xref: /openbmc/linux/mm/vmalloc.c (revision aac5987a)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *llnode = llist_del_all(&p->list);
53 	while (llnode) {
54 		void *p = llnode;
55 		llnode = llist_next(llnode);
56 		__vunmap(p, 1);
57 	}
58 }
59 
60 /*** Page table manipulation functions ***/
61 
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 	pte_t *pte;
65 
66 	pte = pte_offset_kernel(pmd, addr);
67 	do {
68 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 	} while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72 
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 	pmd_t *pmd;
76 	unsigned long next;
77 
78 	pmd = pmd_offset(pud, addr);
79 	do {
80 		next = pmd_addr_end(addr, end);
81 		if (pmd_clear_huge(pmd))
82 			continue;
83 		if (pmd_none_or_clear_bad(pmd))
84 			continue;
85 		vunmap_pte_range(pmd, addr, next);
86 	} while (pmd++, addr = next, addr != end);
87 }
88 
89 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
90 {
91 	pud_t *pud;
92 	unsigned long next;
93 
94 	pud = pud_offset(pgd, addr);
95 	do {
96 		next = pud_addr_end(addr, end);
97 		if (pud_clear_huge(pud))
98 			continue;
99 		if (pud_none_or_clear_bad(pud))
100 			continue;
101 		vunmap_pmd_range(pud, addr, next);
102 	} while (pud++, addr = next, addr != end);
103 }
104 
105 static void vunmap_page_range(unsigned long addr, unsigned long end)
106 {
107 	pgd_t *pgd;
108 	unsigned long next;
109 
110 	BUG_ON(addr >= end);
111 	pgd = pgd_offset_k(addr);
112 	do {
113 		next = pgd_addr_end(addr, end);
114 		if (pgd_none_or_clear_bad(pgd))
115 			continue;
116 		vunmap_pud_range(pgd, addr, next);
117 	} while (pgd++, addr = next, addr != end);
118 }
119 
120 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
121 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
122 {
123 	pte_t *pte;
124 
125 	/*
126 	 * nr is a running index into the array which helps higher level
127 	 * callers keep track of where we're up to.
128 	 */
129 
130 	pte = pte_alloc_kernel(pmd, addr);
131 	if (!pte)
132 		return -ENOMEM;
133 	do {
134 		struct page *page = pages[*nr];
135 
136 		if (WARN_ON(!pte_none(*pte)))
137 			return -EBUSY;
138 		if (WARN_ON(!page))
139 			return -ENOMEM;
140 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
141 		(*nr)++;
142 	} while (pte++, addr += PAGE_SIZE, addr != end);
143 	return 0;
144 }
145 
146 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
148 {
149 	pmd_t *pmd;
150 	unsigned long next;
151 
152 	pmd = pmd_alloc(&init_mm, pud, addr);
153 	if (!pmd)
154 		return -ENOMEM;
155 	do {
156 		next = pmd_addr_end(addr, end);
157 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
158 			return -ENOMEM;
159 	} while (pmd++, addr = next, addr != end);
160 	return 0;
161 }
162 
163 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 	pud_t *pud;
167 	unsigned long next;
168 
169 	pud = pud_alloc(&init_mm, pgd, addr);
170 	if (!pud)
171 		return -ENOMEM;
172 	do {
173 		next = pud_addr_end(addr, end);
174 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
175 			return -ENOMEM;
176 	} while (pud++, addr = next, addr != end);
177 	return 0;
178 }
179 
180 /*
181  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182  * will have pfns corresponding to the "pages" array.
183  *
184  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185  */
186 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 				   pgprot_t prot, struct page **pages)
188 {
189 	pgd_t *pgd;
190 	unsigned long next;
191 	unsigned long addr = start;
192 	int err = 0;
193 	int nr = 0;
194 
195 	BUG_ON(addr >= end);
196 	pgd = pgd_offset_k(addr);
197 	do {
198 		next = pgd_addr_end(addr, end);
199 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
200 		if (err)
201 			return err;
202 	} while (pgd++, addr = next, addr != end);
203 
204 	return nr;
205 }
206 
207 static int vmap_page_range(unsigned long start, unsigned long end,
208 			   pgprot_t prot, struct page **pages)
209 {
210 	int ret;
211 
212 	ret = vmap_page_range_noflush(start, end, prot, pages);
213 	flush_cache_vmap(start, end);
214 	return ret;
215 }
216 
217 int is_vmalloc_or_module_addr(const void *x)
218 {
219 	/*
220 	 * ARM, x86-64 and sparc64 put modules in a special place,
221 	 * and fall back on vmalloc() if that fails. Others
222 	 * just put it in the vmalloc space.
223 	 */
224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 	unsigned long addr = (unsigned long)x;
226 	if (addr >= MODULES_VADDR && addr < MODULES_END)
227 		return 1;
228 #endif
229 	return is_vmalloc_addr(x);
230 }
231 
232 /*
233  * Walk a vmap address to the struct page it maps.
234  */
235 struct page *vmalloc_to_page(const void *vmalloc_addr)
236 {
237 	unsigned long addr = (unsigned long) vmalloc_addr;
238 	struct page *page = NULL;
239 	pgd_t *pgd = pgd_offset_k(addr);
240 
241 	/*
242 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 	 * architectures that do not vmalloc module space
244 	 */
245 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
246 
247 	if (!pgd_none(*pgd)) {
248 		pud_t *pud = pud_offset(pgd, addr);
249 		if (!pud_none(*pud)) {
250 			pmd_t *pmd = pmd_offset(pud, addr);
251 			if (!pmd_none(*pmd)) {
252 				pte_t *ptep, pte;
253 
254 				ptep = pte_offset_map(pmd, addr);
255 				pte = *ptep;
256 				if (pte_present(pte))
257 					page = pte_page(pte);
258 				pte_unmap(ptep);
259 			}
260 		}
261 	}
262 	return page;
263 }
264 EXPORT_SYMBOL(vmalloc_to_page);
265 
266 /*
267  * Map a vmalloc()-space virtual address to the physical page frame number.
268  */
269 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
270 {
271 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
272 }
273 EXPORT_SYMBOL(vmalloc_to_pfn);
274 
275 
276 /*** Global kva allocator ***/
277 
278 #define VM_VM_AREA	0x04
279 
280 static DEFINE_SPINLOCK(vmap_area_lock);
281 /* Export for kexec only */
282 LIST_HEAD(vmap_area_list);
283 static LLIST_HEAD(vmap_purge_list);
284 static struct rb_root vmap_area_root = RB_ROOT;
285 
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node *free_vmap_cache;
288 static unsigned long cached_hole_size;
289 static unsigned long cached_vstart;
290 static unsigned long cached_align;
291 
292 static unsigned long vmap_area_pcpu_hole;
293 
294 static struct vmap_area *__find_vmap_area(unsigned long addr)
295 {
296 	struct rb_node *n = vmap_area_root.rb_node;
297 
298 	while (n) {
299 		struct vmap_area *va;
300 
301 		va = rb_entry(n, struct vmap_area, rb_node);
302 		if (addr < va->va_start)
303 			n = n->rb_left;
304 		else if (addr >= va->va_end)
305 			n = n->rb_right;
306 		else
307 			return va;
308 	}
309 
310 	return NULL;
311 }
312 
313 static void __insert_vmap_area(struct vmap_area *va)
314 {
315 	struct rb_node **p = &vmap_area_root.rb_node;
316 	struct rb_node *parent = NULL;
317 	struct rb_node *tmp;
318 
319 	while (*p) {
320 		struct vmap_area *tmp_va;
321 
322 		parent = *p;
323 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 		if (va->va_start < tmp_va->va_end)
325 			p = &(*p)->rb_left;
326 		else if (va->va_end > tmp_va->va_start)
327 			p = &(*p)->rb_right;
328 		else
329 			BUG();
330 	}
331 
332 	rb_link_node(&va->rb_node, parent, p);
333 	rb_insert_color(&va->rb_node, &vmap_area_root);
334 
335 	/* address-sort this list */
336 	tmp = rb_prev(&va->rb_node);
337 	if (tmp) {
338 		struct vmap_area *prev;
339 		prev = rb_entry(tmp, struct vmap_area, rb_node);
340 		list_add_rcu(&va->list, &prev->list);
341 	} else
342 		list_add_rcu(&va->list, &vmap_area_list);
343 }
344 
345 static void purge_vmap_area_lazy(void);
346 
347 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
348 
349 /*
350  * Allocate a region of KVA of the specified size and alignment, within the
351  * vstart and vend.
352  */
353 static struct vmap_area *alloc_vmap_area(unsigned long size,
354 				unsigned long align,
355 				unsigned long vstart, unsigned long vend,
356 				int node, gfp_t gfp_mask)
357 {
358 	struct vmap_area *va;
359 	struct rb_node *n;
360 	unsigned long addr;
361 	int purged = 0;
362 	struct vmap_area *first;
363 
364 	BUG_ON(!size);
365 	BUG_ON(offset_in_page(size));
366 	BUG_ON(!is_power_of_2(align));
367 
368 	might_sleep();
369 
370 	va = kmalloc_node(sizeof(struct vmap_area),
371 			gfp_mask & GFP_RECLAIM_MASK, node);
372 	if (unlikely(!va))
373 		return ERR_PTR(-ENOMEM);
374 
375 	/*
376 	 * Only scan the relevant parts containing pointers to other objects
377 	 * to avoid false negatives.
378 	 */
379 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
380 
381 retry:
382 	spin_lock(&vmap_area_lock);
383 	/*
384 	 * Invalidate cache if we have more permissive parameters.
385 	 * cached_hole_size notes the largest hole noticed _below_
386 	 * the vmap_area cached in free_vmap_cache: if size fits
387 	 * into that hole, we want to scan from vstart to reuse
388 	 * the hole instead of allocating above free_vmap_cache.
389 	 * Note that __free_vmap_area may update free_vmap_cache
390 	 * without updating cached_hole_size or cached_align.
391 	 */
392 	if (!free_vmap_cache ||
393 			size < cached_hole_size ||
394 			vstart < cached_vstart ||
395 			align < cached_align) {
396 nocache:
397 		cached_hole_size = 0;
398 		free_vmap_cache = NULL;
399 	}
400 	/* record if we encounter less permissive parameters */
401 	cached_vstart = vstart;
402 	cached_align = align;
403 
404 	/* find starting point for our search */
405 	if (free_vmap_cache) {
406 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
407 		addr = ALIGN(first->va_end, align);
408 		if (addr < vstart)
409 			goto nocache;
410 		if (addr + size < addr)
411 			goto overflow;
412 
413 	} else {
414 		addr = ALIGN(vstart, align);
415 		if (addr + size < addr)
416 			goto overflow;
417 
418 		n = vmap_area_root.rb_node;
419 		first = NULL;
420 
421 		while (n) {
422 			struct vmap_area *tmp;
423 			tmp = rb_entry(n, struct vmap_area, rb_node);
424 			if (tmp->va_end >= addr) {
425 				first = tmp;
426 				if (tmp->va_start <= addr)
427 					break;
428 				n = n->rb_left;
429 			} else
430 				n = n->rb_right;
431 		}
432 
433 		if (!first)
434 			goto found;
435 	}
436 
437 	/* from the starting point, walk areas until a suitable hole is found */
438 	while (addr + size > first->va_start && addr + size <= vend) {
439 		if (addr + cached_hole_size < first->va_start)
440 			cached_hole_size = first->va_start - addr;
441 		addr = ALIGN(first->va_end, align);
442 		if (addr + size < addr)
443 			goto overflow;
444 
445 		if (list_is_last(&first->list, &vmap_area_list))
446 			goto found;
447 
448 		first = list_next_entry(first, list);
449 	}
450 
451 found:
452 	if (addr + size > vend)
453 		goto overflow;
454 
455 	va->va_start = addr;
456 	va->va_end = addr + size;
457 	va->flags = 0;
458 	__insert_vmap_area(va);
459 	free_vmap_cache = &va->rb_node;
460 	spin_unlock(&vmap_area_lock);
461 
462 	BUG_ON(!IS_ALIGNED(va->va_start, align));
463 	BUG_ON(va->va_start < vstart);
464 	BUG_ON(va->va_end > vend);
465 
466 	return va;
467 
468 overflow:
469 	spin_unlock(&vmap_area_lock);
470 	if (!purged) {
471 		purge_vmap_area_lazy();
472 		purged = 1;
473 		goto retry;
474 	}
475 
476 	if (gfpflags_allow_blocking(gfp_mask)) {
477 		unsigned long freed = 0;
478 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
479 		if (freed > 0) {
480 			purged = 0;
481 			goto retry;
482 		}
483 	}
484 
485 	if (printk_ratelimit())
486 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
487 			size);
488 	kfree(va);
489 	return ERR_PTR(-EBUSY);
490 }
491 
492 int register_vmap_purge_notifier(struct notifier_block *nb)
493 {
494 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
495 }
496 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
497 
498 int unregister_vmap_purge_notifier(struct notifier_block *nb)
499 {
500 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
501 }
502 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
503 
504 static void __free_vmap_area(struct vmap_area *va)
505 {
506 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
507 
508 	if (free_vmap_cache) {
509 		if (va->va_end < cached_vstart) {
510 			free_vmap_cache = NULL;
511 		} else {
512 			struct vmap_area *cache;
513 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
514 			if (va->va_start <= cache->va_start) {
515 				free_vmap_cache = rb_prev(&va->rb_node);
516 				/*
517 				 * We don't try to update cached_hole_size or
518 				 * cached_align, but it won't go very wrong.
519 				 */
520 			}
521 		}
522 	}
523 	rb_erase(&va->rb_node, &vmap_area_root);
524 	RB_CLEAR_NODE(&va->rb_node);
525 	list_del_rcu(&va->list);
526 
527 	/*
528 	 * Track the highest possible candidate for pcpu area
529 	 * allocation.  Areas outside of vmalloc area can be returned
530 	 * here too, consider only end addresses which fall inside
531 	 * vmalloc area proper.
532 	 */
533 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
534 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
535 
536 	kfree_rcu(va, rcu_head);
537 }
538 
539 /*
540  * Free a region of KVA allocated by alloc_vmap_area
541  */
542 static void free_vmap_area(struct vmap_area *va)
543 {
544 	spin_lock(&vmap_area_lock);
545 	__free_vmap_area(va);
546 	spin_unlock(&vmap_area_lock);
547 }
548 
549 /*
550  * Clear the pagetable entries of a given vmap_area
551  */
552 static void unmap_vmap_area(struct vmap_area *va)
553 {
554 	vunmap_page_range(va->va_start, va->va_end);
555 }
556 
557 static void vmap_debug_free_range(unsigned long start, unsigned long end)
558 {
559 	/*
560 	 * Unmap page tables and force a TLB flush immediately if pagealloc
561 	 * debugging is enabled.  This catches use after free bugs similarly to
562 	 * those in linear kernel virtual address space after a page has been
563 	 * freed.
564 	 *
565 	 * All the lazy freeing logic is still retained, in order to minimise
566 	 * intrusiveness of this debugging feature.
567 	 *
568 	 * This is going to be *slow* (linear kernel virtual address debugging
569 	 * doesn't do a broadcast TLB flush so it is a lot faster).
570 	 */
571 	if (debug_pagealloc_enabled()) {
572 		vunmap_page_range(start, end);
573 		flush_tlb_kernel_range(start, end);
574 	}
575 }
576 
577 /*
578  * lazy_max_pages is the maximum amount of virtual address space we gather up
579  * before attempting to purge with a TLB flush.
580  *
581  * There is a tradeoff here: a larger number will cover more kernel page tables
582  * and take slightly longer to purge, but it will linearly reduce the number of
583  * global TLB flushes that must be performed. It would seem natural to scale
584  * this number up linearly with the number of CPUs (because vmapping activity
585  * could also scale linearly with the number of CPUs), however it is likely
586  * that in practice, workloads might be constrained in other ways that mean
587  * vmap activity will not scale linearly with CPUs. Also, I want to be
588  * conservative and not introduce a big latency on huge systems, so go with
589  * a less aggressive log scale. It will still be an improvement over the old
590  * code, and it will be simple to change the scale factor if we find that it
591  * becomes a problem on bigger systems.
592  */
593 static unsigned long lazy_max_pages(void)
594 {
595 	unsigned int log;
596 
597 	log = fls(num_online_cpus());
598 
599 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
600 }
601 
602 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
603 
604 /*
605  * Serialize vmap purging.  There is no actual criticial section protected
606  * by this look, but we want to avoid concurrent calls for performance
607  * reasons and to make the pcpu_get_vm_areas more deterministic.
608  */
609 static DEFINE_MUTEX(vmap_purge_lock);
610 
611 /* for per-CPU blocks */
612 static void purge_fragmented_blocks_allcpus(void);
613 
614 /*
615  * called before a call to iounmap() if the caller wants vm_area_struct's
616  * immediately freed.
617  */
618 void set_iounmap_nonlazy(void)
619 {
620 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
621 }
622 
623 /*
624  * Purges all lazily-freed vmap areas.
625  */
626 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
627 {
628 	struct llist_node *valist;
629 	struct vmap_area *va;
630 	struct vmap_area *n_va;
631 	bool do_free = false;
632 
633 	lockdep_assert_held(&vmap_purge_lock);
634 
635 	valist = llist_del_all(&vmap_purge_list);
636 	llist_for_each_entry(va, valist, purge_list) {
637 		if (va->va_start < start)
638 			start = va->va_start;
639 		if (va->va_end > end)
640 			end = va->va_end;
641 		do_free = true;
642 	}
643 
644 	if (!do_free)
645 		return false;
646 
647 	flush_tlb_kernel_range(start, end);
648 
649 	spin_lock(&vmap_area_lock);
650 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
651 		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
652 
653 		__free_vmap_area(va);
654 		atomic_sub(nr, &vmap_lazy_nr);
655 		cond_resched_lock(&vmap_area_lock);
656 	}
657 	spin_unlock(&vmap_area_lock);
658 	return true;
659 }
660 
661 /*
662  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
663  * is already purging.
664  */
665 static void try_purge_vmap_area_lazy(void)
666 {
667 	if (mutex_trylock(&vmap_purge_lock)) {
668 		__purge_vmap_area_lazy(ULONG_MAX, 0);
669 		mutex_unlock(&vmap_purge_lock);
670 	}
671 }
672 
673 /*
674  * Kick off a purge of the outstanding lazy areas.
675  */
676 static void purge_vmap_area_lazy(void)
677 {
678 	mutex_lock(&vmap_purge_lock);
679 	purge_fragmented_blocks_allcpus();
680 	__purge_vmap_area_lazy(ULONG_MAX, 0);
681 	mutex_unlock(&vmap_purge_lock);
682 }
683 
684 /*
685  * Free a vmap area, caller ensuring that the area has been unmapped
686  * and flush_cache_vunmap had been called for the correct range
687  * previously.
688  */
689 static void free_vmap_area_noflush(struct vmap_area *va)
690 {
691 	int nr_lazy;
692 
693 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
694 				    &vmap_lazy_nr);
695 
696 	/* After this point, we may free va at any time */
697 	llist_add(&va->purge_list, &vmap_purge_list);
698 
699 	if (unlikely(nr_lazy > lazy_max_pages()))
700 		try_purge_vmap_area_lazy();
701 }
702 
703 /*
704  * Free and unmap a vmap area
705  */
706 static void free_unmap_vmap_area(struct vmap_area *va)
707 {
708 	flush_cache_vunmap(va->va_start, va->va_end);
709 	unmap_vmap_area(va);
710 	free_vmap_area_noflush(va);
711 }
712 
713 static struct vmap_area *find_vmap_area(unsigned long addr)
714 {
715 	struct vmap_area *va;
716 
717 	spin_lock(&vmap_area_lock);
718 	va = __find_vmap_area(addr);
719 	spin_unlock(&vmap_area_lock);
720 
721 	return va;
722 }
723 
724 /*** Per cpu kva allocator ***/
725 
726 /*
727  * vmap space is limited especially on 32 bit architectures. Ensure there is
728  * room for at least 16 percpu vmap blocks per CPU.
729  */
730 /*
731  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
732  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
733  * instead (we just need a rough idea)
734  */
735 #if BITS_PER_LONG == 32
736 #define VMALLOC_SPACE		(128UL*1024*1024)
737 #else
738 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
739 #endif
740 
741 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
742 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
743 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
744 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
745 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
746 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
747 #define VMAP_BBMAP_BITS		\
748 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
749 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
750 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
751 
752 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
753 
754 static bool vmap_initialized __read_mostly = false;
755 
756 struct vmap_block_queue {
757 	spinlock_t lock;
758 	struct list_head free;
759 };
760 
761 struct vmap_block {
762 	spinlock_t lock;
763 	struct vmap_area *va;
764 	unsigned long free, dirty;
765 	unsigned long dirty_min, dirty_max; /*< dirty range */
766 	struct list_head free_list;
767 	struct rcu_head rcu_head;
768 	struct list_head purge;
769 };
770 
771 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
772 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
773 
774 /*
775  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
776  * in the free path. Could get rid of this if we change the API to return a
777  * "cookie" from alloc, to be passed to free. But no big deal yet.
778  */
779 static DEFINE_SPINLOCK(vmap_block_tree_lock);
780 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
781 
782 /*
783  * We should probably have a fallback mechanism to allocate virtual memory
784  * out of partially filled vmap blocks. However vmap block sizing should be
785  * fairly reasonable according to the vmalloc size, so it shouldn't be a
786  * big problem.
787  */
788 
789 static unsigned long addr_to_vb_idx(unsigned long addr)
790 {
791 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
792 	addr /= VMAP_BLOCK_SIZE;
793 	return addr;
794 }
795 
796 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
797 {
798 	unsigned long addr;
799 
800 	addr = va_start + (pages_off << PAGE_SHIFT);
801 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
802 	return (void *)addr;
803 }
804 
805 /**
806  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
807  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
808  * @order:    how many 2^order pages should be occupied in newly allocated block
809  * @gfp_mask: flags for the page level allocator
810  *
811  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
812  */
813 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
814 {
815 	struct vmap_block_queue *vbq;
816 	struct vmap_block *vb;
817 	struct vmap_area *va;
818 	unsigned long vb_idx;
819 	int node, err;
820 	void *vaddr;
821 
822 	node = numa_node_id();
823 
824 	vb = kmalloc_node(sizeof(struct vmap_block),
825 			gfp_mask & GFP_RECLAIM_MASK, node);
826 	if (unlikely(!vb))
827 		return ERR_PTR(-ENOMEM);
828 
829 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
830 					VMALLOC_START, VMALLOC_END,
831 					node, gfp_mask);
832 	if (IS_ERR(va)) {
833 		kfree(vb);
834 		return ERR_CAST(va);
835 	}
836 
837 	err = radix_tree_preload(gfp_mask);
838 	if (unlikely(err)) {
839 		kfree(vb);
840 		free_vmap_area(va);
841 		return ERR_PTR(err);
842 	}
843 
844 	vaddr = vmap_block_vaddr(va->va_start, 0);
845 	spin_lock_init(&vb->lock);
846 	vb->va = va;
847 	/* At least something should be left free */
848 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
849 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
850 	vb->dirty = 0;
851 	vb->dirty_min = VMAP_BBMAP_BITS;
852 	vb->dirty_max = 0;
853 	INIT_LIST_HEAD(&vb->free_list);
854 
855 	vb_idx = addr_to_vb_idx(va->va_start);
856 	spin_lock(&vmap_block_tree_lock);
857 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
858 	spin_unlock(&vmap_block_tree_lock);
859 	BUG_ON(err);
860 	radix_tree_preload_end();
861 
862 	vbq = &get_cpu_var(vmap_block_queue);
863 	spin_lock(&vbq->lock);
864 	list_add_tail_rcu(&vb->free_list, &vbq->free);
865 	spin_unlock(&vbq->lock);
866 	put_cpu_var(vmap_block_queue);
867 
868 	return vaddr;
869 }
870 
871 static void free_vmap_block(struct vmap_block *vb)
872 {
873 	struct vmap_block *tmp;
874 	unsigned long vb_idx;
875 
876 	vb_idx = addr_to_vb_idx(vb->va->va_start);
877 	spin_lock(&vmap_block_tree_lock);
878 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
879 	spin_unlock(&vmap_block_tree_lock);
880 	BUG_ON(tmp != vb);
881 
882 	free_vmap_area_noflush(vb->va);
883 	kfree_rcu(vb, rcu_head);
884 }
885 
886 static void purge_fragmented_blocks(int cpu)
887 {
888 	LIST_HEAD(purge);
889 	struct vmap_block *vb;
890 	struct vmap_block *n_vb;
891 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
892 
893 	rcu_read_lock();
894 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
895 
896 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
897 			continue;
898 
899 		spin_lock(&vb->lock);
900 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
901 			vb->free = 0; /* prevent further allocs after releasing lock */
902 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
903 			vb->dirty_min = 0;
904 			vb->dirty_max = VMAP_BBMAP_BITS;
905 			spin_lock(&vbq->lock);
906 			list_del_rcu(&vb->free_list);
907 			spin_unlock(&vbq->lock);
908 			spin_unlock(&vb->lock);
909 			list_add_tail(&vb->purge, &purge);
910 		} else
911 			spin_unlock(&vb->lock);
912 	}
913 	rcu_read_unlock();
914 
915 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
916 		list_del(&vb->purge);
917 		free_vmap_block(vb);
918 	}
919 }
920 
921 static void purge_fragmented_blocks_allcpus(void)
922 {
923 	int cpu;
924 
925 	for_each_possible_cpu(cpu)
926 		purge_fragmented_blocks(cpu);
927 }
928 
929 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
930 {
931 	struct vmap_block_queue *vbq;
932 	struct vmap_block *vb;
933 	void *vaddr = NULL;
934 	unsigned int order;
935 
936 	BUG_ON(offset_in_page(size));
937 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
938 	if (WARN_ON(size == 0)) {
939 		/*
940 		 * Allocating 0 bytes isn't what caller wants since
941 		 * get_order(0) returns funny result. Just warn and terminate
942 		 * early.
943 		 */
944 		return NULL;
945 	}
946 	order = get_order(size);
947 
948 	rcu_read_lock();
949 	vbq = &get_cpu_var(vmap_block_queue);
950 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
951 		unsigned long pages_off;
952 
953 		spin_lock(&vb->lock);
954 		if (vb->free < (1UL << order)) {
955 			spin_unlock(&vb->lock);
956 			continue;
957 		}
958 
959 		pages_off = VMAP_BBMAP_BITS - vb->free;
960 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
961 		vb->free -= 1UL << order;
962 		if (vb->free == 0) {
963 			spin_lock(&vbq->lock);
964 			list_del_rcu(&vb->free_list);
965 			spin_unlock(&vbq->lock);
966 		}
967 
968 		spin_unlock(&vb->lock);
969 		break;
970 	}
971 
972 	put_cpu_var(vmap_block_queue);
973 	rcu_read_unlock();
974 
975 	/* Allocate new block if nothing was found */
976 	if (!vaddr)
977 		vaddr = new_vmap_block(order, gfp_mask);
978 
979 	return vaddr;
980 }
981 
982 static void vb_free(const void *addr, unsigned long size)
983 {
984 	unsigned long offset;
985 	unsigned long vb_idx;
986 	unsigned int order;
987 	struct vmap_block *vb;
988 
989 	BUG_ON(offset_in_page(size));
990 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
991 
992 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
993 
994 	order = get_order(size);
995 
996 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
997 	offset >>= PAGE_SHIFT;
998 
999 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1000 	rcu_read_lock();
1001 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1002 	rcu_read_unlock();
1003 	BUG_ON(!vb);
1004 
1005 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1006 
1007 	spin_lock(&vb->lock);
1008 
1009 	/* Expand dirty range */
1010 	vb->dirty_min = min(vb->dirty_min, offset);
1011 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1012 
1013 	vb->dirty += 1UL << order;
1014 	if (vb->dirty == VMAP_BBMAP_BITS) {
1015 		BUG_ON(vb->free);
1016 		spin_unlock(&vb->lock);
1017 		free_vmap_block(vb);
1018 	} else
1019 		spin_unlock(&vb->lock);
1020 }
1021 
1022 /**
1023  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1024  *
1025  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1026  * to amortize TLB flushing overheads. What this means is that any page you
1027  * have now, may, in a former life, have been mapped into kernel virtual
1028  * address by the vmap layer and so there might be some CPUs with TLB entries
1029  * still referencing that page (additional to the regular 1:1 kernel mapping).
1030  *
1031  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1032  * be sure that none of the pages we have control over will have any aliases
1033  * from the vmap layer.
1034  */
1035 void vm_unmap_aliases(void)
1036 {
1037 	unsigned long start = ULONG_MAX, end = 0;
1038 	int cpu;
1039 	int flush = 0;
1040 
1041 	if (unlikely(!vmap_initialized))
1042 		return;
1043 
1044 	might_sleep();
1045 
1046 	for_each_possible_cpu(cpu) {
1047 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1048 		struct vmap_block *vb;
1049 
1050 		rcu_read_lock();
1051 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1052 			spin_lock(&vb->lock);
1053 			if (vb->dirty) {
1054 				unsigned long va_start = vb->va->va_start;
1055 				unsigned long s, e;
1056 
1057 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1058 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1059 
1060 				start = min(s, start);
1061 				end   = max(e, end);
1062 
1063 				flush = 1;
1064 			}
1065 			spin_unlock(&vb->lock);
1066 		}
1067 		rcu_read_unlock();
1068 	}
1069 
1070 	mutex_lock(&vmap_purge_lock);
1071 	purge_fragmented_blocks_allcpus();
1072 	if (!__purge_vmap_area_lazy(start, end) && flush)
1073 		flush_tlb_kernel_range(start, end);
1074 	mutex_unlock(&vmap_purge_lock);
1075 }
1076 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1077 
1078 /**
1079  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1080  * @mem: the pointer returned by vm_map_ram
1081  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1082  */
1083 void vm_unmap_ram(const void *mem, unsigned int count)
1084 {
1085 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1086 	unsigned long addr = (unsigned long)mem;
1087 	struct vmap_area *va;
1088 
1089 	might_sleep();
1090 	BUG_ON(!addr);
1091 	BUG_ON(addr < VMALLOC_START);
1092 	BUG_ON(addr > VMALLOC_END);
1093 	BUG_ON(!PAGE_ALIGNED(addr));
1094 
1095 	debug_check_no_locks_freed(mem, size);
1096 	vmap_debug_free_range(addr, addr+size);
1097 
1098 	if (likely(count <= VMAP_MAX_ALLOC)) {
1099 		vb_free(mem, size);
1100 		return;
1101 	}
1102 
1103 	va = find_vmap_area(addr);
1104 	BUG_ON(!va);
1105 	free_unmap_vmap_area(va);
1106 }
1107 EXPORT_SYMBOL(vm_unmap_ram);
1108 
1109 /**
1110  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1111  * @pages: an array of pointers to the pages to be mapped
1112  * @count: number of pages
1113  * @node: prefer to allocate data structures on this node
1114  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1115  *
1116  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1117  * faster than vmap so it's good.  But if you mix long-life and short-life
1118  * objects with vm_map_ram(), it could consume lots of address space through
1119  * fragmentation (especially on a 32bit machine).  You could see failures in
1120  * the end.  Please use this function for short-lived objects.
1121  *
1122  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1123  */
1124 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1125 {
1126 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1127 	unsigned long addr;
1128 	void *mem;
1129 
1130 	if (likely(count <= VMAP_MAX_ALLOC)) {
1131 		mem = vb_alloc(size, GFP_KERNEL);
1132 		if (IS_ERR(mem))
1133 			return NULL;
1134 		addr = (unsigned long)mem;
1135 	} else {
1136 		struct vmap_area *va;
1137 		va = alloc_vmap_area(size, PAGE_SIZE,
1138 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1139 		if (IS_ERR(va))
1140 			return NULL;
1141 
1142 		addr = va->va_start;
1143 		mem = (void *)addr;
1144 	}
1145 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1146 		vm_unmap_ram(mem, count);
1147 		return NULL;
1148 	}
1149 	return mem;
1150 }
1151 EXPORT_SYMBOL(vm_map_ram);
1152 
1153 static struct vm_struct *vmlist __initdata;
1154 /**
1155  * vm_area_add_early - add vmap area early during boot
1156  * @vm: vm_struct to add
1157  *
1158  * This function is used to add fixed kernel vm area to vmlist before
1159  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1160  * should contain proper values and the other fields should be zero.
1161  *
1162  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1163  */
1164 void __init vm_area_add_early(struct vm_struct *vm)
1165 {
1166 	struct vm_struct *tmp, **p;
1167 
1168 	BUG_ON(vmap_initialized);
1169 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1170 		if (tmp->addr >= vm->addr) {
1171 			BUG_ON(tmp->addr < vm->addr + vm->size);
1172 			break;
1173 		} else
1174 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1175 	}
1176 	vm->next = *p;
1177 	*p = vm;
1178 }
1179 
1180 /**
1181  * vm_area_register_early - register vmap area early during boot
1182  * @vm: vm_struct to register
1183  * @align: requested alignment
1184  *
1185  * This function is used to register kernel vm area before
1186  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1187  * proper values on entry and other fields should be zero.  On return,
1188  * vm->addr contains the allocated address.
1189  *
1190  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1191  */
1192 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1193 {
1194 	static size_t vm_init_off __initdata;
1195 	unsigned long addr;
1196 
1197 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1198 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1199 
1200 	vm->addr = (void *)addr;
1201 
1202 	vm_area_add_early(vm);
1203 }
1204 
1205 void __init vmalloc_init(void)
1206 {
1207 	struct vmap_area *va;
1208 	struct vm_struct *tmp;
1209 	int i;
1210 
1211 	for_each_possible_cpu(i) {
1212 		struct vmap_block_queue *vbq;
1213 		struct vfree_deferred *p;
1214 
1215 		vbq = &per_cpu(vmap_block_queue, i);
1216 		spin_lock_init(&vbq->lock);
1217 		INIT_LIST_HEAD(&vbq->free);
1218 		p = &per_cpu(vfree_deferred, i);
1219 		init_llist_head(&p->list);
1220 		INIT_WORK(&p->wq, free_work);
1221 	}
1222 
1223 	/* Import existing vmlist entries. */
1224 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1225 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1226 		va->flags = VM_VM_AREA;
1227 		va->va_start = (unsigned long)tmp->addr;
1228 		va->va_end = va->va_start + tmp->size;
1229 		va->vm = tmp;
1230 		__insert_vmap_area(va);
1231 	}
1232 
1233 	vmap_area_pcpu_hole = VMALLOC_END;
1234 
1235 	vmap_initialized = true;
1236 }
1237 
1238 /**
1239  * map_kernel_range_noflush - map kernel VM area with the specified pages
1240  * @addr: start of the VM area to map
1241  * @size: size of the VM area to map
1242  * @prot: page protection flags to use
1243  * @pages: pages to map
1244  *
1245  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1246  * specify should have been allocated using get_vm_area() and its
1247  * friends.
1248  *
1249  * NOTE:
1250  * This function does NOT do any cache flushing.  The caller is
1251  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1252  * before calling this function.
1253  *
1254  * RETURNS:
1255  * The number of pages mapped on success, -errno on failure.
1256  */
1257 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1258 			     pgprot_t prot, struct page **pages)
1259 {
1260 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1261 }
1262 
1263 /**
1264  * unmap_kernel_range_noflush - unmap kernel VM area
1265  * @addr: start of the VM area to unmap
1266  * @size: size of the VM area to unmap
1267  *
1268  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1269  * specify should have been allocated using get_vm_area() and its
1270  * friends.
1271  *
1272  * NOTE:
1273  * This function does NOT do any cache flushing.  The caller is
1274  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1275  * before calling this function and flush_tlb_kernel_range() after.
1276  */
1277 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1278 {
1279 	vunmap_page_range(addr, addr + size);
1280 }
1281 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1282 
1283 /**
1284  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1285  * @addr: start of the VM area to unmap
1286  * @size: size of the VM area to unmap
1287  *
1288  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1289  * the unmapping and tlb after.
1290  */
1291 void unmap_kernel_range(unsigned long addr, unsigned long size)
1292 {
1293 	unsigned long end = addr + size;
1294 
1295 	flush_cache_vunmap(addr, end);
1296 	vunmap_page_range(addr, end);
1297 	flush_tlb_kernel_range(addr, end);
1298 }
1299 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1300 
1301 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1302 {
1303 	unsigned long addr = (unsigned long)area->addr;
1304 	unsigned long end = addr + get_vm_area_size(area);
1305 	int err;
1306 
1307 	err = vmap_page_range(addr, end, prot, pages);
1308 
1309 	return err > 0 ? 0 : err;
1310 }
1311 EXPORT_SYMBOL_GPL(map_vm_area);
1312 
1313 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1314 			      unsigned long flags, const void *caller)
1315 {
1316 	spin_lock(&vmap_area_lock);
1317 	vm->flags = flags;
1318 	vm->addr = (void *)va->va_start;
1319 	vm->size = va->va_end - va->va_start;
1320 	vm->caller = caller;
1321 	va->vm = vm;
1322 	va->flags |= VM_VM_AREA;
1323 	spin_unlock(&vmap_area_lock);
1324 }
1325 
1326 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1327 {
1328 	/*
1329 	 * Before removing VM_UNINITIALIZED,
1330 	 * we should make sure that vm has proper values.
1331 	 * Pair with smp_rmb() in show_numa_info().
1332 	 */
1333 	smp_wmb();
1334 	vm->flags &= ~VM_UNINITIALIZED;
1335 }
1336 
1337 static struct vm_struct *__get_vm_area_node(unsigned long size,
1338 		unsigned long align, unsigned long flags, unsigned long start,
1339 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1340 {
1341 	struct vmap_area *va;
1342 	struct vm_struct *area;
1343 
1344 	BUG_ON(in_interrupt());
1345 	size = PAGE_ALIGN(size);
1346 	if (unlikely(!size))
1347 		return NULL;
1348 
1349 	if (flags & VM_IOREMAP)
1350 		align = 1ul << clamp_t(int, get_count_order_long(size),
1351 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1352 
1353 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1354 	if (unlikely(!area))
1355 		return NULL;
1356 
1357 	if (!(flags & VM_NO_GUARD))
1358 		size += PAGE_SIZE;
1359 
1360 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1361 	if (IS_ERR(va)) {
1362 		kfree(area);
1363 		return NULL;
1364 	}
1365 
1366 	setup_vmalloc_vm(area, va, flags, caller);
1367 
1368 	return area;
1369 }
1370 
1371 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1372 				unsigned long start, unsigned long end)
1373 {
1374 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1375 				  GFP_KERNEL, __builtin_return_address(0));
1376 }
1377 EXPORT_SYMBOL_GPL(__get_vm_area);
1378 
1379 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1380 				       unsigned long start, unsigned long end,
1381 				       const void *caller)
1382 {
1383 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1384 				  GFP_KERNEL, caller);
1385 }
1386 
1387 /**
1388  *	get_vm_area  -  reserve a contiguous kernel virtual area
1389  *	@size:		size of the area
1390  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1391  *
1392  *	Search an area of @size in the kernel virtual mapping area,
1393  *	and reserved it for out purposes.  Returns the area descriptor
1394  *	on success or %NULL on failure.
1395  */
1396 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1397 {
1398 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1399 				  NUMA_NO_NODE, GFP_KERNEL,
1400 				  __builtin_return_address(0));
1401 }
1402 
1403 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1404 				const void *caller)
1405 {
1406 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1407 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1408 }
1409 
1410 /**
1411  *	find_vm_area  -  find a continuous kernel virtual area
1412  *	@addr:		base address
1413  *
1414  *	Search for the kernel VM area starting at @addr, and return it.
1415  *	It is up to the caller to do all required locking to keep the returned
1416  *	pointer valid.
1417  */
1418 struct vm_struct *find_vm_area(const void *addr)
1419 {
1420 	struct vmap_area *va;
1421 
1422 	va = find_vmap_area((unsigned long)addr);
1423 	if (va && va->flags & VM_VM_AREA)
1424 		return va->vm;
1425 
1426 	return NULL;
1427 }
1428 
1429 /**
1430  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1431  *	@addr:		base address
1432  *
1433  *	Search for the kernel VM area starting at @addr, and remove it.
1434  *	This function returns the found VM area, but using it is NOT safe
1435  *	on SMP machines, except for its size or flags.
1436  */
1437 struct vm_struct *remove_vm_area(const void *addr)
1438 {
1439 	struct vmap_area *va;
1440 
1441 	might_sleep();
1442 
1443 	va = find_vmap_area((unsigned long)addr);
1444 	if (va && va->flags & VM_VM_AREA) {
1445 		struct vm_struct *vm = va->vm;
1446 
1447 		spin_lock(&vmap_area_lock);
1448 		va->vm = NULL;
1449 		va->flags &= ~VM_VM_AREA;
1450 		spin_unlock(&vmap_area_lock);
1451 
1452 		vmap_debug_free_range(va->va_start, va->va_end);
1453 		kasan_free_shadow(vm);
1454 		free_unmap_vmap_area(va);
1455 
1456 		return vm;
1457 	}
1458 	return NULL;
1459 }
1460 
1461 static void __vunmap(const void *addr, int deallocate_pages)
1462 {
1463 	struct vm_struct *area;
1464 
1465 	if (!addr)
1466 		return;
1467 
1468 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1469 			addr))
1470 		return;
1471 
1472 	area = remove_vm_area(addr);
1473 	if (unlikely(!area)) {
1474 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1475 				addr);
1476 		return;
1477 	}
1478 
1479 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1480 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1481 
1482 	if (deallocate_pages) {
1483 		int i;
1484 
1485 		for (i = 0; i < area->nr_pages; i++) {
1486 			struct page *page = area->pages[i];
1487 
1488 			BUG_ON(!page);
1489 			__free_pages(page, 0);
1490 		}
1491 
1492 		kvfree(area->pages);
1493 	}
1494 
1495 	kfree(area);
1496 	return;
1497 }
1498 
1499 static inline void __vfree_deferred(const void *addr)
1500 {
1501 	/*
1502 	 * Use raw_cpu_ptr() because this can be called from preemptible
1503 	 * context. Preemption is absolutely fine here, because the llist_add()
1504 	 * implementation is lockless, so it works even if we are adding to
1505 	 * nother cpu's list.  schedule_work() should be fine with this too.
1506 	 */
1507 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1508 
1509 	if (llist_add((struct llist_node *)addr, &p->list))
1510 		schedule_work(&p->wq);
1511 }
1512 
1513 /**
1514  *	vfree_atomic  -  release memory allocated by vmalloc()
1515  *	@addr:		memory base address
1516  *
1517  *	This one is just like vfree() but can be called in any atomic context
1518  *	except NMIs.
1519  */
1520 void vfree_atomic(const void *addr)
1521 {
1522 	BUG_ON(in_nmi());
1523 
1524 	kmemleak_free(addr);
1525 
1526 	if (!addr)
1527 		return;
1528 	__vfree_deferred(addr);
1529 }
1530 
1531 /**
1532  *	vfree  -  release memory allocated by vmalloc()
1533  *	@addr:		memory base address
1534  *
1535  *	Free the virtually continuous memory area starting at @addr, as
1536  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1537  *	NULL, no operation is performed.
1538  *
1539  *	Must not be called in NMI context (strictly speaking, only if we don't
1540  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1541  *	conventions for vfree() arch-depenedent would be a really bad idea)
1542  *
1543  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1544  */
1545 void vfree(const void *addr)
1546 {
1547 	BUG_ON(in_nmi());
1548 
1549 	kmemleak_free(addr);
1550 
1551 	if (!addr)
1552 		return;
1553 	if (unlikely(in_interrupt()))
1554 		__vfree_deferred(addr);
1555 	else
1556 		__vunmap(addr, 1);
1557 }
1558 EXPORT_SYMBOL(vfree);
1559 
1560 /**
1561  *	vunmap  -  release virtual mapping obtained by vmap()
1562  *	@addr:		memory base address
1563  *
1564  *	Free the virtually contiguous memory area starting at @addr,
1565  *	which was created from the page array passed to vmap().
1566  *
1567  *	Must not be called in interrupt context.
1568  */
1569 void vunmap(const void *addr)
1570 {
1571 	BUG_ON(in_interrupt());
1572 	might_sleep();
1573 	if (addr)
1574 		__vunmap(addr, 0);
1575 }
1576 EXPORT_SYMBOL(vunmap);
1577 
1578 /**
1579  *	vmap  -  map an array of pages into virtually contiguous space
1580  *	@pages:		array of page pointers
1581  *	@count:		number of pages to map
1582  *	@flags:		vm_area->flags
1583  *	@prot:		page protection for the mapping
1584  *
1585  *	Maps @count pages from @pages into contiguous kernel virtual
1586  *	space.
1587  */
1588 void *vmap(struct page **pages, unsigned int count,
1589 		unsigned long flags, pgprot_t prot)
1590 {
1591 	struct vm_struct *area;
1592 	unsigned long size;		/* In bytes */
1593 
1594 	might_sleep();
1595 
1596 	if (count > totalram_pages)
1597 		return NULL;
1598 
1599 	size = (unsigned long)count << PAGE_SHIFT;
1600 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1601 	if (!area)
1602 		return NULL;
1603 
1604 	if (map_vm_area(area, prot, pages)) {
1605 		vunmap(area->addr);
1606 		return NULL;
1607 	}
1608 
1609 	return area->addr;
1610 }
1611 EXPORT_SYMBOL(vmap);
1612 
1613 static void *__vmalloc_node(unsigned long size, unsigned long align,
1614 			    gfp_t gfp_mask, pgprot_t prot,
1615 			    int node, const void *caller);
1616 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1617 				 pgprot_t prot, int node)
1618 {
1619 	struct page **pages;
1620 	unsigned int nr_pages, array_size, i;
1621 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1622 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1623 
1624 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1625 	array_size = (nr_pages * sizeof(struct page *));
1626 
1627 	area->nr_pages = nr_pages;
1628 	/* Please note that the recursion is strictly bounded. */
1629 	if (array_size > PAGE_SIZE) {
1630 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1631 				PAGE_KERNEL, node, area->caller);
1632 	} else {
1633 		pages = kmalloc_node(array_size, nested_gfp, node);
1634 	}
1635 	area->pages = pages;
1636 	if (!area->pages) {
1637 		remove_vm_area(area->addr);
1638 		kfree(area);
1639 		return NULL;
1640 	}
1641 
1642 	for (i = 0; i < area->nr_pages; i++) {
1643 		struct page *page;
1644 
1645 		if (fatal_signal_pending(current)) {
1646 			area->nr_pages = i;
1647 			goto fail;
1648 		}
1649 
1650 		if (node == NUMA_NO_NODE)
1651 			page = alloc_page(alloc_mask);
1652 		else
1653 			page = alloc_pages_node(node, alloc_mask, 0);
1654 
1655 		if (unlikely(!page)) {
1656 			/* Successfully allocated i pages, free them in __vunmap() */
1657 			area->nr_pages = i;
1658 			goto fail;
1659 		}
1660 		area->pages[i] = page;
1661 		if (gfpflags_allow_blocking(gfp_mask))
1662 			cond_resched();
1663 	}
1664 
1665 	if (map_vm_area(area, prot, pages))
1666 		goto fail;
1667 	return area->addr;
1668 
1669 fail:
1670 	warn_alloc(gfp_mask, NULL,
1671 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1672 			  (area->nr_pages*PAGE_SIZE), area->size);
1673 	vfree(area->addr);
1674 	return NULL;
1675 }
1676 
1677 /**
1678  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1679  *	@size:		allocation size
1680  *	@align:		desired alignment
1681  *	@start:		vm area range start
1682  *	@end:		vm area range end
1683  *	@gfp_mask:	flags for the page level allocator
1684  *	@prot:		protection mask for the allocated pages
1685  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1686  *	@node:		node to use for allocation or NUMA_NO_NODE
1687  *	@caller:	caller's return address
1688  *
1689  *	Allocate enough pages to cover @size from the page level
1690  *	allocator with @gfp_mask flags.  Map them into contiguous
1691  *	kernel virtual space, using a pagetable protection of @prot.
1692  */
1693 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1694 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1695 			pgprot_t prot, unsigned long vm_flags, int node,
1696 			const void *caller)
1697 {
1698 	struct vm_struct *area;
1699 	void *addr;
1700 	unsigned long real_size = size;
1701 
1702 	size = PAGE_ALIGN(size);
1703 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1704 		goto fail;
1705 
1706 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1707 				vm_flags, start, end, node, gfp_mask, caller);
1708 	if (!area)
1709 		goto fail;
1710 
1711 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1712 	if (!addr)
1713 		return NULL;
1714 
1715 	/*
1716 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1717 	 * flag. It means that vm_struct is not fully initialized.
1718 	 * Now, it is fully initialized, so remove this flag here.
1719 	 */
1720 	clear_vm_uninitialized_flag(area);
1721 
1722 	/*
1723 	 * A ref_count = 2 is needed because vm_struct allocated in
1724 	 * __get_vm_area_node() contains a reference to the virtual address of
1725 	 * the vmalloc'ed block.
1726 	 */
1727 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1728 
1729 	return addr;
1730 
1731 fail:
1732 	warn_alloc(gfp_mask, NULL,
1733 			  "vmalloc: allocation failure: %lu bytes", real_size);
1734 	return NULL;
1735 }
1736 
1737 /**
1738  *	__vmalloc_node  -  allocate virtually contiguous memory
1739  *	@size:		allocation size
1740  *	@align:		desired alignment
1741  *	@gfp_mask:	flags for the page level allocator
1742  *	@prot:		protection mask for the allocated pages
1743  *	@node:		node to use for allocation or NUMA_NO_NODE
1744  *	@caller:	caller's return address
1745  *
1746  *	Allocate enough pages to cover @size from the page level
1747  *	allocator with @gfp_mask flags.  Map them into contiguous
1748  *	kernel virtual space, using a pagetable protection of @prot.
1749  */
1750 static void *__vmalloc_node(unsigned long size, unsigned long align,
1751 			    gfp_t gfp_mask, pgprot_t prot,
1752 			    int node, const void *caller)
1753 {
1754 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1755 				gfp_mask, prot, 0, node, caller);
1756 }
1757 
1758 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1759 {
1760 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1761 				__builtin_return_address(0));
1762 }
1763 EXPORT_SYMBOL(__vmalloc);
1764 
1765 static inline void *__vmalloc_node_flags(unsigned long size,
1766 					int node, gfp_t flags)
1767 {
1768 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1769 					node, __builtin_return_address(0));
1770 }
1771 
1772 /**
1773  *	vmalloc  -  allocate virtually contiguous memory
1774  *	@size:		allocation size
1775  *	Allocate enough pages to cover @size from the page level
1776  *	allocator and map them into contiguous kernel virtual space.
1777  *
1778  *	For tight control over page level allocator and protection flags
1779  *	use __vmalloc() instead.
1780  */
1781 void *vmalloc(unsigned long size)
1782 {
1783 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1784 				    GFP_KERNEL | __GFP_HIGHMEM);
1785 }
1786 EXPORT_SYMBOL(vmalloc);
1787 
1788 /**
1789  *	vzalloc - allocate virtually contiguous memory with zero fill
1790  *	@size:	allocation size
1791  *	Allocate enough pages to cover @size from the page level
1792  *	allocator and map them into contiguous kernel virtual space.
1793  *	The memory allocated is set to zero.
1794  *
1795  *	For tight control over page level allocator and protection flags
1796  *	use __vmalloc() instead.
1797  */
1798 void *vzalloc(unsigned long size)
1799 {
1800 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1801 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1802 }
1803 EXPORT_SYMBOL(vzalloc);
1804 
1805 /**
1806  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1807  * @size: allocation size
1808  *
1809  * The resulting memory area is zeroed so it can be mapped to userspace
1810  * without leaking data.
1811  */
1812 void *vmalloc_user(unsigned long size)
1813 {
1814 	struct vm_struct *area;
1815 	void *ret;
1816 
1817 	ret = __vmalloc_node(size, SHMLBA,
1818 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1819 			     PAGE_KERNEL, NUMA_NO_NODE,
1820 			     __builtin_return_address(0));
1821 	if (ret) {
1822 		area = find_vm_area(ret);
1823 		area->flags |= VM_USERMAP;
1824 	}
1825 	return ret;
1826 }
1827 EXPORT_SYMBOL(vmalloc_user);
1828 
1829 /**
1830  *	vmalloc_node  -  allocate memory on a specific node
1831  *	@size:		allocation size
1832  *	@node:		numa node
1833  *
1834  *	Allocate enough pages to cover @size from the page level
1835  *	allocator and map them into contiguous kernel virtual space.
1836  *
1837  *	For tight control over page level allocator and protection flags
1838  *	use __vmalloc() instead.
1839  */
1840 void *vmalloc_node(unsigned long size, int node)
1841 {
1842 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1843 					node, __builtin_return_address(0));
1844 }
1845 EXPORT_SYMBOL(vmalloc_node);
1846 
1847 /**
1848  * vzalloc_node - allocate memory on a specific node with zero fill
1849  * @size:	allocation size
1850  * @node:	numa node
1851  *
1852  * Allocate enough pages to cover @size from the page level
1853  * allocator and map them into contiguous kernel virtual space.
1854  * The memory allocated is set to zero.
1855  *
1856  * For tight control over page level allocator and protection flags
1857  * use __vmalloc_node() instead.
1858  */
1859 void *vzalloc_node(unsigned long size, int node)
1860 {
1861 	return __vmalloc_node_flags(size, node,
1862 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1863 }
1864 EXPORT_SYMBOL(vzalloc_node);
1865 
1866 #ifndef PAGE_KERNEL_EXEC
1867 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1868 #endif
1869 
1870 /**
1871  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1872  *	@size:		allocation size
1873  *
1874  *	Kernel-internal function to allocate enough pages to cover @size
1875  *	the page level allocator and map them into contiguous and
1876  *	executable kernel virtual space.
1877  *
1878  *	For tight control over page level allocator and protection flags
1879  *	use __vmalloc() instead.
1880  */
1881 
1882 void *vmalloc_exec(unsigned long size)
1883 {
1884 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1885 			      NUMA_NO_NODE, __builtin_return_address(0));
1886 }
1887 
1888 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1889 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1890 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1891 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1892 #else
1893 #define GFP_VMALLOC32 GFP_KERNEL
1894 #endif
1895 
1896 /**
1897  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1898  *	@size:		allocation size
1899  *
1900  *	Allocate enough 32bit PA addressable pages to cover @size from the
1901  *	page level allocator and map them into contiguous kernel virtual space.
1902  */
1903 void *vmalloc_32(unsigned long size)
1904 {
1905 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1906 			      NUMA_NO_NODE, __builtin_return_address(0));
1907 }
1908 EXPORT_SYMBOL(vmalloc_32);
1909 
1910 /**
1911  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1912  *	@size:		allocation size
1913  *
1914  * The resulting memory area is 32bit addressable and zeroed so it can be
1915  * mapped to userspace without leaking data.
1916  */
1917 void *vmalloc_32_user(unsigned long size)
1918 {
1919 	struct vm_struct *area;
1920 	void *ret;
1921 
1922 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1923 			     NUMA_NO_NODE, __builtin_return_address(0));
1924 	if (ret) {
1925 		area = find_vm_area(ret);
1926 		area->flags |= VM_USERMAP;
1927 	}
1928 	return ret;
1929 }
1930 EXPORT_SYMBOL(vmalloc_32_user);
1931 
1932 /*
1933  * small helper routine , copy contents to buf from addr.
1934  * If the page is not present, fill zero.
1935  */
1936 
1937 static int aligned_vread(char *buf, char *addr, unsigned long count)
1938 {
1939 	struct page *p;
1940 	int copied = 0;
1941 
1942 	while (count) {
1943 		unsigned long offset, length;
1944 
1945 		offset = offset_in_page(addr);
1946 		length = PAGE_SIZE - offset;
1947 		if (length > count)
1948 			length = count;
1949 		p = vmalloc_to_page(addr);
1950 		/*
1951 		 * To do safe access to this _mapped_ area, we need
1952 		 * lock. But adding lock here means that we need to add
1953 		 * overhead of vmalloc()/vfree() calles for this _debug_
1954 		 * interface, rarely used. Instead of that, we'll use
1955 		 * kmap() and get small overhead in this access function.
1956 		 */
1957 		if (p) {
1958 			/*
1959 			 * we can expect USER0 is not used (see vread/vwrite's
1960 			 * function description)
1961 			 */
1962 			void *map = kmap_atomic(p);
1963 			memcpy(buf, map + offset, length);
1964 			kunmap_atomic(map);
1965 		} else
1966 			memset(buf, 0, length);
1967 
1968 		addr += length;
1969 		buf += length;
1970 		copied += length;
1971 		count -= length;
1972 	}
1973 	return copied;
1974 }
1975 
1976 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1977 {
1978 	struct page *p;
1979 	int copied = 0;
1980 
1981 	while (count) {
1982 		unsigned long offset, length;
1983 
1984 		offset = offset_in_page(addr);
1985 		length = PAGE_SIZE - offset;
1986 		if (length > count)
1987 			length = count;
1988 		p = vmalloc_to_page(addr);
1989 		/*
1990 		 * To do safe access to this _mapped_ area, we need
1991 		 * lock. But adding lock here means that we need to add
1992 		 * overhead of vmalloc()/vfree() calles for this _debug_
1993 		 * interface, rarely used. Instead of that, we'll use
1994 		 * kmap() and get small overhead in this access function.
1995 		 */
1996 		if (p) {
1997 			/*
1998 			 * we can expect USER0 is not used (see vread/vwrite's
1999 			 * function description)
2000 			 */
2001 			void *map = kmap_atomic(p);
2002 			memcpy(map + offset, buf, length);
2003 			kunmap_atomic(map);
2004 		}
2005 		addr += length;
2006 		buf += length;
2007 		copied += length;
2008 		count -= length;
2009 	}
2010 	return copied;
2011 }
2012 
2013 /**
2014  *	vread() -  read vmalloc area in a safe way.
2015  *	@buf:		buffer for reading data
2016  *	@addr:		vm address.
2017  *	@count:		number of bytes to be read.
2018  *
2019  *	Returns # of bytes which addr and buf should be increased.
2020  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2021  *	includes any intersect with alive vmalloc area.
2022  *
2023  *	This function checks that addr is a valid vmalloc'ed area, and
2024  *	copy data from that area to a given buffer. If the given memory range
2025  *	of [addr...addr+count) includes some valid address, data is copied to
2026  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2027  *	IOREMAP area is treated as memory hole and no copy is done.
2028  *
2029  *	If [addr...addr+count) doesn't includes any intersects with alive
2030  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2031  *
2032  *	Note: In usual ops, vread() is never necessary because the caller
2033  *	should know vmalloc() area is valid and can use memcpy().
2034  *	This is for routines which have to access vmalloc area without
2035  *	any informaion, as /dev/kmem.
2036  *
2037  */
2038 
2039 long vread(char *buf, char *addr, unsigned long count)
2040 {
2041 	struct vmap_area *va;
2042 	struct vm_struct *vm;
2043 	char *vaddr, *buf_start = buf;
2044 	unsigned long buflen = count;
2045 	unsigned long n;
2046 
2047 	/* Don't allow overflow */
2048 	if ((unsigned long) addr + count < count)
2049 		count = -(unsigned long) addr;
2050 
2051 	spin_lock(&vmap_area_lock);
2052 	list_for_each_entry(va, &vmap_area_list, list) {
2053 		if (!count)
2054 			break;
2055 
2056 		if (!(va->flags & VM_VM_AREA))
2057 			continue;
2058 
2059 		vm = va->vm;
2060 		vaddr = (char *) vm->addr;
2061 		if (addr >= vaddr + get_vm_area_size(vm))
2062 			continue;
2063 		while (addr < vaddr) {
2064 			if (count == 0)
2065 				goto finished;
2066 			*buf = '\0';
2067 			buf++;
2068 			addr++;
2069 			count--;
2070 		}
2071 		n = vaddr + get_vm_area_size(vm) - addr;
2072 		if (n > count)
2073 			n = count;
2074 		if (!(vm->flags & VM_IOREMAP))
2075 			aligned_vread(buf, addr, n);
2076 		else /* IOREMAP area is treated as memory hole */
2077 			memset(buf, 0, n);
2078 		buf += n;
2079 		addr += n;
2080 		count -= n;
2081 	}
2082 finished:
2083 	spin_unlock(&vmap_area_lock);
2084 
2085 	if (buf == buf_start)
2086 		return 0;
2087 	/* zero-fill memory holes */
2088 	if (buf != buf_start + buflen)
2089 		memset(buf, 0, buflen - (buf - buf_start));
2090 
2091 	return buflen;
2092 }
2093 
2094 /**
2095  *	vwrite() -  write vmalloc area in a safe way.
2096  *	@buf:		buffer for source data
2097  *	@addr:		vm address.
2098  *	@count:		number of bytes to be read.
2099  *
2100  *	Returns # of bytes which addr and buf should be incresed.
2101  *	(same number to @count).
2102  *	If [addr...addr+count) doesn't includes any intersect with valid
2103  *	vmalloc area, returns 0.
2104  *
2105  *	This function checks that addr is a valid vmalloc'ed area, and
2106  *	copy data from a buffer to the given addr. If specified range of
2107  *	[addr...addr+count) includes some valid address, data is copied from
2108  *	proper area of @buf. If there are memory holes, no copy to hole.
2109  *	IOREMAP area is treated as memory hole and no copy is done.
2110  *
2111  *	If [addr...addr+count) doesn't includes any intersects with alive
2112  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2113  *
2114  *	Note: In usual ops, vwrite() is never necessary because the caller
2115  *	should know vmalloc() area is valid and can use memcpy().
2116  *	This is for routines which have to access vmalloc area without
2117  *	any informaion, as /dev/kmem.
2118  */
2119 
2120 long vwrite(char *buf, char *addr, unsigned long count)
2121 {
2122 	struct vmap_area *va;
2123 	struct vm_struct *vm;
2124 	char *vaddr;
2125 	unsigned long n, buflen;
2126 	int copied = 0;
2127 
2128 	/* Don't allow overflow */
2129 	if ((unsigned long) addr + count < count)
2130 		count = -(unsigned long) addr;
2131 	buflen = count;
2132 
2133 	spin_lock(&vmap_area_lock);
2134 	list_for_each_entry(va, &vmap_area_list, list) {
2135 		if (!count)
2136 			break;
2137 
2138 		if (!(va->flags & VM_VM_AREA))
2139 			continue;
2140 
2141 		vm = va->vm;
2142 		vaddr = (char *) vm->addr;
2143 		if (addr >= vaddr + get_vm_area_size(vm))
2144 			continue;
2145 		while (addr < vaddr) {
2146 			if (count == 0)
2147 				goto finished;
2148 			buf++;
2149 			addr++;
2150 			count--;
2151 		}
2152 		n = vaddr + get_vm_area_size(vm) - addr;
2153 		if (n > count)
2154 			n = count;
2155 		if (!(vm->flags & VM_IOREMAP)) {
2156 			aligned_vwrite(buf, addr, n);
2157 			copied++;
2158 		}
2159 		buf += n;
2160 		addr += n;
2161 		count -= n;
2162 	}
2163 finished:
2164 	spin_unlock(&vmap_area_lock);
2165 	if (!copied)
2166 		return 0;
2167 	return buflen;
2168 }
2169 
2170 /**
2171  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2172  *	@vma:		vma to cover
2173  *	@uaddr:		target user address to start at
2174  *	@kaddr:		virtual address of vmalloc kernel memory
2175  *	@size:		size of map area
2176  *
2177  *	Returns:	0 for success, -Exxx on failure
2178  *
2179  *	This function checks that @kaddr is a valid vmalloc'ed area,
2180  *	and that it is big enough to cover the range starting at
2181  *	@uaddr in @vma. Will return failure if that criteria isn't
2182  *	met.
2183  *
2184  *	Similar to remap_pfn_range() (see mm/memory.c)
2185  */
2186 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2187 				void *kaddr, unsigned long size)
2188 {
2189 	struct vm_struct *area;
2190 
2191 	size = PAGE_ALIGN(size);
2192 
2193 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2194 		return -EINVAL;
2195 
2196 	area = find_vm_area(kaddr);
2197 	if (!area)
2198 		return -EINVAL;
2199 
2200 	if (!(area->flags & VM_USERMAP))
2201 		return -EINVAL;
2202 
2203 	if (kaddr + size > area->addr + area->size)
2204 		return -EINVAL;
2205 
2206 	do {
2207 		struct page *page = vmalloc_to_page(kaddr);
2208 		int ret;
2209 
2210 		ret = vm_insert_page(vma, uaddr, page);
2211 		if (ret)
2212 			return ret;
2213 
2214 		uaddr += PAGE_SIZE;
2215 		kaddr += PAGE_SIZE;
2216 		size -= PAGE_SIZE;
2217 	} while (size > 0);
2218 
2219 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2220 
2221 	return 0;
2222 }
2223 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2224 
2225 /**
2226  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2227  *	@vma:		vma to cover (map full range of vma)
2228  *	@addr:		vmalloc memory
2229  *	@pgoff:		number of pages into addr before first page to map
2230  *
2231  *	Returns:	0 for success, -Exxx on failure
2232  *
2233  *	This function checks that addr is a valid vmalloc'ed area, and
2234  *	that it is big enough to cover the vma. Will return failure if
2235  *	that criteria isn't met.
2236  *
2237  *	Similar to remap_pfn_range() (see mm/memory.c)
2238  */
2239 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2240 						unsigned long pgoff)
2241 {
2242 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2243 					   addr + (pgoff << PAGE_SHIFT),
2244 					   vma->vm_end - vma->vm_start);
2245 }
2246 EXPORT_SYMBOL(remap_vmalloc_range);
2247 
2248 /*
2249  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2250  * have one.
2251  */
2252 void __weak vmalloc_sync_all(void)
2253 {
2254 }
2255 
2256 
2257 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2258 {
2259 	pte_t ***p = data;
2260 
2261 	if (p) {
2262 		*(*p) = pte;
2263 		(*p)++;
2264 	}
2265 	return 0;
2266 }
2267 
2268 /**
2269  *	alloc_vm_area - allocate a range of kernel address space
2270  *	@size:		size of the area
2271  *	@ptes:		returns the PTEs for the address space
2272  *
2273  *	Returns:	NULL on failure, vm_struct on success
2274  *
2275  *	This function reserves a range of kernel address space, and
2276  *	allocates pagetables to map that range.  No actual mappings
2277  *	are created.
2278  *
2279  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2280  *	allocated for the VM area are returned.
2281  */
2282 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2283 {
2284 	struct vm_struct *area;
2285 
2286 	area = get_vm_area_caller(size, VM_IOREMAP,
2287 				__builtin_return_address(0));
2288 	if (area == NULL)
2289 		return NULL;
2290 
2291 	/*
2292 	 * This ensures that page tables are constructed for this region
2293 	 * of kernel virtual address space and mapped into init_mm.
2294 	 */
2295 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2296 				size, f, ptes ? &ptes : NULL)) {
2297 		free_vm_area(area);
2298 		return NULL;
2299 	}
2300 
2301 	return area;
2302 }
2303 EXPORT_SYMBOL_GPL(alloc_vm_area);
2304 
2305 void free_vm_area(struct vm_struct *area)
2306 {
2307 	struct vm_struct *ret;
2308 	ret = remove_vm_area(area->addr);
2309 	BUG_ON(ret != area);
2310 	kfree(area);
2311 }
2312 EXPORT_SYMBOL_GPL(free_vm_area);
2313 
2314 #ifdef CONFIG_SMP
2315 static struct vmap_area *node_to_va(struct rb_node *n)
2316 {
2317 	return rb_entry_safe(n, struct vmap_area, rb_node);
2318 }
2319 
2320 /**
2321  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2322  * @end: target address
2323  * @pnext: out arg for the next vmap_area
2324  * @pprev: out arg for the previous vmap_area
2325  *
2326  * Returns: %true if either or both of next and prev are found,
2327  *	    %false if no vmap_area exists
2328  *
2329  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2330  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2331  */
2332 static bool pvm_find_next_prev(unsigned long end,
2333 			       struct vmap_area **pnext,
2334 			       struct vmap_area **pprev)
2335 {
2336 	struct rb_node *n = vmap_area_root.rb_node;
2337 	struct vmap_area *va = NULL;
2338 
2339 	while (n) {
2340 		va = rb_entry(n, struct vmap_area, rb_node);
2341 		if (end < va->va_end)
2342 			n = n->rb_left;
2343 		else if (end > va->va_end)
2344 			n = n->rb_right;
2345 		else
2346 			break;
2347 	}
2348 
2349 	if (!va)
2350 		return false;
2351 
2352 	if (va->va_end > end) {
2353 		*pnext = va;
2354 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2355 	} else {
2356 		*pprev = va;
2357 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2358 	}
2359 	return true;
2360 }
2361 
2362 /**
2363  * pvm_determine_end - find the highest aligned address between two vmap_areas
2364  * @pnext: in/out arg for the next vmap_area
2365  * @pprev: in/out arg for the previous vmap_area
2366  * @align: alignment
2367  *
2368  * Returns: determined end address
2369  *
2370  * Find the highest aligned address between *@pnext and *@pprev below
2371  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2372  * down address is between the end addresses of the two vmap_areas.
2373  *
2374  * Please note that the address returned by this function may fall
2375  * inside *@pnext vmap_area.  The caller is responsible for checking
2376  * that.
2377  */
2378 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2379 				       struct vmap_area **pprev,
2380 				       unsigned long align)
2381 {
2382 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2383 	unsigned long addr;
2384 
2385 	if (*pnext)
2386 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2387 	else
2388 		addr = vmalloc_end;
2389 
2390 	while (*pprev && (*pprev)->va_end > addr) {
2391 		*pnext = *pprev;
2392 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2393 	}
2394 
2395 	return addr;
2396 }
2397 
2398 /**
2399  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2400  * @offsets: array containing offset of each area
2401  * @sizes: array containing size of each area
2402  * @nr_vms: the number of areas to allocate
2403  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2404  *
2405  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2406  *	    vm_structs on success, %NULL on failure
2407  *
2408  * Percpu allocator wants to use congruent vm areas so that it can
2409  * maintain the offsets among percpu areas.  This function allocates
2410  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2411  * be scattered pretty far, distance between two areas easily going up
2412  * to gigabytes.  To avoid interacting with regular vmallocs, these
2413  * areas are allocated from top.
2414  *
2415  * Despite its complicated look, this allocator is rather simple.  It
2416  * does everything top-down and scans areas from the end looking for
2417  * matching slot.  While scanning, if any of the areas overlaps with
2418  * existing vmap_area, the base address is pulled down to fit the
2419  * area.  Scanning is repeated till all the areas fit and then all
2420  * necessary data structres are inserted and the result is returned.
2421  */
2422 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2423 				     const size_t *sizes, int nr_vms,
2424 				     size_t align)
2425 {
2426 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2427 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2428 	struct vmap_area **vas, *prev, *next;
2429 	struct vm_struct **vms;
2430 	int area, area2, last_area, term_area;
2431 	unsigned long base, start, end, last_end;
2432 	bool purged = false;
2433 
2434 	/* verify parameters and allocate data structures */
2435 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2436 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2437 		start = offsets[area];
2438 		end = start + sizes[area];
2439 
2440 		/* is everything aligned properly? */
2441 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2442 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2443 
2444 		/* detect the area with the highest address */
2445 		if (start > offsets[last_area])
2446 			last_area = area;
2447 
2448 		for (area2 = 0; area2 < nr_vms; area2++) {
2449 			unsigned long start2 = offsets[area2];
2450 			unsigned long end2 = start2 + sizes[area2];
2451 
2452 			if (area2 == area)
2453 				continue;
2454 
2455 			BUG_ON(start2 >= start && start2 < end);
2456 			BUG_ON(end2 <= end && end2 > start);
2457 		}
2458 	}
2459 	last_end = offsets[last_area] + sizes[last_area];
2460 
2461 	if (vmalloc_end - vmalloc_start < last_end) {
2462 		WARN_ON(true);
2463 		return NULL;
2464 	}
2465 
2466 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2467 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2468 	if (!vas || !vms)
2469 		goto err_free2;
2470 
2471 	for (area = 0; area < nr_vms; area++) {
2472 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2473 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2474 		if (!vas[area] || !vms[area])
2475 			goto err_free;
2476 	}
2477 retry:
2478 	spin_lock(&vmap_area_lock);
2479 
2480 	/* start scanning - we scan from the top, begin with the last area */
2481 	area = term_area = last_area;
2482 	start = offsets[area];
2483 	end = start + sizes[area];
2484 
2485 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2486 		base = vmalloc_end - last_end;
2487 		goto found;
2488 	}
2489 	base = pvm_determine_end(&next, &prev, align) - end;
2490 
2491 	while (true) {
2492 		BUG_ON(next && next->va_end <= base + end);
2493 		BUG_ON(prev && prev->va_end > base + end);
2494 
2495 		/*
2496 		 * base might have underflowed, add last_end before
2497 		 * comparing.
2498 		 */
2499 		if (base + last_end < vmalloc_start + last_end) {
2500 			spin_unlock(&vmap_area_lock);
2501 			if (!purged) {
2502 				purge_vmap_area_lazy();
2503 				purged = true;
2504 				goto retry;
2505 			}
2506 			goto err_free;
2507 		}
2508 
2509 		/*
2510 		 * If next overlaps, move base downwards so that it's
2511 		 * right below next and then recheck.
2512 		 */
2513 		if (next && next->va_start < base + end) {
2514 			base = pvm_determine_end(&next, &prev, align) - end;
2515 			term_area = area;
2516 			continue;
2517 		}
2518 
2519 		/*
2520 		 * If prev overlaps, shift down next and prev and move
2521 		 * base so that it's right below new next and then
2522 		 * recheck.
2523 		 */
2524 		if (prev && prev->va_end > base + start)  {
2525 			next = prev;
2526 			prev = node_to_va(rb_prev(&next->rb_node));
2527 			base = pvm_determine_end(&next, &prev, align) - end;
2528 			term_area = area;
2529 			continue;
2530 		}
2531 
2532 		/*
2533 		 * This area fits, move on to the previous one.  If
2534 		 * the previous one is the terminal one, we're done.
2535 		 */
2536 		area = (area + nr_vms - 1) % nr_vms;
2537 		if (area == term_area)
2538 			break;
2539 		start = offsets[area];
2540 		end = start + sizes[area];
2541 		pvm_find_next_prev(base + end, &next, &prev);
2542 	}
2543 found:
2544 	/* we've found a fitting base, insert all va's */
2545 	for (area = 0; area < nr_vms; area++) {
2546 		struct vmap_area *va = vas[area];
2547 
2548 		va->va_start = base + offsets[area];
2549 		va->va_end = va->va_start + sizes[area];
2550 		__insert_vmap_area(va);
2551 	}
2552 
2553 	vmap_area_pcpu_hole = base + offsets[last_area];
2554 
2555 	spin_unlock(&vmap_area_lock);
2556 
2557 	/* insert all vm's */
2558 	for (area = 0; area < nr_vms; area++)
2559 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2560 				 pcpu_get_vm_areas);
2561 
2562 	kfree(vas);
2563 	return vms;
2564 
2565 err_free:
2566 	for (area = 0; area < nr_vms; area++) {
2567 		kfree(vas[area]);
2568 		kfree(vms[area]);
2569 	}
2570 err_free2:
2571 	kfree(vas);
2572 	kfree(vms);
2573 	return NULL;
2574 }
2575 
2576 /**
2577  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2578  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2579  * @nr_vms: the number of allocated areas
2580  *
2581  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2582  */
2583 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2584 {
2585 	int i;
2586 
2587 	for (i = 0; i < nr_vms; i++)
2588 		free_vm_area(vms[i]);
2589 	kfree(vms);
2590 }
2591 #endif	/* CONFIG_SMP */
2592 
2593 #ifdef CONFIG_PROC_FS
2594 static void *s_start(struct seq_file *m, loff_t *pos)
2595 	__acquires(&vmap_area_lock)
2596 {
2597 	spin_lock(&vmap_area_lock);
2598 	return seq_list_start(&vmap_area_list, *pos);
2599 }
2600 
2601 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2602 {
2603 	return seq_list_next(p, &vmap_area_list, pos);
2604 }
2605 
2606 static void s_stop(struct seq_file *m, void *p)
2607 	__releases(&vmap_area_lock)
2608 {
2609 	spin_unlock(&vmap_area_lock);
2610 }
2611 
2612 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2613 {
2614 	if (IS_ENABLED(CONFIG_NUMA)) {
2615 		unsigned int nr, *counters = m->private;
2616 
2617 		if (!counters)
2618 			return;
2619 
2620 		if (v->flags & VM_UNINITIALIZED)
2621 			return;
2622 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2623 		smp_rmb();
2624 
2625 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2626 
2627 		for (nr = 0; nr < v->nr_pages; nr++)
2628 			counters[page_to_nid(v->pages[nr])]++;
2629 
2630 		for_each_node_state(nr, N_HIGH_MEMORY)
2631 			if (counters[nr])
2632 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2633 	}
2634 }
2635 
2636 static int s_show(struct seq_file *m, void *p)
2637 {
2638 	struct vmap_area *va;
2639 	struct vm_struct *v;
2640 
2641 	va = list_entry(p, struct vmap_area, list);
2642 
2643 	/*
2644 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2645 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2646 	 */
2647 	if (!(va->flags & VM_VM_AREA))
2648 		return 0;
2649 
2650 	v = va->vm;
2651 
2652 	seq_printf(m, "0x%pK-0x%pK %7ld",
2653 		v->addr, v->addr + v->size, v->size);
2654 
2655 	if (v->caller)
2656 		seq_printf(m, " %pS", v->caller);
2657 
2658 	if (v->nr_pages)
2659 		seq_printf(m, " pages=%d", v->nr_pages);
2660 
2661 	if (v->phys_addr)
2662 		seq_printf(m, " phys=%pa", &v->phys_addr);
2663 
2664 	if (v->flags & VM_IOREMAP)
2665 		seq_puts(m, " ioremap");
2666 
2667 	if (v->flags & VM_ALLOC)
2668 		seq_puts(m, " vmalloc");
2669 
2670 	if (v->flags & VM_MAP)
2671 		seq_puts(m, " vmap");
2672 
2673 	if (v->flags & VM_USERMAP)
2674 		seq_puts(m, " user");
2675 
2676 	if (is_vmalloc_addr(v->pages))
2677 		seq_puts(m, " vpages");
2678 
2679 	show_numa_info(m, v);
2680 	seq_putc(m, '\n');
2681 	return 0;
2682 }
2683 
2684 static const struct seq_operations vmalloc_op = {
2685 	.start = s_start,
2686 	.next = s_next,
2687 	.stop = s_stop,
2688 	.show = s_show,
2689 };
2690 
2691 static int vmalloc_open(struct inode *inode, struct file *file)
2692 {
2693 	if (IS_ENABLED(CONFIG_NUMA))
2694 		return seq_open_private(file, &vmalloc_op,
2695 					nr_node_ids * sizeof(unsigned int));
2696 	else
2697 		return seq_open(file, &vmalloc_op);
2698 }
2699 
2700 static const struct file_operations proc_vmalloc_operations = {
2701 	.open		= vmalloc_open,
2702 	.read		= seq_read,
2703 	.llseek		= seq_lseek,
2704 	.release	= seq_release_private,
2705 };
2706 
2707 static int __init proc_vmalloc_init(void)
2708 {
2709 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2710 	return 0;
2711 }
2712 module_init(proc_vmalloc_init);
2713 
2714 #endif
2715 
2716