1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmalloc.c 4 * 5 * Copyright (C) 1993 Linus Torvalds 6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 9 * Numa awareness, Christoph Lameter, SGI, June 2005 10 */ 11 12 #include <linux/vmalloc.h> 13 #include <linux/mm.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/sched/signal.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/interrupt.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/set_memory.h> 23 #include <linux/debugobjects.h> 24 #include <linux/kallsyms.h> 25 #include <linux/list.h> 26 #include <linux/notifier.h> 27 #include <linux/rbtree.h> 28 #include <linux/radix-tree.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/llist.h> 35 #include <linux/bitops.h> 36 #include <linux/rbtree_augmented.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/tlbflush.h> 40 #include <asm/shmparam.h> 41 42 #include "internal.h" 43 44 struct vfree_deferred { 45 struct llist_head list; 46 struct work_struct wq; 47 }; 48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 49 50 static void __vunmap(const void *, int); 51 52 static void free_work(struct work_struct *w) 53 { 54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 55 struct llist_node *t, *llnode; 56 57 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 58 __vunmap((void *)llnode, 1); 59 } 60 61 /*** Page table manipulation functions ***/ 62 63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 64 { 65 pte_t *pte; 66 67 pte = pte_offset_kernel(pmd, addr); 68 do { 69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 70 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 71 } while (pte++, addr += PAGE_SIZE, addr != end); 72 } 73 74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 75 { 76 pmd_t *pmd; 77 unsigned long next; 78 79 pmd = pmd_offset(pud, addr); 80 do { 81 next = pmd_addr_end(addr, end); 82 if (pmd_clear_huge(pmd)) 83 continue; 84 if (pmd_none_or_clear_bad(pmd)) 85 continue; 86 vunmap_pte_range(pmd, addr, next); 87 } while (pmd++, addr = next, addr != end); 88 } 89 90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 91 { 92 pud_t *pud; 93 unsigned long next; 94 95 pud = pud_offset(p4d, addr); 96 do { 97 next = pud_addr_end(addr, end); 98 if (pud_clear_huge(pud)) 99 continue; 100 if (pud_none_or_clear_bad(pud)) 101 continue; 102 vunmap_pmd_range(pud, addr, next); 103 } while (pud++, addr = next, addr != end); 104 } 105 106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 107 { 108 p4d_t *p4d; 109 unsigned long next; 110 111 p4d = p4d_offset(pgd, addr); 112 do { 113 next = p4d_addr_end(addr, end); 114 if (p4d_clear_huge(p4d)) 115 continue; 116 if (p4d_none_or_clear_bad(p4d)) 117 continue; 118 vunmap_pud_range(p4d, addr, next); 119 } while (p4d++, addr = next, addr != end); 120 } 121 122 static void vunmap_page_range(unsigned long addr, unsigned long end) 123 { 124 pgd_t *pgd; 125 unsigned long next; 126 127 BUG_ON(addr >= end); 128 pgd = pgd_offset_k(addr); 129 do { 130 next = pgd_addr_end(addr, end); 131 if (pgd_none_or_clear_bad(pgd)) 132 continue; 133 vunmap_p4d_range(pgd, addr, next); 134 } while (pgd++, addr = next, addr != end); 135 } 136 137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 139 { 140 pte_t *pte; 141 142 /* 143 * nr is a running index into the array which helps higher level 144 * callers keep track of where we're up to. 145 */ 146 147 pte = pte_alloc_kernel(pmd, addr); 148 if (!pte) 149 return -ENOMEM; 150 do { 151 struct page *page = pages[*nr]; 152 153 if (WARN_ON(!pte_none(*pte))) 154 return -EBUSY; 155 if (WARN_ON(!page)) 156 return -ENOMEM; 157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 158 (*nr)++; 159 } while (pte++, addr += PAGE_SIZE, addr != end); 160 return 0; 161 } 162 163 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 164 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 165 { 166 pmd_t *pmd; 167 unsigned long next; 168 169 pmd = pmd_alloc(&init_mm, pud, addr); 170 if (!pmd) 171 return -ENOMEM; 172 do { 173 next = pmd_addr_end(addr, end); 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 175 return -ENOMEM; 176 } while (pmd++, addr = next, addr != end); 177 return 0; 178 } 179 180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 182 { 183 pud_t *pud; 184 unsigned long next; 185 186 pud = pud_alloc(&init_mm, p4d, addr); 187 if (!pud) 188 return -ENOMEM; 189 do { 190 next = pud_addr_end(addr, end); 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 192 return -ENOMEM; 193 } while (pud++, addr = next, addr != end); 194 return 0; 195 } 196 197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 198 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 199 { 200 p4d_t *p4d; 201 unsigned long next; 202 203 p4d = p4d_alloc(&init_mm, pgd, addr); 204 if (!p4d) 205 return -ENOMEM; 206 do { 207 next = p4d_addr_end(addr, end); 208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 209 return -ENOMEM; 210 } while (p4d++, addr = next, addr != end); 211 return 0; 212 } 213 214 /* 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 216 * will have pfns corresponding to the "pages" array. 217 * 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 219 */ 220 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 221 pgprot_t prot, struct page **pages) 222 { 223 pgd_t *pgd; 224 unsigned long next; 225 unsigned long addr = start; 226 int err = 0; 227 int nr = 0; 228 229 BUG_ON(addr >= end); 230 pgd = pgd_offset_k(addr); 231 do { 232 next = pgd_addr_end(addr, end); 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 234 if (err) 235 return err; 236 } while (pgd++, addr = next, addr != end); 237 238 return nr; 239 } 240 241 static int vmap_page_range(unsigned long start, unsigned long end, 242 pgprot_t prot, struct page **pages) 243 { 244 int ret; 245 246 ret = vmap_page_range_noflush(start, end, prot, pages); 247 flush_cache_vmap(start, end); 248 return ret; 249 } 250 251 int is_vmalloc_or_module_addr(const void *x) 252 { 253 /* 254 * ARM, x86-64 and sparc64 put modules in a special place, 255 * and fall back on vmalloc() if that fails. Others 256 * just put it in the vmalloc space. 257 */ 258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 259 unsigned long addr = (unsigned long)x; 260 if (addr >= MODULES_VADDR && addr < MODULES_END) 261 return 1; 262 #endif 263 return is_vmalloc_addr(x); 264 } 265 266 /* 267 * Walk a vmap address to the struct page it maps. 268 */ 269 struct page *vmalloc_to_page(const void *vmalloc_addr) 270 { 271 unsigned long addr = (unsigned long) vmalloc_addr; 272 struct page *page = NULL; 273 pgd_t *pgd = pgd_offset_k(addr); 274 p4d_t *p4d; 275 pud_t *pud; 276 pmd_t *pmd; 277 pte_t *ptep, pte; 278 279 /* 280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 281 * architectures that do not vmalloc module space 282 */ 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 284 285 if (pgd_none(*pgd)) 286 return NULL; 287 p4d = p4d_offset(pgd, addr); 288 if (p4d_none(*p4d)) 289 return NULL; 290 pud = pud_offset(p4d, addr); 291 292 /* 293 * Don't dereference bad PUD or PMD (below) entries. This will also 294 * identify huge mappings, which we may encounter on architectures 295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 296 * identified as vmalloc addresses by is_vmalloc_addr(), but are 297 * not [unambiguously] associated with a struct page, so there is 298 * no correct value to return for them. 299 */ 300 WARN_ON_ONCE(pud_bad(*pud)); 301 if (pud_none(*pud) || pud_bad(*pud)) 302 return NULL; 303 pmd = pmd_offset(pud, addr); 304 WARN_ON_ONCE(pmd_bad(*pmd)); 305 if (pmd_none(*pmd) || pmd_bad(*pmd)) 306 return NULL; 307 308 ptep = pte_offset_map(pmd, addr); 309 pte = *ptep; 310 if (pte_present(pte)) 311 page = pte_page(pte); 312 pte_unmap(ptep); 313 return page; 314 } 315 EXPORT_SYMBOL(vmalloc_to_page); 316 317 /* 318 * Map a vmalloc()-space virtual address to the physical page frame number. 319 */ 320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 321 { 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 323 } 324 EXPORT_SYMBOL(vmalloc_to_pfn); 325 326 327 /*** Global kva allocator ***/ 328 329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 331 332 #define VM_LAZY_FREE 0x02 333 #define VM_VM_AREA 0x04 334 335 static DEFINE_SPINLOCK(vmap_area_lock); 336 /* Export for kexec only */ 337 LIST_HEAD(vmap_area_list); 338 static LLIST_HEAD(vmap_purge_list); 339 static struct rb_root vmap_area_root = RB_ROOT; 340 static bool vmap_initialized __read_mostly; 341 342 /* 343 * This kmem_cache is used for vmap_area objects. Instead of 344 * allocating from slab we reuse an object from this cache to 345 * make things faster. Especially in "no edge" splitting of 346 * free block. 347 */ 348 static struct kmem_cache *vmap_area_cachep; 349 350 /* 351 * This linked list is used in pair with free_vmap_area_root. 352 * It gives O(1) access to prev/next to perform fast coalescing. 353 */ 354 static LIST_HEAD(free_vmap_area_list); 355 356 /* 357 * This augment red-black tree represents the free vmap space. 358 * All vmap_area objects in this tree are sorted by va->va_start 359 * address. It is used for allocation and merging when a vmap 360 * object is released. 361 * 362 * Each vmap_area node contains a maximum available free block 363 * of its sub-tree, right or left. Therefore it is possible to 364 * find a lowest match of free area. 365 */ 366 static struct rb_root free_vmap_area_root = RB_ROOT; 367 368 /* 369 * Preload a CPU with one object for "no edge" split case. The 370 * aim is to get rid of allocations from the atomic context, thus 371 * to use more permissive allocation masks. 372 */ 373 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 374 375 static __always_inline unsigned long 376 va_size(struct vmap_area *va) 377 { 378 return (va->va_end - va->va_start); 379 } 380 381 static __always_inline unsigned long 382 get_subtree_max_size(struct rb_node *node) 383 { 384 struct vmap_area *va; 385 386 va = rb_entry_safe(node, struct vmap_area, rb_node); 387 return va ? va->subtree_max_size : 0; 388 } 389 390 /* 391 * Gets called when remove the node and rotate. 392 */ 393 static __always_inline unsigned long 394 compute_subtree_max_size(struct vmap_area *va) 395 { 396 return max3(va_size(va), 397 get_subtree_max_size(va->rb_node.rb_left), 398 get_subtree_max_size(va->rb_node.rb_right)); 399 } 400 401 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb, 402 struct vmap_area, rb_node, unsigned long, subtree_max_size, 403 compute_subtree_max_size) 404 405 static void purge_vmap_area_lazy(void); 406 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 407 static unsigned long lazy_max_pages(void); 408 409 static atomic_long_t nr_vmalloc_pages; 410 411 unsigned long vmalloc_nr_pages(void) 412 { 413 return atomic_long_read(&nr_vmalloc_pages); 414 } 415 416 static struct vmap_area *__find_vmap_area(unsigned long addr) 417 { 418 struct rb_node *n = vmap_area_root.rb_node; 419 420 while (n) { 421 struct vmap_area *va; 422 423 va = rb_entry(n, struct vmap_area, rb_node); 424 if (addr < va->va_start) 425 n = n->rb_left; 426 else if (addr >= va->va_end) 427 n = n->rb_right; 428 else 429 return va; 430 } 431 432 return NULL; 433 } 434 435 /* 436 * This function returns back addresses of parent node 437 * and its left or right link for further processing. 438 */ 439 static __always_inline struct rb_node ** 440 find_va_links(struct vmap_area *va, 441 struct rb_root *root, struct rb_node *from, 442 struct rb_node **parent) 443 { 444 struct vmap_area *tmp_va; 445 struct rb_node **link; 446 447 if (root) { 448 link = &root->rb_node; 449 if (unlikely(!*link)) { 450 *parent = NULL; 451 return link; 452 } 453 } else { 454 link = &from; 455 } 456 457 /* 458 * Go to the bottom of the tree. When we hit the last point 459 * we end up with parent rb_node and correct direction, i name 460 * it link, where the new va->rb_node will be attached to. 461 */ 462 do { 463 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 464 465 /* 466 * During the traversal we also do some sanity check. 467 * Trigger the BUG() if there are sides(left/right) 468 * or full overlaps. 469 */ 470 if (va->va_start < tmp_va->va_end && 471 va->va_end <= tmp_va->va_start) 472 link = &(*link)->rb_left; 473 else if (va->va_end > tmp_va->va_start && 474 va->va_start >= tmp_va->va_end) 475 link = &(*link)->rb_right; 476 else 477 BUG(); 478 } while (*link); 479 480 *parent = &tmp_va->rb_node; 481 return link; 482 } 483 484 static __always_inline struct list_head * 485 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 486 { 487 struct list_head *list; 488 489 if (unlikely(!parent)) 490 /* 491 * The red-black tree where we try to find VA neighbors 492 * before merging or inserting is empty, i.e. it means 493 * there is no free vmap space. Normally it does not 494 * happen but we handle this case anyway. 495 */ 496 return NULL; 497 498 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 499 return (&parent->rb_right == link ? list->next : list); 500 } 501 502 static __always_inline void 503 link_va(struct vmap_area *va, struct rb_root *root, 504 struct rb_node *parent, struct rb_node **link, struct list_head *head) 505 { 506 /* 507 * VA is still not in the list, but we can 508 * identify its future previous list_head node. 509 */ 510 if (likely(parent)) { 511 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 512 if (&parent->rb_right != link) 513 head = head->prev; 514 } 515 516 /* Insert to the rb-tree */ 517 rb_link_node(&va->rb_node, parent, link); 518 if (root == &free_vmap_area_root) { 519 /* 520 * Some explanation here. Just perform simple insertion 521 * to the tree. We do not set va->subtree_max_size to 522 * its current size before calling rb_insert_augmented(). 523 * It is because of we populate the tree from the bottom 524 * to parent levels when the node _is_ in the tree. 525 * 526 * Therefore we set subtree_max_size to zero after insertion, 527 * to let __augment_tree_propagate_from() puts everything to 528 * the correct order later on. 529 */ 530 rb_insert_augmented(&va->rb_node, 531 root, &free_vmap_area_rb_augment_cb); 532 va->subtree_max_size = 0; 533 } else { 534 rb_insert_color(&va->rb_node, root); 535 } 536 537 /* Address-sort this list */ 538 list_add(&va->list, head); 539 } 540 541 static __always_inline void 542 unlink_va(struct vmap_area *va, struct rb_root *root) 543 { 544 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 545 return; 546 547 if (root == &free_vmap_area_root) 548 rb_erase_augmented(&va->rb_node, 549 root, &free_vmap_area_rb_augment_cb); 550 else 551 rb_erase(&va->rb_node, root); 552 553 list_del(&va->list); 554 RB_CLEAR_NODE(&va->rb_node); 555 } 556 557 #if DEBUG_AUGMENT_PROPAGATE_CHECK 558 static void 559 augment_tree_propagate_check(struct rb_node *n) 560 { 561 struct vmap_area *va; 562 struct rb_node *node; 563 unsigned long size; 564 bool found = false; 565 566 if (n == NULL) 567 return; 568 569 va = rb_entry(n, struct vmap_area, rb_node); 570 size = va->subtree_max_size; 571 node = n; 572 573 while (node) { 574 va = rb_entry(node, struct vmap_area, rb_node); 575 576 if (get_subtree_max_size(node->rb_left) == size) { 577 node = node->rb_left; 578 } else { 579 if (va_size(va) == size) { 580 found = true; 581 break; 582 } 583 584 node = node->rb_right; 585 } 586 } 587 588 if (!found) { 589 va = rb_entry(n, struct vmap_area, rb_node); 590 pr_emerg("tree is corrupted: %lu, %lu\n", 591 va_size(va), va->subtree_max_size); 592 } 593 594 augment_tree_propagate_check(n->rb_left); 595 augment_tree_propagate_check(n->rb_right); 596 } 597 #endif 598 599 /* 600 * This function populates subtree_max_size from bottom to upper 601 * levels starting from VA point. The propagation must be done 602 * when VA size is modified by changing its va_start/va_end. Or 603 * in case of newly inserting of VA to the tree. 604 * 605 * It means that __augment_tree_propagate_from() must be called: 606 * - After VA has been inserted to the tree(free path); 607 * - After VA has been shrunk(allocation path); 608 * - After VA has been increased(merging path). 609 * 610 * Please note that, it does not mean that upper parent nodes 611 * and their subtree_max_size are recalculated all the time up 612 * to the root node. 613 * 614 * 4--8 615 * /\ 616 * / \ 617 * / \ 618 * 2--2 8--8 619 * 620 * For example if we modify the node 4, shrinking it to 2, then 621 * no any modification is required. If we shrink the node 2 to 1 622 * its subtree_max_size is updated only, and set to 1. If we shrink 623 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 624 * node becomes 4--6. 625 */ 626 static __always_inline void 627 augment_tree_propagate_from(struct vmap_area *va) 628 { 629 struct rb_node *node = &va->rb_node; 630 unsigned long new_va_sub_max_size; 631 632 while (node) { 633 va = rb_entry(node, struct vmap_area, rb_node); 634 new_va_sub_max_size = compute_subtree_max_size(va); 635 636 /* 637 * If the newly calculated maximum available size of the 638 * subtree is equal to the current one, then it means that 639 * the tree is propagated correctly. So we have to stop at 640 * this point to save cycles. 641 */ 642 if (va->subtree_max_size == new_va_sub_max_size) 643 break; 644 645 va->subtree_max_size = new_va_sub_max_size; 646 node = rb_parent(&va->rb_node); 647 } 648 649 #if DEBUG_AUGMENT_PROPAGATE_CHECK 650 augment_tree_propagate_check(free_vmap_area_root.rb_node); 651 #endif 652 } 653 654 static void 655 insert_vmap_area(struct vmap_area *va, 656 struct rb_root *root, struct list_head *head) 657 { 658 struct rb_node **link; 659 struct rb_node *parent; 660 661 link = find_va_links(va, root, NULL, &parent); 662 link_va(va, root, parent, link, head); 663 } 664 665 static void 666 insert_vmap_area_augment(struct vmap_area *va, 667 struct rb_node *from, struct rb_root *root, 668 struct list_head *head) 669 { 670 struct rb_node **link; 671 struct rb_node *parent; 672 673 if (from) 674 link = find_va_links(va, NULL, from, &parent); 675 else 676 link = find_va_links(va, root, NULL, &parent); 677 678 link_va(va, root, parent, link, head); 679 augment_tree_propagate_from(va); 680 } 681 682 /* 683 * Merge de-allocated chunk of VA memory with previous 684 * and next free blocks. If coalesce is not done a new 685 * free area is inserted. If VA has been merged, it is 686 * freed. 687 */ 688 static __always_inline void 689 merge_or_add_vmap_area(struct vmap_area *va, 690 struct rb_root *root, struct list_head *head) 691 { 692 struct vmap_area *sibling; 693 struct list_head *next; 694 struct rb_node **link; 695 struct rb_node *parent; 696 bool merged = false; 697 698 /* 699 * Find a place in the tree where VA potentially will be 700 * inserted, unless it is merged with its sibling/siblings. 701 */ 702 link = find_va_links(va, root, NULL, &parent); 703 704 /* 705 * Get next node of VA to check if merging can be done. 706 */ 707 next = get_va_next_sibling(parent, link); 708 if (unlikely(next == NULL)) 709 goto insert; 710 711 /* 712 * start end 713 * | | 714 * |<------VA------>|<-----Next----->| 715 * | | 716 * start end 717 */ 718 if (next != head) { 719 sibling = list_entry(next, struct vmap_area, list); 720 if (sibling->va_start == va->va_end) { 721 sibling->va_start = va->va_start; 722 723 /* Check and update the tree if needed. */ 724 augment_tree_propagate_from(sibling); 725 726 /* Free vmap_area object. */ 727 kmem_cache_free(vmap_area_cachep, va); 728 729 /* Point to the new merged area. */ 730 va = sibling; 731 merged = true; 732 } 733 } 734 735 /* 736 * start end 737 * | | 738 * |<-----Prev----->|<------VA------>| 739 * | | 740 * start end 741 */ 742 if (next->prev != head) { 743 sibling = list_entry(next->prev, struct vmap_area, list); 744 if (sibling->va_end == va->va_start) { 745 sibling->va_end = va->va_end; 746 747 /* Check and update the tree if needed. */ 748 augment_tree_propagate_from(sibling); 749 750 if (merged) 751 unlink_va(va, root); 752 753 /* Free vmap_area object. */ 754 kmem_cache_free(vmap_area_cachep, va); 755 return; 756 } 757 } 758 759 insert: 760 if (!merged) { 761 link_va(va, root, parent, link, head); 762 augment_tree_propagate_from(va); 763 } 764 } 765 766 static __always_inline bool 767 is_within_this_va(struct vmap_area *va, unsigned long size, 768 unsigned long align, unsigned long vstart) 769 { 770 unsigned long nva_start_addr; 771 772 if (va->va_start > vstart) 773 nva_start_addr = ALIGN(va->va_start, align); 774 else 775 nva_start_addr = ALIGN(vstart, align); 776 777 /* Can be overflowed due to big size or alignment. */ 778 if (nva_start_addr + size < nva_start_addr || 779 nva_start_addr < vstart) 780 return false; 781 782 return (nva_start_addr + size <= va->va_end); 783 } 784 785 /* 786 * Find the first free block(lowest start address) in the tree, 787 * that will accomplish the request corresponding to passing 788 * parameters. 789 */ 790 static __always_inline struct vmap_area * 791 find_vmap_lowest_match(unsigned long size, 792 unsigned long align, unsigned long vstart) 793 { 794 struct vmap_area *va; 795 struct rb_node *node; 796 unsigned long length; 797 798 /* Start from the root. */ 799 node = free_vmap_area_root.rb_node; 800 801 /* Adjust the search size for alignment overhead. */ 802 length = size + align - 1; 803 804 while (node) { 805 va = rb_entry(node, struct vmap_area, rb_node); 806 807 if (get_subtree_max_size(node->rb_left) >= length && 808 vstart < va->va_start) { 809 node = node->rb_left; 810 } else { 811 if (is_within_this_va(va, size, align, vstart)) 812 return va; 813 814 /* 815 * Does not make sense to go deeper towards the right 816 * sub-tree if it does not have a free block that is 817 * equal or bigger to the requested search length. 818 */ 819 if (get_subtree_max_size(node->rb_right) >= length) { 820 node = node->rb_right; 821 continue; 822 } 823 824 /* 825 * OK. We roll back and find the first right sub-tree, 826 * that will satisfy the search criteria. It can happen 827 * only once due to "vstart" restriction. 828 */ 829 while ((node = rb_parent(node))) { 830 va = rb_entry(node, struct vmap_area, rb_node); 831 if (is_within_this_va(va, size, align, vstart)) 832 return va; 833 834 if (get_subtree_max_size(node->rb_right) >= length && 835 vstart <= va->va_start) { 836 node = node->rb_right; 837 break; 838 } 839 } 840 } 841 } 842 843 return NULL; 844 } 845 846 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 847 #include <linux/random.h> 848 849 static struct vmap_area * 850 find_vmap_lowest_linear_match(unsigned long size, 851 unsigned long align, unsigned long vstart) 852 { 853 struct vmap_area *va; 854 855 list_for_each_entry(va, &free_vmap_area_list, list) { 856 if (!is_within_this_va(va, size, align, vstart)) 857 continue; 858 859 return va; 860 } 861 862 return NULL; 863 } 864 865 static void 866 find_vmap_lowest_match_check(unsigned long size) 867 { 868 struct vmap_area *va_1, *va_2; 869 unsigned long vstart; 870 unsigned int rnd; 871 872 get_random_bytes(&rnd, sizeof(rnd)); 873 vstart = VMALLOC_START + rnd; 874 875 va_1 = find_vmap_lowest_match(size, 1, vstart); 876 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 877 878 if (va_1 != va_2) 879 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 880 va_1, va_2, vstart); 881 } 882 #endif 883 884 enum fit_type { 885 NOTHING_FIT = 0, 886 FL_FIT_TYPE = 1, /* full fit */ 887 LE_FIT_TYPE = 2, /* left edge fit */ 888 RE_FIT_TYPE = 3, /* right edge fit */ 889 NE_FIT_TYPE = 4 /* no edge fit */ 890 }; 891 892 static __always_inline enum fit_type 893 classify_va_fit_type(struct vmap_area *va, 894 unsigned long nva_start_addr, unsigned long size) 895 { 896 enum fit_type type; 897 898 /* Check if it is within VA. */ 899 if (nva_start_addr < va->va_start || 900 nva_start_addr + size > va->va_end) 901 return NOTHING_FIT; 902 903 /* Now classify. */ 904 if (va->va_start == nva_start_addr) { 905 if (va->va_end == nva_start_addr + size) 906 type = FL_FIT_TYPE; 907 else 908 type = LE_FIT_TYPE; 909 } else if (va->va_end == nva_start_addr + size) { 910 type = RE_FIT_TYPE; 911 } else { 912 type = NE_FIT_TYPE; 913 } 914 915 return type; 916 } 917 918 static __always_inline int 919 adjust_va_to_fit_type(struct vmap_area *va, 920 unsigned long nva_start_addr, unsigned long size, 921 enum fit_type type) 922 { 923 struct vmap_area *lva = NULL; 924 925 if (type == FL_FIT_TYPE) { 926 /* 927 * No need to split VA, it fully fits. 928 * 929 * | | 930 * V NVA V 931 * |---------------| 932 */ 933 unlink_va(va, &free_vmap_area_root); 934 kmem_cache_free(vmap_area_cachep, va); 935 } else if (type == LE_FIT_TYPE) { 936 /* 937 * Split left edge of fit VA. 938 * 939 * | | 940 * V NVA V R 941 * |-------|-------| 942 */ 943 va->va_start += size; 944 } else if (type == RE_FIT_TYPE) { 945 /* 946 * Split right edge of fit VA. 947 * 948 * | | 949 * L V NVA V 950 * |-------|-------| 951 */ 952 va->va_end = nva_start_addr; 953 } else if (type == NE_FIT_TYPE) { 954 /* 955 * Split no edge of fit VA. 956 * 957 * | | 958 * L V NVA V R 959 * |---|-------|---| 960 */ 961 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 962 if (unlikely(!lva)) { 963 /* 964 * For percpu allocator we do not do any pre-allocation 965 * and leave it as it is. The reason is it most likely 966 * never ends up with NE_FIT_TYPE splitting. In case of 967 * percpu allocations offsets and sizes are aligned to 968 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 969 * are its main fitting cases. 970 * 971 * There are a few exceptions though, as an example it is 972 * a first allocation (early boot up) when we have "one" 973 * big free space that has to be split. 974 */ 975 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 976 if (!lva) 977 return -1; 978 } 979 980 /* 981 * Build the remainder. 982 */ 983 lva->va_start = va->va_start; 984 lva->va_end = nva_start_addr; 985 986 /* 987 * Shrink this VA to remaining size. 988 */ 989 va->va_start = nva_start_addr + size; 990 } else { 991 return -1; 992 } 993 994 if (type != FL_FIT_TYPE) { 995 augment_tree_propagate_from(va); 996 997 if (lva) /* type == NE_FIT_TYPE */ 998 insert_vmap_area_augment(lva, &va->rb_node, 999 &free_vmap_area_root, &free_vmap_area_list); 1000 } 1001 1002 return 0; 1003 } 1004 1005 /* 1006 * Returns a start address of the newly allocated area, if success. 1007 * Otherwise a vend is returned that indicates failure. 1008 */ 1009 static __always_inline unsigned long 1010 __alloc_vmap_area(unsigned long size, unsigned long align, 1011 unsigned long vstart, unsigned long vend) 1012 { 1013 unsigned long nva_start_addr; 1014 struct vmap_area *va; 1015 enum fit_type type; 1016 int ret; 1017 1018 va = find_vmap_lowest_match(size, align, vstart); 1019 if (unlikely(!va)) 1020 return vend; 1021 1022 if (va->va_start > vstart) 1023 nva_start_addr = ALIGN(va->va_start, align); 1024 else 1025 nva_start_addr = ALIGN(vstart, align); 1026 1027 /* Check the "vend" restriction. */ 1028 if (nva_start_addr + size > vend) 1029 return vend; 1030 1031 /* Classify what we have found. */ 1032 type = classify_va_fit_type(va, nva_start_addr, size); 1033 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1034 return vend; 1035 1036 /* Update the free vmap_area. */ 1037 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1038 if (ret) 1039 return vend; 1040 1041 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1042 find_vmap_lowest_match_check(size); 1043 #endif 1044 1045 return nva_start_addr; 1046 } 1047 1048 /* 1049 * Allocate a region of KVA of the specified size and alignment, within the 1050 * vstart and vend. 1051 */ 1052 static struct vmap_area *alloc_vmap_area(unsigned long size, 1053 unsigned long align, 1054 unsigned long vstart, unsigned long vend, 1055 int node, gfp_t gfp_mask) 1056 { 1057 struct vmap_area *va, *pva; 1058 unsigned long addr; 1059 int purged = 0; 1060 1061 BUG_ON(!size); 1062 BUG_ON(offset_in_page(size)); 1063 BUG_ON(!is_power_of_2(align)); 1064 1065 if (unlikely(!vmap_initialized)) 1066 return ERR_PTR(-EBUSY); 1067 1068 might_sleep(); 1069 1070 va = kmem_cache_alloc_node(vmap_area_cachep, 1071 gfp_mask & GFP_RECLAIM_MASK, node); 1072 if (unlikely(!va)) 1073 return ERR_PTR(-ENOMEM); 1074 1075 /* 1076 * Only scan the relevant parts containing pointers to other objects 1077 * to avoid false negatives. 1078 */ 1079 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 1080 1081 retry: 1082 /* 1083 * Preload this CPU with one extra vmap_area object to ensure 1084 * that we have it available when fit type of free area is 1085 * NE_FIT_TYPE. 1086 * 1087 * The preload is done in non-atomic context, thus it allows us 1088 * to use more permissive allocation masks to be more stable under 1089 * low memory condition and high memory pressure. 1090 * 1091 * Even if it fails we do not really care about that. Just proceed 1092 * as it is. "overflow" path will refill the cache we allocate from. 1093 */ 1094 preempt_disable(); 1095 if (!__this_cpu_read(ne_fit_preload_node)) { 1096 preempt_enable(); 1097 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node); 1098 preempt_disable(); 1099 1100 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) { 1101 if (pva) 1102 kmem_cache_free(vmap_area_cachep, pva); 1103 } 1104 } 1105 1106 spin_lock(&vmap_area_lock); 1107 preempt_enable(); 1108 1109 /* 1110 * If an allocation fails, the "vend" address is 1111 * returned. Therefore trigger the overflow path. 1112 */ 1113 addr = __alloc_vmap_area(size, align, vstart, vend); 1114 if (unlikely(addr == vend)) 1115 goto overflow; 1116 1117 va->va_start = addr; 1118 va->va_end = addr + size; 1119 va->flags = 0; 1120 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1121 1122 spin_unlock(&vmap_area_lock); 1123 1124 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1125 BUG_ON(va->va_start < vstart); 1126 BUG_ON(va->va_end > vend); 1127 1128 return va; 1129 1130 overflow: 1131 spin_unlock(&vmap_area_lock); 1132 if (!purged) { 1133 purge_vmap_area_lazy(); 1134 purged = 1; 1135 goto retry; 1136 } 1137 1138 if (gfpflags_allow_blocking(gfp_mask)) { 1139 unsigned long freed = 0; 1140 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1141 if (freed > 0) { 1142 purged = 0; 1143 goto retry; 1144 } 1145 } 1146 1147 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1148 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1149 size); 1150 1151 kmem_cache_free(vmap_area_cachep, va); 1152 return ERR_PTR(-EBUSY); 1153 } 1154 1155 int register_vmap_purge_notifier(struct notifier_block *nb) 1156 { 1157 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1158 } 1159 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1160 1161 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1162 { 1163 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1164 } 1165 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1166 1167 static void __free_vmap_area(struct vmap_area *va) 1168 { 1169 /* 1170 * Remove from the busy tree/list. 1171 */ 1172 unlink_va(va, &vmap_area_root); 1173 1174 /* 1175 * Merge VA with its neighbors, otherwise just add it. 1176 */ 1177 merge_or_add_vmap_area(va, 1178 &free_vmap_area_root, &free_vmap_area_list); 1179 } 1180 1181 /* 1182 * Free a region of KVA allocated by alloc_vmap_area 1183 */ 1184 static void free_vmap_area(struct vmap_area *va) 1185 { 1186 spin_lock(&vmap_area_lock); 1187 __free_vmap_area(va); 1188 spin_unlock(&vmap_area_lock); 1189 } 1190 1191 /* 1192 * Clear the pagetable entries of a given vmap_area 1193 */ 1194 static void unmap_vmap_area(struct vmap_area *va) 1195 { 1196 vunmap_page_range(va->va_start, va->va_end); 1197 } 1198 1199 /* 1200 * lazy_max_pages is the maximum amount of virtual address space we gather up 1201 * before attempting to purge with a TLB flush. 1202 * 1203 * There is a tradeoff here: a larger number will cover more kernel page tables 1204 * and take slightly longer to purge, but it will linearly reduce the number of 1205 * global TLB flushes that must be performed. It would seem natural to scale 1206 * this number up linearly with the number of CPUs (because vmapping activity 1207 * could also scale linearly with the number of CPUs), however it is likely 1208 * that in practice, workloads might be constrained in other ways that mean 1209 * vmap activity will not scale linearly with CPUs. Also, I want to be 1210 * conservative and not introduce a big latency on huge systems, so go with 1211 * a less aggressive log scale. It will still be an improvement over the old 1212 * code, and it will be simple to change the scale factor if we find that it 1213 * becomes a problem on bigger systems. 1214 */ 1215 static unsigned long lazy_max_pages(void) 1216 { 1217 unsigned int log; 1218 1219 log = fls(num_online_cpus()); 1220 1221 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1222 } 1223 1224 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1225 1226 /* 1227 * Serialize vmap purging. There is no actual criticial section protected 1228 * by this look, but we want to avoid concurrent calls for performance 1229 * reasons and to make the pcpu_get_vm_areas more deterministic. 1230 */ 1231 static DEFINE_MUTEX(vmap_purge_lock); 1232 1233 /* for per-CPU blocks */ 1234 static void purge_fragmented_blocks_allcpus(void); 1235 1236 /* 1237 * called before a call to iounmap() if the caller wants vm_area_struct's 1238 * immediately freed. 1239 */ 1240 void set_iounmap_nonlazy(void) 1241 { 1242 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1243 } 1244 1245 /* 1246 * Purges all lazily-freed vmap areas. 1247 */ 1248 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1249 { 1250 unsigned long resched_threshold; 1251 struct llist_node *valist; 1252 struct vmap_area *va; 1253 struct vmap_area *n_va; 1254 1255 lockdep_assert_held(&vmap_purge_lock); 1256 1257 valist = llist_del_all(&vmap_purge_list); 1258 if (unlikely(valist == NULL)) 1259 return false; 1260 1261 /* 1262 * TODO: to calculate a flush range without looping. 1263 * The list can be up to lazy_max_pages() elements. 1264 */ 1265 llist_for_each_entry(va, valist, purge_list) { 1266 if (va->va_start < start) 1267 start = va->va_start; 1268 if (va->va_end > end) 1269 end = va->va_end; 1270 } 1271 1272 flush_tlb_kernel_range(start, end); 1273 resched_threshold = lazy_max_pages() << 1; 1274 1275 spin_lock(&vmap_area_lock); 1276 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 1277 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1278 1279 __free_vmap_area(va); 1280 atomic_long_sub(nr, &vmap_lazy_nr); 1281 1282 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1283 cond_resched_lock(&vmap_area_lock); 1284 } 1285 spin_unlock(&vmap_area_lock); 1286 return true; 1287 } 1288 1289 /* 1290 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1291 * is already purging. 1292 */ 1293 static void try_purge_vmap_area_lazy(void) 1294 { 1295 if (mutex_trylock(&vmap_purge_lock)) { 1296 __purge_vmap_area_lazy(ULONG_MAX, 0); 1297 mutex_unlock(&vmap_purge_lock); 1298 } 1299 } 1300 1301 /* 1302 * Kick off a purge of the outstanding lazy areas. 1303 */ 1304 static void purge_vmap_area_lazy(void) 1305 { 1306 mutex_lock(&vmap_purge_lock); 1307 purge_fragmented_blocks_allcpus(); 1308 __purge_vmap_area_lazy(ULONG_MAX, 0); 1309 mutex_unlock(&vmap_purge_lock); 1310 } 1311 1312 /* 1313 * Free a vmap area, caller ensuring that the area has been unmapped 1314 * and flush_cache_vunmap had been called for the correct range 1315 * previously. 1316 */ 1317 static void free_vmap_area_noflush(struct vmap_area *va) 1318 { 1319 unsigned long nr_lazy; 1320 1321 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1322 PAGE_SHIFT, &vmap_lazy_nr); 1323 1324 /* After this point, we may free va at any time */ 1325 llist_add(&va->purge_list, &vmap_purge_list); 1326 1327 if (unlikely(nr_lazy > lazy_max_pages())) 1328 try_purge_vmap_area_lazy(); 1329 } 1330 1331 /* 1332 * Free and unmap a vmap area 1333 */ 1334 static void free_unmap_vmap_area(struct vmap_area *va) 1335 { 1336 flush_cache_vunmap(va->va_start, va->va_end); 1337 unmap_vmap_area(va); 1338 if (debug_pagealloc_enabled()) 1339 flush_tlb_kernel_range(va->va_start, va->va_end); 1340 1341 free_vmap_area_noflush(va); 1342 } 1343 1344 static struct vmap_area *find_vmap_area(unsigned long addr) 1345 { 1346 struct vmap_area *va; 1347 1348 spin_lock(&vmap_area_lock); 1349 va = __find_vmap_area(addr); 1350 spin_unlock(&vmap_area_lock); 1351 1352 return va; 1353 } 1354 1355 /*** Per cpu kva allocator ***/ 1356 1357 /* 1358 * vmap space is limited especially on 32 bit architectures. Ensure there is 1359 * room for at least 16 percpu vmap blocks per CPU. 1360 */ 1361 /* 1362 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1363 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1364 * instead (we just need a rough idea) 1365 */ 1366 #if BITS_PER_LONG == 32 1367 #define VMALLOC_SPACE (128UL*1024*1024) 1368 #else 1369 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1370 #endif 1371 1372 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1373 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1374 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1375 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1376 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1377 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1378 #define VMAP_BBMAP_BITS \ 1379 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1380 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1381 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1382 1383 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1384 1385 struct vmap_block_queue { 1386 spinlock_t lock; 1387 struct list_head free; 1388 }; 1389 1390 struct vmap_block { 1391 spinlock_t lock; 1392 struct vmap_area *va; 1393 unsigned long free, dirty; 1394 unsigned long dirty_min, dirty_max; /*< dirty range */ 1395 struct list_head free_list; 1396 struct rcu_head rcu_head; 1397 struct list_head purge; 1398 }; 1399 1400 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1401 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1402 1403 /* 1404 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 1405 * in the free path. Could get rid of this if we change the API to return a 1406 * "cookie" from alloc, to be passed to free. But no big deal yet. 1407 */ 1408 static DEFINE_SPINLOCK(vmap_block_tree_lock); 1409 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 1410 1411 /* 1412 * We should probably have a fallback mechanism to allocate virtual memory 1413 * out of partially filled vmap blocks. However vmap block sizing should be 1414 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1415 * big problem. 1416 */ 1417 1418 static unsigned long addr_to_vb_idx(unsigned long addr) 1419 { 1420 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1421 addr /= VMAP_BLOCK_SIZE; 1422 return addr; 1423 } 1424 1425 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1426 { 1427 unsigned long addr; 1428 1429 addr = va_start + (pages_off << PAGE_SHIFT); 1430 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1431 return (void *)addr; 1432 } 1433 1434 /** 1435 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1436 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1437 * @order: how many 2^order pages should be occupied in newly allocated block 1438 * @gfp_mask: flags for the page level allocator 1439 * 1440 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1441 */ 1442 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1443 { 1444 struct vmap_block_queue *vbq; 1445 struct vmap_block *vb; 1446 struct vmap_area *va; 1447 unsigned long vb_idx; 1448 int node, err; 1449 void *vaddr; 1450 1451 node = numa_node_id(); 1452 1453 vb = kmalloc_node(sizeof(struct vmap_block), 1454 gfp_mask & GFP_RECLAIM_MASK, node); 1455 if (unlikely(!vb)) 1456 return ERR_PTR(-ENOMEM); 1457 1458 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1459 VMALLOC_START, VMALLOC_END, 1460 node, gfp_mask); 1461 if (IS_ERR(va)) { 1462 kfree(vb); 1463 return ERR_CAST(va); 1464 } 1465 1466 err = radix_tree_preload(gfp_mask); 1467 if (unlikely(err)) { 1468 kfree(vb); 1469 free_vmap_area(va); 1470 return ERR_PTR(err); 1471 } 1472 1473 vaddr = vmap_block_vaddr(va->va_start, 0); 1474 spin_lock_init(&vb->lock); 1475 vb->va = va; 1476 /* At least something should be left free */ 1477 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1478 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1479 vb->dirty = 0; 1480 vb->dirty_min = VMAP_BBMAP_BITS; 1481 vb->dirty_max = 0; 1482 INIT_LIST_HEAD(&vb->free_list); 1483 1484 vb_idx = addr_to_vb_idx(va->va_start); 1485 spin_lock(&vmap_block_tree_lock); 1486 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 1487 spin_unlock(&vmap_block_tree_lock); 1488 BUG_ON(err); 1489 radix_tree_preload_end(); 1490 1491 vbq = &get_cpu_var(vmap_block_queue); 1492 spin_lock(&vbq->lock); 1493 list_add_tail_rcu(&vb->free_list, &vbq->free); 1494 spin_unlock(&vbq->lock); 1495 put_cpu_var(vmap_block_queue); 1496 1497 return vaddr; 1498 } 1499 1500 static void free_vmap_block(struct vmap_block *vb) 1501 { 1502 struct vmap_block *tmp; 1503 unsigned long vb_idx; 1504 1505 vb_idx = addr_to_vb_idx(vb->va->va_start); 1506 spin_lock(&vmap_block_tree_lock); 1507 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 1508 spin_unlock(&vmap_block_tree_lock); 1509 BUG_ON(tmp != vb); 1510 1511 free_vmap_area_noflush(vb->va); 1512 kfree_rcu(vb, rcu_head); 1513 } 1514 1515 static void purge_fragmented_blocks(int cpu) 1516 { 1517 LIST_HEAD(purge); 1518 struct vmap_block *vb; 1519 struct vmap_block *n_vb; 1520 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1521 1522 rcu_read_lock(); 1523 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1524 1525 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1526 continue; 1527 1528 spin_lock(&vb->lock); 1529 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1530 vb->free = 0; /* prevent further allocs after releasing lock */ 1531 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1532 vb->dirty_min = 0; 1533 vb->dirty_max = VMAP_BBMAP_BITS; 1534 spin_lock(&vbq->lock); 1535 list_del_rcu(&vb->free_list); 1536 spin_unlock(&vbq->lock); 1537 spin_unlock(&vb->lock); 1538 list_add_tail(&vb->purge, &purge); 1539 } else 1540 spin_unlock(&vb->lock); 1541 } 1542 rcu_read_unlock(); 1543 1544 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1545 list_del(&vb->purge); 1546 free_vmap_block(vb); 1547 } 1548 } 1549 1550 static void purge_fragmented_blocks_allcpus(void) 1551 { 1552 int cpu; 1553 1554 for_each_possible_cpu(cpu) 1555 purge_fragmented_blocks(cpu); 1556 } 1557 1558 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1559 { 1560 struct vmap_block_queue *vbq; 1561 struct vmap_block *vb; 1562 void *vaddr = NULL; 1563 unsigned int order; 1564 1565 BUG_ON(offset_in_page(size)); 1566 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1567 if (WARN_ON(size == 0)) { 1568 /* 1569 * Allocating 0 bytes isn't what caller wants since 1570 * get_order(0) returns funny result. Just warn and terminate 1571 * early. 1572 */ 1573 return NULL; 1574 } 1575 order = get_order(size); 1576 1577 rcu_read_lock(); 1578 vbq = &get_cpu_var(vmap_block_queue); 1579 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1580 unsigned long pages_off; 1581 1582 spin_lock(&vb->lock); 1583 if (vb->free < (1UL << order)) { 1584 spin_unlock(&vb->lock); 1585 continue; 1586 } 1587 1588 pages_off = VMAP_BBMAP_BITS - vb->free; 1589 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1590 vb->free -= 1UL << order; 1591 if (vb->free == 0) { 1592 spin_lock(&vbq->lock); 1593 list_del_rcu(&vb->free_list); 1594 spin_unlock(&vbq->lock); 1595 } 1596 1597 spin_unlock(&vb->lock); 1598 break; 1599 } 1600 1601 put_cpu_var(vmap_block_queue); 1602 rcu_read_unlock(); 1603 1604 /* Allocate new block if nothing was found */ 1605 if (!vaddr) 1606 vaddr = new_vmap_block(order, gfp_mask); 1607 1608 return vaddr; 1609 } 1610 1611 static void vb_free(const void *addr, unsigned long size) 1612 { 1613 unsigned long offset; 1614 unsigned long vb_idx; 1615 unsigned int order; 1616 struct vmap_block *vb; 1617 1618 BUG_ON(offset_in_page(size)); 1619 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1620 1621 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1622 1623 order = get_order(size); 1624 1625 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1626 offset >>= PAGE_SHIFT; 1627 1628 vb_idx = addr_to_vb_idx((unsigned long)addr); 1629 rcu_read_lock(); 1630 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1631 rcu_read_unlock(); 1632 BUG_ON(!vb); 1633 1634 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1635 1636 if (debug_pagealloc_enabled()) 1637 flush_tlb_kernel_range((unsigned long)addr, 1638 (unsigned long)addr + size); 1639 1640 spin_lock(&vb->lock); 1641 1642 /* Expand dirty range */ 1643 vb->dirty_min = min(vb->dirty_min, offset); 1644 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1645 1646 vb->dirty += 1UL << order; 1647 if (vb->dirty == VMAP_BBMAP_BITS) { 1648 BUG_ON(vb->free); 1649 spin_unlock(&vb->lock); 1650 free_vmap_block(vb); 1651 } else 1652 spin_unlock(&vb->lock); 1653 } 1654 1655 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1656 { 1657 int cpu; 1658 1659 if (unlikely(!vmap_initialized)) 1660 return; 1661 1662 might_sleep(); 1663 1664 for_each_possible_cpu(cpu) { 1665 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1666 struct vmap_block *vb; 1667 1668 rcu_read_lock(); 1669 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1670 spin_lock(&vb->lock); 1671 if (vb->dirty) { 1672 unsigned long va_start = vb->va->va_start; 1673 unsigned long s, e; 1674 1675 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1676 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1677 1678 start = min(s, start); 1679 end = max(e, end); 1680 1681 flush = 1; 1682 } 1683 spin_unlock(&vb->lock); 1684 } 1685 rcu_read_unlock(); 1686 } 1687 1688 mutex_lock(&vmap_purge_lock); 1689 purge_fragmented_blocks_allcpus(); 1690 if (!__purge_vmap_area_lazy(start, end) && flush) 1691 flush_tlb_kernel_range(start, end); 1692 mutex_unlock(&vmap_purge_lock); 1693 } 1694 1695 /** 1696 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1697 * 1698 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1699 * to amortize TLB flushing overheads. What this means is that any page you 1700 * have now, may, in a former life, have been mapped into kernel virtual 1701 * address by the vmap layer and so there might be some CPUs with TLB entries 1702 * still referencing that page (additional to the regular 1:1 kernel mapping). 1703 * 1704 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1705 * be sure that none of the pages we have control over will have any aliases 1706 * from the vmap layer. 1707 */ 1708 void vm_unmap_aliases(void) 1709 { 1710 unsigned long start = ULONG_MAX, end = 0; 1711 int flush = 0; 1712 1713 _vm_unmap_aliases(start, end, flush); 1714 } 1715 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1716 1717 /** 1718 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1719 * @mem: the pointer returned by vm_map_ram 1720 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1721 */ 1722 void vm_unmap_ram(const void *mem, unsigned int count) 1723 { 1724 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1725 unsigned long addr = (unsigned long)mem; 1726 struct vmap_area *va; 1727 1728 might_sleep(); 1729 BUG_ON(!addr); 1730 BUG_ON(addr < VMALLOC_START); 1731 BUG_ON(addr > VMALLOC_END); 1732 BUG_ON(!PAGE_ALIGNED(addr)); 1733 1734 if (likely(count <= VMAP_MAX_ALLOC)) { 1735 debug_check_no_locks_freed(mem, size); 1736 vb_free(mem, size); 1737 return; 1738 } 1739 1740 va = find_vmap_area(addr); 1741 BUG_ON(!va); 1742 debug_check_no_locks_freed((void *)va->va_start, 1743 (va->va_end - va->va_start)); 1744 free_unmap_vmap_area(va); 1745 } 1746 EXPORT_SYMBOL(vm_unmap_ram); 1747 1748 /** 1749 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1750 * @pages: an array of pointers to the pages to be mapped 1751 * @count: number of pages 1752 * @node: prefer to allocate data structures on this node 1753 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1754 * 1755 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1756 * faster than vmap so it's good. But if you mix long-life and short-life 1757 * objects with vm_map_ram(), it could consume lots of address space through 1758 * fragmentation (especially on a 32bit machine). You could see failures in 1759 * the end. Please use this function for short-lived objects. 1760 * 1761 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1762 */ 1763 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1764 { 1765 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1766 unsigned long addr; 1767 void *mem; 1768 1769 if (likely(count <= VMAP_MAX_ALLOC)) { 1770 mem = vb_alloc(size, GFP_KERNEL); 1771 if (IS_ERR(mem)) 1772 return NULL; 1773 addr = (unsigned long)mem; 1774 } else { 1775 struct vmap_area *va; 1776 va = alloc_vmap_area(size, PAGE_SIZE, 1777 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1778 if (IS_ERR(va)) 1779 return NULL; 1780 1781 addr = va->va_start; 1782 mem = (void *)addr; 1783 } 1784 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1785 vm_unmap_ram(mem, count); 1786 return NULL; 1787 } 1788 return mem; 1789 } 1790 EXPORT_SYMBOL(vm_map_ram); 1791 1792 static struct vm_struct *vmlist __initdata; 1793 1794 /** 1795 * vm_area_add_early - add vmap area early during boot 1796 * @vm: vm_struct to add 1797 * 1798 * This function is used to add fixed kernel vm area to vmlist before 1799 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1800 * should contain proper values and the other fields should be zero. 1801 * 1802 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1803 */ 1804 void __init vm_area_add_early(struct vm_struct *vm) 1805 { 1806 struct vm_struct *tmp, **p; 1807 1808 BUG_ON(vmap_initialized); 1809 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1810 if (tmp->addr >= vm->addr) { 1811 BUG_ON(tmp->addr < vm->addr + vm->size); 1812 break; 1813 } else 1814 BUG_ON(tmp->addr + tmp->size > vm->addr); 1815 } 1816 vm->next = *p; 1817 *p = vm; 1818 } 1819 1820 /** 1821 * vm_area_register_early - register vmap area early during boot 1822 * @vm: vm_struct to register 1823 * @align: requested alignment 1824 * 1825 * This function is used to register kernel vm area before 1826 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1827 * proper values on entry and other fields should be zero. On return, 1828 * vm->addr contains the allocated address. 1829 * 1830 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1831 */ 1832 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1833 { 1834 static size_t vm_init_off __initdata; 1835 unsigned long addr; 1836 1837 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1838 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1839 1840 vm->addr = (void *)addr; 1841 1842 vm_area_add_early(vm); 1843 } 1844 1845 static void vmap_init_free_space(void) 1846 { 1847 unsigned long vmap_start = 1; 1848 const unsigned long vmap_end = ULONG_MAX; 1849 struct vmap_area *busy, *free; 1850 1851 /* 1852 * B F B B B F 1853 * -|-----|.....|-----|-----|-----|.....|- 1854 * | The KVA space | 1855 * |<--------------------------------->| 1856 */ 1857 list_for_each_entry(busy, &vmap_area_list, list) { 1858 if (busy->va_start - vmap_start > 0) { 1859 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1860 if (!WARN_ON_ONCE(!free)) { 1861 free->va_start = vmap_start; 1862 free->va_end = busy->va_start; 1863 1864 insert_vmap_area_augment(free, NULL, 1865 &free_vmap_area_root, 1866 &free_vmap_area_list); 1867 } 1868 } 1869 1870 vmap_start = busy->va_end; 1871 } 1872 1873 if (vmap_end - vmap_start > 0) { 1874 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1875 if (!WARN_ON_ONCE(!free)) { 1876 free->va_start = vmap_start; 1877 free->va_end = vmap_end; 1878 1879 insert_vmap_area_augment(free, NULL, 1880 &free_vmap_area_root, 1881 &free_vmap_area_list); 1882 } 1883 } 1884 } 1885 1886 void __init vmalloc_init(void) 1887 { 1888 struct vmap_area *va; 1889 struct vm_struct *tmp; 1890 int i; 1891 1892 /* 1893 * Create the cache for vmap_area objects. 1894 */ 1895 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 1896 1897 for_each_possible_cpu(i) { 1898 struct vmap_block_queue *vbq; 1899 struct vfree_deferred *p; 1900 1901 vbq = &per_cpu(vmap_block_queue, i); 1902 spin_lock_init(&vbq->lock); 1903 INIT_LIST_HEAD(&vbq->free); 1904 p = &per_cpu(vfree_deferred, i); 1905 init_llist_head(&p->list); 1906 INIT_WORK(&p->wq, free_work); 1907 } 1908 1909 /* Import existing vmlist entries. */ 1910 for (tmp = vmlist; tmp; tmp = tmp->next) { 1911 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1912 if (WARN_ON_ONCE(!va)) 1913 continue; 1914 1915 va->flags = VM_VM_AREA; 1916 va->va_start = (unsigned long)tmp->addr; 1917 va->va_end = va->va_start + tmp->size; 1918 va->vm = tmp; 1919 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1920 } 1921 1922 /* 1923 * Now we can initialize a free vmap space. 1924 */ 1925 vmap_init_free_space(); 1926 vmap_initialized = true; 1927 } 1928 1929 /** 1930 * map_kernel_range_noflush - map kernel VM area with the specified pages 1931 * @addr: start of the VM area to map 1932 * @size: size of the VM area to map 1933 * @prot: page protection flags to use 1934 * @pages: pages to map 1935 * 1936 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1937 * specify should have been allocated using get_vm_area() and its 1938 * friends. 1939 * 1940 * NOTE: 1941 * This function does NOT do any cache flushing. The caller is 1942 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1943 * before calling this function. 1944 * 1945 * RETURNS: 1946 * The number of pages mapped on success, -errno on failure. 1947 */ 1948 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1949 pgprot_t prot, struct page **pages) 1950 { 1951 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1952 } 1953 1954 /** 1955 * unmap_kernel_range_noflush - unmap kernel VM area 1956 * @addr: start of the VM area to unmap 1957 * @size: size of the VM area to unmap 1958 * 1959 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1960 * specify should have been allocated using get_vm_area() and its 1961 * friends. 1962 * 1963 * NOTE: 1964 * This function does NOT do any cache flushing. The caller is 1965 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1966 * before calling this function and flush_tlb_kernel_range() after. 1967 */ 1968 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1969 { 1970 vunmap_page_range(addr, addr + size); 1971 } 1972 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1973 1974 /** 1975 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1976 * @addr: start of the VM area to unmap 1977 * @size: size of the VM area to unmap 1978 * 1979 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1980 * the unmapping and tlb after. 1981 */ 1982 void unmap_kernel_range(unsigned long addr, unsigned long size) 1983 { 1984 unsigned long end = addr + size; 1985 1986 flush_cache_vunmap(addr, end); 1987 vunmap_page_range(addr, end); 1988 flush_tlb_kernel_range(addr, end); 1989 } 1990 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1991 1992 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1993 { 1994 unsigned long addr = (unsigned long)area->addr; 1995 unsigned long end = addr + get_vm_area_size(area); 1996 int err; 1997 1998 err = vmap_page_range(addr, end, prot, pages); 1999 2000 return err > 0 ? 0 : err; 2001 } 2002 EXPORT_SYMBOL_GPL(map_vm_area); 2003 2004 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2005 unsigned long flags, const void *caller) 2006 { 2007 spin_lock(&vmap_area_lock); 2008 vm->flags = flags; 2009 vm->addr = (void *)va->va_start; 2010 vm->size = va->va_end - va->va_start; 2011 vm->caller = caller; 2012 va->vm = vm; 2013 va->flags |= VM_VM_AREA; 2014 spin_unlock(&vmap_area_lock); 2015 } 2016 2017 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2018 { 2019 /* 2020 * Before removing VM_UNINITIALIZED, 2021 * we should make sure that vm has proper values. 2022 * Pair with smp_rmb() in show_numa_info(). 2023 */ 2024 smp_wmb(); 2025 vm->flags &= ~VM_UNINITIALIZED; 2026 } 2027 2028 static struct vm_struct *__get_vm_area_node(unsigned long size, 2029 unsigned long align, unsigned long flags, unsigned long start, 2030 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 2031 { 2032 struct vmap_area *va; 2033 struct vm_struct *area; 2034 2035 BUG_ON(in_interrupt()); 2036 size = PAGE_ALIGN(size); 2037 if (unlikely(!size)) 2038 return NULL; 2039 2040 if (flags & VM_IOREMAP) 2041 align = 1ul << clamp_t(int, get_count_order_long(size), 2042 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2043 2044 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2045 if (unlikely(!area)) 2046 return NULL; 2047 2048 if (!(flags & VM_NO_GUARD)) 2049 size += PAGE_SIZE; 2050 2051 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2052 if (IS_ERR(va)) { 2053 kfree(area); 2054 return NULL; 2055 } 2056 2057 setup_vmalloc_vm(area, va, flags, caller); 2058 2059 return area; 2060 } 2061 2062 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 2063 unsigned long start, unsigned long end) 2064 { 2065 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2066 GFP_KERNEL, __builtin_return_address(0)); 2067 } 2068 EXPORT_SYMBOL_GPL(__get_vm_area); 2069 2070 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2071 unsigned long start, unsigned long end, 2072 const void *caller) 2073 { 2074 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2075 GFP_KERNEL, caller); 2076 } 2077 2078 /** 2079 * get_vm_area - reserve a contiguous kernel virtual area 2080 * @size: size of the area 2081 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2082 * 2083 * Search an area of @size in the kernel virtual mapping area, 2084 * and reserved it for out purposes. Returns the area descriptor 2085 * on success or %NULL on failure. 2086 * 2087 * Return: the area descriptor on success or %NULL on failure. 2088 */ 2089 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2090 { 2091 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2092 NUMA_NO_NODE, GFP_KERNEL, 2093 __builtin_return_address(0)); 2094 } 2095 2096 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2097 const void *caller) 2098 { 2099 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2100 NUMA_NO_NODE, GFP_KERNEL, caller); 2101 } 2102 2103 /** 2104 * find_vm_area - find a continuous kernel virtual area 2105 * @addr: base address 2106 * 2107 * Search for the kernel VM area starting at @addr, and return it. 2108 * It is up to the caller to do all required locking to keep the returned 2109 * pointer valid. 2110 * 2111 * Return: pointer to the found area or %NULL on faulure 2112 */ 2113 struct vm_struct *find_vm_area(const void *addr) 2114 { 2115 struct vmap_area *va; 2116 2117 va = find_vmap_area((unsigned long)addr); 2118 if (va && va->flags & VM_VM_AREA) 2119 return va->vm; 2120 2121 return NULL; 2122 } 2123 2124 /** 2125 * remove_vm_area - find and remove a continuous kernel virtual area 2126 * @addr: base address 2127 * 2128 * Search for the kernel VM area starting at @addr, and remove it. 2129 * This function returns the found VM area, but using it is NOT safe 2130 * on SMP machines, except for its size or flags. 2131 * 2132 * Return: pointer to the found area or %NULL on faulure 2133 */ 2134 struct vm_struct *remove_vm_area(const void *addr) 2135 { 2136 struct vmap_area *va; 2137 2138 might_sleep(); 2139 2140 va = find_vmap_area((unsigned long)addr); 2141 if (va && va->flags & VM_VM_AREA) { 2142 struct vm_struct *vm = va->vm; 2143 2144 spin_lock(&vmap_area_lock); 2145 va->vm = NULL; 2146 va->flags &= ~VM_VM_AREA; 2147 va->flags |= VM_LAZY_FREE; 2148 spin_unlock(&vmap_area_lock); 2149 2150 kasan_free_shadow(vm); 2151 free_unmap_vmap_area(va); 2152 2153 return vm; 2154 } 2155 return NULL; 2156 } 2157 2158 static inline void set_area_direct_map(const struct vm_struct *area, 2159 int (*set_direct_map)(struct page *page)) 2160 { 2161 int i; 2162 2163 for (i = 0; i < area->nr_pages; i++) 2164 if (page_address(area->pages[i])) 2165 set_direct_map(area->pages[i]); 2166 } 2167 2168 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2169 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2170 { 2171 unsigned long start = ULONG_MAX, end = 0; 2172 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2173 int flush_dmap = 0; 2174 int i; 2175 2176 remove_vm_area(area->addr); 2177 2178 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2179 if (!flush_reset) 2180 return; 2181 2182 /* 2183 * If not deallocating pages, just do the flush of the VM area and 2184 * return. 2185 */ 2186 if (!deallocate_pages) { 2187 vm_unmap_aliases(); 2188 return; 2189 } 2190 2191 /* 2192 * If execution gets here, flush the vm mapping and reset the direct 2193 * map. Find the start and end range of the direct mappings to make sure 2194 * the vm_unmap_aliases() flush includes the direct map. 2195 */ 2196 for (i = 0; i < area->nr_pages; i++) { 2197 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2198 if (addr) { 2199 start = min(addr, start); 2200 end = max(addr + PAGE_SIZE, end); 2201 flush_dmap = 1; 2202 } 2203 } 2204 2205 /* 2206 * Set direct map to something invalid so that it won't be cached if 2207 * there are any accesses after the TLB flush, then flush the TLB and 2208 * reset the direct map permissions to the default. 2209 */ 2210 set_area_direct_map(area, set_direct_map_invalid_noflush); 2211 _vm_unmap_aliases(start, end, flush_dmap); 2212 set_area_direct_map(area, set_direct_map_default_noflush); 2213 } 2214 2215 static void __vunmap(const void *addr, int deallocate_pages) 2216 { 2217 struct vm_struct *area; 2218 2219 if (!addr) 2220 return; 2221 2222 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2223 addr)) 2224 return; 2225 2226 area = find_vm_area(addr); 2227 if (unlikely(!area)) { 2228 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2229 addr); 2230 return; 2231 } 2232 2233 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2234 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2235 2236 vm_remove_mappings(area, deallocate_pages); 2237 2238 if (deallocate_pages) { 2239 int i; 2240 2241 for (i = 0; i < area->nr_pages; i++) { 2242 struct page *page = area->pages[i]; 2243 2244 BUG_ON(!page); 2245 __free_pages(page, 0); 2246 } 2247 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2248 2249 kvfree(area->pages); 2250 } 2251 2252 kfree(area); 2253 return; 2254 } 2255 2256 static inline void __vfree_deferred(const void *addr) 2257 { 2258 /* 2259 * Use raw_cpu_ptr() because this can be called from preemptible 2260 * context. Preemption is absolutely fine here, because the llist_add() 2261 * implementation is lockless, so it works even if we are adding to 2262 * nother cpu's list. schedule_work() should be fine with this too. 2263 */ 2264 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2265 2266 if (llist_add((struct llist_node *)addr, &p->list)) 2267 schedule_work(&p->wq); 2268 } 2269 2270 /** 2271 * vfree_atomic - release memory allocated by vmalloc() 2272 * @addr: memory base address 2273 * 2274 * This one is just like vfree() but can be called in any atomic context 2275 * except NMIs. 2276 */ 2277 void vfree_atomic(const void *addr) 2278 { 2279 BUG_ON(in_nmi()); 2280 2281 kmemleak_free(addr); 2282 2283 if (!addr) 2284 return; 2285 __vfree_deferred(addr); 2286 } 2287 2288 static void __vfree(const void *addr) 2289 { 2290 if (unlikely(in_interrupt())) 2291 __vfree_deferred(addr); 2292 else 2293 __vunmap(addr, 1); 2294 } 2295 2296 /** 2297 * vfree - release memory allocated by vmalloc() 2298 * @addr: memory base address 2299 * 2300 * Free the virtually continuous memory area starting at @addr, as 2301 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 2302 * NULL, no operation is performed. 2303 * 2304 * Must not be called in NMI context (strictly speaking, only if we don't 2305 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2306 * conventions for vfree() arch-depenedent would be a really bad idea) 2307 * 2308 * May sleep if called *not* from interrupt context. 2309 * 2310 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 2311 */ 2312 void vfree(const void *addr) 2313 { 2314 BUG_ON(in_nmi()); 2315 2316 kmemleak_free(addr); 2317 2318 might_sleep_if(!in_interrupt()); 2319 2320 if (!addr) 2321 return; 2322 2323 __vfree(addr); 2324 } 2325 EXPORT_SYMBOL(vfree); 2326 2327 /** 2328 * vunmap - release virtual mapping obtained by vmap() 2329 * @addr: memory base address 2330 * 2331 * Free the virtually contiguous memory area starting at @addr, 2332 * which was created from the page array passed to vmap(). 2333 * 2334 * Must not be called in interrupt context. 2335 */ 2336 void vunmap(const void *addr) 2337 { 2338 BUG_ON(in_interrupt()); 2339 might_sleep(); 2340 if (addr) 2341 __vunmap(addr, 0); 2342 } 2343 EXPORT_SYMBOL(vunmap); 2344 2345 /** 2346 * vmap - map an array of pages into virtually contiguous space 2347 * @pages: array of page pointers 2348 * @count: number of pages to map 2349 * @flags: vm_area->flags 2350 * @prot: page protection for the mapping 2351 * 2352 * Maps @count pages from @pages into contiguous kernel virtual 2353 * space. 2354 * 2355 * Return: the address of the area or %NULL on failure 2356 */ 2357 void *vmap(struct page **pages, unsigned int count, 2358 unsigned long flags, pgprot_t prot) 2359 { 2360 struct vm_struct *area; 2361 unsigned long size; /* In bytes */ 2362 2363 might_sleep(); 2364 2365 if (count > totalram_pages()) 2366 return NULL; 2367 2368 size = (unsigned long)count << PAGE_SHIFT; 2369 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2370 if (!area) 2371 return NULL; 2372 2373 if (map_vm_area(area, prot, pages)) { 2374 vunmap(area->addr); 2375 return NULL; 2376 } 2377 2378 return area->addr; 2379 } 2380 EXPORT_SYMBOL(vmap); 2381 2382 static void *__vmalloc_node(unsigned long size, unsigned long align, 2383 gfp_t gfp_mask, pgprot_t prot, 2384 int node, const void *caller); 2385 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2386 pgprot_t prot, int node) 2387 { 2388 struct page **pages; 2389 unsigned int nr_pages, array_size, i; 2390 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2391 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 2392 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 2393 0 : 2394 __GFP_HIGHMEM; 2395 2396 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 2397 array_size = (nr_pages * sizeof(struct page *)); 2398 2399 area->nr_pages = nr_pages; 2400 /* Please note that the recursion is strictly bounded. */ 2401 if (array_size > PAGE_SIZE) { 2402 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 2403 PAGE_KERNEL, node, area->caller); 2404 } else { 2405 pages = kmalloc_node(array_size, nested_gfp, node); 2406 } 2407 area->pages = pages; 2408 if (!area->pages) { 2409 remove_vm_area(area->addr); 2410 kfree(area); 2411 return NULL; 2412 } 2413 2414 for (i = 0; i < area->nr_pages; i++) { 2415 struct page *page; 2416 2417 if (node == NUMA_NO_NODE) 2418 page = alloc_page(alloc_mask|highmem_mask); 2419 else 2420 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 2421 2422 if (unlikely(!page)) { 2423 /* Successfully allocated i pages, free them in __vunmap() */ 2424 area->nr_pages = i; 2425 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2426 goto fail; 2427 } 2428 area->pages[i] = page; 2429 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 2430 cond_resched(); 2431 } 2432 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2433 2434 if (map_vm_area(area, prot, pages)) 2435 goto fail; 2436 return area->addr; 2437 2438 fail: 2439 warn_alloc(gfp_mask, NULL, 2440 "vmalloc: allocation failure, allocated %ld of %ld bytes", 2441 (area->nr_pages*PAGE_SIZE), area->size); 2442 __vfree(area->addr); 2443 return NULL; 2444 } 2445 2446 /** 2447 * __vmalloc_node_range - allocate virtually contiguous memory 2448 * @size: allocation size 2449 * @align: desired alignment 2450 * @start: vm area range start 2451 * @end: vm area range end 2452 * @gfp_mask: flags for the page level allocator 2453 * @prot: protection mask for the allocated pages 2454 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2455 * @node: node to use for allocation or NUMA_NO_NODE 2456 * @caller: caller's return address 2457 * 2458 * Allocate enough pages to cover @size from the page level 2459 * allocator with @gfp_mask flags. Map them into contiguous 2460 * kernel virtual space, using a pagetable protection of @prot. 2461 * 2462 * Return: the address of the area or %NULL on failure 2463 */ 2464 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2465 unsigned long start, unsigned long end, gfp_t gfp_mask, 2466 pgprot_t prot, unsigned long vm_flags, int node, 2467 const void *caller) 2468 { 2469 struct vm_struct *area; 2470 void *addr; 2471 unsigned long real_size = size; 2472 2473 size = PAGE_ALIGN(size); 2474 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 2475 goto fail; 2476 2477 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 2478 vm_flags, start, end, node, gfp_mask, caller); 2479 if (!area) 2480 goto fail; 2481 2482 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 2483 if (!addr) 2484 return NULL; 2485 2486 /* 2487 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2488 * flag. It means that vm_struct is not fully initialized. 2489 * Now, it is fully initialized, so remove this flag here. 2490 */ 2491 clear_vm_uninitialized_flag(area); 2492 2493 kmemleak_vmalloc(area, size, gfp_mask); 2494 2495 return addr; 2496 2497 fail: 2498 warn_alloc(gfp_mask, NULL, 2499 "vmalloc: allocation failure: %lu bytes", real_size); 2500 return NULL; 2501 } 2502 2503 /* 2504 * This is only for performance analysis of vmalloc and stress purpose. 2505 * It is required by vmalloc test module, therefore do not use it other 2506 * than that. 2507 */ 2508 #ifdef CONFIG_TEST_VMALLOC_MODULE 2509 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 2510 #endif 2511 2512 /** 2513 * __vmalloc_node - allocate virtually contiguous memory 2514 * @size: allocation size 2515 * @align: desired alignment 2516 * @gfp_mask: flags for the page level allocator 2517 * @prot: protection mask for the allocated pages 2518 * @node: node to use for allocation or NUMA_NO_NODE 2519 * @caller: caller's return address 2520 * 2521 * Allocate enough pages to cover @size from the page level 2522 * allocator with @gfp_mask flags. Map them into contiguous 2523 * kernel virtual space, using a pagetable protection of @prot. 2524 * 2525 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 2526 * and __GFP_NOFAIL are not supported 2527 * 2528 * Any use of gfp flags outside of GFP_KERNEL should be consulted 2529 * with mm people. 2530 * 2531 * Return: pointer to the allocated memory or %NULL on error 2532 */ 2533 static void *__vmalloc_node(unsigned long size, unsigned long align, 2534 gfp_t gfp_mask, pgprot_t prot, 2535 int node, const void *caller) 2536 { 2537 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 2538 gfp_mask, prot, 0, node, caller); 2539 } 2540 2541 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 2542 { 2543 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 2544 __builtin_return_address(0)); 2545 } 2546 EXPORT_SYMBOL(__vmalloc); 2547 2548 static inline void *__vmalloc_node_flags(unsigned long size, 2549 int node, gfp_t flags) 2550 { 2551 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 2552 node, __builtin_return_address(0)); 2553 } 2554 2555 2556 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 2557 void *caller) 2558 { 2559 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 2560 } 2561 2562 /** 2563 * vmalloc - allocate virtually contiguous memory 2564 * @size: allocation size 2565 * 2566 * Allocate enough pages to cover @size from the page level 2567 * allocator and map them into contiguous kernel virtual space. 2568 * 2569 * For tight control over page level allocator and protection flags 2570 * use __vmalloc() instead. 2571 * 2572 * Return: pointer to the allocated memory or %NULL on error 2573 */ 2574 void *vmalloc(unsigned long size) 2575 { 2576 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2577 GFP_KERNEL); 2578 } 2579 EXPORT_SYMBOL(vmalloc); 2580 2581 /** 2582 * vzalloc - allocate virtually contiguous memory with zero fill 2583 * @size: allocation size 2584 * 2585 * Allocate enough pages to cover @size from the page level 2586 * allocator and map them into contiguous kernel virtual space. 2587 * The memory allocated is set to zero. 2588 * 2589 * For tight control over page level allocator and protection flags 2590 * use __vmalloc() instead. 2591 * 2592 * Return: pointer to the allocated memory or %NULL on error 2593 */ 2594 void *vzalloc(unsigned long size) 2595 { 2596 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2597 GFP_KERNEL | __GFP_ZERO); 2598 } 2599 EXPORT_SYMBOL(vzalloc); 2600 2601 /** 2602 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 2603 * @size: allocation size 2604 * 2605 * The resulting memory area is zeroed so it can be mapped to userspace 2606 * without leaking data. 2607 * 2608 * Return: pointer to the allocated memory or %NULL on error 2609 */ 2610 void *vmalloc_user(unsigned long size) 2611 { 2612 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2613 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 2614 VM_USERMAP, NUMA_NO_NODE, 2615 __builtin_return_address(0)); 2616 } 2617 EXPORT_SYMBOL(vmalloc_user); 2618 2619 /** 2620 * vmalloc_node - allocate memory on a specific node 2621 * @size: allocation size 2622 * @node: numa node 2623 * 2624 * Allocate enough pages to cover @size from the page level 2625 * allocator and map them into contiguous kernel virtual space. 2626 * 2627 * For tight control over page level allocator and protection flags 2628 * use __vmalloc() instead. 2629 * 2630 * Return: pointer to the allocated memory or %NULL on error 2631 */ 2632 void *vmalloc_node(unsigned long size, int node) 2633 { 2634 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 2635 node, __builtin_return_address(0)); 2636 } 2637 EXPORT_SYMBOL(vmalloc_node); 2638 2639 /** 2640 * vzalloc_node - allocate memory on a specific node with zero fill 2641 * @size: allocation size 2642 * @node: numa node 2643 * 2644 * Allocate enough pages to cover @size from the page level 2645 * allocator and map them into contiguous kernel virtual space. 2646 * The memory allocated is set to zero. 2647 * 2648 * For tight control over page level allocator and protection flags 2649 * use __vmalloc_node() instead. 2650 * 2651 * Return: pointer to the allocated memory or %NULL on error 2652 */ 2653 void *vzalloc_node(unsigned long size, int node) 2654 { 2655 return __vmalloc_node_flags(size, node, 2656 GFP_KERNEL | __GFP_ZERO); 2657 } 2658 EXPORT_SYMBOL(vzalloc_node); 2659 2660 /** 2661 * vmalloc_exec - allocate virtually contiguous, executable memory 2662 * @size: allocation size 2663 * 2664 * Kernel-internal function to allocate enough pages to cover @size 2665 * the page level allocator and map them into contiguous and 2666 * executable kernel virtual space. 2667 * 2668 * For tight control over page level allocator and protection flags 2669 * use __vmalloc() instead. 2670 * 2671 * Return: pointer to the allocated memory or %NULL on error 2672 */ 2673 void *vmalloc_exec(unsigned long size) 2674 { 2675 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2676 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2677 NUMA_NO_NODE, __builtin_return_address(0)); 2678 } 2679 2680 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2681 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2682 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2683 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2684 #else 2685 /* 2686 * 64b systems should always have either DMA or DMA32 zones. For others 2687 * GFP_DMA32 should do the right thing and use the normal zone. 2688 */ 2689 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2690 #endif 2691 2692 /** 2693 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2694 * @size: allocation size 2695 * 2696 * Allocate enough 32bit PA addressable pages to cover @size from the 2697 * page level allocator and map them into contiguous kernel virtual space. 2698 * 2699 * Return: pointer to the allocated memory or %NULL on error 2700 */ 2701 void *vmalloc_32(unsigned long size) 2702 { 2703 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 2704 NUMA_NO_NODE, __builtin_return_address(0)); 2705 } 2706 EXPORT_SYMBOL(vmalloc_32); 2707 2708 /** 2709 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2710 * @size: allocation size 2711 * 2712 * The resulting memory area is 32bit addressable and zeroed so it can be 2713 * mapped to userspace without leaking data. 2714 * 2715 * Return: pointer to the allocated memory or %NULL on error 2716 */ 2717 void *vmalloc_32_user(unsigned long size) 2718 { 2719 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2720 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2721 VM_USERMAP, NUMA_NO_NODE, 2722 __builtin_return_address(0)); 2723 } 2724 EXPORT_SYMBOL(vmalloc_32_user); 2725 2726 /* 2727 * small helper routine , copy contents to buf from addr. 2728 * If the page is not present, fill zero. 2729 */ 2730 2731 static int aligned_vread(char *buf, char *addr, unsigned long count) 2732 { 2733 struct page *p; 2734 int copied = 0; 2735 2736 while (count) { 2737 unsigned long offset, length; 2738 2739 offset = offset_in_page(addr); 2740 length = PAGE_SIZE - offset; 2741 if (length > count) 2742 length = count; 2743 p = vmalloc_to_page(addr); 2744 /* 2745 * To do safe access to this _mapped_ area, we need 2746 * lock. But adding lock here means that we need to add 2747 * overhead of vmalloc()/vfree() calles for this _debug_ 2748 * interface, rarely used. Instead of that, we'll use 2749 * kmap() and get small overhead in this access function. 2750 */ 2751 if (p) { 2752 /* 2753 * we can expect USER0 is not used (see vread/vwrite's 2754 * function description) 2755 */ 2756 void *map = kmap_atomic(p); 2757 memcpy(buf, map + offset, length); 2758 kunmap_atomic(map); 2759 } else 2760 memset(buf, 0, length); 2761 2762 addr += length; 2763 buf += length; 2764 copied += length; 2765 count -= length; 2766 } 2767 return copied; 2768 } 2769 2770 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2771 { 2772 struct page *p; 2773 int copied = 0; 2774 2775 while (count) { 2776 unsigned long offset, length; 2777 2778 offset = offset_in_page(addr); 2779 length = PAGE_SIZE - offset; 2780 if (length > count) 2781 length = count; 2782 p = vmalloc_to_page(addr); 2783 /* 2784 * To do safe access to this _mapped_ area, we need 2785 * lock. But adding lock here means that we need to add 2786 * overhead of vmalloc()/vfree() calles for this _debug_ 2787 * interface, rarely used. Instead of that, we'll use 2788 * kmap() and get small overhead in this access function. 2789 */ 2790 if (p) { 2791 /* 2792 * we can expect USER0 is not used (see vread/vwrite's 2793 * function description) 2794 */ 2795 void *map = kmap_atomic(p); 2796 memcpy(map + offset, buf, length); 2797 kunmap_atomic(map); 2798 } 2799 addr += length; 2800 buf += length; 2801 copied += length; 2802 count -= length; 2803 } 2804 return copied; 2805 } 2806 2807 /** 2808 * vread() - read vmalloc area in a safe way. 2809 * @buf: buffer for reading data 2810 * @addr: vm address. 2811 * @count: number of bytes to be read. 2812 * 2813 * This function checks that addr is a valid vmalloc'ed area, and 2814 * copy data from that area to a given buffer. If the given memory range 2815 * of [addr...addr+count) includes some valid address, data is copied to 2816 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2817 * IOREMAP area is treated as memory hole and no copy is done. 2818 * 2819 * If [addr...addr+count) doesn't includes any intersects with alive 2820 * vm_struct area, returns 0. @buf should be kernel's buffer. 2821 * 2822 * Note: In usual ops, vread() is never necessary because the caller 2823 * should know vmalloc() area is valid and can use memcpy(). 2824 * This is for routines which have to access vmalloc area without 2825 * any information, as /dev/kmem. 2826 * 2827 * Return: number of bytes for which addr and buf should be increased 2828 * (same number as @count) or %0 if [addr...addr+count) doesn't 2829 * include any intersection with valid vmalloc area 2830 */ 2831 long vread(char *buf, char *addr, unsigned long count) 2832 { 2833 struct vmap_area *va; 2834 struct vm_struct *vm; 2835 char *vaddr, *buf_start = buf; 2836 unsigned long buflen = count; 2837 unsigned long n; 2838 2839 /* Don't allow overflow */ 2840 if ((unsigned long) addr + count < count) 2841 count = -(unsigned long) addr; 2842 2843 spin_lock(&vmap_area_lock); 2844 list_for_each_entry(va, &vmap_area_list, list) { 2845 if (!count) 2846 break; 2847 2848 if (!(va->flags & VM_VM_AREA)) 2849 continue; 2850 2851 vm = va->vm; 2852 vaddr = (char *) vm->addr; 2853 if (addr >= vaddr + get_vm_area_size(vm)) 2854 continue; 2855 while (addr < vaddr) { 2856 if (count == 0) 2857 goto finished; 2858 *buf = '\0'; 2859 buf++; 2860 addr++; 2861 count--; 2862 } 2863 n = vaddr + get_vm_area_size(vm) - addr; 2864 if (n > count) 2865 n = count; 2866 if (!(vm->flags & VM_IOREMAP)) 2867 aligned_vread(buf, addr, n); 2868 else /* IOREMAP area is treated as memory hole */ 2869 memset(buf, 0, n); 2870 buf += n; 2871 addr += n; 2872 count -= n; 2873 } 2874 finished: 2875 spin_unlock(&vmap_area_lock); 2876 2877 if (buf == buf_start) 2878 return 0; 2879 /* zero-fill memory holes */ 2880 if (buf != buf_start + buflen) 2881 memset(buf, 0, buflen - (buf - buf_start)); 2882 2883 return buflen; 2884 } 2885 2886 /** 2887 * vwrite() - write vmalloc area in a safe way. 2888 * @buf: buffer for source data 2889 * @addr: vm address. 2890 * @count: number of bytes to be read. 2891 * 2892 * This function checks that addr is a valid vmalloc'ed area, and 2893 * copy data from a buffer to the given addr. If specified range of 2894 * [addr...addr+count) includes some valid address, data is copied from 2895 * proper area of @buf. If there are memory holes, no copy to hole. 2896 * IOREMAP area is treated as memory hole and no copy is done. 2897 * 2898 * If [addr...addr+count) doesn't includes any intersects with alive 2899 * vm_struct area, returns 0. @buf should be kernel's buffer. 2900 * 2901 * Note: In usual ops, vwrite() is never necessary because the caller 2902 * should know vmalloc() area is valid and can use memcpy(). 2903 * This is for routines which have to access vmalloc area without 2904 * any information, as /dev/kmem. 2905 * 2906 * Return: number of bytes for which addr and buf should be 2907 * increased (same number as @count) or %0 if [addr...addr+count) 2908 * doesn't include any intersection with valid vmalloc area 2909 */ 2910 long vwrite(char *buf, char *addr, unsigned long count) 2911 { 2912 struct vmap_area *va; 2913 struct vm_struct *vm; 2914 char *vaddr; 2915 unsigned long n, buflen; 2916 int copied = 0; 2917 2918 /* Don't allow overflow */ 2919 if ((unsigned long) addr + count < count) 2920 count = -(unsigned long) addr; 2921 buflen = count; 2922 2923 spin_lock(&vmap_area_lock); 2924 list_for_each_entry(va, &vmap_area_list, list) { 2925 if (!count) 2926 break; 2927 2928 if (!(va->flags & VM_VM_AREA)) 2929 continue; 2930 2931 vm = va->vm; 2932 vaddr = (char *) vm->addr; 2933 if (addr >= vaddr + get_vm_area_size(vm)) 2934 continue; 2935 while (addr < vaddr) { 2936 if (count == 0) 2937 goto finished; 2938 buf++; 2939 addr++; 2940 count--; 2941 } 2942 n = vaddr + get_vm_area_size(vm) - addr; 2943 if (n > count) 2944 n = count; 2945 if (!(vm->flags & VM_IOREMAP)) { 2946 aligned_vwrite(buf, addr, n); 2947 copied++; 2948 } 2949 buf += n; 2950 addr += n; 2951 count -= n; 2952 } 2953 finished: 2954 spin_unlock(&vmap_area_lock); 2955 if (!copied) 2956 return 0; 2957 return buflen; 2958 } 2959 2960 /** 2961 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2962 * @vma: vma to cover 2963 * @uaddr: target user address to start at 2964 * @kaddr: virtual address of vmalloc kernel memory 2965 * @size: size of map area 2966 * 2967 * Returns: 0 for success, -Exxx on failure 2968 * 2969 * This function checks that @kaddr is a valid vmalloc'ed area, 2970 * and that it is big enough to cover the range starting at 2971 * @uaddr in @vma. Will return failure if that criteria isn't 2972 * met. 2973 * 2974 * Similar to remap_pfn_range() (see mm/memory.c) 2975 */ 2976 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2977 void *kaddr, unsigned long size) 2978 { 2979 struct vm_struct *area; 2980 2981 size = PAGE_ALIGN(size); 2982 2983 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2984 return -EINVAL; 2985 2986 area = find_vm_area(kaddr); 2987 if (!area) 2988 return -EINVAL; 2989 2990 if (!(area->flags & VM_USERMAP)) 2991 return -EINVAL; 2992 2993 if (kaddr + size > area->addr + get_vm_area_size(area)) 2994 return -EINVAL; 2995 2996 do { 2997 struct page *page = vmalloc_to_page(kaddr); 2998 int ret; 2999 3000 ret = vm_insert_page(vma, uaddr, page); 3001 if (ret) 3002 return ret; 3003 3004 uaddr += PAGE_SIZE; 3005 kaddr += PAGE_SIZE; 3006 size -= PAGE_SIZE; 3007 } while (size > 0); 3008 3009 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3010 3011 return 0; 3012 } 3013 EXPORT_SYMBOL(remap_vmalloc_range_partial); 3014 3015 /** 3016 * remap_vmalloc_range - map vmalloc pages to userspace 3017 * @vma: vma to cover (map full range of vma) 3018 * @addr: vmalloc memory 3019 * @pgoff: number of pages into addr before first page to map 3020 * 3021 * Returns: 0 for success, -Exxx on failure 3022 * 3023 * This function checks that addr is a valid vmalloc'ed area, and 3024 * that it is big enough to cover the vma. Will return failure if 3025 * that criteria isn't met. 3026 * 3027 * Similar to remap_pfn_range() (see mm/memory.c) 3028 */ 3029 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3030 unsigned long pgoff) 3031 { 3032 return remap_vmalloc_range_partial(vma, vma->vm_start, 3033 addr + (pgoff << PAGE_SHIFT), 3034 vma->vm_end - vma->vm_start); 3035 } 3036 EXPORT_SYMBOL(remap_vmalloc_range); 3037 3038 /* 3039 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 3040 * have one. 3041 */ 3042 void __weak vmalloc_sync_all(void) 3043 { 3044 } 3045 3046 3047 static int f(pte_t *pte, unsigned long addr, void *data) 3048 { 3049 pte_t ***p = data; 3050 3051 if (p) { 3052 *(*p) = pte; 3053 (*p)++; 3054 } 3055 return 0; 3056 } 3057 3058 /** 3059 * alloc_vm_area - allocate a range of kernel address space 3060 * @size: size of the area 3061 * @ptes: returns the PTEs for the address space 3062 * 3063 * Returns: NULL on failure, vm_struct on success 3064 * 3065 * This function reserves a range of kernel address space, and 3066 * allocates pagetables to map that range. No actual mappings 3067 * are created. 3068 * 3069 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 3070 * allocated for the VM area are returned. 3071 */ 3072 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 3073 { 3074 struct vm_struct *area; 3075 3076 area = get_vm_area_caller(size, VM_IOREMAP, 3077 __builtin_return_address(0)); 3078 if (area == NULL) 3079 return NULL; 3080 3081 /* 3082 * This ensures that page tables are constructed for this region 3083 * of kernel virtual address space and mapped into init_mm. 3084 */ 3085 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3086 size, f, ptes ? &ptes : NULL)) { 3087 free_vm_area(area); 3088 return NULL; 3089 } 3090 3091 return area; 3092 } 3093 EXPORT_SYMBOL_GPL(alloc_vm_area); 3094 3095 void free_vm_area(struct vm_struct *area) 3096 { 3097 struct vm_struct *ret; 3098 ret = remove_vm_area(area->addr); 3099 BUG_ON(ret != area); 3100 kfree(area); 3101 } 3102 EXPORT_SYMBOL_GPL(free_vm_area); 3103 3104 #ifdef CONFIG_SMP 3105 static struct vmap_area *node_to_va(struct rb_node *n) 3106 { 3107 return rb_entry_safe(n, struct vmap_area, rb_node); 3108 } 3109 3110 /** 3111 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3112 * @addr: target address 3113 * 3114 * Returns: vmap_area if it is found. If there is no such area 3115 * the first highest(reverse order) vmap_area is returned 3116 * i.e. va->va_start < addr && va->va_end < addr or NULL 3117 * if there are no any areas before @addr. 3118 */ 3119 static struct vmap_area * 3120 pvm_find_va_enclose_addr(unsigned long addr) 3121 { 3122 struct vmap_area *va, *tmp; 3123 struct rb_node *n; 3124 3125 n = free_vmap_area_root.rb_node; 3126 va = NULL; 3127 3128 while (n) { 3129 tmp = rb_entry(n, struct vmap_area, rb_node); 3130 if (tmp->va_start <= addr) { 3131 va = tmp; 3132 if (tmp->va_end >= addr) 3133 break; 3134 3135 n = n->rb_right; 3136 } else { 3137 n = n->rb_left; 3138 } 3139 } 3140 3141 return va; 3142 } 3143 3144 /** 3145 * pvm_determine_end_from_reverse - find the highest aligned address 3146 * of free block below VMALLOC_END 3147 * @va: 3148 * in - the VA we start the search(reverse order); 3149 * out - the VA with the highest aligned end address. 3150 * 3151 * Returns: determined end address within vmap_area 3152 */ 3153 static unsigned long 3154 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3155 { 3156 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3157 unsigned long addr; 3158 3159 if (likely(*va)) { 3160 list_for_each_entry_from_reverse((*va), 3161 &free_vmap_area_list, list) { 3162 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3163 if ((*va)->va_start < addr) 3164 return addr; 3165 } 3166 } 3167 3168 return 0; 3169 } 3170 3171 /** 3172 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3173 * @offsets: array containing offset of each area 3174 * @sizes: array containing size of each area 3175 * @nr_vms: the number of areas to allocate 3176 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3177 * 3178 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3179 * vm_structs on success, %NULL on failure 3180 * 3181 * Percpu allocator wants to use congruent vm areas so that it can 3182 * maintain the offsets among percpu areas. This function allocates 3183 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3184 * be scattered pretty far, distance between two areas easily going up 3185 * to gigabytes. To avoid interacting with regular vmallocs, these 3186 * areas are allocated from top. 3187 * 3188 * Despite its complicated look, this allocator is rather simple. It 3189 * does everything top-down and scans free blocks from the end looking 3190 * for matching base. While scanning, if any of the areas do not fit the 3191 * base address is pulled down to fit the area. Scanning is repeated till 3192 * all the areas fit and then all necessary data structures are inserted 3193 * and the result is returned. 3194 */ 3195 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3196 const size_t *sizes, int nr_vms, 3197 size_t align) 3198 { 3199 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3200 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3201 struct vmap_area **vas, *va; 3202 struct vm_struct **vms; 3203 int area, area2, last_area, term_area; 3204 unsigned long base, start, size, end, last_end; 3205 bool purged = false; 3206 enum fit_type type; 3207 3208 /* verify parameters and allocate data structures */ 3209 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3210 for (last_area = 0, area = 0; area < nr_vms; area++) { 3211 start = offsets[area]; 3212 end = start + sizes[area]; 3213 3214 /* is everything aligned properly? */ 3215 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3216 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3217 3218 /* detect the area with the highest address */ 3219 if (start > offsets[last_area]) 3220 last_area = area; 3221 3222 for (area2 = area + 1; area2 < nr_vms; area2++) { 3223 unsigned long start2 = offsets[area2]; 3224 unsigned long end2 = start2 + sizes[area2]; 3225 3226 BUG_ON(start2 < end && start < end2); 3227 } 3228 } 3229 last_end = offsets[last_area] + sizes[last_area]; 3230 3231 if (vmalloc_end - vmalloc_start < last_end) { 3232 WARN_ON(true); 3233 return NULL; 3234 } 3235 3236 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3237 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3238 if (!vas || !vms) 3239 goto err_free2; 3240 3241 for (area = 0; area < nr_vms; area++) { 3242 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3243 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3244 if (!vas[area] || !vms[area]) 3245 goto err_free; 3246 } 3247 retry: 3248 spin_lock(&vmap_area_lock); 3249 3250 /* start scanning - we scan from the top, begin with the last area */ 3251 area = term_area = last_area; 3252 start = offsets[area]; 3253 end = start + sizes[area]; 3254 3255 va = pvm_find_va_enclose_addr(vmalloc_end); 3256 base = pvm_determine_end_from_reverse(&va, align) - end; 3257 3258 while (true) { 3259 /* 3260 * base might have underflowed, add last_end before 3261 * comparing. 3262 */ 3263 if (base + last_end < vmalloc_start + last_end) 3264 goto overflow; 3265 3266 /* 3267 * Fitting base has not been found. 3268 */ 3269 if (va == NULL) 3270 goto overflow; 3271 3272 /* 3273 * If this VA does not fit, move base downwards and recheck. 3274 */ 3275 if (base + start < va->va_start || base + end > va->va_end) { 3276 va = node_to_va(rb_prev(&va->rb_node)); 3277 base = pvm_determine_end_from_reverse(&va, align) - end; 3278 term_area = area; 3279 continue; 3280 } 3281 3282 /* 3283 * This area fits, move on to the previous one. If 3284 * the previous one is the terminal one, we're done. 3285 */ 3286 area = (area + nr_vms - 1) % nr_vms; 3287 if (area == term_area) 3288 break; 3289 3290 start = offsets[area]; 3291 end = start + sizes[area]; 3292 va = pvm_find_va_enclose_addr(base + end); 3293 } 3294 3295 /* we've found a fitting base, insert all va's */ 3296 for (area = 0; area < nr_vms; area++) { 3297 int ret; 3298 3299 start = base + offsets[area]; 3300 size = sizes[area]; 3301 3302 va = pvm_find_va_enclose_addr(start); 3303 if (WARN_ON_ONCE(va == NULL)) 3304 /* It is a BUG(), but trigger recovery instead. */ 3305 goto recovery; 3306 3307 type = classify_va_fit_type(va, start, size); 3308 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3309 /* It is a BUG(), but trigger recovery instead. */ 3310 goto recovery; 3311 3312 ret = adjust_va_to_fit_type(va, start, size, type); 3313 if (unlikely(ret)) 3314 goto recovery; 3315 3316 /* Allocated area. */ 3317 va = vas[area]; 3318 va->va_start = start; 3319 va->va_end = start + size; 3320 3321 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 3322 } 3323 3324 spin_unlock(&vmap_area_lock); 3325 3326 /* insert all vm's */ 3327 for (area = 0; area < nr_vms; area++) 3328 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 3329 pcpu_get_vm_areas); 3330 3331 kfree(vas); 3332 return vms; 3333 3334 recovery: 3335 /* Remove previously inserted areas. */ 3336 while (area--) { 3337 __free_vmap_area(vas[area]); 3338 vas[area] = NULL; 3339 } 3340 3341 overflow: 3342 spin_unlock(&vmap_area_lock); 3343 if (!purged) { 3344 purge_vmap_area_lazy(); 3345 purged = true; 3346 3347 /* Before "retry", check if we recover. */ 3348 for (area = 0; area < nr_vms; area++) { 3349 if (vas[area]) 3350 continue; 3351 3352 vas[area] = kmem_cache_zalloc( 3353 vmap_area_cachep, GFP_KERNEL); 3354 if (!vas[area]) 3355 goto err_free; 3356 } 3357 3358 goto retry; 3359 } 3360 3361 err_free: 3362 for (area = 0; area < nr_vms; area++) { 3363 if (vas[area]) 3364 kmem_cache_free(vmap_area_cachep, vas[area]); 3365 3366 kfree(vms[area]); 3367 } 3368 err_free2: 3369 kfree(vas); 3370 kfree(vms); 3371 return NULL; 3372 } 3373 3374 /** 3375 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3376 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3377 * @nr_vms: the number of allocated areas 3378 * 3379 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3380 */ 3381 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3382 { 3383 int i; 3384 3385 for (i = 0; i < nr_vms; i++) 3386 free_vm_area(vms[i]); 3387 kfree(vms); 3388 } 3389 #endif /* CONFIG_SMP */ 3390 3391 #ifdef CONFIG_PROC_FS 3392 static void *s_start(struct seq_file *m, loff_t *pos) 3393 __acquires(&vmap_area_lock) 3394 { 3395 spin_lock(&vmap_area_lock); 3396 return seq_list_start(&vmap_area_list, *pos); 3397 } 3398 3399 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3400 { 3401 return seq_list_next(p, &vmap_area_list, pos); 3402 } 3403 3404 static void s_stop(struct seq_file *m, void *p) 3405 __releases(&vmap_area_lock) 3406 { 3407 spin_unlock(&vmap_area_lock); 3408 } 3409 3410 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3411 { 3412 if (IS_ENABLED(CONFIG_NUMA)) { 3413 unsigned int nr, *counters = m->private; 3414 3415 if (!counters) 3416 return; 3417 3418 if (v->flags & VM_UNINITIALIZED) 3419 return; 3420 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3421 smp_rmb(); 3422 3423 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3424 3425 for (nr = 0; nr < v->nr_pages; nr++) 3426 counters[page_to_nid(v->pages[nr])]++; 3427 3428 for_each_node_state(nr, N_HIGH_MEMORY) 3429 if (counters[nr]) 3430 seq_printf(m, " N%u=%u", nr, counters[nr]); 3431 } 3432 } 3433 3434 static int s_show(struct seq_file *m, void *p) 3435 { 3436 struct vmap_area *va; 3437 struct vm_struct *v; 3438 3439 va = list_entry(p, struct vmap_area, list); 3440 3441 /* 3442 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 3443 * behalf of vmap area is being tear down or vm_map_ram allocation. 3444 */ 3445 if (!(va->flags & VM_VM_AREA)) { 3446 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 3447 (void *)va->va_start, (void *)va->va_end, 3448 va->va_end - va->va_start, 3449 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 3450 3451 return 0; 3452 } 3453 3454 v = va->vm; 3455 3456 seq_printf(m, "0x%pK-0x%pK %7ld", 3457 v->addr, v->addr + v->size, v->size); 3458 3459 if (v->caller) 3460 seq_printf(m, " %pS", v->caller); 3461 3462 if (v->nr_pages) 3463 seq_printf(m, " pages=%d", v->nr_pages); 3464 3465 if (v->phys_addr) 3466 seq_printf(m, " phys=%pa", &v->phys_addr); 3467 3468 if (v->flags & VM_IOREMAP) 3469 seq_puts(m, " ioremap"); 3470 3471 if (v->flags & VM_ALLOC) 3472 seq_puts(m, " vmalloc"); 3473 3474 if (v->flags & VM_MAP) 3475 seq_puts(m, " vmap"); 3476 3477 if (v->flags & VM_USERMAP) 3478 seq_puts(m, " user"); 3479 3480 if (is_vmalloc_addr(v->pages)) 3481 seq_puts(m, " vpages"); 3482 3483 show_numa_info(m, v); 3484 seq_putc(m, '\n'); 3485 return 0; 3486 } 3487 3488 static const struct seq_operations vmalloc_op = { 3489 .start = s_start, 3490 .next = s_next, 3491 .stop = s_stop, 3492 .show = s_show, 3493 }; 3494 3495 static int __init proc_vmalloc_init(void) 3496 { 3497 if (IS_ENABLED(CONFIG_NUMA)) 3498 proc_create_seq_private("vmallocinfo", 0400, NULL, 3499 &vmalloc_op, 3500 nr_node_ids * sizeof(unsigned int), NULL); 3501 else 3502 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3503 return 0; 3504 } 3505 module_init(proc_vmalloc_init); 3506 3507 #endif 3508