1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/notifier.h> 25 #include <linux/rbtree.h> 26 #include <linux/radix-tree.h> 27 #include <linux/rcupdate.h> 28 #include <linux/pfn.h> 29 #include <linux/kmemleak.h> 30 #include <linux/atomic.h> 31 #include <linux/compiler.h> 32 #include <linux/llist.h> 33 #include <linux/bitops.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/tlbflush.h> 37 #include <asm/shmparam.h> 38 39 #include "internal.h" 40 41 struct vfree_deferred { 42 struct llist_head list; 43 struct work_struct wq; 44 }; 45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 46 47 static void __vunmap(const void *, int); 48 49 static void free_work(struct work_struct *w) 50 { 51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 52 struct llist_node *llnode = llist_del_all(&p->list); 53 while (llnode) { 54 void *p = llnode; 55 llnode = llist_next(llnode); 56 __vunmap(p, 1); 57 } 58 } 59 60 /*** Page table manipulation functions ***/ 61 62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 63 { 64 pte_t *pte; 65 66 pte = pte_offset_kernel(pmd, addr); 67 do { 68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 69 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 70 } while (pte++, addr += PAGE_SIZE, addr != end); 71 } 72 73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 74 { 75 pmd_t *pmd; 76 unsigned long next; 77 78 pmd = pmd_offset(pud, addr); 79 do { 80 next = pmd_addr_end(addr, end); 81 if (pmd_clear_huge(pmd)) 82 continue; 83 if (pmd_none_or_clear_bad(pmd)) 84 continue; 85 vunmap_pte_range(pmd, addr, next); 86 } while (pmd++, addr = next, addr != end); 87 } 88 89 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 90 { 91 pud_t *pud; 92 unsigned long next; 93 94 pud = pud_offset(pgd, addr); 95 do { 96 next = pud_addr_end(addr, end); 97 if (pud_clear_huge(pud)) 98 continue; 99 if (pud_none_or_clear_bad(pud)) 100 continue; 101 vunmap_pmd_range(pud, addr, next); 102 } while (pud++, addr = next, addr != end); 103 } 104 105 static void vunmap_page_range(unsigned long addr, unsigned long end) 106 { 107 pgd_t *pgd; 108 unsigned long next; 109 110 BUG_ON(addr >= end); 111 pgd = pgd_offset_k(addr); 112 do { 113 next = pgd_addr_end(addr, end); 114 if (pgd_none_or_clear_bad(pgd)) 115 continue; 116 vunmap_pud_range(pgd, addr, next); 117 } while (pgd++, addr = next, addr != end); 118 } 119 120 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 121 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 122 { 123 pte_t *pte; 124 125 /* 126 * nr is a running index into the array which helps higher level 127 * callers keep track of where we're up to. 128 */ 129 130 pte = pte_alloc_kernel(pmd, addr); 131 if (!pte) 132 return -ENOMEM; 133 do { 134 struct page *page = pages[*nr]; 135 136 if (WARN_ON(!pte_none(*pte))) 137 return -EBUSY; 138 if (WARN_ON(!page)) 139 return -ENOMEM; 140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 141 (*nr)++; 142 } while (pte++, addr += PAGE_SIZE, addr != end); 143 return 0; 144 } 145 146 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 147 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 148 { 149 pmd_t *pmd; 150 unsigned long next; 151 152 pmd = pmd_alloc(&init_mm, pud, addr); 153 if (!pmd) 154 return -ENOMEM; 155 do { 156 next = pmd_addr_end(addr, end); 157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 158 return -ENOMEM; 159 } while (pmd++, addr = next, addr != end); 160 return 0; 161 } 162 163 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 164 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 165 { 166 pud_t *pud; 167 unsigned long next; 168 169 pud = pud_alloc(&init_mm, pgd, addr); 170 if (!pud) 171 return -ENOMEM; 172 do { 173 next = pud_addr_end(addr, end); 174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 175 return -ENOMEM; 176 } while (pud++, addr = next, addr != end); 177 return 0; 178 } 179 180 /* 181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 182 * will have pfns corresponding to the "pages" array. 183 * 184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 185 */ 186 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 187 pgprot_t prot, struct page **pages) 188 { 189 pgd_t *pgd; 190 unsigned long next; 191 unsigned long addr = start; 192 int err = 0; 193 int nr = 0; 194 195 BUG_ON(addr >= end); 196 pgd = pgd_offset_k(addr); 197 do { 198 next = pgd_addr_end(addr, end); 199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 200 if (err) 201 return err; 202 } while (pgd++, addr = next, addr != end); 203 204 return nr; 205 } 206 207 static int vmap_page_range(unsigned long start, unsigned long end, 208 pgprot_t prot, struct page **pages) 209 { 210 int ret; 211 212 ret = vmap_page_range_noflush(start, end, prot, pages); 213 flush_cache_vmap(start, end); 214 return ret; 215 } 216 217 int is_vmalloc_or_module_addr(const void *x) 218 { 219 /* 220 * ARM, x86-64 and sparc64 put modules in a special place, 221 * and fall back on vmalloc() if that fails. Others 222 * just put it in the vmalloc space. 223 */ 224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 225 unsigned long addr = (unsigned long)x; 226 if (addr >= MODULES_VADDR && addr < MODULES_END) 227 return 1; 228 #endif 229 return is_vmalloc_addr(x); 230 } 231 232 /* 233 * Walk a vmap address to the struct page it maps. 234 */ 235 struct page *vmalloc_to_page(const void *vmalloc_addr) 236 { 237 unsigned long addr = (unsigned long) vmalloc_addr; 238 struct page *page = NULL; 239 pgd_t *pgd = pgd_offset_k(addr); 240 241 /* 242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 243 * architectures that do not vmalloc module space 244 */ 245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 246 247 if (!pgd_none(*pgd)) { 248 pud_t *pud = pud_offset(pgd, addr); 249 if (!pud_none(*pud)) { 250 pmd_t *pmd = pmd_offset(pud, addr); 251 if (!pmd_none(*pmd)) { 252 pte_t *ptep, pte; 253 254 ptep = pte_offset_map(pmd, addr); 255 pte = *ptep; 256 if (pte_present(pte)) 257 page = pte_page(pte); 258 pte_unmap(ptep); 259 } 260 } 261 } 262 return page; 263 } 264 EXPORT_SYMBOL(vmalloc_to_page); 265 266 /* 267 * Map a vmalloc()-space virtual address to the physical page frame number. 268 */ 269 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 270 { 271 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 272 } 273 EXPORT_SYMBOL(vmalloc_to_pfn); 274 275 276 /*** Global kva allocator ***/ 277 278 #define VM_VM_AREA 0x04 279 280 static DEFINE_SPINLOCK(vmap_area_lock); 281 /* Export for kexec only */ 282 LIST_HEAD(vmap_area_list); 283 static LLIST_HEAD(vmap_purge_list); 284 static struct rb_root vmap_area_root = RB_ROOT; 285 286 /* The vmap cache globals are protected by vmap_area_lock */ 287 static struct rb_node *free_vmap_cache; 288 static unsigned long cached_hole_size; 289 static unsigned long cached_vstart; 290 static unsigned long cached_align; 291 292 static unsigned long vmap_area_pcpu_hole; 293 294 static struct vmap_area *__find_vmap_area(unsigned long addr) 295 { 296 struct rb_node *n = vmap_area_root.rb_node; 297 298 while (n) { 299 struct vmap_area *va; 300 301 va = rb_entry(n, struct vmap_area, rb_node); 302 if (addr < va->va_start) 303 n = n->rb_left; 304 else if (addr >= va->va_end) 305 n = n->rb_right; 306 else 307 return va; 308 } 309 310 return NULL; 311 } 312 313 static void __insert_vmap_area(struct vmap_area *va) 314 { 315 struct rb_node **p = &vmap_area_root.rb_node; 316 struct rb_node *parent = NULL; 317 struct rb_node *tmp; 318 319 while (*p) { 320 struct vmap_area *tmp_va; 321 322 parent = *p; 323 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 324 if (va->va_start < tmp_va->va_end) 325 p = &(*p)->rb_left; 326 else if (va->va_end > tmp_va->va_start) 327 p = &(*p)->rb_right; 328 else 329 BUG(); 330 } 331 332 rb_link_node(&va->rb_node, parent, p); 333 rb_insert_color(&va->rb_node, &vmap_area_root); 334 335 /* address-sort this list */ 336 tmp = rb_prev(&va->rb_node); 337 if (tmp) { 338 struct vmap_area *prev; 339 prev = rb_entry(tmp, struct vmap_area, rb_node); 340 list_add_rcu(&va->list, &prev->list); 341 } else 342 list_add_rcu(&va->list, &vmap_area_list); 343 } 344 345 static void purge_vmap_area_lazy(void); 346 347 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 348 349 /* 350 * Allocate a region of KVA of the specified size and alignment, within the 351 * vstart and vend. 352 */ 353 static struct vmap_area *alloc_vmap_area(unsigned long size, 354 unsigned long align, 355 unsigned long vstart, unsigned long vend, 356 int node, gfp_t gfp_mask) 357 { 358 struct vmap_area *va; 359 struct rb_node *n; 360 unsigned long addr; 361 int purged = 0; 362 struct vmap_area *first; 363 364 BUG_ON(!size); 365 BUG_ON(offset_in_page(size)); 366 BUG_ON(!is_power_of_2(align)); 367 368 might_sleep(); 369 370 va = kmalloc_node(sizeof(struct vmap_area), 371 gfp_mask & GFP_RECLAIM_MASK, node); 372 if (unlikely(!va)) 373 return ERR_PTR(-ENOMEM); 374 375 /* 376 * Only scan the relevant parts containing pointers to other objects 377 * to avoid false negatives. 378 */ 379 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 380 381 retry: 382 spin_lock(&vmap_area_lock); 383 /* 384 * Invalidate cache if we have more permissive parameters. 385 * cached_hole_size notes the largest hole noticed _below_ 386 * the vmap_area cached in free_vmap_cache: if size fits 387 * into that hole, we want to scan from vstart to reuse 388 * the hole instead of allocating above free_vmap_cache. 389 * Note that __free_vmap_area may update free_vmap_cache 390 * without updating cached_hole_size or cached_align. 391 */ 392 if (!free_vmap_cache || 393 size < cached_hole_size || 394 vstart < cached_vstart || 395 align < cached_align) { 396 nocache: 397 cached_hole_size = 0; 398 free_vmap_cache = NULL; 399 } 400 /* record if we encounter less permissive parameters */ 401 cached_vstart = vstart; 402 cached_align = align; 403 404 /* find starting point for our search */ 405 if (free_vmap_cache) { 406 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 407 addr = ALIGN(first->va_end, align); 408 if (addr < vstart) 409 goto nocache; 410 if (addr + size < addr) 411 goto overflow; 412 413 } else { 414 addr = ALIGN(vstart, align); 415 if (addr + size < addr) 416 goto overflow; 417 418 n = vmap_area_root.rb_node; 419 first = NULL; 420 421 while (n) { 422 struct vmap_area *tmp; 423 tmp = rb_entry(n, struct vmap_area, rb_node); 424 if (tmp->va_end >= addr) { 425 first = tmp; 426 if (tmp->va_start <= addr) 427 break; 428 n = n->rb_left; 429 } else 430 n = n->rb_right; 431 } 432 433 if (!first) 434 goto found; 435 } 436 437 /* from the starting point, walk areas until a suitable hole is found */ 438 while (addr + size > first->va_start && addr + size <= vend) { 439 if (addr + cached_hole_size < first->va_start) 440 cached_hole_size = first->va_start - addr; 441 addr = ALIGN(first->va_end, align); 442 if (addr + size < addr) 443 goto overflow; 444 445 if (list_is_last(&first->list, &vmap_area_list)) 446 goto found; 447 448 first = list_next_entry(first, list); 449 } 450 451 found: 452 if (addr + size > vend) 453 goto overflow; 454 455 va->va_start = addr; 456 va->va_end = addr + size; 457 va->flags = 0; 458 __insert_vmap_area(va); 459 free_vmap_cache = &va->rb_node; 460 spin_unlock(&vmap_area_lock); 461 462 BUG_ON(!IS_ALIGNED(va->va_start, align)); 463 BUG_ON(va->va_start < vstart); 464 BUG_ON(va->va_end > vend); 465 466 return va; 467 468 overflow: 469 spin_unlock(&vmap_area_lock); 470 if (!purged) { 471 purge_vmap_area_lazy(); 472 purged = 1; 473 goto retry; 474 } 475 476 if (gfpflags_allow_blocking(gfp_mask)) { 477 unsigned long freed = 0; 478 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 479 if (freed > 0) { 480 purged = 0; 481 goto retry; 482 } 483 } 484 485 if (printk_ratelimit()) 486 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 487 size); 488 kfree(va); 489 return ERR_PTR(-EBUSY); 490 } 491 492 int register_vmap_purge_notifier(struct notifier_block *nb) 493 { 494 return blocking_notifier_chain_register(&vmap_notify_list, nb); 495 } 496 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 497 498 int unregister_vmap_purge_notifier(struct notifier_block *nb) 499 { 500 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 501 } 502 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 503 504 static void __free_vmap_area(struct vmap_area *va) 505 { 506 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 507 508 if (free_vmap_cache) { 509 if (va->va_end < cached_vstart) { 510 free_vmap_cache = NULL; 511 } else { 512 struct vmap_area *cache; 513 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 514 if (va->va_start <= cache->va_start) { 515 free_vmap_cache = rb_prev(&va->rb_node); 516 /* 517 * We don't try to update cached_hole_size or 518 * cached_align, but it won't go very wrong. 519 */ 520 } 521 } 522 } 523 rb_erase(&va->rb_node, &vmap_area_root); 524 RB_CLEAR_NODE(&va->rb_node); 525 list_del_rcu(&va->list); 526 527 /* 528 * Track the highest possible candidate for pcpu area 529 * allocation. Areas outside of vmalloc area can be returned 530 * here too, consider only end addresses which fall inside 531 * vmalloc area proper. 532 */ 533 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 534 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 535 536 kfree_rcu(va, rcu_head); 537 } 538 539 /* 540 * Free a region of KVA allocated by alloc_vmap_area 541 */ 542 static void free_vmap_area(struct vmap_area *va) 543 { 544 spin_lock(&vmap_area_lock); 545 __free_vmap_area(va); 546 spin_unlock(&vmap_area_lock); 547 } 548 549 /* 550 * Clear the pagetable entries of a given vmap_area 551 */ 552 static void unmap_vmap_area(struct vmap_area *va) 553 { 554 vunmap_page_range(va->va_start, va->va_end); 555 } 556 557 static void vmap_debug_free_range(unsigned long start, unsigned long end) 558 { 559 /* 560 * Unmap page tables and force a TLB flush immediately if pagealloc 561 * debugging is enabled. This catches use after free bugs similarly to 562 * those in linear kernel virtual address space after a page has been 563 * freed. 564 * 565 * All the lazy freeing logic is still retained, in order to minimise 566 * intrusiveness of this debugging feature. 567 * 568 * This is going to be *slow* (linear kernel virtual address debugging 569 * doesn't do a broadcast TLB flush so it is a lot faster). 570 */ 571 if (debug_pagealloc_enabled()) { 572 vunmap_page_range(start, end); 573 flush_tlb_kernel_range(start, end); 574 } 575 } 576 577 /* 578 * lazy_max_pages is the maximum amount of virtual address space we gather up 579 * before attempting to purge with a TLB flush. 580 * 581 * There is a tradeoff here: a larger number will cover more kernel page tables 582 * and take slightly longer to purge, but it will linearly reduce the number of 583 * global TLB flushes that must be performed. It would seem natural to scale 584 * this number up linearly with the number of CPUs (because vmapping activity 585 * could also scale linearly with the number of CPUs), however it is likely 586 * that in practice, workloads might be constrained in other ways that mean 587 * vmap activity will not scale linearly with CPUs. Also, I want to be 588 * conservative and not introduce a big latency on huge systems, so go with 589 * a less aggressive log scale. It will still be an improvement over the old 590 * code, and it will be simple to change the scale factor if we find that it 591 * becomes a problem on bigger systems. 592 */ 593 static unsigned long lazy_max_pages(void) 594 { 595 unsigned int log; 596 597 log = fls(num_online_cpus()); 598 599 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 600 } 601 602 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 603 604 /* 605 * Serialize vmap purging. There is no actual criticial section protected 606 * by this look, but we want to avoid concurrent calls for performance 607 * reasons and to make the pcpu_get_vm_areas more deterministic. 608 */ 609 static DEFINE_MUTEX(vmap_purge_lock); 610 611 /* for per-CPU blocks */ 612 static void purge_fragmented_blocks_allcpus(void); 613 614 /* 615 * called before a call to iounmap() if the caller wants vm_area_struct's 616 * immediately freed. 617 */ 618 void set_iounmap_nonlazy(void) 619 { 620 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 621 } 622 623 /* 624 * Purges all lazily-freed vmap areas. 625 */ 626 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 627 { 628 struct llist_node *valist; 629 struct vmap_area *va; 630 struct vmap_area *n_va; 631 bool do_free = false; 632 633 lockdep_assert_held(&vmap_purge_lock); 634 635 valist = llist_del_all(&vmap_purge_list); 636 llist_for_each_entry(va, valist, purge_list) { 637 if (va->va_start < start) 638 start = va->va_start; 639 if (va->va_end > end) 640 end = va->va_end; 641 do_free = true; 642 } 643 644 if (!do_free) 645 return false; 646 647 flush_tlb_kernel_range(start, end); 648 649 spin_lock(&vmap_area_lock); 650 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 651 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 652 653 __free_vmap_area(va); 654 atomic_sub(nr, &vmap_lazy_nr); 655 cond_resched_lock(&vmap_area_lock); 656 } 657 spin_unlock(&vmap_area_lock); 658 return true; 659 } 660 661 /* 662 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 663 * is already purging. 664 */ 665 static void try_purge_vmap_area_lazy(void) 666 { 667 if (mutex_trylock(&vmap_purge_lock)) { 668 __purge_vmap_area_lazy(ULONG_MAX, 0); 669 mutex_unlock(&vmap_purge_lock); 670 } 671 } 672 673 /* 674 * Kick off a purge of the outstanding lazy areas. 675 */ 676 static void purge_vmap_area_lazy(void) 677 { 678 mutex_lock(&vmap_purge_lock); 679 purge_fragmented_blocks_allcpus(); 680 __purge_vmap_area_lazy(ULONG_MAX, 0); 681 mutex_unlock(&vmap_purge_lock); 682 } 683 684 /* 685 * Free a vmap area, caller ensuring that the area has been unmapped 686 * and flush_cache_vunmap had been called for the correct range 687 * previously. 688 */ 689 static void free_vmap_area_noflush(struct vmap_area *va) 690 { 691 int nr_lazy; 692 693 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, 694 &vmap_lazy_nr); 695 696 /* After this point, we may free va at any time */ 697 llist_add(&va->purge_list, &vmap_purge_list); 698 699 if (unlikely(nr_lazy > lazy_max_pages())) 700 try_purge_vmap_area_lazy(); 701 } 702 703 /* 704 * Free and unmap a vmap area 705 */ 706 static void free_unmap_vmap_area(struct vmap_area *va) 707 { 708 flush_cache_vunmap(va->va_start, va->va_end); 709 unmap_vmap_area(va); 710 free_vmap_area_noflush(va); 711 } 712 713 static struct vmap_area *find_vmap_area(unsigned long addr) 714 { 715 struct vmap_area *va; 716 717 spin_lock(&vmap_area_lock); 718 va = __find_vmap_area(addr); 719 spin_unlock(&vmap_area_lock); 720 721 return va; 722 } 723 724 /*** Per cpu kva allocator ***/ 725 726 /* 727 * vmap space is limited especially on 32 bit architectures. Ensure there is 728 * room for at least 16 percpu vmap blocks per CPU. 729 */ 730 /* 731 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 732 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 733 * instead (we just need a rough idea) 734 */ 735 #if BITS_PER_LONG == 32 736 #define VMALLOC_SPACE (128UL*1024*1024) 737 #else 738 #define VMALLOC_SPACE (128UL*1024*1024*1024) 739 #endif 740 741 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 742 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 743 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 744 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 745 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 746 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 747 #define VMAP_BBMAP_BITS \ 748 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 749 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 750 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 751 752 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 753 754 static bool vmap_initialized __read_mostly = false; 755 756 struct vmap_block_queue { 757 spinlock_t lock; 758 struct list_head free; 759 }; 760 761 struct vmap_block { 762 spinlock_t lock; 763 struct vmap_area *va; 764 unsigned long free, dirty; 765 unsigned long dirty_min, dirty_max; /*< dirty range */ 766 struct list_head free_list; 767 struct rcu_head rcu_head; 768 struct list_head purge; 769 }; 770 771 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 772 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 773 774 /* 775 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 776 * in the free path. Could get rid of this if we change the API to return a 777 * "cookie" from alloc, to be passed to free. But no big deal yet. 778 */ 779 static DEFINE_SPINLOCK(vmap_block_tree_lock); 780 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 781 782 /* 783 * We should probably have a fallback mechanism to allocate virtual memory 784 * out of partially filled vmap blocks. However vmap block sizing should be 785 * fairly reasonable according to the vmalloc size, so it shouldn't be a 786 * big problem. 787 */ 788 789 static unsigned long addr_to_vb_idx(unsigned long addr) 790 { 791 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 792 addr /= VMAP_BLOCK_SIZE; 793 return addr; 794 } 795 796 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 797 { 798 unsigned long addr; 799 800 addr = va_start + (pages_off << PAGE_SHIFT); 801 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 802 return (void *)addr; 803 } 804 805 /** 806 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 807 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 808 * @order: how many 2^order pages should be occupied in newly allocated block 809 * @gfp_mask: flags for the page level allocator 810 * 811 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) 812 */ 813 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 814 { 815 struct vmap_block_queue *vbq; 816 struct vmap_block *vb; 817 struct vmap_area *va; 818 unsigned long vb_idx; 819 int node, err; 820 void *vaddr; 821 822 node = numa_node_id(); 823 824 vb = kmalloc_node(sizeof(struct vmap_block), 825 gfp_mask & GFP_RECLAIM_MASK, node); 826 if (unlikely(!vb)) 827 return ERR_PTR(-ENOMEM); 828 829 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 830 VMALLOC_START, VMALLOC_END, 831 node, gfp_mask); 832 if (IS_ERR(va)) { 833 kfree(vb); 834 return ERR_CAST(va); 835 } 836 837 err = radix_tree_preload(gfp_mask); 838 if (unlikely(err)) { 839 kfree(vb); 840 free_vmap_area(va); 841 return ERR_PTR(err); 842 } 843 844 vaddr = vmap_block_vaddr(va->va_start, 0); 845 spin_lock_init(&vb->lock); 846 vb->va = va; 847 /* At least something should be left free */ 848 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 849 vb->free = VMAP_BBMAP_BITS - (1UL << order); 850 vb->dirty = 0; 851 vb->dirty_min = VMAP_BBMAP_BITS; 852 vb->dirty_max = 0; 853 INIT_LIST_HEAD(&vb->free_list); 854 855 vb_idx = addr_to_vb_idx(va->va_start); 856 spin_lock(&vmap_block_tree_lock); 857 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 858 spin_unlock(&vmap_block_tree_lock); 859 BUG_ON(err); 860 radix_tree_preload_end(); 861 862 vbq = &get_cpu_var(vmap_block_queue); 863 spin_lock(&vbq->lock); 864 list_add_tail_rcu(&vb->free_list, &vbq->free); 865 spin_unlock(&vbq->lock); 866 put_cpu_var(vmap_block_queue); 867 868 return vaddr; 869 } 870 871 static void free_vmap_block(struct vmap_block *vb) 872 { 873 struct vmap_block *tmp; 874 unsigned long vb_idx; 875 876 vb_idx = addr_to_vb_idx(vb->va->va_start); 877 spin_lock(&vmap_block_tree_lock); 878 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 879 spin_unlock(&vmap_block_tree_lock); 880 BUG_ON(tmp != vb); 881 882 free_vmap_area_noflush(vb->va); 883 kfree_rcu(vb, rcu_head); 884 } 885 886 static void purge_fragmented_blocks(int cpu) 887 { 888 LIST_HEAD(purge); 889 struct vmap_block *vb; 890 struct vmap_block *n_vb; 891 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 892 893 rcu_read_lock(); 894 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 895 896 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 897 continue; 898 899 spin_lock(&vb->lock); 900 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 901 vb->free = 0; /* prevent further allocs after releasing lock */ 902 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 903 vb->dirty_min = 0; 904 vb->dirty_max = VMAP_BBMAP_BITS; 905 spin_lock(&vbq->lock); 906 list_del_rcu(&vb->free_list); 907 spin_unlock(&vbq->lock); 908 spin_unlock(&vb->lock); 909 list_add_tail(&vb->purge, &purge); 910 } else 911 spin_unlock(&vb->lock); 912 } 913 rcu_read_unlock(); 914 915 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 916 list_del(&vb->purge); 917 free_vmap_block(vb); 918 } 919 } 920 921 static void purge_fragmented_blocks_allcpus(void) 922 { 923 int cpu; 924 925 for_each_possible_cpu(cpu) 926 purge_fragmented_blocks(cpu); 927 } 928 929 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 930 { 931 struct vmap_block_queue *vbq; 932 struct vmap_block *vb; 933 void *vaddr = NULL; 934 unsigned int order; 935 936 BUG_ON(offset_in_page(size)); 937 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 938 if (WARN_ON(size == 0)) { 939 /* 940 * Allocating 0 bytes isn't what caller wants since 941 * get_order(0) returns funny result. Just warn and terminate 942 * early. 943 */ 944 return NULL; 945 } 946 order = get_order(size); 947 948 rcu_read_lock(); 949 vbq = &get_cpu_var(vmap_block_queue); 950 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 951 unsigned long pages_off; 952 953 spin_lock(&vb->lock); 954 if (vb->free < (1UL << order)) { 955 spin_unlock(&vb->lock); 956 continue; 957 } 958 959 pages_off = VMAP_BBMAP_BITS - vb->free; 960 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 961 vb->free -= 1UL << order; 962 if (vb->free == 0) { 963 spin_lock(&vbq->lock); 964 list_del_rcu(&vb->free_list); 965 spin_unlock(&vbq->lock); 966 } 967 968 spin_unlock(&vb->lock); 969 break; 970 } 971 972 put_cpu_var(vmap_block_queue); 973 rcu_read_unlock(); 974 975 /* Allocate new block if nothing was found */ 976 if (!vaddr) 977 vaddr = new_vmap_block(order, gfp_mask); 978 979 return vaddr; 980 } 981 982 static void vb_free(const void *addr, unsigned long size) 983 { 984 unsigned long offset; 985 unsigned long vb_idx; 986 unsigned int order; 987 struct vmap_block *vb; 988 989 BUG_ON(offset_in_page(size)); 990 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 991 992 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 993 994 order = get_order(size); 995 996 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 997 offset >>= PAGE_SHIFT; 998 999 vb_idx = addr_to_vb_idx((unsigned long)addr); 1000 rcu_read_lock(); 1001 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1002 rcu_read_unlock(); 1003 BUG_ON(!vb); 1004 1005 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1006 1007 spin_lock(&vb->lock); 1008 1009 /* Expand dirty range */ 1010 vb->dirty_min = min(vb->dirty_min, offset); 1011 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1012 1013 vb->dirty += 1UL << order; 1014 if (vb->dirty == VMAP_BBMAP_BITS) { 1015 BUG_ON(vb->free); 1016 spin_unlock(&vb->lock); 1017 free_vmap_block(vb); 1018 } else 1019 spin_unlock(&vb->lock); 1020 } 1021 1022 /** 1023 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1024 * 1025 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1026 * to amortize TLB flushing overheads. What this means is that any page you 1027 * have now, may, in a former life, have been mapped into kernel virtual 1028 * address by the vmap layer and so there might be some CPUs with TLB entries 1029 * still referencing that page (additional to the regular 1:1 kernel mapping). 1030 * 1031 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1032 * be sure that none of the pages we have control over will have any aliases 1033 * from the vmap layer. 1034 */ 1035 void vm_unmap_aliases(void) 1036 { 1037 unsigned long start = ULONG_MAX, end = 0; 1038 int cpu; 1039 int flush = 0; 1040 1041 if (unlikely(!vmap_initialized)) 1042 return; 1043 1044 might_sleep(); 1045 1046 for_each_possible_cpu(cpu) { 1047 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1048 struct vmap_block *vb; 1049 1050 rcu_read_lock(); 1051 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1052 spin_lock(&vb->lock); 1053 if (vb->dirty) { 1054 unsigned long va_start = vb->va->va_start; 1055 unsigned long s, e; 1056 1057 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1058 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1059 1060 start = min(s, start); 1061 end = max(e, end); 1062 1063 flush = 1; 1064 } 1065 spin_unlock(&vb->lock); 1066 } 1067 rcu_read_unlock(); 1068 } 1069 1070 mutex_lock(&vmap_purge_lock); 1071 purge_fragmented_blocks_allcpus(); 1072 if (!__purge_vmap_area_lazy(start, end) && flush) 1073 flush_tlb_kernel_range(start, end); 1074 mutex_unlock(&vmap_purge_lock); 1075 } 1076 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1077 1078 /** 1079 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1080 * @mem: the pointer returned by vm_map_ram 1081 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1082 */ 1083 void vm_unmap_ram(const void *mem, unsigned int count) 1084 { 1085 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1086 unsigned long addr = (unsigned long)mem; 1087 struct vmap_area *va; 1088 1089 might_sleep(); 1090 BUG_ON(!addr); 1091 BUG_ON(addr < VMALLOC_START); 1092 BUG_ON(addr > VMALLOC_END); 1093 BUG_ON(!PAGE_ALIGNED(addr)); 1094 1095 debug_check_no_locks_freed(mem, size); 1096 vmap_debug_free_range(addr, addr+size); 1097 1098 if (likely(count <= VMAP_MAX_ALLOC)) { 1099 vb_free(mem, size); 1100 return; 1101 } 1102 1103 va = find_vmap_area(addr); 1104 BUG_ON(!va); 1105 free_unmap_vmap_area(va); 1106 } 1107 EXPORT_SYMBOL(vm_unmap_ram); 1108 1109 /** 1110 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1111 * @pages: an array of pointers to the pages to be mapped 1112 * @count: number of pages 1113 * @node: prefer to allocate data structures on this node 1114 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1115 * 1116 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1117 * faster than vmap so it's good. But if you mix long-life and short-life 1118 * objects with vm_map_ram(), it could consume lots of address space through 1119 * fragmentation (especially on a 32bit machine). You could see failures in 1120 * the end. Please use this function for short-lived objects. 1121 * 1122 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1123 */ 1124 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1125 { 1126 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1127 unsigned long addr; 1128 void *mem; 1129 1130 if (likely(count <= VMAP_MAX_ALLOC)) { 1131 mem = vb_alloc(size, GFP_KERNEL); 1132 if (IS_ERR(mem)) 1133 return NULL; 1134 addr = (unsigned long)mem; 1135 } else { 1136 struct vmap_area *va; 1137 va = alloc_vmap_area(size, PAGE_SIZE, 1138 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1139 if (IS_ERR(va)) 1140 return NULL; 1141 1142 addr = va->va_start; 1143 mem = (void *)addr; 1144 } 1145 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1146 vm_unmap_ram(mem, count); 1147 return NULL; 1148 } 1149 return mem; 1150 } 1151 EXPORT_SYMBOL(vm_map_ram); 1152 1153 static struct vm_struct *vmlist __initdata; 1154 /** 1155 * vm_area_add_early - add vmap area early during boot 1156 * @vm: vm_struct to add 1157 * 1158 * This function is used to add fixed kernel vm area to vmlist before 1159 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1160 * should contain proper values and the other fields should be zero. 1161 * 1162 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1163 */ 1164 void __init vm_area_add_early(struct vm_struct *vm) 1165 { 1166 struct vm_struct *tmp, **p; 1167 1168 BUG_ON(vmap_initialized); 1169 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1170 if (tmp->addr >= vm->addr) { 1171 BUG_ON(tmp->addr < vm->addr + vm->size); 1172 break; 1173 } else 1174 BUG_ON(tmp->addr + tmp->size > vm->addr); 1175 } 1176 vm->next = *p; 1177 *p = vm; 1178 } 1179 1180 /** 1181 * vm_area_register_early - register vmap area early during boot 1182 * @vm: vm_struct to register 1183 * @align: requested alignment 1184 * 1185 * This function is used to register kernel vm area before 1186 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1187 * proper values on entry and other fields should be zero. On return, 1188 * vm->addr contains the allocated address. 1189 * 1190 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1191 */ 1192 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1193 { 1194 static size_t vm_init_off __initdata; 1195 unsigned long addr; 1196 1197 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1198 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1199 1200 vm->addr = (void *)addr; 1201 1202 vm_area_add_early(vm); 1203 } 1204 1205 void __init vmalloc_init(void) 1206 { 1207 struct vmap_area *va; 1208 struct vm_struct *tmp; 1209 int i; 1210 1211 for_each_possible_cpu(i) { 1212 struct vmap_block_queue *vbq; 1213 struct vfree_deferred *p; 1214 1215 vbq = &per_cpu(vmap_block_queue, i); 1216 spin_lock_init(&vbq->lock); 1217 INIT_LIST_HEAD(&vbq->free); 1218 p = &per_cpu(vfree_deferred, i); 1219 init_llist_head(&p->list); 1220 INIT_WORK(&p->wq, free_work); 1221 } 1222 1223 /* Import existing vmlist entries. */ 1224 for (tmp = vmlist; tmp; tmp = tmp->next) { 1225 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1226 va->flags = VM_VM_AREA; 1227 va->va_start = (unsigned long)tmp->addr; 1228 va->va_end = va->va_start + tmp->size; 1229 va->vm = tmp; 1230 __insert_vmap_area(va); 1231 } 1232 1233 vmap_area_pcpu_hole = VMALLOC_END; 1234 1235 vmap_initialized = true; 1236 } 1237 1238 /** 1239 * map_kernel_range_noflush - map kernel VM area with the specified pages 1240 * @addr: start of the VM area to map 1241 * @size: size of the VM area to map 1242 * @prot: page protection flags to use 1243 * @pages: pages to map 1244 * 1245 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1246 * specify should have been allocated using get_vm_area() and its 1247 * friends. 1248 * 1249 * NOTE: 1250 * This function does NOT do any cache flushing. The caller is 1251 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1252 * before calling this function. 1253 * 1254 * RETURNS: 1255 * The number of pages mapped on success, -errno on failure. 1256 */ 1257 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1258 pgprot_t prot, struct page **pages) 1259 { 1260 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1261 } 1262 1263 /** 1264 * unmap_kernel_range_noflush - unmap kernel VM area 1265 * @addr: start of the VM area to unmap 1266 * @size: size of the VM area to unmap 1267 * 1268 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1269 * specify should have been allocated using get_vm_area() and its 1270 * friends. 1271 * 1272 * NOTE: 1273 * This function does NOT do any cache flushing. The caller is 1274 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1275 * before calling this function and flush_tlb_kernel_range() after. 1276 */ 1277 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1278 { 1279 vunmap_page_range(addr, addr + size); 1280 } 1281 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1282 1283 /** 1284 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1285 * @addr: start of the VM area to unmap 1286 * @size: size of the VM area to unmap 1287 * 1288 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1289 * the unmapping and tlb after. 1290 */ 1291 void unmap_kernel_range(unsigned long addr, unsigned long size) 1292 { 1293 unsigned long end = addr + size; 1294 1295 flush_cache_vunmap(addr, end); 1296 vunmap_page_range(addr, end); 1297 flush_tlb_kernel_range(addr, end); 1298 } 1299 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1300 1301 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1302 { 1303 unsigned long addr = (unsigned long)area->addr; 1304 unsigned long end = addr + get_vm_area_size(area); 1305 int err; 1306 1307 err = vmap_page_range(addr, end, prot, pages); 1308 1309 return err > 0 ? 0 : err; 1310 } 1311 EXPORT_SYMBOL_GPL(map_vm_area); 1312 1313 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1314 unsigned long flags, const void *caller) 1315 { 1316 spin_lock(&vmap_area_lock); 1317 vm->flags = flags; 1318 vm->addr = (void *)va->va_start; 1319 vm->size = va->va_end - va->va_start; 1320 vm->caller = caller; 1321 va->vm = vm; 1322 va->flags |= VM_VM_AREA; 1323 spin_unlock(&vmap_area_lock); 1324 } 1325 1326 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1327 { 1328 /* 1329 * Before removing VM_UNINITIALIZED, 1330 * we should make sure that vm has proper values. 1331 * Pair with smp_rmb() in show_numa_info(). 1332 */ 1333 smp_wmb(); 1334 vm->flags &= ~VM_UNINITIALIZED; 1335 } 1336 1337 static struct vm_struct *__get_vm_area_node(unsigned long size, 1338 unsigned long align, unsigned long flags, unsigned long start, 1339 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1340 { 1341 struct vmap_area *va; 1342 struct vm_struct *area; 1343 1344 BUG_ON(in_interrupt()); 1345 size = PAGE_ALIGN(size); 1346 if (unlikely(!size)) 1347 return NULL; 1348 1349 if (flags & VM_IOREMAP) 1350 align = 1ul << clamp_t(int, get_count_order_long(size), 1351 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1352 1353 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1354 if (unlikely(!area)) 1355 return NULL; 1356 1357 if (!(flags & VM_NO_GUARD)) 1358 size += PAGE_SIZE; 1359 1360 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1361 if (IS_ERR(va)) { 1362 kfree(area); 1363 return NULL; 1364 } 1365 1366 setup_vmalloc_vm(area, va, flags, caller); 1367 1368 return area; 1369 } 1370 1371 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1372 unsigned long start, unsigned long end) 1373 { 1374 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1375 GFP_KERNEL, __builtin_return_address(0)); 1376 } 1377 EXPORT_SYMBOL_GPL(__get_vm_area); 1378 1379 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1380 unsigned long start, unsigned long end, 1381 const void *caller) 1382 { 1383 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1384 GFP_KERNEL, caller); 1385 } 1386 1387 /** 1388 * get_vm_area - reserve a contiguous kernel virtual area 1389 * @size: size of the area 1390 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1391 * 1392 * Search an area of @size in the kernel virtual mapping area, 1393 * and reserved it for out purposes. Returns the area descriptor 1394 * on success or %NULL on failure. 1395 */ 1396 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1397 { 1398 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1399 NUMA_NO_NODE, GFP_KERNEL, 1400 __builtin_return_address(0)); 1401 } 1402 1403 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1404 const void *caller) 1405 { 1406 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1407 NUMA_NO_NODE, GFP_KERNEL, caller); 1408 } 1409 1410 /** 1411 * find_vm_area - find a continuous kernel virtual area 1412 * @addr: base address 1413 * 1414 * Search for the kernel VM area starting at @addr, and return it. 1415 * It is up to the caller to do all required locking to keep the returned 1416 * pointer valid. 1417 */ 1418 struct vm_struct *find_vm_area(const void *addr) 1419 { 1420 struct vmap_area *va; 1421 1422 va = find_vmap_area((unsigned long)addr); 1423 if (va && va->flags & VM_VM_AREA) 1424 return va->vm; 1425 1426 return NULL; 1427 } 1428 1429 /** 1430 * remove_vm_area - find and remove a continuous kernel virtual area 1431 * @addr: base address 1432 * 1433 * Search for the kernel VM area starting at @addr, and remove it. 1434 * This function returns the found VM area, but using it is NOT safe 1435 * on SMP machines, except for its size or flags. 1436 */ 1437 struct vm_struct *remove_vm_area(const void *addr) 1438 { 1439 struct vmap_area *va; 1440 1441 might_sleep(); 1442 1443 va = find_vmap_area((unsigned long)addr); 1444 if (va && va->flags & VM_VM_AREA) { 1445 struct vm_struct *vm = va->vm; 1446 1447 spin_lock(&vmap_area_lock); 1448 va->vm = NULL; 1449 va->flags &= ~VM_VM_AREA; 1450 spin_unlock(&vmap_area_lock); 1451 1452 vmap_debug_free_range(va->va_start, va->va_end); 1453 kasan_free_shadow(vm); 1454 free_unmap_vmap_area(va); 1455 1456 return vm; 1457 } 1458 return NULL; 1459 } 1460 1461 static void __vunmap(const void *addr, int deallocate_pages) 1462 { 1463 struct vm_struct *area; 1464 1465 if (!addr) 1466 return; 1467 1468 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1469 addr)) 1470 return; 1471 1472 area = remove_vm_area(addr); 1473 if (unlikely(!area)) { 1474 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1475 addr); 1476 return; 1477 } 1478 1479 debug_check_no_locks_freed(addr, get_vm_area_size(area)); 1480 debug_check_no_obj_freed(addr, get_vm_area_size(area)); 1481 1482 if (deallocate_pages) { 1483 int i; 1484 1485 for (i = 0; i < area->nr_pages; i++) { 1486 struct page *page = area->pages[i]; 1487 1488 BUG_ON(!page); 1489 __free_pages(page, 0); 1490 } 1491 1492 kvfree(area->pages); 1493 } 1494 1495 kfree(area); 1496 return; 1497 } 1498 1499 static inline void __vfree_deferred(const void *addr) 1500 { 1501 /* 1502 * Use raw_cpu_ptr() because this can be called from preemptible 1503 * context. Preemption is absolutely fine here, because the llist_add() 1504 * implementation is lockless, so it works even if we are adding to 1505 * nother cpu's list. schedule_work() should be fine with this too. 1506 */ 1507 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 1508 1509 if (llist_add((struct llist_node *)addr, &p->list)) 1510 schedule_work(&p->wq); 1511 } 1512 1513 /** 1514 * vfree_atomic - release memory allocated by vmalloc() 1515 * @addr: memory base address 1516 * 1517 * This one is just like vfree() but can be called in any atomic context 1518 * except NMIs. 1519 */ 1520 void vfree_atomic(const void *addr) 1521 { 1522 BUG_ON(in_nmi()); 1523 1524 kmemleak_free(addr); 1525 1526 if (!addr) 1527 return; 1528 __vfree_deferred(addr); 1529 } 1530 1531 /** 1532 * vfree - release memory allocated by vmalloc() 1533 * @addr: memory base address 1534 * 1535 * Free the virtually continuous memory area starting at @addr, as 1536 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1537 * NULL, no operation is performed. 1538 * 1539 * Must not be called in NMI context (strictly speaking, only if we don't 1540 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1541 * conventions for vfree() arch-depenedent would be a really bad idea) 1542 * 1543 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) 1544 */ 1545 void vfree(const void *addr) 1546 { 1547 BUG_ON(in_nmi()); 1548 1549 kmemleak_free(addr); 1550 1551 if (!addr) 1552 return; 1553 if (unlikely(in_interrupt())) 1554 __vfree_deferred(addr); 1555 else 1556 __vunmap(addr, 1); 1557 } 1558 EXPORT_SYMBOL(vfree); 1559 1560 /** 1561 * vunmap - release virtual mapping obtained by vmap() 1562 * @addr: memory base address 1563 * 1564 * Free the virtually contiguous memory area starting at @addr, 1565 * which was created from the page array passed to vmap(). 1566 * 1567 * Must not be called in interrupt context. 1568 */ 1569 void vunmap(const void *addr) 1570 { 1571 BUG_ON(in_interrupt()); 1572 might_sleep(); 1573 if (addr) 1574 __vunmap(addr, 0); 1575 } 1576 EXPORT_SYMBOL(vunmap); 1577 1578 /** 1579 * vmap - map an array of pages into virtually contiguous space 1580 * @pages: array of page pointers 1581 * @count: number of pages to map 1582 * @flags: vm_area->flags 1583 * @prot: page protection for the mapping 1584 * 1585 * Maps @count pages from @pages into contiguous kernel virtual 1586 * space. 1587 */ 1588 void *vmap(struct page **pages, unsigned int count, 1589 unsigned long flags, pgprot_t prot) 1590 { 1591 struct vm_struct *area; 1592 unsigned long size; /* In bytes */ 1593 1594 might_sleep(); 1595 1596 if (count > totalram_pages) 1597 return NULL; 1598 1599 size = (unsigned long)count << PAGE_SHIFT; 1600 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 1601 if (!area) 1602 return NULL; 1603 1604 if (map_vm_area(area, prot, pages)) { 1605 vunmap(area->addr); 1606 return NULL; 1607 } 1608 1609 return area->addr; 1610 } 1611 EXPORT_SYMBOL(vmap); 1612 1613 static void *__vmalloc_node(unsigned long size, unsigned long align, 1614 gfp_t gfp_mask, pgprot_t prot, 1615 int node, const void *caller); 1616 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1617 pgprot_t prot, int node) 1618 { 1619 struct page **pages; 1620 unsigned int nr_pages, array_size, i; 1621 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1622 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1623 1624 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1625 array_size = (nr_pages * sizeof(struct page *)); 1626 1627 area->nr_pages = nr_pages; 1628 /* Please note that the recursion is strictly bounded. */ 1629 if (array_size > PAGE_SIZE) { 1630 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1631 PAGE_KERNEL, node, area->caller); 1632 } else { 1633 pages = kmalloc_node(array_size, nested_gfp, node); 1634 } 1635 area->pages = pages; 1636 if (!area->pages) { 1637 remove_vm_area(area->addr); 1638 kfree(area); 1639 return NULL; 1640 } 1641 1642 for (i = 0; i < area->nr_pages; i++) { 1643 struct page *page; 1644 1645 if (fatal_signal_pending(current)) { 1646 area->nr_pages = i; 1647 goto fail; 1648 } 1649 1650 if (node == NUMA_NO_NODE) 1651 page = alloc_page(alloc_mask); 1652 else 1653 page = alloc_pages_node(node, alloc_mask, 0); 1654 1655 if (unlikely(!page)) { 1656 /* Successfully allocated i pages, free them in __vunmap() */ 1657 area->nr_pages = i; 1658 goto fail; 1659 } 1660 area->pages[i] = page; 1661 if (gfpflags_allow_blocking(gfp_mask)) 1662 cond_resched(); 1663 } 1664 1665 if (map_vm_area(area, prot, pages)) 1666 goto fail; 1667 return area->addr; 1668 1669 fail: 1670 warn_alloc(gfp_mask, NULL, 1671 "vmalloc: allocation failure, allocated %ld of %ld bytes", 1672 (area->nr_pages*PAGE_SIZE), area->size); 1673 vfree(area->addr); 1674 return NULL; 1675 } 1676 1677 /** 1678 * __vmalloc_node_range - allocate virtually contiguous memory 1679 * @size: allocation size 1680 * @align: desired alignment 1681 * @start: vm area range start 1682 * @end: vm area range end 1683 * @gfp_mask: flags for the page level allocator 1684 * @prot: protection mask for the allocated pages 1685 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1686 * @node: node to use for allocation or NUMA_NO_NODE 1687 * @caller: caller's return address 1688 * 1689 * Allocate enough pages to cover @size from the page level 1690 * allocator with @gfp_mask flags. Map them into contiguous 1691 * kernel virtual space, using a pagetable protection of @prot. 1692 */ 1693 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1694 unsigned long start, unsigned long end, gfp_t gfp_mask, 1695 pgprot_t prot, unsigned long vm_flags, int node, 1696 const void *caller) 1697 { 1698 struct vm_struct *area; 1699 void *addr; 1700 unsigned long real_size = size; 1701 1702 size = PAGE_ALIGN(size); 1703 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1704 goto fail; 1705 1706 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1707 vm_flags, start, end, node, gfp_mask, caller); 1708 if (!area) 1709 goto fail; 1710 1711 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1712 if (!addr) 1713 return NULL; 1714 1715 /* 1716 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1717 * flag. It means that vm_struct is not fully initialized. 1718 * Now, it is fully initialized, so remove this flag here. 1719 */ 1720 clear_vm_uninitialized_flag(area); 1721 1722 /* 1723 * A ref_count = 2 is needed because vm_struct allocated in 1724 * __get_vm_area_node() contains a reference to the virtual address of 1725 * the vmalloc'ed block. 1726 */ 1727 kmemleak_alloc(addr, real_size, 2, gfp_mask); 1728 1729 return addr; 1730 1731 fail: 1732 warn_alloc(gfp_mask, NULL, 1733 "vmalloc: allocation failure: %lu bytes", real_size); 1734 return NULL; 1735 } 1736 1737 /** 1738 * __vmalloc_node - allocate virtually contiguous memory 1739 * @size: allocation size 1740 * @align: desired alignment 1741 * @gfp_mask: flags for the page level allocator 1742 * @prot: protection mask for the allocated pages 1743 * @node: node to use for allocation or NUMA_NO_NODE 1744 * @caller: caller's return address 1745 * 1746 * Allocate enough pages to cover @size from the page level 1747 * allocator with @gfp_mask flags. Map them into contiguous 1748 * kernel virtual space, using a pagetable protection of @prot. 1749 */ 1750 static void *__vmalloc_node(unsigned long size, unsigned long align, 1751 gfp_t gfp_mask, pgprot_t prot, 1752 int node, const void *caller) 1753 { 1754 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1755 gfp_mask, prot, 0, node, caller); 1756 } 1757 1758 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1759 { 1760 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1761 __builtin_return_address(0)); 1762 } 1763 EXPORT_SYMBOL(__vmalloc); 1764 1765 static inline void *__vmalloc_node_flags(unsigned long size, 1766 int node, gfp_t flags) 1767 { 1768 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1769 node, __builtin_return_address(0)); 1770 } 1771 1772 /** 1773 * vmalloc - allocate virtually contiguous memory 1774 * @size: allocation size 1775 * Allocate enough pages to cover @size from the page level 1776 * allocator and map them into contiguous kernel virtual space. 1777 * 1778 * For tight control over page level allocator and protection flags 1779 * use __vmalloc() instead. 1780 */ 1781 void *vmalloc(unsigned long size) 1782 { 1783 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1784 GFP_KERNEL | __GFP_HIGHMEM); 1785 } 1786 EXPORT_SYMBOL(vmalloc); 1787 1788 /** 1789 * vzalloc - allocate virtually contiguous memory with zero fill 1790 * @size: allocation size 1791 * Allocate enough pages to cover @size from the page level 1792 * allocator and map them into contiguous kernel virtual space. 1793 * The memory allocated is set to zero. 1794 * 1795 * For tight control over page level allocator and protection flags 1796 * use __vmalloc() instead. 1797 */ 1798 void *vzalloc(unsigned long size) 1799 { 1800 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1801 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1802 } 1803 EXPORT_SYMBOL(vzalloc); 1804 1805 /** 1806 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1807 * @size: allocation size 1808 * 1809 * The resulting memory area is zeroed so it can be mapped to userspace 1810 * without leaking data. 1811 */ 1812 void *vmalloc_user(unsigned long size) 1813 { 1814 struct vm_struct *area; 1815 void *ret; 1816 1817 ret = __vmalloc_node(size, SHMLBA, 1818 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1819 PAGE_KERNEL, NUMA_NO_NODE, 1820 __builtin_return_address(0)); 1821 if (ret) { 1822 area = find_vm_area(ret); 1823 area->flags |= VM_USERMAP; 1824 } 1825 return ret; 1826 } 1827 EXPORT_SYMBOL(vmalloc_user); 1828 1829 /** 1830 * vmalloc_node - allocate memory on a specific node 1831 * @size: allocation size 1832 * @node: numa node 1833 * 1834 * Allocate enough pages to cover @size from the page level 1835 * allocator and map them into contiguous kernel virtual space. 1836 * 1837 * For tight control over page level allocator and protection flags 1838 * use __vmalloc() instead. 1839 */ 1840 void *vmalloc_node(unsigned long size, int node) 1841 { 1842 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1843 node, __builtin_return_address(0)); 1844 } 1845 EXPORT_SYMBOL(vmalloc_node); 1846 1847 /** 1848 * vzalloc_node - allocate memory on a specific node with zero fill 1849 * @size: allocation size 1850 * @node: numa node 1851 * 1852 * Allocate enough pages to cover @size from the page level 1853 * allocator and map them into contiguous kernel virtual space. 1854 * The memory allocated is set to zero. 1855 * 1856 * For tight control over page level allocator and protection flags 1857 * use __vmalloc_node() instead. 1858 */ 1859 void *vzalloc_node(unsigned long size, int node) 1860 { 1861 return __vmalloc_node_flags(size, node, 1862 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1863 } 1864 EXPORT_SYMBOL(vzalloc_node); 1865 1866 #ifndef PAGE_KERNEL_EXEC 1867 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1868 #endif 1869 1870 /** 1871 * vmalloc_exec - allocate virtually contiguous, executable memory 1872 * @size: allocation size 1873 * 1874 * Kernel-internal function to allocate enough pages to cover @size 1875 * the page level allocator and map them into contiguous and 1876 * executable kernel virtual space. 1877 * 1878 * For tight control over page level allocator and protection flags 1879 * use __vmalloc() instead. 1880 */ 1881 1882 void *vmalloc_exec(unsigned long size) 1883 { 1884 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1885 NUMA_NO_NODE, __builtin_return_address(0)); 1886 } 1887 1888 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1889 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1890 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1891 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1892 #else 1893 #define GFP_VMALLOC32 GFP_KERNEL 1894 #endif 1895 1896 /** 1897 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1898 * @size: allocation size 1899 * 1900 * Allocate enough 32bit PA addressable pages to cover @size from the 1901 * page level allocator and map them into contiguous kernel virtual space. 1902 */ 1903 void *vmalloc_32(unsigned long size) 1904 { 1905 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1906 NUMA_NO_NODE, __builtin_return_address(0)); 1907 } 1908 EXPORT_SYMBOL(vmalloc_32); 1909 1910 /** 1911 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1912 * @size: allocation size 1913 * 1914 * The resulting memory area is 32bit addressable and zeroed so it can be 1915 * mapped to userspace without leaking data. 1916 */ 1917 void *vmalloc_32_user(unsigned long size) 1918 { 1919 struct vm_struct *area; 1920 void *ret; 1921 1922 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1923 NUMA_NO_NODE, __builtin_return_address(0)); 1924 if (ret) { 1925 area = find_vm_area(ret); 1926 area->flags |= VM_USERMAP; 1927 } 1928 return ret; 1929 } 1930 EXPORT_SYMBOL(vmalloc_32_user); 1931 1932 /* 1933 * small helper routine , copy contents to buf from addr. 1934 * If the page is not present, fill zero. 1935 */ 1936 1937 static int aligned_vread(char *buf, char *addr, unsigned long count) 1938 { 1939 struct page *p; 1940 int copied = 0; 1941 1942 while (count) { 1943 unsigned long offset, length; 1944 1945 offset = offset_in_page(addr); 1946 length = PAGE_SIZE - offset; 1947 if (length > count) 1948 length = count; 1949 p = vmalloc_to_page(addr); 1950 /* 1951 * To do safe access to this _mapped_ area, we need 1952 * lock. But adding lock here means that we need to add 1953 * overhead of vmalloc()/vfree() calles for this _debug_ 1954 * interface, rarely used. Instead of that, we'll use 1955 * kmap() and get small overhead in this access function. 1956 */ 1957 if (p) { 1958 /* 1959 * we can expect USER0 is not used (see vread/vwrite's 1960 * function description) 1961 */ 1962 void *map = kmap_atomic(p); 1963 memcpy(buf, map + offset, length); 1964 kunmap_atomic(map); 1965 } else 1966 memset(buf, 0, length); 1967 1968 addr += length; 1969 buf += length; 1970 copied += length; 1971 count -= length; 1972 } 1973 return copied; 1974 } 1975 1976 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1977 { 1978 struct page *p; 1979 int copied = 0; 1980 1981 while (count) { 1982 unsigned long offset, length; 1983 1984 offset = offset_in_page(addr); 1985 length = PAGE_SIZE - offset; 1986 if (length > count) 1987 length = count; 1988 p = vmalloc_to_page(addr); 1989 /* 1990 * To do safe access to this _mapped_ area, we need 1991 * lock. But adding lock here means that we need to add 1992 * overhead of vmalloc()/vfree() calles for this _debug_ 1993 * interface, rarely used. Instead of that, we'll use 1994 * kmap() and get small overhead in this access function. 1995 */ 1996 if (p) { 1997 /* 1998 * we can expect USER0 is not used (see vread/vwrite's 1999 * function description) 2000 */ 2001 void *map = kmap_atomic(p); 2002 memcpy(map + offset, buf, length); 2003 kunmap_atomic(map); 2004 } 2005 addr += length; 2006 buf += length; 2007 copied += length; 2008 count -= length; 2009 } 2010 return copied; 2011 } 2012 2013 /** 2014 * vread() - read vmalloc area in a safe way. 2015 * @buf: buffer for reading data 2016 * @addr: vm address. 2017 * @count: number of bytes to be read. 2018 * 2019 * Returns # of bytes which addr and buf should be increased. 2020 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 2021 * includes any intersect with alive vmalloc area. 2022 * 2023 * This function checks that addr is a valid vmalloc'ed area, and 2024 * copy data from that area to a given buffer. If the given memory range 2025 * of [addr...addr+count) includes some valid address, data is copied to 2026 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2027 * IOREMAP area is treated as memory hole and no copy is done. 2028 * 2029 * If [addr...addr+count) doesn't includes any intersects with alive 2030 * vm_struct area, returns 0. @buf should be kernel's buffer. 2031 * 2032 * Note: In usual ops, vread() is never necessary because the caller 2033 * should know vmalloc() area is valid and can use memcpy(). 2034 * This is for routines which have to access vmalloc area without 2035 * any informaion, as /dev/kmem. 2036 * 2037 */ 2038 2039 long vread(char *buf, char *addr, unsigned long count) 2040 { 2041 struct vmap_area *va; 2042 struct vm_struct *vm; 2043 char *vaddr, *buf_start = buf; 2044 unsigned long buflen = count; 2045 unsigned long n; 2046 2047 /* Don't allow overflow */ 2048 if ((unsigned long) addr + count < count) 2049 count = -(unsigned long) addr; 2050 2051 spin_lock(&vmap_area_lock); 2052 list_for_each_entry(va, &vmap_area_list, list) { 2053 if (!count) 2054 break; 2055 2056 if (!(va->flags & VM_VM_AREA)) 2057 continue; 2058 2059 vm = va->vm; 2060 vaddr = (char *) vm->addr; 2061 if (addr >= vaddr + get_vm_area_size(vm)) 2062 continue; 2063 while (addr < vaddr) { 2064 if (count == 0) 2065 goto finished; 2066 *buf = '\0'; 2067 buf++; 2068 addr++; 2069 count--; 2070 } 2071 n = vaddr + get_vm_area_size(vm) - addr; 2072 if (n > count) 2073 n = count; 2074 if (!(vm->flags & VM_IOREMAP)) 2075 aligned_vread(buf, addr, n); 2076 else /* IOREMAP area is treated as memory hole */ 2077 memset(buf, 0, n); 2078 buf += n; 2079 addr += n; 2080 count -= n; 2081 } 2082 finished: 2083 spin_unlock(&vmap_area_lock); 2084 2085 if (buf == buf_start) 2086 return 0; 2087 /* zero-fill memory holes */ 2088 if (buf != buf_start + buflen) 2089 memset(buf, 0, buflen - (buf - buf_start)); 2090 2091 return buflen; 2092 } 2093 2094 /** 2095 * vwrite() - write vmalloc area in a safe way. 2096 * @buf: buffer for source data 2097 * @addr: vm address. 2098 * @count: number of bytes to be read. 2099 * 2100 * Returns # of bytes which addr and buf should be incresed. 2101 * (same number to @count). 2102 * If [addr...addr+count) doesn't includes any intersect with valid 2103 * vmalloc area, returns 0. 2104 * 2105 * This function checks that addr is a valid vmalloc'ed area, and 2106 * copy data from a buffer to the given addr. If specified range of 2107 * [addr...addr+count) includes some valid address, data is copied from 2108 * proper area of @buf. If there are memory holes, no copy to hole. 2109 * IOREMAP area is treated as memory hole and no copy is done. 2110 * 2111 * If [addr...addr+count) doesn't includes any intersects with alive 2112 * vm_struct area, returns 0. @buf should be kernel's buffer. 2113 * 2114 * Note: In usual ops, vwrite() is never necessary because the caller 2115 * should know vmalloc() area is valid and can use memcpy(). 2116 * This is for routines which have to access vmalloc area without 2117 * any informaion, as /dev/kmem. 2118 */ 2119 2120 long vwrite(char *buf, char *addr, unsigned long count) 2121 { 2122 struct vmap_area *va; 2123 struct vm_struct *vm; 2124 char *vaddr; 2125 unsigned long n, buflen; 2126 int copied = 0; 2127 2128 /* Don't allow overflow */ 2129 if ((unsigned long) addr + count < count) 2130 count = -(unsigned long) addr; 2131 buflen = count; 2132 2133 spin_lock(&vmap_area_lock); 2134 list_for_each_entry(va, &vmap_area_list, list) { 2135 if (!count) 2136 break; 2137 2138 if (!(va->flags & VM_VM_AREA)) 2139 continue; 2140 2141 vm = va->vm; 2142 vaddr = (char *) vm->addr; 2143 if (addr >= vaddr + get_vm_area_size(vm)) 2144 continue; 2145 while (addr < vaddr) { 2146 if (count == 0) 2147 goto finished; 2148 buf++; 2149 addr++; 2150 count--; 2151 } 2152 n = vaddr + get_vm_area_size(vm) - addr; 2153 if (n > count) 2154 n = count; 2155 if (!(vm->flags & VM_IOREMAP)) { 2156 aligned_vwrite(buf, addr, n); 2157 copied++; 2158 } 2159 buf += n; 2160 addr += n; 2161 count -= n; 2162 } 2163 finished: 2164 spin_unlock(&vmap_area_lock); 2165 if (!copied) 2166 return 0; 2167 return buflen; 2168 } 2169 2170 /** 2171 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2172 * @vma: vma to cover 2173 * @uaddr: target user address to start at 2174 * @kaddr: virtual address of vmalloc kernel memory 2175 * @size: size of map area 2176 * 2177 * Returns: 0 for success, -Exxx on failure 2178 * 2179 * This function checks that @kaddr is a valid vmalloc'ed area, 2180 * and that it is big enough to cover the range starting at 2181 * @uaddr in @vma. Will return failure if that criteria isn't 2182 * met. 2183 * 2184 * Similar to remap_pfn_range() (see mm/memory.c) 2185 */ 2186 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2187 void *kaddr, unsigned long size) 2188 { 2189 struct vm_struct *area; 2190 2191 size = PAGE_ALIGN(size); 2192 2193 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2194 return -EINVAL; 2195 2196 area = find_vm_area(kaddr); 2197 if (!area) 2198 return -EINVAL; 2199 2200 if (!(area->flags & VM_USERMAP)) 2201 return -EINVAL; 2202 2203 if (kaddr + size > area->addr + area->size) 2204 return -EINVAL; 2205 2206 do { 2207 struct page *page = vmalloc_to_page(kaddr); 2208 int ret; 2209 2210 ret = vm_insert_page(vma, uaddr, page); 2211 if (ret) 2212 return ret; 2213 2214 uaddr += PAGE_SIZE; 2215 kaddr += PAGE_SIZE; 2216 size -= PAGE_SIZE; 2217 } while (size > 0); 2218 2219 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2220 2221 return 0; 2222 } 2223 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2224 2225 /** 2226 * remap_vmalloc_range - map vmalloc pages to userspace 2227 * @vma: vma to cover (map full range of vma) 2228 * @addr: vmalloc memory 2229 * @pgoff: number of pages into addr before first page to map 2230 * 2231 * Returns: 0 for success, -Exxx on failure 2232 * 2233 * This function checks that addr is a valid vmalloc'ed area, and 2234 * that it is big enough to cover the vma. Will return failure if 2235 * that criteria isn't met. 2236 * 2237 * Similar to remap_pfn_range() (see mm/memory.c) 2238 */ 2239 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2240 unsigned long pgoff) 2241 { 2242 return remap_vmalloc_range_partial(vma, vma->vm_start, 2243 addr + (pgoff << PAGE_SHIFT), 2244 vma->vm_end - vma->vm_start); 2245 } 2246 EXPORT_SYMBOL(remap_vmalloc_range); 2247 2248 /* 2249 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2250 * have one. 2251 */ 2252 void __weak vmalloc_sync_all(void) 2253 { 2254 } 2255 2256 2257 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2258 { 2259 pte_t ***p = data; 2260 2261 if (p) { 2262 *(*p) = pte; 2263 (*p)++; 2264 } 2265 return 0; 2266 } 2267 2268 /** 2269 * alloc_vm_area - allocate a range of kernel address space 2270 * @size: size of the area 2271 * @ptes: returns the PTEs for the address space 2272 * 2273 * Returns: NULL on failure, vm_struct on success 2274 * 2275 * This function reserves a range of kernel address space, and 2276 * allocates pagetables to map that range. No actual mappings 2277 * are created. 2278 * 2279 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2280 * allocated for the VM area are returned. 2281 */ 2282 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2283 { 2284 struct vm_struct *area; 2285 2286 area = get_vm_area_caller(size, VM_IOREMAP, 2287 __builtin_return_address(0)); 2288 if (area == NULL) 2289 return NULL; 2290 2291 /* 2292 * This ensures that page tables are constructed for this region 2293 * of kernel virtual address space and mapped into init_mm. 2294 */ 2295 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2296 size, f, ptes ? &ptes : NULL)) { 2297 free_vm_area(area); 2298 return NULL; 2299 } 2300 2301 return area; 2302 } 2303 EXPORT_SYMBOL_GPL(alloc_vm_area); 2304 2305 void free_vm_area(struct vm_struct *area) 2306 { 2307 struct vm_struct *ret; 2308 ret = remove_vm_area(area->addr); 2309 BUG_ON(ret != area); 2310 kfree(area); 2311 } 2312 EXPORT_SYMBOL_GPL(free_vm_area); 2313 2314 #ifdef CONFIG_SMP 2315 static struct vmap_area *node_to_va(struct rb_node *n) 2316 { 2317 return rb_entry_safe(n, struct vmap_area, rb_node); 2318 } 2319 2320 /** 2321 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2322 * @end: target address 2323 * @pnext: out arg for the next vmap_area 2324 * @pprev: out arg for the previous vmap_area 2325 * 2326 * Returns: %true if either or both of next and prev are found, 2327 * %false if no vmap_area exists 2328 * 2329 * Find vmap_areas end addresses of which enclose @end. ie. if not 2330 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2331 */ 2332 static bool pvm_find_next_prev(unsigned long end, 2333 struct vmap_area **pnext, 2334 struct vmap_area **pprev) 2335 { 2336 struct rb_node *n = vmap_area_root.rb_node; 2337 struct vmap_area *va = NULL; 2338 2339 while (n) { 2340 va = rb_entry(n, struct vmap_area, rb_node); 2341 if (end < va->va_end) 2342 n = n->rb_left; 2343 else if (end > va->va_end) 2344 n = n->rb_right; 2345 else 2346 break; 2347 } 2348 2349 if (!va) 2350 return false; 2351 2352 if (va->va_end > end) { 2353 *pnext = va; 2354 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2355 } else { 2356 *pprev = va; 2357 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2358 } 2359 return true; 2360 } 2361 2362 /** 2363 * pvm_determine_end - find the highest aligned address between two vmap_areas 2364 * @pnext: in/out arg for the next vmap_area 2365 * @pprev: in/out arg for the previous vmap_area 2366 * @align: alignment 2367 * 2368 * Returns: determined end address 2369 * 2370 * Find the highest aligned address between *@pnext and *@pprev below 2371 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2372 * down address is between the end addresses of the two vmap_areas. 2373 * 2374 * Please note that the address returned by this function may fall 2375 * inside *@pnext vmap_area. The caller is responsible for checking 2376 * that. 2377 */ 2378 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2379 struct vmap_area **pprev, 2380 unsigned long align) 2381 { 2382 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2383 unsigned long addr; 2384 2385 if (*pnext) 2386 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2387 else 2388 addr = vmalloc_end; 2389 2390 while (*pprev && (*pprev)->va_end > addr) { 2391 *pnext = *pprev; 2392 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2393 } 2394 2395 return addr; 2396 } 2397 2398 /** 2399 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2400 * @offsets: array containing offset of each area 2401 * @sizes: array containing size of each area 2402 * @nr_vms: the number of areas to allocate 2403 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2404 * 2405 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2406 * vm_structs on success, %NULL on failure 2407 * 2408 * Percpu allocator wants to use congruent vm areas so that it can 2409 * maintain the offsets among percpu areas. This function allocates 2410 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2411 * be scattered pretty far, distance between two areas easily going up 2412 * to gigabytes. To avoid interacting with regular vmallocs, these 2413 * areas are allocated from top. 2414 * 2415 * Despite its complicated look, this allocator is rather simple. It 2416 * does everything top-down and scans areas from the end looking for 2417 * matching slot. While scanning, if any of the areas overlaps with 2418 * existing vmap_area, the base address is pulled down to fit the 2419 * area. Scanning is repeated till all the areas fit and then all 2420 * necessary data structres are inserted and the result is returned. 2421 */ 2422 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2423 const size_t *sizes, int nr_vms, 2424 size_t align) 2425 { 2426 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2427 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2428 struct vmap_area **vas, *prev, *next; 2429 struct vm_struct **vms; 2430 int area, area2, last_area, term_area; 2431 unsigned long base, start, end, last_end; 2432 bool purged = false; 2433 2434 /* verify parameters and allocate data structures */ 2435 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2436 for (last_area = 0, area = 0; area < nr_vms; area++) { 2437 start = offsets[area]; 2438 end = start + sizes[area]; 2439 2440 /* is everything aligned properly? */ 2441 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2442 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2443 2444 /* detect the area with the highest address */ 2445 if (start > offsets[last_area]) 2446 last_area = area; 2447 2448 for (area2 = 0; area2 < nr_vms; area2++) { 2449 unsigned long start2 = offsets[area2]; 2450 unsigned long end2 = start2 + sizes[area2]; 2451 2452 if (area2 == area) 2453 continue; 2454 2455 BUG_ON(start2 >= start && start2 < end); 2456 BUG_ON(end2 <= end && end2 > start); 2457 } 2458 } 2459 last_end = offsets[last_area] + sizes[last_area]; 2460 2461 if (vmalloc_end - vmalloc_start < last_end) { 2462 WARN_ON(true); 2463 return NULL; 2464 } 2465 2466 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2467 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2468 if (!vas || !vms) 2469 goto err_free2; 2470 2471 for (area = 0; area < nr_vms; area++) { 2472 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2473 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2474 if (!vas[area] || !vms[area]) 2475 goto err_free; 2476 } 2477 retry: 2478 spin_lock(&vmap_area_lock); 2479 2480 /* start scanning - we scan from the top, begin with the last area */ 2481 area = term_area = last_area; 2482 start = offsets[area]; 2483 end = start + sizes[area]; 2484 2485 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2486 base = vmalloc_end - last_end; 2487 goto found; 2488 } 2489 base = pvm_determine_end(&next, &prev, align) - end; 2490 2491 while (true) { 2492 BUG_ON(next && next->va_end <= base + end); 2493 BUG_ON(prev && prev->va_end > base + end); 2494 2495 /* 2496 * base might have underflowed, add last_end before 2497 * comparing. 2498 */ 2499 if (base + last_end < vmalloc_start + last_end) { 2500 spin_unlock(&vmap_area_lock); 2501 if (!purged) { 2502 purge_vmap_area_lazy(); 2503 purged = true; 2504 goto retry; 2505 } 2506 goto err_free; 2507 } 2508 2509 /* 2510 * If next overlaps, move base downwards so that it's 2511 * right below next and then recheck. 2512 */ 2513 if (next && next->va_start < base + end) { 2514 base = pvm_determine_end(&next, &prev, align) - end; 2515 term_area = area; 2516 continue; 2517 } 2518 2519 /* 2520 * If prev overlaps, shift down next and prev and move 2521 * base so that it's right below new next and then 2522 * recheck. 2523 */ 2524 if (prev && prev->va_end > base + start) { 2525 next = prev; 2526 prev = node_to_va(rb_prev(&next->rb_node)); 2527 base = pvm_determine_end(&next, &prev, align) - end; 2528 term_area = area; 2529 continue; 2530 } 2531 2532 /* 2533 * This area fits, move on to the previous one. If 2534 * the previous one is the terminal one, we're done. 2535 */ 2536 area = (area + nr_vms - 1) % nr_vms; 2537 if (area == term_area) 2538 break; 2539 start = offsets[area]; 2540 end = start + sizes[area]; 2541 pvm_find_next_prev(base + end, &next, &prev); 2542 } 2543 found: 2544 /* we've found a fitting base, insert all va's */ 2545 for (area = 0; area < nr_vms; area++) { 2546 struct vmap_area *va = vas[area]; 2547 2548 va->va_start = base + offsets[area]; 2549 va->va_end = va->va_start + sizes[area]; 2550 __insert_vmap_area(va); 2551 } 2552 2553 vmap_area_pcpu_hole = base + offsets[last_area]; 2554 2555 spin_unlock(&vmap_area_lock); 2556 2557 /* insert all vm's */ 2558 for (area = 0; area < nr_vms; area++) 2559 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2560 pcpu_get_vm_areas); 2561 2562 kfree(vas); 2563 return vms; 2564 2565 err_free: 2566 for (area = 0; area < nr_vms; area++) { 2567 kfree(vas[area]); 2568 kfree(vms[area]); 2569 } 2570 err_free2: 2571 kfree(vas); 2572 kfree(vms); 2573 return NULL; 2574 } 2575 2576 /** 2577 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2578 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2579 * @nr_vms: the number of allocated areas 2580 * 2581 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2582 */ 2583 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2584 { 2585 int i; 2586 2587 for (i = 0; i < nr_vms; i++) 2588 free_vm_area(vms[i]); 2589 kfree(vms); 2590 } 2591 #endif /* CONFIG_SMP */ 2592 2593 #ifdef CONFIG_PROC_FS 2594 static void *s_start(struct seq_file *m, loff_t *pos) 2595 __acquires(&vmap_area_lock) 2596 { 2597 spin_lock(&vmap_area_lock); 2598 return seq_list_start(&vmap_area_list, *pos); 2599 } 2600 2601 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2602 { 2603 return seq_list_next(p, &vmap_area_list, pos); 2604 } 2605 2606 static void s_stop(struct seq_file *m, void *p) 2607 __releases(&vmap_area_lock) 2608 { 2609 spin_unlock(&vmap_area_lock); 2610 } 2611 2612 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2613 { 2614 if (IS_ENABLED(CONFIG_NUMA)) { 2615 unsigned int nr, *counters = m->private; 2616 2617 if (!counters) 2618 return; 2619 2620 if (v->flags & VM_UNINITIALIZED) 2621 return; 2622 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2623 smp_rmb(); 2624 2625 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2626 2627 for (nr = 0; nr < v->nr_pages; nr++) 2628 counters[page_to_nid(v->pages[nr])]++; 2629 2630 for_each_node_state(nr, N_HIGH_MEMORY) 2631 if (counters[nr]) 2632 seq_printf(m, " N%u=%u", nr, counters[nr]); 2633 } 2634 } 2635 2636 static int s_show(struct seq_file *m, void *p) 2637 { 2638 struct vmap_area *va; 2639 struct vm_struct *v; 2640 2641 va = list_entry(p, struct vmap_area, list); 2642 2643 /* 2644 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2645 * behalf of vmap area is being tear down or vm_map_ram allocation. 2646 */ 2647 if (!(va->flags & VM_VM_AREA)) 2648 return 0; 2649 2650 v = va->vm; 2651 2652 seq_printf(m, "0x%pK-0x%pK %7ld", 2653 v->addr, v->addr + v->size, v->size); 2654 2655 if (v->caller) 2656 seq_printf(m, " %pS", v->caller); 2657 2658 if (v->nr_pages) 2659 seq_printf(m, " pages=%d", v->nr_pages); 2660 2661 if (v->phys_addr) 2662 seq_printf(m, " phys=%pa", &v->phys_addr); 2663 2664 if (v->flags & VM_IOREMAP) 2665 seq_puts(m, " ioremap"); 2666 2667 if (v->flags & VM_ALLOC) 2668 seq_puts(m, " vmalloc"); 2669 2670 if (v->flags & VM_MAP) 2671 seq_puts(m, " vmap"); 2672 2673 if (v->flags & VM_USERMAP) 2674 seq_puts(m, " user"); 2675 2676 if (is_vmalloc_addr(v->pages)) 2677 seq_puts(m, " vpages"); 2678 2679 show_numa_info(m, v); 2680 seq_putc(m, '\n'); 2681 return 0; 2682 } 2683 2684 static const struct seq_operations vmalloc_op = { 2685 .start = s_start, 2686 .next = s_next, 2687 .stop = s_stop, 2688 .show = s_show, 2689 }; 2690 2691 static int vmalloc_open(struct inode *inode, struct file *file) 2692 { 2693 if (IS_ENABLED(CONFIG_NUMA)) 2694 return seq_open_private(file, &vmalloc_op, 2695 nr_node_ids * sizeof(unsigned int)); 2696 else 2697 return seq_open(file, &vmalloc_op); 2698 } 2699 2700 static const struct file_operations proc_vmalloc_operations = { 2701 .open = vmalloc_open, 2702 .read = seq_read, 2703 .llseek = seq_lseek, 2704 .release = seq_release_private, 2705 }; 2706 2707 static int __init proc_vmalloc_init(void) 2708 { 2709 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2710 return 0; 2711 } 2712 module_init(proc_vmalloc_init); 2713 2714 #endif 2715 2716