xref: /openbmc/linux/mm/vmalloc.c (revision a20eefae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmalloc.c
4  *
5  *  Copyright (C) 1993  Linus Torvalds
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9  *  Numa awareness, Christoph Lameter, SGI, June 2005
10  */
11 
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41 
42 #include "internal.h"
43 
44 struct vfree_deferred {
45 	struct llist_head list;
46 	struct work_struct wq;
47 };
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49 
50 static void __vunmap(const void *, int);
51 
52 static void free_work(struct work_struct *w)
53 {
54 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 	struct llist_node *t, *llnode;
56 
57 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 		__vunmap((void *)llnode, 1);
59 }
60 
61 /*** Page table manipulation functions ***/
62 
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64 {
65 	pte_t *pte;
66 
67 	pte = pte_offset_kernel(pmd, addr);
68 	do {
69 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 	} while (pte++, addr += PAGE_SIZE, addr != end);
72 }
73 
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75 {
76 	pmd_t *pmd;
77 	unsigned long next;
78 
79 	pmd = pmd_offset(pud, addr);
80 	do {
81 		next = pmd_addr_end(addr, end);
82 		if (pmd_clear_huge(pmd))
83 			continue;
84 		if (pmd_none_or_clear_bad(pmd))
85 			continue;
86 		vunmap_pte_range(pmd, addr, next);
87 	} while (pmd++, addr = next, addr != end);
88 }
89 
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
91 {
92 	pud_t *pud;
93 	unsigned long next;
94 
95 	pud = pud_offset(p4d, addr);
96 	do {
97 		next = pud_addr_end(addr, end);
98 		if (pud_clear_huge(pud))
99 			continue;
100 		if (pud_none_or_clear_bad(pud))
101 			continue;
102 		vunmap_pmd_range(pud, addr, next);
103 	} while (pud++, addr = next, addr != end);
104 }
105 
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107 {
108 	p4d_t *p4d;
109 	unsigned long next;
110 
111 	p4d = p4d_offset(pgd, addr);
112 	do {
113 		next = p4d_addr_end(addr, end);
114 		if (p4d_clear_huge(p4d))
115 			continue;
116 		if (p4d_none_or_clear_bad(p4d))
117 			continue;
118 		vunmap_pud_range(p4d, addr, next);
119 	} while (p4d++, addr = next, addr != end);
120 }
121 
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
123 {
124 	pgd_t *pgd;
125 	unsigned long next;
126 
127 	BUG_ON(addr >= end);
128 	pgd = pgd_offset_k(addr);
129 	do {
130 		next = pgd_addr_end(addr, end);
131 		if (pgd_none_or_clear_bad(pgd))
132 			continue;
133 		vunmap_p4d_range(pgd, addr, next);
134 	} while (pgd++, addr = next, addr != end);
135 }
136 
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
139 {
140 	pte_t *pte;
141 
142 	/*
143 	 * nr is a running index into the array which helps higher level
144 	 * callers keep track of where we're up to.
145 	 */
146 
147 	pte = pte_alloc_kernel(pmd, addr);
148 	if (!pte)
149 		return -ENOMEM;
150 	do {
151 		struct page *page = pages[*nr];
152 
153 		if (WARN_ON(!pte_none(*pte)))
154 			return -EBUSY;
155 		if (WARN_ON(!page))
156 			return -ENOMEM;
157 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
158 		(*nr)++;
159 	} while (pte++, addr += PAGE_SIZE, addr != end);
160 	return 0;
161 }
162 
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 	pmd_t *pmd;
167 	unsigned long next;
168 
169 	pmd = pmd_alloc(&init_mm, pud, addr);
170 	if (!pmd)
171 		return -ENOMEM;
172 	do {
173 		next = pmd_addr_end(addr, end);
174 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
175 			return -ENOMEM;
176 	} while (pmd++, addr = next, addr != end);
177 	return 0;
178 }
179 
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 
186 	pud = pud_alloc(&init_mm, p4d, addr);
187 	if (!pud)
188 		return -ENOMEM;
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
192 			return -ENOMEM;
193 	} while (pud++, addr = next, addr != end);
194 	return 0;
195 }
196 
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199 {
200 	p4d_t *p4d;
201 	unsigned long next;
202 
203 	p4d = p4d_alloc(&init_mm, pgd, addr);
204 	if (!p4d)
205 		return -ENOMEM;
206 	do {
207 		next = p4d_addr_end(addr, end);
208 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 			return -ENOMEM;
210 	} while (p4d++, addr = next, addr != end);
211 	return 0;
212 }
213 
214 /*
215  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216  * will have pfns corresponding to the "pages" array.
217  *
218  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219  */
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 				   pgprot_t prot, struct page **pages)
222 {
223 	pgd_t *pgd;
224 	unsigned long next;
225 	unsigned long addr = start;
226 	int err = 0;
227 	int nr = 0;
228 
229 	BUG_ON(addr >= end);
230 	pgd = pgd_offset_k(addr);
231 	do {
232 		next = pgd_addr_end(addr, end);
233 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
234 		if (err)
235 			return err;
236 	} while (pgd++, addr = next, addr != end);
237 
238 	return nr;
239 }
240 
241 static int vmap_page_range(unsigned long start, unsigned long end,
242 			   pgprot_t prot, struct page **pages)
243 {
244 	int ret;
245 
246 	ret = vmap_page_range_noflush(start, end, prot, pages);
247 	flush_cache_vmap(start, end);
248 	return ret;
249 }
250 
251 int is_vmalloc_or_module_addr(const void *x)
252 {
253 	/*
254 	 * ARM, x86-64 and sparc64 put modules in a special place,
255 	 * and fall back on vmalloc() if that fails. Others
256 	 * just put it in the vmalloc space.
257 	 */
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 	unsigned long addr = (unsigned long)x;
260 	if (addr >= MODULES_VADDR && addr < MODULES_END)
261 		return 1;
262 #endif
263 	return is_vmalloc_addr(x);
264 }
265 
266 /*
267  * Walk a vmap address to the struct page it maps.
268  */
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
270 {
271 	unsigned long addr = (unsigned long) vmalloc_addr;
272 	struct page *page = NULL;
273 	pgd_t *pgd = pgd_offset_k(addr);
274 	p4d_t *p4d;
275 	pud_t *pud;
276 	pmd_t *pmd;
277 	pte_t *ptep, pte;
278 
279 	/*
280 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 	 * architectures that do not vmalloc module space
282 	 */
283 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
284 
285 	if (pgd_none(*pgd))
286 		return NULL;
287 	p4d = p4d_offset(pgd, addr);
288 	if (p4d_none(*p4d))
289 		return NULL;
290 	pud = pud_offset(p4d, addr);
291 
292 	/*
293 	 * Don't dereference bad PUD or PMD (below) entries. This will also
294 	 * identify huge mappings, which we may encounter on architectures
295 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 	 * not [unambiguously] associated with a struct page, so there is
298 	 * no correct value to return for them.
299 	 */
300 	WARN_ON_ONCE(pud_bad(*pud));
301 	if (pud_none(*pud) || pud_bad(*pud))
302 		return NULL;
303 	pmd = pmd_offset(pud, addr);
304 	WARN_ON_ONCE(pmd_bad(*pmd));
305 	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 		return NULL;
307 
308 	ptep = pte_offset_map(pmd, addr);
309 	pte = *ptep;
310 	if (pte_present(pte))
311 		page = pte_page(pte);
312 	pte_unmap(ptep);
313 	return page;
314 }
315 EXPORT_SYMBOL(vmalloc_to_page);
316 
317 /*
318  * Map a vmalloc()-space virtual address to the physical page frame number.
319  */
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321 {
322 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323 }
324 EXPORT_SYMBOL(vmalloc_to_pfn);
325 
326 
327 /*** Global kva allocator ***/
328 
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331 
332 #define VM_LAZY_FREE	0x02
333 #define VM_VM_AREA	0x04
334 
335 static DEFINE_SPINLOCK(vmap_area_lock);
336 /* Export for kexec only */
337 LIST_HEAD(vmap_area_list);
338 static LLIST_HEAD(vmap_purge_list);
339 static struct rb_root vmap_area_root = RB_ROOT;
340 static bool vmap_initialized __read_mostly;
341 
342 /*
343  * This kmem_cache is used for vmap_area objects. Instead of
344  * allocating from slab we reuse an object from this cache to
345  * make things faster. Especially in "no edge" splitting of
346  * free block.
347  */
348 static struct kmem_cache *vmap_area_cachep;
349 
350 /*
351  * This linked list is used in pair with free_vmap_area_root.
352  * It gives O(1) access to prev/next to perform fast coalescing.
353  */
354 static LIST_HEAD(free_vmap_area_list);
355 
356 /*
357  * This augment red-black tree represents the free vmap space.
358  * All vmap_area objects in this tree are sorted by va->va_start
359  * address. It is used for allocation and merging when a vmap
360  * object is released.
361  *
362  * Each vmap_area node contains a maximum available free block
363  * of its sub-tree, right or left. Therefore it is possible to
364  * find a lowest match of free area.
365  */
366 static struct rb_root free_vmap_area_root = RB_ROOT;
367 
368 /*
369  * Preload a CPU with one object for "no edge" split case. The
370  * aim is to get rid of allocations from the atomic context, thus
371  * to use more permissive allocation masks.
372  */
373 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
374 
375 static __always_inline unsigned long
376 va_size(struct vmap_area *va)
377 {
378 	return (va->va_end - va->va_start);
379 }
380 
381 static __always_inline unsigned long
382 get_subtree_max_size(struct rb_node *node)
383 {
384 	struct vmap_area *va;
385 
386 	va = rb_entry_safe(node, struct vmap_area, rb_node);
387 	return va ? va->subtree_max_size : 0;
388 }
389 
390 /*
391  * Gets called when remove the node and rotate.
392  */
393 static __always_inline unsigned long
394 compute_subtree_max_size(struct vmap_area *va)
395 {
396 	return max3(va_size(va),
397 		get_subtree_max_size(va->rb_node.rb_left),
398 		get_subtree_max_size(va->rb_node.rb_right));
399 }
400 
401 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
402 	struct vmap_area, rb_node, unsigned long, subtree_max_size,
403 	compute_subtree_max_size)
404 
405 static void purge_vmap_area_lazy(void);
406 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
407 static unsigned long lazy_max_pages(void);
408 
409 static atomic_long_t nr_vmalloc_pages;
410 
411 unsigned long vmalloc_nr_pages(void)
412 {
413 	return atomic_long_read(&nr_vmalloc_pages);
414 }
415 
416 static struct vmap_area *__find_vmap_area(unsigned long addr)
417 {
418 	struct rb_node *n = vmap_area_root.rb_node;
419 
420 	while (n) {
421 		struct vmap_area *va;
422 
423 		va = rb_entry(n, struct vmap_area, rb_node);
424 		if (addr < va->va_start)
425 			n = n->rb_left;
426 		else if (addr >= va->va_end)
427 			n = n->rb_right;
428 		else
429 			return va;
430 	}
431 
432 	return NULL;
433 }
434 
435 /*
436  * This function returns back addresses of parent node
437  * and its left or right link for further processing.
438  */
439 static __always_inline struct rb_node **
440 find_va_links(struct vmap_area *va,
441 	struct rb_root *root, struct rb_node *from,
442 	struct rb_node **parent)
443 {
444 	struct vmap_area *tmp_va;
445 	struct rb_node **link;
446 
447 	if (root) {
448 		link = &root->rb_node;
449 		if (unlikely(!*link)) {
450 			*parent = NULL;
451 			return link;
452 		}
453 	} else {
454 		link = &from;
455 	}
456 
457 	/*
458 	 * Go to the bottom of the tree. When we hit the last point
459 	 * we end up with parent rb_node and correct direction, i name
460 	 * it link, where the new va->rb_node will be attached to.
461 	 */
462 	do {
463 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
464 
465 		/*
466 		 * During the traversal we also do some sanity check.
467 		 * Trigger the BUG() if there are sides(left/right)
468 		 * or full overlaps.
469 		 */
470 		if (va->va_start < tmp_va->va_end &&
471 				va->va_end <= tmp_va->va_start)
472 			link = &(*link)->rb_left;
473 		else if (va->va_end > tmp_va->va_start &&
474 				va->va_start >= tmp_va->va_end)
475 			link = &(*link)->rb_right;
476 		else
477 			BUG();
478 	} while (*link);
479 
480 	*parent = &tmp_va->rb_node;
481 	return link;
482 }
483 
484 static __always_inline struct list_head *
485 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
486 {
487 	struct list_head *list;
488 
489 	if (unlikely(!parent))
490 		/*
491 		 * The red-black tree where we try to find VA neighbors
492 		 * before merging or inserting is empty, i.e. it means
493 		 * there is no free vmap space. Normally it does not
494 		 * happen but we handle this case anyway.
495 		 */
496 		return NULL;
497 
498 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
499 	return (&parent->rb_right == link ? list->next : list);
500 }
501 
502 static __always_inline void
503 link_va(struct vmap_area *va, struct rb_root *root,
504 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
505 {
506 	/*
507 	 * VA is still not in the list, but we can
508 	 * identify its future previous list_head node.
509 	 */
510 	if (likely(parent)) {
511 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
512 		if (&parent->rb_right != link)
513 			head = head->prev;
514 	}
515 
516 	/* Insert to the rb-tree */
517 	rb_link_node(&va->rb_node, parent, link);
518 	if (root == &free_vmap_area_root) {
519 		/*
520 		 * Some explanation here. Just perform simple insertion
521 		 * to the tree. We do not set va->subtree_max_size to
522 		 * its current size before calling rb_insert_augmented().
523 		 * It is because of we populate the tree from the bottom
524 		 * to parent levels when the node _is_ in the tree.
525 		 *
526 		 * Therefore we set subtree_max_size to zero after insertion,
527 		 * to let __augment_tree_propagate_from() puts everything to
528 		 * the correct order later on.
529 		 */
530 		rb_insert_augmented(&va->rb_node,
531 			root, &free_vmap_area_rb_augment_cb);
532 		va->subtree_max_size = 0;
533 	} else {
534 		rb_insert_color(&va->rb_node, root);
535 	}
536 
537 	/* Address-sort this list */
538 	list_add(&va->list, head);
539 }
540 
541 static __always_inline void
542 unlink_va(struct vmap_area *va, struct rb_root *root)
543 {
544 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
545 		return;
546 
547 	if (root == &free_vmap_area_root)
548 		rb_erase_augmented(&va->rb_node,
549 			root, &free_vmap_area_rb_augment_cb);
550 	else
551 		rb_erase(&va->rb_node, root);
552 
553 	list_del(&va->list);
554 	RB_CLEAR_NODE(&va->rb_node);
555 }
556 
557 #if DEBUG_AUGMENT_PROPAGATE_CHECK
558 static void
559 augment_tree_propagate_check(struct rb_node *n)
560 {
561 	struct vmap_area *va;
562 	struct rb_node *node;
563 	unsigned long size;
564 	bool found = false;
565 
566 	if (n == NULL)
567 		return;
568 
569 	va = rb_entry(n, struct vmap_area, rb_node);
570 	size = va->subtree_max_size;
571 	node = n;
572 
573 	while (node) {
574 		va = rb_entry(node, struct vmap_area, rb_node);
575 
576 		if (get_subtree_max_size(node->rb_left) == size) {
577 			node = node->rb_left;
578 		} else {
579 			if (va_size(va) == size) {
580 				found = true;
581 				break;
582 			}
583 
584 			node = node->rb_right;
585 		}
586 	}
587 
588 	if (!found) {
589 		va = rb_entry(n, struct vmap_area, rb_node);
590 		pr_emerg("tree is corrupted: %lu, %lu\n",
591 			va_size(va), va->subtree_max_size);
592 	}
593 
594 	augment_tree_propagate_check(n->rb_left);
595 	augment_tree_propagate_check(n->rb_right);
596 }
597 #endif
598 
599 /*
600  * This function populates subtree_max_size from bottom to upper
601  * levels starting from VA point. The propagation must be done
602  * when VA size is modified by changing its va_start/va_end. Or
603  * in case of newly inserting of VA to the tree.
604  *
605  * It means that __augment_tree_propagate_from() must be called:
606  * - After VA has been inserted to the tree(free path);
607  * - After VA has been shrunk(allocation path);
608  * - After VA has been increased(merging path).
609  *
610  * Please note that, it does not mean that upper parent nodes
611  * and their subtree_max_size are recalculated all the time up
612  * to the root node.
613  *
614  *       4--8
615  *        /\
616  *       /  \
617  *      /    \
618  *    2--2  8--8
619  *
620  * For example if we modify the node 4, shrinking it to 2, then
621  * no any modification is required. If we shrink the node 2 to 1
622  * its subtree_max_size is updated only, and set to 1. If we shrink
623  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
624  * node becomes 4--6.
625  */
626 static __always_inline void
627 augment_tree_propagate_from(struct vmap_area *va)
628 {
629 	struct rb_node *node = &va->rb_node;
630 	unsigned long new_va_sub_max_size;
631 
632 	while (node) {
633 		va = rb_entry(node, struct vmap_area, rb_node);
634 		new_va_sub_max_size = compute_subtree_max_size(va);
635 
636 		/*
637 		 * If the newly calculated maximum available size of the
638 		 * subtree is equal to the current one, then it means that
639 		 * the tree is propagated correctly. So we have to stop at
640 		 * this point to save cycles.
641 		 */
642 		if (va->subtree_max_size == new_va_sub_max_size)
643 			break;
644 
645 		va->subtree_max_size = new_va_sub_max_size;
646 		node = rb_parent(&va->rb_node);
647 	}
648 
649 #if DEBUG_AUGMENT_PROPAGATE_CHECK
650 	augment_tree_propagate_check(free_vmap_area_root.rb_node);
651 #endif
652 }
653 
654 static void
655 insert_vmap_area(struct vmap_area *va,
656 	struct rb_root *root, struct list_head *head)
657 {
658 	struct rb_node **link;
659 	struct rb_node *parent;
660 
661 	link = find_va_links(va, root, NULL, &parent);
662 	link_va(va, root, parent, link, head);
663 }
664 
665 static void
666 insert_vmap_area_augment(struct vmap_area *va,
667 	struct rb_node *from, struct rb_root *root,
668 	struct list_head *head)
669 {
670 	struct rb_node **link;
671 	struct rb_node *parent;
672 
673 	if (from)
674 		link = find_va_links(va, NULL, from, &parent);
675 	else
676 		link = find_va_links(va, root, NULL, &parent);
677 
678 	link_va(va, root, parent, link, head);
679 	augment_tree_propagate_from(va);
680 }
681 
682 /*
683  * Merge de-allocated chunk of VA memory with previous
684  * and next free blocks. If coalesce is not done a new
685  * free area is inserted. If VA has been merged, it is
686  * freed.
687  */
688 static __always_inline void
689 merge_or_add_vmap_area(struct vmap_area *va,
690 	struct rb_root *root, struct list_head *head)
691 {
692 	struct vmap_area *sibling;
693 	struct list_head *next;
694 	struct rb_node **link;
695 	struct rb_node *parent;
696 	bool merged = false;
697 
698 	/*
699 	 * Find a place in the tree where VA potentially will be
700 	 * inserted, unless it is merged with its sibling/siblings.
701 	 */
702 	link = find_va_links(va, root, NULL, &parent);
703 
704 	/*
705 	 * Get next node of VA to check if merging can be done.
706 	 */
707 	next = get_va_next_sibling(parent, link);
708 	if (unlikely(next == NULL))
709 		goto insert;
710 
711 	/*
712 	 * start            end
713 	 * |                |
714 	 * |<------VA------>|<-----Next----->|
715 	 *                  |                |
716 	 *                  start            end
717 	 */
718 	if (next != head) {
719 		sibling = list_entry(next, struct vmap_area, list);
720 		if (sibling->va_start == va->va_end) {
721 			sibling->va_start = va->va_start;
722 
723 			/* Check and update the tree if needed. */
724 			augment_tree_propagate_from(sibling);
725 
726 			/* Free vmap_area object. */
727 			kmem_cache_free(vmap_area_cachep, va);
728 
729 			/* Point to the new merged area. */
730 			va = sibling;
731 			merged = true;
732 		}
733 	}
734 
735 	/*
736 	 * start            end
737 	 * |                |
738 	 * |<-----Prev----->|<------VA------>|
739 	 *                  |                |
740 	 *                  start            end
741 	 */
742 	if (next->prev != head) {
743 		sibling = list_entry(next->prev, struct vmap_area, list);
744 		if (sibling->va_end == va->va_start) {
745 			sibling->va_end = va->va_end;
746 
747 			/* Check and update the tree if needed. */
748 			augment_tree_propagate_from(sibling);
749 
750 			if (merged)
751 				unlink_va(va, root);
752 
753 			/* Free vmap_area object. */
754 			kmem_cache_free(vmap_area_cachep, va);
755 			return;
756 		}
757 	}
758 
759 insert:
760 	if (!merged) {
761 		link_va(va, root, parent, link, head);
762 		augment_tree_propagate_from(va);
763 	}
764 }
765 
766 static __always_inline bool
767 is_within_this_va(struct vmap_area *va, unsigned long size,
768 	unsigned long align, unsigned long vstart)
769 {
770 	unsigned long nva_start_addr;
771 
772 	if (va->va_start > vstart)
773 		nva_start_addr = ALIGN(va->va_start, align);
774 	else
775 		nva_start_addr = ALIGN(vstart, align);
776 
777 	/* Can be overflowed due to big size or alignment. */
778 	if (nva_start_addr + size < nva_start_addr ||
779 			nva_start_addr < vstart)
780 		return false;
781 
782 	return (nva_start_addr + size <= va->va_end);
783 }
784 
785 /*
786  * Find the first free block(lowest start address) in the tree,
787  * that will accomplish the request corresponding to passing
788  * parameters.
789  */
790 static __always_inline struct vmap_area *
791 find_vmap_lowest_match(unsigned long size,
792 	unsigned long align, unsigned long vstart)
793 {
794 	struct vmap_area *va;
795 	struct rb_node *node;
796 	unsigned long length;
797 
798 	/* Start from the root. */
799 	node = free_vmap_area_root.rb_node;
800 
801 	/* Adjust the search size for alignment overhead. */
802 	length = size + align - 1;
803 
804 	while (node) {
805 		va = rb_entry(node, struct vmap_area, rb_node);
806 
807 		if (get_subtree_max_size(node->rb_left) >= length &&
808 				vstart < va->va_start) {
809 			node = node->rb_left;
810 		} else {
811 			if (is_within_this_va(va, size, align, vstart))
812 				return va;
813 
814 			/*
815 			 * Does not make sense to go deeper towards the right
816 			 * sub-tree if it does not have a free block that is
817 			 * equal or bigger to the requested search length.
818 			 */
819 			if (get_subtree_max_size(node->rb_right) >= length) {
820 				node = node->rb_right;
821 				continue;
822 			}
823 
824 			/*
825 			 * OK. We roll back and find the first right sub-tree,
826 			 * that will satisfy the search criteria. It can happen
827 			 * only once due to "vstart" restriction.
828 			 */
829 			while ((node = rb_parent(node))) {
830 				va = rb_entry(node, struct vmap_area, rb_node);
831 				if (is_within_this_va(va, size, align, vstart))
832 					return va;
833 
834 				if (get_subtree_max_size(node->rb_right) >= length &&
835 						vstart <= va->va_start) {
836 					node = node->rb_right;
837 					break;
838 				}
839 			}
840 		}
841 	}
842 
843 	return NULL;
844 }
845 
846 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
847 #include <linux/random.h>
848 
849 static struct vmap_area *
850 find_vmap_lowest_linear_match(unsigned long size,
851 	unsigned long align, unsigned long vstart)
852 {
853 	struct vmap_area *va;
854 
855 	list_for_each_entry(va, &free_vmap_area_list, list) {
856 		if (!is_within_this_va(va, size, align, vstart))
857 			continue;
858 
859 		return va;
860 	}
861 
862 	return NULL;
863 }
864 
865 static void
866 find_vmap_lowest_match_check(unsigned long size)
867 {
868 	struct vmap_area *va_1, *va_2;
869 	unsigned long vstart;
870 	unsigned int rnd;
871 
872 	get_random_bytes(&rnd, sizeof(rnd));
873 	vstart = VMALLOC_START + rnd;
874 
875 	va_1 = find_vmap_lowest_match(size, 1, vstart);
876 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
877 
878 	if (va_1 != va_2)
879 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
880 			va_1, va_2, vstart);
881 }
882 #endif
883 
884 enum fit_type {
885 	NOTHING_FIT = 0,
886 	FL_FIT_TYPE = 1,	/* full fit */
887 	LE_FIT_TYPE = 2,	/* left edge fit */
888 	RE_FIT_TYPE = 3,	/* right edge fit */
889 	NE_FIT_TYPE = 4		/* no edge fit */
890 };
891 
892 static __always_inline enum fit_type
893 classify_va_fit_type(struct vmap_area *va,
894 	unsigned long nva_start_addr, unsigned long size)
895 {
896 	enum fit_type type;
897 
898 	/* Check if it is within VA. */
899 	if (nva_start_addr < va->va_start ||
900 			nva_start_addr + size > va->va_end)
901 		return NOTHING_FIT;
902 
903 	/* Now classify. */
904 	if (va->va_start == nva_start_addr) {
905 		if (va->va_end == nva_start_addr + size)
906 			type = FL_FIT_TYPE;
907 		else
908 			type = LE_FIT_TYPE;
909 	} else if (va->va_end == nva_start_addr + size) {
910 		type = RE_FIT_TYPE;
911 	} else {
912 		type = NE_FIT_TYPE;
913 	}
914 
915 	return type;
916 }
917 
918 static __always_inline int
919 adjust_va_to_fit_type(struct vmap_area *va,
920 	unsigned long nva_start_addr, unsigned long size,
921 	enum fit_type type)
922 {
923 	struct vmap_area *lva = NULL;
924 
925 	if (type == FL_FIT_TYPE) {
926 		/*
927 		 * No need to split VA, it fully fits.
928 		 *
929 		 * |               |
930 		 * V      NVA      V
931 		 * |---------------|
932 		 */
933 		unlink_va(va, &free_vmap_area_root);
934 		kmem_cache_free(vmap_area_cachep, va);
935 	} else if (type == LE_FIT_TYPE) {
936 		/*
937 		 * Split left edge of fit VA.
938 		 *
939 		 * |       |
940 		 * V  NVA  V   R
941 		 * |-------|-------|
942 		 */
943 		va->va_start += size;
944 	} else if (type == RE_FIT_TYPE) {
945 		/*
946 		 * Split right edge of fit VA.
947 		 *
948 		 *         |       |
949 		 *     L   V  NVA  V
950 		 * |-------|-------|
951 		 */
952 		va->va_end = nva_start_addr;
953 	} else if (type == NE_FIT_TYPE) {
954 		/*
955 		 * Split no edge of fit VA.
956 		 *
957 		 *     |       |
958 		 *   L V  NVA  V R
959 		 * |---|-------|---|
960 		 */
961 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
962 		if (unlikely(!lva)) {
963 			/*
964 			 * For percpu allocator we do not do any pre-allocation
965 			 * and leave it as it is. The reason is it most likely
966 			 * never ends up with NE_FIT_TYPE splitting. In case of
967 			 * percpu allocations offsets and sizes are aligned to
968 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
969 			 * are its main fitting cases.
970 			 *
971 			 * There are a few exceptions though, as an example it is
972 			 * a first allocation (early boot up) when we have "one"
973 			 * big free space that has to be split.
974 			 */
975 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
976 			if (!lva)
977 				return -1;
978 		}
979 
980 		/*
981 		 * Build the remainder.
982 		 */
983 		lva->va_start = va->va_start;
984 		lva->va_end = nva_start_addr;
985 
986 		/*
987 		 * Shrink this VA to remaining size.
988 		 */
989 		va->va_start = nva_start_addr + size;
990 	} else {
991 		return -1;
992 	}
993 
994 	if (type != FL_FIT_TYPE) {
995 		augment_tree_propagate_from(va);
996 
997 		if (lva)	/* type == NE_FIT_TYPE */
998 			insert_vmap_area_augment(lva, &va->rb_node,
999 				&free_vmap_area_root, &free_vmap_area_list);
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 /*
1006  * Returns a start address of the newly allocated area, if success.
1007  * Otherwise a vend is returned that indicates failure.
1008  */
1009 static __always_inline unsigned long
1010 __alloc_vmap_area(unsigned long size, unsigned long align,
1011 	unsigned long vstart, unsigned long vend)
1012 {
1013 	unsigned long nva_start_addr;
1014 	struct vmap_area *va;
1015 	enum fit_type type;
1016 	int ret;
1017 
1018 	va = find_vmap_lowest_match(size, align, vstart);
1019 	if (unlikely(!va))
1020 		return vend;
1021 
1022 	if (va->va_start > vstart)
1023 		nva_start_addr = ALIGN(va->va_start, align);
1024 	else
1025 		nva_start_addr = ALIGN(vstart, align);
1026 
1027 	/* Check the "vend" restriction. */
1028 	if (nva_start_addr + size > vend)
1029 		return vend;
1030 
1031 	/* Classify what we have found. */
1032 	type = classify_va_fit_type(va, nva_start_addr, size);
1033 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1034 		return vend;
1035 
1036 	/* Update the free vmap_area. */
1037 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1038 	if (ret)
1039 		return vend;
1040 
1041 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1042 	find_vmap_lowest_match_check(size);
1043 #endif
1044 
1045 	return nva_start_addr;
1046 }
1047 
1048 /*
1049  * Allocate a region of KVA of the specified size and alignment, within the
1050  * vstart and vend.
1051  */
1052 static struct vmap_area *alloc_vmap_area(unsigned long size,
1053 				unsigned long align,
1054 				unsigned long vstart, unsigned long vend,
1055 				int node, gfp_t gfp_mask)
1056 {
1057 	struct vmap_area *va, *pva;
1058 	unsigned long addr;
1059 	int purged = 0;
1060 
1061 	BUG_ON(!size);
1062 	BUG_ON(offset_in_page(size));
1063 	BUG_ON(!is_power_of_2(align));
1064 
1065 	if (unlikely(!vmap_initialized))
1066 		return ERR_PTR(-EBUSY);
1067 
1068 	might_sleep();
1069 
1070 	va = kmem_cache_alloc_node(vmap_area_cachep,
1071 			gfp_mask & GFP_RECLAIM_MASK, node);
1072 	if (unlikely(!va))
1073 		return ERR_PTR(-ENOMEM);
1074 
1075 	/*
1076 	 * Only scan the relevant parts containing pointers to other objects
1077 	 * to avoid false negatives.
1078 	 */
1079 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1080 
1081 retry:
1082 	/*
1083 	 * Preload this CPU with one extra vmap_area object to ensure
1084 	 * that we have it available when fit type of free area is
1085 	 * NE_FIT_TYPE.
1086 	 *
1087 	 * The preload is done in non-atomic context, thus it allows us
1088 	 * to use more permissive allocation masks to be more stable under
1089 	 * low memory condition and high memory pressure.
1090 	 *
1091 	 * Even if it fails we do not really care about that. Just proceed
1092 	 * as it is. "overflow" path will refill the cache we allocate from.
1093 	 */
1094 	preempt_disable();
1095 	if (!__this_cpu_read(ne_fit_preload_node)) {
1096 		preempt_enable();
1097 		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1098 		preempt_disable();
1099 
1100 		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1101 			if (pva)
1102 				kmem_cache_free(vmap_area_cachep, pva);
1103 		}
1104 	}
1105 
1106 	spin_lock(&vmap_area_lock);
1107 	preempt_enable();
1108 
1109 	/*
1110 	 * If an allocation fails, the "vend" address is
1111 	 * returned. Therefore trigger the overflow path.
1112 	 */
1113 	addr = __alloc_vmap_area(size, align, vstart, vend);
1114 	if (unlikely(addr == vend))
1115 		goto overflow;
1116 
1117 	va->va_start = addr;
1118 	va->va_end = addr + size;
1119 	va->flags = 0;
1120 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1121 
1122 	spin_unlock(&vmap_area_lock);
1123 
1124 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1125 	BUG_ON(va->va_start < vstart);
1126 	BUG_ON(va->va_end > vend);
1127 
1128 	return va;
1129 
1130 overflow:
1131 	spin_unlock(&vmap_area_lock);
1132 	if (!purged) {
1133 		purge_vmap_area_lazy();
1134 		purged = 1;
1135 		goto retry;
1136 	}
1137 
1138 	if (gfpflags_allow_blocking(gfp_mask)) {
1139 		unsigned long freed = 0;
1140 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1141 		if (freed > 0) {
1142 			purged = 0;
1143 			goto retry;
1144 		}
1145 	}
1146 
1147 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1148 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1149 			size);
1150 
1151 	kmem_cache_free(vmap_area_cachep, va);
1152 	return ERR_PTR(-EBUSY);
1153 }
1154 
1155 int register_vmap_purge_notifier(struct notifier_block *nb)
1156 {
1157 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1158 }
1159 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1160 
1161 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1162 {
1163 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1164 }
1165 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1166 
1167 static void __free_vmap_area(struct vmap_area *va)
1168 {
1169 	/*
1170 	 * Remove from the busy tree/list.
1171 	 */
1172 	unlink_va(va, &vmap_area_root);
1173 
1174 	/*
1175 	 * Merge VA with its neighbors, otherwise just add it.
1176 	 */
1177 	merge_or_add_vmap_area(va,
1178 		&free_vmap_area_root, &free_vmap_area_list);
1179 }
1180 
1181 /*
1182  * Free a region of KVA allocated by alloc_vmap_area
1183  */
1184 static void free_vmap_area(struct vmap_area *va)
1185 {
1186 	spin_lock(&vmap_area_lock);
1187 	__free_vmap_area(va);
1188 	spin_unlock(&vmap_area_lock);
1189 }
1190 
1191 /*
1192  * Clear the pagetable entries of a given vmap_area
1193  */
1194 static void unmap_vmap_area(struct vmap_area *va)
1195 {
1196 	vunmap_page_range(va->va_start, va->va_end);
1197 }
1198 
1199 /*
1200  * lazy_max_pages is the maximum amount of virtual address space we gather up
1201  * before attempting to purge with a TLB flush.
1202  *
1203  * There is a tradeoff here: a larger number will cover more kernel page tables
1204  * and take slightly longer to purge, but it will linearly reduce the number of
1205  * global TLB flushes that must be performed. It would seem natural to scale
1206  * this number up linearly with the number of CPUs (because vmapping activity
1207  * could also scale linearly with the number of CPUs), however it is likely
1208  * that in practice, workloads might be constrained in other ways that mean
1209  * vmap activity will not scale linearly with CPUs. Also, I want to be
1210  * conservative and not introduce a big latency on huge systems, so go with
1211  * a less aggressive log scale. It will still be an improvement over the old
1212  * code, and it will be simple to change the scale factor if we find that it
1213  * becomes a problem on bigger systems.
1214  */
1215 static unsigned long lazy_max_pages(void)
1216 {
1217 	unsigned int log;
1218 
1219 	log = fls(num_online_cpus());
1220 
1221 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1222 }
1223 
1224 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1225 
1226 /*
1227  * Serialize vmap purging.  There is no actual criticial section protected
1228  * by this look, but we want to avoid concurrent calls for performance
1229  * reasons and to make the pcpu_get_vm_areas more deterministic.
1230  */
1231 static DEFINE_MUTEX(vmap_purge_lock);
1232 
1233 /* for per-CPU blocks */
1234 static void purge_fragmented_blocks_allcpus(void);
1235 
1236 /*
1237  * called before a call to iounmap() if the caller wants vm_area_struct's
1238  * immediately freed.
1239  */
1240 void set_iounmap_nonlazy(void)
1241 {
1242 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1243 }
1244 
1245 /*
1246  * Purges all lazily-freed vmap areas.
1247  */
1248 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1249 {
1250 	unsigned long resched_threshold;
1251 	struct llist_node *valist;
1252 	struct vmap_area *va;
1253 	struct vmap_area *n_va;
1254 
1255 	lockdep_assert_held(&vmap_purge_lock);
1256 
1257 	valist = llist_del_all(&vmap_purge_list);
1258 	if (unlikely(valist == NULL))
1259 		return false;
1260 
1261 	/*
1262 	 * TODO: to calculate a flush range without looping.
1263 	 * The list can be up to lazy_max_pages() elements.
1264 	 */
1265 	llist_for_each_entry(va, valist, purge_list) {
1266 		if (va->va_start < start)
1267 			start = va->va_start;
1268 		if (va->va_end > end)
1269 			end = va->va_end;
1270 	}
1271 
1272 	flush_tlb_kernel_range(start, end);
1273 	resched_threshold = lazy_max_pages() << 1;
1274 
1275 	spin_lock(&vmap_area_lock);
1276 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1277 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1278 
1279 		__free_vmap_area(va);
1280 		atomic_long_sub(nr, &vmap_lazy_nr);
1281 
1282 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1283 			cond_resched_lock(&vmap_area_lock);
1284 	}
1285 	spin_unlock(&vmap_area_lock);
1286 	return true;
1287 }
1288 
1289 /*
1290  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1291  * is already purging.
1292  */
1293 static void try_purge_vmap_area_lazy(void)
1294 {
1295 	if (mutex_trylock(&vmap_purge_lock)) {
1296 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1297 		mutex_unlock(&vmap_purge_lock);
1298 	}
1299 }
1300 
1301 /*
1302  * Kick off a purge of the outstanding lazy areas.
1303  */
1304 static void purge_vmap_area_lazy(void)
1305 {
1306 	mutex_lock(&vmap_purge_lock);
1307 	purge_fragmented_blocks_allcpus();
1308 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1309 	mutex_unlock(&vmap_purge_lock);
1310 }
1311 
1312 /*
1313  * Free a vmap area, caller ensuring that the area has been unmapped
1314  * and flush_cache_vunmap had been called for the correct range
1315  * previously.
1316  */
1317 static void free_vmap_area_noflush(struct vmap_area *va)
1318 {
1319 	unsigned long nr_lazy;
1320 
1321 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1322 				PAGE_SHIFT, &vmap_lazy_nr);
1323 
1324 	/* After this point, we may free va at any time */
1325 	llist_add(&va->purge_list, &vmap_purge_list);
1326 
1327 	if (unlikely(nr_lazy > lazy_max_pages()))
1328 		try_purge_vmap_area_lazy();
1329 }
1330 
1331 /*
1332  * Free and unmap a vmap area
1333  */
1334 static void free_unmap_vmap_area(struct vmap_area *va)
1335 {
1336 	flush_cache_vunmap(va->va_start, va->va_end);
1337 	unmap_vmap_area(va);
1338 	if (debug_pagealloc_enabled())
1339 		flush_tlb_kernel_range(va->va_start, va->va_end);
1340 
1341 	free_vmap_area_noflush(va);
1342 }
1343 
1344 static struct vmap_area *find_vmap_area(unsigned long addr)
1345 {
1346 	struct vmap_area *va;
1347 
1348 	spin_lock(&vmap_area_lock);
1349 	va = __find_vmap_area(addr);
1350 	spin_unlock(&vmap_area_lock);
1351 
1352 	return va;
1353 }
1354 
1355 /*** Per cpu kva allocator ***/
1356 
1357 /*
1358  * vmap space is limited especially on 32 bit architectures. Ensure there is
1359  * room for at least 16 percpu vmap blocks per CPU.
1360  */
1361 /*
1362  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1363  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1364  * instead (we just need a rough idea)
1365  */
1366 #if BITS_PER_LONG == 32
1367 #define VMALLOC_SPACE		(128UL*1024*1024)
1368 #else
1369 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1370 #endif
1371 
1372 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1373 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1374 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1375 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1376 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1377 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1378 #define VMAP_BBMAP_BITS		\
1379 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1380 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1381 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1382 
1383 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1384 
1385 struct vmap_block_queue {
1386 	spinlock_t lock;
1387 	struct list_head free;
1388 };
1389 
1390 struct vmap_block {
1391 	spinlock_t lock;
1392 	struct vmap_area *va;
1393 	unsigned long free, dirty;
1394 	unsigned long dirty_min, dirty_max; /*< dirty range */
1395 	struct list_head free_list;
1396 	struct rcu_head rcu_head;
1397 	struct list_head purge;
1398 };
1399 
1400 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1401 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1402 
1403 /*
1404  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1405  * in the free path. Could get rid of this if we change the API to return a
1406  * "cookie" from alloc, to be passed to free. But no big deal yet.
1407  */
1408 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1409 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1410 
1411 /*
1412  * We should probably have a fallback mechanism to allocate virtual memory
1413  * out of partially filled vmap blocks. However vmap block sizing should be
1414  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1415  * big problem.
1416  */
1417 
1418 static unsigned long addr_to_vb_idx(unsigned long addr)
1419 {
1420 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1421 	addr /= VMAP_BLOCK_SIZE;
1422 	return addr;
1423 }
1424 
1425 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1426 {
1427 	unsigned long addr;
1428 
1429 	addr = va_start + (pages_off << PAGE_SHIFT);
1430 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1431 	return (void *)addr;
1432 }
1433 
1434 /**
1435  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1436  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1437  * @order:    how many 2^order pages should be occupied in newly allocated block
1438  * @gfp_mask: flags for the page level allocator
1439  *
1440  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1441  */
1442 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1443 {
1444 	struct vmap_block_queue *vbq;
1445 	struct vmap_block *vb;
1446 	struct vmap_area *va;
1447 	unsigned long vb_idx;
1448 	int node, err;
1449 	void *vaddr;
1450 
1451 	node = numa_node_id();
1452 
1453 	vb = kmalloc_node(sizeof(struct vmap_block),
1454 			gfp_mask & GFP_RECLAIM_MASK, node);
1455 	if (unlikely(!vb))
1456 		return ERR_PTR(-ENOMEM);
1457 
1458 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1459 					VMALLOC_START, VMALLOC_END,
1460 					node, gfp_mask);
1461 	if (IS_ERR(va)) {
1462 		kfree(vb);
1463 		return ERR_CAST(va);
1464 	}
1465 
1466 	err = radix_tree_preload(gfp_mask);
1467 	if (unlikely(err)) {
1468 		kfree(vb);
1469 		free_vmap_area(va);
1470 		return ERR_PTR(err);
1471 	}
1472 
1473 	vaddr = vmap_block_vaddr(va->va_start, 0);
1474 	spin_lock_init(&vb->lock);
1475 	vb->va = va;
1476 	/* At least something should be left free */
1477 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1478 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1479 	vb->dirty = 0;
1480 	vb->dirty_min = VMAP_BBMAP_BITS;
1481 	vb->dirty_max = 0;
1482 	INIT_LIST_HEAD(&vb->free_list);
1483 
1484 	vb_idx = addr_to_vb_idx(va->va_start);
1485 	spin_lock(&vmap_block_tree_lock);
1486 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1487 	spin_unlock(&vmap_block_tree_lock);
1488 	BUG_ON(err);
1489 	radix_tree_preload_end();
1490 
1491 	vbq = &get_cpu_var(vmap_block_queue);
1492 	spin_lock(&vbq->lock);
1493 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1494 	spin_unlock(&vbq->lock);
1495 	put_cpu_var(vmap_block_queue);
1496 
1497 	return vaddr;
1498 }
1499 
1500 static void free_vmap_block(struct vmap_block *vb)
1501 {
1502 	struct vmap_block *tmp;
1503 	unsigned long vb_idx;
1504 
1505 	vb_idx = addr_to_vb_idx(vb->va->va_start);
1506 	spin_lock(&vmap_block_tree_lock);
1507 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1508 	spin_unlock(&vmap_block_tree_lock);
1509 	BUG_ON(tmp != vb);
1510 
1511 	free_vmap_area_noflush(vb->va);
1512 	kfree_rcu(vb, rcu_head);
1513 }
1514 
1515 static void purge_fragmented_blocks(int cpu)
1516 {
1517 	LIST_HEAD(purge);
1518 	struct vmap_block *vb;
1519 	struct vmap_block *n_vb;
1520 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1521 
1522 	rcu_read_lock();
1523 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1524 
1525 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1526 			continue;
1527 
1528 		spin_lock(&vb->lock);
1529 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1530 			vb->free = 0; /* prevent further allocs after releasing lock */
1531 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1532 			vb->dirty_min = 0;
1533 			vb->dirty_max = VMAP_BBMAP_BITS;
1534 			spin_lock(&vbq->lock);
1535 			list_del_rcu(&vb->free_list);
1536 			spin_unlock(&vbq->lock);
1537 			spin_unlock(&vb->lock);
1538 			list_add_tail(&vb->purge, &purge);
1539 		} else
1540 			spin_unlock(&vb->lock);
1541 	}
1542 	rcu_read_unlock();
1543 
1544 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1545 		list_del(&vb->purge);
1546 		free_vmap_block(vb);
1547 	}
1548 }
1549 
1550 static void purge_fragmented_blocks_allcpus(void)
1551 {
1552 	int cpu;
1553 
1554 	for_each_possible_cpu(cpu)
1555 		purge_fragmented_blocks(cpu);
1556 }
1557 
1558 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1559 {
1560 	struct vmap_block_queue *vbq;
1561 	struct vmap_block *vb;
1562 	void *vaddr = NULL;
1563 	unsigned int order;
1564 
1565 	BUG_ON(offset_in_page(size));
1566 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1567 	if (WARN_ON(size == 0)) {
1568 		/*
1569 		 * Allocating 0 bytes isn't what caller wants since
1570 		 * get_order(0) returns funny result. Just warn and terminate
1571 		 * early.
1572 		 */
1573 		return NULL;
1574 	}
1575 	order = get_order(size);
1576 
1577 	rcu_read_lock();
1578 	vbq = &get_cpu_var(vmap_block_queue);
1579 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1580 		unsigned long pages_off;
1581 
1582 		spin_lock(&vb->lock);
1583 		if (vb->free < (1UL << order)) {
1584 			spin_unlock(&vb->lock);
1585 			continue;
1586 		}
1587 
1588 		pages_off = VMAP_BBMAP_BITS - vb->free;
1589 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1590 		vb->free -= 1UL << order;
1591 		if (vb->free == 0) {
1592 			spin_lock(&vbq->lock);
1593 			list_del_rcu(&vb->free_list);
1594 			spin_unlock(&vbq->lock);
1595 		}
1596 
1597 		spin_unlock(&vb->lock);
1598 		break;
1599 	}
1600 
1601 	put_cpu_var(vmap_block_queue);
1602 	rcu_read_unlock();
1603 
1604 	/* Allocate new block if nothing was found */
1605 	if (!vaddr)
1606 		vaddr = new_vmap_block(order, gfp_mask);
1607 
1608 	return vaddr;
1609 }
1610 
1611 static void vb_free(const void *addr, unsigned long size)
1612 {
1613 	unsigned long offset;
1614 	unsigned long vb_idx;
1615 	unsigned int order;
1616 	struct vmap_block *vb;
1617 
1618 	BUG_ON(offset_in_page(size));
1619 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1620 
1621 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1622 
1623 	order = get_order(size);
1624 
1625 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1626 	offset >>= PAGE_SHIFT;
1627 
1628 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1629 	rcu_read_lock();
1630 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1631 	rcu_read_unlock();
1632 	BUG_ON(!vb);
1633 
1634 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1635 
1636 	if (debug_pagealloc_enabled())
1637 		flush_tlb_kernel_range((unsigned long)addr,
1638 					(unsigned long)addr + size);
1639 
1640 	spin_lock(&vb->lock);
1641 
1642 	/* Expand dirty range */
1643 	vb->dirty_min = min(vb->dirty_min, offset);
1644 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1645 
1646 	vb->dirty += 1UL << order;
1647 	if (vb->dirty == VMAP_BBMAP_BITS) {
1648 		BUG_ON(vb->free);
1649 		spin_unlock(&vb->lock);
1650 		free_vmap_block(vb);
1651 	} else
1652 		spin_unlock(&vb->lock);
1653 }
1654 
1655 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1656 {
1657 	int cpu;
1658 
1659 	if (unlikely(!vmap_initialized))
1660 		return;
1661 
1662 	might_sleep();
1663 
1664 	for_each_possible_cpu(cpu) {
1665 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1666 		struct vmap_block *vb;
1667 
1668 		rcu_read_lock();
1669 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1670 			spin_lock(&vb->lock);
1671 			if (vb->dirty) {
1672 				unsigned long va_start = vb->va->va_start;
1673 				unsigned long s, e;
1674 
1675 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1676 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1677 
1678 				start = min(s, start);
1679 				end   = max(e, end);
1680 
1681 				flush = 1;
1682 			}
1683 			spin_unlock(&vb->lock);
1684 		}
1685 		rcu_read_unlock();
1686 	}
1687 
1688 	mutex_lock(&vmap_purge_lock);
1689 	purge_fragmented_blocks_allcpus();
1690 	if (!__purge_vmap_area_lazy(start, end) && flush)
1691 		flush_tlb_kernel_range(start, end);
1692 	mutex_unlock(&vmap_purge_lock);
1693 }
1694 
1695 /**
1696  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1697  *
1698  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1699  * to amortize TLB flushing overheads. What this means is that any page you
1700  * have now, may, in a former life, have been mapped into kernel virtual
1701  * address by the vmap layer and so there might be some CPUs with TLB entries
1702  * still referencing that page (additional to the regular 1:1 kernel mapping).
1703  *
1704  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1705  * be sure that none of the pages we have control over will have any aliases
1706  * from the vmap layer.
1707  */
1708 void vm_unmap_aliases(void)
1709 {
1710 	unsigned long start = ULONG_MAX, end = 0;
1711 	int flush = 0;
1712 
1713 	_vm_unmap_aliases(start, end, flush);
1714 }
1715 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1716 
1717 /**
1718  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1719  * @mem: the pointer returned by vm_map_ram
1720  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1721  */
1722 void vm_unmap_ram(const void *mem, unsigned int count)
1723 {
1724 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1725 	unsigned long addr = (unsigned long)mem;
1726 	struct vmap_area *va;
1727 
1728 	might_sleep();
1729 	BUG_ON(!addr);
1730 	BUG_ON(addr < VMALLOC_START);
1731 	BUG_ON(addr > VMALLOC_END);
1732 	BUG_ON(!PAGE_ALIGNED(addr));
1733 
1734 	if (likely(count <= VMAP_MAX_ALLOC)) {
1735 		debug_check_no_locks_freed(mem, size);
1736 		vb_free(mem, size);
1737 		return;
1738 	}
1739 
1740 	va = find_vmap_area(addr);
1741 	BUG_ON(!va);
1742 	debug_check_no_locks_freed((void *)va->va_start,
1743 				    (va->va_end - va->va_start));
1744 	free_unmap_vmap_area(va);
1745 }
1746 EXPORT_SYMBOL(vm_unmap_ram);
1747 
1748 /**
1749  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1750  * @pages: an array of pointers to the pages to be mapped
1751  * @count: number of pages
1752  * @node: prefer to allocate data structures on this node
1753  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1754  *
1755  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1756  * faster than vmap so it's good.  But if you mix long-life and short-life
1757  * objects with vm_map_ram(), it could consume lots of address space through
1758  * fragmentation (especially on a 32bit machine).  You could see failures in
1759  * the end.  Please use this function for short-lived objects.
1760  *
1761  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1762  */
1763 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1764 {
1765 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1766 	unsigned long addr;
1767 	void *mem;
1768 
1769 	if (likely(count <= VMAP_MAX_ALLOC)) {
1770 		mem = vb_alloc(size, GFP_KERNEL);
1771 		if (IS_ERR(mem))
1772 			return NULL;
1773 		addr = (unsigned long)mem;
1774 	} else {
1775 		struct vmap_area *va;
1776 		va = alloc_vmap_area(size, PAGE_SIZE,
1777 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1778 		if (IS_ERR(va))
1779 			return NULL;
1780 
1781 		addr = va->va_start;
1782 		mem = (void *)addr;
1783 	}
1784 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1785 		vm_unmap_ram(mem, count);
1786 		return NULL;
1787 	}
1788 	return mem;
1789 }
1790 EXPORT_SYMBOL(vm_map_ram);
1791 
1792 static struct vm_struct *vmlist __initdata;
1793 
1794 /**
1795  * vm_area_add_early - add vmap area early during boot
1796  * @vm: vm_struct to add
1797  *
1798  * This function is used to add fixed kernel vm area to vmlist before
1799  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1800  * should contain proper values and the other fields should be zero.
1801  *
1802  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1803  */
1804 void __init vm_area_add_early(struct vm_struct *vm)
1805 {
1806 	struct vm_struct *tmp, **p;
1807 
1808 	BUG_ON(vmap_initialized);
1809 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1810 		if (tmp->addr >= vm->addr) {
1811 			BUG_ON(tmp->addr < vm->addr + vm->size);
1812 			break;
1813 		} else
1814 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1815 	}
1816 	vm->next = *p;
1817 	*p = vm;
1818 }
1819 
1820 /**
1821  * vm_area_register_early - register vmap area early during boot
1822  * @vm: vm_struct to register
1823  * @align: requested alignment
1824  *
1825  * This function is used to register kernel vm area before
1826  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1827  * proper values on entry and other fields should be zero.  On return,
1828  * vm->addr contains the allocated address.
1829  *
1830  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1831  */
1832 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1833 {
1834 	static size_t vm_init_off __initdata;
1835 	unsigned long addr;
1836 
1837 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1838 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1839 
1840 	vm->addr = (void *)addr;
1841 
1842 	vm_area_add_early(vm);
1843 }
1844 
1845 static void vmap_init_free_space(void)
1846 {
1847 	unsigned long vmap_start = 1;
1848 	const unsigned long vmap_end = ULONG_MAX;
1849 	struct vmap_area *busy, *free;
1850 
1851 	/*
1852 	 *     B     F     B     B     B     F
1853 	 * -|-----|.....|-----|-----|-----|.....|-
1854 	 *  |           The KVA space           |
1855 	 *  |<--------------------------------->|
1856 	 */
1857 	list_for_each_entry(busy, &vmap_area_list, list) {
1858 		if (busy->va_start - vmap_start > 0) {
1859 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1860 			if (!WARN_ON_ONCE(!free)) {
1861 				free->va_start = vmap_start;
1862 				free->va_end = busy->va_start;
1863 
1864 				insert_vmap_area_augment(free, NULL,
1865 					&free_vmap_area_root,
1866 						&free_vmap_area_list);
1867 			}
1868 		}
1869 
1870 		vmap_start = busy->va_end;
1871 	}
1872 
1873 	if (vmap_end - vmap_start > 0) {
1874 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1875 		if (!WARN_ON_ONCE(!free)) {
1876 			free->va_start = vmap_start;
1877 			free->va_end = vmap_end;
1878 
1879 			insert_vmap_area_augment(free, NULL,
1880 				&free_vmap_area_root,
1881 					&free_vmap_area_list);
1882 		}
1883 	}
1884 }
1885 
1886 void __init vmalloc_init(void)
1887 {
1888 	struct vmap_area *va;
1889 	struct vm_struct *tmp;
1890 	int i;
1891 
1892 	/*
1893 	 * Create the cache for vmap_area objects.
1894 	 */
1895 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1896 
1897 	for_each_possible_cpu(i) {
1898 		struct vmap_block_queue *vbq;
1899 		struct vfree_deferred *p;
1900 
1901 		vbq = &per_cpu(vmap_block_queue, i);
1902 		spin_lock_init(&vbq->lock);
1903 		INIT_LIST_HEAD(&vbq->free);
1904 		p = &per_cpu(vfree_deferred, i);
1905 		init_llist_head(&p->list);
1906 		INIT_WORK(&p->wq, free_work);
1907 	}
1908 
1909 	/* Import existing vmlist entries. */
1910 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1911 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1912 		if (WARN_ON_ONCE(!va))
1913 			continue;
1914 
1915 		va->flags = VM_VM_AREA;
1916 		va->va_start = (unsigned long)tmp->addr;
1917 		va->va_end = va->va_start + tmp->size;
1918 		va->vm = tmp;
1919 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1920 	}
1921 
1922 	/*
1923 	 * Now we can initialize a free vmap space.
1924 	 */
1925 	vmap_init_free_space();
1926 	vmap_initialized = true;
1927 }
1928 
1929 /**
1930  * map_kernel_range_noflush - map kernel VM area with the specified pages
1931  * @addr: start of the VM area to map
1932  * @size: size of the VM area to map
1933  * @prot: page protection flags to use
1934  * @pages: pages to map
1935  *
1936  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1937  * specify should have been allocated using get_vm_area() and its
1938  * friends.
1939  *
1940  * NOTE:
1941  * This function does NOT do any cache flushing.  The caller is
1942  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1943  * before calling this function.
1944  *
1945  * RETURNS:
1946  * The number of pages mapped on success, -errno on failure.
1947  */
1948 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1949 			     pgprot_t prot, struct page **pages)
1950 {
1951 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1952 }
1953 
1954 /**
1955  * unmap_kernel_range_noflush - unmap kernel VM area
1956  * @addr: start of the VM area to unmap
1957  * @size: size of the VM area to unmap
1958  *
1959  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1960  * specify should have been allocated using get_vm_area() and its
1961  * friends.
1962  *
1963  * NOTE:
1964  * This function does NOT do any cache flushing.  The caller is
1965  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1966  * before calling this function and flush_tlb_kernel_range() after.
1967  */
1968 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1969 {
1970 	vunmap_page_range(addr, addr + size);
1971 }
1972 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1973 
1974 /**
1975  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1976  * @addr: start of the VM area to unmap
1977  * @size: size of the VM area to unmap
1978  *
1979  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1980  * the unmapping and tlb after.
1981  */
1982 void unmap_kernel_range(unsigned long addr, unsigned long size)
1983 {
1984 	unsigned long end = addr + size;
1985 
1986 	flush_cache_vunmap(addr, end);
1987 	vunmap_page_range(addr, end);
1988 	flush_tlb_kernel_range(addr, end);
1989 }
1990 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1991 
1992 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1993 {
1994 	unsigned long addr = (unsigned long)area->addr;
1995 	unsigned long end = addr + get_vm_area_size(area);
1996 	int err;
1997 
1998 	err = vmap_page_range(addr, end, prot, pages);
1999 
2000 	return err > 0 ? 0 : err;
2001 }
2002 EXPORT_SYMBOL_GPL(map_vm_area);
2003 
2004 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2005 			      unsigned long flags, const void *caller)
2006 {
2007 	spin_lock(&vmap_area_lock);
2008 	vm->flags = flags;
2009 	vm->addr = (void *)va->va_start;
2010 	vm->size = va->va_end - va->va_start;
2011 	vm->caller = caller;
2012 	va->vm = vm;
2013 	va->flags |= VM_VM_AREA;
2014 	spin_unlock(&vmap_area_lock);
2015 }
2016 
2017 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2018 {
2019 	/*
2020 	 * Before removing VM_UNINITIALIZED,
2021 	 * we should make sure that vm has proper values.
2022 	 * Pair with smp_rmb() in show_numa_info().
2023 	 */
2024 	smp_wmb();
2025 	vm->flags &= ~VM_UNINITIALIZED;
2026 }
2027 
2028 static struct vm_struct *__get_vm_area_node(unsigned long size,
2029 		unsigned long align, unsigned long flags, unsigned long start,
2030 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2031 {
2032 	struct vmap_area *va;
2033 	struct vm_struct *area;
2034 
2035 	BUG_ON(in_interrupt());
2036 	size = PAGE_ALIGN(size);
2037 	if (unlikely(!size))
2038 		return NULL;
2039 
2040 	if (flags & VM_IOREMAP)
2041 		align = 1ul << clamp_t(int, get_count_order_long(size),
2042 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2043 
2044 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2045 	if (unlikely(!area))
2046 		return NULL;
2047 
2048 	if (!(flags & VM_NO_GUARD))
2049 		size += PAGE_SIZE;
2050 
2051 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2052 	if (IS_ERR(va)) {
2053 		kfree(area);
2054 		return NULL;
2055 	}
2056 
2057 	setup_vmalloc_vm(area, va, flags, caller);
2058 
2059 	return area;
2060 }
2061 
2062 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2063 				unsigned long start, unsigned long end)
2064 {
2065 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2066 				  GFP_KERNEL, __builtin_return_address(0));
2067 }
2068 EXPORT_SYMBOL_GPL(__get_vm_area);
2069 
2070 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2071 				       unsigned long start, unsigned long end,
2072 				       const void *caller)
2073 {
2074 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2075 				  GFP_KERNEL, caller);
2076 }
2077 
2078 /**
2079  * get_vm_area - reserve a contiguous kernel virtual area
2080  * @size:	 size of the area
2081  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2082  *
2083  * Search an area of @size in the kernel virtual mapping area,
2084  * and reserved it for out purposes.  Returns the area descriptor
2085  * on success or %NULL on failure.
2086  *
2087  * Return: the area descriptor on success or %NULL on failure.
2088  */
2089 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2090 {
2091 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2092 				  NUMA_NO_NODE, GFP_KERNEL,
2093 				  __builtin_return_address(0));
2094 }
2095 
2096 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2097 				const void *caller)
2098 {
2099 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2100 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2101 }
2102 
2103 /**
2104  * find_vm_area - find a continuous kernel virtual area
2105  * @addr:	  base address
2106  *
2107  * Search for the kernel VM area starting at @addr, and return it.
2108  * It is up to the caller to do all required locking to keep the returned
2109  * pointer valid.
2110  *
2111  * Return: pointer to the found area or %NULL on faulure
2112  */
2113 struct vm_struct *find_vm_area(const void *addr)
2114 {
2115 	struct vmap_area *va;
2116 
2117 	va = find_vmap_area((unsigned long)addr);
2118 	if (va && va->flags & VM_VM_AREA)
2119 		return va->vm;
2120 
2121 	return NULL;
2122 }
2123 
2124 /**
2125  * remove_vm_area - find and remove a continuous kernel virtual area
2126  * @addr:	    base address
2127  *
2128  * Search for the kernel VM area starting at @addr, and remove it.
2129  * This function returns the found VM area, but using it is NOT safe
2130  * on SMP machines, except for its size or flags.
2131  *
2132  * Return: pointer to the found area or %NULL on faulure
2133  */
2134 struct vm_struct *remove_vm_area(const void *addr)
2135 {
2136 	struct vmap_area *va;
2137 
2138 	might_sleep();
2139 
2140 	va = find_vmap_area((unsigned long)addr);
2141 	if (va && va->flags & VM_VM_AREA) {
2142 		struct vm_struct *vm = va->vm;
2143 
2144 		spin_lock(&vmap_area_lock);
2145 		va->vm = NULL;
2146 		va->flags &= ~VM_VM_AREA;
2147 		va->flags |= VM_LAZY_FREE;
2148 		spin_unlock(&vmap_area_lock);
2149 
2150 		kasan_free_shadow(vm);
2151 		free_unmap_vmap_area(va);
2152 
2153 		return vm;
2154 	}
2155 	return NULL;
2156 }
2157 
2158 static inline void set_area_direct_map(const struct vm_struct *area,
2159 				       int (*set_direct_map)(struct page *page))
2160 {
2161 	int i;
2162 
2163 	for (i = 0; i < area->nr_pages; i++)
2164 		if (page_address(area->pages[i]))
2165 			set_direct_map(area->pages[i]);
2166 }
2167 
2168 /* Handle removing and resetting vm mappings related to the vm_struct. */
2169 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2170 {
2171 	unsigned long start = ULONG_MAX, end = 0;
2172 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2173 	int flush_dmap = 0;
2174 	int i;
2175 
2176 	remove_vm_area(area->addr);
2177 
2178 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2179 	if (!flush_reset)
2180 		return;
2181 
2182 	/*
2183 	 * If not deallocating pages, just do the flush of the VM area and
2184 	 * return.
2185 	 */
2186 	if (!deallocate_pages) {
2187 		vm_unmap_aliases();
2188 		return;
2189 	}
2190 
2191 	/*
2192 	 * If execution gets here, flush the vm mapping and reset the direct
2193 	 * map. Find the start and end range of the direct mappings to make sure
2194 	 * the vm_unmap_aliases() flush includes the direct map.
2195 	 */
2196 	for (i = 0; i < area->nr_pages; i++) {
2197 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2198 		if (addr) {
2199 			start = min(addr, start);
2200 			end = max(addr + PAGE_SIZE, end);
2201 			flush_dmap = 1;
2202 		}
2203 	}
2204 
2205 	/*
2206 	 * Set direct map to something invalid so that it won't be cached if
2207 	 * there are any accesses after the TLB flush, then flush the TLB and
2208 	 * reset the direct map permissions to the default.
2209 	 */
2210 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2211 	_vm_unmap_aliases(start, end, flush_dmap);
2212 	set_area_direct_map(area, set_direct_map_default_noflush);
2213 }
2214 
2215 static void __vunmap(const void *addr, int deallocate_pages)
2216 {
2217 	struct vm_struct *area;
2218 
2219 	if (!addr)
2220 		return;
2221 
2222 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2223 			addr))
2224 		return;
2225 
2226 	area = find_vm_area(addr);
2227 	if (unlikely(!area)) {
2228 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2229 				addr);
2230 		return;
2231 	}
2232 
2233 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2234 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2235 
2236 	vm_remove_mappings(area, deallocate_pages);
2237 
2238 	if (deallocate_pages) {
2239 		int i;
2240 
2241 		for (i = 0; i < area->nr_pages; i++) {
2242 			struct page *page = area->pages[i];
2243 
2244 			BUG_ON(!page);
2245 			__free_pages(page, 0);
2246 		}
2247 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2248 
2249 		kvfree(area->pages);
2250 	}
2251 
2252 	kfree(area);
2253 	return;
2254 }
2255 
2256 static inline void __vfree_deferred(const void *addr)
2257 {
2258 	/*
2259 	 * Use raw_cpu_ptr() because this can be called from preemptible
2260 	 * context. Preemption is absolutely fine here, because the llist_add()
2261 	 * implementation is lockless, so it works even if we are adding to
2262 	 * nother cpu's list.  schedule_work() should be fine with this too.
2263 	 */
2264 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2265 
2266 	if (llist_add((struct llist_node *)addr, &p->list))
2267 		schedule_work(&p->wq);
2268 }
2269 
2270 /**
2271  * vfree_atomic - release memory allocated by vmalloc()
2272  * @addr:	  memory base address
2273  *
2274  * This one is just like vfree() but can be called in any atomic context
2275  * except NMIs.
2276  */
2277 void vfree_atomic(const void *addr)
2278 {
2279 	BUG_ON(in_nmi());
2280 
2281 	kmemleak_free(addr);
2282 
2283 	if (!addr)
2284 		return;
2285 	__vfree_deferred(addr);
2286 }
2287 
2288 static void __vfree(const void *addr)
2289 {
2290 	if (unlikely(in_interrupt()))
2291 		__vfree_deferred(addr);
2292 	else
2293 		__vunmap(addr, 1);
2294 }
2295 
2296 /**
2297  * vfree - release memory allocated by vmalloc()
2298  * @addr:  memory base address
2299  *
2300  * Free the virtually continuous memory area starting at @addr, as
2301  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2302  * NULL, no operation is performed.
2303  *
2304  * Must not be called in NMI context (strictly speaking, only if we don't
2305  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2306  * conventions for vfree() arch-depenedent would be a really bad idea)
2307  *
2308  * May sleep if called *not* from interrupt context.
2309  *
2310  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2311  */
2312 void vfree(const void *addr)
2313 {
2314 	BUG_ON(in_nmi());
2315 
2316 	kmemleak_free(addr);
2317 
2318 	might_sleep_if(!in_interrupt());
2319 
2320 	if (!addr)
2321 		return;
2322 
2323 	__vfree(addr);
2324 }
2325 EXPORT_SYMBOL(vfree);
2326 
2327 /**
2328  * vunmap - release virtual mapping obtained by vmap()
2329  * @addr:   memory base address
2330  *
2331  * Free the virtually contiguous memory area starting at @addr,
2332  * which was created from the page array passed to vmap().
2333  *
2334  * Must not be called in interrupt context.
2335  */
2336 void vunmap(const void *addr)
2337 {
2338 	BUG_ON(in_interrupt());
2339 	might_sleep();
2340 	if (addr)
2341 		__vunmap(addr, 0);
2342 }
2343 EXPORT_SYMBOL(vunmap);
2344 
2345 /**
2346  * vmap - map an array of pages into virtually contiguous space
2347  * @pages: array of page pointers
2348  * @count: number of pages to map
2349  * @flags: vm_area->flags
2350  * @prot: page protection for the mapping
2351  *
2352  * Maps @count pages from @pages into contiguous kernel virtual
2353  * space.
2354  *
2355  * Return: the address of the area or %NULL on failure
2356  */
2357 void *vmap(struct page **pages, unsigned int count,
2358 	   unsigned long flags, pgprot_t prot)
2359 {
2360 	struct vm_struct *area;
2361 	unsigned long size;		/* In bytes */
2362 
2363 	might_sleep();
2364 
2365 	if (count > totalram_pages())
2366 		return NULL;
2367 
2368 	size = (unsigned long)count << PAGE_SHIFT;
2369 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2370 	if (!area)
2371 		return NULL;
2372 
2373 	if (map_vm_area(area, prot, pages)) {
2374 		vunmap(area->addr);
2375 		return NULL;
2376 	}
2377 
2378 	return area->addr;
2379 }
2380 EXPORT_SYMBOL(vmap);
2381 
2382 static void *__vmalloc_node(unsigned long size, unsigned long align,
2383 			    gfp_t gfp_mask, pgprot_t prot,
2384 			    int node, const void *caller);
2385 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2386 				 pgprot_t prot, int node)
2387 {
2388 	struct page **pages;
2389 	unsigned int nr_pages, array_size, i;
2390 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2391 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2392 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2393 					0 :
2394 					__GFP_HIGHMEM;
2395 
2396 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2397 	array_size = (nr_pages * sizeof(struct page *));
2398 
2399 	area->nr_pages = nr_pages;
2400 	/* Please note that the recursion is strictly bounded. */
2401 	if (array_size > PAGE_SIZE) {
2402 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2403 				PAGE_KERNEL, node, area->caller);
2404 	} else {
2405 		pages = kmalloc_node(array_size, nested_gfp, node);
2406 	}
2407 	area->pages = pages;
2408 	if (!area->pages) {
2409 		remove_vm_area(area->addr);
2410 		kfree(area);
2411 		return NULL;
2412 	}
2413 
2414 	for (i = 0; i < area->nr_pages; i++) {
2415 		struct page *page;
2416 
2417 		if (node == NUMA_NO_NODE)
2418 			page = alloc_page(alloc_mask|highmem_mask);
2419 		else
2420 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2421 
2422 		if (unlikely(!page)) {
2423 			/* Successfully allocated i pages, free them in __vunmap() */
2424 			area->nr_pages = i;
2425 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2426 			goto fail;
2427 		}
2428 		area->pages[i] = page;
2429 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2430 			cond_resched();
2431 	}
2432 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2433 
2434 	if (map_vm_area(area, prot, pages))
2435 		goto fail;
2436 	return area->addr;
2437 
2438 fail:
2439 	warn_alloc(gfp_mask, NULL,
2440 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2441 			  (area->nr_pages*PAGE_SIZE), area->size);
2442 	__vfree(area->addr);
2443 	return NULL;
2444 }
2445 
2446 /**
2447  * __vmalloc_node_range - allocate virtually contiguous memory
2448  * @size:		  allocation size
2449  * @align:		  desired alignment
2450  * @start:		  vm area range start
2451  * @end:		  vm area range end
2452  * @gfp_mask:		  flags for the page level allocator
2453  * @prot:		  protection mask for the allocated pages
2454  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2455  * @node:		  node to use for allocation or NUMA_NO_NODE
2456  * @caller:		  caller's return address
2457  *
2458  * Allocate enough pages to cover @size from the page level
2459  * allocator with @gfp_mask flags.  Map them into contiguous
2460  * kernel virtual space, using a pagetable protection of @prot.
2461  *
2462  * Return: the address of the area or %NULL on failure
2463  */
2464 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2465 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2466 			pgprot_t prot, unsigned long vm_flags, int node,
2467 			const void *caller)
2468 {
2469 	struct vm_struct *area;
2470 	void *addr;
2471 	unsigned long real_size = size;
2472 
2473 	size = PAGE_ALIGN(size);
2474 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2475 		goto fail;
2476 
2477 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2478 				vm_flags, start, end, node, gfp_mask, caller);
2479 	if (!area)
2480 		goto fail;
2481 
2482 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2483 	if (!addr)
2484 		return NULL;
2485 
2486 	/*
2487 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2488 	 * flag. It means that vm_struct is not fully initialized.
2489 	 * Now, it is fully initialized, so remove this flag here.
2490 	 */
2491 	clear_vm_uninitialized_flag(area);
2492 
2493 	kmemleak_vmalloc(area, size, gfp_mask);
2494 
2495 	return addr;
2496 
2497 fail:
2498 	warn_alloc(gfp_mask, NULL,
2499 			  "vmalloc: allocation failure: %lu bytes", real_size);
2500 	return NULL;
2501 }
2502 
2503 /*
2504  * This is only for performance analysis of vmalloc and stress purpose.
2505  * It is required by vmalloc test module, therefore do not use it other
2506  * than that.
2507  */
2508 #ifdef CONFIG_TEST_VMALLOC_MODULE
2509 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2510 #endif
2511 
2512 /**
2513  * __vmalloc_node - allocate virtually contiguous memory
2514  * @size:	    allocation size
2515  * @align:	    desired alignment
2516  * @gfp_mask:	    flags for the page level allocator
2517  * @prot:	    protection mask for the allocated pages
2518  * @node:	    node to use for allocation or NUMA_NO_NODE
2519  * @caller:	    caller's return address
2520  *
2521  * Allocate enough pages to cover @size from the page level
2522  * allocator with @gfp_mask flags.  Map them into contiguous
2523  * kernel virtual space, using a pagetable protection of @prot.
2524  *
2525  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2526  * and __GFP_NOFAIL are not supported
2527  *
2528  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2529  * with mm people.
2530  *
2531  * Return: pointer to the allocated memory or %NULL on error
2532  */
2533 static void *__vmalloc_node(unsigned long size, unsigned long align,
2534 			    gfp_t gfp_mask, pgprot_t prot,
2535 			    int node, const void *caller)
2536 {
2537 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2538 				gfp_mask, prot, 0, node, caller);
2539 }
2540 
2541 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2542 {
2543 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2544 				__builtin_return_address(0));
2545 }
2546 EXPORT_SYMBOL(__vmalloc);
2547 
2548 static inline void *__vmalloc_node_flags(unsigned long size,
2549 					int node, gfp_t flags)
2550 {
2551 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2552 					node, __builtin_return_address(0));
2553 }
2554 
2555 
2556 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2557 				  void *caller)
2558 {
2559 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2560 }
2561 
2562 /**
2563  * vmalloc - allocate virtually contiguous memory
2564  * @size:    allocation size
2565  *
2566  * Allocate enough pages to cover @size from the page level
2567  * allocator and map them into contiguous kernel virtual space.
2568  *
2569  * For tight control over page level allocator and protection flags
2570  * use __vmalloc() instead.
2571  *
2572  * Return: pointer to the allocated memory or %NULL on error
2573  */
2574 void *vmalloc(unsigned long size)
2575 {
2576 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2577 				    GFP_KERNEL);
2578 }
2579 EXPORT_SYMBOL(vmalloc);
2580 
2581 /**
2582  * vzalloc - allocate virtually contiguous memory with zero fill
2583  * @size:    allocation size
2584  *
2585  * Allocate enough pages to cover @size from the page level
2586  * allocator and map them into contiguous kernel virtual space.
2587  * The memory allocated is set to zero.
2588  *
2589  * For tight control over page level allocator and protection flags
2590  * use __vmalloc() instead.
2591  *
2592  * Return: pointer to the allocated memory or %NULL on error
2593  */
2594 void *vzalloc(unsigned long size)
2595 {
2596 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2597 				GFP_KERNEL | __GFP_ZERO);
2598 }
2599 EXPORT_SYMBOL(vzalloc);
2600 
2601 /**
2602  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2603  * @size: allocation size
2604  *
2605  * The resulting memory area is zeroed so it can be mapped to userspace
2606  * without leaking data.
2607  *
2608  * Return: pointer to the allocated memory or %NULL on error
2609  */
2610 void *vmalloc_user(unsigned long size)
2611 {
2612 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2613 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2614 				    VM_USERMAP, NUMA_NO_NODE,
2615 				    __builtin_return_address(0));
2616 }
2617 EXPORT_SYMBOL(vmalloc_user);
2618 
2619 /**
2620  * vmalloc_node - allocate memory on a specific node
2621  * @size:	  allocation size
2622  * @node:	  numa node
2623  *
2624  * Allocate enough pages to cover @size from the page level
2625  * allocator and map them into contiguous kernel virtual space.
2626  *
2627  * For tight control over page level allocator and protection flags
2628  * use __vmalloc() instead.
2629  *
2630  * Return: pointer to the allocated memory or %NULL on error
2631  */
2632 void *vmalloc_node(unsigned long size, int node)
2633 {
2634 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2635 					node, __builtin_return_address(0));
2636 }
2637 EXPORT_SYMBOL(vmalloc_node);
2638 
2639 /**
2640  * vzalloc_node - allocate memory on a specific node with zero fill
2641  * @size:	allocation size
2642  * @node:	numa node
2643  *
2644  * Allocate enough pages to cover @size from the page level
2645  * allocator and map them into contiguous kernel virtual space.
2646  * The memory allocated is set to zero.
2647  *
2648  * For tight control over page level allocator and protection flags
2649  * use __vmalloc_node() instead.
2650  *
2651  * Return: pointer to the allocated memory or %NULL on error
2652  */
2653 void *vzalloc_node(unsigned long size, int node)
2654 {
2655 	return __vmalloc_node_flags(size, node,
2656 			 GFP_KERNEL | __GFP_ZERO);
2657 }
2658 EXPORT_SYMBOL(vzalloc_node);
2659 
2660 /**
2661  * vmalloc_exec - allocate virtually contiguous, executable memory
2662  * @size:	  allocation size
2663  *
2664  * Kernel-internal function to allocate enough pages to cover @size
2665  * the page level allocator and map them into contiguous and
2666  * executable kernel virtual space.
2667  *
2668  * For tight control over page level allocator and protection flags
2669  * use __vmalloc() instead.
2670  *
2671  * Return: pointer to the allocated memory or %NULL on error
2672  */
2673 void *vmalloc_exec(unsigned long size)
2674 {
2675 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2676 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2677 			NUMA_NO_NODE, __builtin_return_address(0));
2678 }
2679 
2680 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2681 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2682 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2683 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2684 #else
2685 /*
2686  * 64b systems should always have either DMA or DMA32 zones. For others
2687  * GFP_DMA32 should do the right thing and use the normal zone.
2688  */
2689 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2690 #endif
2691 
2692 /**
2693  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2694  * @size:	allocation size
2695  *
2696  * Allocate enough 32bit PA addressable pages to cover @size from the
2697  * page level allocator and map them into contiguous kernel virtual space.
2698  *
2699  * Return: pointer to the allocated memory or %NULL on error
2700  */
2701 void *vmalloc_32(unsigned long size)
2702 {
2703 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2704 			      NUMA_NO_NODE, __builtin_return_address(0));
2705 }
2706 EXPORT_SYMBOL(vmalloc_32);
2707 
2708 /**
2709  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2710  * @size:	     allocation size
2711  *
2712  * The resulting memory area is 32bit addressable and zeroed so it can be
2713  * mapped to userspace without leaking data.
2714  *
2715  * Return: pointer to the allocated memory or %NULL on error
2716  */
2717 void *vmalloc_32_user(unsigned long size)
2718 {
2719 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2720 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2721 				    VM_USERMAP, NUMA_NO_NODE,
2722 				    __builtin_return_address(0));
2723 }
2724 EXPORT_SYMBOL(vmalloc_32_user);
2725 
2726 /*
2727  * small helper routine , copy contents to buf from addr.
2728  * If the page is not present, fill zero.
2729  */
2730 
2731 static int aligned_vread(char *buf, char *addr, unsigned long count)
2732 {
2733 	struct page *p;
2734 	int copied = 0;
2735 
2736 	while (count) {
2737 		unsigned long offset, length;
2738 
2739 		offset = offset_in_page(addr);
2740 		length = PAGE_SIZE - offset;
2741 		if (length > count)
2742 			length = count;
2743 		p = vmalloc_to_page(addr);
2744 		/*
2745 		 * To do safe access to this _mapped_ area, we need
2746 		 * lock. But adding lock here means that we need to add
2747 		 * overhead of vmalloc()/vfree() calles for this _debug_
2748 		 * interface, rarely used. Instead of that, we'll use
2749 		 * kmap() and get small overhead in this access function.
2750 		 */
2751 		if (p) {
2752 			/*
2753 			 * we can expect USER0 is not used (see vread/vwrite's
2754 			 * function description)
2755 			 */
2756 			void *map = kmap_atomic(p);
2757 			memcpy(buf, map + offset, length);
2758 			kunmap_atomic(map);
2759 		} else
2760 			memset(buf, 0, length);
2761 
2762 		addr += length;
2763 		buf += length;
2764 		copied += length;
2765 		count -= length;
2766 	}
2767 	return copied;
2768 }
2769 
2770 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2771 {
2772 	struct page *p;
2773 	int copied = 0;
2774 
2775 	while (count) {
2776 		unsigned long offset, length;
2777 
2778 		offset = offset_in_page(addr);
2779 		length = PAGE_SIZE - offset;
2780 		if (length > count)
2781 			length = count;
2782 		p = vmalloc_to_page(addr);
2783 		/*
2784 		 * To do safe access to this _mapped_ area, we need
2785 		 * lock. But adding lock here means that we need to add
2786 		 * overhead of vmalloc()/vfree() calles for this _debug_
2787 		 * interface, rarely used. Instead of that, we'll use
2788 		 * kmap() and get small overhead in this access function.
2789 		 */
2790 		if (p) {
2791 			/*
2792 			 * we can expect USER0 is not used (see vread/vwrite's
2793 			 * function description)
2794 			 */
2795 			void *map = kmap_atomic(p);
2796 			memcpy(map + offset, buf, length);
2797 			kunmap_atomic(map);
2798 		}
2799 		addr += length;
2800 		buf += length;
2801 		copied += length;
2802 		count -= length;
2803 	}
2804 	return copied;
2805 }
2806 
2807 /**
2808  * vread() - read vmalloc area in a safe way.
2809  * @buf:     buffer for reading data
2810  * @addr:    vm address.
2811  * @count:   number of bytes to be read.
2812  *
2813  * This function checks that addr is a valid vmalloc'ed area, and
2814  * copy data from that area to a given buffer. If the given memory range
2815  * of [addr...addr+count) includes some valid address, data is copied to
2816  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2817  * IOREMAP area is treated as memory hole and no copy is done.
2818  *
2819  * If [addr...addr+count) doesn't includes any intersects with alive
2820  * vm_struct area, returns 0. @buf should be kernel's buffer.
2821  *
2822  * Note: In usual ops, vread() is never necessary because the caller
2823  * should know vmalloc() area is valid and can use memcpy().
2824  * This is for routines which have to access vmalloc area without
2825  * any information, as /dev/kmem.
2826  *
2827  * Return: number of bytes for which addr and buf should be increased
2828  * (same number as @count) or %0 if [addr...addr+count) doesn't
2829  * include any intersection with valid vmalloc area
2830  */
2831 long vread(char *buf, char *addr, unsigned long count)
2832 {
2833 	struct vmap_area *va;
2834 	struct vm_struct *vm;
2835 	char *vaddr, *buf_start = buf;
2836 	unsigned long buflen = count;
2837 	unsigned long n;
2838 
2839 	/* Don't allow overflow */
2840 	if ((unsigned long) addr + count < count)
2841 		count = -(unsigned long) addr;
2842 
2843 	spin_lock(&vmap_area_lock);
2844 	list_for_each_entry(va, &vmap_area_list, list) {
2845 		if (!count)
2846 			break;
2847 
2848 		if (!(va->flags & VM_VM_AREA))
2849 			continue;
2850 
2851 		vm = va->vm;
2852 		vaddr = (char *) vm->addr;
2853 		if (addr >= vaddr + get_vm_area_size(vm))
2854 			continue;
2855 		while (addr < vaddr) {
2856 			if (count == 0)
2857 				goto finished;
2858 			*buf = '\0';
2859 			buf++;
2860 			addr++;
2861 			count--;
2862 		}
2863 		n = vaddr + get_vm_area_size(vm) - addr;
2864 		if (n > count)
2865 			n = count;
2866 		if (!(vm->flags & VM_IOREMAP))
2867 			aligned_vread(buf, addr, n);
2868 		else /* IOREMAP area is treated as memory hole */
2869 			memset(buf, 0, n);
2870 		buf += n;
2871 		addr += n;
2872 		count -= n;
2873 	}
2874 finished:
2875 	spin_unlock(&vmap_area_lock);
2876 
2877 	if (buf == buf_start)
2878 		return 0;
2879 	/* zero-fill memory holes */
2880 	if (buf != buf_start + buflen)
2881 		memset(buf, 0, buflen - (buf - buf_start));
2882 
2883 	return buflen;
2884 }
2885 
2886 /**
2887  * vwrite() - write vmalloc area in a safe way.
2888  * @buf:      buffer for source data
2889  * @addr:     vm address.
2890  * @count:    number of bytes to be read.
2891  *
2892  * This function checks that addr is a valid vmalloc'ed area, and
2893  * copy data from a buffer to the given addr. If specified range of
2894  * [addr...addr+count) includes some valid address, data is copied from
2895  * proper area of @buf. If there are memory holes, no copy to hole.
2896  * IOREMAP area is treated as memory hole and no copy is done.
2897  *
2898  * If [addr...addr+count) doesn't includes any intersects with alive
2899  * vm_struct area, returns 0. @buf should be kernel's buffer.
2900  *
2901  * Note: In usual ops, vwrite() is never necessary because the caller
2902  * should know vmalloc() area is valid and can use memcpy().
2903  * This is for routines which have to access vmalloc area without
2904  * any information, as /dev/kmem.
2905  *
2906  * Return: number of bytes for which addr and buf should be
2907  * increased (same number as @count) or %0 if [addr...addr+count)
2908  * doesn't include any intersection with valid vmalloc area
2909  */
2910 long vwrite(char *buf, char *addr, unsigned long count)
2911 {
2912 	struct vmap_area *va;
2913 	struct vm_struct *vm;
2914 	char *vaddr;
2915 	unsigned long n, buflen;
2916 	int copied = 0;
2917 
2918 	/* Don't allow overflow */
2919 	if ((unsigned long) addr + count < count)
2920 		count = -(unsigned long) addr;
2921 	buflen = count;
2922 
2923 	spin_lock(&vmap_area_lock);
2924 	list_for_each_entry(va, &vmap_area_list, list) {
2925 		if (!count)
2926 			break;
2927 
2928 		if (!(va->flags & VM_VM_AREA))
2929 			continue;
2930 
2931 		vm = va->vm;
2932 		vaddr = (char *) vm->addr;
2933 		if (addr >= vaddr + get_vm_area_size(vm))
2934 			continue;
2935 		while (addr < vaddr) {
2936 			if (count == 0)
2937 				goto finished;
2938 			buf++;
2939 			addr++;
2940 			count--;
2941 		}
2942 		n = vaddr + get_vm_area_size(vm) - addr;
2943 		if (n > count)
2944 			n = count;
2945 		if (!(vm->flags & VM_IOREMAP)) {
2946 			aligned_vwrite(buf, addr, n);
2947 			copied++;
2948 		}
2949 		buf += n;
2950 		addr += n;
2951 		count -= n;
2952 	}
2953 finished:
2954 	spin_unlock(&vmap_area_lock);
2955 	if (!copied)
2956 		return 0;
2957 	return buflen;
2958 }
2959 
2960 /**
2961  * remap_vmalloc_range_partial - map vmalloc pages to userspace
2962  * @vma:		vma to cover
2963  * @uaddr:		target user address to start at
2964  * @kaddr:		virtual address of vmalloc kernel memory
2965  * @size:		size of map area
2966  *
2967  * Returns:	0 for success, -Exxx on failure
2968  *
2969  * This function checks that @kaddr is a valid vmalloc'ed area,
2970  * and that it is big enough to cover the range starting at
2971  * @uaddr in @vma. Will return failure if that criteria isn't
2972  * met.
2973  *
2974  * Similar to remap_pfn_range() (see mm/memory.c)
2975  */
2976 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2977 				void *kaddr, unsigned long size)
2978 {
2979 	struct vm_struct *area;
2980 
2981 	size = PAGE_ALIGN(size);
2982 
2983 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2984 		return -EINVAL;
2985 
2986 	area = find_vm_area(kaddr);
2987 	if (!area)
2988 		return -EINVAL;
2989 
2990 	if (!(area->flags & VM_USERMAP))
2991 		return -EINVAL;
2992 
2993 	if (kaddr + size > area->addr + get_vm_area_size(area))
2994 		return -EINVAL;
2995 
2996 	do {
2997 		struct page *page = vmalloc_to_page(kaddr);
2998 		int ret;
2999 
3000 		ret = vm_insert_page(vma, uaddr, page);
3001 		if (ret)
3002 			return ret;
3003 
3004 		uaddr += PAGE_SIZE;
3005 		kaddr += PAGE_SIZE;
3006 		size -= PAGE_SIZE;
3007 	} while (size > 0);
3008 
3009 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3010 
3011 	return 0;
3012 }
3013 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3014 
3015 /**
3016  * remap_vmalloc_range - map vmalloc pages to userspace
3017  * @vma:		vma to cover (map full range of vma)
3018  * @addr:		vmalloc memory
3019  * @pgoff:		number of pages into addr before first page to map
3020  *
3021  * Returns:	0 for success, -Exxx on failure
3022  *
3023  * This function checks that addr is a valid vmalloc'ed area, and
3024  * that it is big enough to cover the vma. Will return failure if
3025  * that criteria isn't met.
3026  *
3027  * Similar to remap_pfn_range() (see mm/memory.c)
3028  */
3029 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3030 						unsigned long pgoff)
3031 {
3032 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3033 					   addr + (pgoff << PAGE_SHIFT),
3034 					   vma->vm_end - vma->vm_start);
3035 }
3036 EXPORT_SYMBOL(remap_vmalloc_range);
3037 
3038 /*
3039  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3040  * have one.
3041  */
3042 void __weak vmalloc_sync_all(void)
3043 {
3044 }
3045 
3046 
3047 static int f(pte_t *pte, unsigned long addr, void *data)
3048 {
3049 	pte_t ***p = data;
3050 
3051 	if (p) {
3052 		*(*p) = pte;
3053 		(*p)++;
3054 	}
3055 	return 0;
3056 }
3057 
3058 /**
3059  * alloc_vm_area - allocate a range of kernel address space
3060  * @size:	   size of the area
3061  * @ptes:	   returns the PTEs for the address space
3062  *
3063  * Returns:	NULL on failure, vm_struct on success
3064  *
3065  * This function reserves a range of kernel address space, and
3066  * allocates pagetables to map that range.  No actual mappings
3067  * are created.
3068  *
3069  * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3070  * allocated for the VM area are returned.
3071  */
3072 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3073 {
3074 	struct vm_struct *area;
3075 
3076 	area = get_vm_area_caller(size, VM_IOREMAP,
3077 				__builtin_return_address(0));
3078 	if (area == NULL)
3079 		return NULL;
3080 
3081 	/*
3082 	 * This ensures that page tables are constructed for this region
3083 	 * of kernel virtual address space and mapped into init_mm.
3084 	 */
3085 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3086 				size, f, ptes ? &ptes : NULL)) {
3087 		free_vm_area(area);
3088 		return NULL;
3089 	}
3090 
3091 	return area;
3092 }
3093 EXPORT_SYMBOL_GPL(alloc_vm_area);
3094 
3095 void free_vm_area(struct vm_struct *area)
3096 {
3097 	struct vm_struct *ret;
3098 	ret = remove_vm_area(area->addr);
3099 	BUG_ON(ret != area);
3100 	kfree(area);
3101 }
3102 EXPORT_SYMBOL_GPL(free_vm_area);
3103 
3104 #ifdef CONFIG_SMP
3105 static struct vmap_area *node_to_va(struct rb_node *n)
3106 {
3107 	return rb_entry_safe(n, struct vmap_area, rb_node);
3108 }
3109 
3110 /**
3111  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3112  * @addr: target address
3113  *
3114  * Returns: vmap_area if it is found. If there is no such area
3115  *   the first highest(reverse order) vmap_area is returned
3116  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3117  *   if there are no any areas before @addr.
3118  */
3119 static struct vmap_area *
3120 pvm_find_va_enclose_addr(unsigned long addr)
3121 {
3122 	struct vmap_area *va, *tmp;
3123 	struct rb_node *n;
3124 
3125 	n = free_vmap_area_root.rb_node;
3126 	va = NULL;
3127 
3128 	while (n) {
3129 		tmp = rb_entry(n, struct vmap_area, rb_node);
3130 		if (tmp->va_start <= addr) {
3131 			va = tmp;
3132 			if (tmp->va_end >= addr)
3133 				break;
3134 
3135 			n = n->rb_right;
3136 		} else {
3137 			n = n->rb_left;
3138 		}
3139 	}
3140 
3141 	return va;
3142 }
3143 
3144 /**
3145  * pvm_determine_end_from_reverse - find the highest aligned address
3146  * of free block below VMALLOC_END
3147  * @va:
3148  *   in - the VA we start the search(reverse order);
3149  *   out - the VA with the highest aligned end address.
3150  *
3151  * Returns: determined end address within vmap_area
3152  */
3153 static unsigned long
3154 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3155 {
3156 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3157 	unsigned long addr;
3158 
3159 	if (likely(*va)) {
3160 		list_for_each_entry_from_reverse((*va),
3161 				&free_vmap_area_list, list) {
3162 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3163 			if ((*va)->va_start < addr)
3164 				return addr;
3165 		}
3166 	}
3167 
3168 	return 0;
3169 }
3170 
3171 /**
3172  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3173  * @offsets: array containing offset of each area
3174  * @sizes: array containing size of each area
3175  * @nr_vms: the number of areas to allocate
3176  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3177  *
3178  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3179  *	    vm_structs on success, %NULL on failure
3180  *
3181  * Percpu allocator wants to use congruent vm areas so that it can
3182  * maintain the offsets among percpu areas.  This function allocates
3183  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3184  * be scattered pretty far, distance between two areas easily going up
3185  * to gigabytes.  To avoid interacting with regular vmallocs, these
3186  * areas are allocated from top.
3187  *
3188  * Despite its complicated look, this allocator is rather simple. It
3189  * does everything top-down and scans free blocks from the end looking
3190  * for matching base. While scanning, if any of the areas do not fit the
3191  * base address is pulled down to fit the area. Scanning is repeated till
3192  * all the areas fit and then all necessary data structures are inserted
3193  * and the result is returned.
3194  */
3195 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3196 				     const size_t *sizes, int nr_vms,
3197 				     size_t align)
3198 {
3199 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3200 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3201 	struct vmap_area **vas, *va;
3202 	struct vm_struct **vms;
3203 	int area, area2, last_area, term_area;
3204 	unsigned long base, start, size, end, last_end;
3205 	bool purged = false;
3206 	enum fit_type type;
3207 
3208 	/* verify parameters and allocate data structures */
3209 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3210 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3211 		start = offsets[area];
3212 		end = start + sizes[area];
3213 
3214 		/* is everything aligned properly? */
3215 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3216 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3217 
3218 		/* detect the area with the highest address */
3219 		if (start > offsets[last_area])
3220 			last_area = area;
3221 
3222 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3223 			unsigned long start2 = offsets[area2];
3224 			unsigned long end2 = start2 + sizes[area2];
3225 
3226 			BUG_ON(start2 < end && start < end2);
3227 		}
3228 	}
3229 	last_end = offsets[last_area] + sizes[last_area];
3230 
3231 	if (vmalloc_end - vmalloc_start < last_end) {
3232 		WARN_ON(true);
3233 		return NULL;
3234 	}
3235 
3236 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3237 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3238 	if (!vas || !vms)
3239 		goto err_free2;
3240 
3241 	for (area = 0; area < nr_vms; area++) {
3242 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3243 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3244 		if (!vas[area] || !vms[area])
3245 			goto err_free;
3246 	}
3247 retry:
3248 	spin_lock(&vmap_area_lock);
3249 
3250 	/* start scanning - we scan from the top, begin with the last area */
3251 	area = term_area = last_area;
3252 	start = offsets[area];
3253 	end = start + sizes[area];
3254 
3255 	va = pvm_find_va_enclose_addr(vmalloc_end);
3256 	base = pvm_determine_end_from_reverse(&va, align) - end;
3257 
3258 	while (true) {
3259 		/*
3260 		 * base might have underflowed, add last_end before
3261 		 * comparing.
3262 		 */
3263 		if (base + last_end < vmalloc_start + last_end)
3264 			goto overflow;
3265 
3266 		/*
3267 		 * Fitting base has not been found.
3268 		 */
3269 		if (va == NULL)
3270 			goto overflow;
3271 
3272 		/*
3273 		 * If this VA does not fit, move base downwards and recheck.
3274 		 */
3275 		if (base + start < va->va_start || base + end > va->va_end) {
3276 			va = node_to_va(rb_prev(&va->rb_node));
3277 			base = pvm_determine_end_from_reverse(&va, align) - end;
3278 			term_area = area;
3279 			continue;
3280 		}
3281 
3282 		/*
3283 		 * This area fits, move on to the previous one.  If
3284 		 * the previous one is the terminal one, we're done.
3285 		 */
3286 		area = (area + nr_vms - 1) % nr_vms;
3287 		if (area == term_area)
3288 			break;
3289 
3290 		start = offsets[area];
3291 		end = start + sizes[area];
3292 		va = pvm_find_va_enclose_addr(base + end);
3293 	}
3294 
3295 	/* we've found a fitting base, insert all va's */
3296 	for (area = 0; area < nr_vms; area++) {
3297 		int ret;
3298 
3299 		start = base + offsets[area];
3300 		size = sizes[area];
3301 
3302 		va = pvm_find_va_enclose_addr(start);
3303 		if (WARN_ON_ONCE(va == NULL))
3304 			/* It is a BUG(), but trigger recovery instead. */
3305 			goto recovery;
3306 
3307 		type = classify_va_fit_type(va, start, size);
3308 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3309 			/* It is a BUG(), but trigger recovery instead. */
3310 			goto recovery;
3311 
3312 		ret = adjust_va_to_fit_type(va, start, size, type);
3313 		if (unlikely(ret))
3314 			goto recovery;
3315 
3316 		/* Allocated area. */
3317 		va = vas[area];
3318 		va->va_start = start;
3319 		va->va_end = start + size;
3320 
3321 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3322 	}
3323 
3324 	spin_unlock(&vmap_area_lock);
3325 
3326 	/* insert all vm's */
3327 	for (area = 0; area < nr_vms; area++)
3328 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3329 				 pcpu_get_vm_areas);
3330 
3331 	kfree(vas);
3332 	return vms;
3333 
3334 recovery:
3335 	/* Remove previously inserted areas. */
3336 	while (area--) {
3337 		__free_vmap_area(vas[area]);
3338 		vas[area] = NULL;
3339 	}
3340 
3341 overflow:
3342 	spin_unlock(&vmap_area_lock);
3343 	if (!purged) {
3344 		purge_vmap_area_lazy();
3345 		purged = true;
3346 
3347 		/* Before "retry", check if we recover. */
3348 		for (area = 0; area < nr_vms; area++) {
3349 			if (vas[area])
3350 				continue;
3351 
3352 			vas[area] = kmem_cache_zalloc(
3353 				vmap_area_cachep, GFP_KERNEL);
3354 			if (!vas[area])
3355 				goto err_free;
3356 		}
3357 
3358 		goto retry;
3359 	}
3360 
3361 err_free:
3362 	for (area = 0; area < nr_vms; area++) {
3363 		if (vas[area])
3364 			kmem_cache_free(vmap_area_cachep, vas[area]);
3365 
3366 		kfree(vms[area]);
3367 	}
3368 err_free2:
3369 	kfree(vas);
3370 	kfree(vms);
3371 	return NULL;
3372 }
3373 
3374 /**
3375  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3376  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3377  * @nr_vms: the number of allocated areas
3378  *
3379  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3380  */
3381 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3382 {
3383 	int i;
3384 
3385 	for (i = 0; i < nr_vms; i++)
3386 		free_vm_area(vms[i]);
3387 	kfree(vms);
3388 }
3389 #endif	/* CONFIG_SMP */
3390 
3391 #ifdef CONFIG_PROC_FS
3392 static void *s_start(struct seq_file *m, loff_t *pos)
3393 	__acquires(&vmap_area_lock)
3394 {
3395 	spin_lock(&vmap_area_lock);
3396 	return seq_list_start(&vmap_area_list, *pos);
3397 }
3398 
3399 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3400 {
3401 	return seq_list_next(p, &vmap_area_list, pos);
3402 }
3403 
3404 static void s_stop(struct seq_file *m, void *p)
3405 	__releases(&vmap_area_lock)
3406 {
3407 	spin_unlock(&vmap_area_lock);
3408 }
3409 
3410 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3411 {
3412 	if (IS_ENABLED(CONFIG_NUMA)) {
3413 		unsigned int nr, *counters = m->private;
3414 
3415 		if (!counters)
3416 			return;
3417 
3418 		if (v->flags & VM_UNINITIALIZED)
3419 			return;
3420 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3421 		smp_rmb();
3422 
3423 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3424 
3425 		for (nr = 0; nr < v->nr_pages; nr++)
3426 			counters[page_to_nid(v->pages[nr])]++;
3427 
3428 		for_each_node_state(nr, N_HIGH_MEMORY)
3429 			if (counters[nr])
3430 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3431 	}
3432 }
3433 
3434 static int s_show(struct seq_file *m, void *p)
3435 {
3436 	struct vmap_area *va;
3437 	struct vm_struct *v;
3438 
3439 	va = list_entry(p, struct vmap_area, list);
3440 
3441 	/*
3442 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3443 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
3444 	 */
3445 	if (!(va->flags & VM_VM_AREA)) {
3446 		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3447 			(void *)va->va_start, (void *)va->va_end,
3448 			va->va_end - va->va_start,
3449 			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3450 
3451 		return 0;
3452 	}
3453 
3454 	v = va->vm;
3455 
3456 	seq_printf(m, "0x%pK-0x%pK %7ld",
3457 		v->addr, v->addr + v->size, v->size);
3458 
3459 	if (v->caller)
3460 		seq_printf(m, " %pS", v->caller);
3461 
3462 	if (v->nr_pages)
3463 		seq_printf(m, " pages=%d", v->nr_pages);
3464 
3465 	if (v->phys_addr)
3466 		seq_printf(m, " phys=%pa", &v->phys_addr);
3467 
3468 	if (v->flags & VM_IOREMAP)
3469 		seq_puts(m, " ioremap");
3470 
3471 	if (v->flags & VM_ALLOC)
3472 		seq_puts(m, " vmalloc");
3473 
3474 	if (v->flags & VM_MAP)
3475 		seq_puts(m, " vmap");
3476 
3477 	if (v->flags & VM_USERMAP)
3478 		seq_puts(m, " user");
3479 
3480 	if (is_vmalloc_addr(v->pages))
3481 		seq_puts(m, " vpages");
3482 
3483 	show_numa_info(m, v);
3484 	seq_putc(m, '\n');
3485 	return 0;
3486 }
3487 
3488 static const struct seq_operations vmalloc_op = {
3489 	.start = s_start,
3490 	.next = s_next,
3491 	.stop = s_stop,
3492 	.show = s_show,
3493 };
3494 
3495 static int __init proc_vmalloc_init(void)
3496 {
3497 	if (IS_ENABLED(CONFIG_NUMA))
3498 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3499 				&vmalloc_op,
3500 				nr_node_ids * sizeof(unsigned int), NULL);
3501 	else
3502 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3503 	return 0;
3504 }
3505 module_init(proc_vmalloc_init);
3506 
3507 #endif
3508