xref: /openbmc/linux/mm/vmalloc.c (revision a2faac39)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #include "internal.h"
47 #include "pgalloc-track.h"
48 
49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
51 
52 static int __init set_nohugeiomap(char *str)
53 {
54 	ioremap_max_page_shift = PAGE_SHIFT;
55 	return 0;
56 }
57 early_param("nohugeiomap", set_nohugeiomap);
58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
61 
62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63 static bool __ro_after_init vmap_allow_huge = true;
64 
65 static int __init set_nohugevmalloc(char *str)
66 {
67 	vmap_allow_huge = false;
68 	return 0;
69 }
70 early_param("nohugevmalloc", set_nohugevmalloc);
71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 static const bool vmap_allow_huge = false;
73 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
74 
75 bool is_vmalloc_addr(const void *x)
76 {
77 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
78 
79 	return addr >= VMALLOC_START && addr < VMALLOC_END;
80 }
81 EXPORT_SYMBOL(is_vmalloc_addr);
82 
83 struct vfree_deferred {
84 	struct llist_head list;
85 	struct work_struct wq;
86 };
87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
88 
89 static void __vunmap(const void *, int);
90 
91 static void free_work(struct work_struct *w)
92 {
93 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
94 	struct llist_node *t, *llnode;
95 
96 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97 		__vunmap((void *)llnode, 1);
98 }
99 
100 /*** Page table manipulation functions ***/
101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102 			phys_addr_t phys_addr, pgprot_t prot,
103 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
104 {
105 	pte_t *pte;
106 	u64 pfn;
107 	unsigned long size = PAGE_SIZE;
108 
109 	pfn = phys_addr >> PAGE_SHIFT;
110 	pte = pte_alloc_kernel_track(pmd, addr, mask);
111 	if (!pte)
112 		return -ENOMEM;
113 	do {
114 		BUG_ON(!pte_none(*pte));
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 		if (size != PAGE_SIZE) {
119 			pte_t entry = pfn_pte(pfn, prot);
120 
121 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 			set_huge_pte_at(&init_mm, addr, pte, entry);
123 			pfn += PFN_DOWN(size);
124 			continue;
125 		}
126 #endif
127 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 		pfn++;
129 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
130 	*mask |= PGTBL_PTE_MODIFIED;
131 	return 0;
132 }
133 
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 			phys_addr_t phys_addr, pgprot_t prot,
136 			unsigned int max_page_shift)
137 {
138 	if (max_page_shift < PMD_SHIFT)
139 		return 0;
140 
141 	if (!arch_vmap_pmd_supported(prot))
142 		return 0;
143 
144 	if ((end - addr) != PMD_SIZE)
145 		return 0;
146 
147 	if (!IS_ALIGNED(addr, PMD_SIZE))
148 		return 0;
149 
150 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 		return 0;
152 
153 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 		return 0;
155 
156 	return pmd_set_huge(pmd, phys_addr, prot);
157 }
158 
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 			phys_addr_t phys_addr, pgprot_t prot,
161 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 
172 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 					max_page_shift)) {
174 			*mask |= PGTBL_PMD_MODIFIED;
175 			continue;
176 		}
177 
178 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 			return -ENOMEM;
180 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 	return 0;
182 }
183 
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 			phys_addr_t phys_addr, pgprot_t prot,
186 			unsigned int max_page_shift)
187 {
188 	if (max_page_shift < PUD_SHIFT)
189 		return 0;
190 
191 	if (!arch_vmap_pud_supported(prot))
192 		return 0;
193 
194 	if ((end - addr) != PUD_SIZE)
195 		return 0;
196 
197 	if (!IS_ALIGNED(addr, PUD_SIZE))
198 		return 0;
199 
200 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 		return 0;
202 
203 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 		return 0;
205 
206 	return pud_set_huge(pud, phys_addr, prot);
207 }
208 
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 			phys_addr_t phys_addr, pgprot_t prot,
211 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 	pud_t *pud;
214 	unsigned long next;
215 
216 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 	if (!pud)
218 		return -ENOMEM;
219 	do {
220 		next = pud_addr_end(addr, end);
221 
222 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 					max_page_shift)) {
224 			*mask |= PGTBL_PUD_MODIFIED;
225 			continue;
226 		}
227 
228 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 					max_page_shift, mask))
230 			return -ENOMEM;
231 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 	return 0;
233 }
234 
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 			phys_addr_t phys_addr, pgprot_t prot,
237 			unsigned int max_page_shift)
238 {
239 	if (max_page_shift < P4D_SHIFT)
240 		return 0;
241 
242 	if (!arch_vmap_p4d_supported(prot))
243 		return 0;
244 
245 	if ((end - addr) != P4D_SIZE)
246 		return 0;
247 
248 	if (!IS_ALIGNED(addr, P4D_SIZE))
249 		return 0;
250 
251 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 		return 0;
253 
254 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 		return 0;
256 
257 	return p4d_set_huge(p4d, phys_addr, prot);
258 }
259 
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 			phys_addr_t phys_addr, pgprot_t prot,
262 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 	p4d_t *p4d;
265 	unsigned long next;
266 
267 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 	if (!p4d)
269 		return -ENOMEM;
270 	do {
271 		next = p4d_addr_end(addr, end);
272 
273 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 					max_page_shift)) {
275 			*mask |= PGTBL_P4D_MODIFIED;
276 			continue;
277 		}
278 
279 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 					max_page_shift, mask))
281 			return -ENOMEM;
282 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 	return 0;
284 }
285 
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 			phys_addr_t phys_addr, pgprot_t prot,
288 			unsigned int max_page_shift)
289 {
290 	pgd_t *pgd;
291 	unsigned long start;
292 	unsigned long next;
293 	int err;
294 	pgtbl_mod_mask mask = 0;
295 
296 	might_sleep();
297 	BUG_ON(addr >= end);
298 
299 	start = addr;
300 	pgd = pgd_offset_k(addr);
301 	do {
302 		next = pgd_addr_end(addr, end);
303 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 					max_page_shift, &mask);
305 		if (err)
306 			break;
307 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 
309 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 		arch_sync_kernel_mappings(start, end);
311 
312 	return err;
313 }
314 
315 int ioremap_page_range(unsigned long addr, unsigned long end,
316 		phys_addr_t phys_addr, pgprot_t prot)
317 {
318 	int err;
319 
320 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 				 ioremap_max_page_shift);
322 	flush_cache_vmap(addr, end);
323 	return err;
324 }
325 
326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
327 			     pgtbl_mod_mask *mask)
328 {
329 	pte_t *pte;
330 
331 	pte = pte_offset_kernel(pmd, addr);
332 	do {
333 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
334 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
335 	} while (pte++, addr += PAGE_SIZE, addr != end);
336 	*mask |= PGTBL_PTE_MODIFIED;
337 }
338 
339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
340 			     pgtbl_mod_mask *mask)
341 {
342 	pmd_t *pmd;
343 	unsigned long next;
344 	int cleared;
345 
346 	pmd = pmd_offset(pud, addr);
347 	do {
348 		next = pmd_addr_end(addr, end);
349 
350 		cleared = pmd_clear_huge(pmd);
351 		if (cleared || pmd_bad(*pmd))
352 			*mask |= PGTBL_PMD_MODIFIED;
353 
354 		if (cleared)
355 			continue;
356 		if (pmd_none_or_clear_bad(pmd))
357 			continue;
358 		vunmap_pte_range(pmd, addr, next, mask);
359 
360 		cond_resched();
361 	} while (pmd++, addr = next, addr != end);
362 }
363 
364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
365 			     pgtbl_mod_mask *mask)
366 {
367 	pud_t *pud;
368 	unsigned long next;
369 	int cleared;
370 
371 	pud = pud_offset(p4d, addr);
372 	do {
373 		next = pud_addr_end(addr, end);
374 
375 		cleared = pud_clear_huge(pud);
376 		if (cleared || pud_bad(*pud))
377 			*mask |= PGTBL_PUD_MODIFIED;
378 
379 		if (cleared)
380 			continue;
381 		if (pud_none_or_clear_bad(pud))
382 			continue;
383 		vunmap_pmd_range(pud, addr, next, mask);
384 	} while (pud++, addr = next, addr != end);
385 }
386 
387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
388 			     pgtbl_mod_mask *mask)
389 {
390 	p4d_t *p4d;
391 	unsigned long next;
392 
393 	p4d = p4d_offset(pgd, addr);
394 	do {
395 		next = p4d_addr_end(addr, end);
396 
397 		p4d_clear_huge(p4d);
398 		if (p4d_bad(*p4d))
399 			*mask |= PGTBL_P4D_MODIFIED;
400 
401 		if (p4d_none_or_clear_bad(p4d))
402 			continue;
403 		vunmap_pud_range(p4d, addr, next, mask);
404 	} while (p4d++, addr = next, addr != end);
405 }
406 
407 /*
408  * vunmap_range_noflush is similar to vunmap_range, but does not
409  * flush caches or TLBs.
410  *
411  * The caller is responsible for calling flush_cache_vmap() before calling
412  * this function, and flush_tlb_kernel_range after it has returned
413  * successfully (and before the addresses are expected to cause a page fault
414  * or be re-mapped for something else, if TLB flushes are being delayed or
415  * coalesced).
416  *
417  * This is an internal function only. Do not use outside mm/.
418  */
419 void vunmap_range_noflush(unsigned long start, unsigned long end)
420 {
421 	unsigned long next;
422 	pgd_t *pgd;
423 	unsigned long addr = start;
424 	pgtbl_mod_mask mask = 0;
425 
426 	BUG_ON(addr >= end);
427 	pgd = pgd_offset_k(addr);
428 	do {
429 		next = pgd_addr_end(addr, end);
430 		if (pgd_bad(*pgd))
431 			mask |= PGTBL_PGD_MODIFIED;
432 		if (pgd_none_or_clear_bad(pgd))
433 			continue;
434 		vunmap_p4d_range(pgd, addr, next, &mask);
435 	} while (pgd++, addr = next, addr != end);
436 
437 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
438 		arch_sync_kernel_mappings(start, end);
439 }
440 
441 /**
442  * vunmap_range - unmap kernel virtual addresses
443  * @addr: start of the VM area to unmap
444  * @end: end of the VM area to unmap (non-inclusive)
445  *
446  * Clears any present PTEs in the virtual address range, flushes TLBs and
447  * caches. Any subsequent access to the address before it has been re-mapped
448  * is a kernel bug.
449  */
450 void vunmap_range(unsigned long addr, unsigned long end)
451 {
452 	flush_cache_vunmap(addr, end);
453 	vunmap_range_noflush(addr, end);
454 	flush_tlb_kernel_range(addr, end);
455 }
456 
457 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
458 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
459 		pgtbl_mod_mask *mask)
460 {
461 	pte_t *pte;
462 
463 	/*
464 	 * nr is a running index into the array which helps higher level
465 	 * callers keep track of where we're up to.
466 	 */
467 
468 	pte = pte_alloc_kernel_track(pmd, addr, mask);
469 	if (!pte)
470 		return -ENOMEM;
471 	do {
472 		struct page *page = pages[*nr];
473 
474 		if (WARN_ON(!pte_none(*pte)))
475 			return -EBUSY;
476 		if (WARN_ON(!page))
477 			return -ENOMEM;
478 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
479 			return -EINVAL;
480 
481 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
482 		(*nr)++;
483 	} while (pte++, addr += PAGE_SIZE, addr != end);
484 	*mask |= PGTBL_PTE_MODIFIED;
485 	return 0;
486 }
487 
488 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
489 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
490 		pgtbl_mod_mask *mask)
491 {
492 	pmd_t *pmd;
493 	unsigned long next;
494 
495 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
496 	if (!pmd)
497 		return -ENOMEM;
498 	do {
499 		next = pmd_addr_end(addr, end);
500 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
501 			return -ENOMEM;
502 	} while (pmd++, addr = next, addr != end);
503 	return 0;
504 }
505 
506 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
507 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
508 		pgtbl_mod_mask *mask)
509 {
510 	pud_t *pud;
511 	unsigned long next;
512 
513 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
514 	if (!pud)
515 		return -ENOMEM;
516 	do {
517 		next = pud_addr_end(addr, end);
518 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
519 			return -ENOMEM;
520 	} while (pud++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
525 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
526 		pgtbl_mod_mask *mask)
527 {
528 	p4d_t *p4d;
529 	unsigned long next;
530 
531 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
532 	if (!p4d)
533 		return -ENOMEM;
534 	do {
535 		next = p4d_addr_end(addr, end);
536 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
537 			return -ENOMEM;
538 	} while (p4d++, addr = next, addr != end);
539 	return 0;
540 }
541 
542 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
543 		pgprot_t prot, struct page **pages)
544 {
545 	unsigned long start = addr;
546 	pgd_t *pgd;
547 	unsigned long next;
548 	int err = 0;
549 	int nr = 0;
550 	pgtbl_mod_mask mask = 0;
551 
552 	BUG_ON(addr >= end);
553 	pgd = pgd_offset_k(addr);
554 	do {
555 		next = pgd_addr_end(addr, end);
556 		if (pgd_bad(*pgd))
557 			mask |= PGTBL_PGD_MODIFIED;
558 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
559 		if (err)
560 			return err;
561 	} while (pgd++, addr = next, addr != end);
562 
563 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
564 		arch_sync_kernel_mappings(start, end);
565 
566 	return 0;
567 }
568 
569 /*
570  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
571  * flush caches.
572  *
573  * The caller is responsible for calling flush_cache_vmap() after this
574  * function returns successfully and before the addresses are accessed.
575  *
576  * This is an internal function only. Do not use outside mm/.
577  */
578 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
579 		pgprot_t prot, struct page **pages, unsigned int page_shift)
580 {
581 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
582 
583 	WARN_ON(page_shift < PAGE_SHIFT);
584 
585 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
586 			page_shift == PAGE_SHIFT)
587 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
588 
589 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
590 		int err;
591 
592 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
593 					__pa(page_address(pages[i])), prot,
594 					page_shift);
595 		if (err)
596 			return err;
597 
598 		addr += 1UL << page_shift;
599 	}
600 
601 	return 0;
602 }
603 
604 /**
605  * vmap_pages_range - map pages to a kernel virtual address
606  * @addr: start of the VM area to map
607  * @end: end of the VM area to map (non-inclusive)
608  * @prot: page protection flags to use
609  * @pages: pages to map (always PAGE_SIZE pages)
610  * @page_shift: maximum shift that the pages may be mapped with, @pages must
611  * be aligned and contiguous up to at least this shift.
612  *
613  * RETURNS:
614  * 0 on success, -errno on failure.
615  */
616 static int vmap_pages_range(unsigned long addr, unsigned long end,
617 		pgprot_t prot, struct page **pages, unsigned int page_shift)
618 {
619 	int err;
620 
621 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
622 	flush_cache_vmap(addr, end);
623 	return err;
624 }
625 
626 int is_vmalloc_or_module_addr(const void *x)
627 {
628 	/*
629 	 * ARM, x86-64 and sparc64 put modules in a special place,
630 	 * and fall back on vmalloc() if that fails. Others
631 	 * just put it in the vmalloc space.
632 	 */
633 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
634 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
635 	if (addr >= MODULES_VADDR && addr < MODULES_END)
636 		return 1;
637 #endif
638 	return is_vmalloc_addr(x);
639 }
640 
641 /*
642  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
643  * return the tail page that corresponds to the base page address, which
644  * matches small vmap mappings.
645  */
646 struct page *vmalloc_to_page(const void *vmalloc_addr)
647 {
648 	unsigned long addr = (unsigned long) vmalloc_addr;
649 	struct page *page = NULL;
650 	pgd_t *pgd = pgd_offset_k(addr);
651 	p4d_t *p4d;
652 	pud_t *pud;
653 	pmd_t *pmd;
654 	pte_t *ptep, pte;
655 
656 	/*
657 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
658 	 * architectures that do not vmalloc module space
659 	 */
660 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
661 
662 	if (pgd_none(*pgd))
663 		return NULL;
664 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
665 		return NULL; /* XXX: no allowance for huge pgd */
666 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
667 		return NULL;
668 
669 	p4d = p4d_offset(pgd, addr);
670 	if (p4d_none(*p4d))
671 		return NULL;
672 	if (p4d_leaf(*p4d))
673 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
674 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
675 		return NULL;
676 
677 	pud = pud_offset(p4d, addr);
678 	if (pud_none(*pud))
679 		return NULL;
680 	if (pud_leaf(*pud))
681 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
682 	if (WARN_ON_ONCE(pud_bad(*pud)))
683 		return NULL;
684 
685 	pmd = pmd_offset(pud, addr);
686 	if (pmd_none(*pmd))
687 		return NULL;
688 	if (pmd_leaf(*pmd))
689 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
690 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
691 		return NULL;
692 
693 	ptep = pte_offset_map(pmd, addr);
694 	pte = *ptep;
695 	if (pte_present(pte))
696 		page = pte_page(pte);
697 	pte_unmap(ptep);
698 
699 	return page;
700 }
701 EXPORT_SYMBOL(vmalloc_to_page);
702 
703 /*
704  * Map a vmalloc()-space virtual address to the physical page frame number.
705  */
706 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
707 {
708 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
709 }
710 EXPORT_SYMBOL(vmalloc_to_pfn);
711 
712 
713 /*** Global kva allocator ***/
714 
715 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
716 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
717 
718 
719 static DEFINE_SPINLOCK(vmap_area_lock);
720 static DEFINE_SPINLOCK(free_vmap_area_lock);
721 /* Export for kexec only */
722 LIST_HEAD(vmap_area_list);
723 static struct rb_root vmap_area_root = RB_ROOT;
724 static bool vmap_initialized __read_mostly;
725 
726 static struct rb_root purge_vmap_area_root = RB_ROOT;
727 static LIST_HEAD(purge_vmap_area_list);
728 static DEFINE_SPINLOCK(purge_vmap_area_lock);
729 
730 /*
731  * This kmem_cache is used for vmap_area objects. Instead of
732  * allocating from slab we reuse an object from this cache to
733  * make things faster. Especially in "no edge" splitting of
734  * free block.
735  */
736 static struct kmem_cache *vmap_area_cachep;
737 
738 /*
739  * This linked list is used in pair with free_vmap_area_root.
740  * It gives O(1) access to prev/next to perform fast coalescing.
741  */
742 static LIST_HEAD(free_vmap_area_list);
743 
744 /*
745  * This augment red-black tree represents the free vmap space.
746  * All vmap_area objects in this tree are sorted by va->va_start
747  * address. It is used for allocation and merging when a vmap
748  * object is released.
749  *
750  * Each vmap_area node contains a maximum available free block
751  * of its sub-tree, right or left. Therefore it is possible to
752  * find a lowest match of free area.
753  */
754 static struct rb_root free_vmap_area_root = RB_ROOT;
755 
756 /*
757  * Preload a CPU with one object for "no edge" split case. The
758  * aim is to get rid of allocations from the atomic context, thus
759  * to use more permissive allocation masks.
760  */
761 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
762 
763 static __always_inline unsigned long
764 va_size(struct vmap_area *va)
765 {
766 	return (va->va_end - va->va_start);
767 }
768 
769 static __always_inline unsigned long
770 get_subtree_max_size(struct rb_node *node)
771 {
772 	struct vmap_area *va;
773 
774 	va = rb_entry_safe(node, struct vmap_area, rb_node);
775 	return va ? va->subtree_max_size : 0;
776 }
777 
778 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
779 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
780 
781 static void purge_vmap_area_lazy(void);
782 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
783 static void drain_vmap_area_work(struct work_struct *work);
784 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
785 
786 static atomic_long_t nr_vmalloc_pages;
787 
788 unsigned long vmalloc_nr_pages(void)
789 {
790 	return atomic_long_read(&nr_vmalloc_pages);
791 }
792 
793 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
794 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
795 {
796 	struct vmap_area *va = NULL;
797 	struct rb_node *n = vmap_area_root.rb_node;
798 
799 	addr = (unsigned long)kasan_reset_tag((void *)addr);
800 
801 	while (n) {
802 		struct vmap_area *tmp;
803 
804 		tmp = rb_entry(n, struct vmap_area, rb_node);
805 		if (tmp->va_end > addr) {
806 			va = tmp;
807 			if (tmp->va_start <= addr)
808 				break;
809 
810 			n = n->rb_left;
811 		} else
812 			n = n->rb_right;
813 	}
814 
815 	return va;
816 }
817 
818 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
819 {
820 	struct rb_node *n = root->rb_node;
821 
822 	addr = (unsigned long)kasan_reset_tag((void *)addr);
823 
824 	while (n) {
825 		struct vmap_area *va;
826 
827 		va = rb_entry(n, struct vmap_area, rb_node);
828 		if (addr < va->va_start)
829 			n = n->rb_left;
830 		else if (addr >= va->va_end)
831 			n = n->rb_right;
832 		else
833 			return va;
834 	}
835 
836 	return NULL;
837 }
838 
839 /*
840  * This function returns back addresses of parent node
841  * and its left or right link for further processing.
842  *
843  * Otherwise NULL is returned. In that case all further
844  * steps regarding inserting of conflicting overlap range
845  * have to be declined and actually considered as a bug.
846  */
847 static __always_inline struct rb_node **
848 find_va_links(struct vmap_area *va,
849 	struct rb_root *root, struct rb_node *from,
850 	struct rb_node **parent)
851 {
852 	struct vmap_area *tmp_va;
853 	struct rb_node **link;
854 
855 	if (root) {
856 		link = &root->rb_node;
857 		if (unlikely(!*link)) {
858 			*parent = NULL;
859 			return link;
860 		}
861 	} else {
862 		link = &from;
863 	}
864 
865 	/*
866 	 * Go to the bottom of the tree. When we hit the last point
867 	 * we end up with parent rb_node and correct direction, i name
868 	 * it link, where the new va->rb_node will be attached to.
869 	 */
870 	do {
871 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
872 
873 		/*
874 		 * During the traversal we also do some sanity check.
875 		 * Trigger the BUG() if there are sides(left/right)
876 		 * or full overlaps.
877 		 */
878 		if (va->va_end <= tmp_va->va_start)
879 			link = &(*link)->rb_left;
880 		else if (va->va_start >= tmp_va->va_end)
881 			link = &(*link)->rb_right;
882 		else {
883 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
884 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
885 
886 			return NULL;
887 		}
888 	} while (*link);
889 
890 	*parent = &tmp_va->rb_node;
891 	return link;
892 }
893 
894 static __always_inline struct list_head *
895 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
896 {
897 	struct list_head *list;
898 
899 	if (unlikely(!parent))
900 		/*
901 		 * The red-black tree where we try to find VA neighbors
902 		 * before merging or inserting is empty, i.e. it means
903 		 * there is no free vmap space. Normally it does not
904 		 * happen but we handle this case anyway.
905 		 */
906 		return NULL;
907 
908 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
909 	return (&parent->rb_right == link ? list->next : list);
910 }
911 
912 static __always_inline void
913 __link_va(struct vmap_area *va, struct rb_root *root,
914 	struct rb_node *parent, struct rb_node **link,
915 	struct list_head *head, bool augment)
916 {
917 	/*
918 	 * VA is still not in the list, but we can
919 	 * identify its future previous list_head node.
920 	 */
921 	if (likely(parent)) {
922 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
923 		if (&parent->rb_right != link)
924 			head = head->prev;
925 	}
926 
927 	/* Insert to the rb-tree */
928 	rb_link_node(&va->rb_node, parent, link);
929 	if (augment) {
930 		/*
931 		 * Some explanation here. Just perform simple insertion
932 		 * to the tree. We do not set va->subtree_max_size to
933 		 * its current size before calling rb_insert_augmented().
934 		 * It is because we populate the tree from the bottom
935 		 * to parent levels when the node _is_ in the tree.
936 		 *
937 		 * Therefore we set subtree_max_size to zero after insertion,
938 		 * to let __augment_tree_propagate_from() puts everything to
939 		 * the correct order later on.
940 		 */
941 		rb_insert_augmented(&va->rb_node,
942 			root, &free_vmap_area_rb_augment_cb);
943 		va->subtree_max_size = 0;
944 	} else {
945 		rb_insert_color(&va->rb_node, root);
946 	}
947 
948 	/* Address-sort this list */
949 	list_add(&va->list, head);
950 }
951 
952 static __always_inline void
953 link_va(struct vmap_area *va, struct rb_root *root,
954 	struct rb_node *parent, struct rb_node **link,
955 	struct list_head *head)
956 {
957 	__link_va(va, root, parent, link, head, false);
958 }
959 
960 static __always_inline void
961 link_va_augment(struct vmap_area *va, struct rb_root *root,
962 	struct rb_node *parent, struct rb_node **link,
963 	struct list_head *head)
964 {
965 	__link_va(va, root, parent, link, head, true);
966 }
967 
968 static __always_inline void
969 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
970 {
971 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
972 		return;
973 
974 	if (augment)
975 		rb_erase_augmented(&va->rb_node,
976 			root, &free_vmap_area_rb_augment_cb);
977 	else
978 		rb_erase(&va->rb_node, root);
979 
980 	list_del_init(&va->list);
981 	RB_CLEAR_NODE(&va->rb_node);
982 }
983 
984 static __always_inline void
985 unlink_va(struct vmap_area *va, struct rb_root *root)
986 {
987 	__unlink_va(va, root, false);
988 }
989 
990 static __always_inline void
991 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
992 {
993 	__unlink_va(va, root, true);
994 }
995 
996 #if DEBUG_AUGMENT_PROPAGATE_CHECK
997 /*
998  * Gets called when remove the node and rotate.
999  */
1000 static __always_inline unsigned long
1001 compute_subtree_max_size(struct vmap_area *va)
1002 {
1003 	return max3(va_size(va),
1004 		get_subtree_max_size(va->rb_node.rb_left),
1005 		get_subtree_max_size(va->rb_node.rb_right));
1006 }
1007 
1008 static void
1009 augment_tree_propagate_check(void)
1010 {
1011 	struct vmap_area *va;
1012 	unsigned long computed_size;
1013 
1014 	list_for_each_entry(va, &free_vmap_area_list, list) {
1015 		computed_size = compute_subtree_max_size(va);
1016 		if (computed_size != va->subtree_max_size)
1017 			pr_emerg("tree is corrupted: %lu, %lu\n",
1018 				va_size(va), va->subtree_max_size);
1019 	}
1020 }
1021 #endif
1022 
1023 /*
1024  * This function populates subtree_max_size from bottom to upper
1025  * levels starting from VA point. The propagation must be done
1026  * when VA size is modified by changing its va_start/va_end. Or
1027  * in case of newly inserting of VA to the tree.
1028  *
1029  * It means that __augment_tree_propagate_from() must be called:
1030  * - After VA has been inserted to the tree(free path);
1031  * - After VA has been shrunk(allocation path);
1032  * - After VA has been increased(merging path).
1033  *
1034  * Please note that, it does not mean that upper parent nodes
1035  * and their subtree_max_size are recalculated all the time up
1036  * to the root node.
1037  *
1038  *       4--8
1039  *        /\
1040  *       /  \
1041  *      /    \
1042  *    2--2  8--8
1043  *
1044  * For example if we modify the node 4, shrinking it to 2, then
1045  * no any modification is required. If we shrink the node 2 to 1
1046  * its subtree_max_size is updated only, and set to 1. If we shrink
1047  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1048  * node becomes 4--6.
1049  */
1050 static __always_inline void
1051 augment_tree_propagate_from(struct vmap_area *va)
1052 {
1053 	/*
1054 	 * Populate the tree from bottom towards the root until
1055 	 * the calculated maximum available size of checked node
1056 	 * is equal to its current one.
1057 	 */
1058 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1059 
1060 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1061 	augment_tree_propagate_check();
1062 #endif
1063 }
1064 
1065 static void
1066 insert_vmap_area(struct vmap_area *va,
1067 	struct rb_root *root, struct list_head *head)
1068 {
1069 	struct rb_node **link;
1070 	struct rb_node *parent;
1071 
1072 	link = find_va_links(va, root, NULL, &parent);
1073 	if (link)
1074 		link_va(va, root, parent, link, head);
1075 }
1076 
1077 static void
1078 insert_vmap_area_augment(struct vmap_area *va,
1079 	struct rb_node *from, struct rb_root *root,
1080 	struct list_head *head)
1081 {
1082 	struct rb_node **link;
1083 	struct rb_node *parent;
1084 
1085 	if (from)
1086 		link = find_va_links(va, NULL, from, &parent);
1087 	else
1088 		link = find_va_links(va, root, NULL, &parent);
1089 
1090 	if (link) {
1091 		link_va_augment(va, root, parent, link, head);
1092 		augment_tree_propagate_from(va);
1093 	}
1094 }
1095 
1096 /*
1097  * Merge de-allocated chunk of VA memory with previous
1098  * and next free blocks. If coalesce is not done a new
1099  * free area is inserted. If VA has been merged, it is
1100  * freed.
1101  *
1102  * Please note, it can return NULL in case of overlap
1103  * ranges, followed by WARN() report. Despite it is a
1104  * buggy behaviour, a system can be alive and keep
1105  * ongoing.
1106  */
1107 static __always_inline struct vmap_area *
1108 __merge_or_add_vmap_area(struct vmap_area *va,
1109 	struct rb_root *root, struct list_head *head, bool augment)
1110 {
1111 	struct vmap_area *sibling;
1112 	struct list_head *next;
1113 	struct rb_node **link;
1114 	struct rb_node *parent;
1115 	bool merged = false;
1116 
1117 	/*
1118 	 * Find a place in the tree where VA potentially will be
1119 	 * inserted, unless it is merged with its sibling/siblings.
1120 	 */
1121 	link = find_va_links(va, root, NULL, &parent);
1122 	if (!link)
1123 		return NULL;
1124 
1125 	/*
1126 	 * Get next node of VA to check if merging can be done.
1127 	 */
1128 	next = get_va_next_sibling(parent, link);
1129 	if (unlikely(next == NULL))
1130 		goto insert;
1131 
1132 	/*
1133 	 * start            end
1134 	 * |                |
1135 	 * |<------VA------>|<-----Next----->|
1136 	 *                  |                |
1137 	 *                  start            end
1138 	 */
1139 	if (next != head) {
1140 		sibling = list_entry(next, struct vmap_area, list);
1141 		if (sibling->va_start == va->va_end) {
1142 			sibling->va_start = va->va_start;
1143 
1144 			/* Free vmap_area object. */
1145 			kmem_cache_free(vmap_area_cachep, va);
1146 
1147 			/* Point to the new merged area. */
1148 			va = sibling;
1149 			merged = true;
1150 		}
1151 	}
1152 
1153 	/*
1154 	 * start            end
1155 	 * |                |
1156 	 * |<-----Prev----->|<------VA------>|
1157 	 *                  |                |
1158 	 *                  start            end
1159 	 */
1160 	if (next->prev != head) {
1161 		sibling = list_entry(next->prev, struct vmap_area, list);
1162 		if (sibling->va_end == va->va_start) {
1163 			/*
1164 			 * If both neighbors are coalesced, it is important
1165 			 * to unlink the "next" node first, followed by merging
1166 			 * with "previous" one. Otherwise the tree might not be
1167 			 * fully populated if a sibling's augmented value is
1168 			 * "normalized" because of rotation operations.
1169 			 */
1170 			if (merged)
1171 				__unlink_va(va, root, augment);
1172 
1173 			sibling->va_end = va->va_end;
1174 
1175 			/* Free vmap_area object. */
1176 			kmem_cache_free(vmap_area_cachep, va);
1177 
1178 			/* Point to the new merged area. */
1179 			va = sibling;
1180 			merged = true;
1181 		}
1182 	}
1183 
1184 insert:
1185 	if (!merged)
1186 		__link_va(va, root, parent, link, head, augment);
1187 
1188 	return va;
1189 }
1190 
1191 static __always_inline struct vmap_area *
1192 merge_or_add_vmap_area(struct vmap_area *va,
1193 	struct rb_root *root, struct list_head *head)
1194 {
1195 	return __merge_or_add_vmap_area(va, root, head, false);
1196 }
1197 
1198 static __always_inline struct vmap_area *
1199 merge_or_add_vmap_area_augment(struct vmap_area *va,
1200 	struct rb_root *root, struct list_head *head)
1201 {
1202 	va = __merge_or_add_vmap_area(va, root, head, true);
1203 	if (va)
1204 		augment_tree_propagate_from(va);
1205 
1206 	return va;
1207 }
1208 
1209 static __always_inline bool
1210 is_within_this_va(struct vmap_area *va, unsigned long size,
1211 	unsigned long align, unsigned long vstart)
1212 {
1213 	unsigned long nva_start_addr;
1214 
1215 	if (va->va_start > vstart)
1216 		nva_start_addr = ALIGN(va->va_start, align);
1217 	else
1218 		nva_start_addr = ALIGN(vstart, align);
1219 
1220 	/* Can be overflowed due to big size or alignment. */
1221 	if (nva_start_addr + size < nva_start_addr ||
1222 			nva_start_addr < vstart)
1223 		return false;
1224 
1225 	return (nva_start_addr + size <= va->va_end);
1226 }
1227 
1228 /*
1229  * Find the first free block(lowest start address) in the tree,
1230  * that will accomplish the request corresponding to passing
1231  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1232  * a search length is adjusted to account for worst case alignment
1233  * overhead.
1234  */
1235 static __always_inline struct vmap_area *
1236 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1237 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1238 {
1239 	struct vmap_area *va;
1240 	struct rb_node *node;
1241 	unsigned long length;
1242 
1243 	/* Start from the root. */
1244 	node = root->rb_node;
1245 
1246 	/* Adjust the search size for alignment overhead. */
1247 	length = adjust_search_size ? size + align - 1 : size;
1248 
1249 	while (node) {
1250 		va = rb_entry(node, struct vmap_area, rb_node);
1251 
1252 		if (get_subtree_max_size(node->rb_left) >= length &&
1253 				vstart < va->va_start) {
1254 			node = node->rb_left;
1255 		} else {
1256 			if (is_within_this_va(va, size, align, vstart))
1257 				return va;
1258 
1259 			/*
1260 			 * Does not make sense to go deeper towards the right
1261 			 * sub-tree if it does not have a free block that is
1262 			 * equal or bigger to the requested search length.
1263 			 */
1264 			if (get_subtree_max_size(node->rb_right) >= length) {
1265 				node = node->rb_right;
1266 				continue;
1267 			}
1268 
1269 			/*
1270 			 * OK. We roll back and find the first right sub-tree,
1271 			 * that will satisfy the search criteria. It can happen
1272 			 * due to "vstart" restriction or an alignment overhead
1273 			 * that is bigger then PAGE_SIZE.
1274 			 */
1275 			while ((node = rb_parent(node))) {
1276 				va = rb_entry(node, struct vmap_area, rb_node);
1277 				if (is_within_this_va(va, size, align, vstart))
1278 					return va;
1279 
1280 				if (get_subtree_max_size(node->rb_right) >= length &&
1281 						vstart <= va->va_start) {
1282 					/*
1283 					 * Shift the vstart forward. Please note, we update it with
1284 					 * parent's start address adding "1" because we do not want
1285 					 * to enter same sub-tree after it has already been checked
1286 					 * and no suitable free block found there.
1287 					 */
1288 					vstart = va->va_start + 1;
1289 					node = node->rb_right;
1290 					break;
1291 				}
1292 			}
1293 		}
1294 	}
1295 
1296 	return NULL;
1297 }
1298 
1299 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1300 #include <linux/random.h>
1301 
1302 static struct vmap_area *
1303 find_vmap_lowest_linear_match(unsigned long size,
1304 	unsigned long align, unsigned long vstart)
1305 {
1306 	struct vmap_area *va;
1307 
1308 	list_for_each_entry(va, &free_vmap_area_list, list) {
1309 		if (!is_within_this_va(va, size, align, vstart))
1310 			continue;
1311 
1312 		return va;
1313 	}
1314 
1315 	return NULL;
1316 }
1317 
1318 static void
1319 find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1320 {
1321 	struct vmap_area *va_1, *va_2;
1322 	unsigned long vstart;
1323 	unsigned int rnd;
1324 
1325 	get_random_bytes(&rnd, sizeof(rnd));
1326 	vstart = VMALLOC_START + rnd;
1327 
1328 	va_1 = find_vmap_lowest_match(size, align, vstart, false);
1329 	va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1330 
1331 	if (va_1 != va_2)
1332 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1333 			va_1, va_2, vstart);
1334 }
1335 #endif
1336 
1337 enum fit_type {
1338 	NOTHING_FIT = 0,
1339 	FL_FIT_TYPE = 1,	/* full fit */
1340 	LE_FIT_TYPE = 2,	/* left edge fit */
1341 	RE_FIT_TYPE = 3,	/* right edge fit */
1342 	NE_FIT_TYPE = 4		/* no edge fit */
1343 };
1344 
1345 static __always_inline enum fit_type
1346 classify_va_fit_type(struct vmap_area *va,
1347 	unsigned long nva_start_addr, unsigned long size)
1348 {
1349 	enum fit_type type;
1350 
1351 	/* Check if it is within VA. */
1352 	if (nva_start_addr < va->va_start ||
1353 			nva_start_addr + size > va->va_end)
1354 		return NOTHING_FIT;
1355 
1356 	/* Now classify. */
1357 	if (va->va_start == nva_start_addr) {
1358 		if (va->va_end == nva_start_addr + size)
1359 			type = FL_FIT_TYPE;
1360 		else
1361 			type = LE_FIT_TYPE;
1362 	} else if (va->va_end == nva_start_addr + size) {
1363 		type = RE_FIT_TYPE;
1364 	} else {
1365 		type = NE_FIT_TYPE;
1366 	}
1367 
1368 	return type;
1369 }
1370 
1371 static __always_inline int
1372 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1373 		      struct vmap_area *va, unsigned long nva_start_addr,
1374 		      unsigned long size)
1375 {
1376 	struct vmap_area *lva = NULL;
1377 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1378 
1379 	if (type == FL_FIT_TYPE) {
1380 		/*
1381 		 * No need to split VA, it fully fits.
1382 		 *
1383 		 * |               |
1384 		 * V      NVA      V
1385 		 * |---------------|
1386 		 */
1387 		unlink_va_augment(va, root);
1388 		kmem_cache_free(vmap_area_cachep, va);
1389 	} else if (type == LE_FIT_TYPE) {
1390 		/*
1391 		 * Split left edge of fit VA.
1392 		 *
1393 		 * |       |
1394 		 * V  NVA  V   R
1395 		 * |-------|-------|
1396 		 */
1397 		va->va_start += size;
1398 	} else if (type == RE_FIT_TYPE) {
1399 		/*
1400 		 * Split right edge of fit VA.
1401 		 *
1402 		 *         |       |
1403 		 *     L   V  NVA  V
1404 		 * |-------|-------|
1405 		 */
1406 		va->va_end = nva_start_addr;
1407 	} else if (type == NE_FIT_TYPE) {
1408 		/*
1409 		 * Split no edge of fit VA.
1410 		 *
1411 		 *     |       |
1412 		 *   L V  NVA  V R
1413 		 * |---|-------|---|
1414 		 */
1415 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1416 		if (unlikely(!lva)) {
1417 			/*
1418 			 * For percpu allocator we do not do any pre-allocation
1419 			 * and leave it as it is. The reason is it most likely
1420 			 * never ends up with NE_FIT_TYPE splitting. In case of
1421 			 * percpu allocations offsets and sizes are aligned to
1422 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1423 			 * are its main fitting cases.
1424 			 *
1425 			 * There are a few exceptions though, as an example it is
1426 			 * a first allocation (early boot up) when we have "one"
1427 			 * big free space that has to be split.
1428 			 *
1429 			 * Also we can hit this path in case of regular "vmap"
1430 			 * allocations, if "this" current CPU was not preloaded.
1431 			 * See the comment in alloc_vmap_area() why. If so, then
1432 			 * GFP_NOWAIT is used instead to get an extra object for
1433 			 * split purpose. That is rare and most time does not
1434 			 * occur.
1435 			 *
1436 			 * What happens if an allocation gets failed. Basically,
1437 			 * an "overflow" path is triggered to purge lazily freed
1438 			 * areas to free some memory, then, the "retry" path is
1439 			 * triggered to repeat one more time. See more details
1440 			 * in alloc_vmap_area() function.
1441 			 */
1442 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1443 			if (!lva)
1444 				return -1;
1445 		}
1446 
1447 		/*
1448 		 * Build the remainder.
1449 		 */
1450 		lva->va_start = va->va_start;
1451 		lva->va_end = nva_start_addr;
1452 
1453 		/*
1454 		 * Shrink this VA to remaining size.
1455 		 */
1456 		va->va_start = nva_start_addr + size;
1457 	} else {
1458 		return -1;
1459 	}
1460 
1461 	if (type != FL_FIT_TYPE) {
1462 		augment_tree_propagate_from(va);
1463 
1464 		if (lva)	/* type == NE_FIT_TYPE */
1465 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 /*
1472  * Returns a start address of the newly allocated area, if success.
1473  * Otherwise a vend is returned that indicates failure.
1474  */
1475 static __always_inline unsigned long
1476 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1477 	unsigned long size, unsigned long align,
1478 	unsigned long vstart, unsigned long vend)
1479 {
1480 	bool adjust_search_size = true;
1481 	unsigned long nva_start_addr;
1482 	struct vmap_area *va;
1483 	int ret;
1484 
1485 	/*
1486 	 * Do not adjust when:
1487 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1488 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1489 	 *      aligned anyway;
1490 	 *   b) a short range where a requested size corresponds to exactly
1491 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1492 	 *      With adjusted search length an allocation would not succeed.
1493 	 */
1494 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1495 		adjust_search_size = false;
1496 
1497 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1498 	if (unlikely(!va))
1499 		return vend;
1500 
1501 	if (va->va_start > vstart)
1502 		nva_start_addr = ALIGN(va->va_start, align);
1503 	else
1504 		nva_start_addr = ALIGN(vstart, align);
1505 
1506 	/* Check the "vend" restriction. */
1507 	if (nva_start_addr + size > vend)
1508 		return vend;
1509 
1510 	/* Update the free vmap_area. */
1511 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1512 	if (WARN_ON_ONCE(ret))
1513 		return vend;
1514 
1515 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1516 	find_vmap_lowest_match_check(size, align);
1517 #endif
1518 
1519 	return nva_start_addr;
1520 }
1521 
1522 /*
1523  * Free a region of KVA allocated by alloc_vmap_area
1524  */
1525 static void free_vmap_area(struct vmap_area *va)
1526 {
1527 	/*
1528 	 * Remove from the busy tree/list.
1529 	 */
1530 	spin_lock(&vmap_area_lock);
1531 	unlink_va(va, &vmap_area_root);
1532 	spin_unlock(&vmap_area_lock);
1533 
1534 	/*
1535 	 * Insert/Merge it back to the free tree/list.
1536 	 */
1537 	spin_lock(&free_vmap_area_lock);
1538 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1539 	spin_unlock(&free_vmap_area_lock);
1540 }
1541 
1542 static inline void
1543 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1544 {
1545 	struct vmap_area *va = NULL;
1546 
1547 	/*
1548 	 * Preload this CPU with one extra vmap_area object. It is used
1549 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1550 	 * a CPU that does an allocation is preloaded.
1551 	 *
1552 	 * We do it in non-atomic context, thus it allows us to use more
1553 	 * permissive allocation masks to be more stable under low memory
1554 	 * condition and high memory pressure.
1555 	 */
1556 	if (!this_cpu_read(ne_fit_preload_node))
1557 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1558 
1559 	spin_lock(lock);
1560 
1561 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1562 		kmem_cache_free(vmap_area_cachep, va);
1563 }
1564 
1565 /*
1566  * Allocate a region of KVA of the specified size and alignment, within the
1567  * vstart and vend.
1568  */
1569 static struct vmap_area *alloc_vmap_area(unsigned long size,
1570 				unsigned long align,
1571 				unsigned long vstart, unsigned long vend,
1572 				int node, gfp_t gfp_mask)
1573 {
1574 	struct vmap_area *va;
1575 	unsigned long freed;
1576 	unsigned long addr;
1577 	int purged = 0;
1578 	int ret;
1579 
1580 	BUG_ON(!size);
1581 	BUG_ON(offset_in_page(size));
1582 	BUG_ON(!is_power_of_2(align));
1583 
1584 	if (unlikely(!vmap_initialized))
1585 		return ERR_PTR(-EBUSY);
1586 
1587 	might_sleep();
1588 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1589 
1590 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1591 	if (unlikely(!va))
1592 		return ERR_PTR(-ENOMEM);
1593 
1594 	/*
1595 	 * Only scan the relevant parts containing pointers to other objects
1596 	 * to avoid false negatives.
1597 	 */
1598 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1599 
1600 retry:
1601 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1602 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1603 		size, align, vstart, vend);
1604 	spin_unlock(&free_vmap_area_lock);
1605 
1606 	/*
1607 	 * If an allocation fails, the "vend" address is
1608 	 * returned. Therefore trigger the overflow path.
1609 	 */
1610 	if (unlikely(addr == vend))
1611 		goto overflow;
1612 
1613 	va->va_start = addr;
1614 	va->va_end = addr + size;
1615 	va->vm = NULL;
1616 
1617 	spin_lock(&vmap_area_lock);
1618 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1619 	spin_unlock(&vmap_area_lock);
1620 
1621 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1622 	BUG_ON(va->va_start < vstart);
1623 	BUG_ON(va->va_end > vend);
1624 
1625 	ret = kasan_populate_vmalloc(addr, size);
1626 	if (ret) {
1627 		free_vmap_area(va);
1628 		return ERR_PTR(ret);
1629 	}
1630 
1631 	return va;
1632 
1633 overflow:
1634 	if (!purged) {
1635 		purge_vmap_area_lazy();
1636 		purged = 1;
1637 		goto retry;
1638 	}
1639 
1640 	freed = 0;
1641 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1642 
1643 	if (freed > 0) {
1644 		purged = 0;
1645 		goto retry;
1646 	}
1647 
1648 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1649 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1650 			size);
1651 
1652 	kmem_cache_free(vmap_area_cachep, va);
1653 	return ERR_PTR(-EBUSY);
1654 }
1655 
1656 int register_vmap_purge_notifier(struct notifier_block *nb)
1657 {
1658 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1659 }
1660 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1661 
1662 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1663 {
1664 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1665 }
1666 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1667 
1668 /*
1669  * lazy_max_pages is the maximum amount of virtual address space we gather up
1670  * before attempting to purge with a TLB flush.
1671  *
1672  * There is a tradeoff here: a larger number will cover more kernel page tables
1673  * and take slightly longer to purge, but it will linearly reduce the number of
1674  * global TLB flushes that must be performed. It would seem natural to scale
1675  * this number up linearly with the number of CPUs (because vmapping activity
1676  * could also scale linearly with the number of CPUs), however it is likely
1677  * that in practice, workloads might be constrained in other ways that mean
1678  * vmap activity will not scale linearly with CPUs. Also, I want to be
1679  * conservative and not introduce a big latency on huge systems, so go with
1680  * a less aggressive log scale. It will still be an improvement over the old
1681  * code, and it will be simple to change the scale factor if we find that it
1682  * becomes a problem on bigger systems.
1683  */
1684 static unsigned long lazy_max_pages(void)
1685 {
1686 	unsigned int log;
1687 
1688 	log = fls(num_online_cpus());
1689 
1690 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1691 }
1692 
1693 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1694 
1695 /*
1696  * Serialize vmap purging.  There is no actual critical section protected
1697  * by this lock, but we want to avoid concurrent calls for performance
1698  * reasons and to make the pcpu_get_vm_areas more deterministic.
1699  */
1700 static DEFINE_MUTEX(vmap_purge_lock);
1701 
1702 /* for per-CPU blocks */
1703 static void purge_fragmented_blocks_allcpus(void);
1704 
1705 /*
1706  * Purges all lazily-freed vmap areas.
1707  */
1708 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1709 {
1710 	unsigned long resched_threshold;
1711 	struct list_head local_purge_list;
1712 	struct vmap_area *va, *n_va;
1713 
1714 	lockdep_assert_held(&vmap_purge_lock);
1715 
1716 	spin_lock(&purge_vmap_area_lock);
1717 	purge_vmap_area_root = RB_ROOT;
1718 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1719 	spin_unlock(&purge_vmap_area_lock);
1720 
1721 	if (unlikely(list_empty(&local_purge_list)))
1722 		return false;
1723 
1724 	start = min(start,
1725 		list_first_entry(&local_purge_list,
1726 			struct vmap_area, list)->va_start);
1727 
1728 	end = max(end,
1729 		list_last_entry(&local_purge_list,
1730 			struct vmap_area, list)->va_end);
1731 
1732 	flush_tlb_kernel_range(start, end);
1733 	resched_threshold = lazy_max_pages() << 1;
1734 
1735 	spin_lock(&free_vmap_area_lock);
1736 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1737 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1738 		unsigned long orig_start = va->va_start;
1739 		unsigned long orig_end = va->va_end;
1740 
1741 		/*
1742 		 * Finally insert or merge lazily-freed area. It is
1743 		 * detached and there is no need to "unlink" it from
1744 		 * anything.
1745 		 */
1746 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1747 				&free_vmap_area_list);
1748 
1749 		if (!va)
1750 			continue;
1751 
1752 		if (is_vmalloc_or_module_addr((void *)orig_start))
1753 			kasan_release_vmalloc(orig_start, orig_end,
1754 					      va->va_start, va->va_end);
1755 
1756 		atomic_long_sub(nr, &vmap_lazy_nr);
1757 
1758 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1759 			cond_resched_lock(&free_vmap_area_lock);
1760 	}
1761 	spin_unlock(&free_vmap_area_lock);
1762 	return true;
1763 }
1764 
1765 /*
1766  * Kick off a purge of the outstanding lazy areas.
1767  */
1768 static void purge_vmap_area_lazy(void)
1769 {
1770 	mutex_lock(&vmap_purge_lock);
1771 	purge_fragmented_blocks_allcpus();
1772 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1773 	mutex_unlock(&vmap_purge_lock);
1774 }
1775 
1776 static void drain_vmap_area_work(struct work_struct *work)
1777 {
1778 	unsigned long nr_lazy;
1779 
1780 	do {
1781 		mutex_lock(&vmap_purge_lock);
1782 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1783 		mutex_unlock(&vmap_purge_lock);
1784 
1785 		/* Recheck if further work is required. */
1786 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1787 	} while (nr_lazy > lazy_max_pages());
1788 }
1789 
1790 /*
1791  * Free a vmap area, caller ensuring that the area has been unmapped
1792  * and flush_cache_vunmap had been called for the correct range
1793  * previously.
1794  */
1795 static void free_vmap_area_noflush(struct vmap_area *va)
1796 {
1797 	unsigned long nr_lazy;
1798 
1799 	spin_lock(&vmap_area_lock);
1800 	unlink_va(va, &vmap_area_root);
1801 	spin_unlock(&vmap_area_lock);
1802 
1803 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1804 				PAGE_SHIFT, &vmap_lazy_nr);
1805 
1806 	/*
1807 	 * Merge or place it to the purge tree/list.
1808 	 */
1809 	spin_lock(&purge_vmap_area_lock);
1810 	merge_or_add_vmap_area(va,
1811 		&purge_vmap_area_root, &purge_vmap_area_list);
1812 	spin_unlock(&purge_vmap_area_lock);
1813 
1814 	/* After this point, we may free va at any time */
1815 	if (unlikely(nr_lazy > lazy_max_pages()))
1816 		schedule_work(&drain_vmap_work);
1817 }
1818 
1819 /*
1820  * Free and unmap a vmap area
1821  */
1822 static void free_unmap_vmap_area(struct vmap_area *va)
1823 {
1824 	flush_cache_vunmap(va->va_start, va->va_end);
1825 	vunmap_range_noflush(va->va_start, va->va_end);
1826 	if (debug_pagealloc_enabled_static())
1827 		flush_tlb_kernel_range(va->va_start, va->va_end);
1828 
1829 	free_vmap_area_noflush(va);
1830 }
1831 
1832 struct vmap_area *find_vmap_area(unsigned long addr)
1833 {
1834 	struct vmap_area *va;
1835 
1836 	spin_lock(&vmap_area_lock);
1837 	va = __find_vmap_area(addr, &vmap_area_root);
1838 	spin_unlock(&vmap_area_lock);
1839 
1840 	return va;
1841 }
1842 
1843 /*** Per cpu kva allocator ***/
1844 
1845 /*
1846  * vmap space is limited especially on 32 bit architectures. Ensure there is
1847  * room for at least 16 percpu vmap blocks per CPU.
1848  */
1849 /*
1850  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1851  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1852  * instead (we just need a rough idea)
1853  */
1854 #if BITS_PER_LONG == 32
1855 #define VMALLOC_SPACE		(128UL*1024*1024)
1856 #else
1857 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1858 #endif
1859 
1860 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1861 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1862 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1863 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1864 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1865 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1866 #define VMAP_BBMAP_BITS		\
1867 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1868 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1869 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1870 
1871 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1872 
1873 struct vmap_block_queue {
1874 	spinlock_t lock;
1875 	struct list_head free;
1876 };
1877 
1878 struct vmap_block {
1879 	spinlock_t lock;
1880 	struct vmap_area *va;
1881 	unsigned long free, dirty;
1882 	unsigned long dirty_min, dirty_max; /*< dirty range */
1883 	struct list_head free_list;
1884 	struct rcu_head rcu_head;
1885 	struct list_head purge;
1886 };
1887 
1888 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1889 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1890 
1891 /*
1892  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1893  * in the free path. Could get rid of this if we change the API to return a
1894  * "cookie" from alloc, to be passed to free. But no big deal yet.
1895  */
1896 static DEFINE_XARRAY(vmap_blocks);
1897 
1898 /*
1899  * We should probably have a fallback mechanism to allocate virtual memory
1900  * out of partially filled vmap blocks. However vmap block sizing should be
1901  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1902  * big problem.
1903  */
1904 
1905 static unsigned long addr_to_vb_idx(unsigned long addr)
1906 {
1907 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1908 	addr /= VMAP_BLOCK_SIZE;
1909 	return addr;
1910 }
1911 
1912 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1913 {
1914 	unsigned long addr;
1915 
1916 	addr = va_start + (pages_off << PAGE_SHIFT);
1917 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1918 	return (void *)addr;
1919 }
1920 
1921 /**
1922  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1923  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1924  * @order:    how many 2^order pages should be occupied in newly allocated block
1925  * @gfp_mask: flags for the page level allocator
1926  *
1927  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1928  */
1929 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1930 {
1931 	struct vmap_block_queue *vbq;
1932 	struct vmap_block *vb;
1933 	struct vmap_area *va;
1934 	unsigned long vb_idx;
1935 	int node, err;
1936 	void *vaddr;
1937 
1938 	node = numa_node_id();
1939 
1940 	vb = kmalloc_node(sizeof(struct vmap_block),
1941 			gfp_mask & GFP_RECLAIM_MASK, node);
1942 	if (unlikely(!vb))
1943 		return ERR_PTR(-ENOMEM);
1944 
1945 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1946 					VMALLOC_START, VMALLOC_END,
1947 					node, gfp_mask);
1948 	if (IS_ERR(va)) {
1949 		kfree(vb);
1950 		return ERR_CAST(va);
1951 	}
1952 
1953 	vaddr = vmap_block_vaddr(va->va_start, 0);
1954 	spin_lock_init(&vb->lock);
1955 	vb->va = va;
1956 	/* At least something should be left free */
1957 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1958 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1959 	vb->dirty = 0;
1960 	vb->dirty_min = VMAP_BBMAP_BITS;
1961 	vb->dirty_max = 0;
1962 	INIT_LIST_HEAD(&vb->free_list);
1963 
1964 	vb_idx = addr_to_vb_idx(va->va_start);
1965 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1966 	if (err) {
1967 		kfree(vb);
1968 		free_vmap_area(va);
1969 		return ERR_PTR(err);
1970 	}
1971 
1972 	vbq = raw_cpu_ptr(&vmap_block_queue);
1973 	spin_lock(&vbq->lock);
1974 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1975 	spin_unlock(&vbq->lock);
1976 
1977 	return vaddr;
1978 }
1979 
1980 static void free_vmap_block(struct vmap_block *vb)
1981 {
1982 	struct vmap_block *tmp;
1983 
1984 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1985 	BUG_ON(tmp != vb);
1986 
1987 	free_vmap_area_noflush(vb->va);
1988 	kfree_rcu(vb, rcu_head);
1989 }
1990 
1991 static void purge_fragmented_blocks(int cpu)
1992 {
1993 	LIST_HEAD(purge);
1994 	struct vmap_block *vb;
1995 	struct vmap_block *n_vb;
1996 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1997 
1998 	rcu_read_lock();
1999 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2000 
2001 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2002 			continue;
2003 
2004 		spin_lock(&vb->lock);
2005 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2006 			vb->free = 0; /* prevent further allocs after releasing lock */
2007 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2008 			vb->dirty_min = 0;
2009 			vb->dirty_max = VMAP_BBMAP_BITS;
2010 			spin_lock(&vbq->lock);
2011 			list_del_rcu(&vb->free_list);
2012 			spin_unlock(&vbq->lock);
2013 			spin_unlock(&vb->lock);
2014 			list_add_tail(&vb->purge, &purge);
2015 		} else
2016 			spin_unlock(&vb->lock);
2017 	}
2018 	rcu_read_unlock();
2019 
2020 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2021 		list_del(&vb->purge);
2022 		free_vmap_block(vb);
2023 	}
2024 }
2025 
2026 static void purge_fragmented_blocks_allcpus(void)
2027 {
2028 	int cpu;
2029 
2030 	for_each_possible_cpu(cpu)
2031 		purge_fragmented_blocks(cpu);
2032 }
2033 
2034 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2035 {
2036 	struct vmap_block_queue *vbq;
2037 	struct vmap_block *vb;
2038 	void *vaddr = NULL;
2039 	unsigned int order;
2040 
2041 	BUG_ON(offset_in_page(size));
2042 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2043 	if (WARN_ON(size == 0)) {
2044 		/*
2045 		 * Allocating 0 bytes isn't what caller wants since
2046 		 * get_order(0) returns funny result. Just warn and terminate
2047 		 * early.
2048 		 */
2049 		return NULL;
2050 	}
2051 	order = get_order(size);
2052 
2053 	rcu_read_lock();
2054 	vbq = raw_cpu_ptr(&vmap_block_queue);
2055 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2056 		unsigned long pages_off;
2057 
2058 		spin_lock(&vb->lock);
2059 		if (vb->free < (1UL << order)) {
2060 			spin_unlock(&vb->lock);
2061 			continue;
2062 		}
2063 
2064 		pages_off = VMAP_BBMAP_BITS - vb->free;
2065 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2066 		vb->free -= 1UL << order;
2067 		if (vb->free == 0) {
2068 			spin_lock(&vbq->lock);
2069 			list_del_rcu(&vb->free_list);
2070 			spin_unlock(&vbq->lock);
2071 		}
2072 
2073 		spin_unlock(&vb->lock);
2074 		break;
2075 	}
2076 
2077 	rcu_read_unlock();
2078 
2079 	/* Allocate new block if nothing was found */
2080 	if (!vaddr)
2081 		vaddr = new_vmap_block(order, gfp_mask);
2082 
2083 	return vaddr;
2084 }
2085 
2086 static void vb_free(unsigned long addr, unsigned long size)
2087 {
2088 	unsigned long offset;
2089 	unsigned int order;
2090 	struct vmap_block *vb;
2091 
2092 	BUG_ON(offset_in_page(size));
2093 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2094 
2095 	flush_cache_vunmap(addr, addr + size);
2096 
2097 	order = get_order(size);
2098 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2099 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2100 
2101 	vunmap_range_noflush(addr, addr + size);
2102 
2103 	if (debug_pagealloc_enabled_static())
2104 		flush_tlb_kernel_range(addr, addr + size);
2105 
2106 	spin_lock(&vb->lock);
2107 
2108 	/* Expand dirty range */
2109 	vb->dirty_min = min(vb->dirty_min, offset);
2110 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2111 
2112 	vb->dirty += 1UL << order;
2113 	if (vb->dirty == VMAP_BBMAP_BITS) {
2114 		BUG_ON(vb->free);
2115 		spin_unlock(&vb->lock);
2116 		free_vmap_block(vb);
2117 	} else
2118 		spin_unlock(&vb->lock);
2119 }
2120 
2121 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2122 {
2123 	int cpu;
2124 
2125 	if (unlikely(!vmap_initialized))
2126 		return;
2127 
2128 	might_sleep();
2129 
2130 	for_each_possible_cpu(cpu) {
2131 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2132 		struct vmap_block *vb;
2133 
2134 		rcu_read_lock();
2135 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2136 			spin_lock(&vb->lock);
2137 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2138 				unsigned long va_start = vb->va->va_start;
2139 				unsigned long s, e;
2140 
2141 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2142 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2143 
2144 				start = min(s, start);
2145 				end   = max(e, end);
2146 
2147 				flush = 1;
2148 			}
2149 			spin_unlock(&vb->lock);
2150 		}
2151 		rcu_read_unlock();
2152 	}
2153 
2154 	mutex_lock(&vmap_purge_lock);
2155 	purge_fragmented_blocks_allcpus();
2156 	if (!__purge_vmap_area_lazy(start, end) && flush)
2157 		flush_tlb_kernel_range(start, end);
2158 	mutex_unlock(&vmap_purge_lock);
2159 }
2160 
2161 /**
2162  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2163  *
2164  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2165  * to amortize TLB flushing overheads. What this means is that any page you
2166  * have now, may, in a former life, have been mapped into kernel virtual
2167  * address by the vmap layer and so there might be some CPUs with TLB entries
2168  * still referencing that page (additional to the regular 1:1 kernel mapping).
2169  *
2170  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2171  * be sure that none of the pages we have control over will have any aliases
2172  * from the vmap layer.
2173  */
2174 void vm_unmap_aliases(void)
2175 {
2176 	unsigned long start = ULONG_MAX, end = 0;
2177 	int flush = 0;
2178 
2179 	_vm_unmap_aliases(start, end, flush);
2180 }
2181 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2182 
2183 /**
2184  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2185  * @mem: the pointer returned by vm_map_ram
2186  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2187  */
2188 void vm_unmap_ram(const void *mem, unsigned int count)
2189 {
2190 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2191 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2192 	struct vmap_area *va;
2193 
2194 	might_sleep();
2195 	BUG_ON(!addr);
2196 	BUG_ON(addr < VMALLOC_START);
2197 	BUG_ON(addr > VMALLOC_END);
2198 	BUG_ON(!PAGE_ALIGNED(addr));
2199 
2200 	kasan_poison_vmalloc(mem, size);
2201 
2202 	if (likely(count <= VMAP_MAX_ALLOC)) {
2203 		debug_check_no_locks_freed(mem, size);
2204 		vb_free(addr, size);
2205 		return;
2206 	}
2207 
2208 	va = find_vmap_area(addr);
2209 	BUG_ON(!va);
2210 	debug_check_no_locks_freed((void *)va->va_start,
2211 				    (va->va_end - va->va_start));
2212 	free_unmap_vmap_area(va);
2213 }
2214 EXPORT_SYMBOL(vm_unmap_ram);
2215 
2216 /**
2217  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2218  * @pages: an array of pointers to the pages to be mapped
2219  * @count: number of pages
2220  * @node: prefer to allocate data structures on this node
2221  *
2222  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2223  * faster than vmap so it's good.  But if you mix long-life and short-life
2224  * objects with vm_map_ram(), it could consume lots of address space through
2225  * fragmentation (especially on a 32bit machine).  You could see failures in
2226  * the end.  Please use this function for short-lived objects.
2227  *
2228  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2229  */
2230 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2231 {
2232 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2233 	unsigned long addr;
2234 	void *mem;
2235 
2236 	if (likely(count <= VMAP_MAX_ALLOC)) {
2237 		mem = vb_alloc(size, GFP_KERNEL);
2238 		if (IS_ERR(mem))
2239 			return NULL;
2240 		addr = (unsigned long)mem;
2241 	} else {
2242 		struct vmap_area *va;
2243 		va = alloc_vmap_area(size, PAGE_SIZE,
2244 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2245 		if (IS_ERR(va))
2246 			return NULL;
2247 
2248 		addr = va->va_start;
2249 		mem = (void *)addr;
2250 	}
2251 
2252 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2253 				pages, PAGE_SHIFT) < 0) {
2254 		vm_unmap_ram(mem, count);
2255 		return NULL;
2256 	}
2257 
2258 	/*
2259 	 * Mark the pages as accessible, now that they are mapped.
2260 	 * With hardware tag-based KASAN, marking is skipped for
2261 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2262 	 */
2263 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2264 
2265 	return mem;
2266 }
2267 EXPORT_SYMBOL(vm_map_ram);
2268 
2269 static struct vm_struct *vmlist __initdata;
2270 
2271 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2272 {
2273 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2274 	return vm->page_order;
2275 #else
2276 	return 0;
2277 #endif
2278 }
2279 
2280 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2281 {
2282 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2283 	vm->page_order = order;
2284 #else
2285 	BUG_ON(order != 0);
2286 #endif
2287 }
2288 
2289 /**
2290  * vm_area_add_early - add vmap area early during boot
2291  * @vm: vm_struct to add
2292  *
2293  * This function is used to add fixed kernel vm area to vmlist before
2294  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2295  * should contain proper values and the other fields should be zero.
2296  *
2297  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2298  */
2299 void __init vm_area_add_early(struct vm_struct *vm)
2300 {
2301 	struct vm_struct *tmp, **p;
2302 
2303 	BUG_ON(vmap_initialized);
2304 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2305 		if (tmp->addr >= vm->addr) {
2306 			BUG_ON(tmp->addr < vm->addr + vm->size);
2307 			break;
2308 		} else
2309 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2310 	}
2311 	vm->next = *p;
2312 	*p = vm;
2313 }
2314 
2315 /**
2316  * vm_area_register_early - register vmap area early during boot
2317  * @vm: vm_struct to register
2318  * @align: requested alignment
2319  *
2320  * This function is used to register kernel vm area before
2321  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2322  * proper values on entry and other fields should be zero.  On return,
2323  * vm->addr contains the allocated address.
2324  *
2325  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2326  */
2327 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2328 {
2329 	unsigned long addr = ALIGN(VMALLOC_START, align);
2330 	struct vm_struct *cur, **p;
2331 
2332 	BUG_ON(vmap_initialized);
2333 
2334 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2335 		if ((unsigned long)cur->addr - addr >= vm->size)
2336 			break;
2337 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2338 	}
2339 
2340 	BUG_ON(addr > VMALLOC_END - vm->size);
2341 	vm->addr = (void *)addr;
2342 	vm->next = *p;
2343 	*p = vm;
2344 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2345 }
2346 
2347 static void vmap_init_free_space(void)
2348 {
2349 	unsigned long vmap_start = 1;
2350 	const unsigned long vmap_end = ULONG_MAX;
2351 	struct vmap_area *busy, *free;
2352 
2353 	/*
2354 	 *     B     F     B     B     B     F
2355 	 * -|-----|.....|-----|-----|-----|.....|-
2356 	 *  |           The KVA space           |
2357 	 *  |<--------------------------------->|
2358 	 */
2359 	list_for_each_entry(busy, &vmap_area_list, list) {
2360 		if (busy->va_start - vmap_start > 0) {
2361 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2362 			if (!WARN_ON_ONCE(!free)) {
2363 				free->va_start = vmap_start;
2364 				free->va_end = busy->va_start;
2365 
2366 				insert_vmap_area_augment(free, NULL,
2367 					&free_vmap_area_root,
2368 						&free_vmap_area_list);
2369 			}
2370 		}
2371 
2372 		vmap_start = busy->va_end;
2373 	}
2374 
2375 	if (vmap_end - vmap_start > 0) {
2376 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2377 		if (!WARN_ON_ONCE(!free)) {
2378 			free->va_start = vmap_start;
2379 			free->va_end = vmap_end;
2380 
2381 			insert_vmap_area_augment(free, NULL,
2382 				&free_vmap_area_root,
2383 					&free_vmap_area_list);
2384 		}
2385 	}
2386 }
2387 
2388 void __init vmalloc_init(void)
2389 {
2390 	struct vmap_area *va;
2391 	struct vm_struct *tmp;
2392 	int i;
2393 
2394 	/*
2395 	 * Create the cache for vmap_area objects.
2396 	 */
2397 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2398 
2399 	for_each_possible_cpu(i) {
2400 		struct vmap_block_queue *vbq;
2401 		struct vfree_deferred *p;
2402 
2403 		vbq = &per_cpu(vmap_block_queue, i);
2404 		spin_lock_init(&vbq->lock);
2405 		INIT_LIST_HEAD(&vbq->free);
2406 		p = &per_cpu(vfree_deferred, i);
2407 		init_llist_head(&p->list);
2408 		INIT_WORK(&p->wq, free_work);
2409 	}
2410 
2411 	/* Import existing vmlist entries. */
2412 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2413 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2414 		if (WARN_ON_ONCE(!va))
2415 			continue;
2416 
2417 		va->va_start = (unsigned long)tmp->addr;
2418 		va->va_end = va->va_start + tmp->size;
2419 		va->vm = tmp;
2420 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2421 	}
2422 
2423 	/*
2424 	 * Now we can initialize a free vmap space.
2425 	 */
2426 	vmap_init_free_space();
2427 	vmap_initialized = true;
2428 }
2429 
2430 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2431 	struct vmap_area *va, unsigned long flags, const void *caller)
2432 {
2433 	vm->flags = flags;
2434 	vm->addr = (void *)va->va_start;
2435 	vm->size = va->va_end - va->va_start;
2436 	vm->caller = caller;
2437 	va->vm = vm;
2438 }
2439 
2440 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2441 			      unsigned long flags, const void *caller)
2442 {
2443 	spin_lock(&vmap_area_lock);
2444 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2445 	spin_unlock(&vmap_area_lock);
2446 }
2447 
2448 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2449 {
2450 	/*
2451 	 * Before removing VM_UNINITIALIZED,
2452 	 * we should make sure that vm has proper values.
2453 	 * Pair with smp_rmb() in show_numa_info().
2454 	 */
2455 	smp_wmb();
2456 	vm->flags &= ~VM_UNINITIALIZED;
2457 }
2458 
2459 static struct vm_struct *__get_vm_area_node(unsigned long size,
2460 		unsigned long align, unsigned long shift, unsigned long flags,
2461 		unsigned long start, unsigned long end, int node,
2462 		gfp_t gfp_mask, const void *caller)
2463 {
2464 	struct vmap_area *va;
2465 	struct vm_struct *area;
2466 	unsigned long requested_size = size;
2467 
2468 	BUG_ON(in_interrupt());
2469 	size = ALIGN(size, 1ul << shift);
2470 	if (unlikely(!size))
2471 		return NULL;
2472 
2473 	if (flags & VM_IOREMAP)
2474 		align = 1ul << clamp_t(int, get_count_order_long(size),
2475 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2476 
2477 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2478 	if (unlikely(!area))
2479 		return NULL;
2480 
2481 	if (!(flags & VM_NO_GUARD))
2482 		size += PAGE_SIZE;
2483 
2484 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2485 	if (IS_ERR(va)) {
2486 		kfree(area);
2487 		return NULL;
2488 	}
2489 
2490 	setup_vmalloc_vm(area, va, flags, caller);
2491 
2492 	/*
2493 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2494 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2495 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2496 	 * getting mapped in __vmalloc_node_range().
2497 	 * With hardware tag-based KASAN, marking is skipped for
2498 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2499 	 */
2500 	if (!(flags & VM_ALLOC))
2501 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2502 						    KASAN_VMALLOC_PROT_NORMAL);
2503 
2504 	return area;
2505 }
2506 
2507 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2508 				       unsigned long start, unsigned long end,
2509 				       const void *caller)
2510 {
2511 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2512 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2513 }
2514 
2515 /**
2516  * get_vm_area - reserve a contiguous kernel virtual area
2517  * @size:	 size of the area
2518  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2519  *
2520  * Search an area of @size in the kernel virtual mapping area,
2521  * and reserved it for out purposes.  Returns the area descriptor
2522  * on success or %NULL on failure.
2523  *
2524  * Return: the area descriptor on success or %NULL on failure.
2525  */
2526 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2527 {
2528 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2529 				  VMALLOC_START, VMALLOC_END,
2530 				  NUMA_NO_NODE, GFP_KERNEL,
2531 				  __builtin_return_address(0));
2532 }
2533 
2534 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2535 				const void *caller)
2536 {
2537 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2538 				  VMALLOC_START, VMALLOC_END,
2539 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2540 }
2541 
2542 /**
2543  * find_vm_area - find a continuous kernel virtual area
2544  * @addr:	  base address
2545  *
2546  * Search for the kernel VM area starting at @addr, and return it.
2547  * It is up to the caller to do all required locking to keep the returned
2548  * pointer valid.
2549  *
2550  * Return: the area descriptor on success or %NULL on failure.
2551  */
2552 struct vm_struct *find_vm_area(const void *addr)
2553 {
2554 	struct vmap_area *va;
2555 
2556 	va = find_vmap_area((unsigned long)addr);
2557 	if (!va)
2558 		return NULL;
2559 
2560 	return va->vm;
2561 }
2562 
2563 /**
2564  * remove_vm_area - find and remove a continuous kernel virtual area
2565  * @addr:	    base address
2566  *
2567  * Search for the kernel VM area starting at @addr, and remove it.
2568  * This function returns the found VM area, but using it is NOT safe
2569  * on SMP machines, except for its size or flags.
2570  *
2571  * Return: the area descriptor on success or %NULL on failure.
2572  */
2573 struct vm_struct *remove_vm_area(const void *addr)
2574 {
2575 	struct vmap_area *va;
2576 
2577 	might_sleep();
2578 
2579 	spin_lock(&vmap_area_lock);
2580 	va = __find_vmap_area((unsigned long)addr, &vmap_area_root);
2581 	if (va && va->vm) {
2582 		struct vm_struct *vm = va->vm;
2583 
2584 		va->vm = NULL;
2585 		spin_unlock(&vmap_area_lock);
2586 
2587 		kasan_free_module_shadow(vm);
2588 		free_unmap_vmap_area(va);
2589 
2590 		return vm;
2591 	}
2592 
2593 	spin_unlock(&vmap_area_lock);
2594 	return NULL;
2595 }
2596 
2597 static inline void set_area_direct_map(const struct vm_struct *area,
2598 				       int (*set_direct_map)(struct page *page))
2599 {
2600 	int i;
2601 
2602 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2603 	for (i = 0; i < area->nr_pages; i++)
2604 		if (page_address(area->pages[i]))
2605 			set_direct_map(area->pages[i]);
2606 }
2607 
2608 /* Handle removing and resetting vm mappings related to the vm_struct. */
2609 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2610 {
2611 	unsigned long start = ULONG_MAX, end = 0;
2612 	unsigned int page_order = vm_area_page_order(area);
2613 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2614 	int flush_dmap = 0;
2615 	int i;
2616 
2617 	remove_vm_area(area->addr);
2618 
2619 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2620 	if (!flush_reset)
2621 		return;
2622 
2623 	/*
2624 	 * If not deallocating pages, just do the flush of the VM area and
2625 	 * return.
2626 	 */
2627 	if (!deallocate_pages) {
2628 		vm_unmap_aliases();
2629 		return;
2630 	}
2631 
2632 	/*
2633 	 * If execution gets here, flush the vm mapping and reset the direct
2634 	 * map. Find the start and end range of the direct mappings to make sure
2635 	 * the vm_unmap_aliases() flush includes the direct map.
2636 	 */
2637 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2638 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2639 		if (addr) {
2640 			unsigned long page_size;
2641 
2642 			page_size = PAGE_SIZE << page_order;
2643 			start = min(addr, start);
2644 			end = max(addr + page_size, end);
2645 			flush_dmap = 1;
2646 		}
2647 	}
2648 
2649 	/*
2650 	 * Set direct map to something invalid so that it won't be cached if
2651 	 * there are any accesses after the TLB flush, then flush the TLB and
2652 	 * reset the direct map permissions to the default.
2653 	 */
2654 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2655 	_vm_unmap_aliases(start, end, flush_dmap);
2656 	set_area_direct_map(area, set_direct_map_default_noflush);
2657 }
2658 
2659 static void __vunmap(const void *addr, int deallocate_pages)
2660 {
2661 	struct vm_struct *area;
2662 
2663 	if (!addr)
2664 		return;
2665 
2666 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2667 			addr))
2668 		return;
2669 
2670 	area = find_vm_area(addr);
2671 	if (unlikely(!area)) {
2672 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2673 				addr);
2674 		return;
2675 	}
2676 
2677 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2678 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2679 
2680 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2681 
2682 	vm_remove_mappings(area, deallocate_pages);
2683 
2684 	if (deallocate_pages) {
2685 		int i;
2686 
2687 		for (i = 0; i < area->nr_pages; i++) {
2688 			struct page *page = area->pages[i];
2689 
2690 			BUG_ON(!page);
2691 			mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2692 			/*
2693 			 * High-order allocs for huge vmallocs are split, so
2694 			 * can be freed as an array of order-0 allocations
2695 			 */
2696 			__free_pages(page, 0);
2697 			cond_resched();
2698 		}
2699 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2700 
2701 		kvfree(area->pages);
2702 	}
2703 
2704 	kfree(area);
2705 }
2706 
2707 static inline void __vfree_deferred(const void *addr)
2708 {
2709 	/*
2710 	 * Use raw_cpu_ptr() because this can be called from preemptible
2711 	 * context. Preemption is absolutely fine here, because the llist_add()
2712 	 * implementation is lockless, so it works even if we are adding to
2713 	 * another cpu's list. schedule_work() should be fine with this too.
2714 	 */
2715 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2716 
2717 	if (llist_add((struct llist_node *)addr, &p->list))
2718 		schedule_work(&p->wq);
2719 }
2720 
2721 /**
2722  * vfree_atomic - release memory allocated by vmalloc()
2723  * @addr:	  memory base address
2724  *
2725  * This one is just like vfree() but can be called in any atomic context
2726  * except NMIs.
2727  */
2728 void vfree_atomic(const void *addr)
2729 {
2730 	BUG_ON(in_nmi());
2731 
2732 	kmemleak_free(addr);
2733 
2734 	if (!addr)
2735 		return;
2736 	__vfree_deferred(addr);
2737 }
2738 
2739 static void __vfree(const void *addr)
2740 {
2741 	if (unlikely(in_interrupt()))
2742 		__vfree_deferred(addr);
2743 	else
2744 		__vunmap(addr, 1);
2745 }
2746 
2747 /**
2748  * vfree - Release memory allocated by vmalloc()
2749  * @addr:  Memory base address
2750  *
2751  * Free the virtually continuous memory area starting at @addr, as obtained
2752  * from one of the vmalloc() family of APIs.  This will usually also free the
2753  * physical memory underlying the virtual allocation, but that memory is
2754  * reference counted, so it will not be freed until the last user goes away.
2755  *
2756  * If @addr is NULL, no operation is performed.
2757  *
2758  * Context:
2759  * May sleep if called *not* from interrupt context.
2760  * Must not be called in NMI context (strictly speaking, it could be
2761  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2762  * conventions for vfree() arch-dependent would be a really bad idea).
2763  */
2764 void vfree(const void *addr)
2765 {
2766 	BUG_ON(in_nmi());
2767 
2768 	kmemleak_free(addr);
2769 
2770 	might_sleep_if(!in_interrupt());
2771 
2772 	if (!addr)
2773 		return;
2774 
2775 	__vfree(addr);
2776 }
2777 EXPORT_SYMBOL(vfree);
2778 
2779 /**
2780  * vunmap - release virtual mapping obtained by vmap()
2781  * @addr:   memory base address
2782  *
2783  * Free the virtually contiguous memory area starting at @addr,
2784  * which was created from the page array passed to vmap().
2785  *
2786  * Must not be called in interrupt context.
2787  */
2788 void vunmap(const void *addr)
2789 {
2790 	BUG_ON(in_interrupt());
2791 	might_sleep();
2792 	if (addr)
2793 		__vunmap(addr, 0);
2794 }
2795 EXPORT_SYMBOL(vunmap);
2796 
2797 /**
2798  * vmap - map an array of pages into virtually contiguous space
2799  * @pages: array of page pointers
2800  * @count: number of pages to map
2801  * @flags: vm_area->flags
2802  * @prot: page protection for the mapping
2803  *
2804  * Maps @count pages from @pages into contiguous kernel virtual space.
2805  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2806  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2807  * are transferred from the caller to vmap(), and will be freed / dropped when
2808  * vfree() is called on the return value.
2809  *
2810  * Return: the address of the area or %NULL on failure
2811  */
2812 void *vmap(struct page **pages, unsigned int count,
2813 	   unsigned long flags, pgprot_t prot)
2814 {
2815 	struct vm_struct *area;
2816 	unsigned long addr;
2817 	unsigned long size;		/* In bytes */
2818 
2819 	might_sleep();
2820 
2821 	/*
2822 	 * Your top guard is someone else's bottom guard. Not having a top
2823 	 * guard compromises someone else's mappings too.
2824 	 */
2825 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2826 		flags &= ~VM_NO_GUARD;
2827 
2828 	if (count > totalram_pages())
2829 		return NULL;
2830 
2831 	size = (unsigned long)count << PAGE_SHIFT;
2832 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2833 	if (!area)
2834 		return NULL;
2835 
2836 	addr = (unsigned long)area->addr;
2837 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2838 				pages, PAGE_SHIFT) < 0) {
2839 		vunmap(area->addr);
2840 		return NULL;
2841 	}
2842 
2843 	if (flags & VM_MAP_PUT_PAGES) {
2844 		area->pages = pages;
2845 		area->nr_pages = count;
2846 	}
2847 	return area->addr;
2848 }
2849 EXPORT_SYMBOL(vmap);
2850 
2851 #ifdef CONFIG_VMAP_PFN
2852 struct vmap_pfn_data {
2853 	unsigned long	*pfns;
2854 	pgprot_t	prot;
2855 	unsigned int	idx;
2856 };
2857 
2858 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2859 {
2860 	struct vmap_pfn_data *data = private;
2861 
2862 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2863 		return -EINVAL;
2864 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2865 	return 0;
2866 }
2867 
2868 /**
2869  * vmap_pfn - map an array of PFNs into virtually contiguous space
2870  * @pfns: array of PFNs
2871  * @count: number of pages to map
2872  * @prot: page protection for the mapping
2873  *
2874  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2875  * the start address of the mapping.
2876  */
2877 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2878 {
2879 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2880 	struct vm_struct *area;
2881 
2882 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2883 			__builtin_return_address(0));
2884 	if (!area)
2885 		return NULL;
2886 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2887 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2888 		free_vm_area(area);
2889 		return NULL;
2890 	}
2891 	return area->addr;
2892 }
2893 EXPORT_SYMBOL_GPL(vmap_pfn);
2894 #endif /* CONFIG_VMAP_PFN */
2895 
2896 static inline unsigned int
2897 vm_area_alloc_pages(gfp_t gfp, int nid,
2898 		unsigned int order, unsigned int nr_pages, struct page **pages)
2899 {
2900 	unsigned int nr_allocated = 0;
2901 	struct page *page;
2902 	int i;
2903 
2904 	/*
2905 	 * For order-0 pages we make use of bulk allocator, if
2906 	 * the page array is partly or not at all populated due
2907 	 * to fails, fallback to a single page allocator that is
2908 	 * more permissive.
2909 	 */
2910 	if (!order) {
2911 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2912 
2913 		while (nr_allocated < nr_pages) {
2914 			unsigned int nr, nr_pages_request;
2915 
2916 			/*
2917 			 * A maximum allowed request is hard-coded and is 100
2918 			 * pages per call. That is done in order to prevent a
2919 			 * long preemption off scenario in the bulk-allocator
2920 			 * so the range is [1:100].
2921 			 */
2922 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2923 
2924 			/* memory allocation should consider mempolicy, we can't
2925 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
2926 			 * otherwise memory may be allocated in only one node,
2927 			 * but mempolicy wants to alloc memory by interleaving.
2928 			 */
2929 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2930 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2931 							nr_pages_request,
2932 							pages + nr_allocated);
2933 
2934 			else
2935 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2936 							nr_pages_request,
2937 							pages + nr_allocated);
2938 
2939 			nr_allocated += nr;
2940 			cond_resched();
2941 
2942 			/*
2943 			 * If zero or pages were obtained partly,
2944 			 * fallback to a single page allocator.
2945 			 */
2946 			if (nr != nr_pages_request)
2947 				break;
2948 		}
2949 	}
2950 
2951 	/* High-order pages or fallback path if "bulk" fails. */
2952 
2953 	while (nr_allocated < nr_pages) {
2954 		if (fatal_signal_pending(current))
2955 			break;
2956 
2957 		if (nid == NUMA_NO_NODE)
2958 			page = alloc_pages(gfp, order);
2959 		else
2960 			page = alloc_pages_node(nid, gfp, order);
2961 		if (unlikely(!page))
2962 			break;
2963 		/*
2964 		 * Higher order allocations must be able to be treated as
2965 		 * indepdenent small pages by callers (as they can with
2966 		 * small-page vmallocs). Some drivers do their own refcounting
2967 		 * on vmalloc_to_page() pages, some use page->mapping,
2968 		 * page->lru, etc.
2969 		 */
2970 		if (order)
2971 			split_page(page, order);
2972 
2973 		/*
2974 		 * Careful, we allocate and map page-order pages, but
2975 		 * tracking is done per PAGE_SIZE page so as to keep the
2976 		 * vm_struct APIs independent of the physical/mapped size.
2977 		 */
2978 		for (i = 0; i < (1U << order); i++)
2979 			pages[nr_allocated + i] = page + i;
2980 
2981 		cond_resched();
2982 		nr_allocated += 1U << order;
2983 	}
2984 
2985 	return nr_allocated;
2986 }
2987 
2988 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2989 				 pgprot_t prot, unsigned int page_shift,
2990 				 int node)
2991 {
2992 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2993 	bool nofail = gfp_mask & __GFP_NOFAIL;
2994 	unsigned long addr = (unsigned long)area->addr;
2995 	unsigned long size = get_vm_area_size(area);
2996 	unsigned long array_size;
2997 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
2998 	unsigned int page_order;
2999 	unsigned int flags;
3000 	int ret;
3001 
3002 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3003 	gfp_mask |= __GFP_NOWARN;
3004 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3005 		gfp_mask |= __GFP_HIGHMEM;
3006 
3007 	/* Please note that the recursion is strictly bounded. */
3008 	if (array_size > PAGE_SIZE) {
3009 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3010 					area->caller);
3011 	} else {
3012 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3013 	}
3014 
3015 	if (!area->pages) {
3016 		warn_alloc(gfp_mask, NULL,
3017 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3018 			nr_small_pages * PAGE_SIZE, array_size);
3019 		free_vm_area(area);
3020 		return NULL;
3021 	}
3022 
3023 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3024 	page_order = vm_area_page_order(area);
3025 
3026 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3027 		node, page_order, nr_small_pages, area->pages);
3028 
3029 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3030 	if (gfp_mask & __GFP_ACCOUNT) {
3031 		int i;
3032 
3033 		for (i = 0; i < area->nr_pages; i++)
3034 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3035 	}
3036 
3037 	/*
3038 	 * If not enough pages were obtained to accomplish an
3039 	 * allocation request, free them via __vfree() if any.
3040 	 */
3041 	if (area->nr_pages != nr_small_pages) {
3042 		warn_alloc(gfp_mask, NULL,
3043 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
3044 			area->nr_pages * PAGE_SIZE, page_order);
3045 		goto fail;
3046 	}
3047 
3048 	/*
3049 	 * page tables allocations ignore external gfp mask, enforce it
3050 	 * by the scope API
3051 	 */
3052 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3053 		flags = memalloc_nofs_save();
3054 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3055 		flags = memalloc_noio_save();
3056 
3057 	do {
3058 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3059 			page_shift);
3060 		if (nofail && (ret < 0))
3061 			schedule_timeout_uninterruptible(1);
3062 	} while (nofail && (ret < 0));
3063 
3064 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3065 		memalloc_nofs_restore(flags);
3066 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3067 		memalloc_noio_restore(flags);
3068 
3069 	if (ret < 0) {
3070 		warn_alloc(gfp_mask, NULL,
3071 			"vmalloc error: size %lu, failed to map pages",
3072 			area->nr_pages * PAGE_SIZE);
3073 		goto fail;
3074 	}
3075 
3076 	return area->addr;
3077 
3078 fail:
3079 	__vfree(area->addr);
3080 	return NULL;
3081 }
3082 
3083 /**
3084  * __vmalloc_node_range - allocate virtually contiguous memory
3085  * @size:		  allocation size
3086  * @align:		  desired alignment
3087  * @start:		  vm area range start
3088  * @end:		  vm area range end
3089  * @gfp_mask:		  flags for the page level allocator
3090  * @prot:		  protection mask for the allocated pages
3091  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3092  * @node:		  node to use for allocation or NUMA_NO_NODE
3093  * @caller:		  caller's return address
3094  *
3095  * Allocate enough pages to cover @size from the page level
3096  * allocator with @gfp_mask flags. Please note that the full set of gfp
3097  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3098  * supported.
3099  * Zone modifiers are not supported. From the reclaim modifiers
3100  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3101  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3102  * __GFP_RETRY_MAYFAIL are not supported).
3103  *
3104  * __GFP_NOWARN can be used to suppress failures messages.
3105  *
3106  * Map them into contiguous kernel virtual space, using a pagetable
3107  * protection of @prot.
3108  *
3109  * Return: the address of the area or %NULL on failure
3110  */
3111 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3112 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3113 			pgprot_t prot, unsigned long vm_flags, int node,
3114 			const void *caller)
3115 {
3116 	struct vm_struct *area;
3117 	void *ret;
3118 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3119 	unsigned long real_size = size;
3120 	unsigned long real_align = align;
3121 	unsigned int shift = PAGE_SHIFT;
3122 
3123 	if (WARN_ON_ONCE(!size))
3124 		return NULL;
3125 
3126 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3127 		warn_alloc(gfp_mask, NULL,
3128 			"vmalloc error: size %lu, exceeds total pages",
3129 			real_size);
3130 		return NULL;
3131 	}
3132 
3133 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3134 		unsigned long size_per_node;
3135 
3136 		/*
3137 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3138 		 * others like modules don't yet expect huge pages in
3139 		 * their allocations due to apply_to_page_range not
3140 		 * supporting them.
3141 		 */
3142 
3143 		size_per_node = size;
3144 		if (node == NUMA_NO_NODE)
3145 			size_per_node /= num_online_nodes();
3146 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3147 			shift = PMD_SHIFT;
3148 		else
3149 			shift = arch_vmap_pte_supported_shift(size_per_node);
3150 
3151 		align = max(real_align, 1UL << shift);
3152 		size = ALIGN(real_size, 1UL << shift);
3153 	}
3154 
3155 again:
3156 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3157 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3158 				  gfp_mask, caller);
3159 	if (!area) {
3160 		bool nofail = gfp_mask & __GFP_NOFAIL;
3161 		warn_alloc(gfp_mask, NULL,
3162 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3163 			real_size, (nofail) ? ". Retrying." : "");
3164 		if (nofail) {
3165 			schedule_timeout_uninterruptible(1);
3166 			goto again;
3167 		}
3168 		goto fail;
3169 	}
3170 
3171 	/*
3172 	 * Prepare arguments for __vmalloc_area_node() and
3173 	 * kasan_unpoison_vmalloc().
3174 	 */
3175 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3176 		if (kasan_hw_tags_enabled()) {
3177 			/*
3178 			 * Modify protection bits to allow tagging.
3179 			 * This must be done before mapping.
3180 			 */
3181 			prot = arch_vmap_pgprot_tagged(prot);
3182 
3183 			/*
3184 			 * Skip page_alloc poisoning and zeroing for physical
3185 			 * pages backing VM_ALLOC mapping. Memory is instead
3186 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3187 			 */
3188 			gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3189 		}
3190 
3191 		/* Take note that the mapping is PAGE_KERNEL. */
3192 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3193 	}
3194 
3195 	/* Allocate physical pages and map them into vmalloc space. */
3196 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3197 	if (!ret)
3198 		goto fail;
3199 
3200 	/*
3201 	 * Mark the pages as accessible, now that they are mapped.
3202 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3203 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3204 	 * to make sure that memory is initialized under the same conditions.
3205 	 * Tag-based KASAN modes only assign tags to normal non-executable
3206 	 * allocations, see __kasan_unpoison_vmalloc().
3207 	 */
3208 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3209 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3210 	    (gfp_mask & __GFP_SKIP_ZERO))
3211 		kasan_flags |= KASAN_VMALLOC_INIT;
3212 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3213 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3214 
3215 	/*
3216 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3217 	 * flag. It means that vm_struct is not fully initialized.
3218 	 * Now, it is fully initialized, so remove this flag here.
3219 	 */
3220 	clear_vm_uninitialized_flag(area);
3221 
3222 	size = PAGE_ALIGN(size);
3223 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3224 		kmemleak_vmalloc(area, size, gfp_mask);
3225 
3226 	return area->addr;
3227 
3228 fail:
3229 	if (shift > PAGE_SHIFT) {
3230 		shift = PAGE_SHIFT;
3231 		align = real_align;
3232 		size = real_size;
3233 		goto again;
3234 	}
3235 
3236 	return NULL;
3237 }
3238 
3239 /**
3240  * __vmalloc_node - allocate virtually contiguous memory
3241  * @size:	    allocation size
3242  * @align:	    desired alignment
3243  * @gfp_mask:	    flags for the page level allocator
3244  * @node:	    node to use for allocation or NUMA_NO_NODE
3245  * @caller:	    caller's return address
3246  *
3247  * Allocate enough pages to cover @size from the page level allocator with
3248  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3249  *
3250  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3251  * and __GFP_NOFAIL are not supported
3252  *
3253  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3254  * with mm people.
3255  *
3256  * Return: pointer to the allocated memory or %NULL on error
3257  */
3258 void *__vmalloc_node(unsigned long size, unsigned long align,
3259 			    gfp_t gfp_mask, int node, const void *caller)
3260 {
3261 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3262 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3263 }
3264 /*
3265  * This is only for performance analysis of vmalloc and stress purpose.
3266  * It is required by vmalloc test module, therefore do not use it other
3267  * than that.
3268  */
3269 #ifdef CONFIG_TEST_VMALLOC_MODULE
3270 EXPORT_SYMBOL_GPL(__vmalloc_node);
3271 #endif
3272 
3273 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3274 {
3275 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3276 				__builtin_return_address(0));
3277 }
3278 EXPORT_SYMBOL(__vmalloc);
3279 
3280 /**
3281  * vmalloc - allocate virtually contiguous memory
3282  * @size:    allocation size
3283  *
3284  * Allocate enough pages to cover @size from the page level
3285  * allocator and map them into contiguous kernel virtual space.
3286  *
3287  * For tight control over page level allocator and protection flags
3288  * use __vmalloc() instead.
3289  *
3290  * Return: pointer to the allocated memory or %NULL on error
3291  */
3292 void *vmalloc(unsigned long size)
3293 {
3294 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3295 				__builtin_return_address(0));
3296 }
3297 EXPORT_SYMBOL(vmalloc);
3298 
3299 /**
3300  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3301  * @size:      allocation size
3302  * @gfp_mask:  flags for the page level allocator
3303  *
3304  * Allocate enough pages to cover @size from the page level
3305  * allocator and map them into contiguous kernel virtual space.
3306  * If @size is greater than or equal to PMD_SIZE, allow using
3307  * huge pages for the memory
3308  *
3309  * Return: pointer to the allocated memory or %NULL on error
3310  */
3311 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3312 {
3313 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3314 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3315 				    NUMA_NO_NODE, __builtin_return_address(0));
3316 }
3317 EXPORT_SYMBOL_GPL(vmalloc_huge);
3318 
3319 /**
3320  * vzalloc - allocate virtually contiguous memory with zero fill
3321  * @size:    allocation size
3322  *
3323  * Allocate enough pages to cover @size from the page level
3324  * allocator and map them into contiguous kernel virtual space.
3325  * The memory allocated is set to zero.
3326  *
3327  * For tight control over page level allocator and protection flags
3328  * use __vmalloc() instead.
3329  *
3330  * Return: pointer to the allocated memory or %NULL on error
3331  */
3332 void *vzalloc(unsigned long size)
3333 {
3334 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3335 				__builtin_return_address(0));
3336 }
3337 EXPORT_SYMBOL(vzalloc);
3338 
3339 /**
3340  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3341  * @size: allocation size
3342  *
3343  * The resulting memory area is zeroed so it can be mapped to userspace
3344  * without leaking data.
3345  *
3346  * Return: pointer to the allocated memory or %NULL on error
3347  */
3348 void *vmalloc_user(unsigned long size)
3349 {
3350 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3351 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3352 				    VM_USERMAP, NUMA_NO_NODE,
3353 				    __builtin_return_address(0));
3354 }
3355 EXPORT_SYMBOL(vmalloc_user);
3356 
3357 /**
3358  * vmalloc_node - allocate memory on a specific node
3359  * @size:	  allocation size
3360  * @node:	  numa node
3361  *
3362  * Allocate enough pages to cover @size from the page level
3363  * allocator and map them into contiguous kernel virtual space.
3364  *
3365  * For tight control over page level allocator and protection flags
3366  * use __vmalloc() instead.
3367  *
3368  * Return: pointer to the allocated memory or %NULL on error
3369  */
3370 void *vmalloc_node(unsigned long size, int node)
3371 {
3372 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3373 			__builtin_return_address(0));
3374 }
3375 EXPORT_SYMBOL(vmalloc_node);
3376 
3377 /**
3378  * vzalloc_node - allocate memory on a specific node with zero fill
3379  * @size:	allocation size
3380  * @node:	numa node
3381  *
3382  * Allocate enough pages to cover @size from the page level
3383  * allocator and map them into contiguous kernel virtual space.
3384  * The memory allocated is set to zero.
3385  *
3386  * Return: pointer to the allocated memory or %NULL on error
3387  */
3388 void *vzalloc_node(unsigned long size, int node)
3389 {
3390 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3391 				__builtin_return_address(0));
3392 }
3393 EXPORT_SYMBOL(vzalloc_node);
3394 
3395 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3396 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3397 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3398 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3399 #else
3400 /*
3401  * 64b systems should always have either DMA or DMA32 zones. For others
3402  * GFP_DMA32 should do the right thing and use the normal zone.
3403  */
3404 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3405 #endif
3406 
3407 /**
3408  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3409  * @size:	allocation size
3410  *
3411  * Allocate enough 32bit PA addressable pages to cover @size from the
3412  * page level allocator and map them into contiguous kernel virtual space.
3413  *
3414  * Return: pointer to the allocated memory or %NULL on error
3415  */
3416 void *vmalloc_32(unsigned long size)
3417 {
3418 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3419 			__builtin_return_address(0));
3420 }
3421 EXPORT_SYMBOL(vmalloc_32);
3422 
3423 /**
3424  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3425  * @size:	     allocation size
3426  *
3427  * The resulting memory area is 32bit addressable and zeroed so it can be
3428  * mapped to userspace without leaking data.
3429  *
3430  * Return: pointer to the allocated memory or %NULL on error
3431  */
3432 void *vmalloc_32_user(unsigned long size)
3433 {
3434 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3435 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3436 				    VM_USERMAP, NUMA_NO_NODE,
3437 				    __builtin_return_address(0));
3438 }
3439 EXPORT_SYMBOL(vmalloc_32_user);
3440 
3441 /*
3442  * small helper routine , copy contents to buf from addr.
3443  * If the page is not present, fill zero.
3444  */
3445 
3446 static int aligned_vread(char *buf, char *addr, unsigned long count)
3447 {
3448 	struct page *p;
3449 	int copied = 0;
3450 
3451 	while (count) {
3452 		unsigned long offset, length;
3453 
3454 		offset = offset_in_page(addr);
3455 		length = PAGE_SIZE - offset;
3456 		if (length > count)
3457 			length = count;
3458 		p = vmalloc_to_page(addr);
3459 		/*
3460 		 * To do safe access to this _mapped_ area, we need
3461 		 * lock. But adding lock here means that we need to add
3462 		 * overhead of vmalloc()/vfree() calls for this _debug_
3463 		 * interface, rarely used. Instead of that, we'll use
3464 		 * kmap() and get small overhead in this access function.
3465 		 */
3466 		if (p) {
3467 			/* We can expect USER0 is not used -- see vread() */
3468 			void *map = kmap_atomic(p);
3469 			memcpy(buf, map + offset, length);
3470 			kunmap_atomic(map);
3471 		} else
3472 			memset(buf, 0, length);
3473 
3474 		addr += length;
3475 		buf += length;
3476 		copied += length;
3477 		count -= length;
3478 	}
3479 	return copied;
3480 }
3481 
3482 /**
3483  * vread() - read vmalloc area in a safe way.
3484  * @buf:     buffer for reading data
3485  * @addr:    vm address.
3486  * @count:   number of bytes to be read.
3487  *
3488  * This function checks that addr is a valid vmalloc'ed area, and
3489  * copy data from that area to a given buffer. If the given memory range
3490  * of [addr...addr+count) includes some valid address, data is copied to
3491  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3492  * IOREMAP area is treated as memory hole and no copy is done.
3493  *
3494  * If [addr...addr+count) doesn't includes any intersects with alive
3495  * vm_struct area, returns 0. @buf should be kernel's buffer.
3496  *
3497  * Note: In usual ops, vread() is never necessary because the caller
3498  * should know vmalloc() area is valid and can use memcpy().
3499  * This is for routines which have to access vmalloc area without
3500  * any information, as /proc/kcore.
3501  *
3502  * Return: number of bytes for which addr and buf should be increased
3503  * (same number as @count) or %0 if [addr...addr+count) doesn't
3504  * include any intersection with valid vmalloc area
3505  */
3506 long vread(char *buf, char *addr, unsigned long count)
3507 {
3508 	struct vmap_area *va;
3509 	struct vm_struct *vm;
3510 	char *vaddr, *buf_start = buf;
3511 	unsigned long buflen = count;
3512 	unsigned long n;
3513 
3514 	addr = kasan_reset_tag(addr);
3515 
3516 	/* Don't allow overflow */
3517 	if ((unsigned long) addr + count < count)
3518 		count = -(unsigned long) addr;
3519 
3520 	spin_lock(&vmap_area_lock);
3521 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3522 	if (!va)
3523 		goto finished;
3524 
3525 	/* no intersects with alive vmap_area */
3526 	if ((unsigned long)addr + count <= va->va_start)
3527 		goto finished;
3528 
3529 	list_for_each_entry_from(va, &vmap_area_list, list) {
3530 		if (!count)
3531 			break;
3532 
3533 		if (!va->vm)
3534 			continue;
3535 
3536 		vm = va->vm;
3537 		vaddr = (char *) vm->addr;
3538 		if (addr >= vaddr + get_vm_area_size(vm))
3539 			continue;
3540 		while (addr < vaddr) {
3541 			if (count == 0)
3542 				goto finished;
3543 			*buf = '\0';
3544 			buf++;
3545 			addr++;
3546 			count--;
3547 		}
3548 		n = vaddr + get_vm_area_size(vm) - addr;
3549 		if (n > count)
3550 			n = count;
3551 		if (!(vm->flags & VM_IOREMAP))
3552 			aligned_vread(buf, addr, n);
3553 		else /* IOREMAP area is treated as memory hole */
3554 			memset(buf, 0, n);
3555 		buf += n;
3556 		addr += n;
3557 		count -= n;
3558 	}
3559 finished:
3560 	spin_unlock(&vmap_area_lock);
3561 
3562 	if (buf == buf_start)
3563 		return 0;
3564 	/* zero-fill memory holes */
3565 	if (buf != buf_start + buflen)
3566 		memset(buf, 0, buflen - (buf - buf_start));
3567 
3568 	return buflen;
3569 }
3570 
3571 /**
3572  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3573  * @vma:		vma to cover
3574  * @uaddr:		target user address to start at
3575  * @kaddr:		virtual address of vmalloc kernel memory
3576  * @pgoff:		offset from @kaddr to start at
3577  * @size:		size of map area
3578  *
3579  * Returns:	0 for success, -Exxx on failure
3580  *
3581  * This function checks that @kaddr is a valid vmalloc'ed area,
3582  * and that it is big enough to cover the range starting at
3583  * @uaddr in @vma. Will return failure if that criteria isn't
3584  * met.
3585  *
3586  * Similar to remap_pfn_range() (see mm/memory.c)
3587  */
3588 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3589 				void *kaddr, unsigned long pgoff,
3590 				unsigned long size)
3591 {
3592 	struct vm_struct *area;
3593 	unsigned long off;
3594 	unsigned long end_index;
3595 
3596 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3597 		return -EINVAL;
3598 
3599 	size = PAGE_ALIGN(size);
3600 
3601 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3602 		return -EINVAL;
3603 
3604 	area = find_vm_area(kaddr);
3605 	if (!area)
3606 		return -EINVAL;
3607 
3608 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3609 		return -EINVAL;
3610 
3611 	if (check_add_overflow(size, off, &end_index) ||
3612 	    end_index > get_vm_area_size(area))
3613 		return -EINVAL;
3614 	kaddr += off;
3615 
3616 	do {
3617 		struct page *page = vmalloc_to_page(kaddr);
3618 		int ret;
3619 
3620 		ret = vm_insert_page(vma, uaddr, page);
3621 		if (ret)
3622 			return ret;
3623 
3624 		uaddr += PAGE_SIZE;
3625 		kaddr += PAGE_SIZE;
3626 		size -= PAGE_SIZE;
3627 	} while (size > 0);
3628 
3629 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3630 
3631 	return 0;
3632 }
3633 
3634 /**
3635  * remap_vmalloc_range - map vmalloc pages to userspace
3636  * @vma:		vma to cover (map full range of vma)
3637  * @addr:		vmalloc memory
3638  * @pgoff:		number of pages into addr before first page to map
3639  *
3640  * Returns:	0 for success, -Exxx on failure
3641  *
3642  * This function checks that addr is a valid vmalloc'ed area, and
3643  * that it is big enough to cover the vma. Will return failure if
3644  * that criteria isn't met.
3645  *
3646  * Similar to remap_pfn_range() (see mm/memory.c)
3647  */
3648 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3649 						unsigned long pgoff)
3650 {
3651 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3652 					   addr, pgoff,
3653 					   vma->vm_end - vma->vm_start);
3654 }
3655 EXPORT_SYMBOL(remap_vmalloc_range);
3656 
3657 void free_vm_area(struct vm_struct *area)
3658 {
3659 	struct vm_struct *ret;
3660 	ret = remove_vm_area(area->addr);
3661 	BUG_ON(ret != area);
3662 	kfree(area);
3663 }
3664 EXPORT_SYMBOL_GPL(free_vm_area);
3665 
3666 #ifdef CONFIG_SMP
3667 static struct vmap_area *node_to_va(struct rb_node *n)
3668 {
3669 	return rb_entry_safe(n, struct vmap_area, rb_node);
3670 }
3671 
3672 /**
3673  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3674  * @addr: target address
3675  *
3676  * Returns: vmap_area if it is found. If there is no such area
3677  *   the first highest(reverse order) vmap_area is returned
3678  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3679  *   if there are no any areas before @addr.
3680  */
3681 static struct vmap_area *
3682 pvm_find_va_enclose_addr(unsigned long addr)
3683 {
3684 	struct vmap_area *va, *tmp;
3685 	struct rb_node *n;
3686 
3687 	n = free_vmap_area_root.rb_node;
3688 	va = NULL;
3689 
3690 	while (n) {
3691 		tmp = rb_entry(n, struct vmap_area, rb_node);
3692 		if (tmp->va_start <= addr) {
3693 			va = tmp;
3694 			if (tmp->va_end >= addr)
3695 				break;
3696 
3697 			n = n->rb_right;
3698 		} else {
3699 			n = n->rb_left;
3700 		}
3701 	}
3702 
3703 	return va;
3704 }
3705 
3706 /**
3707  * pvm_determine_end_from_reverse - find the highest aligned address
3708  * of free block below VMALLOC_END
3709  * @va:
3710  *   in - the VA we start the search(reverse order);
3711  *   out - the VA with the highest aligned end address.
3712  * @align: alignment for required highest address
3713  *
3714  * Returns: determined end address within vmap_area
3715  */
3716 static unsigned long
3717 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3718 {
3719 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3720 	unsigned long addr;
3721 
3722 	if (likely(*va)) {
3723 		list_for_each_entry_from_reverse((*va),
3724 				&free_vmap_area_list, list) {
3725 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3726 			if ((*va)->va_start < addr)
3727 				return addr;
3728 		}
3729 	}
3730 
3731 	return 0;
3732 }
3733 
3734 /**
3735  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3736  * @offsets: array containing offset of each area
3737  * @sizes: array containing size of each area
3738  * @nr_vms: the number of areas to allocate
3739  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3740  *
3741  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3742  *	    vm_structs on success, %NULL on failure
3743  *
3744  * Percpu allocator wants to use congruent vm areas so that it can
3745  * maintain the offsets among percpu areas.  This function allocates
3746  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3747  * be scattered pretty far, distance between two areas easily going up
3748  * to gigabytes.  To avoid interacting with regular vmallocs, these
3749  * areas are allocated from top.
3750  *
3751  * Despite its complicated look, this allocator is rather simple. It
3752  * does everything top-down and scans free blocks from the end looking
3753  * for matching base. While scanning, if any of the areas do not fit the
3754  * base address is pulled down to fit the area. Scanning is repeated till
3755  * all the areas fit and then all necessary data structures are inserted
3756  * and the result is returned.
3757  */
3758 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3759 				     const size_t *sizes, int nr_vms,
3760 				     size_t align)
3761 {
3762 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3763 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3764 	struct vmap_area **vas, *va;
3765 	struct vm_struct **vms;
3766 	int area, area2, last_area, term_area;
3767 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3768 	bool purged = false;
3769 
3770 	/* verify parameters and allocate data structures */
3771 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3772 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3773 		start = offsets[area];
3774 		end = start + sizes[area];
3775 
3776 		/* is everything aligned properly? */
3777 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3778 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3779 
3780 		/* detect the area with the highest address */
3781 		if (start > offsets[last_area])
3782 			last_area = area;
3783 
3784 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3785 			unsigned long start2 = offsets[area2];
3786 			unsigned long end2 = start2 + sizes[area2];
3787 
3788 			BUG_ON(start2 < end && start < end2);
3789 		}
3790 	}
3791 	last_end = offsets[last_area] + sizes[last_area];
3792 
3793 	if (vmalloc_end - vmalloc_start < last_end) {
3794 		WARN_ON(true);
3795 		return NULL;
3796 	}
3797 
3798 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3799 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3800 	if (!vas || !vms)
3801 		goto err_free2;
3802 
3803 	for (area = 0; area < nr_vms; area++) {
3804 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3805 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3806 		if (!vas[area] || !vms[area])
3807 			goto err_free;
3808 	}
3809 retry:
3810 	spin_lock(&free_vmap_area_lock);
3811 
3812 	/* start scanning - we scan from the top, begin with the last area */
3813 	area = term_area = last_area;
3814 	start = offsets[area];
3815 	end = start + sizes[area];
3816 
3817 	va = pvm_find_va_enclose_addr(vmalloc_end);
3818 	base = pvm_determine_end_from_reverse(&va, align) - end;
3819 
3820 	while (true) {
3821 		/*
3822 		 * base might have underflowed, add last_end before
3823 		 * comparing.
3824 		 */
3825 		if (base + last_end < vmalloc_start + last_end)
3826 			goto overflow;
3827 
3828 		/*
3829 		 * Fitting base has not been found.
3830 		 */
3831 		if (va == NULL)
3832 			goto overflow;
3833 
3834 		/*
3835 		 * If required width exceeds current VA block, move
3836 		 * base downwards and then recheck.
3837 		 */
3838 		if (base + end > va->va_end) {
3839 			base = pvm_determine_end_from_reverse(&va, align) - end;
3840 			term_area = area;
3841 			continue;
3842 		}
3843 
3844 		/*
3845 		 * If this VA does not fit, move base downwards and recheck.
3846 		 */
3847 		if (base + start < va->va_start) {
3848 			va = node_to_va(rb_prev(&va->rb_node));
3849 			base = pvm_determine_end_from_reverse(&va, align) - end;
3850 			term_area = area;
3851 			continue;
3852 		}
3853 
3854 		/*
3855 		 * This area fits, move on to the previous one.  If
3856 		 * the previous one is the terminal one, we're done.
3857 		 */
3858 		area = (area + nr_vms - 1) % nr_vms;
3859 		if (area == term_area)
3860 			break;
3861 
3862 		start = offsets[area];
3863 		end = start + sizes[area];
3864 		va = pvm_find_va_enclose_addr(base + end);
3865 	}
3866 
3867 	/* we've found a fitting base, insert all va's */
3868 	for (area = 0; area < nr_vms; area++) {
3869 		int ret;
3870 
3871 		start = base + offsets[area];
3872 		size = sizes[area];
3873 
3874 		va = pvm_find_va_enclose_addr(start);
3875 		if (WARN_ON_ONCE(va == NULL))
3876 			/* It is a BUG(), but trigger recovery instead. */
3877 			goto recovery;
3878 
3879 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
3880 					    &free_vmap_area_list,
3881 					    va, start, size);
3882 		if (WARN_ON_ONCE(unlikely(ret)))
3883 			/* It is a BUG(), but trigger recovery instead. */
3884 			goto recovery;
3885 
3886 		/* Allocated area. */
3887 		va = vas[area];
3888 		va->va_start = start;
3889 		va->va_end = start + size;
3890 	}
3891 
3892 	spin_unlock(&free_vmap_area_lock);
3893 
3894 	/* populate the kasan shadow space */
3895 	for (area = 0; area < nr_vms; area++) {
3896 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3897 			goto err_free_shadow;
3898 	}
3899 
3900 	/* insert all vm's */
3901 	spin_lock(&vmap_area_lock);
3902 	for (area = 0; area < nr_vms; area++) {
3903 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3904 
3905 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3906 				 pcpu_get_vm_areas);
3907 	}
3908 	spin_unlock(&vmap_area_lock);
3909 
3910 	/*
3911 	 * Mark allocated areas as accessible. Do it now as a best-effort
3912 	 * approach, as they can be mapped outside of vmalloc code.
3913 	 * With hardware tag-based KASAN, marking is skipped for
3914 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3915 	 */
3916 	for (area = 0; area < nr_vms; area++)
3917 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3918 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3919 
3920 	kfree(vas);
3921 	return vms;
3922 
3923 recovery:
3924 	/*
3925 	 * Remove previously allocated areas. There is no
3926 	 * need in removing these areas from the busy tree,
3927 	 * because they are inserted only on the final step
3928 	 * and when pcpu_get_vm_areas() is success.
3929 	 */
3930 	while (area--) {
3931 		orig_start = vas[area]->va_start;
3932 		orig_end = vas[area]->va_end;
3933 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3934 				&free_vmap_area_list);
3935 		if (va)
3936 			kasan_release_vmalloc(orig_start, orig_end,
3937 				va->va_start, va->va_end);
3938 		vas[area] = NULL;
3939 	}
3940 
3941 overflow:
3942 	spin_unlock(&free_vmap_area_lock);
3943 	if (!purged) {
3944 		purge_vmap_area_lazy();
3945 		purged = true;
3946 
3947 		/* Before "retry", check if we recover. */
3948 		for (area = 0; area < nr_vms; area++) {
3949 			if (vas[area])
3950 				continue;
3951 
3952 			vas[area] = kmem_cache_zalloc(
3953 				vmap_area_cachep, GFP_KERNEL);
3954 			if (!vas[area])
3955 				goto err_free;
3956 		}
3957 
3958 		goto retry;
3959 	}
3960 
3961 err_free:
3962 	for (area = 0; area < nr_vms; area++) {
3963 		if (vas[area])
3964 			kmem_cache_free(vmap_area_cachep, vas[area]);
3965 
3966 		kfree(vms[area]);
3967 	}
3968 err_free2:
3969 	kfree(vas);
3970 	kfree(vms);
3971 	return NULL;
3972 
3973 err_free_shadow:
3974 	spin_lock(&free_vmap_area_lock);
3975 	/*
3976 	 * We release all the vmalloc shadows, even the ones for regions that
3977 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3978 	 * being able to tolerate this case.
3979 	 */
3980 	for (area = 0; area < nr_vms; area++) {
3981 		orig_start = vas[area]->va_start;
3982 		orig_end = vas[area]->va_end;
3983 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3984 				&free_vmap_area_list);
3985 		if (va)
3986 			kasan_release_vmalloc(orig_start, orig_end,
3987 				va->va_start, va->va_end);
3988 		vas[area] = NULL;
3989 		kfree(vms[area]);
3990 	}
3991 	spin_unlock(&free_vmap_area_lock);
3992 	kfree(vas);
3993 	kfree(vms);
3994 	return NULL;
3995 }
3996 
3997 /**
3998  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3999  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4000  * @nr_vms: the number of allocated areas
4001  *
4002  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4003  */
4004 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4005 {
4006 	int i;
4007 
4008 	for (i = 0; i < nr_vms; i++)
4009 		free_vm_area(vms[i]);
4010 	kfree(vms);
4011 }
4012 #endif	/* CONFIG_SMP */
4013 
4014 #ifdef CONFIG_PRINTK
4015 bool vmalloc_dump_obj(void *object)
4016 {
4017 	struct vm_struct *vm;
4018 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4019 
4020 	vm = find_vm_area(objp);
4021 	if (!vm)
4022 		return false;
4023 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4024 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4025 	return true;
4026 }
4027 #endif
4028 
4029 #ifdef CONFIG_PROC_FS
4030 static void *s_start(struct seq_file *m, loff_t *pos)
4031 	__acquires(&vmap_purge_lock)
4032 	__acquires(&vmap_area_lock)
4033 {
4034 	mutex_lock(&vmap_purge_lock);
4035 	spin_lock(&vmap_area_lock);
4036 
4037 	return seq_list_start(&vmap_area_list, *pos);
4038 }
4039 
4040 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4041 {
4042 	return seq_list_next(p, &vmap_area_list, pos);
4043 }
4044 
4045 static void s_stop(struct seq_file *m, void *p)
4046 	__releases(&vmap_area_lock)
4047 	__releases(&vmap_purge_lock)
4048 {
4049 	spin_unlock(&vmap_area_lock);
4050 	mutex_unlock(&vmap_purge_lock);
4051 }
4052 
4053 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4054 {
4055 	if (IS_ENABLED(CONFIG_NUMA)) {
4056 		unsigned int nr, *counters = m->private;
4057 		unsigned int step = 1U << vm_area_page_order(v);
4058 
4059 		if (!counters)
4060 			return;
4061 
4062 		if (v->flags & VM_UNINITIALIZED)
4063 			return;
4064 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4065 		smp_rmb();
4066 
4067 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4068 
4069 		for (nr = 0; nr < v->nr_pages; nr += step)
4070 			counters[page_to_nid(v->pages[nr])] += step;
4071 		for_each_node_state(nr, N_HIGH_MEMORY)
4072 			if (counters[nr])
4073 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4074 	}
4075 }
4076 
4077 static void show_purge_info(struct seq_file *m)
4078 {
4079 	struct vmap_area *va;
4080 
4081 	spin_lock(&purge_vmap_area_lock);
4082 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4083 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4084 			(void *)va->va_start, (void *)va->va_end,
4085 			va->va_end - va->va_start);
4086 	}
4087 	spin_unlock(&purge_vmap_area_lock);
4088 }
4089 
4090 static int s_show(struct seq_file *m, void *p)
4091 {
4092 	struct vmap_area *va;
4093 	struct vm_struct *v;
4094 
4095 	va = list_entry(p, struct vmap_area, list);
4096 
4097 	/*
4098 	 * s_show can encounter race with remove_vm_area, !vm on behalf
4099 	 * of vmap area is being tear down or vm_map_ram allocation.
4100 	 */
4101 	if (!va->vm) {
4102 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4103 			(void *)va->va_start, (void *)va->va_end,
4104 			va->va_end - va->va_start);
4105 
4106 		goto final;
4107 	}
4108 
4109 	v = va->vm;
4110 
4111 	seq_printf(m, "0x%pK-0x%pK %7ld",
4112 		v->addr, v->addr + v->size, v->size);
4113 
4114 	if (v->caller)
4115 		seq_printf(m, " %pS", v->caller);
4116 
4117 	if (v->nr_pages)
4118 		seq_printf(m, " pages=%d", v->nr_pages);
4119 
4120 	if (v->phys_addr)
4121 		seq_printf(m, " phys=%pa", &v->phys_addr);
4122 
4123 	if (v->flags & VM_IOREMAP)
4124 		seq_puts(m, " ioremap");
4125 
4126 	if (v->flags & VM_ALLOC)
4127 		seq_puts(m, " vmalloc");
4128 
4129 	if (v->flags & VM_MAP)
4130 		seq_puts(m, " vmap");
4131 
4132 	if (v->flags & VM_USERMAP)
4133 		seq_puts(m, " user");
4134 
4135 	if (v->flags & VM_DMA_COHERENT)
4136 		seq_puts(m, " dma-coherent");
4137 
4138 	if (is_vmalloc_addr(v->pages))
4139 		seq_puts(m, " vpages");
4140 
4141 	show_numa_info(m, v);
4142 	seq_putc(m, '\n');
4143 
4144 	/*
4145 	 * As a final step, dump "unpurged" areas.
4146 	 */
4147 final:
4148 	if (list_is_last(&va->list, &vmap_area_list))
4149 		show_purge_info(m);
4150 
4151 	return 0;
4152 }
4153 
4154 static const struct seq_operations vmalloc_op = {
4155 	.start = s_start,
4156 	.next = s_next,
4157 	.stop = s_stop,
4158 	.show = s_show,
4159 };
4160 
4161 static int __init proc_vmalloc_init(void)
4162 {
4163 	if (IS_ENABLED(CONFIG_NUMA))
4164 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4165 				&vmalloc_op,
4166 				nr_node_ids * sizeof(unsigned int), NULL);
4167 	else
4168 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4169 	return 0;
4170 }
4171 module_init(proc_vmalloc_init);
4172 
4173 #endif
4174