xref: /openbmc/linux/mm/vmalloc.c (revision b8c5a806)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmalloc.c
4  *
5  *  Copyright (C) 1993  Linus Torvalds
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9  *  Numa awareness, Christoph Lameter, SGI, June 2005
10  */
11 
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38 
39 #include <linux/uaccess.h>
40 #include <asm/tlbflush.h>
41 #include <asm/shmparam.h>
42 
43 #include "internal.h"
44 
45 bool is_vmalloc_addr(const void *x)
46 {
47 	unsigned long addr = (unsigned long)x;
48 
49 	return addr >= VMALLOC_START && addr < VMALLOC_END;
50 }
51 EXPORT_SYMBOL(is_vmalloc_addr);
52 
53 struct vfree_deferred {
54 	struct llist_head list;
55 	struct work_struct wq;
56 };
57 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58 
59 static void __vunmap(const void *, int);
60 
61 static void free_work(struct work_struct *w)
62 {
63 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 	struct llist_node *t, *llnode;
65 
66 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 		__vunmap((void *)llnode, 1);
68 }
69 
70 /*** Page table manipulation functions ***/
71 
72 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
73 {
74 	pte_t *pte;
75 
76 	pte = pte_offset_kernel(pmd, addr);
77 	do {
78 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
79 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
80 	} while (pte++, addr += PAGE_SIZE, addr != end);
81 }
82 
83 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
84 {
85 	pmd_t *pmd;
86 	unsigned long next;
87 
88 	pmd = pmd_offset(pud, addr);
89 	do {
90 		next = pmd_addr_end(addr, end);
91 		if (pmd_clear_huge(pmd))
92 			continue;
93 		if (pmd_none_or_clear_bad(pmd))
94 			continue;
95 		vunmap_pte_range(pmd, addr, next);
96 	} while (pmd++, addr = next, addr != end);
97 }
98 
99 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
100 {
101 	pud_t *pud;
102 	unsigned long next;
103 
104 	pud = pud_offset(p4d, addr);
105 	do {
106 		next = pud_addr_end(addr, end);
107 		if (pud_clear_huge(pud))
108 			continue;
109 		if (pud_none_or_clear_bad(pud))
110 			continue;
111 		vunmap_pmd_range(pud, addr, next);
112 	} while (pud++, addr = next, addr != end);
113 }
114 
115 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
116 {
117 	p4d_t *p4d;
118 	unsigned long next;
119 
120 	p4d = p4d_offset(pgd, addr);
121 	do {
122 		next = p4d_addr_end(addr, end);
123 		if (p4d_clear_huge(p4d))
124 			continue;
125 		if (p4d_none_or_clear_bad(p4d))
126 			continue;
127 		vunmap_pud_range(p4d, addr, next);
128 	} while (p4d++, addr = next, addr != end);
129 }
130 
131 static void vunmap_page_range(unsigned long addr, unsigned long end)
132 {
133 	pgd_t *pgd;
134 	unsigned long next;
135 
136 	BUG_ON(addr >= end);
137 	pgd = pgd_offset_k(addr);
138 	do {
139 		next = pgd_addr_end(addr, end);
140 		if (pgd_none_or_clear_bad(pgd))
141 			continue;
142 		vunmap_p4d_range(pgd, addr, next);
143 	} while (pgd++, addr = next, addr != end);
144 }
145 
146 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
147 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
148 {
149 	pte_t *pte;
150 
151 	/*
152 	 * nr is a running index into the array which helps higher level
153 	 * callers keep track of where we're up to.
154 	 */
155 
156 	pte = pte_alloc_kernel(pmd, addr);
157 	if (!pte)
158 		return -ENOMEM;
159 	do {
160 		struct page *page = pages[*nr];
161 
162 		if (WARN_ON(!pte_none(*pte)))
163 			return -EBUSY;
164 		if (WARN_ON(!page))
165 			return -ENOMEM;
166 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
167 		(*nr)++;
168 	} while (pte++, addr += PAGE_SIZE, addr != end);
169 	return 0;
170 }
171 
172 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
173 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
174 {
175 	pmd_t *pmd;
176 	unsigned long next;
177 
178 	pmd = pmd_alloc(&init_mm, pud, addr);
179 	if (!pmd)
180 		return -ENOMEM;
181 	do {
182 		next = pmd_addr_end(addr, end);
183 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
184 			return -ENOMEM;
185 	} while (pmd++, addr = next, addr != end);
186 	return 0;
187 }
188 
189 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
190 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
191 {
192 	pud_t *pud;
193 	unsigned long next;
194 
195 	pud = pud_alloc(&init_mm, p4d, addr);
196 	if (!pud)
197 		return -ENOMEM;
198 	do {
199 		next = pud_addr_end(addr, end);
200 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
201 			return -ENOMEM;
202 	} while (pud++, addr = next, addr != end);
203 	return 0;
204 }
205 
206 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
207 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
208 {
209 	p4d_t *p4d;
210 	unsigned long next;
211 
212 	p4d = p4d_alloc(&init_mm, pgd, addr);
213 	if (!p4d)
214 		return -ENOMEM;
215 	do {
216 		next = p4d_addr_end(addr, end);
217 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
218 			return -ENOMEM;
219 	} while (p4d++, addr = next, addr != end);
220 	return 0;
221 }
222 
223 /*
224  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
225  * will have pfns corresponding to the "pages" array.
226  *
227  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
228  */
229 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
230 				   pgprot_t prot, struct page **pages)
231 {
232 	pgd_t *pgd;
233 	unsigned long next;
234 	unsigned long addr = start;
235 	int err = 0;
236 	int nr = 0;
237 
238 	BUG_ON(addr >= end);
239 	pgd = pgd_offset_k(addr);
240 	do {
241 		next = pgd_addr_end(addr, end);
242 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
243 		if (err)
244 			return err;
245 	} while (pgd++, addr = next, addr != end);
246 
247 	return nr;
248 }
249 
250 static int vmap_page_range(unsigned long start, unsigned long end,
251 			   pgprot_t prot, struct page **pages)
252 {
253 	int ret;
254 
255 	ret = vmap_page_range_noflush(start, end, prot, pages);
256 	flush_cache_vmap(start, end);
257 	return ret;
258 }
259 
260 int is_vmalloc_or_module_addr(const void *x)
261 {
262 	/*
263 	 * ARM, x86-64 and sparc64 put modules in a special place,
264 	 * and fall back on vmalloc() if that fails. Others
265 	 * just put it in the vmalloc space.
266 	 */
267 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
268 	unsigned long addr = (unsigned long)x;
269 	if (addr >= MODULES_VADDR && addr < MODULES_END)
270 		return 1;
271 #endif
272 	return is_vmalloc_addr(x);
273 }
274 
275 /*
276  * Walk a vmap address to the struct page it maps.
277  */
278 struct page *vmalloc_to_page(const void *vmalloc_addr)
279 {
280 	unsigned long addr = (unsigned long) vmalloc_addr;
281 	struct page *page = NULL;
282 	pgd_t *pgd = pgd_offset_k(addr);
283 	p4d_t *p4d;
284 	pud_t *pud;
285 	pmd_t *pmd;
286 	pte_t *ptep, pte;
287 
288 	/*
289 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
290 	 * architectures that do not vmalloc module space
291 	 */
292 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
293 
294 	if (pgd_none(*pgd))
295 		return NULL;
296 	p4d = p4d_offset(pgd, addr);
297 	if (p4d_none(*p4d))
298 		return NULL;
299 	pud = pud_offset(p4d, addr);
300 
301 	/*
302 	 * Don't dereference bad PUD or PMD (below) entries. This will also
303 	 * identify huge mappings, which we may encounter on architectures
304 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
305 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
306 	 * not [unambiguously] associated with a struct page, so there is
307 	 * no correct value to return for them.
308 	 */
309 	WARN_ON_ONCE(pud_bad(*pud));
310 	if (pud_none(*pud) || pud_bad(*pud))
311 		return NULL;
312 	pmd = pmd_offset(pud, addr);
313 	WARN_ON_ONCE(pmd_bad(*pmd));
314 	if (pmd_none(*pmd) || pmd_bad(*pmd))
315 		return NULL;
316 
317 	ptep = pte_offset_map(pmd, addr);
318 	pte = *ptep;
319 	if (pte_present(pte))
320 		page = pte_page(pte);
321 	pte_unmap(ptep);
322 	return page;
323 }
324 EXPORT_SYMBOL(vmalloc_to_page);
325 
326 /*
327  * Map a vmalloc()-space virtual address to the physical page frame number.
328  */
329 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
330 {
331 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
332 }
333 EXPORT_SYMBOL(vmalloc_to_pfn);
334 
335 
336 /*** Global kva allocator ***/
337 
338 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
339 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
340 
341 
342 static DEFINE_SPINLOCK(vmap_area_lock);
343 static DEFINE_SPINLOCK(free_vmap_area_lock);
344 /* Export for kexec only */
345 LIST_HEAD(vmap_area_list);
346 static LLIST_HEAD(vmap_purge_list);
347 static struct rb_root vmap_area_root = RB_ROOT;
348 static bool vmap_initialized __read_mostly;
349 
350 /*
351  * This kmem_cache is used for vmap_area objects. Instead of
352  * allocating from slab we reuse an object from this cache to
353  * make things faster. Especially in "no edge" splitting of
354  * free block.
355  */
356 static struct kmem_cache *vmap_area_cachep;
357 
358 /*
359  * This linked list is used in pair with free_vmap_area_root.
360  * It gives O(1) access to prev/next to perform fast coalescing.
361  */
362 static LIST_HEAD(free_vmap_area_list);
363 
364 /*
365  * This augment red-black tree represents the free vmap space.
366  * All vmap_area objects in this tree are sorted by va->va_start
367  * address. It is used for allocation and merging when a vmap
368  * object is released.
369  *
370  * Each vmap_area node contains a maximum available free block
371  * of its sub-tree, right or left. Therefore it is possible to
372  * find a lowest match of free area.
373  */
374 static struct rb_root free_vmap_area_root = RB_ROOT;
375 
376 /*
377  * Preload a CPU with one object for "no edge" split case. The
378  * aim is to get rid of allocations from the atomic context, thus
379  * to use more permissive allocation masks.
380  */
381 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
382 
383 static __always_inline unsigned long
384 va_size(struct vmap_area *va)
385 {
386 	return (va->va_end - va->va_start);
387 }
388 
389 static __always_inline unsigned long
390 get_subtree_max_size(struct rb_node *node)
391 {
392 	struct vmap_area *va;
393 
394 	va = rb_entry_safe(node, struct vmap_area, rb_node);
395 	return va ? va->subtree_max_size : 0;
396 }
397 
398 /*
399  * Gets called when remove the node and rotate.
400  */
401 static __always_inline unsigned long
402 compute_subtree_max_size(struct vmap_area *va)
403 {
404 	return max3(va_size(va),
405 		get_subtree_max_size(va->rb_node.rb_left),
406 		get_subtree_max_size(va->rb_node.rb_right));
407 }
408 
409 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
410 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
411 
412 static void purge_vmap_area_lazy(void);
413 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
414 static unsigned long lazy_max_pages(void);
415 
416 static atomic_long_t nr_vmalloc_pages;
417 
418 unsigned long vmalloc_nr_pages(void)
419 {
420 	return atomic_long_read(&nr_vmalloc_pages);
421 }
422 
423 static struct vmap_area *__find_vmap_area(unsigned long addr)
424 {
425 	struct rb_node *n = vmap_area_root.rb_node;
426 
427 	while (n) {
428 		struct vmap_area *va;
429 
430 		va = rb_entry(n, struct vmap_area, rb_node);
431 		if (addr < va->va_start)
432 			n = n->rb_left;
433 		else if (addr >= va->va_end)
434 			n = n->rb_right;
435 		else
436 			return va;
437 	}
438 
439 	return NULL;
440 }
441 
442 /*
443  * This function returns back addresses of parent node
444  * and its left or right link for further processing.
445  */
446 static __always_inline struct rb_node **
447 find_va_links(struct vmap_area *va,
448 	struct rb_root *root, struct rb_node *from,
449 	struct rb_node **parent)
450 {
451 	struct vmap_area *tmp_va;
452 	struct rb_node **link;
453 
454 	if (root) {
455 		link = &root->rb_node;
456 		if (unlikely(!*link)) {
457 			*parent = NULL;
458 			return link;
459 		}
460 	} else {
461 		link = &from;
462 	}
463 
464 	/*
465 	 * Go to the bottom of the tree. When we hit the last point
466 	 * we end up with parent rb_node and correct direction, i name
467 	 * it link, where the new va->rb_node will be attached to.
468 	 */
469 	do {
470 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
471 
472 		/*
473 		 * During the traversal we also do some sanity check.
474 		 * Trigger the BUG() if there are sides(left/right)
475 		 * or full overlaps.
476 		 */
477 		if (va->va_start < tmp_va->va_end &&
478 				va->va_end <= tmp_va->va_start)
479 			link = &(*link)->rb_left;
480 		else if (va->va_end > tmp_va->va_start &&
481 				va->va_start >= tmp_va->va_end)
482 			link = &(*link)->rb_right;
483 		else
484 			BUG();
485 	} while (*link);
486 
487 	*parent = &tmp_va->rb_node;
488 	return link;
489 }
490 
491 static __always_inline struct list_head *
492 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
493 {
494 	struct list_head *list;
495 
496 	if (unlikely(!parent))
497 		/*
498 		 * The red-black tree where we try to find VA neighbors
499 		 * before merging or inserting is empty, i.e. it means
500 		 * there is no free vmap space. Normally it does not
501 		 * happen but we handle this case anyway.
502 		 */
503 		return NULL;
504 
505 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
506 	return (&parent->rb_right == link ? list->next : list);
507 }
508 
509 static __always_inline void
510 link_va(struct vmap_area *va, struct rb_root *root,
511 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
512 {
513 	/*
514 	 * VA is still not in the list, but we can
515 	 * identify its future previous list_head node.
516 	 */
517 	if (likely(parent)) {
518 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
519 		if (&parent->rb_right != link)
520 			head = head->prev;
521 	}
522 
523 	/* Insert to the rb-tree */
524 	rb_link_node(&va->rb_node, parent, link);
525 	if (root == &free_vmap_area_root) {
526 		/*
527 		 * Some explanation here. Just perform simple insertion
528 		 * to the tree. We do not set va->subtree_max_size to
529 		 * its current size before calling rb_insert_augmented().
530 		 * It is because of we populate the tree from the bottom
531 		 * to parent levels when the node _is_ in the tree.
532 		 *
533 		 * Therefore we set subtree_max_size to zero after insertion,
534 		 * to let __augment_tree_propagate_from() puts everything to
535 		 * the correct order later on.
536 		 */
537 		rb_insert_augmented(&va->rb_node,
538 			root, &free_vmap_area_rb_augment_cb);
539 		va->subtree_max_size = 0;
540 	} else {
541 		rb_insert_color(&va->rb_node, root);
542 	}
543 
544 	/* Address-sort this list */
545 	list_add(&va->list, head);
546 }
547 
548 static __always_inline void
549 unlink_va(struct vmap_area *va, struct rb_root *root)
550 {
551 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
552 		return;
553 
554 	if (root == &free_vmap_area_root)
555 		rb_erase_augmented(&va->rb_node,
556 			root, &free_vmap_area_rb_augment_cb);
557 	else
558 		rb_erase(&va->rb_node, root);
559 
560 	list_del(&va->list);
561 	RB_CLEAR_NODE(&va->rb_node);
562 }
563 
564 #if DEBUG_AUGMENT_PROPAGATE_CHECK
565 static void
566 augment_tree_propagate_check(struct rb_node *n)
567 {
568 	struct vmap_area *va;
569 	struct rb_node *node;
570 	unsigned long size;
571 	bool found = false;
572 
573 	if (n == NULL)
574 		return;
575 
576 	va = rb_entry(n, struct vmap_area, rb_node);
577 	size = va->subtree_max_size;
578 	node = n;
579 
580 	while (node) {
581 		va = rb_entry(node, struct vmap_area, rb_node);
582 
583 		if (get_subtree_max_size(node->rb_left) == size) {
584 			node = node->rb_left;
585 		} else {
586 			if (va_size(va) == size) {
587 				found = true;
588 				break;
589 			}
590 
591 			node = node->rb_right;
592 		}
593 	}
594 
595 	if (!found) {
596 		va = rb_entry(n, struct vmap_area, rb_node);
597 		pr_emerg("tree is corrupted: %lu, %lu\n",
598 			va_size(va), va->subtree_max_size);
599 	}
600 
601 	augment_tree_propagate_check(n->rb_left);
602 	augment_tree_propagate_check(n->rb_right);
603 }
604 #endif
605 
606 /*
607  * This function populates subtree_max_size from bottom to upper
608  * levels starting from VA point. The propagation must be done
609  * when VA size is modified by changing its va_start/va_end. Or
610  * in case of newly inserting of VA to the tree.
611  *
612  * It means that __augment_tree_propagate_from() must be called:
613  * - After VA has been inserted to the tree(free path);
614  * - After VA has been shrunk(allocation path);
615  * - After VA has been increased(merging path).
616  *
617  * Please note that, it does not mean that upper parent nodes
618  * and their subtree_max_size are recalculated all the time up
619  * to the root node.
620  *
621  *       4--8
622  *        /\
623  *       /  \
624  *      /    \
625  *    2--2  8--8
626  *
627  * For example if we modify the node 4, shrinking it to 2, then
628  * no any modification is required. If we shrink the node 2 to 1
629  * its subtree_max_size is updated only, and set to 1. If we shrink
630  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
631  * node becomes 4--6.
632  */
633 static __always_inline void
634 augment_tree_propagate_from(struct vmap_area *va)
635 {
636 	struct rb_node *node = &va->rb_node;
637 	unsigned long new_va_sub_max_size;
638 
639 	while (node) {
640 		va = rb_entry(node, struct vmap_area, rb_node);
641 		new_va_sub_max_size = compute_subtree_max_size(va);
642 
643 		/*
644 		 * If the newly calculated maximum available size of the
645 		 * subtree is equal to the current one, then it means that
646 		 * the tree is propagated correctly. So we have to stop at
647 		 * this point to save cycles.
648 		 */
649 		if (va->subtree_max_size == new_va_sub_max_size)
650 			break;
651 
652 		va->subtree_max_size = new_va_sub_max_size;
653 		node = rb_parent(&va->rb_node);
654 	}
655 
656 #if DEBUG_AUGMENT_PROPAGATE_CHECK
657 	augment_tree_propagate_check(free_vmap_area_root.rb_node);
658 #endif
659 }
660 
661 static void
662 insert_vmap_area(struct vmap_area *va,
663 	struct rb_root *root, struct list_head *head)
664 {
665 	struct rb_node **link;
666 	struct rb_node *parent;
667 
668 	link = find_va_links(va, root, NULL, &parent);
669 	link_va(va, root, parent, link, head);
670 }
671 
672 static void
673 insert_vmap_area_augment(struct vmap_area *va,
674 	struct rb_node *from, struct rb_root *root,
675 	struct list_head *head)
676 {
677 	struct rb_node **link;
678 	struct rb_node *parent;
679 
680 	if (from)
681 		link = find_va_links(va, NULL, from, &parent);
682 	else
683 		link = find_va_links(va, root, NULL, &parent);
684 
685 	link_va(va, root, parent, link, head);
686 	augment_tree_propagate_from(va);
687 }
688 
689 /*
690  * Merge de-allocated chunk of VA memory with previous
691  * and next free blocks. If coalesce is not done a new
692  * free area is inserted. If VA has been merged, it is
693  * freed.
694  */
695 static __always_inline struct vmap_area *
696 merge_or_add_vmap_area(struct vmap_area *va,
697 	struct rb_root *root, struct list_head *head)
698 {
699 	struct vmap_area *sibling;
700 	struct list_head *next;
701 	struct rb_node **link;
702 	struct rb_node *parent;
703 	bool merged = false;
704 
705 	/*
706 	 * Find a place in the tree where VA potentially will be
707 	 * inserted, unless it is merged with its sibling/siblings.
708 	 */
709 	link = find_va_links(va, root, NULL, &parent);
710 
711 	/*
712 	 * Get next node of VA to check if merging can be done.
713 	 */
714 	next = get_va_next_sibling(parent, link);
715 	if (unlikely(next == NULL))
716 		goto insert;
717 
718 	/*
719 	 * start            end
720 	 * |                |
721 	 * |<------VA------>|<-----Next----->|
722 	 *                  |                |
723 	 *                  start            end
724 	 */
725 	if (next != head) {
726 		sibling = list_entry(next, struct vmap_area, list);
727 		if (sibling->va_start == va->va_end) {
728 			sibling->va_start = va->va_start;
729 
730 			/* Check and update the tree if needed. */
731 			augment_tree_propagate_from(sibling);
732 
733 			/* Free vmap_area object. */
734 			kmem_cache_free(vmap_area_cachep, va);
735 
736 			/* Point to the new merged area. */
737 			va = sibling;
738 			merged = true;
739 		}
740 	}
741 
742 	/*
743 	 * start            end
744 	 * |                |
745 	 * |<-----Prev----->|<------VA------>|
746 	 *                  |                |
747 	 *                  start            end
748 	 */
749 	if (next->prev != head) {
750 		sibling = list_entry(next->prev, struct vmap_area, list);
751 		if (sibling->va_end == va->va_start) {
752 			sibling->va_end = va->va_end;
753 
754 			/* Check and update the tree if needed. */
755 			augment_tree_propagate_from(sibling);
756 
757 			if (merged)
758 				unlink_va(va, root);
759 
760 			/* Free vmap_area object. */
761 			kmem_cache_free(vmap_area_cachep, va);
762 
763 			/* Point to the new merged area. */
764 			va = sibling;
765 			merged = true;
766 		}
767 	}
768 
769 insert:
770 	if (!merged) {
771 		link_va(va, root, parent, link, head);
772 		augment_tree_propagate_from(va);
773 	}
774 
775 	return va;
776 }
777 
778 static __always_inline bool
779 is_within_this_va(struct vmap_area *va, unsigned long size,
780 	unsigned long align, unsigned long vstart)
781 {
782 	unsigned long nva_start_addr;
783 
784 	if (va->va_start > vstart)
785 		nva_start_addr = ALIGN(va->va_start, align);
786 	else
787 		nva_start_addr = ALIGN(vstart, align);
788 
789 	/* Can be overflowed due to big size or alignment. */
790 	if (nva_start_addr + size < nva_start_addr ||
791 			nva_start_addr < vstart)
792 		return false;
793 
794 	return (nva_start_addr + size <= va->va_end);
795 }
796 
797 /*
798  * Find the first free block(lowest start address) in the tree,
799  * that will accomplish the request corresponding to passing
800  * parameters.
801  */
802 static __always_inline struct vmap_area *
803 find_vmap_lowest_match(unsigned long size,
804 	unsigned long align, unsigned long vstart)
805 {
806 	struct vmap_area *va;
807 	struct rb_node *node;
808 	unsigned long length;
809 
810 	/* Start from the root. */
811 	node = free_vmap_area_root.rb_node;
812 
813 	/* Adjust the search size for alignment overhead. */
814 	length = size + align - 1;
815 
816 	while (node) {
817 		va = rb_entry(node, struct vmap_area, rb_node);
818 
819 		if (get_subtree_max_size(node->rb_left) >= length &&
820 				vstart < va->va_start) {
821 			node = node->rb_left;
822 		} else {
823 			if (is_within_this_va(va, size, align, vstart))
824 				return va;
825 
826 			/*
827 			 * Does not make sense to go deeper towards the right
828 			 * sub-tree if it does not have a free block that is
829 			 * equal or bigger to the requested search length.
830 			 */
831 			if (get_subtree_max_size(node->rb_right) >= length) {
832 				node = node->rb_right;
833 				continue;
834 			}
835 
836 			/*
837 			 * OK. We roll back and find the first right sub-tree,
838 			 * that will satisfy the search criteria. It can happen
839 			 * only once due to "vstart" restriction.
840 			 */
841 			while ((node = rb_parent(node))) {
842 				va = rb_entry(node, struct vmap_area, rb_node);
843 				if (is_within_this_va(va, size, align, vstart))
844 					return va;
845 
846 				if (get_subtree_max_size(node->rb_right) >= length &&
847 						vstart <= va->va_start) {
848 					node = node->rb_right;
849 					break;
850 				}
851 			}
852 		}
853 	}
854 
855 	return NULL;
856 }
857 
858 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
859 #include <linux/random.h>
860 
861 static struct vmap_area *
862 find_vmap_lowest_linear_match(unsigned long size,
863 	unsigned long align, unsigned long vstart)
864 {
865 	struct vmap_area *va;
866 
867 	list_for_each_entry(va, &free_vmap_area_list, list) {
868 		if (!is_within_this_va(va, size, align, vstart))
869 			continue;
870 
871 		return va;
872 	}
873 
874 	return NULL;
875 }
876 
877 static void
878 find_vmap_lowest_match_check(unsigned long size)
879 {
880 	struct vmap_area *va_1, *va_2;
881 	unsigned long vstart;
882 	unsigned int rnd;
883 
884 	get_random_bytes(&rnd, sizeof(rnd));
885 	vstart = VMALLOC_START + rnd;
886 
887 	va_1 = find_vmap_lowest_match(size, 1, vstart);
888 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
889 
890 	if (va_1 != va_2)
891 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
892 			va_1, va_2, vstart);
893 }
894 #endif
895 
896 enum fit_type {
897 	NOTHING_FIT = 0,
898 	FL_FIT_TYPE = 1,	/* full fit */
899 	LE_FIT_TYPE = 2,	/* left edge fit */
900 	RE_FIT_TYPE = 3,	/* right edge fit */
901 	NE_FIT_TYPE = 4		/* no edge fit */
902 };
903 
904 static __always_inline enum fit_type
905 classify_va_fit_type(struct vmap_area *va,
906 	unsigned long nva_start_addr, unsigned long size)
907 {
908 	enum fit_type type;
909 
910 	/* Check if it is within VA. */
911 	if (nva_start_addr < va->va_start ||
912 			nva_start_addr + size > va->va_end)
913 		return NOTHING_FIT;
914 
915 	/* Now classify. */
916 	if (va->va_start == nva_start_addr) {
917 		if (va->va_end == nva_start_addr + size)
918 			type = FL_FIT_TYPE;
919 		else
920 			type = LE_FIT_TYPE;
921 	} else if (va->va_end == nva_start_addr + size) {
922 		type = RE_FIT_TYPE;
923 	} else {
924 		type = NE_FIT_TYPE;
925 	}
926 
927 	return type;
928 }
929 
930 static __always_inline int
931 adjust_va_to_fit_type(struct vmap_area *va,
932 	unsigned long nva_start_addr, unsigned long size,
933 	enum fit_type type)
934 {
935 	struct vmap_area *lva = NULL;
936 
937 	if (type == FL_FIT_TYPE) {
938 		/*
939 		 * No need to split VA, it fully fits.
940 		 *
941 		 * |               |
942 		 * V      NVA      V
943 		 * |---------------|
944 		 */
945 		unlink_va(va, &free_vmap_area_root);
946 		kmem_cache_free(vmap_area_cachep, va);
947 	} else if (type == LE_FIT_TYPE) {
948 		/*
949 		 * Split left edge of fit VA.
950 		 *
951 		 * |       |
952 		 * V  NVA  V   R
953 		 * |-------|-------|
954 		 */
955 		va->va_start += size;
956 	} else if (type == RE_FIT_TYPE) {
957 		/*
958 		 * Split right edge of fit VA.
959 		 *
960 		 *         |       |
961 		 *     L   V  NVA  V
962 		 * |-------|-------|
963 		 */
964 		va->va_end = nva_start_addr;
965 	} else if (type == NE_FIT_TYPE) {
966 		/*
967 		 * Split no edge of fit VA.
968 		 *
969 		 *     |       |
970 		 *   L V  NVA  V R
971 		 * |---|-------|---|
972 		 */
973 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
974 		if (unlikely(!lva)) {
975 			/*
976 			 * For percpu allocator we do not do any pre-allocation
977 			 * and leave it as it is. The reason is it most likely
978 			 * never ends up with NE_FIT_TYPE splitting. In case of
979 			 * percpu allocations offsets and sizes are aligned to
980 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
981 			 * are its main fitting cases.
982 			 *
983 			 * There are a few exceptions though, as an example it is
984 			 * a first allocation (early boot up) when we have "one"
985 			 * big free space that has to be split.
986 			 *
987 			 * Also we can hit this path in case of regular "vmap"
988 			 * allocations, if "this" current CPU was not preloaded.
989 			 * See the comment in alloc_vmap_area() why. If so, then
990 			 * GFP_NOWAIT is used instead to get an extra object for
991 			 * split purpose. That is rare and most time does not
992 			 * occur.
993 			 *
994 			 * What happens if an allocation gets failed. Basically,
995 			 * an "overflow" path is triggered to purge lazily freed
996 			 * areas to free some memory, then, the "retry" path is
997 			 * triggered to repeat one more time. See more details
998 			 * in alloc_vmap_area() function.
999 			 */
1000 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1001 			if (!lva)
1002 				return -1;
1003 		}
1004 
1005 		/*
1006 		 * Build the remainder.
1007 		 */
1008 		lva->va_start = va->va_start;
1009 		lva->va_end = nva_start_addr;
1010 
1011 		/*
1012 		 * Shrink this VA to remaining size.
1013 		 */
1014 		va->va_start = nva_start_addr + size;
1015 	} else {
1016 		return -1;
1017 	}
1018 
1019 	if (type != FL_FIT_TYPE) {
1020 		augment_tree_propagate_from(va);
1021 
1022 		if (lva)	/* type == NE_FIT_TYPE */
1023 			insert_vmap_area_augment(lva, &va->rb_node,
1024 				&free_vmap_area_root, &free_vmap_area_list);
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 /*
1031  * Returns a start address of the newly allocated area, if success.
1032  * Otherwise a vend is returned that indicates failure.
1033  */
1034 static __always_inline unsigned long
1035 __alloc_vmap_area(unsigned long size, unsigned long align,
1036 	unsigned long vstart, unsigned long vend)
1037 {
1038 	unsigned long nva_start_addr;
1039 	struct vmap_area *va;
1040 	enum fit_type type;
1041 	int ret;
1042 
1043 	va = find_vmap_lowest_match(size, align, vstart);
1044 	if (unlikely(!va))
1045 		return vend;
1046 
1047 	if (va->va_start > vstart)
1048 		nva_start_addr = ALIGN(va->va_start, align);
1049 	else
1050 		nva_start_addr = ALIGN(vstart, align);
1051 
1052 	/* Check the "vend" restriction. */
1053 	if (nva_start_addr + size > vend)
1054 		return vend;
1055 
1056 	/* Classify what we have found. */
1057 	type = classify_va_fit_type(va, nva_start_addr, size);
1058 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1059 		return vend;
1060 
1061 	/* Update the free vmap_area. */
1062 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1063 	if (ret)
1064 		return vend;
1065 
1066 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1067 	find_vmap_lowest_match_check(size);
1068 #endif
1069 
1070 	return nva_start_addr;
1071 }
1072 
1073 /*
1074  * Free a region of KVA allocated by alloc_vmap_area
1075  */
1076 static void free_vmap_area(struct vmap_area *va)
1077 {
1078 	/*
1079 	 * Remove from the busy tree/list.
1080 	 */
1081 	spin_lock(&vmap_area_lock);
1082 	unlink_va(va, &vmap_area_root);
1083 	spin_unlock(&vmap_area_lock);
1084 
1085 	/*
1086 	 * Insert/Merge it back to the free tree/list.
1087 	 */
1088 	spin_lock(&free_vmap_area_lock);
1089 	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1090 	spin_unlock(&free_vmap_area_lock);
1091 }
1092 
1093 /*
1094  * Allocate a region of KVA of the specified size and alignment, within the
1095  * vstart and vend.
1096  */
1097 static struct vmap_area *alloc_vmap_area(unsigned long size,
1098 				unsigned long align,
1099 				unsigned long vstart, unsigned long vend,
1100 				int node, gfp_t gfp_mask)
1101 {
1102 	struct vmap_area *va, *pva;
1103 	unsigned long addr;
1104 	int purged = 0;
1105 	int ret;
1106 
1107 	BUG_ON(!size);
1108 	BUG_ON(offset_in_page(size));
1109 	BUG_ON(!is_power_of_2(align));
1110 
1111 	if (unlikely(!vmap_initialized))
1112 		return ERR_PTR(-EBUSY);
1113 
1114 	might_sleep();
1115 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1116 
1117 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1118 	if (unlikely(!va))
1119 		return ERR_PTR(-ENOMEM);
1120 
1121 	/*
1122 	 * Only scan the relevant parts containing pointers to other objects
1123 	 * to avoid false negatives.
1124 	 */
1125 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1126 
1127 retry:
1128 	/*
1129 	 * Preload this CPU with one extra vmap_area object. It is used
1130 	 * when fit type of free area is NE_FIT_TYPE. Please note, it
1131 	 * does not guarantee that an allocation occurs on a CPU that
1132 	 * is preloaded, instead we minimize the case when it is not.
1133 	 * It can happen because of cpu migration, because there is a
1134 	 * race until the below spinlock is taken.
1135 	 *
1136 	 * The preload is done in non-atomic context, thus it allows us
1137 	 * to use more permissive allocation masks to be more stable under
1138 	 * low memory condition and high memory pressure. In rare case,
1139 	 * if not preloaded, GFP_NOWAIT is used.
1140 	 *
1141 	 * Set "pva" to NULL here, because of "retry" path.
1142 	 */
1143 	pva = NULL;
1144 
1145 	if (!this_cpu_read(ne_fit_preload_node))
1146 		/*
1147 		 * Even if it fails we do not really care about that.
1148 		 * Just proceed as it is. If needed "overflow" path
1149 		 * will refill the cache we allocate from.
1150 		 */
1151 		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1152 
1153 	spin_lock(&free_vmap_area_lock);
1154 
1155 	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1156 		kmem_cache_free(vmap_area_cachep, pva);
1157 
1158 	/*
1159 	 * If an allocation fails, the "vend" address is
1160 	 * returned. Therefore trigger the overflow path.
1161 	 */
1162 	addr = __alloc_vmap_area(size, align, vstart, vend);
1163 	spin_unlock(&free_vmap_area_lock);
1164 
1165 	if (unlikely(addr == vend))
1166 		goto overflow;
1167 
1168 	va->va_start = addr;
1169 	va->va_end = addr + size;
1170 	va->vm = NULL;
1171 
1172 
1173 	spin_lock(&vmap_area_lock);
1174 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1175 	spin_unlock(&vmap_area_lock);
1176 
1177 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1178 	BUG_ON(va->va_start < vstart);
1179 	BUG_ON(va->va_end > vend);
1180 
1181 	ret = kasan_populate_vmalloc(addr, size);
1182 	if (ret) {
1183 		free_vmap_area(va);
1184 		return ERR_PTR(ret);
1185 	}
1186 
1187 	return va;
1188 
1189 overflow:
1190 	if (!purged) {
1191 		purge_vmap_area_lazy();
1192 		purged = 1;
1193 		goto retry;
1194 	}
1195 
1196 	if (gfpflags_allow_blocking(gfp_mask)) {
1197 		unsigned long freed = 0;
1198 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1199 		if (freed > 0) {
1200 			purged = 0;
1201 			goto retry;
1202 		}
1203 	}
1204 
1205 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1206 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1207 			size);
1208 
1209 	kmem_cache_free(vmap_area_cachep, va);
1210 	return ERR_PTR(-EBUSY);
1211 }
1212 
1213 int register_vmap_purge_notifier(struct notifier_block *nb)
1214 {
1215 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1216 }
1217 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1218 
1219 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1220 {
1221 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1222 }
1223 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1224 
1225 /*
1226  * Clear the pagetable entries of a given vmap_area
1227  */
1228 static void unmap_vmap_area(struct vmap_area *va)
1229 {
1230 	vunmap_page_range(va->va_start, va->va_end);
1231 }
1232 
1233 /*
1234  * lazy_max_pages is the maximum amount of virtual address space we gather up
1235  * before attempting to purge with a TLB flush.
1236  *
1237  * There is a tradeoff here: a larger number will cover more kernel page tables
1238  * and take slightly longer to purge, but it will linearly reduce the number of
1239  * global TLB flushes that must be performed. It would seem natural to scale
1240  * this number up linearly with the number of CPUs (because vmapping activity
1241  * could also scale linearly with the number of CPUs), however it is likely
1242  * that in practice, workloads might be constrained in other ways that mean
1243  * vmap activity will not scale linearly with CPUs. Also, I want to be
1244  * conservative and not introduce a big latency on huge systems, so go with
1245  * a less aggressive log scale. It will still be an improvement over the old
1246  * code, and it will be simple to change the scale factor if we find that it
1247  * becomes a problem on bigger systems.
1248  */
1249 static unsigned long lazy_max_pages(void)
1250 {
1251 	unsigned int log;
1252 
1253 	log = fls(num_online_cpus());
1254 
1255 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1256 }
1257 
1258 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1259 
1260 /*
1261  * Serialize vmap purging.  There is no actual criticial section protected
1262  * by this look, but we want to avoid concurrent calls for performance
1263  * reasons and to make the pcpu_get_vm_areas more deterministic.
1264  */
1265 static DEFINE_MUTEX(vmap_purge_lock);
1266 
1267 /* for per-CPU blocks */
1268 static void purge_fragmented_blocks_allcpus(void);
1269 
1270 /*
1271  * called before a call to iounmap() if the caller wants vm_area_struct's
1272  * immediately freed.
1273  */
1274 void set_iounmap_nonlazy(void)
1275 {
1276 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1277 }
1278 
1279 /*
1280  * Purges all lazily-freed vmap areas.
1281  */
1282 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1283 {
1284 	unsigned long resched_threshold;
1285 	struct llist_node *valist;
1286 	struct vmap_area *va;
1287 	struct vmap_area *n_va;
1288 
1289 	lockdep_assert_held(&vmap_purge_lock);
1290 
1291 	valist = llist_del_all(&vmap_purge_list);
1292 	if (unlikely(valist == NULL))
1293 		return false;
1294 
1295 	/*
1296 	 * First make sure the mappings are removed from all page-tables
1297 	 * before they are freed.
1298 	 */
1299 	vmalloc_sync_unmappings();
1300 
1301 	/*
1302 	 * TODO: to calculate a flush range without looping.
1303 	 * The list can be up to lazy_max_pages() elements.
1304 	 */
1305 	llist_for_each_entry(va, valist, purge_list) {
1306 		if (va->va_start < start)
1307 			start = va->va_start;
1308 		if (va->va_end > end)
1309 			end = va->va_end;
1310 	}
1311 
1312 	flush_tlb_kernel_range(start, end);
1313 	resched_threshold = lazy_max_pages() << 1;
1314 
1315 	spin_lock(&free_vmap_area_lock);
1316 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1317 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1318 		unsigned long orig_start = va->va_start;
1319 		unsigned long orig_end = va->va_end;
1320 
1321 		/*
1322 		 * Finally insert or merge lazily-freed area. It is
1323 		 * detached and there is no need to "unlink" it from
1324 		 * anything.
1325 		 */
1326 		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1327 					    &free_vmap_area_list);
1328 
1329 		if (is_vmalloc_or_module_addr((void *)orig_start))
1330 			kasan_release_vmalloc(orig_start, orig_end,
1331 					      va->va_start, va->va_end);
1332 
1333 		atomic_long_sub(nr, &vmap_lazy_nr);
1334 
1335 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1336 			cond_resched_lock(&free_vmap_area_lock);
1337 	}
1338 	spin_unlock(&free_vmap_area_lock);
1339 	return true;
1340 }
1341 
1342 /*
1343  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1344  * is already purging.
1345  */
1346 static void try_purge_vmap_area_lazy(void)
1347 {
1348 	if (mutex_trylock(&vmap_purge_lock)) {
1349 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1350 		mutex_unlock(&vmap_purge_lock);
1351 	}
1352 }
1353 
1354 /*
1355  * Kick off a purge of the outstanding lazy areas.
1356  */
1357 static void purge_vmap_area_lazy(void)
1358 {
1359 	mutex_lock(&vmap_purge_lock);
1360 	purge_fragmented_blocks_allcpus();
1361 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1362 	mutex_unlock(&vmap_purge_lock);
1363 }
1364 
1365 /*
1366  * Free a vmap area, caller ensuring that the area has been unmapped
1367  * and flush_cache_vunmap had been called for the correct range
1368  * previously.
1369  */
1370 static void free_vmap_area_noflush(struct vmap_area *va)
1371 {
1372 	unsigned long nr_lazy;
1373 
1374 	spin_lock(&vmap_area_lock);
1375 	unlink_va(va, &vmap_area_root);
1376 	spin_unlock(&vmap_area_lock);
1377 
1378 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1379 				PAGE_SHIFT, &vmap_lazy_nr);
1380 
1381 	/* After this point, we may free va at any time */
1382 	llist_add(&va->purge_list, &vmap_purge_list);
1383 
1384 	if (unlikely(nr_lazy > lazy_max_pages()))
1385 		try_purge_vmap_area_lazy();
1386 }
1387 
1388 /*
1389  * Free and unmap a vmap area
1390  */
1391 static void free_unmap_vmap_area(struct vmap_area *va)
1392 {
1393 	flush_cache_vunmap(va->va_start, va->va_end);
1394 	unmap_vmap_area(va);
1395 	if (debug_pagealloc_enabled_static())
1396 		flush_tlb_kernel_range(va->va_start, va->va_end);
1397 
1398 	free_vmap_area_noflush(va);
1399 }
1400 
1401 static struct vmap_area *find_vmap_area(unsigned long addr)
1402 {
1403 	struct vmap_area *va;
1404 
1405 	spin_lock(&vmap_area_lock);
1406 	va = __find_vmap_area(addr);
1407 	spin_unlock(&vmap_area_lock);
1408 
1409 	return va;
1410 }
1411 
1412 /*** Per cpu kva allocator ***/
1413 
1414 /*
1415  * vmap space is limited especially on 32 bit architectures. Ensure there is
1416  * room for at least 16 percpu vmap blocks per CPU.
1417  */
1418 /*
1419  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1420  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1421  * instead (we just need a rough idea)
1422  */
1423 #if BITS_PER_LONG == 32
1424 #define VMALLOC_SPACE		(128UL*1024*1024)
1425 #else
1426 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1427 #endif
1428 
1429 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1430 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1431 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1432 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1433 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1434 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1435 #define VMAP_BBMAP_BITS		\
1436 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1437 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1438 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1439 
1440 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1441 
1442 struct vmap_block_queue {
1443 	spinlock_t lock;
1444 	struct list_head free;
1445 };
1446 
1447 struct vmap_block {
1448 	spinlock_t lock;
1449 	struct vmap_area *va;
1450 	unsigned long free, dirty;
1451 	unsigned long dirty_min, dirty_max; /*< dirty range */
1452 	struct list_head free_list;
1453 	struct rcu_head rcu_head;
1454 	struct list_head purge;
1455 };
1456 
1457 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1458 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1459 
1460 /*
1461  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1462  * in the free path. Could get rid of this if we change the API to return a
1463  * "cookie" from alloc, to be passed to free. But no big deal yet.
1464  */
1465 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1466 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1467 
1468 /*
1469  * We should probably have a fallback mechanism to allocate virtual memory
1470  * out of partially filled vmap blocks. However vmap block sizing should be
1471  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1472  * big problem.
1473  */
1474 
1475 static unsigned long addr_to_vb_idx(unsigned long addr)
1476 {
1477 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1478 	addr /= VMAP_BLOCK_SIZE;
1479 	return addr;
1480 }
1481 
1482 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1483 {
1484 	unsigned long addr;
1485 
1486 	addr = va_start + (pages_off << PAGE_SHIFT);
1487 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1488 	return (void *)addr;
1489 }
1490 
1491 /**
1492  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1493  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1494  * @order:    how many 2^order pages should be occupied in newly allocated block
1495  * @gfp_mask: flags for the page level allocator
1496  *
1497  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1498  */
1499 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1500 {
1501 	struct vmap_block_queue *vbq;
1502 	struct vmap_block *vb;
1503 	struct vmap_area *va;
1504 	unsigned long vb_idx;
1505 	int node, err;
1506 	void *vaddr;
1507 
1508 	node = numa_node_id();
1509 
1510 	vb = kmalloc_node(sizeof(struct vmap_block),
1511 			gfp_mask & GFP_RECLAIM_MASK, node);
1512 	if (unlikely(!vb))
1513 		return ERR_PTR(-ENOMEM);
1514 
1515 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1516 					VMALLOC_START, VMALLOC_END,
1517 					node, gfp_mask);
1518 	if (IS_ERR(va)) {
1519 		kfree(vb);
1520 		return ERR_CAST(va);
1521 	}
1522 
1523 	err = radix_tree_preload(gfp_mask);
1524 	if (unlikely(err)) {
1525 		kfree(vb);
1526 		free_vmap_area(va);
1527 		return ERR_PTR(err);
1528 	}
1529 
1530 	vaddr = vmap_block_vaddr(va->va_start, 0);
1531 	spin_lock_init(&vb->lock);
1532 	vb->va = va;
1533 	/* At least something should be left free */
1534 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1535 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1536 	vb->dirty = 0;
1537 	vb->dirty_min = VMAP_BBMAP_BITS;
1538 	vb->dirty_max = 0;
1539 	INIT_LIST_HEAD(&vb->free_list);
1540 
1541 	vb_idx = addr_to_vb_idx(va->va_start);
1542 	spin_lock(&vmap_block_tree_lock);
1543 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1544 	spin_unlock(&vmap_block_tree_lock);
1545 	BUG_ON(err);
1546 	radix_tree_preload_end();
1547 
1548 	vbq = &get_cpu_var(vmap_block_queue);
1549 	spin_lock(&vbq->lock);
1550 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1551 	spin_unlock(&vbq->lock);
1552 	put_cpu_var(vmap_block_queue);
1553 
1554 	return vaddr;
1555 }
1556 
1557 static void free_vmap_block(struct vmap_block *vb)
1558 {
1559 	struct vmap_block *tmp;
1560 	unsigned long vb_idx;
1561 
1562 	vb_idx = addr_to_vb_idx(vb->va->va_start);
1563 	spin_lock(&vmap_block_tree_lock);
1564 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1565 	spin_unlock(&vmap_block_tree_lock);
1566 	BUG_ON(tmp != vb);
1567 
1568 	free_vmap_area_noflush(vb->va);
1569 	kfree_rcu(vb, rcu_head);
1570 }
1571 
1572 static void purge_fragmented_blocks(int cpu)
1573 {
1574 	LIST_HEAD(purge);
1575 	struct vmap_block *vb;
1576 	struct vmap_block *n_vb;
1577 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1578 
1579 	rcu_read_lock();
1580 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1581 
1582 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1583 			continue;
1584 
1585 		spin_lock(&vb->lock);
1586 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1587 			vb->free = 0; /* prevent further allocs after releasing lock */
1588 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1589 			vb->dirty_min = 0;
1590 			vb->dirty_max = VMAP_BBMAP_BITS;
1591 			spin_lock(&vbq->lock);
1592 			list_del_rcu(&vb->free_list);
1593 			spin_unlock(&vbq->lock);
1594 			spin_unlock(&vb->lock);
1595 			list_add_tail(&vb->purge, &purge);
1596 		} else
1597 			spin_unlock(&vb->lock);
1598 	}
1599 	rcu_read_unlock();
1600 
1601 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1602 		list_del(&vb->purge);
1603 		free_vmap_block(vb);
1604 	}
1605 }
1606 
1607 static void purge_fragmented_blocks_allcpus(void)
1608 {
1609 	int cpu;
1610 
1611 	for_each_possible_cpu(cpu)
1612 		purge_fragmented_blocks(cpu);
1613 }
1614 
1615 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1616 {
1617 	struct vmap_block_queue *vbq;
1618 	struct vmap_block *vb;
1619 	void *vaddr = NULL;
1620 	unsigned int order;
1621 
1622 	BUG_ON(offset_in_page(size));
1623 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1624 	if (WARN_ON(size == 0)) {
1625 		/*
1626 		 * Allocating 0 bytes isn't what caller wants since
1627 		 * get_order(0) returns funny result. Just warn and terminate
1628 		 * early.
1629 		 */
1630 		return NULL;
1631 	}
1632 	order = get_order(size);
1633 
1634 	rcu_read_lock();
1635 	vbq = &get_cpu_var(vmap_block_queue);
1636 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1637 		unsigned long pages_off;
1638 
1639 		spin_lock(&vb->lock);
1640 		if (vb->free < (1UL << order)) {
1641 			spin_unlock(&vb->lock);
1642 			continue;
1643 		}
1644 
1645 		pages_off = VMAP_BBMAP_BITS - vb->free;
1646 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1647 		vb->free -= 1UL << order;
1648 		if (vb->free == 0) {
1649 			spin_lock(&vbq->lock);
1650 			list_del_rcu(&vb->free_list);
1651 			spin_unlock(&vbq->lock);
1652 		}
1653 
1654 		spin_unlock(&vb->lock);
1655 		break;
1656 	}
1657 
1658 	put_cpu_var(vmap_block_queue);
1659 	rcu_read_unlock();
1660 
1661 	/* Allocate new block if nothing was found */
1662 	if (!vaddr)
1663 		vaddr = new_vmap_block(order, gfp_mask);
1664 
1665 	return vaddr;
1666 }
1667 
1668 static void vb_free(const void *addr, unsigned long size)
1669 {
1670 	unsigned long offset;
1671 	unsigned long vb_idx;
1672 	unsigned int order;
1673 	struct vmap_block *vb;
1674 
1675 	BUG_ON(offset_in_page(size));
1676 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1677 
1678 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1679 
1680 	order = get_order(size);
1681 
1682 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1683 	offset >>= PAGE_SHIFT;
1684 
1685 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1686 	rcu_read_lock();
1687 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1688 	rcu_read_unlock();
1689 	BUG_ON(!vb);
1690 
1691 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1692 
1693 	if (debug_pagealloc_enabled_static())
1694 		flush_tlb_kernel_range((unsigned long)addr,
1695 					(unsigned long)addr + size);
1696 
1697 	spin_lock(&vb->lock);
1698 
1699 	/* Expand dirty range */
1700 	vb->dirty_min = min(vb->dirty_min, offset);
1701 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1702 
1703 	vb->dirty += 1UL << order;
1704 	if (vb->dirty == VMAP_BBMAP_BITS) {
1705 		BUG_ON(vb->free);
1706 		spin_unlock(&vb->lock);
1707 		free_vmap_block(vb);
1708 	} else
1709 		spin_unlock(&vb->lock);
1710 }
1711 
1712 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1713 {
1714 	int cpu;
1715 
1716 	if (unlikely(!vmap_initialized))
1717 		return;
1718 
1719 	might_sleep();
1720 
1721 	for_each_possible_cpu(cpu) {
1722 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1723 		struct vmap_block *vb;
1724 
1725 		rcu_read_lock();
1726 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1727 			spin_lock(&vb->lock);
1728 			if (vb->dirty) {
1729 				unsigned long va_start = vb->va->va_start;
1730 				unsigned long s, e;
1731 
1732 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1733 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1734 
1735 				start = min(s, start);
1736 				end   = max(e, end);
1737 
1738 				flush = 1;
1739 			}
1740 			spin_unlock(&vb->lock);
1741 		}
1742 		rcu_read_unlock();
1743 	}
1744 
1745 	mutex_lock(&vmap_purge_lock);
1746 	purge_fragmented_blocks_allcpus();
1747 	if (!__purge_vmap_area_lazy(start, end) && flush)
1748 		flush_tlb_kernel_range(start, end);
1749 	mutex_unlock(&vmap_purge_lock);
1750 }
1751 
1752 /**
1753  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1754  *
1755  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1756  * to amortize TLB flushing overheads. What this means is that any page you
1757  * have now, may, in a former life, have been mapped into kernel virtual
1758  * address by the vmap layer and so there might be some CPUs with TLB entries
1759  * still referencing that page (additional to the regular 1:1 kernel mapping).
1760  *
1761  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1762  * be sure that none of the pages we have control over will have any aliases
1763  * from the vmap layer.
1764  */
1765 void vm_unmap_aliases(void)
1766 {
1767 	unsigned long start = ULONG_MAX, end = 0;
1768 	int flush = 0;
1769 
1770 	_vm_unmap_aliases(start, end, flush);
1771 }
1772 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1773 
1774 /**
1775  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1776  * @mem: the pointer returned by vm_map_ram
1777  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1778  */
1779 void vm_unmap_ram(const void *mem, unsigned int count)
1780 {
1781 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1782 	unsigned long addr = (unsigned long)mem;
1783 	struct vmap_area *va;
1784 
1785 	might_sleep();
1786 	BUG_ON(!addr);
1787 	BUG_ON(addr < VMALLOC_START);
1788 	BUG_ON(addr > VMALLOC_END);
1789 	BUG_ON(!PAGE_ALIGNED(addr));
1790 
1791 	kasan_poison_vmalloc(mem, size);
1792 
1793 	if (likely(count <= VMAP_MAX_ALLOC)) {
1794 		debug_check_no_locks_freed(mem, size);
1795 		vb_free(mem, size);
1796 		return;
1797 	}
1798 
1799 	va = find_vmap_area(addr);
1800 	BUG_ON(!va);
1801 	debug_check_no_locks_freed((void *)va->va_start,
1802 				    (va->va_end - va->va_start));
1803 	free_unmap_vmap_area(va);
1804 }
1805 EXPORT_SYMBOL(vm_unmap_ram);
1806 
1807 /**
1808  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1809  * @pages: an array of pointers to the pages to be mapped
1810  * @count: number of pages
1811  * @node: prefer to allocate data structures on this node
1812  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1813  *
1814  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1815  * faster than vmap so it's good.  But if you mix long-life and short-life
1816  * objects with vm_map_ram(), it could consume lots of address space through
1817  * fragmentation (especially on a 32bit machine).  You could see failures in
1818  * the end.  Please use this function for short-lived objects.
1819  *
1820  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1821  */
1822 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1823 {
1824 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1825 	unsigned long addr;
1826 	void *mem;
1827 
1828 	if (likely(count <= VMAP_MAX_ALLOC)) {
1829 		mem = vb_alloc(size, GFP_KERNEL);
1830 		if (IS_ERR(mem))
1831 			return NULL;
1832 		addr = (unsigned long)mem;
1833 	} else {
1834 		struct vmap_area *va;
1835 		va = alloc_vmap_area(size, PAGE_SIZE,
1836 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1837 		if (IS_ERR(va))
1838 			return NULL;
1839 
1840 		addr = va->va_start;
1841 		mem = (void *)addr;
1842 	}
1843 
1844 	kasan_unpoison_vmalloc(mem, size);
1845 
1846 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1847 		vm_unmap_ram(mem, count);
1848 		return NULL;
1849 	}
1850 	return mem;
1851 }
1852 EXPORT_SYMBOL(vm_map_ram);
1853 
1854 static struct vm_struct *vmlist __initdata;
1855 
1856 /**
1857  * vm_area_add_early - add vmap area early during boot
1858  * @vm: vm_struct to add
1859  *
1860  * This function is used to add fixed kernel vm area to vmlist before
1861  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1862  * should contain proper values and the other fields should be zero.
1863  *
1864  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1865  */
1866 void __init vm_area_add_early(struct vm_struct *vm)
1867 {
1868 	struct vm_struct *tmp, **p;
1869 
1870 	BUG_ON(vmap_initialized);
1871 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1872 		if (tmp->addr >= vm->addr) {
1873 			BUG_ON(tmp->addr < vm->addr + vm->size);
1874 			break;
1875 		} else
1876 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1877 	}
1878 	vm->next = *p;
1879 	*p = vm;
1880 }
1881 
1882 /**
1883  * vm_area_register_early - register vmap area early during boot
1884  * @vm: vm_struct to register
1885  * @align: requested alignment
1886  *
1887  * This function is used to register kernel vm area before
1888  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1889  * proper values on entry and other fields should be zero.  On return,
1890  * vm->addr contains the allocated address.
1891  *
1892  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1893  */
1894 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1895 {
1896 	static size_t vm_init_off __initdata;
1897 	unsigned long addr;
1898 
1899 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1900 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1901 
1902 	vm->addr = (void *)addr;
1903 
1904 	vm_area_add_early(vm);
1905 }
1906 
1907 static void vmap_init_free_space(void)
1908 {
1909 	unsigned long vmap_start = 1;
1910 	const unsigned long vmap_end = ULONG_MAX;
1911 	struct vmap_area *busy, *free;
1912 
1913 	/*
1914 	 *     B     F     B     B     B     F
1915 	 * -|-----|.....|-----|-----|-----|.....|-
1916 	 *  |           The KVA space           |
1917 	 *  |<--------------------------------->|
1918 	 */
1919 	list_for_each_entry(busy, &vmap_area_list, list) {
1920 		if (busy->va_start - vmap_start > 0) {
1921 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1922 			if (!WARN_ON_ONCE(!free)) {
1923 				free->va_start = vmap_start;
1924 				free->va_end = busy->va_start;
1925 
1926 				insert_vmap_area_augment(free, NULL,
1927 					&free_vmap_area_root,
1928 						&free_vmap_area_list);
1929 			}
1930 		}
1931 
1932 		vmap_start = busy->va_end;
1933 	}
1934 
1935 	if (vmap_end - vmap_start > 0) {
1936 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1937 		if (!WARN_ON_ONCE(!free)) {
1938 			free->va_start = vmap_start;
1939 			free->va_end = vmap_end;
1940 
1941 			insert_vmap_area_augment(free, NULL,
1942 				&free_vmap_area_root,
1943 					&free_vmap_area_list);
1944 		}
1945 	}
1946 }
1947 
1948 void __init vmalloc_init(void)
1949 {
1950 	struct vmap_area *va;
1951 	struct vm_struct *tmp;
1952 	int i;
1953 
1954 	/*
1955 	 * Create the cache for vmap_area objects.
1956 	 */
1957 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1958 
1959 	for_each_possible_cpu(i) {
1960 		struct vmap_block_queue *vbq;
1961 		struct vfree_deferred *p;
1962 
1963 		vbq = &per_cpu(vmap_block_queue, i);
1964 		spin_lock_init(&vbq->lock);
1965 		INIT_LIST_HEAD(&vbq->free);
1966 		p = &per_cpu(vfree_deferred, i);
1967 		init_llist_head(&p->list);
1968 		INIT_WORK(&p->wq, free_work);
1969 	}
1970 
1971 	/* Import existing vmlist entries. */
1972 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1973 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1974 		if (WARN_ON_ONCE(!va))
1975 			continue;
1976 
1977 		va->va_start = (unsigned long)tmp->addr;
1978 		va->va_end = va->va_start + tmp->size;
1979 		va->vm = tmp;
1980 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1981 	}
1982 
1983 	/*
1984 	 * Now we can initialize a free vmap space.
1985 	 */
1986 	vmap_init_free_space();
1987 	vmap_initialized = true;
1988 }
1989 
1990 /**
1991  * map_kernel_range_noflush - map kernel VM area with the specified pages
1992  * @addr: start of the VM area to map
1993  * @size: size of the VM area to map
1994  * @prot: page protection flags to use
1995  * @pages: pages to map
1996  *
1997  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1998  * specify should have been allocated using get_vm_area() and its
1999  * friends.
2000  *
2001  * NOTE:
2002  * This function does NOT do any cache flushing.  The caller is
2003  * responsible for calling flush_cache_vmap() on to-be-mapped areas
2004  * before calling this function.
2005  *
2006  * RETURNS:
2007  * The number of pages mapped on success, -errno on failure.
2008  */
2009 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
2010 			     pgprot_t prot, struct page **pages)
2011 {
2012 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
2013 }
2014 
2015 /**
2016  * unmap_kernel_range_noflush - unmap kernel VM area
2017  * @addr: start of the VM area to unmap
2018  * @size: size of the VM area to unmap
2019  *
2020  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
2021  * specify should have been allocated using get_vm_area() and its
2022  * friends.
2023  *
2024  * NOTE:
2025  * This function does NOT do any cache flushing.  The caller is
2026  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
2027  * before calling this function and flush_tlb_kernel_range() after.
2028  */
2029 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
2030 {
2031 	vunmap_page_range(addr, addr + size);
2032 }
2033 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
2034 
2035 /**
2036  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2037  * @addr: start of the VM area to unmap
2038  * @size: size of the VM area to unmap
2039  *
2040  * Similar to unmap_kernel_range_noflush() but flushes vcache before
2041  * the unmapping and tlb after.
2042  */
2043 void unmap_kernel_range(unsigned long addr, unsigned long size)
2044 {
2045 	unsigned long end = addr + size;
2046 
2047 	flush_cache_vunmap(addr, end);
2048 	vunmap_page_range(addr, end);
2049 	flush_tlb_kernel_range(addr, end);
2050 }
2051 EXPORT_SYMBOL_GPL(unmap_kernel_range);
2052 
2053 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2054 {
2055 	unsigned long addr = (unsigned long)area->addr;
2056 	unsigned long end = addr + get_vm_area_size(area);
2057 	int err;
2058 
2059 	err = vmap_page_range(addr, end, prot, pages);
2060 
2061 	return err > 0 ? 0 : err;
2062 }
2063 EXPORT_SYMBOL_GPL(map_vm_area);
2064 
2065 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2066 	struct vmap_area *va, unsigned long flags, const void *caller)
2067 {
2068 	vm->flags = flags;
2069 	vm->addr = (void *)va->va_start;
2070 	vm->size = va->va_end - va->va_start;
2071 	vm->caller = caller;
2072 	va->vm = vm;
2073 }
2074 
2075 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2076 			      unsigned long flags, const void *caller)
2077 {
2078 	spin_lock(&vmap_area_lock);
2079 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2080 	spin_unlock(&vmap_area_lock);
2081 }
2082 
2083 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2084 {
2085 	/*
2086 	 * Before removing VM_UNINITIALIZED,
2087 	 * we should make sure that vm has proper values.
2088 	 * Pair with smp_rmb() in show_numa_info().
2089 	 */
2090 	smp_wmb();
2091 	vm->flags &= ~VM_UNINITIALIZED;
2092 }
2093 
2094 static struct vm_struct *__get_vm_area_node(unsigned long size,
2095 		unsigned long align, unsigned long flags, unsigned long start,
2096 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2097 {
2098 	struct vmap_area *va;
2099 	struct vm_struct *area;
2100 	unsigned long requested_size = size;
2101 
2102 	BUG_ON(in_interrupt());
2103 	size = PAGE_ALIGN(size);
2104 	if (unlikely(!size))
2105 		return NULL;
2106 
2107 	if (flags & VM_IOREMAP)
2108 		align = 1ul << clamp_t(int, get_count_order_long(size),
2109 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2110 
2111 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2112 	if (unlikely(!area))
2113 		return NULL;
2114 
2115 	if (!(flags & VM_NO_GUARD))
2116 		size += PAGE_SIZE;
2117 
2118 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2119 	if (IS_ERR(va)) {
2120 		kfree(area);
2121 		return NULL;
2122 	}
2123 
2124 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2125 
2126 	setup_vmalloc_vm(area, va, flags, caller);
2127 
2128 	return area;
2129 }
2130 
2131 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2132 				unsigned long start, unsigned long end)
2133 {
2134 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2135 				  GFP_KERNEL, __builtin_return_address(0));
2136 }
2137 EXPORT_SYMBOL_GPL(__get_vm_area);
2138 
2139 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2140 				       unsigned long start, unsigned long end,
2141 				       const void *caller)
2142 {
2143 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2144 				  GFP_KERNEL, caller);
2145 }
2146 
2147 /**
2148  * get_vm_area - reserve a contiguous kernel virtual area
2149  * @size:	 size of the area
2150  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2151  *
2152  * Search an area of @size in the kernel virtual mapping area,
2153  * and reserved it for out purposes.  Returns the area descriptor
2154  * on success or %NULL on failure.
2155  *
2156  * Return: the area descriptor on success or %NULL on failure.
2157  */
2158 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2159 {
2160 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2161 				  NUMA_NO_NODE, GFP_KERNEL,
2162 				  __builtin_return_address(0));
2163 }
2164 
2165 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2166 				const void *caller)
2167 {
2168 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2169 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2170 }
2171 
2172 /**
2173  * find_vm_area - find a continuous kernel virtual area
2174  * @addr:	  base address
2175  *
2176  * Search for the kernel VM area starting at @addr, and return it.
2177  * It is up to the caller to do all required locking to keep the returned
2178  * pointer valid.
2179  *
2180  * Return: pointer to the found area or %NULL on faulure
2181  */
2182 struct vm_struct *find_vm_area(const void *addr)
2183 {
2184 	struct vmap_area *va;
2185 
2186 	va = find_vmap_area((unsigned long)addr);
2187 	if (!va)
2188 		return NULL;
2189 
2190 	return va->vm;
2191 }
2192 
2193 /**
2194  * remove_vm_area - find and remove a continuous kernel virtual area
2195  * @addr:	    base address
2196  *
2197  * Search for the kernel VM area starting at @addr, and remove it.
2198  * This function returns the found VM area, but using it is NOT safe
2199  * on SMP machines, except for its size or flags.
2200  *
2201  * Return: pointer to the found area or %NULL on faulure
2202  */
2203 struct vm_struct *remove_vm_area(const void *addr)
2204 {
2205 	struct vmap_area *va;
2206 
2207 	might_sleep();
2208 
2209 	spin_lock(&vmap_area_lock);
2210 	va = __find_vmap_area((unsigned long)addr);
2211 	if (va && va->vm) {
2212 		struct vm_struct *vm = va->vm;
2213 
2214 		va->vm = NULL;
2215 		spin_unlock(&vmap_area_lock);
2216 
2217 		kasan_free_shadow(vm);
2218 		free_unmap_vmap_area(va);
2219 
2220 		return vm;
2221 	}
2222 
2223 	spin_unlock(&vmap_area_lock);
2224 	return NULL;
2225 }
2226 
2227 static inline void set_area_direct_map(const struct vm_struct *area,
2228 				       int (*set_direct_map)(struct page *page))
2229 {
2230 	int i;
2231 
2232 	for (i = 0; i < area->nr_pages; i++)
2233 		if (page_address(area->pages[i]))
2234 			set_direct_map(area->pages[i]);
2235 }
2236 
2237 /* Handle removing and resetting vm mappings related to the vm_struct. */
2238 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2239 {
2240 	unsigned long start = ULONG_MAX, end = 0;
2241 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2242 	int flush_dmap = 0;
2243 	int i;
2244 
2245 	remove_vm_area(area->addr);
2246 
2247 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2248 	if (!flush_reset)
2249 		return;
2250 
2251 	/*
2252 	 * If not deallocating pages, just do the flush of the VM area and
2253 	 * return.
2254 	 */
2255 	if (!deallocate_pages) {
2256 		vm_unmap_aliases();
2257 		return;
2258 	}
2259 
2260 	/*
2261 	 * If execution gets here, flush the vm mapping and reset the direct
2262 	 * map. Find the start and end range of the direct mappings to make sure
2263 	 * the vm_unmap_aliases() flush includes the direct map.
2264 	 */
2265 	for (i = 0; i < area->nr_pages; i++) {
2266 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2267 		if (addr) {
2268 			start = min(addr, start);
2269 			end = max(addr + PAGE_SIZE, end);
2270 			flush_dmap = 1;
2271 		}
2272 	}
2273 
2274 	/*
2275 	 * Set direct map to something invalid so that it won't be cached if
2276 	 * there are any accesses after the TLB flush, then flush the TLB and
2277 	 * reset the direct map permissions to the default.
2278 	 */
2279 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2280 	_vm_unmap_aliases(start, end, flush_dmap);
2281 	set_area_direct_map(area, set_direct_map_default_noflush);
2282 }
2283 
2284 static void __vunmap(const void *addr, int deallocate_pages)
2285 {
2286 	struct vm_struct *area;
2287 
2288 	if (!addr)
2289 		return;
2290 
2291 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2292 			addr))
2293 		return;
2294 
2295 	area = find_vm_area(addr);
2296 	if (unlikely(!area)) {
2297 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2298 				addr);
2299 		return;
2300 	}
2301 
2302 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2303 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2304 
2305 	kasan_poison_vmalloc(area->addr, area->size);
2306 
2307 	vm_remove_mappings(area, deallocate_pages);
2308 
2309 	if (deallocate_pages) {
2310 		int i;
2311 
2312 		for (i = 0; i < area->nr_pages; i++) {
2313 			struct page *page = area->pages[i];
2314 
2315 			BUG_ON(!page);
2316 			__free_pages(page, 0);
2317 		}
2318 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2319 
2320 		kvfree(area->pages);
2321 	}
2322 
2323 	kfree(area);
2324 	return;
2325 }
2326 
2327 static inline void __vfree_deferred(const void *addr)
2328 {
2329 	/*
2330 	 * Use raw_cpu_ptr() because this can be called from preemptible
2331 	 * context. Preemption is absolutely fine here, because the llist_add()
2332 	 * implementation is lockless, so it works even if we are adding to
2333 	 * nother cpu's list.  schedule_work() should be fine with this too.
2334 	 */
2335 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2336 
2337 	if (llist_add((struct llist_node *)addr, &p->list))
2338 		schedule_work(&p->wq);
2339 }
2340 
2341 /**
2342  * vfree_atomic - release memory allocated by vmalloc()
2343  * @addr:	  memory base address
2344  *
2345  * This one is just like vfree() but can be called in any atomic context
2346  * except NMIs.
2347  */
2348 void vfree_atomic(const void *addr)
2349 {
2350 	BUG_ON(in_nmi());
2351 
2352 	kmemleak_free(addr);
2353 
2354 	if (!addr)
2355 		return;
2356 	__vfree_deferred(addr);
2357 }
2358 
2359 static void __vfree(const void *addr)
2360 {
2361 	if (unlikely(in_interrupt()))
2362 		__vfree_deferred(addr);
2363 	else
2364 		__vunmap(addr, 1);
2365 }
2366 
2367 /**
2368  * vfree - release memory allocated by vmalloc()
2369  * @addr:  memory base address
2370  *
2371  * Free the virtually continuous memory area starting at @addr, as
2372  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2373  * NULL, no operation is performed.
2374  *
2375  * Must not be called in NMI context (strictly speaking, only if we don't
2376  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2377  * conventions for vfree() arch-depenedent would be a really bad idea)
2378  *
2379  * May sleep if called *not* from interrupt context.
2380  *
2381  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2382  */
2383 void vfree(const void *addr)
2384 {
2385 	BUG_ON(in_nmi());
2386 
2387 	kmemleak_free(addr);
2388 
2389 	might_sleep_if(!in_interrupt());
2390 
2391 	if (!addr)
2392 		return;
2393 
2394 	__vfree(addr);
2395 }
2396 EXPORT_SYMBOL(vfree);
2397 
2398 /**
2399  * vunmap - release virtual mapping obtained by vmap()
2400  * @addr:   memory base address
2401  *
2402  * Free the virtually contiguous memory area starting at @addr,
2403  * which was created from the page array passed to vmap().
2404  *
2405  * Must not be called in interrupt context.
2406  */
2407 void vunmap(const void *addr)
2408 {
2409 	BUG_ON(in_interrupt());
2410 	might_sleep();
2411 	if (addr)
2412 		__vunmap(addr, 0);
2413 }
2414 EXPORT_SYMBOL(vunmap);
2415 
2416 /**
2417  * vmap - map an array of pages into virtually contiguous space
2418  * @pages: array of page pointers
2419  * @count: number of pages to map
2420  * @flags: vm_area->flags
2421  * @prot: page protection for the mapping
2422  *
2423  * Maps @count pages from @pages into contiguous kernel virtual
2424  * space.
2425  *
2426  * Return: the address of the area or %NULL on failure
2427  */
2428 void *vmap(struct page **pages, unsigned int count,
2429 	   unsigned long flags, pgprot_t prot)
2430 {
2431 	struct vm_struct *area;
2432 	unsigned long size;		/* In bytes */
2433 
2434 	might_sleep();
2435 
2436 	if (count > totalram_pages())
2437 		return NULL;
2438 
2439 	size = (unsigned long)count << PAGE_SHIFT;
2440 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2441 	if (!area)
2442 		return NULL;
2443 
2444 	if (map_vm_area(area, prot, pages)) {
2445 		vunmap(area->addr);
2446 		return NULL;
2447 	}
2448 
2449 	return area->addr;
2450 }
2451 EXPORT_SYMBOL(vmap);
2452 
2453 static void *__vmalloc_node(unsigned long size, unsigned long align,
2454 			    gfp_t gfp_mask, pgprot_t prot,
2455 			    int node, const void *caller);
2456 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2457 				 pgprot_t prot, int node)
2458 {
2459 	struct page **pages;
2460 	unsigned int nr_pages, array_size, i;
2461 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2462 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2463 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2464 					0 :
2465 					__GFP_HIGHMEM;
2466 
2467 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2468 	array_size = (nr_pages * sizeof(struct page *));
2469 
2470 	/* Please note that the recursion is strictly bounded. */
2471 	if (array_size > PAGE_SIZE) {
2472 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2473 				PAGE_KERNEL, node, area->caller);
2474 	} else {
2475 		pages = kmalloc_node(array_size, nested_gfp, node);
2476 	}
2477 
2478 	if (!pages) {
2479 		remove_vm_area(area->addr);
2480 		kfree(area);
2481 		return NULL;
2482 	}
2483 
2484 	area->pages = pages;
2485 	area->nr_pages = nr_pages;
2486 
2487 	for (i = 0; i < area->nr_pages; i++) {
2488 		struct page *page;
2489 
2490 		if (node == NUMA_NO_NODE)
2491 			page = alloc_page(alloc_mask|highmem_mask);
2492 		else
2493 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2494 
2495 		if (unlikely(!page)) {
2496 			/* Successfully allocated i pages, free them in __vunmap() */
2497 			area->nr_pages = i;
2498 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2499 			goto fail;
2500 		}
2501 		area->pages[i] = page;
2502 		if (gfpflags_allow_blocking(gfp_mask))
2503 			cond_resched();
2504 	}
2505 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2506 
2507 	if (map_vm_area(area, prot, pages))
2508 		goto fail;
2509 	return area->addr;
2510 
2511 fail:
2512 	warn_alloc(gfp_mask, NULL,
2513 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2514 			  (area->nr_pages*PAGE_SIZE), area->size);
2515 	__vfree(area->addr);
2516 	return NULL;
2517 }
2518 
2519 /**
2520  * __vmalloc_node_range - allocate virtually contiguous memory
2521  * @size:		  allocation size
2522  * @align:		  desired alignment
2523  * @start:		  vm area range start
2524  * @end:		  vm area range end
2525  * @gfp_mask:		  flags for the page level allocator
2526  * @prot:		  protection mask for the allocated pages
2527  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2528  * @node:		  node to use for allocation or NUMA_NO_NODE
2529  * @caller:		  caller's return address
2530  *
2531  * Allocate enough pages to cover @size from the page level
2532  * allocator with @gfp_mask flags.  Map them into contiguous
2533  * kernel virtual space, using a pagetable protection of @prot.
2534  *
2535  * Return: the address of the area or %NULL on failure
2536  */
2537 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2538 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2539 			pgprot_t prot, unsigned long vm_flags, int node,
2540 			const void *caller)
2541 {
2542 	struct vm_struct *area;
2543 	void *addr;
2544 	unsigned long real_size = size;
2545 
2546 	size = PAGE_ALIGN(size);
2547 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2548 		goto fail;
2549 
2550 	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2551 				vm_flags, start, end, node, gfp_mask, caller);
2552 	if (!area)
2553 		goto fail;
2554 
2555 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2556 	if (!addr)
2557 		return NULL;
2558 
2559 	/*
2560 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2561 	 * flag. It means that vm_struct is not fully initialized.
2562 	 * Now, it is fully initialized, so remove this flag here.
2563 	 */
2564 	clear_vm_uninitialized_flag(area);
2565 
2566 	kmemleak_vmalloc(area, size, gfp_mask);
2567 
2568 	return addr;
2569 
2570 fail:
2571 	warn_alloc(gfp_mask, NULL,
2572 			  "vmalloc: allocation failure: %lu bytes", real_size);
2573 	return NULL;
2574 }
2575 
2576 /*
2577  * This is only for performance analysis of vmalloc and stress purpose.
2578  * It is required by vmalloc test module, therefore do not use it other
2579  * than that.
2580  */
2581 #ifdef CONFIG_TEST_VMALLOC_MODULE
2582 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2583 #endif
2584 
2585 /**
2586  * __vmalloc_node - allocate virtually contiguous memory
2587  * @size:	    allocation size
2588  * @align:	    desired alignment
2589  * @gfp_mask:	    flags for the page level allocator
2590  * @prot:	    protection mask for the allocated pages
2591  * @node:	    node to use for allocation or NUMA_NO_NODE
2592  * @caller:	    caller's return address
2593  *
2594  * Allocate enough pages to cover @size from the page level
2595  * allocator with @gfp_mask flags.  Map them into contiguous
2596  * kernel virtual space, using a pagetable protection of @prot.
2597  *
2598  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2599  * and __GFP_NOFAIL are not supported
2600  *
2601  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2602  * with mm people.
2603  *
2604  * Return: pointer to the allocated memory or %NULL on error
2605  */
2606 static void *__vmalloc_node(unsigned long size, unsigned long align,
2607 			    gfp_t gfp_mask, pgprot_t prot,
2608 			    int node, const void *caller)
2609 {
2610 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2611 				gfp_mask, prot, 0, node, caller);
2612 }
2613 
2614 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2615 {
2616 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2617 				__builtin_return_address(0));
2618 }
2619 EXPORT_SYMBOL(__vmalloc);
2620 
2621 static inline void *__vmalloc_node_flags(unsigned long size,
2622 					int node, gfp_t flags)
2623 {
2624 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2625 					node, __builtin_return_address(0));
2626 }
2627 
2628 
2629 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2630 				  void *caller)
2631 {
2632 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2633 }
2634 
2635 /**
2636  * vmalloc - allocate virtually contiguous memory
2637  * @size:    allocation size
2638  *
2639  * Allocate enough pages to cover @size from the page level
2640  * allocator and map them into contiguous kernel virtual space.
2641  *
2642  * For tight control over page level allocator and protection flags
2643  * use __vmalloc() instead.
2644  *
2645  * Return: pointer to the allocated memory or %NULL on error
2646  */
2647 void *vmalloc(unsigned long size)
2648 {
2649 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2650 				    GFP_KERNEL);
2651 }
2652 EXPORT_SYMBOL(vmalloc);
2653 
2654 /**
2655  * vzalloc - allocate virtually contiguous memory with zero fill
2656  * @size:    allocation size
2657  *
2658  * Allocate enough pages to cover @size from the page level
2659  * allocator and map them into contiguous kernel virtual space.
2660  * The memory allocated is set to zero.
2661  *
2662  * For tight control over page level allocator and protection flags
2663  * use __vmalloc() instead.
2664  *
2665  * Return: pointer to the allocated memory or %NULL on error
2666  */
2667 void *vzalloc(unsigned long size)
2668 {
2669 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2670 				GFP_KERNEL | __GFP_ZERO);
2671 }
2672 EXPORT_SYMBOL(vzalloc);
2673 
2674 /**
2675  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2676  * @size: allocation size
2677  *
2678  * The resulting memory area is zeroed so it can be mapped to userspace
2679  * without leaking data.
2680  *
2681  * Return: pointer to the allocated memory or %NULL on error
2682  */
2683 void *vmalloc_user(unsigned long size)
2684 {
2685 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2686 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2687 				    VM_USERMAP, NUMA_NO_NODE,
2688 				    __builtin_return_address(0));
2689 }
2690 EXPORT_SYMBOL(vmalloc_user);
2691 
2692 /**
2693  * vmalloc_node - allocate memory on a specific node
2694  * @size:	  allocation size
2695  * @node:	  numa node
2696  *
2697  * Allocate enough pages to cover @size from the page level
2698  * allocator and map them into contiguous kernel virtual space.
2699  *
2700  * For tight control over page level allocator and protection flags
2701  * use __vmalloc() instead.
2702  *
2703  * Return: pointer to the allocated memory or %NULL on error
2704  */
2705 void *vmalloc_node(unsigned long size, int node)
2706 {
2707 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2708 					node, __builtin_return_address(0));
2709 }
2710 EXPORT_SYMBOL(vmalloc_node);
2711 
2712 /**
2713  * vzalloc_node - allocate memory on a specific node with zero fill
2714  * @size:	allocation size
2715  * @node:	numa node
2716  *
2717  * Allocate enough pages to cover @size from the page level
2718  * allocator and map them into contiguous kernel virtual space.
2719  * The memory allocated is set to zero.
2720  *
2721  * For tight control over page level allocator and protection flags
2722  * use __vmalloc_node() instead.
2723  *
2724  * Return: pointer to the allocated memory or %NULL on error
2725  */
2726 void *vzalloc_node(unsigned long size, int node)
2727 {
2728 	return __vmalloc_node_flags(size, node,
2729 			 GFP_KERNEL | __GFP_ZERO);
2730 }
2731 EXPORT_SYMBOL(vzalloc_node);
2732 
2733 /**
2734  * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2735  * @size: allocation size
2736  * @node: numa node
2737  * @flags: flags for the page level allocator
2738  *
2739  * The resulting memory area is zeroed so it can be mapped to userspace
2740  * without leaking data.
2741  *
2742  * Return: pointer to the allocated memory or %NULL on error
2743  */
2744 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2745 {
2746 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2747 				    flags | __GFP_ZERO, PAGE_KERNEL,
2748 				    VM_USERMAP, node,
2749 				    __builtin_return_address(0));
2750 }
2751 EXPORT_SYMBOL(vmalloc_user_node_flags);
2752 
2753 /**
2754  * vmalloc_exec - allocate virtually contiguous, executable memory
2755  * @size:	  allocation size
2756  *
2757  * Kernel-internal function to allocate enough pages to cover @size
2758  * the page level allocator and map them into contiguous and
2759  * executable kernel virtual space.
2760  *
2761  * For tight control over page level allocator and protection flags
2762  * use __vmalloc() instead.
2763  *
2764  * Return: pointer to the allocated memory or %NULL on error
2765  */
2766 void *vmalloc_exec(unsigned long size)
2767 {
2768 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2769 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2770 			NUMA_NO_NODE, __builtin_return_address(0));
2771 }
2772 
2773 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2774 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2775 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2776 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2777 #else
2778 /*
2779  * 64b systems should always have either DMA or DMA32 zones. For others
2780  * GFP_DMA32 should do the right thing and use the normal zone.
2781  */
2782 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2783 #endif
2784 
2785 /**
2786  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2787  * @size:	allocation size
2788  *
2789  * Allocate enough 32bit PA addressable pages to cover @size from the
2790  * page level allocator and map them into contiguous kernel virtual space.
2791  *
2792  * Return: pointer to the allocated memory or %NULL on error
2793  */
2794 void *vmalloc_32(unsigned long size)
2795 {
2796 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2797 			      NUMA_NO_NODE, __builtin_return_address(0));
2798 }
2799 EXPORT_SYMBOL(vmalloc_32);
2800 
2801 /**
2802  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2803  * @size:	     allocation size
2804  *
2805  * The resulting memory area is 32bit addressable and zeroed so it can be
2806  * mapped to userspace without leaking data.
2807  *
2808  * Return: pointer to the allocated memory or %NULL on error
2809  */
2810 void *vmalloc_32_user(unsigned long size)
2811 {
2812 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2813 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2814 				    VM_USERMAP, NUMA_NO_NODE,
2815 				    __builtin_return_address(0));
2816 }
2817 EXPORT_SYMBOL(vmalloc_32_user);
2818 
2819 /*
2820  * small helper routine , copy contents to buf from addr.
2821  * If the page is not present, fill zero.
2822  */
2823 
2824 static int aligned_vread(char *buf, char *addr, unsigned long count)
2825 {
2826 	struct page *p;
2827 	int copied = 0;
2828 
2829 	while (count) {
2830 		unsigned long offset, length;
2831 
2832 		offset = offset_in_page(addr);
2833 		length = PAGE_SIZE - offset;
2834 		if (length > count)
2835 			length = count;
2836 		p = vmalloc_to_page(addr);
2837 		/*
2838 		 * To do safe access to this _mapped_ area, we need
2839 		 * lock. But adding lock here means that we need to add
2840 		 * overhead of vmalloc()/vfree() calles for this _debug_
2841 		 * interface, rarely used. Instead of that, we'll use
2842 		 * kmap() and get small overhead in this access function.
2843 		 */
2844 		if (p) {
2845 			/*
2846 			 * we can expect USER0 is not used (see vread/vwrite's
2847 			 * function description)
2848 			 */
2849 			void *map = kmap_atomic(p);
2850 			memcpy(buf, map + offset, length);
2851 			kunmap_atomic(map);
2852 		} else
2853 			memset(buf, 0, length);
2854 
2855 		addr += length;
2856 		buf += length;
2857 		copied += length;
2858 		count -= length;
2859 	}
2860 	return copied;
2861 }
2862 
2863 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2864 {
2865 	struct page *p;
2866 	int copied = 0;
2867 
2868 	while (count) {
2869 		unsigned long offset, length;
2870 
2871 		offset = offset_in_page(addr);
2872 		length = PAGE_SIZE - offset;
2873 		if (length > count)
2874 			length = count;
2875 		p = vmalloc_to_page(addr);
2876 		/*
2877 		 * To do safe access to this _mapped_ area, we need
2878 		 * lock. But adding lock here means that we need to add
2879 		 * overhead of vmalloc()/vfree() calles for this _debug_
2880 		 * interface, rarely used. Instead of that, we'll use
2881 		 * kmap() and get small overhead in this access function.
2882 		 */
2883 		if (p) {
2884 			/*
2885 			 * we can expect USER0 is not used (see vread/vwrite's
2886 			 * function description)
2887 			 */
2888 			void *map = kmap_atomic(p);
2889 			memcpy(map + offset, buf, length);
2890 			kunmap_atomic(map);
2891 		}
2892 		addr += length;
2893 		buf += length;
2894 		copied += length;
2895 		count -= length;
2896 	}
2897 	return copied;
2898 }
2899 
2900 /**
2901  * vread() - read vmalloc area in a safe way.
2902  * @buf:     buffer for reading data
2903  * @addr:    vm address.
2904  * @count:   number of bytes to be read.
2905  *
2906  * This function checks that addr is a valid vmalloc'ed area, and
2907  * copy data from that area to a given buffer. If the given memory range
2908  * of [addr...addr+count) includes some valid address, data is copied to
2909  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2910  * IOREMAP area is treated as memory hole and no copy is done.
2911  *
2912  * If [addr...addr+count) doesn't includes any intersects with alive
2913  * vm_struct area, returns 0. @buf should be kernel's buffer.
2914  *
2915  * Note: In usual ops, vread() is never necessary because the caller
2916  * should know vmalloc() area is valid and can use memcpy().
2917  * This is for routines which have to access vmalloc area without
2918  * any information, as /dev/kmem.
2919  *
2920  * Return: number of bytes for which addr and buf should be increased
2921  * (same number as @count) or %0 if [addr...addr+count) doesn't
2922  * include any intersection with valid vmalloc area
2923  */
2924 long vread(char *buf, char *addr, unsigned long count)
2925 {
2926 	struct vmap_area *va;
2927 	struct vm_struct *vm;
2928 	char *vaddr, *buf_start = buf;
2929 	unsigned long buflen = count;
2930 	unsigned long n;
2931 
2932 	/* Don't allow overflow */
2933 	if ((unsigned long) addr + count < count)
2934 		count = -(unsigned long) addr;
2935 
2936 	spin_lock(&vmap_area_lock);
2937 	list_for_each_entry(va, &vmap_area_list, list) {
2938 		if (!count)
2939 			break;
2940 
2941 		if (!va->vm)
2942 			continue;
2943 
2944 		vm = va->vm;
2945 		vaddr = (char *) vm->addr;
2946 		if (addr >= vaddr + get_vm_area_size(vm))
2947 			continue;
2948 		while (addr < vaddr) {
2949 			if (count == 0)
2950 				goto finished;
2951 			*buf = '\0';
2952 			buf++;
2953 			addr++;
2954 			count--;
2955 		}
2956 		n = vaddr + get_vm_area_size(vm) - addr;
2957 		if (n > count)
2958 			n = count;
2959 		if (!(vm->flags & VM_IOREMAP))
2960 			aligned_vread(buf, addr, n);
2961 		else /* IOREMAP area is treated as memory hole */
2962 			memset(buf, 0, n);
2963 		buf += n;
2964 		addr += n;
2965 		count -= n;
2966 	}
2967 finished:
2968 	spin_unlock(&vmap_area_lock);
2969 
2970 	if (buf == buf_start)
2971 		return 0;
2972 	/* zero-fill memory holes */
2973 	if (buf != buf_start + buflen)
2974 		memset(buf, 0, buflen - (buf - buf_start));
2975 
2976 	return buflen;
2977 }
2978 
2979 /**
2980  * vwrite() - write vmalloc area in a safe way.
2981  * @buf:      buffer for source data
2982  * @addr:     vm address.
2983  * @count:    number of bytes to be read.
2984  *
2985  * This function checks that addr is a valid vmalloc'ed area, and
2986  * copy data from a buffer to the given addr. If specified range of
2987  * [addr...addr+count) includes some valid address, data is copied from
2988  * proper area of @buf. If there are memory holes, no copy to hole.
2989  * IOREMAP area is treated as memory hole and no copy is done.
2990  *
2991  * If [addr...addr+count) doesn't includes any intersects with alive
2992  * vm_struct area, returns 0. @buf should be kernel's buffer.
2993  *
2994  * Note: In usual ops, vwrite() is never necessary because the caller
2995  * should know vmalloc() area is valid and can use memcpy().
2996  * This is for routines which have to access vmalloc area without
2997  * any information, as /dev/kmem.
2998  *
2999  * Return: number of bytes for which addr and buf should be
3000  * increased (same number as @count) or %0 if [addr...addr+count)
3001  * doesn't include any intersection with valid vmalloc area
3002  */
3003 long vwrite(char *buf, char *addr, unsigned long count)
3004 {
3005 	struct vmap_area *va;
3006 	struct vm_struct *vm;
3007 	char *vaddr;
3008 	unsigned long n, buflen;
3009 	int copied = 0;
3010 
3011 	/* Don't allow overflow */
3012 	if ((unsigned long) addr + count < count)
3013 		count = -(unsigned long) addr;
3014 	buflen = count;
3015 
3016 	spin_lock(&vmap_area_lock);
3017 	list_for_each_entry(va, &vmap_area_list, list) {
3018 		if (!count)
3019 			break;
3020 
3021 		if (!va->vm)
3022 			continue;
3023 
3024 		vm = va->vm;
3025 		vaddr = (char *) vm->addr;
3026 		if (addr >= vaddr + get_vm_area_size(vm))
3027 			continue;
3028 		while (addr < vaddr) {
3029 			if (count == 0)
3030 				goto finished;
3031 			buf++;
3032 			addr++;
3033 			count--;
3034 		}
3035 		n = vaddr + get_vm_area_size(vm) - addr;
3036 		if (n > count)
3037 			n = count;
3038 		if (!(vm->flags & VM_IOREMAP)) {
3039 			aligned_vwrite(buf, addr, n);
3040 			copied++;
3041 		}
3042 		buf += n;
3043 		addr += n;
3044 		count -= n;
3045 	}
3046 finished:
3047 	spin_unlock(&vmap_area_lock);
3048 	if (!copied)
3049 		return 0;
3050 	return buflen;
3051 }
3052 
3053 /**
3054  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3055  * @vma:		vma to cover
3056  * @uaddr:		target user address to start at
3057  * @kaddr:		virtual address of vmalloc kernel memory
3058  * @pgoff:		offset from @kaddr to start at
3059  * @size:		size of map area
3060  *
3061  * Returns:	0 for success, -Exxx on failure
3062  *
3063  * This function checks that @kaddr is a valid vmalloc'ed area,
3064  * and that it is big enough to cover the range starting at
3065  * @uaddr in @vma. Will return failure if that criteria isn't
3066  * met.
3067  *
3068  * Similar to remap_pfn_range() (see mm/memory.c)
3069  */
3070 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3071 				void *kaddr, unsigned long pgoff,
3072 				unsigned long size)
3073 {
3074 	struct vm_struct *area;
3075 	unsigned long off;
3076 	unsigned long end_index;
3077 
3078 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3079 		return -EINVAL;
3080 
3081 	size = PAGE_ALIGN(size);
3082 
3083 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3084 		return -EINVAL;
3085 
3086 	area = find_vm_area(kaddr);
3087 	if (!area)
3088 		return -EINVAL;
3089 
3090 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3091 		return -EINVAL;
3092 
3093 	if (check_add_overflow(size, off, &end_index) ||
3094 	    end_index > get_vm_area_size(area))
3095 		return -EINVAL;
3096 	kaddr += off;
3097 
3098 	do {
3099 		struct page *page = vmalloc_to_page(kaddr);
3100 		int ret;
3101 
3102 		ret = vm_insert_page(vma, uaddr, page);
3103 		if (ret)
3104 			return ret;
3105 
3106 		uaddr += PAGE_SIZE;
3107 		kaddr += PAGE_SIZE;
3108 		size -= PAGE_SIZE;
3109 	} while (size > 0);
3110 
3111 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3112 
3113 	return 0;
3114 }
3115 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3116 
3117 /**
3118  * remap_vmalloc_range - map vmalloc pages to userspace
3119  * @vma:		vma to cover (map full range of vma)
3120  * @addr:		vmalloc memory
3121  * @pgoff:		number of pages into addr before first page to map
3122  *
3123  * Returns:	0 for success, -Exxx on failure
3124  *
3125  * This function checks that addr is a valid vmalloc'ed area, and
3126  * that it is big enough to cover the vma. Will return failure if
3127  * that criteria isn't met.
3128  *
3129  * Similar to remap_pfn_range() (see mm/memory.c)
3130  */
3131 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3132 						unsigned long pgoff)
3133 {
3134 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3135 					   addr, pgoff,
3136 					   vma->vm_end - vma->vm_start);
3137 }
3138 EXPORT_SYMBOL(remap_vmalloc_range);
3139 
3140 /*
3141  * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
3142  * not to have one.
3143  *
3144  * The purpose of this function is to make sure the vmalloc area
3145  * mappings are identical in all page-tables in the system.
3146  */
3147 void __weak vmalloc_sync_mappings(void)
3148 {
3149 }
3150 
3151 void __weak vmalloc_sync_unmappings(void)
3152 {
3153 }
3154 
3155 static int f(pte_t *pte, unsigned long addr, void *data)
3156 {
3157 	pte_t ***p = data;
3158 
3159 	if (p) {
3160 		*(*p) = pte;
3161 		(*p)++;
3162 	}
3163 	return 0;
3164 }
3165 
3166 /**
3167  * alloc_vm_area - allocate a range of kernel address space
3168  * @size:	   size of the area
3169  * @ptes:	   returns the PTEs for the address space
3170  *
3171  * Returns:	NULL on failure, vm_struct on success
3172  *
3173  * This function reserves a range of kernel address space, and
3174  * allocates pagetables to map that range.  No actual mappings
3175  * are created.
3176  *
3177  * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3178  * allocated for the VM area are returned.
3179  */
3180 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3181 {
3182 	struct vm_struct *area;
3183 
3184 	area = get_vm_area_caller(size, VM_IOREMAP,
3185 				__builtin_return_address(0));
3186 	if (area == NULL)
3187 		return NULL;
3188 
3189 	/*
3190 	 * This ensures that page tables are constructed for this region
3191 	 * of kernel virtual address space and mapped into init_mm.
3192 	 */
3193 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3194 				size, f, ptes ? &ptes : NULL)) {
3195 		free_vm_area(area);
3196 		return NULL;
3197 	}
3198 
3199 	return area;
3200 }
3201 EXPORT_SYMBOL_GPL(alloc_vm_area);
3202 
3203 void free_vm_area(struct vm_struct *area)
3204 {
3205 	struct vm_struct *ret;
3206 	ret = remove_vm_area(area->addr);
3207 	BUG_ON(ret != area);
3208 	kfree(area);
3209 }
3210 EXPORT_SYMBOL_GPL(free_vm_area);
3211 
3212 #ifdef CONFIG_SMP
3213 static struct vmap_area *node_to_va(struct rb_node *n)
3214 {
3215 	return rb_entry_safe(n, struct vmap_area, rb_node);
3216 }
3217 
3218 /**
3219  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3220  * @addr: target address
3221  *
3222  * Returns: vmap_area if it is found. If there is no such area
3223  *   the first highest(reverse order) vmap_area is returned
3224  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3225  *   if there are no any areas before @addr.
3226  */
3227 static struct vmap_area *
3228 pvm_find_va_enclose_addr(unsigned long addr)
3229 {
3230 	struct vmap_area *va, *tmp;
3231 	struct rb_node *n;
3232 
3233 	n = free_vmap_area_root.rb_node;
3234 	va = NULL;
3235 
3236 	while (n) {
3237 		tmp = rb_entry(n, struct vmap_area, rb_node);
3238 		if (tmp->va_start <= addr) {
3239 			va = tmp;
3240 			if (tmp->va_end >= addr)
3241 				break;
3242 
3243 			n = n->rb_right;
3244 		} else {
3245 			n = n->rb_left;
3246 		}
3247 	}
3248 
3249 	return va;
3250 }
3251 
3252 /**
3253  * pvm_determine_end_from_reverse - find the highest aligned address
3254  * of free block below VMALLOC_END
3255  * @va:
3256  *   in - the VA we start the search(reverse order);
3257  *   out - the VA with the highest aligned end address.
3258  *
3259  * Returns: determined end address within vmap_area
3260  */
3261 static unsigned long
3262 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3263 {
3264 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3265 	unsigned long addr;
3266 
3267 	if (likely(*va)) {
3268 		list_for_each_entry_from_reverse((*va),
3269 				&free_vmap_area_list, list) {
3270 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3271 			if ((*va)->va_start < addr)
3272 				return addr;
3273 		}
3274 	}
3275 
3276 	return 0;
3277 }
3278 
3279 /**
3280  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3281  * @offsets: array containing offset of each area
3282  * @sizes: array containing size of each area
3283  * @nr_vms: the number of areas to allocate
3284  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3285  *
3286  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3287  *	    vm_structs on success, %NULL on failure
3288  *
3289  * Percpu allocator wants to use congruent vm areas so that it can
3290  * maintain the offsets among percpu areas.  This function allocates
3291  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3292  * be scattered pretty far, distance between two areas easily going up
3293  * to gigabytes.  To avoid interacting with regular vmallocs, these
3294  * areas are allocated from top.
3295  *
3296  * Despite its complicated look, this allocator is rather simple. It
3297  * does everything top-down and scans free blocks from the end looking
3298  * for matching base. While scanning, if any of the areas do not fit the
3299  * base address is pulled down to fit the area. Scanning is repeated till
3300  * all the areas fit and then all necessary data structures are inserted
3301  * and the result is returned.
3302  */
3303 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3304 				     const size_t *sizes, int nr_vms,
3305 				     size_t align)
3306 {
3307 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3308 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3309 	struct vmap_area **vas, *va;
3310 	struct vm_struct **vms;
3311 	int area, area2, last_area, term_area;
3312 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3313 	bool purged = false;
3314 	enum fit_type type;
3315 
3316 	/* verify parameters and allocate data structures */
3317 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3318 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3319 		start = offsets[area];
3320 		end = start + sizes[area];
3321 
3322 		/* is everything aligned properly? */
3323 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3324 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3325 
3326 		/* detect the area with the highest address */
3327 		if (start > offsets[last_area])
3328 			last_area = area;
3329 
3330 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3331 			unsigned long start2 = offsets[area2];
3332 			unsigned long end2 = start2 + sizes[area2];
3333 
3334 			BUG_ON(start2 < end && start < end2);
3335 		}
3336 	}
3337 	last_end = offsets[last_area] + sizes[last_area];
3338 
3339 	if (vmalloc_end - vmalloc_start < last_end) {
3340 		WARN_ON(true);
3341 		return NULL;
3342 	}
3343 
3344 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3345 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3346 	if (!vas || !vms)
3347 		goto err_free2;
3348 
3349 	for (area = 0; area < nr_vms; area++) {
3350 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3351 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3352 		if (!vas[area] || !vms[area])
3353 			goto err_free;
3354 	}
3355 retry:
3356 	spin_lock(&free_vmap_area_lock);
3357 
3358 	/* start scanning - we scan from the top, begin with the last area */
3359 	area = term_area = last_area;
3360 	start = offsets[area];
3361 	end = start + sizes[area];
3362 
3363 	va = pvm_find_va_enclose_addr(vmalloc_end);
3364 	base = pvm_determine_end_from_reverse(&va, align) - end;
3365 
3366 	while (true) {
3367 		/*
3368 		 * base might have underflowed, add last_end before
3369 		 * comparing.
3370 		 */
3371 		if (base + last_end < vmalloc_start + last_end)
3372 			goto overflow;
3373 
3374 		/*
3375 		 * Fitting base has not been found.
3376 		 */
3377 		if (va == NULL)
3378 			goto overflow;
3379 
3380 		/*
3381 		 * If required width exceeds current VA block, move
3382 		 * base downwards and then recheck.
3383 		 */
3384 		if (base + end > va->va_end) {
3385 			base = pvm_determine_end_from_reverse(&va, align) - end;
3386 			term_area = area;
3387 			continue;
3388 		}
3389 
3390 		/*
3391 		 * If this VA does not fit, move base downwards and recheck.
3392 		 */
3393 		if (base + start < va->va_start) {
3394 			va = node_to_va(rb_prev(&va->rb_node));
3395 			base = pvm_determine_end_from_reverse(&va, align) - end;
3396 			term_area = area;
3397 			continue;
3398 		}
3399 
3400 		/*
3401 		 * This area fits, move on to the previous one.  If
3402 		 * the previous one is the terminal one, we're done.
3403 		 */
3404 		area = (area + nr_vms - 1) % nr_vms;
3405 		if (area == term_area)
3406 			break;
3407 
3408 		start = offsets[area];
3409 		end = start + sizes[area];
3410 		va = pvm_find_va_enclose_addr(base + end);
3411 	}
3412 
3413 	/* we've found a fitting base, insert all va's */
3414 	for (area = 0; area < nr_vms; area++) {
3415 		int ret;
3416 
3417 		start = base + offsets[area];
3418 		size = sizes[area];
3419 
3420 		va = pvm_find_va_enclose_addr(start);
3421 		if (WARN_ON_ONCE(va == NULL))
3422 			/* It is a BUG(), but trigger recovery instead. */
3423 			goto recovery;
3424 
3425 		type = classify_va_fit_type(va, start, size);
3426 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3427 			/* It is a BUG(), but trigger recovery instead. */
3428 			goto recovery;
3429 
3430 		ret = adjust_va_to_fit_type(va, start, size, type);
3431 		if (unlikely(ret))
3432 			goto recovery;
3433 
3434 		/* Allocated area. */
3435 		va = vas[area];
3436 		va->va_start = start;
3437 		va->va_end = start + size;
3438 	}
3439 
3440 	spin_unlock(&free_vmap_area_lock);
3441 
3442 	/* populate the kasan shadow space */
3443 	for (area = 0; area < nr_vms; area++) {
3444 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3445 			goto err_free_shadow;
3446 
3447 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3448 				       sizes[area]);
3449 	}
3450 
3451 	/* insert all vm's */
3452 	spin_lock(&vmap_area_lock);
3453 	for (area = 0; area < nr_vms; area++) {
3454 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3455 
3456 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3457 				 pcpu_get_vm_areas);
3458 	}
3459 	spin_unlock(&vmap_area_lock);
3460 
3461 	kfree(vas);
3462 	return vms;
3463 
3464 recovery:
3465 	/*
3466 	 * Remove previously allocated areas. There is no
3467 	 * need in removing these areas from the busy tree,
3468 	 * because they are inserted only on the final step
3469 	 * and when pcpu_get_vm_areas() is success.
3470 	 */
3471 	while (area--) {
3472 		orig_start = vas[area]->va_start;
3473 		orig_end = vas[area]->va_end;
3474 		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3475 					    &free_vmap_area_list);
3476 		kasan_release_vmalloc(orig_start, orig_end,
3477 				      va->va_start, va->va_end);
3478 		vas[area] = NULL;
3479 	}
3480 
3481 overflow:
3482 	spin_unlock(&free_vmap_area_lock);
3483 	if (!purged) {
3484 		purge_vmap_area_lazy();
3485 		purged = true;
3486 
3487 		/* Before "retry", check if we recover. */
3488 		for (area = 0; area < nr_vms; area++) {
3489 			if (vas[area])
3490 				continue;
3491 
3492 			vas[area] = kmem_cache_zalloc(
3493 				vmap_area_cachep, GFP_KERNEL);
3494 			if (!vas[area])
3495 				goto err_free;
3496 		}
3497 
3498 		goto retry;
3499 	}
3500 
3501 err_free:
3502 	for (area = 0; area < nr_vms; area++) {
3503 		if (vas[area])
3504 			kmem_cache_free(vmap_area_cachep, vas[area]);
3505 
3506 		kfree(vms[area]);
3507 	}
3508 err_free2:
3509 	kfree(vas);
3510 	kfree(vms);
3511 	return NULL;
3512 
3513 err_free_shadow:
3514 	spin_lock(&free_vmap_area_lock);
3515 	/*
3516 	 * We release all the vmalloc shadows, even the ones for regions that
3517 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3518 	 * being able to tolerate this case.
3519 	 */
3520 	for (area = 0; area < nr_vms; area++) {
3521 		orig_start = vas[area]->va_start;
3522 		orig_end = vas[area]->va_end;
3523 		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3524 					    &free_vmap_area_list);
3525 		kasan_release_vmalloc(orig_start, orig_end,
3526 				      va->va_start, va->va_end);
3527 		vas[area] = NULL;
3528 		kfree(vms[area]);
3529 	}
3530 	spin_unlock(&free_vmap_area_lock);
3531 	kfree(vas);
3532 	kfree(vms);
3533 	return NULL;
3534 }
3535 
3536 /**
3537  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3538  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3539  * @nr_vms: the number of allocated areas
3540  *
3541  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3542  */
3543 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3544 {
3545 	int i;
3546 
3547 	for (i = 0; i < nr_vms; i++)
3548 		free_vm_area(vms[i]);
3549 	kfree(vms);
3550 }
3551 #endif	/* CONFIG_SMP */
3552 
3553 #ifdef CONFIG_PROC_FS
3554 static void *s_start(struct seq_file *m, loff_t *pos)
3555 	__acquires(&vmap_purge_lock)
3556 	__acquires(&vmap_area_lock)
3557 {
3558 	mutex_lock(&vmap_purge_lock);
3559 	spin_lock(&vmap_area_lock);
3560 
3561 	return seq_list_start(&vmap_area_list, *pos);
3562 }
3563 
3564 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3565 {
3566 	return seq_list_next(p, &vmap_area_list, pos);
3567 }
3568 
3569 static void s_stop(struct seq_file *m, void *p)
3570 	__releases(&vmap_purge_lock)
3571 	__releases(&vmap_area_lock)
3572 {
3573 	mutex_unlock(&vmap_purge_lock);
3574 	spin_unlock(&vmap_area_lock);
3575 }
3576 
3577 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3578 {
3579 	if (IS_ENABLED(CONFIG_NUMA)) {
3580 		unsigned int nr, *counters = m->private;
3581 
3582 		if (!counters)
3583 			return;
3584 
3585 		if (v->flags & VM_UNINITIALIZED)
3586 			return;
3587 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3588 		smp_rmb();
3589 
3590 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3591 
3592 		for (nr = 0; nr < v->nr_pages; nr++)
3593 			counters[page_to_nid(v->pages[nr])]++;
3594 
3595 		for_each_node_state(nr, N_HIGH_MEMORY)
3596 			if (counters[nr])
3597 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3598 	}
3599 }
3600 
3601 static void show_purge_info(struct seq_file *m)
3602 {
3603 	struct llist_node *head;
3604 	struct vmap_area *va;
3605 
3606 	head = READ_ONCE(vmap_purge_list.first);
3607 	if (head == NULL)
3608 		return;
3609 
3610 	llist_for_each_entry(va, head, purge_list) {
3611 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3612 			(void *)va->va_start, (void *)va->va_end,
3613 			va->va_end - va->va_start);
3614 	}
3615 }
3616 
3617 static int s_show(struct seq_file *m, void *p)
3618 {
3619 	struct vmap_area *va;
3620 	struct vm_struct *v;
3621 
3622 	va = list_entry(p, struct vmap_area, list);
3623 
3624 	/*
3625 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3626 	 * of vmap area is being tear down or vm_map_ram allocation.
3627 	 */
3628 	if (!va->vm) {
3629 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3630 			(void *)va->va_start, (void *)va->va_end,
3631 			va->va_end - va->va_start);
3632 
3633 		return 0;
3634 	}
3635 
3636 	v = va->vm;
3637 
3638 	seq_printf(m, "0x%pK-0x%pK %7ld",
3639 		v->addr, v->addr + v->size, v->size);
3640 
3641 	if (v->caller)
3642 		seq_printf(m, " %pS", v->caller);
3643 
3644 	if (v->nr_pages)
3645 		seq_printf(m, " pages=%d", v->nr_pages);
3646 
3647 	if (v->phys_addr)
3648 		seq_printf(m, " phys=%pa", &v->phys_addr);
3649 
3650 	if (v->flags & VM_IOREMAP)
3651 		seq_puts(m, " ioremap");
3652 
3653 	if (v->flags & VM_ALLOC)
3654 		seq_puts(m, " vmalloc");
3655 
3656 	if (v->flags & VM_MAP)
3657 		seq_puts(m, " vmap");
3658 
3659 	if (v->flags & VM_USERMAP)
3660 		seq_puts(m, " user");
3661 
3662 	if (v->flags & VM_DMA_COHERENT)
3663 		seq_puts(m, " dma-coherent");
3664 
3665 	if (is_vmalloc_addr(v->pages))
3666 		seq_puts(m, " vpages");
3667 
3668 	show_numa_info(m, v);
3669 	seq_putc(m, '\n');
3670 
3671 	/*
3672 	 * As a final step, dump "unpurged" areas. Note,
3673 	 * that entire "/proc/vmallocinfo" output will not
3674 	 * be address sorted, because the purge list is not
3675 	 * sorted.
3676 	 */
3677 	if (list_is_last(&va->list, &vmap_area_list))
3678 		show_purge_info(m);
3679 
3680 	return 0;
3681 }
3682 
3683 static const struct seq_operations vmalloc_op = {
3684 	.start = s_start,
3685 	.next = s_next,
3686 	.stop = s_stop,
3687 	.show = s_show,
3688 };
3689 
3690 static int __init proc_vmalloc_init(void)
3691 {
3692 	if (IS_ENABLED(CONFIG_NUMA))
3693 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3694 				&vmalloc_op,
3695 				nr_node_ids * sizeof(unsigned int), NULL);
3696 	else
3697 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3698 	return 0;
3699 }
3700 module_init(proc_vmalloc_init);
3701 
3702 #endif
3703