xref: /openbmc/linux/mm/vmalloc.c (revision aeb64ff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmalloc.c
4  *
5  *  Copyright (C) 1993  Linus Torvalds
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9  *  Numa awareness, Christoph Lameter, SGI, June 2005
10  */
11 
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41 
42 #include "internal.h"
43 
44 struct vfree_deferred {
45 	struct llist_head list;
46 	struct work_struct wq;
47 };
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49 
50 static void __vunmap(const void *, int);
51 
52 static void free_work(struct work_struct *w)
53 {
54 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 	struct llist_node *t, *llnode;
56 
57 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 		__vunmap((void *)llnode, 1);
59 }
60 
61 /*** Page table manipulation functions ***/
62 
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64 {
65 	pte_t *pte;
66 
67 	pte = pte_offset_kernel(pmd, addr);
68 	do {
69 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 	} while (pte++, addr += PAGE_SIZE, addr != end);
72 }
73 
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75 {
76 	pmd_t *pmd;
77 	unsigned long next;
78 
79 	pmd = pmd_offset(pud, addr);
80 	do {
81 		next = pmd_addr_end(addr, end);
82 		if (pmd_clear_huge(pmd))
83 			continue;
84 		if (pmd_none_or_clear_bad(pmd))
85 			continue;
86 		vunmap_pte_range(pmd, addr, next);
87 	} while (pmd++, addr = next, addr != end);
88 }
89 
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
91 {
92 	pud_t *pud;
93 	unsigned long next;
94 
95 	pud = pud_offset(p4d, addr);
96 	do {
97 		next = pud_addr_end(addr, end);
98 		if (pud_clear_huge(pud))
99 			continue;
100 		if (pud_none_or_clear_bad(pud))
101 			continue;
102 		vunmap_pmd_range(pud, addr, next);
103 	} while (pud++, addr = next, addr != end);
104 }
105 
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107 {
108 	p4d_t *p4d;
109 	unsigned long next;
110 
111 	p4d = p4d_offset(pgd, addr);
112 	do {
113 		next = p4d_addr_end(addr, end);
114 		if (p4d_clear_huge(p4d))
115 			continue;
116 		if (p4d_none_or_clear_bad(p4d))
117 			continue;
118 		vunmap_pud_range(p4d, addr, next);
119 	} while (p4d++, addr = next, addr != end);
120 }
121 
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
123 {
124 	pgd_t *pgd;
125 	unsigned long next;
126 
127 	BUG_ON(addr >= end);
128 	pgd = pgd_offset_k(addr);
129 	do {
130 		next = pgd_addr_end(addr, end);
131 		if (pgd_none_or_clear_bad(pgd))
132 			continue;
133 		vunmap_p4d_range(pgd, addr, next);
134 	} while (pgd++, addr = next, addr != end);
135 }
136 
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
139 {
140 	pte_t *pte;
141 
142 	/*
143 	 * nr is a running index into the array which helps higher level
144 	 * callers keep track of where we're up to.
145 	 */
146 
147 	pte = pte_alloc_kernel(pmd, addr);
148 	if (!pte)
149 		return -ENOMEM;
150 	do {
151 		struct page *page = pages[*nr];
152 
153 		if (WARN_ON(!pte_none(*pte)))
154 			return -EBUSY;
155 		if (WARN_ON(!page))
156 			return -ENOMEM;
157 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
158 		(*nr)++;
159 	} while (pte++, addr += PAGE_SIZE, addr != end);
160 	return 0;
161 }
162 
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 	pmd_t *pmd;
167 	unsigned long next;
168 
169 	pmd = pmd_alloc(&init_mm, pud, addr);
170 	if (!pmd)
171 		return -ENOMEM;
172 	do {
173 		next = pmd_addr_end(addr, end);
174 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
175 			return -ENOMEM;
176 	} while (pmd++, addr = next, addr != end);
177 	return 0;
178 }
179 
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 
186 	pud = pud_alloc(&init_mm, p4d, addr);
187 	if (!pud)
188 		return -ENOMEM;
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
192 			return -ENOMEM;
193 	} while (pud++, addr = next, addr != end);
194 	return 0;
195 }
196 
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199 {
200 	p4d_t *p4d;
201 	unsigned long next;
202 
203 	p4d = p4d_alloc(&init_mm, pgd, addr);
204 	if (!p4d)
205 		return -ENOMEM;
206 	do {
207 		next = p4d_addr_end(addr, end);
208 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 			return -ENOMEM;
210 	} while (p4d++, addr = next, addr != end);
211 	return 0;
212 }
213 
214 /*
215  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216  * will have pfns corresponding to the "pages" array.
217  *
218  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219  */
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 				   pgprot_t prot, struct page **pages)
222 {
223 	pgd_t *pgd;
224 	unsigned long next;
225 	unsigned long addr = start;
226 	int err = 0;
227 	int nr = 0;
228 
229 	BUG_ON(addr >= end);
230 	pgd = pgd_offset_k(addr);
231 	do {
232 		next = pgd_addr_end(addr, end);
233 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
234 		if (err)
235 			return err;
236 	} while (pgd++, addr = next, addr != end);
237 
238 	return nr;
239 }
240 
241 static int vmap_page_range(unsigned long start, unsigned long end,
242 			   pgprot_t prot, struct page **pages)
243 {
244 	int ret;
245 
246 	ret = vmap_page_range_noflush(start, end, prot, pages);
247 	flush_cache_vmap(start, end);
248 	return ret;
249 }
250 
251 int is_vmalloc_or_module_addr(const void *x)
252 {
253 	/*
254 	 * ARM, x86-64 and sparc64 put modules in a special place,
255 	 * and fall back on vmalloc() if that fails. Others
256 	 * just put it in the vmalloc space.
257 	 */
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 	unsigned long addr = (unsigned long)x;
260 	if (addr >= MODULES_VADDR && addr < MODULES_END)
261 		return 1;
262 #endif
263 	return is_vmalloc_addr(x);
264 }
265 
266 /*
267  * Walk a vmap address to the struct page it maps.
268  */
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
270 {
271 	unsigned long addr = (unsigned long) vmalloc_addr;
272 	struct page *page = NULL;
273 	pgd_t *pgd = pgd_offset_k(addr);
274 	p4d_t *p4d;
275 	pud_t *pud;
276 	pmd_t *pmd;
277 	pte_t *ptep, pte;
278 
279 	/*
280 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 	 * architectures that do not vmalloc module space
282 	 */
283 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
284 
285 	if (pgd_none(*pgd))
286 		return NULL;
287 	p4d = p4d_offset(pgd, addr);
288 	if (p4d_none(*p4d))
289 		return NULL;
290 	pud = pud_offset(p4d, addr);
291 
292 	/*
293 	 * Don't dereference bad PUD or PMD (below) entries. This will also
294 	 * identify huge mappings, which we may encounter on architectures
295 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 	 * not [unambiguously] associated with a struct page, so there is
298 	 * no correct value to return for them.
299 	 */
300 	WARN_ON_ONCE(pud_bad(*pud));
301 	if (pud_none(*pud) || pud_bad(*pud))
302 		return NULL;
303 	pmd = pmd_offset(pud, addr);
304 	WARN_ON_ONCE(pmd_bad(*pmd));
305 	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 		return NULL;
307 
308 	ptep = pte_offset_map(pmd, addr);
309 	pte = *ptep;
310 	if (pte_present(pte))
311 		page = pte_page(pte);
312 	pte_unmap(ptep);
313 	return page;
314 }
315 EXPORT_SYMBOL(vmalloc_to_page);
316 
317 /*
318  * Map a vmalloc()-space virtual address to the physical page frame number.
319  */
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321 {
322 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323 }
324 EXPORT_SYMBOL(vmalloc_to_pfn);
325 
326 
327 /*** Global kva allocator ***/
328 
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331 
332 
333 static DEFINE_SPINLOCK(vmap_area_lock);
334 static DEFINE_SPINLOCK(free_vmap_area_lock);
335 /* Export for kexec only */
336 LIST_HEAD(vmap_area_list);
337 static LLIST_HEAD(vmap_purge_list);
338 static struct rb_root vmap_area_root = RB_ROOT;
339 static bool vmap_initialized __read_mostly;
340 
341 /*
342  * This kmem_cache is used for vmap_area objects. Instead of
343  * allocating from slab we reuse an object from this cache to
344  * make things faster. Especially in "no edge" splitting of
345  * free block.
346  */
347 static struct kmem_cache *vmap_area_cachep;
348 
349 /*
350  * This linked list is used in pair with free_vmap_area_root.
351  * It gives O(1) access to prev/next to perform fast coalescing.
352  */
353 static LIST_HEAD(free_vmap_area_list);
354 
355 /*
356  * This augment red-black tree represents the free vmap space.
357  * All vmap_area objects in this tree are sorted by va->va_start
358  * address. It is used for allocation and merging when a vmap
359  * object is released.
360  *
361  * Each vmap_area node contains a maximum available free block
362  * of its sub-tree, right or left. Therefore it is possible to
363  * find a lowest match of free area.
364  */
365 static struct rb_root free_vmap_area_root = RB_ROOT;
366 
367 /*
368  * Preload a CPU with one object for "no edge" split case. The
369  * aim is to get rid of allocations from the atomic context, thus
370  * to use more permissive allocation masks.
371  */
372 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
373 
374 static __always_inline unsigned long
375 va_size(struct vmap_area *va)
376 {
377 	return (va->va_end - va->va_start);
378 }
379 
380 static __always_inline unsigned long
381 get_subtree_max_size(struct rb_node *node)
382 {
383 	struct vmap_area *va;
384 
385 	va = rb_entry_safe(node, struct vmap_area, rb_node);
386 	return va ? va->subtree_max_size : 0;
387 }
388 
389 /*
390  * Gets called when remove the node and rotate.
391  */
392 static __always_inline unsigned long
393 compute_subtree_max_size(struct vmap_area *va)
394 {
395 	return max3(va_size(va),
396 		get_subtree_max_size(va->rb_node.rb_left),
397 		get_subtree_max_size(va->rb_node.rb_right));
398 }
399 
400 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
401 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
402 
403 static void purge_vmap_area_lazy(void);
404 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
405 static unsigned long lazy_max_pages(void);
406 
407 static atomic_long_t nr_vmalloc_pages;
408 
409 unsigned long vmalloc_nr_pages(void)
410 {
411 	return atomic_long_read(&nr_vmalloc_pages);
412 }
413 
414 static struct vmap_area *__find_vmap_area(unsigned long addr)
415 {
416 	struct rb_node *n = vmap_area_root.rb_node;
417 
418 	while (n) {
419 		struct vmap_area *va;
420 
421 		va = rb_entry(n, struct vmap_area, rb_node);
422 		if (addr < va->va_start)
423 			n = n->rb_left;
424 		else if (addr >= va->va_end)
425 			n = n->rb_right;
426 		else
427 			return va;
428 	}
429 
430 	return NULL;
431 }
432 
433 /*
434  * This function returns back addresses of parent node
435  * and its left or right link for further processing.
436  */
437 static __always_inline struct rb_node **
438 find_va_links(struct vmap_area *va,
439 	struct rb_root *root, struct rb_node *from,
440 	struct rb_node **parent)
441 {
442 	struct vmap_area *tmp_va;
443 	struct rb_node **link;
444 
445 	if (root) {
446 		link = &root->rb_node;
447 		if (unlikely(!*link)) {
448 			*parent = NULL;
449 			return link;
450 		}
451 	} else {
452 		link = &from;
453 	}
454 
455 	/*
456 	 * Go to the bottom of the tree. When we hit the last point
457 	 * we end up with parent rb_node and correct direction, i name
458 	 * it link, where the new va->rb_node will be attached to.
459 	 */
460 	do {
461 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
462 
463 		/*
464 		 * During the traversal we also do some sanity check.
465 		 * Trigger the BUG() if there are sides(left/right)
466 		 * or full overlaps.
467 		 */
468 		if (va->va_start < tmp_va->va_end &&
469 				va->va_end <= tmp_va->va_start)
470 			link = &(*link)->rb_left;
471 		else if (va->va_end > tmp_va->va_start &&
472 				va->va_start >= tmp_va->va_end)
473 			link = &(*link)->rb_right;
474 		else
475 			BUG();
476 	} while (*link);
477 
478 	*parent = &tmp_va->rb_node;
479 	return link;
480 }
481 
482 static __always_inline struct list_head *
483 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
484 {
485 	struct list_head *list;
486 
487 	if (unlikely(!parent))
488 		/*
489 		 * The red-black tree where we try to find VA neighbors
490 		 * before merging or inserting is empty, i.e. it means
491 		 * there is no free vmap space. Normally it does not
492 		 * happen but we handle this case anyway.
493 		 */
494 		return NULL;
495 
496 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
497 	return (&parent->rb_right == link ? list->next : list);
498 }
499 
500 static __always_inline void
501 link_va(struct vmap_area *va, struct rb_root *root,
502 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
503 {
504 	/*
505 	 * VA is still not in the list, but we can
506 	 * identify its future previous list_head node.
507 	 */
508 	if (likely(parent)) {
509 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
510 		if (&parent->rb_right != link)
511 			head = head->prev;
512 	}
513 
514 	/* Insert to the rb-tree */
515 	rb_link_node(&va->rb_node, parent, link);
516 	if (root == &free_vmap_area_root) {
517 		/*
518 		 * Some explanation here. Just perform simple insertion
519 		 * to the tree. We do not set va->subtree_max_size to
520 		 * its current size before calling rb_insert_augmented().
521 		 * It is because of we populate the tree from the bottom
522 		 * to parent levels when the node _is_ in the tree.
523 		 *
524 		 * Therefore we set subtree_max_size to zero after insertion,
525 		 * to let __augment_tree_propagate_from() puts everything to
526 		 * the correct order later on.
527 		 */
528 		rb_insert_augmented(&va->rb_node,
529 			root, &free_vmap_area_rb_augment_cb);
530 		va->subtree_max_size = 0;
531 	} else {
532 		rb_insert_color(&va->rb_node, root);
533 	}
534 
535 	/* Address-sort this list */
536 	list_add(&va->list, head);
537 }
538 
539 static __always_inline void
540 unlink_va(struct vmap_area *va, struct rb_root *root)
541 {
542 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
543 		return;
544 
545 	if (root == &free_vmap_area_root)
546 		rb_erase_augmented(&va->rb_node,
547 			root, &free_vmap_area_rb_augment_cb);
548 	else
549 		rb_erase(&va->rb_node, root);
550 
551 	list_del(&va->list);
552 	RB_CLEAR_NODE(&va->rb_node);
553 }
554 
555 #if DEBUG_AUGMENT_PROPAGATE_CHECK
556 static void
557 augment_tree_propagate_check(struct rb_node *n)
558 {
559 	struct vmap_area *va;
560 	struct rb_node *node;
561 	unsigned long size;
562 	bool found = false;
563 
564 	if (n == NULL)
565 		return;
566 
567 	va = rb_entry(n, struct vmap_area, rb_node);
568 	size = va->subtree_max_size;
569 	node = n;
570 
571 	while (node) {
572 		va = rb_entry(node, struct vmap_area, rb_node);
573 
574 		if (get_subtree_max_size(node->rb_left) == size) {
575 			node = node->rb_left;
576 		} else {
577 			if (va_size(va) == size) {
578 				found = true;
579 				break;
580 			}
581 
582 			node = node->rb_right;
583 		}
584 	}
585 
586 	if (!found) {
587 		va = rb_entry(n, struct vmap_area, rb_node);
588 		pr_emerg("tree is corrupted: %lu, %lu\n",
589 			va_size(va), va->subtree_max_size);
590 	}
591 
592 	augment_tree_propagate_check(n->rb_left);
593 	augment_tree_propagate_check(n->rb_right);
594 }
595 #endif
596 
597 /*
598  * This function populates subtree_max_size from bottom to upper
599  * levels starting from VA point. The propagation must be done
600  * when VA size is modified by changing its va_start/va_end. Or
601  * in case of newly inserting of VA to the tree.
602  *
603  * It means that __augment_tree_propagate_from() must be called:
604  * - After VA has been inserted to the tree(free path);
605  * - After VA has been shrunk(allocation path);
606  * - After VA has been increased(merging path).
607  *
608  * Please note that, it does not mean that upper parent nodes
609  * and their subtree_max_size are recalculated all the time up
610  * to the root node.
611  *
612  *       4--8
613  *        /\
614  *       /  \
615  *      /    \
616  *    2--2  8--8
617  *
618  * For example if we modify the node 4, shrinking it to 2, then
619  * no any modification is required. If we shrink the node 2 to 1
620  * its subtree_max_size is updated only, and set to 1. If we shrink
621  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
622  * node becomes 4--6.
623  */
624 static __always_inline void
625 augment_tree_propagate_from(struct vmap_area *va)
626 {
627 	struct rb_node *node = &va->rb_node;
628 	unsigned long new_va_sub_max_size;
629 
630 	while (node) {
631 		va = rb_entry(node, struct vmap_area, rb_node);
632 		new_va_sub_max_size = compute_subtree_max_size(va);
633 
634 		/*
635 		 * If the newly calculated maximum available size of the
636 		 * subtree is equal to the current one, then it means that
637 		 * the tree is propagated correctly. So we have to stop at
638 		 * this point to save cycles.
639 		 */
640 		if (va->subtree_max_size == new_va_sub_max_size)
641 			break;
642 
643 		va->subtree_max_size = new_va_sub_max_size;
644 		node = rb_parent(&va->rb_node);
645 	}
646 
647 #if DEBUG_AUGMENT_PROPAGATE_CHECK
648 	augment_tree_propagate_check(free_vmap_area_root.rb_node);
649 #endif
650 }
651 
652 static void
653 insert_vmap_area(struct vmap_area *va,
654 	struct rb_root *root, struct list_head *head)
655 {
656 	struct rb_node **link;
657 	struct rb_node *parent;
658 
659 	link = find_va_links(va, root, NULL, &parent);
660 	link_va(va, root, parent, link, head);
661 }
662 
663 static void
664 insert_vmap_area_augment(struct vmap_area *va,
665 	struct rb_node *from, struct rb_root *root,
666 	struct list_head *head)
667 {
668 	struct rb_node **link;
669 	struct rb_node *parent;
670 
671 	if (from)
672 		link = find_va_links(va, NULL, from, &parent);
673 	else
674 		link = find_va_links(va, root, NULL, &parent);
675 
676 	link_va(va, root, parent, link, head);
677 	augment_tree_propagate_from(va);
678 }
679 
680 /*
681  * Merge de-allocated chunk of VA memory with previous
682  * and next free blocks. If coalesce is not done a new
683  * free area is inserted. If VA has been merged, it is
684  * freed.
685  */
686 static __always_inline struct vmap_area *
687 merge_or_add_vmap_area(struct vmap_area *va,
688 	struct rb_root *root, struct list_head *head)
689 {
690 	struct vmap_area *sibling;
691 	struct list_head *next;
692 	struct rb_node **link;
693 	struct rb_node *parent;
694 	bool merged = false;
695 
696 	/*
697 	 * Find a place in the tree where VA potentially will be
698 	 * inserted, unless it is merged with its sibling/siblings.
699 	 */
700 	link = find_va_links(va, root, NULL, &parent);
701 
702 	/*
703 	 * Get next node of VA to check if merging can be done.
704 	 */
705 	next = get_va_next_sibling(parent, link);
706 	if (unlikely(next == NULL))
707 		goto insert;
708 
709 	/*
710 	 * start            end
711 	 * |                |
712 	 * |<------VA------>|<-----Next----->|
713 	 *                  |                |
714 	 *                  start            end
715 	 */
716 	if (next != head) {
717 		sibling = list_entry(next, struct vmap_area, list);
718 		if (sibling->va_start == va->va_end) {
719 			sibling->va_start = va->va_start;
720 
721 			/* Check and update the tree if needed. */
722 			augment_tree_propagate_from(sibling);
723 
724 			/* Free vmap_area object. */
725 			kmem_cache_free(vmap_area_cachep, va);
726 
727 			/* Point to the new merged area. */
728 			va = sibling;
729 			merged = true;
730 		}
731 	}
732 
733 	/*
734 	 * start            end
735 	 * |                |
736 	 * |<-----Prev----->|<------VA------>|
737 	 *                  |                |
738 	 *                  start            end
739 	 */
740 	if (next->prev != head) {
741 		sibling = list_entry(next->prev, struct vmap_area, list);
742 		if (sibling->va_end == va->va_start) {
743 			sibling->va_end = va->va_end;
744 
745 			/* Check and update the tree if needed. */
746 			augment_tree_propagate_from(sibling);
747 
748 			if (merged)
749 				unlink_va(va, root);
750 
751 			/* Free vmap_area object. */
752 			kmem_cache_free(vmap_area_cachep, va);
753 
754 			/* Point to the new merged area. */
755 			va = sibling;
756 			merged = true;
757 		}
758 	}
759 
760 insert:
761 	if (!merged) {
762 		link_va(va, root, parent, link, head);
763 		augment_tree_propagate_from(va);
764 	}
765 
766 	return va;
767 }
768 
769 static __always_inline bool
770 is_within_this_va(struct vmap_area *va, unsigned long size,
771 	unsigned long align, unsigned long vstart)
772 {
773 	unsigned long nva_start_addr;
774 
775 	if (va->va_start > vstart)
776 		nva_start_addr = ALIGN(va->va_start, align);
777 	else
778 		nva_start_addr = ALIGN(vstart, align);
779 
780 	/* Can be overflowed due to big size or alignment. */
781 	if (nva_start_addr + size < nva_start_addr ||
782 			nva_start_addr < vstart)
783 		return false;
784 
785 	return (nva_start_addr + size <= va->va_end);
786 }
787 
788 /*
789  * Find the first free block(lowest start address) in the tree,
790  * that will accomplish the request corresponding to passing
791  * parameters.
792  */
793 static __always_inline struct vmap_area *
794 find_vmap_lowest_match(unsigned long size,
795 	unsigned long align, unsigned long vstart)
796 {
797 	struct vmap_area *va;
798 	struct rb_node *node;
799 	unsigned long length;
800 
801 	/* Start from the root. */
802 	node = free_vmap_area_root.rb_node;
803 
804 	/* Adjust the search size for alignment overhead. */
805 	length = size + align - 1;
806 
807 	while (node) {
808 		va = rb_entry(node, struct vmap_area, rb_node);
809 
810 		if (get_subtree_max_size(node->rb_left) >= length &&
811 				vstart < va->va_start) {
812 			node = node->rb_left;
813 		} else {
814 			if (is_within_this_va(va, size, align, vstart))
815 				return va;
816 
817 			/*
818 			 * Does not make sense to go deeper towards the right
819 			 * sub-tree if it does not have a free block that is
820 			 * equal or bigger to the requested search length.
821 			 */
822 			if (get_subtree_max_size(node->rb_right) >= length) {
823 				node = node->rb_right;
824 				continue;
825 			}
826 
827 			/*
828 			 * OK. We roll back and find the first right sub-tree,
829 			 * that will satisfy the search criteria. It can happen
830 			 * only once due to "vstart" restriction.
831 			 */
832 			while ((node = rb_parent(node))) {
833 				va = rb_entry(node, struct vmap_area, rb_node);
834 				if (is_within_this_va(va, size, align, vstart))
835 					return va;
836 
837 				if (get_subtree_max_size(node->rb_right) >= length &&
838 						vstart <= va->va_start) {
839 					node = node->rb_right;
840 					break;
841 				}
842 			}
843 		}
844 	}
845 
846 	return NULL;
847 }
848 
849 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
850 #include <linux/random.h>
851 
852 static struct vmap_area *
853 find_vmap_lowest_linear_match(unsigned long size,
854 	unsigned long align, unsigned long vstart)
855 {
856 	struct vmap_area *va;
857 
858 	list_for_each_entry(va, &free_vmap_area_list, list) {
859 		if (!is_within_this_va(va, size, align, vstart))
860 			continue;
861 
862 		return va;
863 	}
864 
865 	return NULL;
866 }
867 
868 static void
869 find_vmap_lowest_match_check(unsigned long size)
870 {
871 	struct vmap_area *va_1, *va_2;
872 	unsigned long vstart;
873 	unsigned int rnd;
874 
875 	get_random_bytes(&rnd, sizeof(rnd));
876 	vstart = VMALLOC_START + rnd;
877 
878 	va_1 = find_vmap_lowest_match(size, 1, vstart);
879 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
880 
881 	if (va_1 != va_2)
882 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
883 			va_1, va_2, vstart);
884 }
885 #endif
886 
887 enum fit_type {
888 	NOTHING_FIT = 0,
889 	FL_FIT_TYPE = 1,	/* full fit */
890 	LE_FIT_TYPE = 2,	/* left edge fit */
891 	RE_FIT_TYPE = 3,	/* right edge fit */
892 	NE_FIT_TYPE = 4		/* no edge fit */
893 };
894 
895 static __always_inline enum fit_type
896 classify_va_fit_type(struct vmap_area *va,
897 	unsigned long nva_start_addr, unsigned long size)
898 {
899 	enum fit_type type;
900 
901 	/* Check if it is within VA. */
902 	if (nva_start_addr < va->va_start ||
903 			nva_start_addr + size > va->va_end)
904 		return NOTHING_FIT;
905 
906 	/* Now classify. */
907 	if (va->va_start == nva_start_addr) {
908 		if (va->va_end == nva_start_addr + size)
909 			type = FL_FIT_TYPE;
910 		else
911 			type = LE_FIT_TYPE;
912 	} else if (va->va_end == nva_start_addr + size) {
913 		type = RE_FIT_TYPE;
914 	} else {
915 		type = NE_FIT_TYPE;
916 	}
917 
918 	return type;
919 }
920 
921 static __always_inline int
922 adjust_va_to_fit_type(struct vmap_area *va,
923 	unsigned long nva_start_addr, unsigned long size,
924 	enum fit_type type)
925 {
926 	struct vmap_area *lva = NULL;
927 
928 	if (type == FL_FIT_TYPE) {
929 		/*
930 		 * No need to split VA, it fully fits.
931 		 *
932 		 * |               |
933 		 * V      NVA      V
934 		 * |---------------|
935 		 */
936 		unlink_va(va, &free_vmap_area_root);
937 		kmem_cache_free(vmap_area_cachep, va);
938 	} else if (type == LE_FIT_TYPE) {
939 		/*
940 		 * Split left edge of fit VA.
941 		 *
942 		 * |       |
943 		 * V  NVA  V   R
944 		 * |-------|-------|
945 		 */
946 		va->va_start += size;
947 	} else if (type == RE_FIT_TYPE) {
948 		/*
949 		 * Split right edge of fit VA.
950 		 *
951 		 *         |       |
952 		 *     L   V  NVA  V
953 		 * |-------|-------|
954 		 */
955 		va->va_end = nva_start_addr;
956 	} else if (type == NE_FIT_TYPE) {
957 		/*
958 		 * Split no edge of fit VA.
959 		 *
960 		 *     |       |
961 		 *   L V  NVA  V R
962 		 * |---|-------|---|
963 		 */
964 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
965 		if (unlikely(!lva)) {
966 			/*
967 			 * For percpu allocator we do not do any pre-allocation
968 			 * and leave it as it is. The reason is it most likely
969 			 * never ends up with NE_FIT_TYPE splitting. In case of
970 			 * percpu allocations offsets and sizes are aligned to
971 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
972 			 * are its main fitting cases.
973 			 *
974 			 * There are a few exceptions though, as an example it is
975 			 * a first allocation (early boot up) when we have "one"
976 			 * big free space that has to be split.
977 			 *
978 			 * Also we can hit this path in case of regular "vmap"
979 			 * allocations, if "this" current CPU was not preloaded.
980 			 * See the comment in alloc_vmap_area() why. If so, then
981 			 * GFP_NOWAIT is used instead to get an extra object for
982 			 * split purpose. That is rare and most time does not
983 			 * occur.
984 			 *
985 			 * What happens if an allocation gets failed. Basically,
986 			 * an "overflow" path is triggered to purge lazily freed
987 			 * areas to free some memory, then, the "retry" path is
988 			 * triggered to repeat one more time. See more details
989 			 * in alloc_vmap_area() function.
990 			 */
991 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
992 			if (!lva)
993 				return -1;
994 		}
995 
996 		/*
997 		 * Build the remainder.
998 		 */
999 		lva->va_start = va->va_start;
1000 		lva->va_end = nva_start_addr;
1001 
1002 		/*
1003 		 * Shrink this VA to remaining size.
1004 		 */
1005 		va->va_start = nva_start_addr + size;
1006 	} else {
1007 		return -1;
1008 	}
1009 
1010 	if (type != FL_FIT_TYPE) {
1011 		augment_tree_propagate_from(va);
1012 
1013 		if (lva)	/* type == NE_FIT_TYPE */
1014 			insert_vmap_area_augment(lva, &va->rb_node,
1015 				&free_vmap_area_root, &free_vmap_area_list);
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 /*
1022  * Returns a start address of the newly allocated area, if success.
1023  * Otherwise a vend is returned that indicates failure.
1024  */
1025 static __always_inline unsigned long
1026 __alloc_vmap_area(unsigned long size, unsigned long align,
1027 	unsigned long vstart, unsigned long vend)
1028 {
1029 	unsigned long nva_start_addr;
1030 	struct vmap_area *va;
1031 	enum fit_type type;
1032 	int ret;
1033 
1034 	va = find_vmap_lowest_match(size, align, vstart);
1035 	if (unlikely(!va))
1036 		return vend;
1037 
1038 	if (va->va_start > vstart)
1039 		nva_start_addr = ALIGN(va->va_start, align);
1040 	else
1041 		nva_start_addr = ALIGN(vstart, align);
1042 
1043 	/* Check the "vend" restriction. */
1044 	if (nva_start_addr + size > vend)
1045 		return vend;
1046 
1047 	/* Classify what we have found. */
1048 	type = classify_va_fit_type(va, nva_start_addr, size);
1049 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1050 		return vend;
1051 
1052 	/* Update the free vmap_area. */
1053 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1054 	if (ret)
1055 		return vend;
1056 
1057 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1058 	find_vmap_lowest_match_check(size);
1059 #endif
1060 
1061 	return nva_start_addr;
1062 }
1063 
1064 /*
1065  * Allocate a region of KVA of the specified size and alignment, within the
1066  * vstart and vend.
1067  */
1068 static struct vmap_area *alloc_vmap_area(unsigned long size,
1069 				unsigned long align,
1070 				unsigned long vstart, unsigned long vend,
1071 				int node, gfp_t gfp_mask)
1072 {
1073 	struct vmap_area *va, *pva;
1074 	unsigned long addr;
1075 	int purged = 0;
1076 
1077 	BUG_ON(!size);
1078 	BUG_ON(offset_in_page(size));
1079 	BUG_ON(!is_power_of_2(align));
1080 
1081 	if (unlikely(!vmap_initialized))
1082 		return ERR_PTR(-EBUSY);
1083 
1084 	might_sleep();
1085 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1086 
1087 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1088 	if (unlikely(!va))
1089 		return ERR_PTR(-ENOMEM);
1090 
1091 	/*
1092 	 * Only scan the relevant parts containing pointers to other objects
1093 	 * to avoid false negatives.
1094 	 */
1095 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1096 
1097 retry:
1098 	/*
1099 	 * Preload this CPU with one extra vmap_area object. It is used
1100 	 * when fit type of free area is NE_FIT_TYPE. Please note, it
1101 	 * does not guarantee that an allocation occurs on a CPU that
1102 	 * is preloaded, instead we minimize the case when it is not.
1103 	 * It can happen because of cpu migration, because there is a
1104 	 * race until the below spinlock is taken.
1105 	 *
1106 	 * The preload is done in non-atomic context, thus it allows us
1107 	 * to use more permissive allocation masks to be more stable under
1108 	 * low memory condition and high memory pressure. In rare case,
1109 	 * if not preloaded, GFP_NOWAIT is used.
1110 	 *
1111 	 * Set "pva" to NULL here, because of "retry" path.
1112 	 */
1113 	pva = NULL;
1114 
1115 	if (!this_cpu_read(ne_fit_preload_node))
1116 		/*
1117 		 * Even if it fails we do not really care about that.
1118 		 * Just proceed as it is. If needed "overflow" path
1119 		 * will refill the cache we allocate from.
1120 		 */
1121 		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1122 
1123 	spin_lock(&free_vmap_area_lock);
1124 
1125 	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1126 		kmem_cache_free(vmap_area_cachep, pva);
1127 
1128 	/*
1129 	 * If an allocation fails, the "vend" address is
1130 	 * returned. Therefore trigger the overflow path.
1131 	 */
1132 	addr = __alloc_vmap_area(size, align, vstart, vend);
1133 	spin_unlock(&free_vmap_area_lock);
1134 
1135 	if (unlikely(addr == vend))
1136 		goto overflow;
1137 
1138 	va->va_start = addr;
1139 	va->va_end = addr + size;
1140 	va->vm = NULL;
1141 
1142 	spin_lock(&vmap_area_lock);
1143 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1144 	spin_unlock(&vmap_area_lock);
1145 
1146 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1147 	BUG_ON(va->va_start < vstart);
1148 	BUG_ON(va->va_end > vend);
1149 
1150 	return va;
1151 
1152 overflow:
1153 	if (!purged) {
1154 		purge_vmap_area_lazy();
1155 		purged = 1;
1156 		goto retry;
1157 	}
1158 
1159 	if (gfpflags_allow_blocking(gfp_mask)) {
1160 		unsigned long freed = 0;
1161 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1162 		if (freed > 0) {
1163 			purged = 0;
1164 			goto retry;
1165 		}
1166 	}
1167 
1168 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1169 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1170 			size);
1171 
1172 	kmem_cache_free(vmap_area_cachep, va);
1173 	return ERR_PTR(-EBUSY);
1174 }
1175 
1176 int register_vmap_purge_notifier(struct notifier_block *nb)
1177 {
1178 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1179 }
1180 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1181 
1182 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1183 {
1184 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1185 }
1186 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1187 
1188 /*
1189  * Free a region of KVA allocated by alloc_vmap_area
1190  */
1191 static void free_vmap_area(struct vmap_area *va)
1192 {
1193 	/*
1194 	 * Remove from the busy tree/list.
1195 	 */
1196 	spin_lock(&vmap_area_lock);
1197 	unlink_va(va, &vmap_area_root);
1198 	spin_unlock(&vmap_area_lock);
1199 
1200 	/*
1201 	 * Insert/Merge it back to the free tree/list.
1202 	 */
1203 	spin_lock(&free_vmap_area_lock);
1204 	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1205 	spin_unlock(&free_vmap_area_lock);
1206 }
1207 
1208 /*
1209  * Clear the pagetable entries of a given vmap_area
1210  */
1211 static void unmap_vmap_area(struct vmap_area *va)
1212 {
1213 	vunmap_page_range(va->va_start, va->va_end);
1214 }
1215 
1216 /*
1217  * lazy_max_pages is the maximum amount of virtual address space we gather up
1218  * before attempting to purge with a TLB flush.
1219  *
1220  * There is a tradeoff here: a larger number will cover more kernel page tables
1221  * and take slightly longer to purge, but it will linearly reduce the number of
1222  * global TLB flushes that must be performed. It would seem natural to scale
1223  * this number up linearly with the number of CPUs (because vmapping activity
1224  * could also scale linearly with the number of CPUs), however it is likely
1225  * that in practice, workloads might be constrained in other ways that mean
1226  * vmap activity will not scale linearly with CPUs. Also, I want to be
1227  * conservative and not introduce a big latency on huge systems, so go with
1228  * a less aggressive log scale. It will still be an improvement over the old
1229  * code, and it will be simple to change the scale factor if we find that it
1230  * becomes a problem on bigger systems.
1231  */
1232 static unsigned long lazy_max_pages(void)
1233 {
1234 	unsigned int log;
1235 
1236 	log = fls(num_online_cpus());
1237 
1238 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1239 }
1240 
1241 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1242 
1243 /*
1244  * Serialize vmap purging.  There is no actual criticial section protected
1245  * by this look, but we want to avoid concurrent calls for performance
1246  * reasons and to make the pcpu_get_vm_areas more deterministic.
1247  */
1248 static DEFINE_MUTEX(vmap_purge_lock);
1249 
1250 /* for per-CPU blocks */
1251 static void purge_fragmented_blocks_allcpus(void);
1252 
1253 /*
1254  * called before a call to iounmap() if the caller wants vm_area_struct's
1255  * immediately freed.
1256  */
1257 void set_iounmap_nonlazy(void)
1258 {
1259 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1260 }
1261 
1262 /*
1263  * Purges all lazily-freed vmap areas.
1264  */
1265 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1266 {
1267 	unsigned long resched_threshold;
1268 	struct llist_node *valist;
1269 	struct vmap_area *va;
1270 	struct vmap_area *n_va;
1271 
1272 	lockdep_assert_held(&vmap_purge_lock);
1273 
1274 	valist = llist_del_all(&vmap_purge_list);
1275 	if (unlikely(valist == NULL))
1276 		return false;
1277 
1278 	/*
1279 	 * First make sure the mappings are removed from all page-tables
1280 	 * before they are freed.
1281 	 */
1282 	vmalloc_sync_all();
1283 
1284 	/*
1285 	 * TODO: to calculate a flush range without looping.
1286 	 * The list can be up to lazy_max_pages() elements.
1287 	 */
1288 	llist_for_each_entry(va, valist, purge_list) {
1289 		if (va->va_start < start)
1290 			start = va->va_start;
1291 		if (va->va_end > end)
1292 			end = va->va_end;
1293 	}
1294 
1295 	flush_tlb_kernel_range(start, end);
1296 	resched_threshold = lazy_max_pages() << 1;
1297 
1298 	spin_lock(&free_vmap_area_lock);
1299 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1300 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1301 		unsigned long orig_start = va->va_start;
1302 		unsigned long orig_end = va->va_end;
1303 
1304 		/*
1305 		 * Finally insert or merge lazily-freed area. It is
1306 		 * detached and there is no need to "unlink" it from
1307 		 * anything.
1308 		 */
1309 		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1310 					    &free_vmap_area_list);
1311 
1312 		if (is_vmalloc_or_module_addr((void *)orig_start))
1313 			kasan_release_vmalloc(orig_start, orig_end,
1314 					      va->va_start, va->va_end);
1315 
1316 		atomic_long_sub(nr, &vmap_lazy_nr);
1317 
1318 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1319 			cond_resched_lock(&free_vmap_area_lock);
1320 	}
1321 	spin_unlock(&free_vmap_area_lock);
1322 	return true;
1323 }
1324 
1325 /*
1326  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1327  * is already purging.
1328  */
1329 static void try_purge_vmap_area_lazy(void)
1330 {
1331 	if (mutex_trylock(&vmap_purge_lock)) {
1332 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1333 		mutex_unlock(&vmap_purge_lock);
1334 	}
1335 }
1336 
1337 /*
1338  * Kick off a purge of the outstanding lazy areas.
1339  */
1340 static void purge_vmap_area_lazy(void)
1341 {
1342 	mutex_lock(&vmap_purge_lock);
1343 	purge_fragmented_blocks_allcpus();
1344 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1345 	mutex_unlock(&vmap_purge_lock);
1346 }
1347 
1348 /*
1349  * Free a vmap area, caller ensuring that the area has been unmapped
1350  * and flush_cache_vunmap had been called for the correct range
1351  * previously.
1352  */
1353 static void free_vmap_area_noflush(struct vmap_area *va)
1354 {
1355 	unsigned long nr_lazy;
1356 
1357 	spin_lock(&vmap_area_lock);
1358 	unlink_va(va, &vmap_area_root);
1359 	spin_unlock(&vmap_area_lock);
1360 
1361 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1362 				PAGE_SHIFT, &vmap_lazy_nr);
1363 
1364 	/* After this point, we may free va at any time */
1365 	llist_add(&va->purge_list, &vmap_purge_list);
1366 
1367 	if (unlikely(nr_lazy > lazy_max_pages()))
1368 		try_purge_vmap_area_lazy();
1369 }
1370 
1371 /*
1372  * Free and unmap a vmap area
1373  */
1374 static void free_unmap_vmap_area(struct vmap_area *va)
1375 {
1376 	flush_cache_vunmap(va->va_start, va->va_end);
1377 	unmap_vmap_area(va);
1378 	if (debug_pagealloc_enabled())
1379 		flush_tlb_kernel_range(va->va_start, va->va_end);
1380 
1381 	free_vmap_area_noflush(va);
1382 }
1383 
1384 static struct vmap_area *find_vmap_area(unsigned long addr)
1385 {
1386 	struct vmap_area *va;
1387 
1388 	spin_lock(&vmap_area_lock);
1389 	va = __find_vmap_area(addr);
1390 	spin_unlock(&vmap_area_lock);
1391 
1392 	return va;
1393 }
1394 
1395 /*** Per cpu kva allocator ***/
1396 
1397 /*
1398  * vmap space is limited especially on 32 bit architectures. Ensure there is
1399  * room for at least 16 percpu vmap blocks per CPU.
1400  */
1401 /*
1402  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1403  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1404  * instead (we just need a rough idea)
1405  */
1406 #if BITS_PER_LONG == 32
1407 #define VMALLOC_SPACE		(128UL*1024*1024)
1408 #else
1409 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1410 #endif
1411 
1412 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1413 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1414 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1415 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1416 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1417 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1418 #define VMAP_BBMAP_BITS		\
1419 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1420 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1421 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1422 
1423 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1424 
1425 struct vmap_block_queue {
1426 	spinlock_t lock;
1427 	struct list_head free;
1428 };
1429 
1430 struct vmap_block {
1431 	spinlock_t lock;
1432 	struct vmap_area *va;
1433 	unsigned long free, dirty;
1434 	unsigned long dirty_min, dirty_max; /*< dirty range */
1435 	struct list_head free_list;
1436 	struct rcu_head rcu_head;
1437 	struct list_head purge;
1438 };
1439 
1440 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1441 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1442 
1443 /*
1444  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1445  * in the free path. Could get rid of this if we change the API to return a
1446  * "cookie" from alloc, to be passed to free. But no big deal yet.
1447  */
1448 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1449 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1450 
1451 /*
1452  * We should probably have a fallback mechanism to allocate virtual memory
1453  * out of partially filled vmap blocks. However vmap block sizing should be
1454  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1455  * big problem.
1456  */
1457 
1458 static unsigned long addr_to_vb_idx(unsigned long addr)
1459 {
1460 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1461 	addr /= VMAP_BLOCK_SIZE;
1462 	return addr;
1463 }
1464 
1465 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1466 {
1467 	unsigned long addr;
1468 
1469 	addr = va_start + (pages_off << PAGE_SHIFT);
1470 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1471 	return (void *)addr;
1472 }
1473 
1474 /**
1475  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1476  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1477  * @order:    how many 2^order pages should be occupied in newly allocated block
1478  * @gfp_mask: flags for the page level allocator
1479  *
1480  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1481  */
1482 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1483 {
1484 	struct vmap_block_queue *vbq;
1485 	struct vmap_block *vb;
1486 	struct vmap_area *va;
1487 	unsigned long vb_idx;
1488 	int node, err;
1489 	void *vaddr;
1490 
1491 	node = numa_node_id();
1492 
1493 	vb = kmalloc_node(sizeof(struct vmap_block),
1494 			gfp_mask & GFP_RECLAIM_MASK, node);
1495 	if (unlikely(!vb))
1496 		return ERR_PTR(-ENOMEM);
1497 
1498 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1499 					VMALLOC_START, VMALLOC_END,
1500 					node, gfp_mask);
1501 	if (IS_ERR(va)) {
1502 		kfree(vb);
1503 		return ERR_CAST(va);
1504 	}
1505 
1506 	err = radix_tree_preload(gfp_mask);
1507 	if (unlikely(err)) {
1508 		kfree(vb);
1509 		free_vmap_area(va);
1510 		return ERR_PTR(err);
1511 	}
1512 
1513 	vaddr = vmap_block_vaddr(va->va_start, 0);
1514 	spin_lock_init(&vb->lock);
1515 	vb->va = va;
1516 	/* At least something should be left free */
1517 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1518 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1519 	vb->dirty = 0;
1520 	vb->dirty_min = VMAP_BBMAP_BITS;
1521 	vb->dirty_max = 0;
1522 	INIT_LIST_HEAD(&vb->free_list);
1523 
1524 	vb_idx = addr_to_vb_idx(va->va_start);
1525 	spin_lock(&vmap_block_tree_lock);
1526 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1527 	spin_unlock(&vmap_block_tree_lock);
1528 	BUG_ON(err);
1529 	radix_tree_preload_end();
1530 
1531 	vbq = &get_cpu_var(vmap_block_queue);
1532 	spin_lock(&vbq->lock);
1533 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1534 	spin_unlock(&vbq->lock);
1535 	put_cpu_var(vmap_block_queue);
1536 
1537 	return vaddr;
1538 }
1539 
1540 static void free_vmap_block(struct vmap_block *vb)
1541 {
1542 	struct vmap_block *tmp;
1543 	unsigned long vb_idx;
1544 
1545 	vb_idx = addr_to_vb_idx(vb->va->va_start);
1546 	spin_lock(&vmap_block_tree_lock);
1547 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1548 	spin_unlock(&vmap_block_tree_lock);
1549 	BUG_ON(tmp != vb);
1550 
1551 	free_vmap_area_noflush(vb->va);
1552 	kfree_rcu(vb, rcu_head);
1553 }
1554 
1555 static void purge_fragmented_blocks(int cpu)
1556 {
1557 	LIST_HEAD(purge);
1558 	struct vmap_block *vb;
1559 	struct vmap_block *n_vb;
1560 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1561 
1562 	rcu_read_lock();
1563 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1564 
1565 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1566 			continue;
1567 
1568 		spin_lock(&vb->lock);
1569 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1570 			vb->free = 0; /* prevent further allocs after releasing lock */
1571 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1572 			vb->dirty_min = 0;
1573 			vb->dirty_max = VMAP_BBMAP_BITS;
1574 			spin_lock(&vbq->lock);
1575 			list_del_rcu(&vb->free_list);
1576 			spin_unlock(&vbq->lock);
1577 			spin_unlock(&vb->lock);
1578 			list_add_tail(&vb->purge, &purge);
1579 		} else
1580 			spin_unlock(&vb->lock);
1581 	}
1582 	rcu_read_unlock();
1583 
1584 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1585 		list_del(&vb->purge);
1586 		free_vmap_block(vb);
1587 	}
1588 }
1589 
1590 static void purge_fragmented_blocks_allcpus(void)
1591 {
1592 	int cpu;
1593 
1594 	for_each_possible_cpu(cpu)
1595 		purge_fragmented_blocks(cpu);
1596 }
1597 
1598 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1599 {
1600 	struct vmap_block_queue *vbq;
1601 	struct vmap_block *vb;
1602 	void *vaddr = NULL;
1603 	unsigned int order;
1604 
1605 	BUG_ON(offset_in_page(size));
1606 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1607 	if (WARN_ON(size == 0)) {
1608 		/*
1609 		 * Allocating 0 bytes isn't what caller wants since
1610 		 * get_order(0) returns funny result. Just warn and terminate
1611 		 * early.
1612 		 */
1613 		return NULL;
1614 	}
1615 	order = get_order(size);
1616 
1617 	rcu_read_lock();
1618 	vbq = &get_cpu_var(vmap_block_queue);
1619 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1620 		unsigned long pages_off;
1621 
1622 		spin_lock(&vb->lock);
1623 		if (vb->free < (1UL << order)) {
1624 			spin_unlock(&vb->lock);
1625 			continue;
1626 		}
1627 
1628 		pages_off = VMAP_BBMAP_BITS - vb->free;
1629 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1630 		vb->free -= 1UL << order;
1631 		if (vb->free == 0) {
1632 			spin_lock(&vbq->lock);
1633 			list_del_rcu(&vb->free_list);
1634 			spin_unlock(&vbq->lock);
1635 		}
1636 
1637 		spin_unlock(&vb->lock);
1638 		break;
1639 	}
1640 
1641 	put_cpu_var(vmap_block_queue);
1642 	rcu_read_unlock();
1643 
1644 	/* Allocate new block if nothing was found */
1645 	if (!vaddr)
1646 		vaddr = new_vmap_block(order, gfp_mask);
1647 
1648 	return vaddr;
1649 }
1650 
1651 static void vb_free(const void *addr, unsigned long size)
1652 {
1653 	unsigned long offset;
1654 	unsigned long vb_idx;
1655 	unsigned int order;
1656 	struct vmap_block *vb;
1657 
1658 	BUG_ON(offset_in_page(size));
1659 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1660 
1661 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1662 
1663 	order = get_order(size);
1664 
1665 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1666 	offset >>= PAGE_SHIFT;
1667 
1668 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1669 	rcu_read_lock();
1670 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1671 	rcu_read_unlock();
1672 	BUG_ON(!vb);
1673 
1674 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1675 
1676 	if (debug_pagealloc_enabled())
1677 		flush_tlb_kernel_range((unsigned long)addr,
1678 					(unsigned long)addr + size);
1679 
1680 	spin_lock(&vb->lock);
1681 
1682 	/* Expand dirty range */
1683 	vb->dirty_min = min(vb->dirty_min, offset);
1684 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1685 
1686 	vb->dirty += 1UL << order;
1687 	if (vb->dirty == VMAP_BBMAP_BITS) {
1688 		BUG_ON(vb->free);
1689 		spin_unlock(&vb->lock);
1690 		free_vmap_block(vb);
1691 	} else
1692 		spin_unlock(&vb->lock);
1693 }
1694 
1695 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1696 {
1697 	int cpu;
1698 
1699 	if (unlikely(!vmap_initialized))
1700 		return;
1701 
1702 	might_sleep();
1703 
1704 	for_each_possible_cpu(cpu) {
1705 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1706 		struct vmap_block *vb;
1707 
1708 		rcu_read_lock();
1709 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1710 			spin_lock(&vb->lock);
1711 			if (vb->dirty) {
1712 				unsigned long va_start = vb->va->va_start;
1713 				unsigned long s, e;
1714 
1715 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1716 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1717 
1718 				start = min(s, start);
1719 				end   = max(e, end);
1720 
1721 				flush = 1;
1722 			}
1723 			spin_unlock(&vb->lock);
1724 		}
1725 		rcu_read_unlock();
1726 	}
1727 
1728 	mutex_lock(&vmap_purge_lock);
1729 	purge_fragmented_blocks_allcpus();
1730 	if (!__purge_vmap_area_lazy(start, end) && flush)
1731 		flush_tlb_kernel_range(start, end);
1732 	mutex_unlock(&vmap_purge_lock);
1733 }
1734 
1735 /**
1736  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1737  *
1738  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1739  * to amortize TLB flushing overheads. What this means is that any page you
1740  * have now, may, in a former life, have been mapped into kernel virtual
1741  * address by the vmap layer and so there might be some CPUs with TLB entries
1742  * still referencing that page (additional to the regular 1:1 kernel mapping).
1743  *
1744  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1745  * be sure that none of the pages we have control over will have any aliases
1746  * from the vmap layer.
1747  */
1748 void vm_unmap_aliases(void)
1749 {
1750 	unsigned long start = ULONG_MAX, end = 0;
1751 	int flush = 0;
1752 
1753 	_vm_unmap_aliases(start, end, flush);
1754 }
1755 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1756 
1757 /**
1758  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1759  * @mem: the pointer returned by vm_map_ram
1760  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1761  */
1762 void vm_unmap_ram(const void *mem, unsigned int count)
1763 {
1764 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1765 	unsigned long addr = (unsigned long)mem;
1766 	struct vmap_area *va;
1767 
1768 	might_sleep();
1769 	BUG_ON(!addr);
1770 	BUG_ON(addr < VMALLOC_START);
1771 	BUG_ON(addr > VMALLOC_END);
1772 	BUG_ON(!PAGE_ALIGNED(addr));
1773 
1774 	if (likely(count <= VMAP_MAX_ALLOC)) {
1775 		debug_check_no_locks_freed(mem, size);
1776 		vb_free(mem, size);
1777 		return;
1778 	}
1779 
1780 	va = find_vmap_area(addr);
1781 	BUG_ON(!va);
1782 	debug_check_no_locks_freed((void *)va->va_start,
1783 				    (va->va_end - va->va_start));
1784 	free_unmap_vmap_area(va);
1785 }
1786 EXPORT_SYMBOL(vm_unmap_ram);
1787 
1788 /**
1789  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1790  * @pages: an array of pointers to the pages to be mapped
1791  * @count: number of pages
1792  * @node: prefer to allocate data structures on this node
1793  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1794  *
1795  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1796  * faster than vmap so it's good.  But if you mix long-life and short-life
1797  * objects with vm_map_ram(), it could consume lots of address space through
1798  * fragmentation (especially on a 32bit machine).  You could see failures in
1799  * the end.  Please use this function for short-lived objects.
1800  *
1801  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1802  */
1803 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1804 {
1805 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1806 	unsigned long addr;
1807 	void *mem;
1808 
1809 	if (likely(count <= VMAP_MAX_ALLOC)) {
1810 		mem = vb_alloc(size, GFP_KERNEL);
1811 		if (IS_ERR(mem))
1812 			return NULL;
1813 		addr = (unsigned long)mem;
1814 	} else {
1815 		struct vmap_area *va;
1816 		va = alloc_vmap_area(size, PAGE_SIZE,
1817 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1818 		if (IS_ERR(va))
1819 			return NULL;
1820 
1821 		addr = va->va_start;
1822 		mem = (void *)addr;
1823 	}
1824 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1825 		vm_unmap_ram(mem, count);
1826 		return NULL;
1827 	}
1828 	return mem;
1829 }
1830 EXPORT_SYMBOL(vm_map_ram);
1831 
1832 static struct vm_struct *vmlist __initdata;
1833 
1834 /**
1835  * vm_area_add_early - add vmap area early during boot
1836  * @vm: vm_struct to add
1837  *
1838  * This function is used to add fixed kernel vm area to vmlist before
1839  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1840  * should contain proper values and the other fields should be zero.
1841  *
1842  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1843  */
1844 void __init vm_area_add_early(struct vm_struct *vm)
1845 {
1846 	struct vm_struct *tmp, **p;
1847 
1848 	BUG_ON(vmap_initialized);
1849 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1850 		if (tmp->addr >= vm->addr) {
1851 			BUG_ON(tmp->addr < vm->addr + vm->size);
1852 			break;
1853 		} else
1854 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1855 	}
1856 	vm->next = *p;
1857 	*p = vm;
1858 }
1859 
1860 /**
1861  * vm_area_register_early - register vmap area early during boot
1862  * @vm: vm_struct to register
1863  * @align: requested alignment
1864  *
1865  * This function is used to register kernel vm area before
1866  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1867  * proper values on entry and other fields should be zero.  On return,
1868  * vm->addr contains the allocated address.
1869  *
1870  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1871  */
1872 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1873 {
1874 	static size_t vm_init_off __initdata;
1875 	unsigned long addr;
1876 
1877 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1878 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1879 
1880 	vm->addr = (void *)addr;
1881 
1882 	vm_area_add_early(vm);
1883 }
1884 
1885 static void vmap_init_free_space(void)
1886 {
1887 	unsigned long vmap_start = 1;
1888 	const unsigned long vmap_end = ULONG_MAX;
1889 	struct vmap_area *busy, *free;
1890 
1891 	/*
1892 	 *     B     F     B     B     B     F
1893 	 * -|-----|.....|-----|-----|-----|.....|-
1894 	 *  |           The KVA space           |
1895 	 *  |<--------------------------------->|
1896 	 */
1897 	list_for_each_entry(busy, &vmap_area_list, list) {
1898 		if (busy->va_start - vmap_start > 0) {
1899 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1900 			if (!WARN_ON_ONCE(!free)) {
1901 				free->va_start = vmap_start;
1902 				free->va_end = busy->va_start;
1903 
1904 				insert_vmap_area_augment(free, NULL,
1905 					&free_vmap_area_root,
1906 						&free_vmap_area_list);
1907 			}
1908 		}
1909 
1910 		vmap_start = busy->va_end;
1911 	}
1912 
1913 	if (vmap_end - vmap_start > 0) {
1914 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1915 		if (!WARN_ON_ONCE(!free)) {
1916 			free->va_start = vmap_start;
1917 			free->va_end = vmap_end;
1918 
1919 			insert_vmap_area_augment(free, NULL,
1920 				&free_vmap_area_root,
1921 					&free_vmap_area_list);
1922 		}
1923 	}
1924 }
1925 
1926 void __init vmalloc_init(void)
1927 {
1928 	struct vmap_area *va;
1929 	struct vm_struct *tmp;
1930 	int i;
1931 
1932 	/*
1933 	 * Create the cache for vmap_area objects.
1934 	 */
1935 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1936 
1937 	for_each_possible_cpu(i) {
1938 		struct vmap_block_queue *vbq;
1939 		struct vfree_deferred *p;
1940 
1941 		vbq = &per_cpu(vmap_block_queue, i);
1942 		spin_lock_init(&vbq->lock);
1943 		INIT_LIST_HEAD(&vbq->free);
1944 		p = &per_cpu(vfree_deferred, i);
1945 		init_llist_head(&p->list);
1946 		INIT_WORK(&p->wq, free_work);
1947 	}
1948 
1949 	/* Import existing vmlist entries. */
1950 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1951 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1952 		if (WARN_ON_ONCE(!va))
1953 			continue;
1954 
1955 		va->va_start = (unsigned long)tmp->addr;
1956 		va->va_end = va->va_start + tmp->size;
1957 		va->vm = tmp;
1958 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1959 	}
1960 
1961 	/*
1962 	 * Now we can initialize a free vmap space.
1963 	 */
1964 	vmap_init_free_space();
1965 	vmap_initialized = true;
1966 }
1967 
1968 /**
1969  * map_kernel_range_noflush - map kernel VM area with the specified pages
1970  * @addr: start of the VM area to map
1971  * @size: size of the VM area to map
1972  * @prot: page protection flags to use
1973  * @pages: pages to map
1974  *
1975  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1976  * specify should have been allocated using get_vm_area() and its
1977  * friends.
1978  *
1979  * NOTE:
1980  * This function does NOT do any cache flushing.  The caller is
1981  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1982  * before calling this function.
1983  *
1984  * RETURNS:
1985  * The number of pages mapped on success, -errno on failure.
1986  */
1987 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1988 			     pgprot_t prot, struct page **pages)
1989 {
1990 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1991 }
1992 
1993 /**
1994  * unmap_kernel_range_noflush - unmap kernel VM area
1995  * @addr: start of the VM area to unmap
1996  * @size: size of the VM area to unmap
1997  *
1998  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1999  * specify should have been allocated using get_vm_area() and its
2000  * friends.
2001  *
2002  * NOTE:
2003  * This function does NOT do any cache flushing.  The caller is
2004  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
2005  * before calling this function and flush_tlb_kernel_range() after.
2006  */
2007 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
2008 {
2009 	vunmap_page_range(addr, addr + size);
2010 }
2011 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
2012 
2013 /**
2014  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2015  * @addr: start of the VM area to unmap
2016  * @size: size of the VM area to unmap
2017  *
2018  * Similar to unmap_kernel_range_noflush() but flushes vcache before
2019  * the unmapping and tlb after.
2020  */
2021 void unmap_kernel_range(unsigned long addr, unsigned long size)
2022 {
2023 	unsigned long end = addr + size;
2024 
2025 	flush_cache_vunmap(addr, end);
2026 	vunmap_page_range(addr, end);
2027 	flush_tlb_kernel_range(addr, end);
2028 }
2029 EXPORT_SYMBOL_GPL(unmap_kernel_range);
2030 
2031 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2032 {
2033 	unsigned long addr = (unsigned long)area->addr;
2034 	unsigned long end = addr + get_vm_area_size(area);
2035 	int err;
2036 
2037 	err = vmap_page_range(addr, end, prot, pages);
2038 
2039 	return err > 0 ? 0 : err;
2040 }
2041 EXPORT_SYMBOL_GPL(map_vm_area);
2042 
2043 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2044 	struct vmap_area *va, unsigned long flags, const void *caller)
2045 {
2046 	vm->flags = flags;
2047 	vm->addr = (void *)va->va_start;
2048 	vm->size = va->va_end - va->va_start;
2049 	vm->caller = caller;
2050 	va->vm = vm;
2051 }
2052 
2053 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2054 			      unsigned long flags, const void *caller)
2055 {
2056 	spin_lock(&vmap_area_lock);
2057 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2058 	spin_unlock(&vmap_area_lock);
2059 }
2060 
2061 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2062 {
2063 	/*
2064 	 * Before removing VM_UNINITIALIZED,
2065 	 * we should make sure that vm has proper values.
2066 	 * Pair with smp_rmb() in show_numa_info().
2067 	 */
2068 	smp_wmb();
2069 	vm->flags &= ~VM_UNINITIALIZED;
2070 }
2071 
2072 static struct vm_struct *__get_vm_area_node(unsigned long size,
2073 		unsigned long align, unsigned long flags, unsigned long start,
2074 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2075 {
2076 	struct vmap_area *va;
2077 	struct vm_struct *area;
2078 
2079 	BUG_ON(in_interrupt());
2080 	size = PAGE_ALIGN(size);
2081 	if (unlikely(!size))
2082 		return NULL;
2083 
2084 	if (flags & VM_IOREMAP)
2085 		align = 1ul << clamp_t(int, get_count_order_long(size),
2086 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2087 
2088 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2089 	if (unlikely(!area))
2090 		return NULL;
2091 
2092 	if (!(flags & VM_NO_GUARD))
2093 		size += PAGE_SIZE;
2094 
2095 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2096 	if (IS_ERR(va)) {
2097 		kfree(area);
2098 		return NULL;
2099 	}
2100 
2101 	setup_vmalloc_vm(area, va, flags, caller);
2102 
2103 	/*
2104 	 * For KASAN, if we are in vmalloc space, we need to cover the shadow
2105 	 * area with real memory. If we come here through VM_ALLOC, this is
2106 	 * done by a higher level function that has access to the true size,
2107 	 * which might not be a full page.
2108 	 *
2109 	 * We assume module space comes via VM_ALLOC path.
2110 	 */
2111 	if (is_vmalloc_addr(area->addr) && !(area->flags & VM_ALLOC)) {
2112 		if (kasan_populate_vmalloc(area->size, area)) {
2113 			unmap_vmap_area(va);
2114 			kfree(area);
2115 			return NULL;
2116 		}
2117 	}
2118 
2119 	return area;
2120 }
2121 
2122 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2123 				unsigned long start, unsigned long end)
2124 {
2125 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2126 				  GFP_KERNEL, __builtin_return_address(0));
2127 }
2128 EXPORT_SYMBOL_GPL(__get_vm_area);
2129 
2130 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2131 				       unsigned long start, unsigned long end,
2132 				       const void *caller)
2133 {
2134 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2135 				  GFP_KERNEL, caller);
2136 }
2137 
2138 /**
2139  * get_vm_area - reserve a contiguous kernel virtual area
2140  * @size:	 size of the area
2141  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2142  *
2143  * Search an area of @size in the kernel virtual mapping area,
2144  * and reserved it for out purposes.  Returns the area descriptor
2145  * on success or %NULL on failure.
2146  *
2147  * Return: the area descriptor on success or %NULL on failure.
2148  */
2149 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2150 {
2151 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2152 				  NUMA_NO_NODE, GFP_KERNEL,
2153 				  __builtin_return_address(0));
2154 }
2155 
2156 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2157 				const void *caller)
2158 {
2159 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2160 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2161 }
2162 
2163 /**
2164  * find_vm_area - find a continuous kernel virtual area
2165  * @addr:	  base address
2166  *
2167  * Search for the kernel VM area starting at @addr, and return it.
2168  * It is up to the caller to do all required locking to keep the returned
2169  * pointer valid.
2170  *
2171  * Return: pointer to the found area or %NULL on faulure
2172  */
2173 struct vm_struct *find_vm_area(const void *addr)
2174 {
2175 	struct vmap_area *va;
2176 
2177 	va = find_vmap_area((unsigned long)addr);
2178 	if (!va)
2179 		return NULL;
2180 
2181 	return va->vm;
2182 }
2183 
2184 /**
2185  * remove_vm_area - find and remove a continuous kernel virtual area
2186  * @addr:	    base address
2187  *
2188  * Search for the kernel VM area starting at @addr, and remove it.
2189  * This function returns the found VM area, but using it is NOT safe
2190  * on SMP machines, except for its size or flags.
2191  *
2192  * Return: pointer to the found area or %NULL on faulure
2193  */
2194 struct vm_struct *remove_vm_area(const void *addr)
2195 {
2196 	struct vmap_area *va;
2197 
2198 	might_sleep();
2199 
2200 	spin_lock(&vmap_area_lock);
2201 	va = __find_vmap_area((unsigned long)addr);
2202 	if (va && va->vm) {
2203 		struct vm_struct *vm = va->vm;
2204 
2205 		va->vm = NULL;
2206 		spin_unlock(&vmap_area_lock);
2207 
2208 		kasan_free_shadow(vm);
2209 		free_unmap_vmap_area(va);
2210 
2211 		return vm;
2212 	}
2213 
2214 	spin_unlock(&vmap_area_lock);
2215 	return NULL;
2216 }
2217 
2218 static inline void set_area_direct_map(const struct vm_struct *area,
2219 				       int (*set_direct_map)(struct page *page))
2220 {
2221 	int i;
2222 
2223 	for (i = 0; i < area->nr_pages; i++)
2224 		if (page_address(area->pages[i]))
2225 			set_direct_map(area->pages[i]);
2226 }
2227 
2228 /* Handle removing and resetting vm mappings related to the vm_struct. */
2229 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2230 {
2231 	unsigned long start = ULONG_MAX, end = 0;
2232 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2233 	int flush_dmap = 0;
2234 	int i;
2235 
2236 	remove_vm_area(area->addr);
2237 
2238 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2239 	if (!flush_reset)
2240 		return;
2241 
2242 	/*
2243 	 * If not deallocating pages, just do the flush of the VM area and
2244 	 * return.
2245 	 */
2246 	if (!deallocate_pages) {
2247 		vm_unmap_aliases();
2248 		return;
2249 	}
2250 
2251 	/*
2252 	 * If execution gets here, flush the vm mapping and reset the direct
2253 	 * map. Find the start and end range of the direct mappings to make sure
2254 	 * the vm_unmap_aliases() flush includes the direct map.
2255 	 */
2256 	for (i = 0; i < area->nr_pages; i++) {
2257 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2258 		if (addr) {
2259 			start = min(addr, start);
2260 			end = max(addr + PAGE_SIZE, end);
2261 			flush_dmap = 1;
2262 		}
2263 	}
2264 
2265 	/*
2266 	 * Set direct map to something invalid so that it won't be cached if
2267 	 * there are any accesses after the TLB flush, then flush the TLB and
2268 	 * reset the direct map permissions to the default.
2269 	 */
2270 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2271 	_vm_unmap_aliases(start, end, flush_dmap);
2272 	set_area_direct_map(area, set_direct_map_default_noflush);
2273 }
2274 
2275 static void __vunmap(const void *addr, int deallocate_pages)
2276 {
2277 	struct vm_struct *area;
2278 
2279 	if (!addr)
2280 		return;
2281 
2282 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2283 			addr))
2284 		return;
2285 
2286 	area = find_vm_area(addr);
2287 	if (unlikely(!area)) {
2288 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2289 				addr);
2290 		return;
2291 	}
2292 
2293 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2294 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2295 
2296 	if (area->flags & VM_KASAN)
2297 		kasan_poison_vmalloc(area->addr, area->size);
2298 
2299 	vm_remove_mappings(area, deallocate_pages);
2300 
2301 	if (deallocate_pages) {
2302 		int i;
2303 
2304 		for (i = 0; i < area->nr_pages; i++) {
2305 			struct page *page = area->pages[i];
2306 
2307 			BUG_ON(!page);
2308 			__free_pages(page, 0);
2309 		}
2310 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2311 
2312 		kvfree(area->pages);
2313 	}
2314 
2315 	kfree(area);
2316 	return;
2317 }
2318 
2319 static inline void __vfree_deferred(const void *addr)
2320 {
2321 	/*
2322 	 * Use raw_cpu_ptr() because this can be called from preemptible
2323 	 * context. Preemption is absolutely fine here, because the llist_add()
2324 	 * implementation is lockless, so it works even if we are adding to
2325 	 * nother cpu's list.  schedule_work() should be fine with this too.
2326 	 */
2327 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2328 
2329 	if (llist_add((struct llist_node *)addr, &p->list))
2330 		schedule_work(&p->wq);
2331 }
2332 
2333 /**
2334  * vfree_atomic - release memory allocated by vmalloc()
2335  * @addr:	  memory base address
2336  *
2337  * This one is just like vfree() but can be called in any atomic context
2338  * except NMIs.
2339  */
2340 void vfree_atomic(const void *addr)
2341 {
2342 	BUG_ON(in_nmi());
2343 
2344 	kmemleak_free(addr);
2345 
2346 	if (!addr)
2347 		return;
2348 	__vfree_deferred(addr);
2349 }
2350 
2351 static void __vfree(const void *addr)
2352 {
2353 	if (unlikely(in_interrupt()))
2354 		__vfree_deferred(addr);
2355 	else
2356 		__vunmap(addr, 1);
2357 }
2358 
2359 /**
2360  * vfree - release memory allocated by vmalloc()
2361  * @addr:  memory base address
2362  *
2363  * Free the virtually continuous memory area starting at @addr, as
2364  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2365  * NULL, no operation is performed.
2366  *
2367  * Must not be called in NMI context (strictly speaking, only if we don't
2368  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2369  * conventions for vfree() arch-depenedent would be a really bad idea)
2370  *
2371  * May sleep if called *not* from interrupt context.
2372  *
2373  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2374  */
2375 void vfree(const void *addr)
2376 {
2377 	BUG_ON(in_nmi());
2378 
2379 	kmemleak_free(addr);
2380 
2381 	might_sleep_if(!in_interrupt());
2382 
2383 	if (!addr)
2384 		return;
2385 
2386 	__vfree(addr);
2387 }
2388 EXPORT_SYMBOL(vfree);
2389 
2390 /**
2391  * vunmap - release virtual mapping obtained by vmap()
2392  * @addr:   memory base address
2393  *
2394  * Free the virtually contiguous memory area starting at @addr,
2395  * which was created from the page array passed to vmap().
2396  *
2397  * Must not be called in interrupt context.
2398  */
2399 void vunmap(const void *addr)
2400 {
2401 	BUG_ON(in_interrupt());
2402 	might_sleep();
2403 	if (addr)
2404 		__vunmap(addr, 0);
2405 }
2406 EXPORT_SYMBOL(vunmap);
2407 
2408 /**
2409  * vmap - map an array of pages into virtually contiguous space
2410  * @pages: array of page pointers
2411  * @count: number of pages to map
2412  * @flags: vm_area->flags
2413  * @prot: page protection for the mapping
2414  *
2415  * Maps @count pages from @pages into contiguous kernel virtual
2416  * space.
2417  *
2418  * Return: the address of the area or %NULL on failure
2419  */
2420 void *vmap(struct page **pages, unsigned int count,
2421 	   unsigned long flags, pgprot_t prot)
2422 {
2423 	struct vm_struct *area;
2424 	unsigned long size;		/* In bytes */
2425 
2426 	might_sleep();
2427 
2428 	if (count > totalram_pages())
2429 		return NULL;
2430 
2431 	size = (unsigned long)count << PAGE_SHIFT;
2432 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2433 	if (!area)
2434 		return NULL;
2435 
2436 	if (map_vm_area(area, prot, pages)) {
2437 		vunmap(area->addr);
2438 		return NULL;
2439 	}
2440 
2441 	return area->addr;
2442 }
2443 EXPORT_SYMBOL(vmap);
2444 
2445 static void *__vmalloc_node(unsigned long size, unsigned long align,
2446 			    gfp_t gfp_mask, pgprot_t prot,
2447 			    int node, const void *caller);
2448 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2449 				 pgprot_t prot, int node)
2450 {
2451 	struct page **pages;
2452 	unsigned int nr_pages, array_size, i;
2453 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2454 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2455 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2456 					0 :
2457 					__GFP_HIGHMEM;
2458 
2459 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2460 	array_size = (nr_pages * sizeof(struct page *));
2461 
2462 	/* Please note that the recursion is strictly bounded. */
2463 	if (array_size > PAGE_SIZE) {
2464 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2465 				PAGE_KERNEL, node, area->caller);
2466 	} else {
2467 		pages = kmalloc_node(array_size, nested_gfp, node);
2468 	}
2469 
2470 	if (!pages) {
2471 		remove_vm_area(area->addr);
2472 		kfree(area);
2473 		return NULL;
2474 	}
2475 
2476 	area->pages = pages;
2477 	area->nr_pages = nr_pages;
2478 
2479 	for (i = 0; i < area->nr_pages; i++) {
2480 		struct page *page;
2481 
2482 		if (node == NUMA_NO_NODE)
2483 			page = alloc_page(alloc_mask|highmem_mask);
2484 		else
2485 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2486 
2487 		if (unlikely(!page)) {
2488 			/* Successfully allocated i pages, free them in __vunmap() */
2489 			area->nr_pages = i;
2490 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2491 			goto fail;
2492 		}
2493 		area->pages[i] = page;
2494 		if (gfpflags_allow_blocking(gfp_mask))
2495 			cond_resched();
2496 	}
2497 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2498 
2499 	if (map_vm_area(area, prot, pages))
2500 		goto fail;
2501 	return area->addr;
2502 
2503 fail:
2504 	warn_alloc(gfp_mask, NULL,
2505 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2506 			  (area->nr_pages*PAGE_SIZE), area->size);
2507 	__vfree(area->addr);
2508 	return NULL;
2509 }
2510 
2511 /**
2512  * __vmalloc_node_range - allocate virtually contiguous memory
2513  * @size:		  allocation size
2514  * @align:		  desired alignment
2515  * @start:		  vm area range start
2516  * @end:		  vm area range end
2517  * @gfp_mask:		  flags for the page level allocator
2518  * @prot:		  protection mask for the allocated pages
2519  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2520  * @node:		  node to use for allocation or NUMA_NO_NODE
2521  * @caller:		  caller's return address
2522  *
2523  * Allocate enough pages to cover @size from the page level
2524  * allocator with @gfp_mask flags.  Map them into contiguous
2525  * kernel virtual space, using a pagetable protection of @prot.
2526  *
2527  * Return: the address of the area or %NULL on failure
2528  */
2529 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2530 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2531 			pgprot_t prot, unsigned long vm_flags, int node,
2532 			const void *caller)
2533 {
2534 	struct vm_struct *area;
2535 	void *addr;
2536 	unsigned long real_size = size;
2537 
2538 	size = PAGE_ALIGN(size);
2539 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2540 		goto fail;
2541 
2542 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2543 				vm_flags, start, end, node, gfp_mask, caller);
2544 	if (!area)
2545 		goto fail;
2546 
2547 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2548 	if (!addr)
2549 		return NULL;
2550 
2551 	if (is_vmalloc_or_module_addr(area->addr)) {
2552 		if (kasan_populate_vmalloc(real_size, area))
2553 			return NULL;
2554 	}
2555 
2556 	/*
2557 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2558 	 * flag. It means that vm_struct is not fully initialized.
2559 	 * Now, it is fully initialized, so remove this flag here.
2560 	 */
2561 	clear_vm_uninitialized_flag(area);
2562 
2563 	kmemleak_vmalloc(area, size, gfp_mask);
2564 
2565 	return addr;
2566 
2567 fail:
2568 	warn_alloc(gfp_mask, NULL,
2569 			  "vmalloc: allocation failure: %lu bytes", real_size);
2570 	return NULL;
2571 }
2572 
2573 /*
2574  * This is only for performance analysis of vmalloc and stress purpose.
2575  * It is required by vmalloc test module, therefore do not use it other
2576  * than that.
2577  */
2578 #ifdef CONFIG_TEST_VMALLOC_MODULE
2579 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2580 #endif
2581 
2582 /**
2583  * __vmalloc_node - allocate virtually contiguous memory
2584  * @size:	    allocation size
2585  * @align:	    desired alignment
2586  * @gfp_mask:	    flags for the page level allocator
2587  * @prot:	    protection mask for the allocated pages
2588  * @node:	    node to use for allocation or NUMA_NO_NODE
2589  * @caller:	    caller's return address
2590  *
2591  * Allocate enough pages to cover @size from the page level
2592  * allocator with @gfp_mask flags.  Map them into contiguous
2593  * kernel virtual space, using a pagetable protection of @prot.
2594  *
2595  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2596  * and __GFP_NOFAIL are not supported
2597  *
2598  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2599  * with mm people.
2600  *
2601  * Return: pointer to the allocated memory or %NULL on error
2602  */
2603 static void *__vmalloc_node(unsigned long size, unsigned long align,
2604 			    gfp_t gfp_mask, pgprot_t prot,
2605 			    int node, const void *caller)
2606 {
2607 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2608 				gfp_mask, prot, 0, node, caller);
2609 }
2610 
2611 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2612 {
2613 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2614 				__builtin_return_address(0));
2615 }
2616 EXPORT_SYMBOL(__vmalloc);
2617 
2618 static inline void *__vmalloc_node_flags(unsigned long size,
2619 					int node, gfp_t flags)
2620 {
2621 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2622 					node, __builtin_return_address(0));
2623 }
2624 
2625 
2626 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2627 				  void *caller)
2628 {
2629 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2630 }
2631 
2632 /**
2633  * vmalloc - allocate virtually contiguous memory
2634  * @size:    allocation size
2635  *
2636  * Allocate enough pages to cover @size from the page level
2637  * allocator and map them into contiguous kernel virtual space.
2638  *
2639  * For tight control over page level allocator and protection flags
2640  * use __vmalloc() instead.
2641  *
2642  * Return: pointer to the allocated memory or %NULL on error
2643  */
2644 void *vmalloc(unsigned long size)
2645 {
2646 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2647 				    GFP_KERNEL);
2648 }
2649 EXPORT_SYMBOL(vmalloc);
2650 
2651 /**
2652  * vzalloc - allocate virtually contiguous memory with zero fill
2653  * @size:    allocation size
2654  *
2655  * Allocate enough pages to cover @size from the page level
2656  * allocator and map them into contiguous kernel virtual space.
2657  * The memory allocated is set to zero.
2658  *
2659  * For tight control over page level allocator and protection flags
2660  * use __vmalloc() instead.
2661  *
2662  * Return: pointer to the allocated memory or %NULL on error
2663  */
2664 void *vzalloc(unsigned long size)
2665 {
2666 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2667 				GFP_KERNEL | __GFP_ZERO);
2668 }
2669 EXPORT_SYMBOL(vzalloc);
2670 
2671 /**
2672  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2673  * @size: allocation size
2674  *
2675  * The resulting memory area is zeroed so it can be mapped to userspace
2676  * without leaking data.
2677  *
2678  * Return: pointer to the allocated memory or %NULL on error
2679  */
2680 void *vmalloc_user(unsigned long size)
2681 {
2682 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2683 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2684 				    VM_USERMAP, NUMA_NO_NODE,
2685 				    __builtin_return_address(0));
2686 }
2687 EXPORT_SYMBOL(vmalloc_user);
2688 
2689 /**
2690  * vmalloc_node - allocate memory on a specific node
2691  * @size:	  allocation size
2692  * @node:	  numa node
2693  *
2694  * Allocate enough pages to cover @size from the page level
2695  * allocator and map them into contiguous kernel virtual space.
2696  *
2697  * For tight control over page level allocator and protection flags
2698  * use __vmalloc() instead.
2699  *
2700  * Return: pointer to the allocated memory or %NULL on error
2701  */
2702 void *vmalloc_node(unsigned long size, int node)
2703 {
2704 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2705 					node, __builtin_return_address(0));
2706 }
2707 EXPORT_SYMBOL(vmalloc_node);
2708 
2709 /**
2710  * vzalloc_node - allocate memory on a specific node with zero fill
2711  * @size:	allocation size
2712  * @node:	numa node
2713  *
2714  * Allocate enough pages to cover @size from the page level
2715  * allocator and map them into contiguous kernel virtual space.
2716  * The memory allocated is set to zero.
2717  *
2718  * For tight control over page level allocator and protection flags
2719  * use __vmalloc_node() instead.
2720  *
2721  * Return: pointer to the allocated memory or %NULL on error
2722  */
2723 void *vzalloc_node(unsigned long size, int node)
2724 {
2725 	return __vmalloc_node_flags(size, node,
2726 			 GFP_KERNEL | __GFP_ZERO);
2727 }
2728 EXPORT_SYMBOL(vzalloc_node);
2729 
2730 /**
2731  * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2732  * @size: allocation size
2733  * @node: numa node
2734  * @flags: flags for the page level allocator
2735  *
2736  * The resulting memory area is zeroed so it can be mapped to userspace
2737  * without leaking data.
2738  *
2739  * Return: pointer to the allocated memory or %NULL on error
2740  */
2741 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2742 {
2743 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2744 				    flags | __GFP_ZERO, PAGE_KERNEL,
2745 				    VM_USERMAP, node,
2746 				    __builtin_return_address(0));
2747 }
2748 EXPORT_SYMBOL(vmalloc_user_node_flags);
2749 
2750 /**
2751  * vmalloc_exec - allocate virtually contiguous, executable memory
2752  * @size:	  allocation size
2753  *
2754  * Kernel-internal function to allocate enough pages to cover @size
2755  * the page level allocator and map them into contiguous and
2756  * executable kernel virtual space.
2757  *
2758  * For tight control over page level allocator and protection flags
2759  * use __vmalloc() instead.
2760  *
2761  * Return: pointer to the allocated memory or %NULL on error
2762  */
2763 void *vmalloc_exec(unsigned long size)
2764 {
2765 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2766 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2767 			NUMA_NO_NODE, __builtin_return_address(0));
2768 }
2769 
2770 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2771 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2772 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2773 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2774 #else
2775 /*
2776  * 64b systems should always have either DMA or DMA32 zones. For others
2777  * GFP_DMA32 should do the right thing and use the normal zone.
2778  */
2779 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2780 #endif
2781 
2782 /**
2783  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2784  * @size:	allocation size
2785  *
2786  * Allocate enough 32bit PA addressable pages to cover @size from the
2787  * page level allocator and map them into contiguous kernel virtual space.
2788  *
2789  * Return: pointer to the allocated memory or %NULL on error
2790  */
2791 void *vmalloc_32(unsigned long size)
2792 {
2793 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2794 			      NUMA_NO_NODE, __builtin_return_address(0));
2795 }
2796 EXPORT_SYMBOL(vmalloc_32);
2797 
2798 /**
2799  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2800  * @size:	     allocation size
2801  *
2802  * The resulting memory area is 32bit addressable and zeroed so it can be
2803  * mapped to userspace without leaking data.
2804  *
2805  * Return: pointer to the allocated memory or %NULL on error
2806  */
2807 void *vmalloc_32_user(unsigned long size)
2808 {
2809 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2810 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2811 				    VM_USERMAP, NUMA_NO_NODE,
2812 				    __builtin_return_address(0));
2813 }
2814 EXPORT_SYMBOL(vmalloc_32_user);
2815 
2816 /*
2817  * small helper routine , copy contents to buf from addr.
2818  * If the page is not present, fill zero.
2819  */
2820 
2821 static int aligned_vread(char *buf, char *addr, unsigned long count)
2822 {
2823 	struct page *p;
2824 	int copied = 0;
2825 
2826 	while (count) {
2827 		unsigned long offset, length;
2828 
2829 		offset = offset_in_page(addr);
2830 		length = PAGE_SIZE - offset;
2831 		if (length > count)
2832 			length = count;
2833 		p = vmalloc_to_page(addr);
2834 		/*
2835 		 * To do safe access to this _mapped_ area, we need
2836 		 * lock. But adding lock here means that we need to add
2837 		 * overhead of vmalloc()/vfree() calles for this _debug_
2838 		 * interface, rarely used. Instead of that, we'll use
2839 		 * kmap() and get small overhead in this access function.
2840 		 */
2841 		if (p) {
2842 			/*
2843 			 * we can expect USER0 is not used (see vread/vwrite's
2844 			 * function description)
2845 			 */
2846 			void *map = kmap_atomic(p);
2847 			memcpy(buf, map + offset, length);
2848 			kunmap_atomic(map);
2849 		} else
2850 			memset(buf, 0, length);
2851 
2852 		addr += length;
2853 		buf += length;
2854 		copied += length;
2855 		count -= length;
2856 	}
2857 	return copied;
2858 }
2859 
2860 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2861 {
2862 	struct page *p;
2863 	int copied = 0;
2864 
2865 	while (count) {
2866 		unsigned long offset, length;
2867 
2868 		offset = offset_in_page(addr);
2869 		length = PAGE_SIZE - offset;
2870 		if (length > count)
2871 			length = count;
2872 		p = vmalloc_to_page(addr);
2873 		/*
2874 		 * To do safe access to this _mapped_ area, we need
2875 		 * lock. But adding lock here means that we need to add
2876 		 * overhead of vmalloc()/vfree() calles for this _debug_
2877 		 * interface, rarely used. Instead of that, we'll use
2878 		 * kmap() and get small overhead in this access function.
2879 		 */
2880 		if (p) {
2881 			/*
2882 			 * we can expect USER0 is not used (see vread/vwrite's
2883 			 * function description)
2884 			 */
2885 			void *map = kmap_atomic(p);
2886 			memcpy(map + offset, buf, length);
2887 			kunmap_atomic(map);
2888 		}
2889 		addr += length;
2890 		buf += length;
2891 		copied += length;
2892 		count -= length;
2893 	}
2894 	return copied;
2895 }
2896 
2897 /**
2898  * vread() - read vmalloc area in a safe way.
2899  * @buf:     buffer for reading data
2900  * @addr:    vm address.
2901  * @count:   number of bytes to be read.
2902  *
2903  * This function checks that addr is a valid vmalloc'ed area, and
2904  * copy data from that area to a given buffer. If the given memory range
2905  * of [addr...addr+count) includes some valid address, data is copied to
2906  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2907  * IOREMAP area is treated as memory hole and no copy is done.
2908  *
2909  * If [addr...addr+count) doesn't includes any intersects with alive
2910  * vm_struct area, returns 0. @buf should be kernel's buffer.
2911  *
2912  * Note: In usual ops, vread() is never necessary because the caller
2913  * should know vmalloc() area is valid and can use memcpy().
2914  * This is for routines which have to access vmalloc area without
2915  * any information, as /dev/kmem.
2916  *
2917  * Return: number of bytes for which addr and buf should be increased
2918  * (same number as @count) or %0 if [addr...addr+count) doesn't
2919  * include any intersection with valid vmalloc area
2920  */
2921 long vread(char *buf, char *addr, unsigned long count)
2922 {
2923 	struct vmap_area *va;
2924 	struct vm_struct *vm;
2925 	char *vaddr, *buf_start = buf;
2926 	unsigned long buflen = count;
2927 	unsigned long n;
2928 
2929 	/* Don't allow overflow */
2930 	if ((unsigned long) addr + count < count)
2931 		count = -(unsigned long) addr;
2932 
2933 	spin_lock(&vmap_area_lock);
2934 	list_for_each_entry(va, &vmap_area_list, list) {
2935 		if (!count)
2936 			break;
2937 
2938 		if (!va->vm)
2939 			continue;
2940 
2941 		vm = va->vm;
2942 		vaddr = (char *) vm->addr;
2943 		if (addr >= vaddr + get_vm_area_size(vm))
2944 			continue;
2945 		while (addr < vaddr) {
2946 			if (count == 0)
2947 				goto finished;
2948 			*buf = '\0';
2949 			buf++;
2950 			addr++;
2951 			count--;
2952 		}
2953 		n = vaddr + get_vm_area_size(vm) - addr;
2954 		if (n > count)
2955 			n = count;
2956 		if (!(vm->flags & VM_IOREMAP))
2957 			aligned_vread(buf, addr, n);
2958 		else /* IOREMAP area is treated as memory hole */
2959 			memset(buf, 0, n);
2960 		buf += n;
2961 		addr += n;
2962 		count -= n;
2963 	}
2964 finished:
2965 	spin_unlock(&vmap_area_lock);
2966 
2967 	if (buf == buf_start)
2968 		return 0;
2969 	/* zero-fill memory holes */
2970 	if (buf != buf_start + buflen)
2971 		memset(buf, 0, buflen - (buf - buf_start));
2972 
2973 	return buflen;
2974 }
2975 
2976 /**
2977  * vwrite() - write vmalloc area in a safe way.
2978  * @buf:      buffer for source data
2979  * @addr:     vm address.
2980  * @count:    number of bytes to be read.
2981  *
2982  * This function checks that addr is a valid vmalloc'ed area, and
2983  * copy data from a buffer to the given addr. If specified range of
2984  * [addr...addr+count) includes some valid address, data is copied from
2985  * proper area of @buf. If there are memory holes, no copy to hole.
2986  * IOREMAP area is treated as memory hole and no copy is done.
2987  *
2988  * If [addr...addr+count) doesn't includes any intersects with alive
2989  * vm_struct area, returns 0. @buf should be kernel's buffer.
2990  *
2991  * Note: In usual ops, vwrite() is never necessary because the caller
2992  * should know vmalloc() area is valid and can use memcpy().
2993  * This is for routines which have to access vmalloc area without
2994  * any information, as /dev/kmem.
2995  *
2996  * Return: number of bytes for which addr and buf should be
2997  * increased (same number as @count) or %0 if [addr...addr+count)
2998  * doesn't include any intersection with valid vmalloc area
2999  */
3000 long vwrite(char *buf, char *addr, unsigned long count)
3001 {
3002 	struct vmap_area *va;
3003 	struct vm_struct *vm;
3004 	char *vaddr;
3005 	unsigned long n, buflen;
3006 	int copied = 0;
3007 
3008 	/* Don't allow overflow */
3009 	if ((unsigned long) addr + count < count)
3010 		count = -(unsigned long) addr;
3011 	buflen = count;
3012 
3013 	spin_lock(&vmap_area_lock);
3014 	list_for_each_entry(va, &vmap_area_list, list) {
3015 		if (!count)
3016 			break;
3017 
3018 		if (!va->vm)
3019 			continue;
3020 
3021 		vm = va->vm;
3022 		vaddr = (char *) vm->addr;
3023 		if (addr >= vaddr + get_vm_area_size(vm))
3024 			continue;
3025 		while (addr < vaddr) {
3026 			if (count == 0)
3027 				goto finished;
3028 			buf++;
3029 			addr++;
3030 			count--;
3031 		}
3032 		n = vaddr + get_vm_area_size(vm) - addr;
3033 		if (n > count)
3034 			n = count;
3035 		if (!(vm->flags & VM_IOREMAP)) {
3036 			aligned_vwrite(buf, addr, n);
3037 			copied++;
3038 		}
3039 		buf += n;
3040 		addr += n;
3041 		count -= n;
3042 	}
3043 finished:
3044 	spin_unlock(&vmap_area_lock);
3045 	if (!copied)
3046 		return 0;
3047 	return buflen;
3048 }
3049 
3050 /**
3051  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3052  * @vma:		vma to cover
3053  * @uaddr:		target user address to start at
3054  * @kaddr:		virtual address of vmalloc kernel memory
3055  * @size:		size of map area
3056  *
3057  * Returns:	0 for success, -Exxx on failure
3058  *
3059  * This function checks that @kaddr is a valid vmalloc'ed area,
3060  * and that it is big enough to cover the range starting at
3061  * @uaddr in @vma. Will return failure if that criteria isn't
3062  * met.
3063  *
3064  * Similar to remap_pfn_range() (see mm/memory.c)
3065  */
3066 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3067 				void *kaddr, unsigned long size)
3068 {
3069 	struct vm_struct *area;
3070 
3071 	size = PAGE_ALIGN(size);
3072 
3073 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3074 		return -EINVAL;
3075 
3076 	area = find_vm_area(kaddr);
3077 	if (!area)
3078 		return -EINVAL;
3079 
3080 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3081 		return -EINVAL;
3082 
3083 	if (kaddr + size > area->addr + get_vm_area_size(area))
3084 		return -EINVAL;
3085 
3086 	do {
3087 		struct page *page = vmalloc_to_page(kaddr);
3088 		int ret;
3089 
3090 		ret = vm_insert_page(vma, uaddr, page);
3091 		if (ret)
3092 			return ret;
3093 
3094 		uaddr += PAGE_SIZE;
3095 		kaddr += PAGE_SIZE;
3096 		size -= PAGE_SIZE;
3097 	} while (size > 0);
3098 
3099 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3100 
3101 	return 0;
3102 }
3103 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3104 
3105 /**
3106  * remap_vmalloc_range - map vmalloc pages to userspace
3107  * @vma:		vma to cover (map full range of vma)
3108  * @addr:		vmalloc memory
3109  * @pgoff:		number of pages into addr before first page to map
3110  *
3111  * Returns:	0 for success, -Exxx on failure
3112  *
3113  * This function checks that addr is a valid vmalloc'ed area, and
3114  * that it is big enough to cover the vma. Will return failure if
3115  * that criteria isn't met.
3116  *
3117  * Similar to remap_pfn_range() (see mm/memory.c)
3118  */
3119 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3120 						unsigned long pgoff)
3121 {
3122 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3123 					   addr + (pgoff << PAGE_SHIFT),
3124 					   vma->vm_end - vma->vm_start);
3125 }
3126 EXPORT_SYMBOL(remap_vmalloc_range);
3127 
3128 /*
3129  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3130  * have one.
3131  *
3132  * The purpose of this function is to make sure the vmalloc area
3133  * mappings are identical in all page-tables in the system.
3134  */
3135 void __weak vmalloc_sync_all(void)
3136 {
3137 }
3138 
3139 
3140 static int f(pte_t *pte, unsigned long addr, void *data)
3141 {
3142 	pte_t ***p = data;
3143 
3144 	if (p) {
3145 		*(*p) = pte;
3146 		(*p)++;
3147 	}
3148 	return 0;
3149 }
3150 
3151 /**
3152  * alloc_vm_area - allocate a range of kernel address space
3153  * @size:	   size of the area
3154  * @ptes:	   returns the PTEs for the address space
3155  *
3156  * Returns:	NULL on failure, vm_struct on success
3157  *
3158  * This function reserves a range of kernel address space, and
3159  * allocates pagetables to map that range.  No actual mappings
3160  * are created.
3161  *
3162  * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3163  * allocated for the VM area are returned.
3164  */
3165 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3166 {
3167 	struct vm_struct *area;
3168 
3169 	area = get_vm_area_caller(size, VM_IOREMAP,
3170 				__builtin_return_address(0));
3171 	if (area == NULL)
3172 		return NULL;
3173 
3174 	/*
3175 	 * This ensures that page tables are constructed for this region
3176 	 * of kernel virtual address space and mapped into init_mm.
3177 	 */
3178 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3179 				size, f, ptes ? &ptes : NULL)) {
3180 		free_vm_area(area);
3181 		return NULL;
3182 	}
3183 
3184 	return area;
3185 }
3186 EXPORT_SYMBOL_GPL(alloc_vm_area);
3187 
3188 void free_vm_area(struct vm_struct *area)
3189 {
3190 	struct vm_struct *ret;
3191 	ret = remove_vm_area(area->addr);
3192 	BUG_ON(ret != area);
3193 	kfree(area);
3194 }
3195 EXPORT_SYMBOL_GPL(free_vm_area);
3196 
3197 #ifdef CONFIG_SMP
3198 static struct vmap_area *node_to_va(struct rb_node *n)
3199 {
3200 	return rb_entry_safe(n, struct vmap_area, rb_node);
3201 }
3202 
3203 /**
3204  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3205  * @addr: target address
3206  *
3207  * Returns: vmap_area if it is found. If there is no such area
3208  *   the first highest(reverse order) vmap_area is returned
3209  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3210  *   if there are no any areas before @addr.
3211  */
3212 static struct vmap_area *
3213 pvm_find_va_enclose_addr(unsigned long addr)
3214 {
3215 	struct vmap_area *va, *tmp;
3216 	struct rb_node *n;
3217 
3218 	n = free_vmap_area_root.rb_node;
3219 	va = NULL;
3220 
3221 	while (n) {
3222 		tmp = rb_entry(n, struct vmap_area, rb_node);
3223 		if (tmp->va_start <= addr) {
3224 			va = tmp;
3225 			if (tmp->va_end >= addr)
3226 				break;
3227 
3228 			n = n->rb_right;
3229 		} else {
3230 			n = n->rb_left;
3231 		}
3232 	}
3233 
3234 	return va;
3235 }
3236 
3237 /**
3238  * pvm_determine_end_from_reverse - find the highest aligned address
3239  * of free block below VMALLOC_END
3240  * @va:
3241  *   in - the VA we start the search(reverse order);
3242  *   out - the VA with the highest aligned end address.
3243  *
3244  * Returns: determined end address within vmap_area
3245  */
3246 static unsigned long
3247 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3248 {
3249 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3250 	unsigned long addr;
3251 
3252 	if (likely(*va)) {
3253 		list_for_each_entry_from_reverse((*va),
3254 				&free_vmap_area_list, list) {
3255 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3256 			if ((*va)->va_start < addr)
3257 				return addr;
3258 		}
3259 	}
3260 
3261 	return 0;
3262 }
3263 
3264 /**
3265  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3266  * @offsets: array containing offset of each area
3267  * @sizes: array containing size of each area
3268  * @nr_vms: the number of areas to allocate
3269  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3270  *
3271  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3272  *	    vm_structs on success, %NULL on failure
3273  *
3274  * Percpu allocator wants to use congruent vm areas so that it can
3275  * maintain the offsets among percpu areas.  This function allocates
3276  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3277  * be scattered pretty far, distance between two areas easily going up
3278  * to gigabytes.  To avoid interacting with regular vmallocs, these
3279  * areas are allocated from top.
3280  *
3281  * Despite its complicated look, this allocator is rather simple. It
3282  * does everything top-down and scans free blocks from the end looking
3283  * for matching base. While scanning, if any of the areas do not fit the
3284  * base address is pulled down to fit the area. Scanning is repeated till
3285  * all the areas fit and then all necessary data structures are inserted
3286  * and the result is returned.
3287  */
3288 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3289 				     const size_t *sizes, int nr_vms,
3290 				     size_t align)
3291 {
3292 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3293 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3294 	struct vmap_area **vas, *va;
3295 	struct vm_struct **vms;
3296 	int area, area2, last_area, term_area;
3297 	unsigned long base, start, size, end, last_end;
3298 	bool purged = false;
3299 	enum fit_type type;
3300 
3301 	/* verify parameters and allocate data structures */
3302 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3303 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3304 		start = offsets[area];
3305 		end = start + sizes[area];
3306 
3307 		/* is everything aligned properly? */
3308 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3309 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3310 
3311 		/* detect the area with the highest address */
3312 		if (start > offsets[last_area])
3313 			last_area = area;
3314 
3315 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3316 			unsigned long start2 = offsets[area2];
3317 			unsigned long end2 = start2 + sizes[area2];
3318 
3319 			BUG_ON(start2 < end && start < end2);
3320 		}
3321 	}
3322 	last_end = offsets[last_area] + sizes[last_area];
3323 
3324 	if (vmalloc_end - vmalloc_start < last_end) {
3325 		WARN_ON(true);
3326 		return NULL;
3327 	}
3328 
3329 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3330 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3331 	if (!vas || !vms)
3332 		goto err_free2;
3333 
3334 	for (area = 0; area < nr_vms; area++) {
3335 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3336 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3337 		if (!vas[area] || !vms[area])
3338 			goto err_free;
3339 	}
3340 retry:
3341 	spin_lock(&free_vmap_area_lock);
3342 
3343 	/* start scanning - we scan from the top, begin with the last area */
3344 	area = term_area = last_area;
3345 	start = offsets[area];
3346 	end = start + sizes[area];
3347 
3348 	va = pvm_find_va_enclose_addr(vmalloc_end);
3349 	base = pvm_determine_end_from_reverse(&va, align) - end;
3350 
3351 	while (true) {
3352 		/*
3353 		 * base might have underflowed, add last_end before
3354 		 * comparing.
3355 		 */
3356 		if (base + last_end < vmalloc_start + last_end)
3357 			goto overflow;
3358 
3359 		/*
3360 		 * Fitting base has not been found.
3361 		 */
3362 		if (va == NULL)
3363 			goto overflow;
3364 
3365 		/*
3366 		 * If required width exeeds current VA block, move
3367 		 * base downwards and then recheck.
3368 		 */
3369 		if (base + end > va->va_end) {
3370 			base = pvm_determine_end_from_reverse(&va, align) - end;
3371 			term_area = area;
3372 			continue;
3373 		}
3374 
3375 		/*
3376 		 * If this VA does not fit, move base downwards and recheck.
3377 		 */
3378 		if (base + start < va->va_start) {
3379 			va = node_to_va(rb_prev(&va->rb_node));
3380 			base = pvm_determine_end_from_reverse(&va, align) - end;
3381 			term_area = area;
3382 			continue;
3383 		}
3384 
3385 		/*
3386 		 * This area fits, move on to the previous one.  If
3387 		 * the previous one is the terminal one, we're done.
3388 		 */
3389 		area = (area + nr_vms - 1) % nr_vms;
3390 		if (area == term_area)
3391 			break;
3392 
3393 		start = offsets[area];
3394 		end = start + sizes[area];
3395 		va = pvm_find_va_enclose_addr(base + end);
3396 	}
3397 
3398 	/* we've found a fitting base, insert all va's */
3399 	for (area = 0; area < nr_vms; area++) {
3400 		int ret;
3401 
3402 		start = base + offsets[area];
3403 		size = sizes[area];
3404 
3405 		va = pvm_find_va_enclose_addr(start);
3406 		if (WARN_ON_ONCE(va == NULL))
3407 			/* It is a BUG(), but trigger recovery instead. */
3408 			goto recovery;
3409 
3410 		type = classify_va_fit_type(va, start, size);
3411 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3412 			/* It is a BUG(), but trigger recovery instead. */
3413 			goto recovery;
3414 
3415 		ret = adjust_va_to_fit_type(va, start, size, type);
3416 		if (unlikely(ret))
3417 			goto recovery;
3418 
3419 		/* Allocated area. */
3420 		va = vas[area];
3421 		va->va_start = start;
3422 		va->va_end = start + size;
3423 	}
3424 
3425 	spin_unlock(&free_vmap_area_lock);
3426 
3427 	/* insert all vm's */
3428 	spin_lock(&vmap_area_lock);
3429 	for (area = 0; area < nr_vms; area++) {
3430 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3431 
3432 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3433 				 pcpu_get_vm_areas);
3434 	}
3435 	spin_unlock(&vmap_area_lock);
3436 
3437 	/* populate the shadow space outside of the lock */
3438 	for (area = 0; area < nr_vms; area++) {
3439 		/* assume success here */
3440 		kasan_populate_vmalloc(sizes[area], vms[area]);
3441 	}
3442 
3443 	kfree(vas);
3444 	return vms;
3445 
3446 recovery:
3447 	/*
3448 	 * Remove previously allocated areas. There is no
3449 	 * need in removing these areas from the busy tree,
3450 	 * because they are inserted only on the final step
3451 	 * and when pcpu_get_vm_areas() is success.
3452 	 */
3453 	while (area--) {
3454 		merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3455 				       &free_vmap_area_list);
3456 		vas[area] = NULL;
3457 	}
3458 
3459 overflow:
3460 	spin_unlock(&free_vmap_area_lock);
3461 	if (!purged) {
3462 		purge_vmap_area_lazy();
3463 		purged = true;
3464 
3465 		/* Before "retry", check if we recover. */
3466 		for (area = 0; area < nr_vms; area++) {
3467 			if (vas[area])
3468 				continue;
3469 
3470 			vas[area] = kmem_cache_zalloc(
3471 				vmap_area_cachep, GFP_KERNEL);
3472 			if (!vas[area])
3473 				goto err_free;
3474 		}
3475 
3476 		goto retry;
3477 	}
3478 
3479 err_free:
3480 	for (area = 0; area < nr_vms; area++) {
3481 		if (vas[area])
3482 			kmem_cache_free(vmap_area_cachep, vas[area]);
3483 
3484 		kfree(vms[area]);
3485 	}
3486 err_free2:
3487 	kfree(vas);
3488 	kfree(vms);
3489 	return NULL;
3490 }
3491 
3492 /**
3493  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3494  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3495  * @nr_vms: the number of allocated areas
3496  *
3497  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3498  */
3499 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3500 {
3501 	int i;
3502 
3503 	for (i = 0; i < nr_vms; i++)
3504 		free_vm_area(vms[i]);
3505 	kfree(vms);
3506 }
3507 #endif	/* CONFIG_SMP */
3508 
3509 #ifdef CONFIG_PROC_FS
3510 static void *s_start(struct seq_file *m, loff_t *pos)
3511 	__acquires(&vmap_purge_lock)
3512 	__acquires(&vmap_area_lock)
3513 {
3514 	mutex_lock(&vmap_purge_lock);
3515 	spin_lock(&vmap_area_lock);
3516 
3517 	return seq_list_start(&vmap_area_list, *pos);
3518 }
3519 
3520 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3521 {
3522 	return seq_list_next(p, &vmap_area_list, pos);
3523 }
3524 
3525 static void s_stop(struct seq_file *m, void *p)
3526 	__releases(&vmap_purge_lock)
3527 	__releases(&vmap_area_lock)
3528 {
3529 	mutex_unlock(&vmap_purge_lock);
3530 	spin_unlock(&vmap_area_lock);
3531 }
3532 
3533 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3534 {
3535 	if (IS_ENABLED(CONFIG_NUMA)) {
3536 		unsigned int nr, *counters = m->private;
3537 
3538 		if (!counters)
3539 			return;
3540 
3541 		if (v->flags & VM_UNINITIALIZED)
3542 			return;
3543 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3544 		smp_rmb();
3545 
3546 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3547 
3548 		for (nr = 0; nr < v->nr_pages; nr++)
3549 			counters[page_to_nid(v->pages[nr])]++;
3550 
3551 		for_each_node_state(nr, N_HIGH_MEMORY)
3552 			if (counters[nr])
3553 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3554 	}
3555 }
3556 
3557 static void show_purge_info(struct seq_file *m)
3558 {
3559 	struct llist_node *head;
3560 	struct vmap_area *va;
3561 
3562 	head = READ_ONCE(vmap_purge_list.first);
3563 	if (head == NULL)
3564 		return;
3565 
3566 	llist_for_each_entry(va, head, purge_list) {
3567 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3568 			(void *)va->va_start, (void *)va->va_end,
3569 			va->va_end - va->va_start);
3570 	}
3571 }
3572 
3573 static int s_show(struct seq_file *m, void *p)
3574 {
3575 	struct vmap_area *va;
3576 	struct vm_struct *v;
3577 
3578 	va = list_entry(p, struct vmap_area, list);
3579 
3580 	/*
3581 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3582 	 * of vmap area is being tear down or vm_map_ram allocation.
3583 	 */
3584 	if (!va->vm) {
3585 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3586 			(void *)va->va_start, (void *)va->va_end,
3587 			va->va_end - va->va_start);
3588 
3589 		return 0;
3590 	}
3591 
3592 	v = va->vm;
3593 
3594 	seq_printf(m, "0x%pK-0x%pK %7ld",
3595 		v->addr, v->addr + v->size, v->size);
3596 
3597 	if (v->caller)
3598 		seq_printf(m, " %pS", v->caller);
3599 
3600 	if (v->nr_pages)
3601 		seq_printf(m, " pages=%d", v->nr_pages);
3602 
3603 	if (v->phys_addr)
3604 		seq_printf(m, " phys=%pa", &v->phys_addr);
3605 
3606 	if (v->flags & VM_IOREMAP)
3607 		seq_puts(m, " ioremap");
3608 
3609 	if (v->flags & VM_ALLOC)
3610 		seq_puts(m, " vmalloc");
3611 
3612 	if (v->flags & VM_MAP)
3613 		seq_puts(m, " vmap");
3614 
3615 	if (v->flags & VM_USERMAP)
3616 		seq_puts(m, " user");
3617 
3618 	if (v->flags & VM_DMA_COHERENT)
3619 		seq_puts(m, " dma-coherent");
3620 
3621 	if (is_vmalloc_addr(v->pages))
3622 		seq_puts(m, " vpages");
3623 
3624 	show_numa_info(m, v);
3625 	seq_putc(m, '\n');
3626 
3627 	/*
3628 	 * As a final step, dump "unpurged" areas. Note,
3629 	 * that entire "/proc/vmallocinfo" output will not
3630 	 * be address sorted, because the purge list is not
3631 	 * sorted.
3632 	 */
3633 	if (list_is_last(&va->list, &vmap_area_list))
3634 		show_purge_info(m);
3635 
3636 	return 0;
3637 }
3638 
3639 static const struct seq_operations vmalloc_op = {
3640 	.start = s_start,
3641 	.next = s_next,
3642 	.stop = s_stop,
3643 	.show = s_show,
3644 };
3645 
3646 static int __init proc_vmalloc_init(void)
3647 {
3648 	if (IS_ENABLED(CONFIG_NUMA))
3649 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3650 				&vmalloc_op,
3651 				nr_node_ids * sizeof(unsigned int), NULL);
3652 	else
3653 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3654 	return 0;
3655 }
3656 module_init(proc_vmalloc_init);
3657 
3658 #endif
3659