1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmalloc.c 4 * 5 * Copyright (C) 1993 Linus Torvalds 6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 9 * Numa awareness, Christoph Lameter, SGI, June 2005 10 */ 11 12 #include <linux/vmalloc.h> 13 #include <linux/mm.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/sched/signal.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/interrupt.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/set_memory.h> 23 #include <linux/debugobjects.h> 24 #include <linux/kallsyms.h> 25 #include <linux/list.h> 26 #include <linux/notifier.h> 27 #include <linux/rbtree.h> 28 #include <linux/radix-tree.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/llist.h> 35 #include <linux/bitops.h> 36 #include <linux/rbtree_augmented.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/tlbflush.h> 40 #include <asm/shmparam.h> 41 42 #include "internal.h" 43 44 struct vfree_deferred { 45 struct llist_head list; 46 struct work_struct wq; 47 }; 48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 49 50 static void __vunmap(const void *, int); 51 52 static void free_work(struct work_struct *w) 53 { 54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 55 struct llist_node *t, *llnode; 56 57 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 58 __vunmap((void *)llnode, 1); 59 } 60 61 /*** Page table manipulation functions ***/ 62 63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 64 { 65 pte_t *pte; 66 67 pte = pte_offset_kernel(pmd, addr); 68 do { 69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 70 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 71 } while (pte++, addr += PAGE_SIZE, addr != end); 72 } 73 74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 75 { 76 pmd_t *pmd; 77 unsigned long next; 78 79 pmd = pmd_offset(pud, addr); 80 do { 81 next = pmd_addr_end(addr, end); 82 if (pmd_clear_huge(pmd)) 83 continue; 84 if (pmd_none_or_clear_bad(pmd)) 85 continue; 86 vunmap_pte_range(pmd, addr, next); 87 } while (pmd++, addr = next, addr != end); 88 } 89 90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 91 { 92 pud_t *pud; 93 unsigned long next; 94 95 pud = pud_offset(p4d, addr); 96 do { 97 next = pud_addr_end(addr, end); 98 if (pud_clear_huge(pud)) 99 continue; 100 if (pud_none_or_clear_bad(pud)) 101 continue; 102 vunmap_pmd_range(pud, addr, next); 103 } while (pud++, addr = next, addr != end); 104 } 105 106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 107 { 108 p4d_t *p4d; 109 unsigned long next; 110 111 p4d = p4d_offset(pgd, addr); 112 do { 113 next = p4d_addr_end(addr, end); 114 if (p4d_clear_huge(p4d)) 115 continue; 116 if (p4d_none_or_clear_bad(p4d)) 117 continue; 118 vunmap_pud_range(p4d, addr, next); 119 } while (p4d++, addr = next, addr != end); 120 } 121 122 static void vunmap_page_range(unsigned long addr, unsigned long end) 123 { 124 pgd_t *pgd; 125 unsigned long next; 126 127 BUG_ON(addr >= end); 128 pgd = pgd_offset_k(addr); 129 do { 130 next = pgd_addr_end(addr, end); 131 if (pgd_none_or_clear_bad(pgd)) 132 continue; 133 vunmap_p4d_range(pgd, addr, next); 134 } while (pgd++, addr = next, addr != end); 135 } 136 137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 139 { 140 pte_t *pte; 141 142 /* 143 * nr is a running index into the array which helps higher level 144 * callers keep track of where we're up to. 145 */ 146 147 pte = pte_alloc_kernel(pmd, addr); 148 if (!pte) 149 return -ENOMEM; 150 do { 151 struct page *page = pages[*nr]; 152 153 if (WARN_ON(!pte_none(*pte))) 154 return -EBUSY; 155 if (WARN_ON(!page)) 156 return -ENOMEM; 157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 158 (*nr)++; 159 } while (pte++, addr += PAGE_SIZE, addr != end); 160 return 0; 161 } 162 163 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 164 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 165 { 166 pmd_t *pmd; 167 unsigned long next; 168 169 pmd = pmd_alloc(&init_mm, pud, addr); 170 if (!pmd) 171 return -ENOMEM; 172 do { 173 next = pmd_addr_end(addr, end); 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 175 return -ENOMEM; 176 } while (pmd++, addr = next, addr != end); 177 return 0; 178 } 179 180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 182 { 183 pud_t *pud; 184 unsigned long next; 185 186 pud = pud_alloc(&init_mm, p4d, addr); 187 if (!pud) 188 return -ENOMEM; 189 do { 190 next = pud_addr_end(addr, end); 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 192 return -ENOMEM; 193 } while (pud++, addr = next, addr != end); 194 return 0; 195 } 196 197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 198 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 199 { 200 p4d_t *p4d; 201 unsigned long next; 202 203 p4d = p4d_alloc(&init_mm, pgd, addr); 204 if (!p4d) 205 return -ENOMEM; 206 do { 207 next = p4d_addr_end(addr, end); 208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 209 return -ENOMEM; 210 } while (p4d++, addr = next, addr != end); 211 return 0; 212 } 213 214 /* 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 216 * will have pfns corresponding to the "pages" array. 217 * 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 219 */ 220 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 221 pgprot_t prot, struct page **pages) 222 { 223 pgd_t *pgd; 224 unsigned long next; 225 unsigned long addr = start; 226 int err = 0; 227 int nr = 0; 228 229 BUG_ON(addr >= end); 230 pgd = pgd_offset_k(addr); 231 do { 232 next = pgd_addr_end(addr, end); 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 234 if (err) 235 return err; 236 } while (pgd++, addr = next, addr != end); 237 238 return nr; 239 } 240 241 static int vmap_page_range(unsigned long start, unsigned long end, 242 pgprot_t prot, struct page **pages) 243 { 244 int ret; 245 246 ret = vmap_page_range_noflush(start, end, prot, pages); 247 flush_cache_vmap(start, end); 248 return ret; 249 } 250 251 int is_vmalloc_or_module_addr(const void *x) 252 { 253 /* 254 * ARM, x86-64 and sparc64 put modules in a special place, 255 * and fall back on vmalloc() if that fails. Others 256 * just put it in the vmalloc space. 257 */ 258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 259 unsigned long addr = (unsigned long)x; 260 if (addr >= MODULES_VADDR && addr < MODULES_END) 261 return 1; 262 #endif 263 return is_vmalloc_addr(x); 264 } 265 266 /* 267 * Walk a vmap address to the struct page it maps. 268 */ 269 struct page *vmalloc_to_page(const void *vmalloc_addr) 270 { 271 unsigned long addr = (unsigned long) vmalloc_addr; 272 struct page *page = NULL; 273 pgd_t *pgd = pgd_offset_k(addr); 274 p4d_t *p4d; 275 pud_t *pud; 276 pmd_t *pmd; 277 pte_t *ptep, pte; 278 279 /* 280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 281 * architectures that do not vmalloc module space 282 */ 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 284 285 if (pgd_none(*pgd)) 286 return NULL; 287 p4d = p4d_offset(pgd, addr); 288 if (p4d_none(*p4d)) 289 return NULL; 290 pud = pud_offset(p4d, addr); 291 292 /* 293 * Don't dereference bad PUD or PMD (below) entries. This will also 294 * identify huge mappings, which we may encounter on architectures 295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 296 * identified as vmalloc addresses by is_vmalloc_addr(), but are 297 * not [unambiguously] associated with a struct page, so there is 298 * no correct value to return for them. 299 */ 300 WARN_ON_ONCE(pud_bad(*pud)); 301 if (pud_none(*pud) || pud_bad(*pud)) 302 return NULL; 303 pmd = pmd_offset(pud, addr); 304 WARN_ON_ONCE(pmd_bad(*pmd)); 305 if (pmd_none(*pmd) || pmd_bad(*pmd)) 306 return NULL; 307 308 ptep = pte_offset_map(pmd, addr); 309 pte = *ptep; 310 if (pte_present(pte)) 311 page = pte_page(pte); 312 pte_unmap(ptep); 313 return page; 314 } 315 EXPORT_SYMBOL(vmalloc_to_page); 316 317 /* 318 * Map a vmalloc()-space virtual address to the physical page frame number. 319 */ 320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 321 { 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 323 } 324 EXPORT_SYMBOL(vmalloc_to_pfn); 325 326 327 /*** Global kva allocator ***/ 328 329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 331 332 333 static DEFINE_SPINLOCK(vmap_area_lock); 334 static DEFINE_SPINLOCK(free_vmap_area_lock); 335 /* Export for kexec only */ 336 LIST_HEAD(vmap_area_list); 337 static LLIST_HEAD(vmap_purge_list); 338 static struct rb_root vmap_area_root = RB_ROOT; 339 static bool vmap_initialized __read_mostly; 340 341 /* 342 * This kmem_cache is used for vmap_area objects. Instead of 343 * allocating from slab we reuse an object from this cache to 344 * make things faster. Especially in "no edge" splitting of 345 * free block. 346 */ 347 static struct kmem_cache *vmap_area_cachep; 348 349 /* 350 * This linked list is used in pair with free_vmap_area_root. 351 * It gives O(1) access to prev/next to perform fast coalescing. 352 */ 353 static LIST_HEAD(free_vmap_area_list); 354 355 /* 356 * This augment red-black tree represents the free vmap space. 357 * All vmap_area objects in this tree are sorted by va->va_start 358 * address. It is used for allocation and merging when a vmap 359 * object is released. 360 * 361 * Each vmap_area node contains a maximum available free block 362 * of its sub-tree, right or left. Therefore it is possible to 363 * find a lowest match of free area. 364 */ 365 static struct rb_root free_vmap_area_root = RB_ROOT; 366 367 /* 368 * Preload a CPU with one object for "no edge" split case. The 369 * aim is to get rid of allocations from the atomic context, thus 370 * to use more permissive allocation masks. 371 */ 372 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 373 374 static __always_inline unsigned long 375 va_size(struct vmap_area *va) 376 { 377 return (va->va_end - va->va_start); 378 } 379 380 static __always_inline unsigned long 381 get_subtree_max_size(struct rb_node *node) 382 { 383 struct vmap_area *va; 384 385 va = rb_entry_safe(node, struct vmap_area, rb_node); 386 return va ? va->subtree_max_size : 0; 387 } 388 389 /* 390 * Gets called when remove the node and rotate. 391 */ 392 static __always_inline unsigned long 393 compute_subtree_max_size(struct vmap_area *va) 394 { 395 return max3(va_size(va), 396 get_subtree_max_size(va->rb_node.rb_left), 397 get_subtree_max_size(va->rb_node.rb_right)); 398 } 399 400 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 401 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 402 403 static void purge_vmap_area_lazy(void); 404 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 405 static unsigned long lazy_max_pages(void); 406 407 static atomic_long_t nr_vmalloc_pages; 408 409 unsigned long vmalloc_nr_pages(void) 410 { 411 return atomic_long_read(&nr_vmalloc_pages); 412 } 413 414 static struct vmap_area *__find_vmap_area(unsigned long addr) 415 { 416 struct rb_node *n = vmap_area_root.rb_node; 417 418 while (n) { 419 struct vmap_area *va; 420 421 va = rb_entry(n, struct vmap_area, rb_node); 422 if (addr < va->va_start) 423 n = n->rb_left; 424 else if (addr >= va->va_end) 425 n = n->rb_right; 426 else 427 return va; 428 } 429 430 return NULL; 431 } 432 433 /* 434 * This function returns back addresses of parent node 435 * and its left or right link for further processing. 436 */ 437 static __always_inline struct rb_node ** 438 find_va_links(struct vmap_area *va, 439 struct rb_root *root, struct rb_node *from, 440 struct rb_node **parent) 441 { 442 struct vmap_area *tmp_va; 443 struct rb_node **link; 444 445 if (root) { 446 link = &root->rb_node; 447 if (unlikely(!*link)) { 448 *parent = NULL; 449 return link; 450 } 451 } else { 452 link = &from; 453 } 454 455 /* 456 * Go to the bottom of the tree. When we hit the last point 457 * we end up with parent rb_node and correct direction, i name 458 * it link, where the new va->rb_node will be attached to. 459 */ 460 do { 461 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 462 463 /* 464 * During the traversal we also do some sanity check. 465 * Trigger the BUG() if there are sides(left/right) 466 * or full overlaps. 467 */ 468 if (va->va_start < tmp_va->va_end && 469 va->va_end <= tmp_va->va_start) 470 link = &(*link)->rb_left; 471 else if (va->va_end > tmp_va->va_start && 472 va->va_start >= tmp_va->va_end) 473 link = &(*link)->rb_right; 474 else 475 BUG(); 476 } while (*link); 477 478 *parent = &tmp_va->rb_node; 479 return link; 480 } 481 482 static __always_inline struct list_head * 483 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 484 { 485 struct list_head *list; 486 487 if (unlikely(!parent)) 488 /* 489 * The red-black tree where we try to find VA neighbors 490 * before merging or inserting is empty, i.e. it means 491 * there is no free vmap space. Normally it does not 492 * happen but we handle this case anyway. 493 */ 494 return NULL; 495 496 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 497 return (&parent->rb_right == link ? list->next : list); 498 } 499 500 static __always_inline void 501 link_va(struct vmap_area *va, struct rb_root *root, 502 struct rb_node *parent, struct rb_node **link, struct list_head *head) 503 { 504 /* 505 * VA is still not in the list, but we can 506 * identify its future previous list_head node. 507 */ 508 if (likely(parent)) { 509 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 510 if (&parent->rb_right != link) 511 head = head->prev; 512 } 513 514 /* Insert to the rb-tree */ 515 rb_link_node(&va->rb_node, parent, link); 516 if (root == &free_vmap_area_root) { 517 /* 518 * Some explanation here. Just perform simple insertion 519 * to the tree. We do not set va->subtree_max_size to 520 * its current size before calling rb_insert_augmented(). 521 * It is because of we populate the tree from the bottom 522 * to parent levels when the node _is_ in the tree. 523 * 524 * Therefore we set subtree_max_size to zero after insertion, 525 * to let __augment_tree_propagate_from() puts everything to 526 * the correct order later on. 527 */ 528 rb_insert_augmented(&va->rb_node, 529 root, &free_vmap_area_rb_augment_cb); 530 va->subtree_max_size = 0; 531 } else { 532 rb_insert_color(&va->rb_node, root); 533 } 534 535 /* Address-sort this list */ 536 list_add(&va->list, head); 537 } 538 539 static __always_inline void 540 unlink_va(struct vmap_area *va, struct rb_root *root) 541 { 542 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 543 return; 544 545 if (root == &free_vmap_area_root) 546 rb_erase_augmented(&va->rb_node, 547 root, &free_vmap_area_rb_augment_cb); 548 else 549 rb_erase(&va->rb_node, root); 550 551 list_del(&va->list); 552 RB_CLEAR_NODE(&va->rb_node); 553 } 554 555 #if DEBUG_AUGMENT_PROPAGATE_CHECK 556 static void 557 augment_tree_propagate_check(struct rb_node *n) 558 { 559 struct vmap_area *va; 560 struct rb_node *node; 561 unsigned long size; 562 bool found = false; 563 564 if (n == NULL) 565 return; 566 567 va = rb_entry(n, struct vmap_area, rb_node); 568 size = va->subtree_max_size; 569 node = n; 570 571 while (node) { 572 va = rb_entry(node, struct vmap_area, rb_node); 573 574 if (get_subtree_max_size(node->rb_left) == size) { 575 node = node->rb_left; 576 } else { 577 if (va_size(va) == size) { 578 found = true; 579 break; 580 } 581 582 node = node->rb_right; 583 } 584 } 585 586 if (!found) { 587 va = rb_entry(n, struct vmap_area, rb_node); 588 pr_emerg("tree is corrupted: %lu, %lu\n", 589 va_size(va), va->subtree_max_size); 590 } 591 592 augment_tree_propagate_check(n->rb_left); 593 augment_tree_propagate_check(n->rb_right); 594 } 595 #endif 596 597 /* 598 * This function populates subtree_max_size from bottom to upper 599 * levels starting from VA point. The propagation must be done 600 * when VA size is modified by changing its va_start/va_end. Or 601 * in case of newly inserting of VA to the tree. 602 * 603 * It means that __augment_tree_propagate_from() must be called: 604 * - After VA has been inserted to the tree(free path); 605 * - After VA has been shrunk(allocation path); 606 * - After VA has been increased(merging path). 607 * 608 * Please note that, it does not mean that upper parent nodes 609 * and their subtree_max_size are recalculated all the time up 610 * to the root node. 611 * 612 * 4--8 613 * /\ 614 * / \ 615 * / \ 616 * 2--2 8--8 617 * 618 * For example if we modify the node 4, shrinking it to 2, then 619 * no any modification is required. If we shrink the node 2 to 1 620 * its subtree_max_size is updated only, and set to 1. If we shrink 621 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 622 * node becomes 4--6. 623 */ 624 static __always_inline void 625 augment_tree_propagate_from(struct vmap_area *va) 626 { 627 struct rb_node *node = &va->rb_node; 628 unsigned long new_va_sub_max_size; 629 630 while (node) { 631 va = rb_entry(node, struct vmap_area, rb_node); 632 new_va_sub_max_size = compute_subtree_max_size(va); 633 634 /* 635 * If the newly calculated maximum available size of the 636 * subtree is equal to the current one, then it means that 637 * the tree is propagated correctly. So we have to stop at 638 * this point to save cycles. 639 */ 640 if (va->subtree_max_size == new_va_sub_max_size) 641 break; 642 643 va->subtree_max_size = new_va_sub_max_size; 644 node = rb_parent(&va->rb_node); 645 } 646 647 #if DEBUG_AUGMENT_PROPAGATE_CHECK 648 augment_tree_propagate_check(free_vmap_area_root.rb_node); 649 #endif 650 } 651 652 static void 653 insert_vmap_area(struct vmap_area *va, 654 struct rb_root *root, struct list_head *head) 655 { 656 struct rb_node **link; 657 struct rb_node *parent; 658 659 link = find_va_links(va, root, NULL, &parent); 660 link_va(va, root, parent, link, head); 661 } 662 663 static void 664 insert_vmap_area_augment(struct vmap_area *va, 665 struct rb_node *from, struct rb_root *root, 666 struct list_head *head) 667 { 668 struct rb_node **link; 669 struct rb_node *parent; 670 671 if (from) 672 link = find_va_links(va, NULL, from, &parent); 673 else 674 link = find_va_links(va, root, NULL, &parent); 675 676 link_va(va, root, parent, link, head); 677 augment_tree_propagate_from(va); 678 } 679 680 /* 681 * Merge de-allocated chunk of VA memory with previous 682 * and next free blocks. If coalesce is not done a new 683 * free area is inserted. If VA has been merged, it is 684 * freed. 685 */ 686 static __always_inline struct vmap_area * 687 merge_or_add_vmap_area(struct vmap_area *va, 688 struct rb_root *root, struct list_head *head) 689 { 690 struct vmap_area *sibling; 691 struct list_head *next; 692 struct rb_node **link; 693 struct rb_node *parent; 694 bool merged = false; 695 696 /* 697 * Find a place in the tree where VA potentially will be 698 * inserted, unless it is merged with its sibling/siblings. 699 */ 700 link = find_va_links(va, root, NULL, &parent); 701 702 /* 703 * Get next node of VA to check if merging can be done. 704 */ 705 next = get_va_next_sibling(parent, link); 706 if (unlikely(next == NULL)) 707 goto insert; 708 709 /* 710 * start end 711 * | | 712 * |<------VA------>|<-----Next----->| 713 * | | 714 * start end 715 */ 716 if (next != head) { 717 sibling = list_entry(next, struct vmap_area, list); 718 if (sibling->va_start == va->va_end) { 719 sibling->va_start = va->va_start; 720 721 /* Check and update the tree if needed. */ 722 augment_tree_propagate_from(sibling); 723 724 /* Free vmap_area object. */ 725 kmem_cache_free(vmap_area_cachep, va); 726 727 /* Point to the new merged area. */ 728 va = sibling; 729 merged = true; 730 } 731 } 732 733 /* 734 * start end 735 * | | 736 * |<-----Prev----->|<------VA------>| 737 * | | 738 * start end 739 */ 740 if (next->prev != head) { 741 sibling = list_entry(next->prev, struct vmap_area, list); 742 if (sibling->va_end == va->va_start) { 743 sibling->va_end = va->va_end; 744 745 /* Check and update the tree if needed. */ 746 augment_tree_propagate_from(sibling); 747 748 if (merged) 749 unlink_va(va, root); 750 751 /* Free vmap_area object. */ 752 kmem_cache_free(vmap_area_cachep, va); 753 754 /* Point to the new merged area. */ 755 va = sibling; 756 merged = true; 757 } 758 } 759 760 insert: 761 if (!merged) { 762 link_va(va, root, parent, link, head); 763 augment_tree_propagate_from(va); 764 } 765 766 return va; 767 } 768 769 static __always_inline bool 770 is_within_this_va(struct vmap_area *va, unsigned long size, 771 unsigned long align, unsigned long vstart) 772 { 773 unsigned long nva_start_addr; 774 775 if (va->va_start > vstart) 776 nva_start_addr = ALIGN(va->va_start, align); 777 else 778 nva_start_addr = ALIGN(vstart, align); 779 780 /* Can be overflowed due to big size or alignment. */ 781 if (nva_start_addr + size < nva_start_addr || 782 nva_start_addr < vstart) 783 return false; 784 785 return (nva_start_addr + size <= va->va_end); 786 } 787 788 /* 789 * Find the first free block(lowest start address) in the tree, 790 * that will accomplish the request corresponding to passing 791 * parameters. 792 */ 793 static __always_inline struct vmap_area * 794 find_vmap_lowest_match(unsigned long size, 795 unsigned long align, unsigned long vstart) 796 { 797 struct vmap_area *va; 798 struct rb_node *node; 799 unsigned long length; 800 801 /* Start from the root. */ 802 node = free_vmap_area_root.rb_node; 803 804 /* Adjust the search size for alignment overhead. */ 805 length = size + align - 1; 806 807 while (node) { 808 va = rb_entry(node, struct vmap_area, rb_node); 809 810 if (get_subtree_max_size(node->rb_left) >= length && 811 vstart < va->va_start) { 812 node = node->rb_left; 813 } else { 814 if (is_within_this_va(va, size, align, vstart)) 815 return va; 816 817 /* 818 * Does not make sense to go deeper towards the right 819 * sub-tree if it does not have a free block that is 820 * equal or bigger to the requested search length. 821 */ 822 if (get_subtree_max_size(node->rb_right) >= length) { 823 node = node->rb_right; 824 continue; 825 } 826 827 /* 828 * OK. We roll back and find the first right sub-tree, 829 * that will satisfy the search criteria. It can happen 830 * only once due to "vstart" restriction. 831 */ 832 while ((node = rb_parent(node))) { 833 va = rb_entry(node, struct vmap_area, rb_node); 834 if (is_within_this_va(va, size, align, vstart)) 835 return va; 836 837 if (get_subtree_max_size(node->rb_right) >= length && 838 vstart <= va->va_start) { 839 node = node->rb_right; 840 break; 841 } 842 } 843 } 844 } 845 846 return NULL; 847 } 848 849 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 850 #include <linux/random.h> 851 852 static struct vmap_area * 853 find_vmap_lowest_linear_match(unsigned long size, 854 unsigned long align, unsigned long vstart) 855 { 856 struct vmap_area *va; 857 858 list_for_each_entry(va, &free_vmap_area_list, list) { 859 if (!is_within_this_va(va, size, align, vstart)) 860 continue; 861 862 return va; 863 } 864 865 return NULL; 866 } 867 868 static void 869 find_vmap_lowest_match_check(unsigned long size) 870 { 871 struct vmap_area *va_1, *va_2; 872 unsigned long vstart; 873 unsigned int rnd; 874 875 get_random_bytes(&rnd, sizeof(rnd)); 876 vstart = VMALLOC_START + rnd; 877 878 va_1 = find_vmap_lowest_match(size, 1, vstart); 879 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 880 881 if (va_1 != va_2) 882 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 883 va_1, va_2, vstart); 884 } 885 #endif 886 887 enum fit_type { 888 NOTHING_FIT = 0, 889 FL_FIT_TYPE = 1, /* full fit */ 890 LE_FIT_TYPE = 2, /* left edge fit */ 891 RE_FIT_TYPE = 3, /* right edge fit */ 892 NE_FIT_TYPE = 4 /* no edge fit */ 893 }; 894 895 static __always_inline enum fit_type 896 classify_va_fit_type(struct vmap_area *va, 897 unsigned long nva_start_addr, unsigned long size) 898 { 899 enum fit_type type; 900 901 /* Check if it is within VA. */ 902 if (nva_start_addr < va->va_start || 903 nva_start_addr + size > va->va_end) 904 return NOTHING_FIT; 905 906 /* Now classify. */ 907 if (va->va_start == nva_start_addr) { 908 if (va->va_end == nva_start_addr + size) 909 type = FL_FIT_TYPE; 910 else 911 type = LE_FIT_TYPE; 912 } else if (va->va_end == nva_start_addr + size) { 913 type = RE_FIT_TYPE; 914 } else { 915 type = NE_FIT_TYPE; 916 } 917 918 return type; 919 } 920 921 static __always_inline int 922 adjust_va_to_fit_type(struct vmap_area *va, 923 unsigned long nva_start_addr, unsigned long size, 924 enum fit_type type) 925 { 926 struct vmap_area *lva = NULL; 927 928 if (type == FL_FIT_TYPE) { 929 /* 930 * No need to split VA, it fully fits. 931 * 932 * | | 933 * V NVA V 934 * |---------------| 935 */ 936 unlink_va(va, &free_vmap_area_root); 937 kmem_cache_free(vmap_area_cachep, va); 938 } else if (type == LE_FIT_TYPE) { 939 /* 940 * Split left edge of fit VA. 941 * 942 * | | 943 * V NVA V R 944 * |-------|-------| 945 */ 946 va->va_start += size; 947 } else if (type == RE_FIT_TYPE) { 948 /* 949 * Split right edge of fit VA. 950 * 951 * | | 952 * L V NVA V 953 * |-------|-------| 954 */ 955 va->va_end = nva_start_addr; 956 } else if (type == NE_FIT_TYPE) { 957 /* 958 * Split no edge of fit VA. 959 * 960 * | | 961 * L V NVA V R 962 * |---|-------|---| 963 */ 964 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 965 if (unlikely(!lva)) { 966 /* 967 * For percpu allocator we do not do any pre-allocation 968 * and leave it as it is. The reason is it most likely 969 * never ends up with NE_FIT_TYPE splitting. In case of 970 * percpu allocations offsets and sizes are aligned to 971 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 972 * are its main fitting cases. 973 * 974 * There are a few exceptions though, as an example it is 975 * a first allocation (early boot up) when we have "one" 976 * big free space that has to be split. 977 * 978 * Also we can hit this path in case of regular "vmap" 979 * allocations, if "this" current CPU was not preloaded. 980 * See the comment in alloc_vmap_area() why. If so, then 981 * GFP_NOWAIT is used instead to get an extra object for 982 * split purpose. That is rare and most time does not 983 * occur. 984 * 985 * What happens if an allocation gets failed. Basically, 986 * an "overflow" path is triggered to purge lazily freed 987 * areas to free some memory, then, the "retry" path is 988 * triggered to repeat one more time. See more details 989 * in alloc_vmap_area() function. 990 */ 991 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 992 if (!lva) 993 return -1; 994 } 995 996 /* 997 * Build the remainder. 998 */ 999 lva->va_start = va->va_start; 1000 lva->va_end = nva_start_addr; 1001 1002 /* 1003 * Shrink this VA to remaining size. 1004 */ 1005 va->va_start = nva_start_addr + size; 1006 } else { 1007 return -1; 1008 } 1009 1010 if (type != FL_FIT_TYPE) { 1011 augment_tree_propagate_from(va); 1012 1013 if (lva) /* type == NE_FIT_TYPE */ 1014 insert_vmap_area_augment(lva, &va->rb_node, 1015 &free_vmap_area_root, &free_vmap_area_list); 1016 } 1017 1018 return 0; 1019 } 1020 1021 /* 1022 * Returns a start address of the newly allocated area, if success. 1023 * Otherwise a vend is returned that indicates failure. 1024 */ 1025 static __always_inline unsigned long 1026 __alloc_vmap_area(unsigned long size, unsigned long align, 1027 unsigned long vstart, unsigned long vend) 1028 { 1029 unsigned long nva_start_addr; 1030 struct vmap_area *va; 1031 enum fit_type type; 1032 int ret; 1033 1034 va = find_vmap_lowest_match(size, align, vstart); 1035 if (unlikely(!va)) 1036 return vend; 1037 1038 if (va->va_start > vstart) 1039 nva_start_addr = ALIGN(va->va_start, align); 1040 else 1041 nva_start_addr = ALIGN(vstart, align); 1042 1043 /* Check the "vend" restriction. */ 1044 if (nva_start_addr + size > vend) 1045 return vend; 1046 1047 /* Classify what we have found. */ 1048 type = classify_va_fit_type(va, nva_start_addr, size); 1049 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1050 return vend; 1051 1052 /* Update the free vmap_area. */ 1053 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1054 if (ret) 1055 return vend; 1056 1057 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1058 find_vmap_lowest_match_check(size); 1059 #endif 1060 1061 return nva_start_addr; 1062 } 1063 1064 /* 1065 * Allocate a region of KVA of the specified size and alignment, within the 1066 * vstart and vend. 1067 */ 1068 static struct vmap_area *alloc_vmap_area(unsigned long size, 1069 unsigned long align, 1070 unsigned long vstart, unsigned long vend, 1071 int node, gfp_t gfp_mask) 1072 { 1073 struct vmap_area *va, *pva; 1074 unsigned long addr; 1075 int purged = 0; 1076 1077 BUG_ON(!size); 1078 BUG_ON(offset_in_page(size)); 1079 BUG_ON(!is_power_of_2(align)); 1080 1081 if (unlikely(!vmap_initialized)) 1082 return ERR_PTR(-EBUSY); 1083 1084 might_sleep(); 1085 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1086 1087 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1088 if (unlikely(!va)) 1089 return ERR_PTR(-ENOMEM); 1090 1091 /* 1092 * Only scan the relevant parts containing pointers to other objects 1093 * to avoid false negatives. 1094 */ 1095 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1096 1097 retry: 1098 /* 1099 * Preload this CPU with one extra vmap_area object. It is used 1100 * when fit type of free area is NE_FIT_TYPE. Please note, it 1101 * does not guarantee that an allocation occurs on a CPU that 1102 * is preloaded, instead we minimize the case when it is not. 1103 * It can happen because of cpu migration, because there is a 1104 * race until the below spinlock is taken. 1105 * 1106 * The preload is done in non-atomic context, thus it allows us 1107 * to use more permissive allocation masks to be more stable under 1108 * low memory condition and high memory pressure. In rare case, 1109 * if not preloaded, GFP_NOWAIT is used. 1110 * 1111 * Set "pva" to NULL here, because of "retry" path. 1112 */ 1113 pva = NULL; 1114 1115 if (!this_cpu_read(ne_fit_preload_node)) 1116 /* 1117 * Even if it fails we do not really care about that. 1118 * Just proceed as it is. If needed "overflow" path 1119 * will refill the cache we allocate from. 1120 */ 1121 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1122 1123 spin_lock(&free_vmap_area_lock); 1124 1125 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) 1126 kmem_cache_free(vmap_area_cachep, pva); 1127 1128 /* 1129 * If an allocation fails, the "vend" address is 1130 * returned. Therefore trigger the overflow path. 1131 */ 1132 addr = __alloc_vmap_area(size, align, vstart, vend); 1133 spin_unlock(&free_vmap_area_lock); 1134 1135 if (unlikely(addr == vend)) 1136 goto overflow; 1137 1138 va->va_start = addr; 1139 va->va_end = addr + size; 1140 va->vm = NULL; 1141 1142 spin_lock(&vmap_area_lock); 1143 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1144 spin_unlock(&vmap_area_lock); 1145 1146 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1147 BUG_ON(va->va_start < vstart); 1148 BUG_ON(va->va_end > vend); 1149 1150 return va; 1151 1152 overflow: 1153 if (!purged) { 1154 purge_vmap_area_lazy(); 1155 purged = 1; 1156 goto retry; 1157 } 1158 1159 if (gfpflags_allow_blocking(gfp_mask)) { 1160 unsigned long freed = 0; 1161 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1162 if (freed > 0) { 1163 purged = 0; 1164 goto retry; 1165 } 1166 } 1167 1168 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1169 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1170 size); 1171 1172 kmem_cache_free(vmap_area_cachep, va); 1173 return ERR_PTR(-EBUSY); 1174 } 1175 1176 int register_vmap_purge_notifier(struct notifier_block *nb) 1177 { 1178 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1179 } 1180 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1181 1182 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1183 { 1184 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1185 } 1186 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1187 1188 /* 1189 * Free a region of KVA allocated by alloc_vmap_area 1190 */ 1191 static void free_vmap_area(struct vmap_area *va) 1192 { 1193 /* 1194 * Remove from the busy tree/list. 1195 */ 1196 spin_lock(&vmap_area_lock); 1197 unlink_va(va, &vmap_area_root); 1198 spin_unlock(&vmap_area_lock); 1199 1200 /* 1201 * Insert/Merge it back to the free tree/list. 1202 */ 1203 spin_lock(&free_vmap_area_lock); 1204 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list); 1205 spin_unlock(&free_vmap_area_lock); 1206 } 1207 1208 /* 1209 * Clear the pagetable entries of a given vmap_area 1210 */ 1211 static void unmap_vmap_area(struct vmap_area *va) 1212 { 1213 vunmap_page_range(va->va_start, va->va_end); 1214 } 1215 1216 /* 1217 * lazy_max_pages is the maximum amount of virtual address space we gather up 1218 * before attempting to purge with a TLB flush. 1219 * 1220 * There is a tradeoff here: a larger number will cover more kernel page tables 1221 * and take slightly longer to purge, but it will linearly reduce the number of 1222 * global TLB flushes that must be performed. It would seem natural to scale 1223 * this number up linearly with the number of CPUs (because vmapping activity 1224 * could also scale linearly with the number of CPUs), however it is likely 1225 * that in practice, workloads might be constrained in other ways that mean 1226 * vmap activity will not scale linearly with CPUs. Also, I want to be 1227 * conservative and not introduce a big latency on huge systems, so go with 1228 * a less aggressive log scale. It will still be an improvement over the old 1229 * code, and it will be simple to change the scale factor if we find that it 1230 * becomes a problem on bigger systems. 1231 */ 1232 static unsigned long lazy_max_pages(void) 1233 { 1234 unsigned int log; 1235 1236 log = fls(num_online_cpus()); 1237 1238 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1239 } 1240 1241 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1242 1243 /* 1244 * Serialize vmap purging. There is no actual criticial section protected 1245 * by this look, but we want to avoid concurrent calls for performance 1246 * reasons and to make the pcpu_get_vm_areas more deterministic. 1247 */ 1248 static DEFINE_MUTEX(vmap_purge_lock); 1249 1250 /* for per-CPU blocks */ 1251 static void purge_fragmented_blocks_allcpus(void); 1252 1253 /* 1254 * called before a call to iounmap() if the caller wants vm_area_struct's 1255 * immediately freed. 1256 */ 1257 void set_iounmap_nonlazy(void) 1258 { 1259 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1260 } 1261 1262 /* 1263 * Purges all lazily-freed vmap areas. 1264 */ 1265 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1266 { 1267 unsigned long resched_threshold; 1268 struct llist_node *valist; 1269 struct vmap_area *va; 1270 struct vmap_area *n_va; 1271 1272 lockdep_assert_held(&vmap_purge_lock); 1273 1274 valist = llist_del_all(&vmap_purge_list); 1275 if (unlikely(valist == NULL)) 1276 return false; 1277 1278 /* 1279 * First make sure the mappings are removed from all page-tables 1280 * before they are freed. 1281 */ 1282 vmalloc_sync_all(); 1283 1284 /* 1285 * TODO: to calculate a flush range without looping. 1286 * The list can be up to lazy_max_pages() elements. 1287 */ 1288 llist_for_each_entry(va, valist, purge_list) { 1289 if (va->va_start < start) 1290 start = va->va_start; 1291 if (va->va_end > end) 1292 end = va->va_end; 1293 } 1294 1295 flush_tlb_kernel_range(start, end); 1296 resched_threshold = lazy_max_pages() << 1; 1297 1298 spin_lock(&free_vmap_area_lock); 1299 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 1300 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1301 unsigned long orig_start = va->va_start; 1302 unsigned long orig_end = va->va_end; 1303 1304 /* 1305 * Finally insert or merge lazily-freed area. It is 1306 * detached and there is no need to "unlink" it from 1307 * anything. 1308 */ 1309 va = merge_or_add_vmap_area(va, &free_vmap_area_root, 1310 &free_vmap_area_list); 1311 1312 if (is_vmalloc_or_module_addr((void *)orig_start)) 1313 kasan_release_vmalloc(orig_start, orig_end, 1314 va->va_start, va->va_end); 1315 1316 atomic_long_sub(nr, &vmap_lazy_nr); 1317 1318 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1319 cond_resched_lock(&free_vmap_area_lock); 1320 } 1321 spin_unlock(&free_vmap_area_lock); 1322 return true; 1323 } 1324 1325 /* 1326 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1327 * is already purging. 1328 */ 1329 static void try_purge_vmap_area_lazy(void) 1330 { 1331 if (mutex_trylock(&vmap_purge_lock)) { 1332 __purge_vmap_area_lazy(ULONG_MAX, 0); 1333 mutex_unlock(&vmap_purge_lock); 1334 } 1335 } 1336 1337 /* 1338 * Kick off a purge of the outstanding lazy areas. 1339 */ 1340 static void purge_vmap_area_lazy(void) 1341 { 1342 mutex_lock(&vmap_purge_lock); 1343 purge_fragmented_blocks_allcpus(); 1344 __purge_vmap_area_lazy(ULONG_MAX, 0); 1345 mutex_unlock(&vmap_purge_lock); 1346 } 1347 1348 /* 1349 * Free a vmap area, caller ensuring that the area has been unmapped 1350 * and flush_cache_vunmap had been called for the correct range 1351 * previously. 1352 */ 1353 static void free_vmap_area_noflush(struct vmap_area *va) 1354 { 1355 unsigned long nr_lazy; 1356 1357 spin_lock(&vmap_area_lock); 1358 unlink_va(va, &vmap_area_root); 1359 spin_unlock(&vmap_area_lock); 1360 1361 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1362 PAGE_SHIFT, &vmap_lazy_nr); 1363 1364 /* After this point, we may free va at any time */ 1365 llist_add(&va->purge_list, &vmap_purge_list); 1366 1367 if (unlikely(nr_lazy > lazy_max_pages())) 1368 try_purge_vmap_area_lazy(); 1369 } 1370 1371 /* 1372 * Free and unmap a vmap area 1373 */ 1374 static void free_unmap_vmap_area(struct vmap_area *va) 1375 { 1376 flush_cache_vunmap(va->va_start, va->va_end); 1377 unmap_vmap_area(va); 1378 if (debug_pagealloc_enabled()) 1379 flush_tlb_kernel_range(va->va_start, va->va_end); 1380 1381 free_vmap_area_noflush(va); 1382 } 1383 1384 static struct vmap_area *find_vmap_area(unsigned long addr) 1385 { 1386 struct vmap_area *va; 1387 1388 spin_lock(&vmap_area_lock); 1389 va = __find_vmap_area(addr); 1390 spin_unlock(&vmap_area_lock); 1391 1392 return va; 1393 } 1394 1395 /*** Per cpu kva allocator ***/ 1396 1397 /* 1398 * vmap space is limited especially on 32 bit architectures. Ensure there is 1399 * room for at least 16 percpu vmap blocks per CPU. 1400 */ 1401 /* 1402 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1403 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1404 * instead (we just need a rough idea) 1405 */ 1406 #if BITS_PER_LONG == 32 1407 #define VMALLOC_SPACE (128UL*1024*1024) 1408 #else 1409 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1410 #endif 1411 1412 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1413 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1414 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1415 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1416 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1417 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1418 #define VMAP_BBMAP_BITS \ 1419 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1420 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1421 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1422 1423 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1424 1425 struct vmap_block_queue { 1426 spinlock_t lock; 1427 struct list_head free; 1428 }; 1429 1430 struct vmap_block { 1431 spinlock_t lock; 1432 struct vmap_area *va; 1433 unsigned long free, dirty; 1434 unsigned long dirty_min, dirty_max; /*< dirty range */ 1435 struct list_head free_list; 1436 struct rcu_head rcu_head; 1437 struct list_head purge; 1438 }; 1439 1440 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1441 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1442 1443 /* 1444 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 1445 * in the free path. Could get rid of this if we change the API to return a 1446 * "cookie" from alloc, to be passed to free. But no big deal yet. 1447 */ 1448 static DEFINE_SPINLOCK(vmap_block_tree_lock); 1449 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 1450 1451 /* 1452 * We should probably have a fallback mechanism to allocate virtual memory 1453 * out of partially filled vmap blocks. However vmap block sizing should be 1454 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1455 * big problem. 1456 */ 1457 1458 static unsigned long addr_to_vb_idx(unsigned long addr) 1459 { 1460 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1461 addr /= VMAP_BLOCK_SIZE; 1462 return addr; 1463 } 1464 1465 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1466 { 1467 unsigned long addr; 1468 1469 addr = va_start + (pages_off << PAGE_SHIFT); 1470 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1471 return (void *)addr; 1472 } 1473 1474 /** 1475 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1476 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1477 * @order: how many 2^order pages should be occupied in newly allocated block 1478 * @gfp_mask: flags for the page level allocator 1479 * 1480 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1481 */ 1482 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1483 { 1484 struct vmap_block_queue *vbq; 1485 struct vmap_block *vb; 1486 struct vmap_area *va; 1487 unsigned long vb_idx; 1488 int node, err; 1489 void *vaddr; 1490 1491 node = numa_node_id(); 1492 1493 vb = kmalloc_node(sizeof(struct vmap_block), 1494 gfp_mask & GFP_RECLAIM_MASK, node); 1495 if (unlikely(!vb)) 1496 return ERR_PTR(-ENOMEM); 1497 1498 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1499 VMALLOC_START, VMALLOC_END, 1500 node, gfp_mask); 1501 if (IS_ERR(va)) { 1502 kfree(vb); 1503 return ERR_CAST(va); 1504 } 1505 1506 err = radix_tree_preload(gfp_mask); 1507 if (unlikely(err)) { 1508 kfree(vb); 1509 free_vmap_area(va); 1510 return ERR_PTR(err); 1511 } 1512 1513 vaddr = vmap_block_vaddr(va->va_start, 0); 1514 spin_lock_init(&vb->lock); 1515 vb->va = va; 1516 /* At least something should be left free */ 1517 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1518 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1519 vb->dirty = 0; 1520 vb->dirty_min = VMAP_BBMAP_BITS; 1521 vb->dirty_max = 0; 1522 INIT_LIST_HEAD(&vb->free_list); 1523 1524 vb_idx = addr_to_vb_idx(va->va_start); 1525 spin_lock(&vmap_block_tree_lock); 1526 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 1527 spin_unlock(&vmap_block_tree_lock); 1528 BUG_ON(err); 1529 radix_tree_preload_end(); 1530 1531 vbq = &get_cpu_var(vmap_block_queue); 1532 spin_lock(&vbq->lock); 1533 list_add_tail_rcu(&vb->free_list, &vbq->free); 1534 spin_unlock(&vbq->lock); 1535 put_cpu_var(vmap_block_queue); 1536 1537 return vaddr; 1538 } 1539 1540 static void free_vmap_block(struct vmap_block *vb) 1541 { 1542 struct vmap_block *tmp; 1543 unsigned long vb_idx; 1544 1545 vb_idx = addr_to_vb_idx(vb->va->va_start); 1546 spin_lock(&vmap_block_tree_lock); 1547 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 1548 spin_unlock(&vmap_block_tree_lock); 1549 BUG_ON(tmp != vb); 1550 1551 free_vmap_area_noflush(vb->va); 1552 kfree_rcu(vb, rcu_head); 1553 } 1554 1555 static void purge_fragmented_blocks(int cpu) 1556 { 1557 LIST_HEAD(purge); 1558 struct vmap_block *vb; 1559 struct vmap_block *n_vb; 1560 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1561 1562 rcu_read_lock(); 1563 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1564 1565 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1566 continue; 1567 1568 spin_lock(&vb->lock); 1569 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1570 vb->free = 0; /* prevent further allocs after releasing lock */ 1571 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1572 vb->dirty_min = 0; 1573 vb->dirty_max = VMAP_BBMAP_BITS; 1574 spin_lock(&vbq->lock); 1575 list_del_rcu(&vb->free_list); 1576 spin_unlock(&vbq->lock); 1577 spin_unlock(&vb->lock); 1578 list_add_tail(&vb->purge, &purge); 1579 } else 1580 spin_unlock(&vb->lock); 1581 } 1582 rcu_read_unlock(); 1583 1584 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1585 list_del(&vb->purge); 1586 free_vmap_block(vb); 1587 } 1588 } 1589 1590 static void purge_fragmented_blocks_allcpus(void) 1591 { 1592 int cpu; 1593 1594 for_each_possible_cpu(cpu) 1595 purge_fragmented_blocks(cpu); 1596 } 1597 1598 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1599 { 1600 struct vmap_block_queue *vbq; 1601 struct vmap_block *vb; 1602 void *vaddr = NULL; 1603 unsigned int order; 1604 1605 BUG_ON(offset_in_page(size)); 1606 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1607 if (WARN_ON(size == 0)) { 1608 /* 1609 * Allocating 0 bytes isn't what caller wants since 1610 * get_order(0) returns funny result. Just warn and terminate 1611 * early. 1612 */ 1613 return NULL; 1614 } 1615 order = get_order(size); 1616 1617 rcu_read_lock(); 1618 vbq = &get_cpu_var(vmap_block_queue); 1619 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1620 unsigned long pages_off; 1621 1622 spin_lock(&vb->lock); 1623 if (vb->free < (1UL << order)) { 1624 spin_unlock(&vb->lock); 1625 continue; 1626 } 1627 1628 pages_off = VMAP_BBMAP_BITS - vb->free; 1629 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1630 vb->free -= 1UL << order; 1631 if (vb->free == 0) { 1632 spin_lock(&vbq->lock); 1633 list_del_rcu(&vb->free_list); 1634 spin_unlock(&vbq->lock); 1635 } 1636 1637 spin_unlock(&vb->lock); 1638 break; 1639 } 1640 1641 put_cpu_var(vmap_block_queue); 1642 rcu_read_unlock(); 1643 1644 /* Allocate new block if nothing was found */ 1645 if (!vaddr) 1646 vaddr = new_vmap_block(order, gfp_mask); 1647 1648 return vaddr; 1649 } 1650 1651 static void vb_free(const void *addr, unsigned long size) 1652 { 1653 unsigned long offset; 1654 unsigned long vb_idx; 1655 unsigned int order; 1656 struct vmap_block *vb; 1657 1658 BUG_ON(offset_in_page(size)); 1659 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1660 1661 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1662 1663 order = get_order(size); 1664 1665 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1666 offset >>= PAGE_SHIFT; 1667 1668 vb_idx = addr_to_vb_idx((unsigned long)addr); 1669 rcu_read_lock(); 1670 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1671 rcu_read_unlock(); 1672 BUG_ON(!vb); 1673 1674 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1675 1676 if (debug_pagealloc_enabled()) 1677 flush_tlb_kernel_range((unsigned long)addr, 1678 (unsigned long)addr + size); 1679 1680 spin_lock(&vb->lock); 1681 1682 /* Expand dirty range */ 1683 vb->dirty_min = min(vb->dirty_min, offset); 1684 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1685 1686 vb->dirty += 1UL << order; 1687 if (vb->dirty == VMAP_BBMAP_BITS) { 1688 BUG_ON(vb->free); 1689 spin_unlock(&vb->lock); 1690 free_vmap_block(vb); 1691 } else 1692 spin_unlock(&vb->lock); 1693 } 1694 1695 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1696 { 1697 int cpu; 1698 1699 if (unlikely(!vmap_initialized)) 1700 return; 1701 1702 might_sleep(); 1703 1704 for_each_possible_cpu(cpu) { 1705 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1706 struct vmap_block *vb; 1707 1708 rcu_read_lock(); 1709 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1710 spin_lock(&vb->lock); 1711 if (vb->dirty) { 1712 unsigned long va_start = vb->va->va_start; 1713 unsigned long s, e; 1714 1715 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1716 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1717 1718 start = min(s, start); 1719 end = max(e, end); 1720 1721 flush = 1; 1722 } 1723 spin_unlock(&vb->lock); 1724 } 1725 rcu_read_unlock(); 1726 } 1727 1728 mutex_lock(&vmap_purge_lock); 1729 purge_fragmented_blocks_allcpus(); 1730 if (!__purge_vmap_area_lazy(start, end) && flush) 1731 flush_tlb_kernel_range(start, end); 1732 mutex_unlock(&vmap_purge_lock); 1733 } 1734 1735 /** 1736 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1737 * 1738 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1739 * to amortize TLB flushing overheads. What this means is that any page you 1740 * have now, may, in a former life, have been mapped into kernel virtual 1741 * address by the vmap layer and so there might be some CPUs with TLB entries 1742 * still referencing that page (additional to the regular 1:1 kernel mapping). 1743 * 1744 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1745 * be sure that none of the pages we have control over will have any aliases 1746 * from the vmap layer. 1747 */ 1748 void vm_unmap_aliases(void) 1749 { 1750 unsigned long start = ULONG_MAX, end = 0; 1751 int flush = 0; 1752 1753 _vm_unmap_aliases(start, end, flush); 1754 } 1755 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1756 1757 /** 1758 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1759 * @mem: the pointer returned by vm_map_ram 1760 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1761 */ 1762 void vm_unmap_ram(const void *mem, unsigned int count) 1763 { 1764 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1765 unsigned long addr = (unsigned long)mem; 1766 struct vmap_area *va; 1767 1768 might_sleep(); 1769 BUG_ON(!addr); 1770 BUG_ON(addr < VMALLOC_START); 1771 BUG_ON(addr > VMALLOC_END); 1772 BUG_ON(!PAGE_ALIGNED(addr)); 1773 1774 if (likely(count <= VMAP_MAX_ALLOC)) { 1775 debug_check_no_locks_freed(mem, size); 1776 vb_free(mem, size); 1777 return; 1778 } 1779 1780 va = find_vmap_area(addr); 1781 BUG_ON(!va); 1782 debug_check_no_locks_freed((void *)va->va_start, 1783 (va->va_end - va->va_start)); 1784 free_unmap_vmap_area(va); 1785 } 1786 EXPORT_SYMBOL(vm_unmap_ram); 1787 1788 /** 1789 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1790 * @pages: an array of pointers to the pages to be mapped 1791 * @count: number of pages 1792 * @node: prefer to allocate data structures on this node 1793 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1794 * 1795 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1796 * faster than vmap so it's good. But if you mix long-life and short-life 1797 * objects with vm_map_ram(), it could consume lots of address space through 1798 * fragmentation (especially on a 32bit machine). You could see failures in 1799 * the end. Please use this function for short-lived objects. 1800 * 1801 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1802 */ 1803 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1804 { 1805 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1806 unsigned long addr; 1807 void *mem; 1808 1809 if (likely(count <= VMAP_MAX_ALLOC)) { 1810 mem = vb_alloc(size, GFP_KERNEL); 1811 if (IS_ERR(mem)) 1812 return NULL; 1813 addr = (unsigned long)mem; 1814 } else { 1815 struct vmap_area *va; 1816 va = alloc_vmap_area(size, PAGE_SIZE, 1817 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1818 if (IS_ERR(va)) 1819 return NULL; 1820 1821 addr = va->va_start; 1822 mem = (void *)addr; 1823 } 1824 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1825 vm_unmap_ram(mem, count); 1826 return NULL; 1827 } 1828 return mem; 1829 } 1830 EXPORT_SYMBOL(vm_map_ram); 1831 1832 static struct vm_struct *vmlist __initdata; 1833 1834 /** 1835 * vm_area_add_early - add vmap area early during boot 1836 * @vm: vm_struct to add 1837 * 1838 * This function is used to add fixed kernel vm area to vmlist before 1839 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1840 * should contain proper values and the other fields should be zero. 1841 * 1842 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1843 */ 1844 void __init vm_area_add_early(struct vm_struct *vm) 1845 { 1846 struct vm_struct *tmp, **p; 1847 1848 BUG_ON(vmap_initialized); 1849 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1850 if (tmp->addr >= vm->addr) { 1851 BUG_ON(tmp->addr < vm->addr + vm->size); 1852 break; 1853 } else 1854 BUG_ON(tmp->addr + tmp->size > vm->addr); 1855 } 1856 vm->next = *p; 1857 *p = vm; 1858 } 1859 1860 /** 1861 * vm_area_register_early - register vmap area early during boot 1862 * @vm: vm_struct to register 1863 * @align: requested alignment 1864 * 1865 * This function is used to register kernel vm area before 1866 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1867 * proper values on entry and other fields should be zero. On return, 1868 * vm->addr contains the allocated address. 1869 * 1870 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1871 */ 1872 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1873 { 1874 static size_t vm_init_off __initdata; 1875 unsigned long addr; 1876 1877 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1878 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1879 1880 vm->addr = (void *)addr; 1881 1882 vm_area_add_early(vm); 1883 } 1884 1885 static void vmap_init_free_space(void) 1886 { 1887 unsigned long vmap_start = 1; 1888 const unsigned long vmap_end = ULONG_MAX; 1889 struct vmap_area *busy, *free; 1890 1891 /* 1892 * B F B B B F 1893 * -|-----|.....|-----|-----|-----|.....|- 1894 * | The KVA space | 1895 * |<--------------------------------->| 1896 */ 1897 list_for_each_entry(busy, &vmap_area_list, list) { 1898 if (busy->va_start - vmap_start > 0) { 1899 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1900 if (!WARN_ON_ONCE(!free)) { 1901 free->va_start = vmap_start; 1902 free->va_end = busy->va_start; 1903 1904 insert_vmap_area_augment(free, NULL, 1905 &free_vmap_area_root, 1906 &free_vmap_area_list); 1907 } 1908 } 1909 1910 vmap_start = busy->va_end; 1911 } 1912 1913 if (vmap_end - vmap_start > 0) { 1914 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1915 if (!WARN_ON_ONCE(!free)) { 1916 free->va_start = vmap_start; 1917 free->va_end = vmap_end; 1918 1919 insert_vmap_area_augment(free, NULL, 1920 &free_vmap_area_root, 1921 &free_vmap_area_list); 1922 } 1923 } 1924 } 1925 1926 void __init vmalloc_init(void) 1927 { 1928 struct vmap_area *va; 1929 struct vm_struct *tmp; 1930 int i; 1931 1932 /* 1933 * Create the cache for vmap_area objects. 1934 */ 1935 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 1936 1937 for_each_possible_cpu(i) { 1938 struct vmap_block_queue *vbq; 1939 struct vfree_deferred *p; 1940 1941 vbq = &per_cpu(vmap_block_queue, i); 1942 spin_lock_init(&vbq->lock); 1943 INIT_LIST_HEAD(&vbq->free); 1944 p = &per_cpu(vfree_deferred, i); 1945 init_llist_head(&p->list); 1946 INIT_WORK(&p->wq, free_work); 1947 } 1948 1949 /* Import existing vmlist entries. */ 1950 for (tmp = vmlist; tmp; tmp = tmp->next) { 1951 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1952 if (WARN_ON_ONCE(!va)) 1953 continue; 1954 1955 va->va_start = (unsigned long)tmp->addr; 1956 va->va_end = va->va_start + tmp->size; 1957 va->vm = tmp; 1958 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1959 } 1960 1961 /* 1962 * Now we can initialize a free vmap space. 1963 */ 1964 vmap_init_free_space(); 1965 vmap_initialized = true; 1966 } 1967 1968 /** 1969 * map_kernel_range_noflush - map kernel VM area with the specified pages 1970 * @addr: start of the VM area to map 1971 * @size: size of the VM area to map 1972 * @prot: page protection flags to use 1973 * @pages: pages to map 1974 * 1975 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1976 * specify should have been allocated using get_vm_area() and its 1977 * friends. 1978 * 1979 * NOTE: 1980 * This function does NOT do any cache flushing. The caller is 1981 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1982 * before calling this function. 1983 * 1984 * RETURNS: 1985 * The number of pages mapped on success, -errno on failure. 1986 */ 1987 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1988 pgprot_t prot, struct page **pages) 1989 { 1990 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1991 } 1992 1993 /** 1994 * unmap_kernel_range_noflush - unmap kernel VM area 1995 * @addr: start of the VM area to unmap 1996 * @size: size of the VM area to unmap 1997 * 1998 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1999 * specify should have been allocated using get_vm_area() and its 2000 * friends. 2001 * 2002 * NOTE: 2003 * This function does NOT do any cache flushing. The caller is 2004 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 2005 * before calling this function and flush_tlb_kernel_range() after. 2006 */ 2007 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 2008 { 2009 vunmap_page_range(addr, addr + size); 2010 } 2011 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 2012 2013 /** 2014 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 2015 * @addr: start of the VM area to unmap 2016 * @size: size of the VM area to unmap 2017 * 2018 * Similar to unmap_kernel_range_noflush() but flushes vcache before 2019 * the unmapping and tlb after. 2020 */ 2021 void unmap_kernel_range(unsigned long addr, unsigned long size) 2022 { 2023 unsigned long end = addr + size; 2024 2025 flush_cache_vunmap(addr, end); 2026 vunmap_page_range(addr, end); 2027 flush_tlb_kernel_range(addr, end); 2028 } 2029 EXPORT_SYMBOL_GPL(unmap_kernel_range); 2030 2031 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 2032 { 2033 unsigned long addr = (unsigned long)area->addr; 2034 unsigned long end = addr + get_vm_area_size(area); 2035 int err; 2036 2037 err = vmap_page_range(addr, end, prot, pages); 2038 2039 return err > 0 ? 0 : err; 2040 } 2041 EXPORT_SYMBOL_GPL(map_vm_area); 2042 2043 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2044 struct vmap_area *va, unsigned long flags, const void *caller) 2045 { 2046 vm->flags = flags; 2047 vm->addr = (void *)va->va_start; 2048 vm->size = va->va_end - va->va_start; 2049 vm->caller = caller; 2050 va->vm = vm; 2051 } 2052 2053 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2054 unsigned long flags, const void *caller) 2055 { 2056 spin_lock(&vmap_area_lock); 2057 setup_vmalloc_vm_locked(vm, va, flags, caller); 2058 spin_unlock(&vmap_area_lock); 2059 } 2060 2061 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2062 { 2063 /* 2064 * Before removing VM_UNINITIALIZED, 2065 * we should make sure that vm has proper values. 2066 * Pair with smp_rmb() in show_numa_info(). 2067 */ 2068 smp_wmb(); 2069 vm->flags &= ~VM_UNINITIALIZED; 2070 } 2071 2072 static struct vm_struct *__get_vm_area_node(unsigned long size, 2073 unsigned long align, unsigned long flags, unsigned long start, 2074 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 2075 { 2076 struct vmap_area *va; 2077 struct vm_struct *area; 2078 2079 BUG_ON(in_interrupt()); 2080 size = PAGE_ALIGN(size); 2081 if (unlikely(!size)) 2082 return NULL; 2083 2084 if (flags & VM_IOREMAP) 2085 align = 1ul << clamp_t(int, get_count_order_long(size), 2086 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2087 2088 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2089 if (unlikely(!area)) 2090 return NULL; 2091 2092 if (!(flags & VM_NO_GUARD)) 2093 size += PAGE_SIZE; 2094 2095 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2096 if (IS_ERR(va)) { 2097 kfree(area); 2098 return NULL; 2099 } 2100 2101 setup_vmalloc_vm(area, va, flags, caller); 2102 2103 /* 2104 * For KASAN, if we are in vmalloc space, we need to cover the shadow 2105 * area with real memory. If we come here through VM_ALLOC, this is 2106 * done by a higher level function that has access to the true size, 2107 * which might not be a full page. 2108 * 2109 * We assume module space comes via VM_ALLOC path. 2110 */ 2111 if (is_vmalloc_addr(area->addr) && !(area->flags & VM_ALLOC)) { 2112 if (kasan_populate_vmalloc(area->size, area)) { 2113 unmap_vmap_area(va); 2114 kfree(area); 2115 return NULL; 2116 } 2117 } 2118 2119 return area; 2120 } 2121 2122 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 2123 unsigned long start, unsigned long end) 2124 { 2125 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2126 GFP_KERNEL, __builtin_return_address(0)); 2127 } 2128 EXPORT_SYMBOL_GPL(__get_vm_area); 2129 2130 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2131 unsigned long start, unsigned long end, 2132 const void *caller) 2133 { 2134 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2135 GFP_KERNEL, caller); 2136 } 2137 2138 /** 2139 * get_vm_area - reserve a contiguous kernel virtual area 2140 * @size: size of the area 2141 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2142 * 2143 * Search an area of @size in the kernel virtual mapping area, 2144 * and reserved it for out purposes. Returns the area descriptor 2145 * on success or %NULL on failure. 2146 * 2147 * Return: the area descriptor on success or %NULL on failure. 2148 */ 2149 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2150 { 2151 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2152 NUMA_NO_NODE, GFP_KERNEL, 2153 __builtin_return_address(0)); 2154 } 2155 2156 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2157 const void *caller) 2158 { 2159 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2160 NUMA_NO_NODE, GFP_KERNEL, caller); 2161 } 2162 2163 /** 2164 * find_vm_area - find a continuous kernel virtual area 2165 * @addr: base address 2166 * 2167 * Search for the kernel VM area starting at @addr, and return it. 2168 * It is up to the caller to do all required locking to keep the returned 2169 * pointer valid. 2170 * 2171 * Return: pointer to the found area or %NULL on faulure 2172 */ 2173 struct vm_struct *find_vm_area(const void *addr) 2174 { 2175 struct vmap_area *va; 2176 2177 va = find_vmap_area((unsigned long)addr); 2178 if (!va) 2179 return NULL; 2180 2181 return va->vm; 2182 } 2183 2184 /** 2185 * remove_vm_area - find and remove a continuous kernel virtual area 2186 * @addr: base address 2187 * 2188 * Search for the kernel VM area starting at @addr, and remove it. 2189 * This function returns the found VM area, but using it is NOT safe 2190 * on SMP machines, except for its size or flags. 2191 * 2192 * Return: pointer to the found area or %NULL on faulure 2193 */ 2194 struct vm_struct *remove_vm_area(const void *addr) 2195 { 2196 struct vmap_area *va; 2197 2198 might_sleep(); 2199 2200 spin_lock(&vmap_area_lock); 2201 va = __find_vmap_area((unsigned long)addr); 2202 if (va && va->vm) { 2203 struct vm_struct *vm = va->vm; 2204 2205 va->vm = NULL; 2206 spin_unlock(&vmap_area_lock); 2207 2208 kasan_free_shadow(vm); 2209 free_unmap_vmap_area(va); 2210 2211 return vm; 2212 } 2213 2214 spin_unlock(&vmap_area_lock); 2215 return NULL; 2216 } 2217 2218 static inline void set_area_direct_map(const struct vm_struct *area, 2219 int (*set_direct_map)(struct page *page)) 2220 { 2221 int i; 2222 2223 for (i = 0; i < area->nr_pages; i++) 2224 if (page_address(area->pages[i])) 2225 set_direct_map(area->pages[i]); 2226 } 2227 2228 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2229 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2230 { 2231 unsigned long start = ULONG_MAX, end = 0; 2232 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2233 int flush_dmap = 0; 2234 int i; 2235 2236 remove_vm_area(area->addr); 2237 2238 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2239 if (!flush_reset) 2240 return; 2241 2242 /* 2243 * If not deallocating pages, just do the flush of the VM area and 2244 * return. 2245 */ 2246 if (!deallocate_pages) { 2247 vm_unmap_aliases(); 2248 return; 2249 } 2250 2251 /* 2252 * If execution gets here, flush the vm mapping and reset the direct 2253 * map. Find the start and end range of the direct mappings to make sure 2254 * the vm_unmap_aliases() flush includes the direct map. 2255 */ 2256 for (i = 0; i < area->nr_pages; i++) { 2257 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2258 if (addr) { 2259 start = min(addr, start); 2260 end = max(addr + PAGE_SIZE, end); 2261 flush_dmap = 1; 2262 } 2263 } 2264 2265 /* 2266 * Set direct map to something invalid so that it won't be cached if 2267 * there are any accesses after the TLB flush, then flush the TLB and 2268 * reset the direct map permissions to the default. 2269 */ 2270 set_area_direct_map(area, set_direct_map_invalid_noflush); 2271 _vm_unmap_aliases(start, end, flush_dmap); 2272 set_area_direct_map(area, set_direct_map_default_noflush); 2273 } 2274 2275 static void __vunmap(const void *addr, int deallocate_pages) 2276 { 2277 struct vm_struct *area; 2278 2279 if (!addr) 2280 return; 2281 2282 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2283 addr)) 2284 return; 2285 2286 area = find_vm_area(addr); 2287 if (unlikely(!area)) { 2288 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2289 addr); 2290 return; 2291 } 2292 2293 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2294 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2295 2296 if (area->flags & VM_KASAN) 2297 kasan_poison_vmalloc(area->addr, area->size); 2298 2299 vm_remove_mappings(area, deallocate_pages); 2300 2301 if (deallocate_pages) { 2302 int i; 2303 2304 for (i = 0; i < area->nr_pages; i++) { 2305 struct page *page = area->pages[i]; 2306 2307 BUG_ON(!page); 2308 __free_pages(page, 0); 2309 } 2310 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2311 2312 kvfree(area->pages); 2313 } 2314 2315 kfree(area); 2316 return; 2317 } 2318 2319 static inline void __vfree_deferred(const void *addr) 2320 { 2321 /* 2322 * Use raw_cpu_ptr() because this can be called from preemptible 2323 * context. Preemption is absolutely fine here, because the llist_add() 2324 * implementation is lockless, so it works even if we are adding to 2325 * nother cpu's list. schedule_work() should be fine with this too. 2326 */ 2327 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2328 2329 if (llist_add((struct llist_node *)addr, &p->list)) 2330 schedule_work(&p->wq); 2331 } 2332 2333 /** 2334 * vfree_atomic - release memory allocated by vmalloc() 2335 * @addr: memory base address 2336 * 2337 * This one is just like vfree() but can be called in any atomic context 2338 * except NMIs. 2339 */ 2340 void vfree_atomic(const void *addr) 2341 { 2342 BUG_ON(in_nmi()); 2343 2344 kmemleak_free(addr); 2345 2346 if (!addr) 2347 return; 2348 __vfree_deferred(addr); 2349 } 2350 2351 static void __vfree(const void *addr) 2352 { 2353 if (unlikely(in_interrupt())) 2354 __vfree_deferred(addr); 2355 else 2356 __vunmap(addr, 1); 2357 } 2358 2359 /** 2360 * vfree - release memory allocated by vmalloc() 2361 * @addr: memory base address 2362 * 2363 * Free the virtually continuous memory area starting at @addr, as 2364 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 2365 * NULL, no operation is performed. 2366 * 2367 * Must not be called in NMI context (strictly speaking, only if we don't 2368 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2369 * conventions for vfree() arch-depenedent would be a really bad idea) 2370 * 2371 * May sleep if called *not* from interrupt context. 2372 * 2373 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 2374 */ 2375 void vfree(const void *addr) 2376 { 2377 BUG_ON(in_nmi()); 2378 2379 kmemleak_free(addr); 2380 2381 might_sleep_if(!in_interrupt()); 2382 2383 if (!addr) 2384 return; 2385 2386 __vfree(addr); 2387 } 2388 EXPORT_SYMBOL(vfree); 2389 2390 /** 2391 * vunmap - release virtual mapping obtained by vmap() 2392 * @addr: memory base address 2393 * 2394 * Free the virtually contiguous memory area starting at @addr, 2395 * which was created from the page array passed to vmap(). 2396 * 2397 * Must not be called in interrupt context. 2398 */ 2399 void vunmap(const void *addr) 2400 { 2401 BUG_ON(in_interrupt()); 2402 might_sleep(); 2403 if (addr) 2404 __vunmap(addr, 0); 2405 } 2406 EXPORT_SYMBOL(vunmap); 2407 2408 /** 2409 * vmap - map an array of pages into virtually contiguous space 2410 * @pages: array of page pointers 2411 * @count: number of pages to map 2412 * @flags: vm_area->flags 2413 * @prot: page protection for the mapping 2414 * 2415 * Maps @count pages from @pages into contiguous kernel virtual 2416 * space. 2417 * 2418 * Return: the address of the area or %NULL on failure 2419 */ 2420 void *vmap(struct page **pages, unsigned int count, 2421 unsigned long flags, pgprot_t prot) 2422 { 2423 struct vm_struct *area; 2424 unsigned long size; /* In bytes */ 2425 2426 might_sleep(); 2427 2428 if (count > totalram_pages()) 2429 return NULL; 2430 2431 size = (unsigned long)count << PAGE_SHIFT; 2432 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2433 if (!area) 2434 return NULL; 2435 2436 if (map_vm_area(area, prot, pages)) { 2437 vunmap(area->addr); 2438 return NULL; 2439 } 2440 2441 return area->addr; 2442 } 2443 EXPORT_SYMBOL(vmap); 2444 2445 static void *__vmalloc_node(unsigned long size, unsigned long align, 2446 gfp_t gfp_mask, pgprot_t prot, 2447 int node, const void *caller); 2448 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2449 pgprot_t prot, int node) 2450 { 2451 struct page **pages; 2452 unsigned int nr_pages, array_size, i; 2453 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2454 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 2455 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 2456 0 : 2457 __GFP_HIGHMEM; 2458 2459 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 2460 array_size = (nr_pages * sizeof(struct page *)); 2461 2462 /* Please note that the recursion is strictly bounded. */ 2463 if (array_size > PAGE_SIZE) { 2464 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 2465 PAGE_KERNEL, node, area->caller); 2466 } else { 2467 pages = kmalloc_node(array_size, nested_gfp, node); 2468 } 2469 2470 if (!pages) { 2471 remove_vm_area(area->addr); 2472 kfree(area); 2473 return NULL; 2474 } 2475 2476 area->pages = pages; 2477 area->nr_pages = nr_pages; 2478 2479 for (i = 0; i < area->nr_pages; i++) { 2480 struct page *page; 2481 2482 if (node == NUMA_NO_NODE) 2483 page = alloc_page(alloc_mask|highmem_mask); 2484 else 2485 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 2486 2487 if (unlikely(!page)) { 2488 /* Successfully allocated i pages, free them in __vunmap() */ 2489 area->nr_pages = i; 2490 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2491 goto fail; 2492 } 2493 area->pages[i] = page; 2494 if (gfpflags_allow_blocking(gfp_mask)) 2495 cond_resched(); 2496 } 2497 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2498 2499 if (map_vm_area(area, prot, pages)) 2500 goto fail; 2501 return area->addr; 2502 2503 fail: 2504 warn_alloc(gfp_mask, NULL, 2505 "vmalloc: allocation failure, allocated %ld of %ld bytes", 2506 (area->nr_pages*PAGE_SIZE), area->size); 2507 __vfree(area->addr); 2508 return NULL; 2509 } 2510 2511 /** 2512 * __vmalloc_node_range - allocate virtually contiguous memory 2513 * @size: allocation size 2514 * @align: desired alignment 2515 * @start: vm area range start 2516 * @end: vm area range end 2517 * @gfp_mask: flags for the page level allocator 2518 * @prot: protection mask for the allocated pages 2519 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2520 * @node: node to use for allocation or NUMA_NO_NODE 2521 * @caller: caller's return address 2522 * 2523 * Allocate enough pages to cover @size from the page level 2524 * allocator with @gfp_mask flags. Map them into contiguous 2525 * kernel virtual space, using a pagetable protection of @prot. 2526 * 2527 * Return: the address of the area or %NULL on failure 2528 */ 2529 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2530 unsigned long start, unsigned long end, gfp_t gfp_mask, 2531 pgprot_t prot, unsigned long vm_flags, int node, 2532 const void *caller) 2533 { 2534 struct vm_struct *area; 2535 void *addr; 2536 unsigned long real_size = size; 2537 2538 size = PAGE_ALIGN(size); 2539 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 2540 goto fail; 2541 2542 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 2543 vm_flags, start, end, node, gfp_mask, caller); 2544 if (!area) 2545 goto fail; 2546 2547 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 2548 if (!addr) 2549 return NULL; 2550 2551 if (is_vmalloc_or_module_addr(area->addr)) { 2552 if (kasan_populate_vmalloc(real_size, area)) 2553 return NULL; 2554 } 2555 2556 /* 2557 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2558 * flag. It means that vm_struct is not fully initialized. 2559 * Now, it is fully initialized, so remove this flag here. 2560 */ 2561 clear_vm_uninitialized_flag(area); 2562 2563 kmemleak_vmalloc(area, size, gfp_mask); 2564 2565 return addr; 2566 2567 fail: 2568 warn_alloc(gfp_mask, NULL, 2569 "vmalloc: allocation failure: %lu bytes", real_size); 2570 return NULL; 2571 } 2572 2573 /* 2574 * This is only for performance analysis of vmalloc and stress purpose. 2575 * It is required by vmalloc test module, therefore do not use it other 2576 * than that. 2577 */ 2578 #ifdef CONFIG_TEST_VMALLOC_MODULE 2579 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 2580 #endif 2581 2582 /** 2583 * __vmalloc_node - allocate virtually contiguous memory 2584 * @size: allocation size 2585 * @align: desired alignment 2586 * @gfp_mask: flags for the page level allocator 2587 * @prot: protection mask for the allocated pages 2588 * @node: node to use for allocation or NUMA_NO_NODE 2589 * @caller: caller's return address 2590 * 2591 * Allocate enough pages to cover @size from the page level 2592 * allocator with @gfp_mask flags. Map them into contiguous 2593 * kernel virtual space, using a pagetable protection of @prot. 2594 * 2595 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 2596 * and __GFP_NOFAIL are not supported 2597 * 2598 * Any use of gfp flags outside of GFP_KERNEL should be consulted 2599 * with mm people. 2600 * 2601 * Return: pointer to the allocated memory or %NULL on error 2602 */ 2603 static void *__vmalloc_node(unsigned long size, unsigned long align, 2604 gfp_t gfp_mask, pgprot_t prot, 2605 int node, const void *caller) 2606 { 2607 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 2608 gfp_mask, prot, 0, node, caller); 2609 } 2610 2611 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 2612 { 2613 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 2614 __builtin_return_address(0)); 2615 } 2616 EXPORT_SYMBOL(__vmalloc); 2617 2618 static inline void *__vmalloc_node_flags(unsigned long size, 2619 int node, gfp_t flags) 2620 { 2621 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 2622 node, __builtin_return_address(0)); 2623 } 2624 2625 2626 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 2627 void *caller) 2628 { 2629 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 2630 } 2631 2632 /** 2633 * vmalloc - allocate virtually contiguous memory 2634 * @size: allocation size 2635 * 2636 * Allocate enough pages to cover @size from the page level 2637 * allocator and map them into contiguous kernel virtual space. 2638 * 2639 * For tight control over page level allocator and protection flags 2640 * use __vmalloc() instead. 2641 * 2642 * Return: pointer to the allocated memory or %NULL on error 2643 */ 2644 void *vmalloc(unsigned long size) 2645 { 2646 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2647 GFP_KERNEL); 2648 } 2649 EXPORT_SYMBOL(vmalloc); 2650 2651 /** 2652 * vzalloc - allocate virtually contiguous memory with zero fill 2653 * @size: allocation size 2654 * 2655 * Allocate enough pages to cover @size from the page level 2656 * allocator and map them into contiguous kernel virtual space. 2657 * The memory allocated is set to zero. 2658 * 2659 * For tight control over page level allocator and protection flags 2660 * use __vmalloc() instead. 2661 * 2662 * Return: pointer to the allocated memory or %NULL on error 2663 */ 2664 void *vzalloc(unsigned long size) 2665 { 2666 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2667 GFP_KERNEL | __GFP_ZERO); 2668 } 2669 EXPORT_SYMBOL(vzalloc); 2670 2671 /** 2672 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 2673 * @size: allocation size 2674 * 2675 * The resulting memory area is zeroed so it can be mapped to userspace 2676 * without leaking data. 2677 * 2678 * Return: pointer to the allocated memory or %NULL on error 2679 */ 2680 void *vmalloc_user(unsigned long size) 2681 { 2682 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2683 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 2684 VM_USERMAP, NUMA_NO_NODE, 2685 __builtin_return_address(0)); 2686 } 2687 EXPORT_SYMBOL(vmalloc_user); 2688 2689 /** 2690 * vmalloc_node - allocate memory on a specific node 2691 * @size: allocation size 2692 * @node: numa node 2693 * 2694 * Allocate enough pages to cover @size from the page level 2695 * allocator and map them into contiguous kernel virtual space. 2696 * 2697 * For tight control over page level allocator and protection flags 2698 * use __vmalloc() instead. 2699 * 2700 * Return: pointer to the allocated memory or %NULL on error 2701 */ 2702 void *vmalloc_node(unsigned long size, int node) 2703 { 2704 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 2705 node, __builtin_return_address(0)); 2706 } 2707 EXPORT_SYMBOL(vmalloc_node); 2708 2709 /** 2710 * vzalloc_node - allocate memory on a specific node with zero fill 2711 * @size: allocation size 2712 * @node: numa node 2713 * 2714 * Allocate enough pages to cover @size from the page level 2715 * allocator and map them into contiguous kernel virtual space. 2716 * The memory allocated is set to zero. 2717 * 2718 * For tight control over page level allocator and protection flags 2719 * use __vmalloc_node() instead. 2720 * 2721 * Return: pointer to the allocated memory or %NULL on error 2722 */ 2723 void *vzalloc_node(unsigned long size, int node) 2724 { 2725 return __vmalloc_node_flags(size, node, 2726 GFP_KERNEL | __GFP_ZERO); 2727 } 2728 EXPORT_SYMBOL(vzalloc_node); 2729 2730 /** 2731 * vmalloc_user_node_flags - allocate memory for userspace on a specific node 2732 * @size: allocation size 2733 * @node: numa node 2734 * @flags: flags for the page level allocator 2735 * 2736 * The resulting memory area is zeroed so it can be mapped to userspace 2737 * without leaking data. 2738 * 2739 * Return: pointer to the allocated memory or %NULL on error 2740 */ 2741 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags) 2742 { 2743 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2744 flags | __GFP_ZERO, PAGE_KERNEL, 2745 VM_USERMAP, node, 2746 __builtin_return_address(0)); 2747 } 2748 EXPORT_SYMBOL(vmalloc_user_node_flags); 2749 2750 /** 2751 * vmalloc_exec - allocate virtually contiguous, executable memory 2752 * @size: allocation size 2753 * 2754 * Kernel-internal function to allocate enough pages to cover @size 2755 * the page level allocator and map them into contiguous and 2756 * executable kernel virtual space. 2757 * 2758 * For tight control over page level allocator and protection flags 2759 * use __vmalloc() instead. 2760 * 2761 * Return: pointer to the allocated memory or %NULL on error 2762 */ 2763 void *vmalloc_exec(unsigned long size) 2764 { 2765 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2766 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2767 NUMA_NO_NODE, __builtin_return_address(0)); 2768 } 2769 2770 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2771 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2772 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2773 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2774 #else 2775 /* 2776 * 64b systems should always have either DMA or DMA32 zones. For others 2777 * GFP_DMA32 should do the right thing and use the normal zone. 2778 */ 2779 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2780 #endif 2781 2782 /** 2783 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2784 * @size: allocation size 2785 * 2786 * Allocate enough 32bit PA addressable pages to cover @size from the 2787 * page level allocator and map them into contiguous kernel virtual space. 2788 * 2789 * Return: pointer to the allocated memory or %NULL on error 2790 */ 2791 void *vmalloc_32(unsigned long size) 2792 { 2793 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 2794 NUMA_NO_NODE, __builtin_return_address(0)); 2795 } 2796 EXPORT_SYMBOL(vmalloc_32); 2797 2798 /** 2799 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2800 * @size: allocation size 2801 * 2802 * The resulting memory area is 32bit addressable and zeroed so it can be 2803 * mapped to userspace without leaking data. 2804 * 2805 * Return: pointer to the allocated memory or %NULL on error 2806 */ 2807 void *vmalloc_32_user(unsigned long size) 2808 { 2809 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2810 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2811 VM_USERMAP, NUMA_NO_NODE, 2812 __builtin_return_address(0)); 2813 } 2814 EXPORT_SYMBOL(vmalloc_32_user); 2815 2816 /* 2817 * small helper routine , copy contents to buf from addr. 2818 * If the page is not present, fill zero. 2819 */ 2820 2821 static int aligned_vread(char *buf, char *addr, unsigned long count) 2822 { 2823 struct page *p; 2824 int copied = 0; 2825 2826 while (count) { 2827 unsigned long offset, length; 2828 2829 offset = offset_in_page(addr); 2830 length = PAGE_SIZE - offset; 2831 if (length > count) 2832 length = count; 2833 p = vmalloc_to_page(addr); 2834 /* 2835 * To do safe access to this _mapped_ area, we need 2836 * lock. But adding lock here means that we need to add 2837 * overhead of vmalloc()/vfree() calles for this _debug_ 2838 * interface, rarely used. Instead of that, we'll use 2839 * kmap() and get small overhead in this access function. 2840 */ 2841 if (p) { 2842 /* 2843 * we can expect USER0 is not used (see vread/vwrite's 2844 * function description) 2845 */ 2846 void *map = kmap_atomic(p); 2847 memcpy(buf, map + offset, length); 2848 kunmap_atomic(map); 2849 } else 2850 memset(buf, 0, length); 2851 2852 addr += length; 2853 buf += length; 2854 copied += length; 2855 count -= length; 2856 } 2857 return copied; 2858 } 2859 2860 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2861 { 2862 struct page *p; 2863 int copied = 0; 2864 2865 while (count) { 2866 unsigned long offset, length; 2867 2868 offset = offset_in_page(addr); 2869 length = PAGE_SIZE - offset; 2870 if (length > count) 2871 length = count; 2872 p = vmalloc_to_page(addr); 2873 /* 2874 * To do safe access to this _mapped_ area, we need 2875 * lock. But adding lock here means that we need to add 2876 * overhead of vmalloc()/vfree() calles for this _debug_ 2877 * interface, rarely used. Instead of that, we'll use 2878 * kmap() and get small overhead in this access function. 2879 */ 2880 if (p) { 2881 /* 2882 * we can expect USER0 is not used (see vread/vwrite's 2883 * function description) 2884 */ 2885 void *map = kmap_atomic(p); 2886 memcpy(map + offset, buf, length); 2887 kunmap_atomic(map); 2888 } 2889 addr += length; 2890 buf += length; 2891 copied += length; 2892 count -= length; 2893 } 2894 return copied; 2895 } 2896 2897 /** 2898 * vread() - read vmalloc area in a safe way. 2899 * @buf: buffer for reading data 2900 * @addr: vm address. 2901 * @count: number of bytes to be read. 2902 * 2903 * This function checks that addr is a valid vmalloc'ed area, and 2904 * copy data from that area to a given buffer. If the given memory range 2905 * of [addr...addr+count) includes some valid address, data is copied to 2906 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2907 * IOREMAP area is treated as memory hole and no copy is done. 2908 * 2909 * If [addr...addr+count) doesn't includes any intersects with alive 2910 * vm_struct area, returns 0. @buf should be kernel's buffer. 2911 * 2912 * Note: In usual ops, vread() is never necessary because the caller 2913 * should know vmalloc() area is valid and can use memcpy(). 2914 * This is for routines which have to access vmalloc area without 2915 * any information, as /dev/kmem. 2916 * 2917 * Return: number of bytes for which addr and buf should be increased 2918 * (same number as @count) or %0 if [addr...addr+count) doesn't 2919 * include any intersection with valid vmalloc area 2920 */ 2921 long vread(char *buf, char *addr, unsigned long count) 2922 { 2923 struct vmap_area *va; 2924 struct vm_struct *vm; 2925 char *vaddr, *buf_start = buf; 2926 unsigned long buflen = count; 2927 unsigned long n; 2928 2929 /* Don't allow overflow */ 2930 if ((unsigned long) addr + count < count) 2931 count = -(unsigned long) addr; 2932 2933 spin_lock(&vmap_area_lock); 2934 list_for_each_entry(va, &vmap_area_list, list) { 2935 if (!count) 2936 break; 2937 2938 if (!va->vm) 2939 continue; 2940 2941 vm = va->vm; 2942 vaddr = (char *) vm->addr; 2943 if (addr >= vaddr + get_vm_area_size(vm)) 2944 continue; 2945 while (addr < vaddr) { 2946 if (count == 0) 2947 goto finished; 2948 *buf = '\0'; 2949 buf++; 2950 addr++; 2951 count--; 2952 } 2953 n = vaddr + get_vm_area_size(vm) - addr; 2954 if (n > count) 2955 n = count; 2956 if (!(vm->flags & VM_IOREMAP)) 2957 aligned_vread(buf, addr, n); 2958 else /* IOREMAP area is treated as memory hole */ 2959 memset(buf, 0, n); 2960 buf += n; 2961 addr += n; 2962 count -= n; 2963 } 2964 finished: 2965 spin_unlock(&vmap_area_lock); 2966 2967 if (buf == buf_start) 2968 return 0; 2969 /* zero-fill memory holes */ 2970 if (buf != buf_start + buflen) 2971 memset(buf, 0, buflen - (buf - buf_start)); 2972 2973 return buflen; 2974 } 2975 2976 /** 2977 * vwrite() - write vmalloc area in a safe way. 2978 * @buf: buffer for source data 2979 * @addr: vm address. 2980 * @count: number of bytes to be read. 2981 * 2982 * This function checks that addr is a valid vmalloc'ed area, and 2983 * copy data from a buffer to the given addr. If specified range of 2984 * [addr...addr+count) includes some valid address, data is copied from 2985 * proper area of @buf. If there are memory holes, no copy to hole. 2986 * IOREMAP area is treated as memory hole and no copy is done. 2987 * 2988 * If [addr...addr+count) doesn't includes any intersects with alive 2989 * vm_struct area, returns 0. @buf should be kernel's buffer. 2990 * 2991 * Note: In usual ops, vwrite() is never necessary because the caller 2992 * should know vmalloc() area is valid and can use memcpy(). 2993 * This is for routines which have to access vmalloc area without 2994 * any information, as /dev/kmem. 2995 * 2996 * Return: number of bytes for which addr and buf should be 2997 * increased (same number as @count) or %0 if [addr...addr+count) 2998 * doesn't include any intersection with valid vmalloc area 2999 */ 3000 long vwrite(char *buf, char *addr, unsigned long count) 3001 { 3002 struct vmap_area *va; 3003 struct vm_struct *vm; 3004 char *vaddr; 3005 unsigned long n, buflen; 3006 int copied = 0; 3007 3008 /* Don't allow overflow */ 3009 if ((unsigned long) addr + count < count) 3010 count = -(unsigned long) addr; 3011 buflen = count; 3012 3013 spin_lock(&vmap_area_lock); 3014 list_for_each_entry(va, &vmap_area_list, list) { 3015 if (!count) 3016 break; 3017 3018 if (!va->vm) 3019 continue; 3020 3021 vm = va->vm; 3022 vaddr = (char *) vm->addr; 3023 if (addr >= vaddr + get_vm_area_size(vm)) 3024 continue; 3025 while (addr < vaddr) { 3026 if (count == 0) 3027 goto finished; 3028 buf++; 3029 addr++; 3030 count--; 3031 } 3032 n = vaddr + get_vm_area_size(vm) - addr; 3033 if (n > count) 3034 n = count; 3035 if (!(vm->flags & VM_IOREMAP)) { 3036 aligned_vwrite(buf, addr, n); 3037 copied++; 3038 } 3039 buf += n; 3040 addr += n; 3041 count -= n; 3042 } 3043 finished: 3044 spin_unlock(&vmap_area_lock); 3045 if (!copied) 3046 return 0; 3047 return buflen; 3048 } 3049 3050 /** 3051 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3052 * @vma: vma to cover 3053 * @uaddr: target user address to start at 3054 * @kaddr: virtual address of vmalloc kernel memory 3055 * @size: size of map area 3056 * 3057 * Returns: 0 for success, -Exxx on failure 3058 * 3059 * This function checks that @kaddr is a valid vmalloc'ed area, 3060 * and that it is big enough to cover the range starting at 3061 * @uaddr in @vma. Will return failure if that criteria isn't 3062 * met. 3063 * 3064 * Similar to remap_pfn_range() (see mm/memory.c) 3065 */ 3066 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3067 void *kaddr, unsigned long size) 3068 { 3069 struct vm_struct *area; 3070 3071 size = PAGE_ALIGN(size); 3072 3073 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3074 return -EINVAL; 3075 3076 area = find_vm_area(kaddr); 3077 if (!area) 3078 return -EINVAL; 3079 3080 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3081 return -EINVAL; 3082 3083 if (kaddr + size > area->addr + get_vm_area_size(area)) 3084 return -EINVAL; 3085 3086 do { 3087 struct page *page = vmalloc_to_page(kaddr); 3088 int ret; 3089 3090 ret = vm_insert_page(vma, uaddr, page); 3091 if (ret) 3092 return ret; 3093 3094 uaddr += PAGE_SIZE; 3095 kaddr += PAGE_SIZE; 3096 size -= PAGE_SIZE; 3097 } while (size > 0); 3098 3099 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3100 3101 return 0; 3102 } 3103 EXPORT_SYMBOL(remap_vmalloc_range_partial); 3104 3105 /** 3106 * remap_vmalloc_range - map vmalloc pages to userspace 3107 * @vma: vma to cover (map full range of vma) 3108 * @addr: vmalloc memory 3109 * @pgoff: number of pages into addr before first page to map 3110 * 3111 * Returns: 0 for success, -Exxx on failure 3112 * 3113 * This function checks that addr is a valid vmalloc'ed area, and 3114 * that it is big enough to cover the vma. Will return failure if 3115 * that criteria isn't met. 3116 * 3117 * Similar to remap_pfn_range() (see mm/memory.c) 3118 */ 3119 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3120 unsigned long pgoff) 3121 { 3122 return remap_vmalloc_range_partial(vma, vma->vm_start, 3123 addr + (pgoff << PAGE_SHIFT), 3124 vma->vm_end - vma->vm_start); 3125 } 3126 EXPORT_SYMBOL(remap_vmalloc_range); 3127 3128 /* 3129 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 3130 * have one. 3131 * 3132 * The purpose of this function is to make sure the vmalloc area 3133 * mappings are identical in all page-tables in the system. 3134 */ 3135 void __weak vmalloc_sync_all(void) 3136 { 3137 } 3138 3139 3140 static int f(pte_t *pte, unsigned long addr, void *data) 3141 { 3142 pte_t ***p = data; 3143 3144 if (p) { 3145 *(*p) = pte; 3146 (*p)++; 3147 } 3148 return 0; 3149 } 3150 3151 /** 3152 * alloc_vm_area - allocate a range of kernel address space 3153 * @size: size of the area 3154 * @ptes: returns the PTEs for the address space 3155 * 3156 * Returns: NULL on failure, vm_struct on success 3157 * 3158 * This function reserves a range of kernel address space, and 3159 * allocates pagetables to map that range. No actual mappings 3160 * are created. 3161 * 3162 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 3163 * allocated for the VM area are returned. 3164 */ 3165 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 3166 { 3167 struct vm_struct *area; 3168 3169 area = get_vm_area_caller(size, VM_IOREMAP, 3170 __builtin_return_address(0)); 3171 if (area == NULL) 3172 return NULL; 3173 3174 /* 3175 * This ensures that page tables are constructed for this region 3176 * of kernel virtual address space and mapped into init_mm. 3177 */ 3178 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3179 size, f, ptes ? &ptes : NULL)) { 3180 free_vm_area(area); 3181 return NULL; 3182 } 3183 3184 return area; 3185 } 3186 EXPORT_SYMBOL_GPL(alloc_vm_area); 3187 3188 void free_vm_area(struct vm_struct *area) 3189 { 3190 struct vm_struct *ret; 3191 ret = remove_vm_area(area->addr); 3192 BUG_ON(ret != area); 3193 kfree(area); 3194 } 3195 EXPORT_SYMBOL_GPL(free_vm_area); 3196 3197 #ifdef CONFIG_SMP 3198 static struct vmap_area *node_to_va(struct rb_node *n) 3199 { 3200 return rb_entry_safe(n, struct vmap_area, rb_node); 3201 } 3202 3203 /** 3204 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3205 * @addr: target address 3206 * 3207 * Returns: vmap_area if it is found. If there is no such area 3208 * the first highest(reverse order) vmap_area is returned 3209 * i.e. va->va_start < addr && va->va_end < addr or NULL 3210 * if there are no any areas before @addr. 3211 */ 3212 static struct vmap_area * 3213 pvm_find_va_enclose_addr(unsigned long addr) 3214 { 3215 struct vmap_area *va, *tmp; 3216 struct rb_node *n; 3217 3218 n = free_vmap_area_root.rb_node; 3219 va = NULL; 3220 3221 while (n) { 3222 tmp = rb_entry(n, struct vmap_area, rb_node); 3223 if (tmp->va_start <= addr) { 3224 va = tmp; 3225 if (tmp->va_end >= addr) 3226 break; 3227 3228 n = n->rb_right; 3229 } else { 3230 n = n->rb_left; 3231 } 3232 } 3233 3234 return va; 3235 } 3236 3237 /** 3238 * pvm_determine_end_from_reverse - find the highest aligned address 3239 * of free block below VMALLOC_END 3240 * @va: 3241 * in - the VA we start the search(reverse order); 3242 * out - the VA with the highest aligned end address. 3243 * 3244 * Returns: determined end address within vmap_area 3245 */ 3246 static unsigned long 3247 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3248 { 3249 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3250 unsigned long addr; 3251 3252 if (likely(*va)) { 3253 list_for_each_entry_from_reverse((*va), 3254 &free_vmap_area_list, list) { 3255 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3256 if ((*va)->va_start < addr) 3257 return addr; 3258 } 3259 } 3260 3261 return 0; 3262 } 3263 3264 /** 3265 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3266 * @offsets: array containing offset of each area 3267 * @sizes: array containing size of each area 3268 * @nr_vms: the number of areas to allocate 3269 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3270 * 3271 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3272 * vm_structs on success, %NULL on failure 3273 * 3274 * Percpu allocator wants to use congruent vm areas so that it can 3275 * maintain the offsets among percpu areas. This function allocates 3276 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3277 * be scattered pretty far, distance between two areas easily going up 3278 * to gigabytes. To avoid interacting with regular vmallocs, these 3279 * areas are allocated from top. 3280 * 3281 * Despite its complicated look, this allocator is rather simple. It 3282 * does everything top-down and scans free blocks from the end looking 3283 * for matching base. While scanning, if any of the areas do not fit the 3284 * base address is pulled down to fit the area. Scanning is repeated till 3285 * all the areas fit and then all necessary data structures are inserted 3286 * and the result is returned. 3287 */ 3288 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3289 const size_t *sizes, int nr_vms, 3290 size_t align) 3291 { 3292 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3293 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3294 struct vmap_area **vas, *va; 3295 struct vm_struct **vms; 3296 int area, area2, last_area, term_area; 3297 unsigned long base, start, size, end, last_end; 3298 bool purged = false; 3299 enum fit_type type; 3300 3301 /* verify parameters and allocate data structures */ 3302 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3303 for (last_area = 0, area = 0; area < nr_vms; area++) { 3304 start = offsets[area]; 3305 end = start + sizes[area]; 3306 3307 /* is everything aligned properly? */ 3308 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3309 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3310 3311 /* detect the area with the highest address */ 3312 if (start > offsets[last_area]) 3313 last_area = area; 3314 3315 for (area2 = area + 1; area2 < nr_vms; area2++) { 3316 unsigned long start2 = offsets[area2]; 3317 unsigned long end2 = start2 + sizes[area2]; 3318 3319 BUG_ON(start2 < end && start < end2); 3320 } 3321 } 3322 last_end = offsets[last_area] + sizes[last_area]; 3323 3324 if (vmalloc_end - vmalloc_start < last_end) { 3325 WARN_ON(true); 3326 return NULL; 3327 } 3328 3329 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3330 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3331 if (!vas || !vms) 3332 goto err_free2; 3333 3334 for (area = 0; area < nr_vms; area++) { 3335 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3336 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3337 if (!vas[area] || !vms[area]) 3338 goto err_free; 3339 } 3340 retry: 3341 spin_lock(&free_vmap_area_lock); 3342 3343 /* start scanning - we scan from the top, begin with the last area */ 3344 area = term_area = last_area; 3345 start = offsets[area]; 3346 end = start + sizes[area]; 3347 3348 va = pvm_find_va_enclose_addr(vmalloc_end); 3349 base = pvm_determine_end_from_reverse(&va, align) - end; 3350 3351 while (true) { 3352 /* 3353 * base might have underflowed, add last_end before 3354 * comparing. 3355 */ 3356 if (base + last_end < vmalloc_start + last_end) 3357 goto overflow; 3358 3359 /* 3360 * Fitting base has not been found. 3361 */ 3362 if (va == NULL) 3363 goto overflow; 3364 3365 /* 3366 * If required width exeeds current VA block, move 3367 * base downwards and then recheck. 3368 */ 3369 if (base + end > va->va_end) { 3370 base = pvm_determine_end_from_reverse(&va, align) - end; 3371 term_area = area; 3372 continue; 3373 } 3374 3375 /* 3376 * If this VA does not fit, move base downwards and recheck. 3377 */ 3378 if (base + start < va->va_start) { 3379 va = node_to_va(rb_prev(&va->rb_node)); 3380 base = pvm_determine_end_from_reverse(&va, align) - end; 3381 term_area = area; 3382 continue; 3383 } 3384 3385 /* 3386 * This area fits, move on to the previous one. If 3387 * the previous one is the terminal one, we're done. 3388 */ 3389 area = (area + nr_vms - 1) % nr_vms; 3390 if (area == term_area) 3391 break; 3392 3393 start = offsets[area]; 3394 end = start + sizes[area]; 3395 va = pvm_find_va_enclose_addr(base + end); 3396 } 3397 3398 /* we've found a fitting base, insert all va's */ 3399 for (area = 0; area < nr_vms; area++) { 3400 int ret; 3401 3402 start = base + offsets[area]; 3403 size = sizes[area]; 3404 3405 va = pvm_find_va_enclose_addr(start); 3406 if (WARN_ON_ONCE(va == NULL)) 3407 /* It is a BUG(), but trigger recovery instead. */ 3408 goto recovery; 3409 3410 type = classify_va_fit_type(va, start, size); 3411 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3412 /* It is a BUG(), but trigger recovery instead. */ 3413 goto recovery; 3414 3415 ret = adjust_va_to_fit_type(va, start, size, type); 3416 if (unlikely(ret)) 3417 goto recovery; 3418 3419 /* Allocated area. */ 3420 va = vas[area]; 3421 va->va_start = start; 3422 va->va_end = start + size; 3423 } 3424 3425 spin_unlock(&free_vmap_area_lock); 3426 3427 /* insert all vm's */ 3428 spin_lock(&vmap_area_lock); 3429 for (area = 0; area < nr_vms; area++) { 3430 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3431 3432 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3433 pcpu_get_vm_areas); 3434 } 3435 spin_unlock(&vmap_area_lock); 3436 3437 /* populate the shadow space outside of the lock */ 3438 for (area = 0; area < nr_vms; area++) { 3439 /* assume success here */ 3440 kasan_populate_vmalloc(sizes[area], vms[area]); 3441 } 3442 3443 kfree(vas); 3444 return vms; 3445 3446 recovery: 3447 /* 3448 * Remove previously allocated areas. There is no 3449 * need in removing these areas from the busy tree, 3450 * because they are inserted only on the final step 3451 * and when pcpu_get_vm_areas() is success. 3452 */ 3453 while (area--) { 3454 merge_or_add_vmap_area(vas[area], &free_vmap_area_root, 3455 &free_vmap_area_list); 3456 vas[area] = NULL; 3457 } 3458 3459 overflow: 3460 spin_unlock(&free_vmap_area_lock); 3461 if (!purged) { 3462 purge_vmap_area_lazy(); 3463 purged = true; 3464 3465 /* Before "retry", check if we recover. */ 3466 for (area = 0; area < nr_vms; area++) { 3467 if (vas[area]) 3468 continue; 3469 3470 vas[area] = kmem_cache_zalloc( 3471 vmap_area_cachep, GFP_KERNEL); 3472 if (!vas[area]) 3473 goto err_free; 3474 } 3475 3476 goto retry; 3477 } 3478 3479 err_free: 3480 for (area = 0; area < nr_vms; area++) { 3481 if (vas[area]) 3482 kmem_cache_free(vmap_area_cachep, vas[area]); 3483 3484 kfree(vms[area]); 3485 } 3486 err_free2: 3487 kfree(vas); 3488 kfree(vms); 3489 return NULL; 3490 } 3491 3492 /** 3493 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3494 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3495 * @nr_vms: the number of allocated areas 3496 * 3497 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3498 */ 3499 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3500 { 3501 int i; 3502 3503 for (i = 0; i < nr_vms; i++) 3504 free_vm_area(vms[i]); 3505 kfree(vms); 3506 } 3507 #endif /* CONFIG_SMP */ 3508 3509 #ifdef CONFIG_PROC_FS 3510 static void *s_start(struct seq_file *m, loff_t *pos) 3511 __acquires(&vmap_purge_lock) 3512 __acquires(&vmap_area_lock) 3513 { 3514 mutex_lock(&vmap_purge_lock); 3515 spin_lock(&vmap_area_lock); 3516 3517 return seq_list_start(&vmap_area_list, *pos); 3518 } 3519 3520 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3521 { 3522 return seq_list_next(p, &vmap_area_list, pos); 3523 } 3524 3525 static void s_stop(struct seq_file *m, void *p) 3526 __releases(&vmap_purge_lock) 3527 __releases(&vmap_area_lock) 3528 { 3529 mutex_unlock(&vmap_purge_lock); 3530 spin_unlock(&vmap_area_lock); 3531 } 3532 3533 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3534 { 3535 if (IS_ENABLED(CONFIG_NUMA)) { 3536 unsigned int nr, *counters = m->private; 3537 3538 if (!counters) 3539 return; 3540 3541 if (v->flags & VM_UNINITIALIZED) 3542 return; 3543 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3544 smp_rmb(); 3545 3546 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3547 3548 for (nr = 0; nr < v->nr_pages; nr++) 3549 counters[page_to_nid(v->pages[nr])]++; 3550 3551 for_each_node_state(nr, N_HIGH_MEMORY) 3552 if (counters[nr]) 3553 seq_printf(m, " N%u=%u", nr, counters[nr]); 3554 } 3555 } 3556 3557 static void show_purge_info(struct seq_file *m) 3558 { 3559 struct llist_node *head; 3560 struct vmap_area *va; 3561 3562 head = READ_ONCE(vmap_purge_list.first); 3563 if (head == NULL) 3564 return; 3565 3566 llist_for_each_entry(va, head, purge_list) { 3567 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 3568 (void *)va->va_start, (void *)va->va_end, 3569 va->va_end - va->va_start); 3570 } 3571 } 3572 3573 static int s_show(struct seq_file *m, void *p) 3574 { 3575 struct vmap_area *va; 3576 struct vm_struct *v; 3577 3578 va = list_entry(p, struct vmap_area, list); 3579 3580 /* 3581 * s_show can encounter race with remove_vm_area, !vm on behalf 3582 * of vmap area is being tear down or vm_map_ram allocation. 3583 */ 3584 if (!va->vm) { 3585 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 3586 (void *)va->va_start, (void *)va->va_end, 3587 va->va_end - va->va_start); 3588 3589 return 0; 3590 } 3591 3592 v = va->vm; 3593 3594 seq_printf(m, "0x%pK-0x%pK %7ld", 3595 v->addr, v->addr + v->size, v->size); 3596 3597 if (v->caller) 3598 seq_printf(m, " %pS", v->caller); 3599 3600 if (v->nr_pages) 3601 seq_printf(m, " pages=%d", v->nr_pages); 3602 3603 if (v->phys_addr) 3604 seq_printf(m, " phys=%pa", &v->phys_addr); 3605 3606 if (v->flags & VM_IOREMAP) 3607 seq_puts(m, " ioremap"); 3608 3609 if (v->flags & VM_ALLOC) 3610 seq_puts(m, " vmalloc"); 3611 3612 if (v->flags & VM_MAP) 3613 seq_puts(m, " vmap"); 3614 3615 if (v->flags & VM_USERMAP) 3616 seq_puts(m, " user"); 3617 3618 if (v->flags & VM_DMA_COHERENT) 3619 seq_puts(m, " dma-coherent"); 3620 3621 if (is_vmalloc_addr(v->pages)) 3622 seq_puts(m, " vpages"); 3623 3624 show_numa_info(m, v); 3625 seq_putc(m, '\n'); 3626 3627 /* 3628 * As a final step, dump "unpurged" areas. Note, 3629 * that entire "/proc/vmallocinfo" output will not 3630 * be address sorted, because the purge list is not 3631 * sorted. 3632 */ 3633 if (list_is_last(&va->list, &vmap_area_list)) 3634 show_purge_info(m); 3635 3636 return 0; 3637 } 3638 3639 static const struct seq_operations vmalloc_op = { 3640 .start = s_start, 3641 .next = s_next, 3642 .stop = s_stop, 3643 .show = s_show, 3644 }; 3645 3646 static int __init proc_vmalloc_init(void) 3647 { 3648 if (IS_ENABLED(CONFIG_NUMA)) 3649 proc_create_seq_private("vmallocinfo", 0400, NULL, 3650 &vmalloc_op, 3651 nr_node_ids * sizeof(unsigned int), NULL); 3652 else 3653 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3654 return 0; 3655 } 3656 module_init(proc_vmalloc_init); 3657 3658 #endif 3659