } 784 785 /* 786 * Find the first free block(lowest start address) in the tree, 787 * that will accomplish the request corresponding to passing 788 * parameters. 789 */ 790 static __always_inline struct vmap_area * 791 find_vmap_lowest_match(unsigned long size, 792 unsigned long align, unsigned long vstart) 793 { 794 struct vmap_area *va; 795 struct rb_node *node; 796 unsigned long length; 797 798 /* Start from the root. */ 799 node = free_vmap_area_root.rb_node; 800 801 /* Adjust the search size for alignment overhead. */ 802 length = size + align - 1; 803 804 while (node) { 805 va = rb_entry(node, struct vmap_area, rb_node); 806 807 if (get_subtree_max_size(node->rb_left) >= length && 808 vstart < va->va_start) { 809 node = node->rb_left; 810 } else { 811 if (is_within_this_va(va, size, align, vstart)) 812 return va; 813 814 /* 815 * Does not make sense to go deeper towards the right 816 * sub-tree if it does not have a free block that is 817 * equal or bigger to the requested search length. 818 */ 819 if (get_subtree_max_size(node->rb_right) >= length) { 820 node = node->rb_right; 821 continue; 822 } 823 824 /* 825 * OK. We roll back and find the first right sub-tree, 826 * that will satisfy the search criteria. It can happen 827 * only once due to "vstart" restriction. 828 */ 829 while ((node = rb_parent(node))) { 830 va = rb_entry(node, struct vmap_area, rb_node); 831 if (is_within_this_va(va, size, align, vstart)) 832 return va; 833 834 if (get_subtree_max_size(node->rb_right) >= length && 835 vstart <= va->va_start) { 836 node = node->rb_right; 837 break; 838 } 839 } 840 } 841 } 842 843 return NULL; 844 } 845 846 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 847 #include <linux/random.h> 848 849 static struct vmap_area * 850 find_vmap_lowest_linear_match(unsigned long size, 851 unsigned long align, unsigned long vstart) 852 { 853 struct vmap_area *va; 854 855 list_for_each_entry(va, &free_vmap_area_list, list) { 856 if (!is_within_this_va(va, size, align, vstart)) 857 continue; 858 859 return va; 860 } 861 862 return NULL; 863 } 864 865 static void 866 find_vmap_lowest_match_check(unsigned long size) 867 { 868 struct vmap_area *va_1, *va_2; 869 unsigned long vstart; 870 unsigned int rnd; 871 872 get_random_bytes(&rnd, sizeof(rnd)); 873 vstart = VMALLOC_START + rnd; 874 875 va_1 = find_vmap_lowest_match(size, 1, vstart); 876 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 877 878 if (va_1 != va_2) 879 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 880 va_1, va_2, vstart); 881 } 882 #endif 883 884 enum fit_type { 885 NOTHING_FIT = 0, 886 FL_FIT_TYPE = 1, /* full fit */ 887 LE_FIT_TYPE = 2, /* left edge fit */ 888 RE_FIT_TYPE = 3, /* right edge fit */ 889 NE_FIT_TYPE = 4 /* no edge fit */ 890 }; 891 892 static __always_inline enum fit_type 893 classify_va_fit_type(struct vmap_area *va, 894 unsigned long nva_start_addr, unsigned long size) 895 { 896 enum fit_type type; 897 898 /* Check if it is within VA. */ 899 if (nva_start_addr < va->va_start || 900 nva_start_addr + size > va->va_end) 901 return NOTHING_FIT; 902 903 /* Now classify. */ 904 if (va->va_start == nva_start_addr) { 905 if (va->va_end == nva_start_addr + size) 906 type = FL_FIT_TYPE; 907 else 908 type = LE_FIT_TYPE; 909 } else if (va->va_end == nva_start_addr + size) { 910 type = RE_FIT_TYPE; 911 } else { 912 type = NE_FIT_TYPE; 913 } 914 915 return type; 916 } 917 918 static __always_inline int 919 adjust_va_to_fit_type(struct vmap_area *va, 920 unsigned long nva_start_addr, unsigned long size, 921 enum fit_type type) 922 { 923 struct vmap_area *lva = NULL; 924 925 if (type == FL_FIT_TYPE) { 926 /* 927 * No need to split VA, it fully fits. 928 * 929 * | | 930 * V NVA V 931 * |---------------| 932 */ 933 unlink_va(va, &free_vmap_area_root); 934 kmem_cache_free(vmap_area_cachep, va); 935 } else if (type == LE_FIT_TYPE) { 936 /* 937 * Split left edge of fit VA. 938 * 939 * | | 940 * V NVA V R 941 * |-------|-------| 942 */ 943 va->va_start += size; 944 } else if (type == RE_FIT_TYPE) { 945 /* 946 * Split right edge of fit VA. 947 * 948 * | | 949 * L V NVA V 950 * |-------|-------| 951 */ 952 va->va_end = nva_start_addr; 953 } else if (type == NE_FIT_TYPE) { 954 /* 955 * Split no edge of fit VA. 956 * 957 * | | 958 * L V NVA V R 959 * |---|-------|---| 960 */ 961 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 962 if (unlikely(!lva)) { 963 /* 964 * For percpu allocator we do not do any pre-allocation 965 * and leave it as it is. The reason is it most likely 966 * never ends up with NE_FIT_TYPE splitting. In case of 967 * percpu allocations offsets and sizes are aligned to 968 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 969 * are its main fitting cases. 970 * 971 * There are a few exceptions though, as an example it is 972 * a first allocation (early boot up) when we have "one" 973 * big free space that has to be split. 974 */ 975 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 976 if (!lva) 977 return -1; 978 } 979 980 /* 981 * Build the remainder. 982 */ 983 lva->va_start = va->va_start; 984 lva->va_end = nva_start_addr; 985 986 /* 987 * Shrink this VA to remaining size. 988 */ 989 va->va_start = nva_start_addr + size; 990 } else { 991 return -1; 992 } 993 994 if (type != FL_FIT_TYPE) { 995 augment_tree_propagate_from(va); 996 997 if (lva) /* type == NE_FIT_TYPE */ 998 insert_vmap_area_augment(lva, &va->rb_node, 999 &free_vmap_area_root, &free_vmap_area_list); 1000 } 1001 1002 return 0; 1003 } 1004 1005 /* 1006 * Returns a start address of the newly allocated area, if success. 1007 * Otherwise a vend is returned that indicates failure. 1008 */ 1009 static __always_inline unsigned long 1010 __alloc_vmap_area(unsigned long size, unsigned long align, 1011 unsigned long vstart, unsigned long vend) 1012 { 1013 unsigned long nva_start_addr; 1014 struct vmap_area *va; 1015 enum fit_type type; 1016 int ret; 1017 1018 va = find_vmap_lowest_match(size, align, vstart); 1019 if (unlikely(!va)) 1020 return vend; 1021 1022 if (va->va_start > vstart) 1023 nva_start_addr = ALIGN(va->va_start, align); 1024 else 1025 nva_start_addr = ALIGN(vstart, align); 1026 1027 /* Check the "vend" restriction. */ 1028 if (nva_start_addr + size > vend) 1029 return vend; 1030 1031 /* Classify what we have found. */ 1032 type = classify_va_fit_type(va, nva_start_addr, size); 1033 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1034 return vend; 1035 1036 /* Update the free vmap_area. */ 1037 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1038 if (ret) 1039 return vend; 1040 1041 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1042 find_vmap_lowest_match_check(size); 1043 #endif 1044 1045 return nva_start_addr; 1046 } 1047 1048 /* 1049 * Allocate a region of KVA of the specified size and alignment, within the 1050 * vstart and vend. 1051 */ 1052 static struct vmap_area *alloc_vmap_area(unsigned long size, 1053 unsigned long align, 1054 unsigned long vstart, unsigned long vend, 1055 int node, gfp_t gfp_mask) 1056 { 1057 struct vmap_area *va, *pva; 1058 unsigned long addr; 1059 int purged = 0; 1060 1061 BUG_ON(!size); 1062 BUG_ON(offset_in_page(size)); 1063 BUG_ON(!is_power_of_2(align)); 1064 1065 if (unlikely(!vmap_initialized)) 1066 return ERR_PTR(-EBUSY); 1067 1068 might_sleep(); 1069 1070 va = kmem_cache_alloc_node(vmap_area_cachep, 1071 gfp_mask & GFP_RECLAIM_MASK, node); 1072 if (unlikely(!va)) 1073 return ERR_PTR(-ENOMEM); 1074 1075 /* 1076 * Only scan the relevant parts containing pointers to other objects 1077 * to avoid false negatives. 1078 */ 1079 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 1080 1081 retry: 1082 /* 1083 * Preload this CPU with one extra vmap_area object to ensure 1084 * that we have it available when fit type of free area is 1085 * NE_FIT_TYPE. 1086 * 1087 * The preload is done in non-atomic context, thus it allows us 1088 * to use more permissive allocation masks to be more stable under 1089 * low memory condition and high memory pressure. 1090 * 1091 * Even if it fails we do not really care about that. Just proceed 1092 * as it is. "overflow" path will refill the cache we allocate from. 1093 */ 1094 preempt_disable(); 1095 if (!__this_cpu_read(ne_fit_preload_node)) { 1096 preempt_enable(); 1097 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node); 1098 preempt_disable(); 1099 1100 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) { 1101 if (pva) 1102 kmem_cache_free(vmap_area_cachep, pva); 1103 } 1104 } 1105 1106 spin_lock(&vmap_area_lock); 1107 preempt_enable(); 1108 1109 /* 1110 * If an allocation fails, the "vend" address is 1111 * returned. Therefore trigger the overflow path. 1112 */ 1113 addr = __alloc_vmap_area(size, align, vstart, vend); 1114 if (unlikely(addr == vend)) 1115 goto overflow; 1116 1117 va->va_start = addr; 1118 va->va_end = addr + size; 1119 va->flags = 0; 1120 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1121 1122 spin_unlock(&vmap_area_lock); 1123 1124 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1125 BUG_ON(va->va_start < vstart); 1126 BUG_ON(va->va_end > vend); 1127 1128 return va; 1129 1130 overflow: 1131 spin_unlock(&vmap_area_lock); 1132 if (!purged) { 1133 purge_vmap_area_lazy(); 1134 purged = 1; 1135 goto retry; 1136 } 1137 1138 if (gfpflags_allow_blocking(gfp_mask)) { 1139 unsigned long freed = 0; 1140 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1141 if (freed > 0) { 1142 purged = 0; 1143 goto retry; 1144 } 1145 } 1146 1147 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1148 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1149 size); 1150 1151 kmem_cache_free(vmap_area_cachep, va); 1152 return ERR_PTR(-EBUSY); 1153 } 1154 1155 int register_vmap_purge_notifier(struct notifier_block *nb) 1156 { 1157 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1158 } 1159 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1160 1161 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1162 { 1163 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1164 } 1165 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1166 1167 static void __free_vmap_area(struct vmap_area *va) 1168 { 1169 /* 1170 * Remove from the busy tree/list. 1171 */ 1172 unlink_va(va, &vmap_area_root); 1173 1174 /* 1175 * Merge VA with its neighbors, otherwise just add it. 1176 */ 1177 merge_or_add_vmap_area(va, 1178 &free_vmap_area_root, &free_vmap_area_list); 1179 } 1180 1181 /* 1182 * Free a region of KVA allocated by alloc_vmap_area 1183 */ 1184 static void free_vmap_area(struct vmap_area *va) 1185 { 1186 spin_lock(&vmap_area_lock); 1187 __free_vmap_area(va); 1188 spin_unlock(&vmap_area_lock); 1189 } 1190 1191 /* 1192 * Clear the pagetable entries of a given vmap_area 1193 */ 1194 static void unmap_vmap_area(struct vmap_area *va) 1195 { 1196 vunmap_page_range(va->va_start, va->va_end); 1197 } 1198 1199 /* 1200 * lazy_max_pages is the maximum amount of virtual address space we gather up 1201 * before attempting to purge with a TLB flush. 1202 * 1203 * There is a tradeoff here: a larger number will cover more kernel page tables 1204 * and take slightly longer to purge, but it will linearly reduce the number of 1205 * global TLB flushes that must be performed. It would seem natural to scale 1206 * this number up linearly with the number of CPUs (because vmapping activity 1207 * could also scale linearly with the number of CPUs), however it is likely 1208 * that in practice, workloads might be constrained in other ways that mean 1209 * vmap activity will not scale linearly with CPUs. Also, I want to be 1210 * conservative and not introduce a big latency on huge systems, so go with 1211 * a less aggressive log scale. It will still be an improvement over the old 1212 * code, and it will be simple to change the scale factor if we find that it 1213 * becomes a problem on bigger systems. 1214 */ 1215 static unsigned long lazy_max_pages(void) 1216 { 1217 unsigned int log; 1218 1219 log = fls(num_online_cpus()); 1220 1221 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1222 } 1223 1224 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1225 1226 /* 1227 * Serialize vmap purging. There is no actual criticial section protected 1228 * by this look, but we want to avoid concurrent calls for performance 1229 * reasons and to make the pcpu_get_vm_areas more deterministic. 1230 */ 1231 static DEFINE_MUTEX(vmap_purge_lock); 1232 1233 /* for per-CPU blocks */ 1234 static void purge_fragmented_blocks_allcpus(void); 1235 1236 /* 1237 * called before a call to iounmap() if the caller wants vm_area_struct's 1238 * immediately freed. 1239 */ 1240 void set_iounmap_nonlazy(void) 1241 { 1242 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1243 } 1244 1245 /* 1246 * Purges all lazily-freed vmap areas. 1247 */ 1248 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1249 { 1250 unsigned long resched_threshold; 1251 struct llist_node *valist; 1252 struct vmap_area *va; 1253 struct vmap_area *n_va; 1254 1255 lockdep_assert_held(&vmap_purge_lock); 1256 1257 valist = llist_del_all(&vmap_purge_list); 1258 if (unlikely(valist == NULL)) 1259 return false; 1260 1261 /* 1262 * First make sure the mappings are removed from all page-tables 1263 * before they are freed. 1264 */ 1265 vmalloc_sync_all(); 1266 1267 /* 1268 * TODO: to calculate a flush range without looping. 1269 * The list can be up to lazy_max_pages() elements. 1270 */ 1271 llist_for_each_entry(va, valist, purge_list) { 1272 if (va->va_start < start) 1273 start = va->va_start; 1274 if (va->va_end > end) 1275 end = va->va_end; 1276 } 1277 1278 flush_tlb_kernel_range(start, end); 1279 resched_threshold = lazy_max_pages() << 1; 1280 1281 spin_lock(&vmap_area_lock); 1282 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 1283 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1284 1285 __free_vmap_area(va); 1286 atomic_long_sub(nr, &vmap_lazy_nr); 1287 1288 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1289 cond_resched_lock(&vmap_area_lock); 1290 } 1291 spin_unlock(&vmap_area_lock); 1292 return true; 1293 } 1294 1295 /* 1296 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1297 * is already purging. 1298 */ 1299 static void try_purge_vmap_area_lazy(void) 1300 { 1301 if (mutex_trylock(&vmap_purge_lock)) { 1302 __purge_vmap_area_lazy(ULONG_MAX, 0); 1303 mutex_unlock(&vmap_purge_lock); 1304 } 1305 } 1306 1307 /* 1308 * Kick off a purge of the outstanding lazy areas. 1309 */ 1310 static void purge_vmap_area_lazy(void) 1311 { 1312 mutex_lock(&vmap_purge_lock); 1313 purge_fragmented_blocks_allcpus(); 1314 __purge_vmap_area_lazy(ULONG_MAX, 0); 1315 mutex_unlock(&vmap_purge_lock); 1316 } 1317 1318 /* 1319 * Free a vmap area, caller ensuring that the area has been unmapped 1320 * and flush_cache_vunmap had been called for the correct range 1321 * previously. 1322 */ 1323 static void free_vmap_area_noflush(struct vmap_area *va) 1324 { 1325 unsigned long nr_lazy; 1326 1327 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1328 PAGE_SHIFT, &vmap_lazy_nr); 1329 1330 /* After this point, we may free va at any time */ 1331 llist_add(&va->purge_list, &vmap_purge_list); 1332 1333 if (unlikely(nr_lazy > lazy_max_pages())) 1334 try_purge_vmap_area_lazy(); 1335 } 1336 1337 /* 1338 * Free and unmap a vmap area 1339 */ 1340 static void free_unmap_vmap_area(struct vmap_area *va) 1341 { 1342 flush_cache_vunmap(va->va_start, va->va_end); 1343 unmap_vmap_area(va); 1344 if (debug_pagealloc_enabled()) 1345 flush_tlb_kernel_range(va->va_start, va->va_end); 1346 1347 free_vmap_area_noflush(va); 1348 } 1349 1350 static struct vmap_area *find_vmap_area(unsigned long addr) 1351 { 1352 struct vmap_area *va; 1353 1354 spin_lock(&vmap_area_lock); 1355 va = __find_vmap_area(addr); 1356 spin_unlock(&vmap_area_lock); 1357 1358 return va; 1359 } 1360 1361 /*** Per cpu kva allocator ***/ 1362 1363 /* 1364 * vmap space is limited especially on 32 bit architectures. Ensure there is 1365 * room for at least 16 percpu vmap blocks per CPU. 1366 */ 1367 /* 1368 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1369 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1370 * instead (we just need a rough idea) 1371 */ 1372 #if BITS_PER_LONG == 32 1373 #define VMALLOC_SPACE (128UL*1024*1024) 1374 #else 1375 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1376 #endif 1377 1378 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1379 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1380 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1381 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1382 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1383 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1384 #define VMAP_BBMAP_BITS \ 1385 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1386 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1387 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1388 1389 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1390 1391 struct vmap_block_queue { 1392 spinlock_t lock; 1393 struct list_head free; 1394 }; 1395 1396 struct vmap_block { 1397 spinlock_t lock; 1398 struct vmap_area *va; 1399 unsigned long free, dirty; 1400 unsigned long dirty_min, dirty_max; /*< dirty range */ 1401 struct list_head free_list; 1402 struct rcu_head rcu_head; 1403 struct list_head purge; 1404 }; 1405 1406 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1407 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1408 1409 /* 1410 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 1411 * in the free path. Could get rid of this if we change the API to return a 1412 * "cookie" from alloc, to be passed to free. But no big deal yet. 1413 */ 1414 static DEFINE_SPINLOCK(vmap_block_tree_lock); 1415 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 1416 1417 /* 1418 * We should probably have a fallback mechanism to allocate virtual memory 1419 * out of partially filled vmap blocks. However vmap block sizing should be 1420 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1421 * big problem. 1422 */ 1423 1424 static unsigned long addr_to_vb_idx(unsigned long addr) 1425 { 1426 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1427 addr /= VMAP_BLOCK_SIZE; 1428 return addr; 1429 } 1430 1431 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1432 { 1433 unsigned long addr; 1434 1435 addr = va_start + (pages_off << PAGE_SHIFT); 1436 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1437 return (void *)addr; 1438 } 1439 1440 /** 1441 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1442 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1443 * @order: how many 2^order pages should be occupied in newly allocated block 1444 * @gfp_mask: flags for the page level allocator 1445 * 1446 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1447 */ 1448 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1449 { 1450 struct vmap_block_queue *vbq; 1451 struct vmap_block *vb; 1452 struct vmap_area *va; 1453 unsigned long vb_idx; 1454 int node, err; 1455 void *vaddr; 1456 1457 node = numa_node_id(); 1458 1459 vb = kmalloc_node(sizeof(struct vmap_block), 1460 gfp_mask & GFP_RECLAIM_MASK, node); 1461 if (unlikely(!vb)) 1462 return ERR_PTR(-ENOMEM); 1463 1464 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1465 VMALLOC_START, VMALLOC_END, 1466 node, gfp_mask); 1467 if (IS_ERR(va)) { 1468 kfree(vb); 1469 return ERR_CAST(va); 1470 } 1471 1472 err = radix_tree_preload(gfp_mask); 1473 if (unlikely(err)) { 1474 kfree(vb); 1475 free_vmap_area(va); 1476 return ERR_PTR(err); 1477 } 1478 1479 vaddr = vmap_block_vaddr(va->va_start, 0); 1480 spin_lock_init(&vb->lock); 1481 vb->va = va; 1482 /* At least something should be left free */ 1483 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1484 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1485 vb->dirty = 0; 1486 vb->dirty_min = VMAP_BBMAP_BITS; 1487 vb->dirty_max = 0; 1488 INIT_LIST_HEAD(&vb->free_list); 1489 1490 vb_idx = addr_to_vb_idx(va->va_start); 1491 spin_lock(&vmap_block_tree_lock); 1492 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 1493 spin_unlock(&vmap_block_tree_lock); 1494 BUG_ON(err); 1495 radix_tree_preload_end(); 1496 1497 vbq = &get_cpu_var(vmap_block_queue); 1498 spin_lock(&vbq->lock); 1499 list_add_tail_rcu(&vb->free_list, &vbq->free); 1500 spin_unlock(&vbq->lock); 1501 put_cpu_var(vmap_block_queue); 1502 1503 return vaddr; 1504 } 1505 1506 static void free_vmap_block(struct vmap_block *vb) 1507 { 1508 struct vmap_block *tmp; 1509 unsigned long vb_idx; 1510 1511 vb_idx = addr_to_vb_idx(vb->va->va_start); 1512 spin_lock(&vmap_block_tree_lock); 1513 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 1514 spin_unlock(&vmap_block_tree_lock); 1515 BUG_ON(tmp != vb); 1516 1517 free_vmap_area_noflush(vb->va); 1518 kfree_rcu(vb, rcu_head); 1519 } 1520 1521 static void purge_fragmented_blocks(int cpu) 1522 { 1523 LIST_HEAD(purge); 1524 struct vmap_block *vb; 1525 struct vmap_block *n_vb; 1526 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1527 1528 rcu_read_lock(); 1529 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1530 1531 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1532 continue; 1533 1534 spin_lock(&vb->lock); 1535 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1536 vb->free = 0; /* prevent further allocs after releasing lock */ 1537 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1538 vb->dirty_min = 0; 1539 vb->dirty_max = VMAP_BBMAP_BITS; 1540 spin_lock(&vbq->lock); 1541 list_del_rcu(&vb->free_list); 1542 spin_unlock(&vbq->lock); 1543 spin_unlock(&vb->lock); 1544 list_add_tail(&vb->purge, &purge); 1545 } else 1546 spin_unlock(&vb->lock); 1547 } 1548 rcu_read_unlock(); 1549 1550 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1551 list_del(&vb->purge); 1552 free_vmap_block(vb); 1553 } 1554 } 1555 1556 static void purge_fragmented_blocks_allcpus(void) 1557 { 1558 int cpu; 1559 1560 for_each_possible_cpu(cpu) 1561 purge_fragmented_blocks(cpu); 1562 } 1563 1564 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1565 { 1566 struct vmap_block_queue *vbq; 1567 struct vmap_block *vb; 1568 void *vaddr = NULL; 1569 unsigned int order; 1570 1571 BUG_ON(offset_in_page(size)); 1572 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1573 if (WARN_ON(size == 0)) { 1574 /* 1575 * Allocating 0 bytes isn't what caller wants since 1576 * get_order(0) returns funny result. Just warn and terminate 1577 * early. 1578 */ 1579 return NULL; 1580 } 1581 order = get_order(size); 1582 1583 rcu_read_lock(); 1584 vbq = &get_cpu_var(vmap_block_queue); 1585 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1586 unsigned long pages_off; 1587 1588 spin_lock(&vb->lock); 1589 if (vb->free < (1UL << order)) { 1590 spin_unlock(&vb->lock); 1591 continue; 1592 } 1593 1594 pages_off = VMAP_BBMAP_BITS - vb->free; 1595 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1596 vb->free -= 1UL << order; 1597 if (vb->free == 0) { 1598 spin_lock(&vbq->lock); 1599 list_del_rcu(&vb->free_list); 1600 spin_unlock(&vbq->lock); 1601 } 1602 1603 spin_unlock(&vb->lock); 1604 break; 1605 } 1606 1607 put_cpu_var(vmap_block_queue); 1608 rcu_read_unlock(); 1609 1610 /* Allocate new block if nothing was found */ 1611 if (!vaddr) 1612 vaddr = new_vmap_block(order, gfp_mask); 1613 1614 return vaddr; 1615 } 1616 1617 static void vb_free(const void *addr, unsigned long size) 1618 { 1619 unsigned long offset; 1620 unsigned long vb_idx; 1621 unsigned int order; 1622 struct vmap_block *vb; 1623 1624 BUG_ON(offset_in_page(size)); 1625 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1626 1627 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1628 1629 order = get_order(size); 1630 1631 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1632 offset >>= PAGE_SHIFT; 1633 1634 vb_idx = addr_to_vb_idx((unsigned long)addr); 1635 rcu_read_lock(); 1636 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1637 rcu_read_unlock(); 1638 BUG_ON(!vb); 1639 1640 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1641 1642 if (debug_pagealloc_enabled()) 1643 flush_tlb_kernel_range((unsigned long)addr, 1644 (unsigned long)addr + size); 1645 1646 spin_lock(&vb->lock); 1647 1648 /* Expand dirty range */ 1649 vb->dirty_min = min(vb->dirty_min, offset); 1650 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1651 1652 vb->dirty += 1UL << order; 1653 if (vb->dirty == VMAP_BBMAP_BITS) { 1654 BUG_ON(vb->free); 1655 spin_unlock(&vb->lock); 1656 free_vmap_block(vb); 1657 } else 1658 spin_unlock(&vb->lock); 1659 } 1660 1661 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1662 { 1663 int cpu; 1664 1665 if (unlikely(!vmap_initialized)) 1666 return; 1667 1668 might_sleep(); 1669 1670 for_each_possible_cpu(cpu) { 1671 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1672 struct vmap_block *vb; 1673 1674 rcu_read_lock(); 1675 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1676 spin_lock(&vb->lock); 1677 if (vb->dirty) { 1678 unsigned long va_start = vb->va->va_start; 1679 unsigned long s, e; 1680 1681 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1682 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1683 1684 start = min(s, start); 1685 end = max(e, end); 1686 1687 flush = 1; 1688 } 1689 spin_unlock(&vb->lock); 1690 } 1691 rcu_read_unlock(); 1692 } 1693 1694 mutex_lock(&vmap_purge_lock); 1695 purge_fragmented_blocks_allcpus(); 1696 if (!__purge_vmap_area_lazy(start, end) && flush) 1697 flush_tlb_kernel_range(start, end); 1698 mutex_unlock(&vmap_purge_lock); 1699 } 1700 1701 /** 1702 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1703 * 1704 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1705 * to amortize TLB flushing overheads. What this means is that any page you 1706 * have now, may, in a former life, have been mapped into kernel virtual 1707 * address by the vmap layer and so there might be some CPUs with TLB entries 1708 * still referencing that page (additional to the regular 1:1 kernel mapping). 1709 * 1710 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1711 * be sure that none of the pages we have control over will have any aliases 1712 * from the vmap layer. 1713 */ 1714 void vm_unmap_aliases(void) 1715 { 1716 unsigned long start = ULONG_MAX, end = 0; 1717 int flush = 0; 1718 1719 _vm_unmap_aliases(start, end, flush); 1720 } 1721 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1722 1723 /** 1724 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1725 * @mem: the pointer returned by vm_map_ram 1726 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1727 */ 1728 void vm_unmap_ram(const void *mem, unsigned int count) 1729 { 1730 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1731 unsigned long addr = (unsigned long)mem; 1732 struct vmap_area *va; 1733 1734 might_sleep(); 1735 BUG_ON(!addr); 1736 BUG_ON(addr < VMALLOC_START); 1737 BUG_ON(addr > VMALLOC_END); 1738 BUG_ON(!PAGE_ALIGNED(addr)); 1739 1740 if (likely(count <= VMAP_MAX_ALLOC)) { 1741 debug_check_no_locks_freed(mem, size); 1742 vb_free(mem, size); 1743 return; 1744 } 1745 1746 va = find_vmap_area(addr); 1747 BUG_ON(!va); 1748 debug_check_no_locks_freed((void *)va->va_start, 1749 (va->va_end - va->va_start)); 1750 free_unmap_vmap_area(va); 1751 } 1752 EXPORT_SYMBOL(vm_unmap_ram); 1753 1754 /** 1755 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1756 * @pages: an array of pointers to the pages to be mapped 1757 * @count: number of pages 1758 * @node: prefer to allocate data structures on this node 1759 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1760 * 1761 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1762 * faster than vmap so it's good. But if you mix long-life and short-life 1763 * objects with vm_map_ram(), it could consume lots of address space through 1764 * fragmentation (especially on a 32bit machine). You could see failures in 1765 * the end. Please use this function for short-lived objects. 1766 * 1767 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1768 */ 1769 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1770 { 1771 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1772 unsigned long addr; 1773 void *mem; 1774 1775 if (likely(count <= VMAP_MAX_ALLOC)) { 1776 mem = vb_alloc(size, GFP_KERNEL); 1777 if (IS_ERR(mem)) 1778 return NULL; 1779 addr = (unsigned long)mem; 1780 } else { 1781 struct vmap_area *va; 1782 va = alloc_vmap_area(size, PAGE_SIZE, 1783 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1784 if (IS_ERR(va)) 1785 return NULL; 1786 1787 addr = va->va_start; 1788 mem = (void *)addr; 1789 } 1790 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1791 vm_unmap_ram(mem, count); 1792 return NULL; 1793 } 1794 return mem; 1795 } 1796 EXPORT_SYMBOL(vm_map_ram); 1797 1798 static struct vm_struct *vmlist __initdata; 1799 1800 /** 1801 * vm_area_add_early - add vmap area early during boot 1802 * @vm: vm_struct to add 1803 * 1804 * This function is used to add fixed kernel vm area to vmlist before 1805 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1806 * should contain proper values and the other fields should be zero. 1807 * 1808 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1809 */ 1810 void __init vm_area_add_early(struct vm_struct *vm) 1811 { 1812 struct vm_struct *tmp, **p; 1813 1814 BUG_ON(vmap_initialized); 1815 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1816 if (tmp->addr >= vm->addr) { 1817 BUG_ON(tmp->addr < vm->addr + vm->size); 1818 break; 1819 } else 1820 BUG_ON(tmp->addr + tmp->size > vm->addr); 1821 } 1822 vm->next = *p; 1823 *p = vm; 1824 } 1825 1826 /** 1827 * vm_area_register_early - register vmap area early during boot 1828 * @vm: vm_struct to register 1829 * @align: requested alignment 1830 * 1831 * This function is used to register kernel vm area before 1832 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1833 * proper values on entry and other fields should be zero. On return, 1834 * vm->addr contains the allocated address. 1835 * 1836 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1837 */ 1838 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1839 { 1840 static size_t vm_init_off __initdata; 1841 unsigned long addr; 1842 1843 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1844 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1845 1846 vm->addr = (void *)addr; 1847 1848 vm_area_add_early(vm); 1849 } 1850 1851 static void vmap_init_free_space(void) 1852 { 1853 unsigned long vmap_start = 1; 1854 const unsigned long vmap_end = ULONG_MAX; 1855 struct vmap_area *busy, *free; 1856 1857 /* 1858 * B F B B B F 1859 * -|-----|.....|-----|-----|-----|.....|- 1860 * | The KVA space | 1861 * |<--------------------------------->| 1862 */ 1863 list_for_each_entry(busy, &vmap_area_list, list) { 1864 if (busy->va_start - vmap_start > 0) { 1865 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1866 if (!WARN_ON_ONCE(!free)) { 1867 free->va_start = vmap_start; 1868 free->va_end = busy->va_start; 1869 1870 insert_vmap_area_augment(free, NULL, 1871 &free_vmap_area_root, 1872 &free_vmap_area_list); 1873 } 1874 } 1875 1876 vmap_start = busy->va_end; 1877 } 1878 1879 if (vmap_end - vmap_start > 0) { 1880 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1881 if (!WARN_ON_ONCE(!free)) { 1882 free->va_start = vmap_start; 1883 free->va_end = vmap_end; 1884 1885 insert_vmap_area_augment(free, NULL, 1886 &free_vmap_area_root, 1887 &free_vmap_area_list); 1888 } 1889 } 1890 } 1891 1892 void __init vmalloc_init(void) 1893 { 1894 struct vmap_area *va; 1895 struct vm_struct *tmp; 1896 int i; 1897 1898 /* 1899 * Create the cache for vmap_area objects. 1900 */ 1901 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 1902 1903 for_each_possible_cpu(i) { 1904 struct vmap_block_queue *vbq; 1905 struct vfree_deferred *p; 1906 1907 vbq = &per_cpu(vmap_block_queue, i); 1908 spin_lock_init(&vbq->lock); 1909 INIT_LIST_HEAD(&vbq->free); 1910 p = &per_cpu(vfree_deferred, i); 1911 init_llist_head(&p->list); 1912 INIT_WORK(&p->wq, free_work); 1913 } 1914 1915 /* Import existing vmlist entries. */ 1916 for (tmp = vmlist; tmp; tmp = tmp->next) { 1917 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1918 if (WARN_ON_ONCE(!va)) 1919 continue; 1920 1921 va->flags = VM_VM_AREA; 1922 va->va_start = (unsigned long)tmp->addr; 1923 va->va_end = va->va_start + tmp->size; 1924 va->vm = tmp; 1925 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1926 } 1927 1928 /* 1929 * Now we can initialize a free vmap space. 1930 */ 1931 vmap_init_free_space(); 1932 vmap_initialized = true; 1933 } 1934 1935 /** 1936 * map_kernel_range_noflush - map kernel VM area with the specified pages 1937 * @addr: start of the VM area to map 1938 * @size: size of the VM area to map 1939 * @prot: page protection flags to use 1940 * @pages: pages to map 1941 * 1942 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1943 * specify should have been allocated using get_vm_area() and its 1944 * friends. 1945 * 1946 * NOTE: 1947 * This function does NOT do any cache flushing. The caller is 1948 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1949 * before calling this function. 1950 * 1951 * RETURNS: 1952 * The number of pages mapped on success, -errno on failure. 1953 */ 1954 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1955 pgprot_t prot, struct page **pages) 1956 { 1957 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1958 } 1959 1960 /** 1961 * unmap_kernel_range_noflush - unmap kernel VM area 1962 * @addr: start of the VM area to unmap 1963 * @size: size of the VM area to unmap 1964 * 1965 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1966 * specify should have been allocated using get_vm_area() and its 1967 * friends. 1968 * 1969 * NOTE: 1970 * This function does NOT do any cache flushing. The caller is 1971 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1972 * before calling this function and flush_tlb_kernel_range() after. 1973 */ 1974 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1975 { 1976 vunmap_page_range(addr, addr + size); 1977 } 1978 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1979 1980 /** 1981 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1982 * @addr: start of the VM area to unmap 1983 * @size: size of the VM area to unmap 1984 * 1985 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1986 * the unmapping and tlb after. 1987 */ 1988 void unmap_kernel_range(unsigned long addr, unsigned long size) 1989 { 1990 unsigned long end = addr + size; 1991 1992 flush_cache_vunmap(addr, end); 1993 vunmap_page_range(addr, end); 1994 flush_tlb_kernel_range(addr, end); 1995 } 1996 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1997 1998 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1999 { 2000 unsigned long addr = (unsigned long)area->addr; 2001 unsigned long end = addr + get_vm_area_size(area); 2002 int err; 2003 2004 err = vmap_page_range(addr, end, prot, pages); 2005 2006 return err > 0 ? 0 : err; 2007 } 2008 EXPORT_SYMBOL_GPL(map_vm_area); 2009 2010 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2011 unsigned long flags, const void *caller) 2012 { 2013 spin_lock(&vmap_area_lock); 2014 vm->flags = flags; 2015 vm->addr = (void *)va->va_start; 2016 vm->size = va->va_end - va->va_start; 2017 vm->caller = caller; 2018 va->vm = vm; 2019 va->flags |= VM_VM_AREA; 2020 spin_unlock(&vmap_area_lock); 2021 } 2022 2023 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2024 { 2025 /* 2026 * Before removing VM_UNINITIALIZED, 2027 * we should make sure that vm has proper values. 2028 * Pair with smp_rmb() in show_numa_info(). 2029 */ 2030 smp_wmb(); 2031 vm->flags &= ~VM_UNINITIALIZED; 2032 } 2033 2034 static struct vm_struct *__get_vm_area_node(unsigned long size, 2035 unsigned long align, unsigned long flags, unsigned long start, 2036 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 2037 { 2038 struct vmap_area *va; 2039 struct vm_struct *area; 2040 2041 BUG_ON(in_interrupt()); 2042 size = PAGE_ALIGN(size); 2043 if (unlikely(!size)) 2044 return NULL; 2045 2046 if (flags & VM_IOREMAP) 2047 align = 1ul << clamp_t(int, get_count_order_long(size), 2048 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2049 2050 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2051 if (unlikely(!area)) 2052 return NULL; 2053 2054 if (!(flags & VM_NO_GUARD)) 2055 size += PAGE_SIZE; 2056 2057 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2058 if (IS_ERR(va)) { 2059 kfree(area); 2060 return NULL; 2061 } 2062 2063 setup_vmalloc_vm(area, va, flags, caller); 2064 2065 return area; 2066 } 2067 2068 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 2069 unsigned long start, unsigned long end) 2070 { 2071 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2072 GFP_KERNEL, __builtin_return_address(0)); 2073 } 2074 EXPORT_SYMBOL_GPL(__get_vm_area); 2075 2076 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2077 unsigned long start, unsigned long end, 2078 const void *caller) 2079 { 2080 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2081 GFP_KERNEL, caller); 2082 } 2083 2084 /** 2085 * get_vm_area - reserve a contiguous kernel virtual area 2086 * @size: size of the area 2087 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2088 * 2089 * Search an area of @size in the kernel virtual mapping area, 2090 * and reserved it for out purposes. Returns the area descriptor 2091 * on success or %NULL on failure. 2092 * 2093 * Return: the area descriptor on success or %NULL on failure. 2094 */ 2095 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2096 { 2097 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2098 NUMA_NO_NODE, GFP_KERNEL, 2099 __builtin_return_address(0)); 2100 } 2101 2102 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2103 const void *caller) 2104 { 2105 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2106 NUMA_NO_NODE, GFP_KERNEL, caller); 2107 } 2108 2109 /** 2110 * find_vm_area - find a continuous kernel virtual area 2111 * @addr: base address 2112 * 2113 * Search for the kernel VM area starting at @addr, and return it. 2114 * It is up to the caller to do all required locking to keep the returned 2115 * pointer valid. 2116 * 2117 * Return: pointer to the found area or %NULL on faulure 2118 */ 2119 struct vm_struct *find_vm_area(const void *addr) 2120 { 2121 struct vmap_area *va; 2122 2123 va = find_vmap_area((unsigned long)addr); 2124 if (va && va->flags & VM_VM_AREA) 2125 return va->vm; 2126 2127 return NULL; 2128 } 2129 2130 /** 2131 * remove_vm_area - find and remove a continuous kernel virtual area 2132 * @addr: base address 2133 * 2134 * Search for the kernel VM area starting at @addr, and remove it. 2135 * This function returns the found VM area, but using it is NOT safe 2136 * on SMP machines, except for its size or flags. 2137 * 2138 * Return: pointer to the found area or %NULL on faulure 2139 */ 2140 struct vm_struct *remove_vm_area(const void *addr) 2141 { 2142 struct vmap_area *va; 2143 2144 might_sleep(); 2145 2146 va = find_vmap_area((unsigned long)addr); 2147 if (va && va->flags & VM_VM_AREA) { 2148 struct vm_struct *vm = va->vm; 2149 2150 spin_lock(&vmap_area_lock); 2151 va->vm = NULL; 2152 va->flags &= ~VM_VM_AREA; 2153 va->flags |= VM_LAZY_FREE; 2154 spin_unlock(&vmap_area_lock); 2155 2156 kasan_free_shadow(vm); 2157 free_unmap_vmap_area(va); 2158 2159 return vm; 2160 } 2161 return NULL; 2162 } 2163 2164 static inline void set_area_direct_map(const struct vm_struct *area, 2165 int (*set_direct_map)(struct page *page)) 2166 { 2167 int i; 2168 2169 for (i = 0; i < area->nr_pages; i++) 2170 if (page_address(area->pages[i])) 2171 set_direct_map(area->pages[i]); 2172 } 2173 2174 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2175 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2176 { 2177 unsigned long start = ULONG_MAX, end = 0; 2178 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2179 int flush_dmap = 0; 2180 int i; 2181 2182 remove_vm_area(area->addr); 2183 2184 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2185 if (!flush_reset) 2186 return; 2187 2188 /* 2189 * If not deallocating pages, just do the flush of the VM area and 2190 * return. 2191 */ 2192 if (!deallocate_pages) { 2193 vm_unmap_aliases(); 2194 return; 2195 } 2196 2197 /* 2198 * If execution gets here, flush the vm mapping and reset the direct 2199 * map. Find the start and end range of the direct mappings to make sure 2200 * the vm_unmap_aliases() flush includes the direct map. 2201 */ 2202 for (i = 0; i < area->nr_pages; i++) { 2203 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2204 if (addr) { 2205 start = min(addr, start); 2206 end = max(addr + PAGE_SIZE, end); 2207 flush_dmap = 1; 2208 } 2209 } 2210 2211 /* 2212 * Set direct map to something invalid so that it won't be cached if 2213 * there are any accesses after the TLB flush, then flush the TLB and 2214 * reset the direct map permissions to the default. 2215 */ 2216 set_area_direct_map(area, set_direct_map_invalid_noflush); 2217 _vm_unmap_aliases(start, end, flush_dmap); 2218 set_area_direct_map(area, set_direct_map_default_noflush); 2219 } 2220 2221 static void __vunmap(const void *addr, int deallocate_pages) 2222 { 2223 struct vm_struct *area; 2224 2225 if (!addr) 2226 return; 2227 2228 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2229 addr)) 2230 return; 2231 2232 area = find_vm_area(addr); 2233 if (unlikely(!area)) { 2234 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2235 addr); 2236 return; 2237 } 2238 2239 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2240 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2241 2242 vm_remove_mappings(area, deallocate_pages); 2243 2244 if (deallocate_pages) { 2245 int i; 2246 2247 for (i = 0; i < area->nr_pages; i++) { 2248 struct page *page = area->pages[i]; 2249 2250 BUG_ON(!page); 2251 __free_pages(page, 0); 2252 } 2253 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2254 2255 kvfree(area->pages); 2256 } 2257 2258 kfree(area); 2259 return; 2260 } 2261 2262 static inline void __vfree_deferred(const void *addr) 2263 { 2264 /* 2265 * Use raw_cpu_ptr() because this can be called from preemptible 2266 * context. Preemption is absolutely fine here, because the llist_add() 2267 * implementation is lockless, so it works even if we are adding to 2268 * nother cpu's list. schedule_work() should be fine with this too. 2269 */ 2270 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2271 2272 if (llist_add((struct llist_node *)addr, &p->list)) 2273 schedule_work(&p->wq); 2274 } 2275 2276 /** 2277 * vfree_atomic - release memory allocated by vmalloc() 2278 * @addr: memory base address 2279 * 2280 * This one is just like vfree() but can be called in any atomic context 2281 * except NMIs. 2282 */ 2283 void vfree_atomic(const void *addr) 2284 { 2285 BUG_ON(in_nmi()); 2286 2287 kmemleak_free(addr); 2288 2289 if (!addr) 2290 return; 2291 __vfree_deferred(addr); 2292 } 2293 2294 static void __vfree(const void *addr) 2295 { 2296 if (unlikely(in_interrupt())) 2297 __vfree_deferred(addr); 2298 else 2299 __vunmap(addr, 1); 2300 } 2301 2302 /** 2303 * vfree - release memory allocated by vmalloc() 2304 * @addr: memory base address 2305 * 2306 * Free the virtually continuous memory area starting at @addr, as 2307 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 2308 * NULL, no operation is performed. 2309 * 2310 * Must not be called in NMI context (strictly speaking, only if we don't 2311 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2312 * conventions for vfree() arch-depenedent would be a really bad idea) 2313 * 2314 * May sleep if called *not* from interrupt context. 2315 * 2316 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 2317 */ 2318 void vfree(const void *addr) 2319 { 2320 BUG_ON(in_nmi()); 2321 2322 kmemleak_free(addr); 2323 2324 might_sleep_if(!in_interrupt()); 2325 2326 if (!addr) 2327 return; 2328 2329 __vfree(addr); 2330 } 2331 EXPORT_SYMBOL(vfree); 2332 2333 /** 2334 * vunmap - release virtual mapping obtained by vmap() 2335 * @addr: memory base address 2336 * 2337 * Free the virtually contiguous memory area starting at @addr, 2338 * which was created from the page array passed to vmap(). 2339 * 2340 * Must not be called in interrupt context. 2341 */ 2342 void vunmap(const void *addr) 2343 { 2344 BUG_ON(in_interrupt()); 2345 might_sleep(); 2346 if (addr) 2347 __vunmap(addr, 0); 2348 } 2349 EXPORT_SYMBOL(vunmap); 2350 2351 /** 2352 * vmap - map an array of pages into virtually contiguous space 2353 * @pages: array of page pointers 2354 * @count: number of pages to map 2355 * @flags: vm_area->flags 2356 * @prot: page protection for the mapping 2357 * 2358 * Maps @count pages from @pages into contiguous kernel virtual 2359 * space. 2360 * 2361 * Return: the address of the area or %NULL on failure 2362 */ 2363 void *vmap(struct page **pages, unsigned int count, 2364 unsigned long flags, pgprot_t prot) 2365 { 2366 struct vm_struct *area; 2367 unsigned long size; /* In bytes */ 2368 2369 might_sleep(); 2370 2371 if (count > totalram_pages()) 2372 return NULL; 2373 2374 size = (unsigned long)count << PAGE_SHIFT; 2375 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2376 if (!area) 2377 return NULL; 2378 2379 if (map_vm_area(area, prot, pages)) { 2380 vunmap(area->addr); 2381 return NULL; 2382 } 2383 2384 return area->addr; 2385 } 2386 EXPORT_SYMBOL(vmap); 2387 2388 static void *__vmalloc_node(unsigned long size, unsigned long align, 2389 gfp_t gfp_mask, pgprot_t prot, 2390 int node, const void *caller); 2391 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2392 pgprot_t prot, int node) 2393 { 2394 struct page **pages; 2395 unsigned int nr_pages, array_size, i; 2396 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2397 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 2398 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 2399 0 : 2400 __GFP_HIGHMEM; 2401 2402 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 2403 array_size = (nr_pages * sizeof(struct page *)); 2404 2405 area->nr_pages = nr_pages; 2406 /* Please note that the recursion is strictly bounded. */ 2407 if (array_size > PAGE_SIZE) { 2408 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 2409 PAGE_KERNEL, node, area->caller); 2410 } else { 2411 pages = kmalloc_node(array_size, nested_gfp, node); 2412 } 2413 area->pages = pages; 2414 if (!area->pages) { 2415 remove_vm_area(area->addr); 2416 kfree(area); 2417 return NULL; 2418 } 2419 2420 for (i = 0; i < area->nr_pages; i++) { 2421 struct page *page; 2422 2423 if (node == NUMA_NO_NODE) 2424 page = alloc_page(alloc_mask|highmem_mask); 2425 else 2426 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 2427 2428 if (unlikely(!page)) { 2429 /* Successfully allocated i pages, free them in __vunmap() */ 2430 area->nr_pages = i; 2431 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2432 goto fail; 2433 } 2434 area->pages[i] = page; 2435 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 2436 cond_resched(); 2437 } 2438 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2439 2440 if (map_vm_area(area, prot, pages)) 2441 goto fail; 2442 return area->addr; 2443 2444 fail: 2445 warn_alloc(gfp_mask, NULL, 2446 "vmalloc: allocation failure, allocated %ld of %ld bytes", 2447 (area->nr_pages*PAGE_SIZE), area->size); 2448 __vfree(area->addr); 2449 return NULL; 2450 } 2451 2452 /** 2453 * __vmalloc_node_range - allocate virtually contiguous memory 2454 * @size: allocation size 2455 * @align: desired alignment 2456 * @start: vm area range start 2457 * @end: vm area range end 2458 * @gfp_mask: flags for the page level allocator 2459 * @prot: protection mask for the allocated pages 2460 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2461 * @node: node to use for allocation or NUMA_NO_NODE 2462 * @caller: caller's return address 2463 * 2464 * Allocate enough pages to cover @size from the page level 2465 * allocator with @gfp_mask flags. Map them into contiguous 2466 * kernel virtual space, using a pagetable protection of @prot. 2467 * 2468 * Return: the address of the area or %NULL on failure 2469 */ 2470 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2471 unsigned long start, unsigned long end, gfp_t gfp_mask, 2472 pgprot_t prot, unsigned long vm_flags, int node, 2473 const void *caller) 2474 { 2475 struct vm_struct *area; 2476 void *addr; 2477 unsigned long real_size = size; 2478 2479 size = PAGE_ALIGN(size); 2480 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 2481 goto fail; 2482 2483 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 2484 vm_flags, start, end, node, gfp_mask, caller); 2485 if (!area) 2486 goto fail; 2487 2488 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 2489 if (!addr) 2490 return NULL; 2491 2492 /* 2493 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2494 * flag. It means that vm_struct is not fully initialized. 2495 * Now, it is fully initialized, so remove this flag here. 2496 */ 2497 clear_vm_uninitialized_flag(area); 2498 2499 kmemleak_vmalloc(area, size, gfp_mask); 2500 2501 return addr; 2502 2503 fail: 2504 warn_alloc(gfp_mask, NULL, 2505 "vmalloc: allocation failure: %lu bytes", real_size); 2506 return NULL; 2507 } 2508 2509 /* 2510 * This is only for performance analysis of vmalloc and stress purpose. 2511 * It is required by vmalloc test module, therefore do not use it other 2512 * than that. 2513 */ 2514 #ifdef CONFIG_TEST_VMALLOC_MODULE 2515 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 2516 #endif 2517 2518 /** 2519 * __vmalloc_node - allocate virtually contiguous memory 2520 * @size: allocation size 2521 * @align: desired alignment 2522 * @gfp_mask: flags for the page level allocator 2523 * @prot: protection mask for the allocated pages 2524 * @node: node to use for allocation or NUMA_NO_NODE 2525 * @caller: caller's return address 2526 * 2527 * Allocate enough pages to cover @size from the page level 2528 * allocator with @gfp_mask flags. Map them into contiguous 2529 * kernel virtual space, using a pagetable protection of @prot. 2530 * 2531 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 2532 * and __GFP_NOFAIL are not supported 2533 * 2534 * Any use of gfp flags outside of GFP_KERNEL should be consulted 2535 * with mm people. 2536 * 2537 * Return: pointer to the allocated memory or %NULL on error 2538 */ 2539 static void *__vmalloc_node(unsigned long size, unsigned long align, 2540 gfp_t gfp_mask, pgprot_t prot, 2541 int node, const void *caller) 2542 { 2543 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 2544 gfp_mask, prot, 0, node, caller); 2545 } 2546 2547 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 2548 { 2549 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 2550 __builtin_return_address(0)); 2551 } 2552 EXPORT_SYMBOL(__vmalloc); 2553 2554 static inline void *__vmalloc_node_flags(unsigned long size, 2555 int node, gfp_t flags) 2556 { 2557 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 2558 node, __builtin_return_address(0)); 2559 } 2560 2561 2562 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 2563 void *caller) 2564 { 2565 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 2566 } 2567 2568 /** 2569 * vmalloc - allocate virtually contiguous memory 2570 * @size: allocation size 2571 * 2572 * Allocate enough pages to cover @size from the page level 2573 * allocator and map them into contiguous kernel virtual space. 2574 * 2575 * For tight control over page level allocator and protection flags 2576 * use __vmalloc() instead. 2577 * 2578 * Return: pointer to the allocated memory or %NULL on error 2579 */ 2580 void *vmalloc(unsigned long size) 2581 { 2582 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2583 GFP_KERNEL); 2584 } 2585 EXPORT_SYMBOL(vmalloc); 2586 2587 /** 2588 * vzalloc - allocate virtually contiguous memory with zero fill 2589 * @size: allocation size 2590 * 2591 * Allocate enough pages to cover @size from the page level 2592 * allocator and map them into contiguous kernel virtual space. 2593 * The memory allocated is set to zero. 2594 * 2595 * For tight control over page level allocator and protection flags 2596 * use __vmalloc() instead. 2597 * 2598 * Return: pointer to the allocated memory or %NULL on error 2599 */ 2600 void *vzalloc(unsigned long size) 2601 { 2602 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2603 GFP_KERNEL | __GFP_ZERO); 2604 } 2605 EXPORT_SYMBOL(vzalloc); 2606 2607 /** 2608 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 2609 * @size: allocation size 2610 * 2611 * The resulting memory area is zeroed so it can be mapped to userspace 2612 * without leaking data. 2613 * 2614 * Return: pointer to the allocated memory or %NULL on error 2615 */ 2616 void *vmalloc_user(unsigned long size) 2617 { 2618 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2619 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 2620 VM_USERMAP, NUMA_NO_NODE, 2621 __builtin_return_address(0)); 2622 } 2623 EXPORT_SYMBOL(vmalloc_user); 2624 2625 /** 2626 * vmalloc_node - allocate memory on a specific node 2627 * @size: allocation size 2628 * @node: numa node 2629 * 2630 * Allocate enough pages to cover @size from the page level 2631 * allocator and map them into contiguous kernel virtual space. 2632 * 2633 * For tight control over page level allocator and protection flags 2634 * use __vmalloc() instead. 2635 * 2636 * Return: pointer to the allocated memory or %NULL on error 2637 */ 2638 void *vmalloc_node(unsigned long size, int node) 2639 { 2640 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 2641 node, __builtin_return_address(0)); 2642 } 2643 EXPORT_SYMBOL(vmalloc_node); 2644 2645 /** 2646 * vzalloc_node - allocate memory on a specific node with zero fill 2647 * @size: allocation size 2648 * @node: numa node 2649 * 2650 * Allocate enough pages to cover @size from the page level 2651 * allocator and map them into contiguous kernel virtual space. 2652 * The memory allocated is set to zero. 2653 * 2654 * For tight control over page level allocator and protection flags 2655 * use __vmalloc_node() instead. 2656 * 2657 * Return: pointer to the allocated memory or %NULL on error 2658 */ 2659 void *vzalloc_node(unsigned long size, int node) 2660 { 2661 return __vmalloc_node_flags(size, node, 2662 GFP_KERNEL | __GFP_ZERO); 2663 } 2664 EXPORT_SYMBOL(vzalloc_node); 2665 2666 /** 2667 * vmalloc_exec - allocate virtually contiguous, executable memory 2668 * @size: allocation size 2669 * 2670 * Kernel-internal function to allocate enough pages to cover @size 2671 * the page level allocator and map them into contiguous and 2672 * executable kernel virtual space. 2673 * 2674 * For tight control over page level allocator and protection flags 2675 * use __vmalloc() instead. 2676 * 2677 * Return: pointer to the allocated memory or %NULL on error 2678 */ 2679 void *vmalloc_exec(unsigned long size) 2680 { 2681 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2682 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2683 NUMA_NO_NODE, __builtin_return_address(0)); 2684 } 2685 2686 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2687 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2688 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2689 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2690 #else 2691 /* 2692 * 64b systems should always have either DMA or DMA32 zones. For others 2693 * GFP_DMA32 should do the right thing and use the normal zone. 2694 */ 2695 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2696 #endif 2697 2698 /** 2699 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2700 * @size: allocation size 2701 * 2702 * Allocate enough 32bit PA addressable pages to cover @size from the 2703 * page level allocator and map them into contiguous kernel virtual space. 2704 * 2705 * Return: pointer to the allocated memory or %NULL on error 2706 */ 2707 void *vmalloc_32(unsigned long size) 2708 { 2709 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 2710 NUMA_NO_NODE, __builtin_return_address(0)); 2711 } 2712 EXPORT_SYMBOL(vmalloc_32); 2713 2714 /** 2715 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2716 * @size: allocation size 2717 * 2718 * The resulting memory area is 32bit addressable and zeroed so it can be 2719 * mapped to userspace without leaking data. 2720 * 2721 * Return: pointer to the allocated memory or %NULL on error 2722 */ 2723 void *vmalloc_32_user(unsigned long size) 2724 { 2725 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2726 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2727 VM_USERMAP, NUMA_NO_NODE, 2728 __builtin_return_address(0)); 2729 } 2730 EXPORT_SYMBOL(vmalloc_32_user); 2731 2732 /* 2733 * small helper routine , copy contents to buf from addr. 2734 * If the page is not present, fill zero. 2735 */ 2736 2737 static int aligned_vread(char *buf, char *addr, unsigned long count) 2738 { 2739 struct page *p; 2740 int copied = 0; 2741 2742 while (count) { 2743 unsigned long offset, length; 2744 2745 offset = offset_in_page(addr); 2746 length = PAGE_SIZE - offset; 2747 if (length > count) 2748 length = count; 2749 p = vmalloc_to_page(addr); 2750 /* 2751 * To do safe access to this _mapped_ area, we need 2752 * lock. But adding lock here means that we need to add 2753 * overhead of vmalloc()/vfree() calles for this _debug_ 2754 * interface, rarely used. Instead of that, we'll use 2755 * kmap() and get small overhead in this access function. 2756 */ 2757 if (p) { 2758 /* 2759 * we can expect USER0 is not used (see vread/vwrite's 2760 * function description) 2761 */ 2762 void *map = kmap_atomic(p); 2763 memcpy(buf, map + offset, length); 2764 kunmap_atomic(map); 2765 } else 2766 memset(buf, 0, length); 2767 2768 addr += length; 2769 buf += length; 2770 copied += length; 2771 count -= length; 2772 } 2773 return copied; 2774 } 2775 2776 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2777 { 2778 struct page *p; 2779 int copied = 0; 2780 2781 while (count) { 2782 unsigned long offset, length; 2783 2784 offset = offset_in_page(addr); 2785 length = PAGE_SIZE - offset; 2786 if (length > count) 2787 length = count; 2788 p = vmalloc_to_page(addr); 2789 /* 2790 * To do safe access to this _mapped_ area, we need 2791 * lock. But adding lock here means that we need to add 2792 * overhead of vmalloc()/vfree() calles for this _debug_ 2793 * interface, rarely used. Instead of that, we'll use 2794 * kmap() and get small overhead in this access function. 2795 */ 2796 if (p) { 2797 /* 2798 * we can expect USER0 is not used (see vread/vwrite's 2799 * function description) 2800 */ 2801 void *map = kmap_atomic(p); 2802 memcpy(map + offset, buf, length); 2803 kunmap_atomic(map); 2804 } 2805 addr += length; 2806 buf += length; 2807 copied += length; 2808 count -= length; 2809 } 2810 return copied; 2811 } 2812 2813 /** 2814 * vread() - read vmalloc area in a safe way. 2815 * @buf: buffer for reading data 2816 * @addr: vm address. 2817 * @count: number of bytes to be read. 2818 * 2819 * This function checks that addr is a valid vmalloc'ed area, and 2820 * copy data from that area to a given buffer. If the given memory range 2821 * of [addr...addr+count) includes some valid address, data is copied to 2822 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2823 * IOREMAP area is treated as memory hole and no copy is done. 2824 * 2825 * If [addr...addr+count) doesn't includes any intersects with alive 2826 * vm_struct area, returns 0. @buf should be kernel's buffer. 2827 * 2828 * Note: In usual ops, vread() is never necessary because the caller 2829 * should know vmalloc() area is valid and can use memcpy(). 2830 * This is for routines which have to access vmalloc area without 2831 * any information, as /dev/kmem. 2832 * 2833 * Return: number of bytes for which addr and buf should be increased 2834 * (same number as @count) or %0 if [addr...addr+count) doesn't 2835 * include any intersection with valid vmalloc area 2836 */ 2837 long vread(char *buf, char *addr, unsigned long count) 2838 { 2839 struct vmap_area *va; 2840 struct vm_struct *vm; 2841 char *vaddr, *buf_start = buf; 2842 unsigned long buflen = count; 2843 unsigned long n; 2844 2845 /* Don't allow overflow */ 2846 if ((unsigned long) addr + count < count) 2847 count = -(unsigned long) addr; 2848 2849 spin_lock(&vmap_area_lock); 2850 list_for_each_entry(va, &vmap_area_list, list) { 2851 if (!count) 2852 break; 2853 2854 if (!(va->flags & VM_VM_AREA)) 2855 continue; 2856 2857 vm = va->vm; 2858 vaddr = (char *) vm->addr; 2859 if (addr >= vaddr + get_vm_area_size(vm)) 2860 continue; 2861 while (addr < vaddr) { 2862 if (count == 0) 2863 goto finished; 2864 *buf = '\0'; 2865 buf++; 2866 addr++; 2867 count--; 2868 } 2869 n = vaddr + get_vm_area_size(vm) - addr; 2870 if (n > count) 2871 n = count; 2872 if (!(vm->flags & VM_IOREMAP)) 2873 aligned_vread(buf, addr, n); 2874 else /* IOREMAP area is treated as memory hole */ 2875 memset(buf, 0, n); 2876 buf += n; 2877 addr += n; 2878 count -= n; 2879 } 2880 finished: 2881 spin_unlock(&vmap_area_lock); 2882 2883 if (buf == buf_start) 2884 return 0; 2885 /* zero-fill memory holes */ 2886 if (buf != buf_start + buflen) 2887 memset(buf, 0, buflen - (buf - buf_start)); 2888 2889 return buflen; 2890 } 2891 2892 /** 2893 * vwrite() - write vmalloc area in a safe way. 2894 * @buf: buffer for source data 2895 * @addr: vm address. 2896 * @count: number of bytes to be read. 2897 * 2898 * This function checks that addr is a valid vmalloc'ed area, and 2899 * copy data from a buffer to the given addr. If specified range of 2900 * [addr...addr+count) includes some valid address, data is copied from 2901 * proper area of @buf. If there are memory holes, no copy to hole. 2902 * IOREMAP area is treated as memory hole and no copy is done. 2903 * 2904 * If [addr...addr+count) doesn't includes any intersects with alive 2905 * vm_struct area, returns 0. @buf should be kernel's buffer. 2906 * 2907 * Note: In usual ops, vwrite() is never necessary because the caller 2908 * should know vmalloc() area is valid and can use memcpy(). 2909 * This is for routines which have to access vmalloc area without 2910 * any information, as /dev/kmem. 2911 * 2912 * Return: number of bytes for which addr and buf should be 2913 * increased (same number as @count) or %0 if [addr...addr+count) 2914 * doesn't include any intersection with valid vmalloc area 2915 */ 2916 long vwrite(char *buf, char *addr, unsigned long count) 2917 { 2918 struct vmap_area *va; 2919 struct vm_struct *vm; 2920 char *vaddr; 2921 unsigned long n, buflen; 2922 int copied = 0; 2923 2924 /* Don't allow overflow */ 2925 if ((unsigned long) addr + count < count) 2926 count = -(unsigned long) addr; 2927 buflen = count; 2928 2929 spin_lock(&vmap_area_lock); 2930 list_for_each_entry(va, &vmap_area_list, list) { 2931 if (!count) 2932 break; 2933 2934 if (!(va->flags & VM_VM_AREA)) 2935 continue; 2936 2937 vm = va->vm; 2938 vaddr = (char *) vm->addr; 2939 if (addr >= vaddr + get_vm_area_size(vm)) 2940 continue; 2941 while (addr < vaddr) { 2942 if (count == 0) 2943 goto finished; 2944 buf++; 2945 addr++; 2946 count--; 2947 } 2948 n = vaddr + get_vm_area_size(vm) - addr; 2949 if (n > count) 2950 n = count; 2951 if (!(vm->flags & VM_IOREMAP)) { 2952 aligned_vwrite(buf, addr, n); 2953 copied++; 2954 } 2955 buf += n; 2956 addr += n; 2957 count -= n; 2958 } 2959 finished: 2960 spin_unlock(&vmap_area_lock); 2961 if (!copied) 2962 return 0; 2963 return buflen; 2964 } 2965 2966 /** 2967 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2968 * @vma: vma to cover 2969 * @uaddr: target user address to start at 2970 * @kaddr: virtual address of vmalloc kernel memory 2971 * @size: size of map area 2972 * 2973 * Returns: 0 for success, -Exxx on failure 2974 * 2975 * This function checks that @kaddr is a valid vmalloc'ed area, 2976 * and that it is big enough to cover the range starting at 2977 * @uaddr in @vma. Will return failure if that criteria isn't 2978 * met. 2979 * 2980 * Similar to remap_pfn_range() (see mm/memory.c) 2981 */ 2982 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2983 void *kaddr, unsigned long size) 2984 { 2985 struct vm_struct *area; 2986 2987 size = PAGE_ALIGN(size); 2988 2989 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2990 return -EINVAL; 2991 2992 area = find_vm_area(kaddr); 2993 if (!area) 2994 return -EINVAL; 2995 2996 if (!(area->flags & VM_USERMAP)) 2997 return -EINVAL; 2998 2999 if (kaddr + size > area->addr + get_vm_area_size(area)) 3000 return -EINVAL; 3001 3002 do { 3003 struct page *page = vmalloc_to_page(kaddr); 3004 int ret; 3005 3006 ret = vm_insert_page(vma, uaddr, page); 3007 if (ret) 3008 return ret; 3009 3010 uaddr += PAGE_SIZE; 3011 kaddr += PAGE_SIZE; 3012 size -= PAGE_SIZE; 3013 } while (size > 0); 3014 3015 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3016 3017 return 0; 3018 } 3019 EXPORT_SYMBOL(remap_vmalloc_range_partial); 3020 3021 /** 3022 * remap_vmalloc_range - map vmalloc pages to userspace 3023 * @vma: vma to cover (map full range of vma) 3024 * @addr: vmalloc memory 3025 * @pgoff: number of pages into addr before first page to map 3026 * 3027 * Returns: 0 for success, -Exxx on failure 3028 * 3029 * This function checks that addr is a valid vmalloc'ed area, and 3030 * that it is big enough to cover the vma. Will return failure if 3031 * that criteria isn't met. 3032 * 3033 * Similar to remap_pfn_range() (see mm/memory.c) 3034 */ 3035 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3036 unsigned long pgoff) 3037 { 3038 return remap_vmalloc_range_partial(vma, vma->vm_start, 3039 addr + (pgoff << PAGE_SHIFT), 3040 vma->vm_end - vma->vm_start); 3041 } 3042 EXPORT_SYMBOL(remap_vmalloc_range); 3043 3044 /* 3045 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 3046 * have one. 3047 * 3048 * The purpose of this function is to make sure the vmalloc area 3049 * mappings are identical in all page-tables in the system. 3050 */ 3051 void __weak vmalloc_sync_all(void) 3052 { 3053 } 3054 3055 3056 static int f(pte_t *pte, unsigned long addr, void *data) 3057 { 3058 pte_t ***p = data; 3059 3060 if (p) { 3061 *(*p) = pte; 3062 (*p)++; 3063 } 3064 return 0; 3065 } 3066 3067 /** 3068 * alloc_vm_area - allocate a range of kernel address space 3069 * @size: size of the area 3070 * @ptes: returns the PTEs for the address space 3071 * 3072 * Returns: NULL on failure, vm_struct on success 3073 * 3074 * This function reserves a range of kernel address space, and 3075 * allocates pagetables to map that range. No actual mappings 3076 * are created. 3077 * 3078 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 3079 * allocated for the VM area are returned. 3080 */ 3081 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 3082 { 3083 struct vm_struct *area; 3084 3085 area = get_vm_area_caller(size, VM_IOREMAP, 3086 __builtin_return_address(0)); 3087 if (area == NULL) 3088 return NULL; 3089 3090 /* 3091 * This ensures that page tables are constructed for this region 3092 * of kernel virtual address space and mapped into init_mm. 3093 */ 3094 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3095 size, f, ptes ? &ptes : NULL)) { 3096 free_vm_area(area); 3097 return NULL; 3098 } 3099 3100 return area; 3101 } 3102 EXPORT_SYMBOL_GPL(alloc_vm_area); 3103 3104 void free_vm_area(struct vm_struct *area) 3105 { 3106 struct vm_struct *ret; 3107 ret = remove_vm_area(area->addr); 3108 BUG_ON(ret != area); 3109 kfree(area); 3110 } 3111 EXPORT_SYMBOL_GPL(free_vm_area); 3112 3113 #ifdef CONFIG_SMP 3114 static struct vmap_area *node_to_va(struct rb_node *n) 3115 { 3116 return rb_entry_safe(n, struct vmap_area, rb_node); 3117 } 3118 3119 /** 3120 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3121 * @addr: target address 3122 * 3123 * Returns: vmap_area if it is found. If there is no such area 3124 * the first highest(reverse order) vmap_area is returned 3125 * i.e. va->va_start < addr && va->va_end < addr or NULL 3126 * if there are no any areas before @addr. 3127 */ 3128 static struct vmap_area * 3129 pvm_find_va_enclose_addr(unsigned long addr) 3130 { 3131 struct vmap_area *va, *tmp; 3132 struct rb_node *n; 3133 3134 n = free_vmap_area_root.rb_node; 3135 va = NULL; 3136 3137 while (n) { 3138 tmp = rb_entry(n, struct vmap_area, rb_node); 3139 if (tmp->va_start <= addr) { 3140 va = tmp; 3141 if (tmp->va_end >= addr) 3142 break; 3143 3144 n = n->rb_right; 3145 } else { 3146 n = n->rb_left; 3147 } 3148 } 3149 3150 return va; 3151 } 3152 3153 /** 3154 * pvm_determine_end_from_reverse - find the highest aligned address 3155 * of free block below VMALLOC_END 3156 * @va: 3157 * in - the VA we start the search(reverse order); 3158 * out - the VA with the highest aligned end address. 3159 * 3160 * Returns: determined end address within vmap_area 3161 */ 3162 static unsigned long 3163 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3164 { 3165 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3166 unsigned long addr; 3167 3168 if (likely(*va)) { 3169 list_for_each_entry_from_reverse((*va), 3170 &free_vmap_area_list, list) { 3171 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3172 if ((*va)->va_start < addr) 3173 return addr; 3174 } 3175 } 3176 3177 return 0; 3178 } 3179 3180 /** 3181 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3182 * @offsets: array containing offset of each area 3183 * @sizes: array containing size of each area 3184 * @nr_vms: the number of areas to allocate 3185 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3186 * 3187 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3188 * vm_structs on success, %NULL on failure 3189 * 3190 * Percpu allocator wants to use congruent vm areas so that it can 3191 * maintain the offsets among percpu areas. This function allocates 3192 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3193 * be scattered pretty far, distance between two areas easily going up 3194 * to gigabytes. To avoid interacting with regular vmallocs, these 3195 * areas are allocated from top. 3196 * 3197 * Despite its complicated look, this allocator is rather simple. It 3198 * does everything top-down and scans free blocks from the end looking 3199 * for matching base. While scanning, if any of the areas do not fit the 3200 * base address is pulled down to fit the area. Scanning is repeated till 3201 * all the areas fit and then all necessary data structures are inserted 3202 * and the result is returned. 3203 */ 3204 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3205 const size_t *sizes, int nr_vms, 3206 size_t align) 3207 { 3208 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3209 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3210 struct vmap_area **vas, *va; 3211 struct vm_struct **vms; 3212 int area, area2, last_area, term_area; 3213 unsigned long base, start, size, end, last_end; 3214 bool purged = false; 3215 enum fit_type type; 3216 3217 /* verify parameters and allocate data structures */ 3218 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3219 for (last_area = 0, area = 0; area < nr_vms; area++) { 3220 start = offsets[area]; 3221 end = start + sizes[area]; 3222 3223 /* is everything aligned properly? */ 3224 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3225 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3226 3227 /* detect the area with the highest address */ 3228 if (start > offsets[last_area]) 3229 last_area = area; 3230 3231 for (area2 = area + 1; area2 < nr_vms; area2++) { 3232 unsigned long start2 = offsets[area2]; 3233 unsigned long end2 = start2 + sizes[area2]; 3234 3235 BUG_ON(start2 < end && start < end2); 3236 } 3237 } 3238 last_end = offsets[last_area] + sizes[last_area]; 3239 3240 if (vmalloc_end - vmalloc_start < last_end) { 3241 WARN_ON(true); 3242 return NULL; 3243 } 3244 3245 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3246 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3247 if (!vas || !vms) 3248 goto err_free2; 3249 3250 for (area = 0; area < nr_vms; area++) { 3251 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3252 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3253 if (!vas[area] || !vms[area]) 3254 goto err_free; 3255 } 3256 retry: 3257 spin_lock(&vmap_area_lock); 3258 3259 /* start scanning - we scan from the top, begin with the last area */ 3260 area = term_area = last_area; 3261 start = offsets[area]; 3262 end = start + sizes[area]; 3263 3264 va = pvm_find_va_enclose_addr(vmalloc_end); 3265 base = pvm_determine_end_from_reverse(&va, align) - end; 3266 3267 while (true) { 3268 /* 3269 * base might have underflowed, add last_end before 3270 * comparing. 3271 */ 3272 if (base + last_end < vmalloc_start + last_end) 3273 goto overflow; 3274 3275 /* 3276 * Fitting base has not been found. 3277 */ 3278 if (va == NULL) 3279 goto overflow; 3280 3281 /* 3282 * If this VA does not fit, move base downwards and recheck. 3283 */ 3284 if (base + start < va->va_start || base + end > va->va_end) { 3285 va = node_to_va(rb_prev(&va->rb_node)); 3286 base = pvm_determine_end_from_reverse(&va, align) - end; 3287 term_area = area; 3288 continue; 3289 } 3290 3291 /* 3292 * This area fits, move on to the previous one. If 3293 * the previous one is the terminal one, we're done. 3294 */ 3295 area = (area + nr_vms - 1) % nr_vms; 3296 if (area == term_area) 3297 break; 3298 3299 start = offsets[area]; 3300 end = start + sizes[area]; 3301 va = pvm_find_va_enclose_addr(base + end); 3302 } 3303 3304 /* we've found a fitting base, insert all va's */ 3305 for (area = 0; area < nr_vms; area++) { 3306 int ret; 3307 3308 start = base + offsets[area]; 3309 size = sizes[area]; 3310 3311 va = pvm_find_va_enclose_addr(start); 3312 if (WARN_ON_ONCE(va == NULL)) 3313 /* It is a BUG(), but trigger recovery instead. */ 3314 goto recovery; 3315 3316 type = classify_va_fit_type(va, start, size); 3317 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3318 /* It is a BUG(), but trigger recovery instead. */ 3319 goto recovery; 3320 3321 ret = adjust_va_to_fit_type(va, start, size, type); 3322 if (unlikely(ret)) 3323 goto recovery; 3324 3325 /* Allocated area. */ 3326 va = vas[area]; 3327 va->va_start = start; 3328 va->va_end = start + size; 3329 3330 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 3331 } 3332 3333 spin_unlock(&vmap_area_lock); 3334 3335 /* insert all vm's */ 3336 for (area = 0; area < nr_vms; area++) 3337 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 3338 pcpu_get_vm_areas); 3339 3340 kfree(vas); 3341 return vms; 3342 3343 recovery: 3344 /* Remove previously inserted areas. */ 3345 while (area--) { 3346 __free_vmap_area(vas[area]); 3347 vas[area] = NULL; 3348 } 3349 3350 overflow: 3351 spin_unlock(&vmap_area_lock); 3352 if (!purged) { 3353 purge_vmap_area_lazy(); 3354 purged = true; 3355 3356 /* Before "retry", check if we recover. */ 3357 for (area = 0; area < nr_vms; area++) { 3358 if (vas[area]) 3359 continue; 3360 3361 vas[area] = kmem_cache_zalloc( 3362 vmap_area_cachep, GFP_KERNEL); 3363 if (!vas[area]) 3364 goto err_free; 3365 } 3366 3367 goto retry; 3368 } 3369 3370 err_free: 3371 for (area = 0; area < nr_vms; area++) { 3372 if (vas[area]) 3373 kmem_cache_free(vmap_area_cachep, vas[area]); 3374 3375 kfree(vms[area]); 3376 } 3377 err_free2: 3378 kfree(vas); 3379 kfree(vms); 3380 return NULL; 3381 } 3382 3383 /** 3384 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3385 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3386 * @nr_vms: the number of allocated areas 3387 * 3388 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3389 */ 3390 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3391 { 3392 int i; 3393 3394 for (i = 0; i < nr_vms; i++) 3395 free_vm_area(vms[i]); 3396 kfree(vms); 3397 } 3398 #endif /* CONFIG_SMP */ 3399 3400 #ifdef CONFIG_PROC_FS 3401 static void *s_start(struct seq_file *m, loff_t *pos) 3402 __acquires(&vmap_area_lock) 3403 { 3404 spin_lock(&vmap_area_lock); 3405 return seq_list_start(&vmap_area_list, *pos); 3406 } 3407 3408 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3409 { 3410 return seq_list_next(p, &vmap_area_list, pos); 3411 } 3412 3413 static void s_stop(struct seq_file *m, void *p) 3414 __releases(&vmap_area_lock) 3415 { 3416 spin_unlock(&vmap_area_lock); 3417 } 3418 3419 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3420 { 3421 if (IS_ENABLED(CONFIG_NUMA)) { 3422 unsigned int nr, *counters = m->private; 3423 3424 if (!counters) 3425 return; 3426 3427 if (v->flags & VM_UNINITIALIZED) 3428 return; 3429 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3430 smp_rmb(); 3431 3432 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3433 3434 for (nr = 0; nr < v->nr_pages; nr++) 3435 counters[page_to_nid(v->pages[nr])]++; 3436 3437 for_each_node_state(nr, N_HIGH_MEMORY) 3438 if (counters[nr]) 3439 seq_printf(m, " N%u=%u", nr, counters[nr]); 3440 } 3441 } 3442 3443 static int s_show(struct seq_file *m, void *p) 3444 { 3445 struct vmap_area *va; 3446 struct vm_struct *v; 3447 3448 va = list_entry(p, struct vmap_area, list); 3449 3450 /* 3451 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 3452 * behalf of vmap area is being tear down or vm_map_ram allocation. 3453 */ 3454 if (!(va->flags & VM_VM_AREA)) { 3455 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 3456 (void *)va->va_start, (void *)va->va_end, 3457 va->va_end - va->va_start, 3458 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 3459 3460 return 0; 3461 } 3462 3463 v = va->vm; 3464 3465 seq_printf(m, "0x%pK-0x%pK %7ld", 3466 v->addr, v->addr + v->size, v->size); 3467 3468 if (v->caller) 3469 seq_printf(m, " %pS", v->caller); 3470 3471 if (v->nr_pages) 3472 seq_printf(m, " pages=%d", v->nr_pages); 3473 3474 if (v->phys_addr) 3475 seq_printf(m, " phys=%pa", &v->phys_addr); 3476 3477 if (v->flags & VM_IOREMAP) 3478 seq_puts(m, " ioremap"); 3479 3480 if (v->flags & VM_ALLOC) 3481 seq_puts(m, " vmalloc"); 3482 3483 if (v->flags & VM_MAP) 3484 seq_puts(m, " vmap"); 3485 3486 if (v->flags & VM_USERMAP) 3487 seq_puts(m, " user"); 3488 3489 if (is_vmalloc_addr(v->pages)) 3490 seq_puts(m, " vpages"); 3491 3492 show_numa_info(m, v); 3493 seq_putc(m, '\n'); 3494 return 0; 3495 } 3496 3497 static const struct seq_operations vmalloc_op = { 3498 .start = s_start, 3499 .next = s_next, 3500 .stop = s_stop, 3501 .show = s_show, 3502 }; 3503 3504 static int __init proc_vmalloc_init(void) 3505 { 3506 if (IS_ENABLED(CONFIG_NUMA)) 3507 proc_create_seq_private("vmallocinfo", 0400, NULL, 3508 &vmalloc_op, 3509 nr_node_ids * sizeof(unsigned int), NULL); 3510 else 3511 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3512 return 0; 3513 } 3514 module_init(proc_vmalloc_init); 3515 3516 #endif 3517