xref: /openbmc/linux/mm/vmalloc.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmalloc.c
4  *
5  *  Copyright (C) 1993  Linus Torvalds
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9  *  Numa awareness, Christoph Lameter, SGI, June 2005
10  */
11 
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38 
39 #include <linux/uaccess.h>
40 #include <asm/tlbflush.h>
41 #include <asm/shmparam.h>
42 
43 #include "internal.h"
44 
45 bool is_vmalloc_addr(const void *x)
46 {
47 	unsigned long addr = (unsigned long)x;
48 
49 	return addr >= VMALLOC_START && addr < VMALLOC_END;
50 }
51 EXPORT_SYMBOL(is_vmalloc_addr);
52 
53 struct vfree_deferred {
54 	struct llist_head list;
55 	struct work_struct wq;
56 };
57 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58 
59 static void __vunmap(const void *, int);
60 
61 static void free_work(struct work_struct *w)
62 {
63 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 	struct llist_node *t, *llnode;
65 
66 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 		__vunmap((void *)llnode, 1);
68 }
69 
70 /*** Page table manipulation functions ***/
71 
72 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 			     pgtbl_mod_mask *mask)
74 {
75 	pte_t *pte;
76 
77 	pte = pte_offset_kernel(pmd, addr);
78 	do {
79 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 	} while (pte++, addr += PAGE_SIZE, addr != end);
82 	*mask |= PGTBL_PTE_MODIFIED;
83 }
84 
85 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 			     pgtbl_mod_mask *mask)
87 {
88 	pmd_t *pmd;
89 	unsigned long next;
90 	int cleared;
91 
92 	pmd = pmd_offset(pud, addr);
93 	do {
94 		next = pmd_addr_end(addr, end);
95 
96 		cleared = pmd_clear_huge(pmd);
97 		if (cleared || pmd_bad(*pmd))
98 			*mask |= PGTBL_PMD_MODIFIED;
99 
100 		if (cleared)
101 			continue;
102 		if (pmd_none_or_clear_bad(pmd))
103 			continue;
104 		vunmap_pte_range(pmd, addr, next, mask);
105 	} while (pmd++, addr = next, addr != end);
106 }
107 
108 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
109 			     pgtbl_mod_mask *mask)
110 {
111 	pud_t *pud;
112 	unsigned long next;
113 	int cleared;
114 
115 	pud = pud_offset(p4d, addr);
116 	do {
117 		next = pud_addr_end(addr, end);
118 
119 		cleared = pud_clear_huge(pud);
120 		if (cleared || pud_bad(*pud))
121 			*mask |= PGTBL_PUD_MODIFIED;
122 
123 		if (cleared)
124 			continue;
125 		if (pud_none_or_clear_bad(pud))
126 			continue;
127 		vunmap_pmd_range(pud, addr, next, mask);
128 	} while (pud++, addr = next, addr != end);
129 }
130 
131 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
132 			     pgtbl_mod_mask *mask)
133 {
134 	p4d_t *p4d;
135 	unsigned long next;
136 	int cleared;
137 
138 	p4d = p4d_offset(pgd, addr);
139 	do {
140 		next = p4d_addr_end(addr, end);
141 
142 		cleared = p4d_clear_huge(p4d);
143 		if (cleared || p4d_bad(*p4d))
144 			*mask |= PGTBL_P4D_MODIFIED;
145 
146 		if (cleared)
147 			continue;
148 		if (p4d_none_or_clear_bad(p4d))
149 			continue;
150 		vunmap_pud_range(p4d, addr, next, mask);
151 	} while (p4d++, addr = next, addr != end);
152 }
153 
154 /**
155  * unmap_kernel_range_noflush - unmap kernel VM area
156  * @start: start of the VM area to unmap
157  * @size: size of the VM area to unmap
158  *
159  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
160  * should have been allocated using get_vm_area() and its friends.
161  *
162  * NOTE:
163  * This function does NOT do any cache flushing.  The caller is responsible
164  * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
165  * function and flush_tlb_kernel_range() after.
166  */
167 void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
168 {
169 	unsigned long end = start + size;
170 	unsigned long next;
171 	pgd_t *pgd;
172 	unsigned long addr = start;
173 	pgtbl_mod_mask mask = 0;
174 
175 	BUG_ON(addr >= end);
176 	start = addr;
177 	pgd = pgd_offset_k(addr);
178 	do {
179 		next = pgd_addr_end(addr, end);
180 		if (pgd_bad(*pgd))
181 			mask |= PGTBL_PGD_MODIFIED;
182 		if (pgd_none_or_clear_bad(pgd))
183 			continue;
184 		vunmap_p4d_range(pgd, addr, next, &mask);
185 	} while (pgd++, addr = next, addr != end);
186 
187 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
188 		arch_sync_kernel_mappings(start, end);
189 }
190 
191 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
192 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
193 		pgtbl_mod_mask *mask)
194 {
195 	pte_t *pte;
196 
197 	/*
198 	 * nr is a running index into the array which helps higher level
199 	 * callers keep track of where we're up to.
200 	 */
201 
202 	pte = pte_alloc_kernel_track(pmd, addr, mask);
203 	if (!pte)
204 		return -ENOMEM;
205 	do {
206 		struct page *page = pages[*nr];
207 
208 		if (WARN_ON(!pte_none(*pte)))
209 			return -EBUSY;
210 		if (WARN_ON(!page))
211 			return -ENOMEM;
212 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
213 		(*nr)++;
214 	} while (pte++, addr += PAGE_SIZE, addr != end);
215 	*mask |= PGTBL_PTE_MODIFIED;
216 	return 0;
217 }
218 
219 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
220 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
221 		pgtbl_mod_mask *mask)
222 {
223 	pmd_t *pmd;
224 	unsigned long next;
225 
226 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
227 	if (!pmd)
228 		return -ENOMEM;
229 	do {
230 		next = pmd_addr_end(addr, end);
231 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
232 			return -ENOMEM;
233 	} while (pmd++, addr = next, addr != end);
234 	return 0;
235 }
236 
237 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
238 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
239 		pgtbl_mod_mask *mask)
240 {
241 	pud_t *pud;
242 	unsigned long next;
243 
244 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
245 	if (!pud)
246 		return -ENOMEM;
247 	do {
248 		next = pud_addr_end(addr, end);
249 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
250 			return -ENOMEM;
251 	} while (pud++, addr = next, addr != end);
252 	return 0;
253 }
254 
255 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
256 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
257 		pgtbl_mod_mask *mask)
258 {
259 	p4d_t *p4d;
260 	unsigned long next;
261 
262 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
263 	if (!p4d)
264 		return -ENOMEM;
265 	do {
266 		next = p4d_addr_end(addr, end);
267 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
268 			return -ENOMEM;
269 	} while (p4d++, addr = next, addr != end);
270 	return 0;
271 }
272 
273 /**
274  * map_kernel_range_noflush - map kernel VM area with the specified pages
275  * @addr: start of the VM area to map
276  * @size: size of the VM area to map
277  * @prot: page protection flags to use
278  * @pages: pages to map
279  *
280  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
281  * have been allocated using get_vm_area() and its friends.
282  *
283  * NOTE:
284  * This function does NOT do any cache flushing.  The caller is responsible for
285  * calling flush_cache_vmap() on to-be-mapped areas before calling this
286  * function.
287  *
288  * RETURNS:
289  * 0 on success, -errno on failure.
290  */
291 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
292 			     pgprot_t prot, struct page **pages)
293 {
294 	unsigned long start = addr;
295 	unsigned long end = addr + size;
296 	unsigned long next;
297 	pgd_t *pgd;
298 	int err = 0;
299 	int nr = 0;
300 	pgtbl_mod_mask mask = 0;
301 
302 	BUG_ON(addr >= end);
303 	pgd = pgd_offset_k(addr);
304 	do {
305 		next = pgd_addr_end(addr, end);
306 		if (pgd_bad(*pgd))
307 			mask |= PGTBL_PGD_MODIFIED;
308 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
309 		if (err)
310 			return err;
311 	} while (pgd++, addr = next, addr != end);
312 
313 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
314 		arch_sync_kernel_mappings(start, end);
315 
316 	return 0;
317 }
318 
319 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
320 		struct page **pages)
321 {
322 	int ret;
323 
324 	ret = map_kernel_range_noflush(start, size, prot, pages);
325 	flush_cache_vmap(start, start + size);
326 	return ret;
327 }
328 
329 int is_vmalloc_or_module_addr(const void *x)
330 {
331 	/*
332 	 * ARM, x86-64 and sparc64 put modules in a special place,
333 	 * and fall back on vmalloc() if that fails. Others
334 	 * just put it in the vmalloc space.
335 	 */
336 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
337 	unsigned long addr = (unsigned long)x;
338 	if (addr >= MODULES_VADDR && addr < MODULES_END)
339 		return 1;
340 #endif
341 	return is_vmalloc_addr(x);
342 }
343 
344 /*
345  * Walk a vmap address to the struct page it maps.
346  */
347 struct page *vmalloc_to_page(const void *vmalloc_addr)
348 {
349 	unsigned long addr = (unsigned long) vmalloc_addr;
350 	struct page *page = NULL;
351 	pgd_t *pgd = pgd_offset_k(addr);
352 	p4d_t *p4d;
353 	pud_t *pud;
354 	pmd_t *pmd;
355 	pte_t *ptep, pte;
356 
357 	/*
358 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
359 	 * architectures that do not vmalloc module space
360 	 */
361 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
362 
363 	if (pgd_none(*pgd))
364 		return NULL;
365 	p4d = p4d_offset(pgd, addr);
366 	if (p4d_none(*p4d))
367 		return NULL;
368 	pud = pud_offset(p4d, addr);
369 
370 	/*
371 	 * Don't dereference bad PUD or PMD (below) entries. This will also
372 	 * identify huge mappings, which we may encounter on architectures
373 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
374 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
375 	 * not [unambiguously] associated with a struct page, so there is
376 	 * no correct value to return for them.
377 	 */
378 	WARN_ON_ONCE(pud_bad(*pud));
379 	if (pud_none(*pud) || pud_bad(*pud))
380 		return NULL;
381 	pmd = pmd_offset(pud, addr);
382 	WARN_ON_ONCE(pmd_bad(*pmd));
383 	if (pmd_none(*pmd) || pmd_bad(*pmd))
384 		return NULL;
385 
386 	ptep = pte_offset_map(pmd, addr);
387 	pte = *ptep;
388 	if (pte_present(pte))
389 		page = pte_page(pte);
390 	pte_unmap(ptep);
391 	return page;
392 }
393 EXPORT_SYMBOL(vmalloc_to_page);
394 
395 /*
396  * Map a vmalloc()-space virtual address to the physical page frame number.
397  */
398 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
399 {
400 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
401 }
402 EXPORT_SYMBOL(vmalloc_to_pfn);
403 
404 
405 /*** Global kva allocator ***/
406 
407 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
408 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
409 
410 
411 static DEFINE_SPINLOCK(vmap_area_lock);
412 static DEFINE_SPINLOCK(free_vmap_area_lock);
413 /* Export for kexec only */
414 LIST_HEAD(vmap_area_list);
415 static LLIST_HEAD(vmap_purge_list);
416 static struct rb_root vmap_area_root = RB_ROOT;
417 static bool vmap_initialized __read_mostly;
418 
419 /*
420  * This kmem_cache is used for vmap_area objects. Instead of
421  * allocating from slab we reuse an object from this cache to
422  * make things faster. Especially in "no edge" splitting of
423  * free block.
424  */
425 static struct kmem_cache *vmap_area_cachep;
426 
427 /*
428  * This linked list is used in pair with free_vmap_area_root.
429  * It gives O(1) access to prev/next to perform fast coalescing.
430  */
431 static LIST_HEAD(free_vmap_area_list);
432 
433 /*
434  * This augment red-black tree represents the free vmap space.
435  * All vmap_area objects in this tree are sorted by va->va_start
436  * address. It is used for allocation and merging when a vmap
437  * object is released.
438  *
439  * Each vmap_area node contains a maximum available free block
440  * of its sub-tree, right or left. Therefore it is possible to
441  * find a lowest match of free area.
442  */
443 static struct rb_root free_vmap_area_root = RB_ROOT;
444 
445 /*
446  * Preload a CPU with one object for "no edge" split case. The
447  * aim is to get rid of allocations from the atomic context, thus
448  * to use more permissive allocation masks.
449  */
450 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
451 
452 static __always_inline unsigned long
453 va_size(struct vmap_area *va)
454 {
455 	return (va->va_end - va->va_start);
456 }
457 
458 static __always_inline unsigned long
459 get_subtree_max_size(struct rb_node *node)
460 {
461 	struct vmap_area *va;
462 
463 	va = rb_entry_safe(node, struct vmap_area, rb_node);
464 	return va ? va->subtree_max_size : 0;
465 }
466 
467 /*
468  * Gets called when remove the node and rotate.
469  */
470 static __always_inline unsigned long
471 compute_subtree_max_size(struct vmap_area *va)
472 {
473 	return max3(va_size(va),
474 		get_subtree_max_size(va->rb_node.rb_left),
475 		get_subtree_max_size(va->rb_node.rb_right));
476 }
477 
478 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
479 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
480 
481 static void purge_vmap_area_lazy(void);
482 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
483 static unsigned long lazy_max_pages(void);
484 
485 static atomic_long_t nr_vmalloc_pages;
486 
487 unsigned long vmalloc_nr_pages(void)
488 {
489 	return atomic_long_read(&nr_vmalloc_pages);
490 }
491 
492 static struct vmap_area *__find_vmap_area(unsigned long addr)
493 {
494 	struct rb_node *n = vmap_area_root.rb_node;
495 
496 	while (n) {
497 		struct vmap_area *va;
498 
499 		va = rb_entry(n, struct vmap_area, rb_node);
500 		if (addr < va->va_start)
501 			n = n->rb_left;
502 		else if (addr >= va->va_end)
503 			n = n->rb_right;
504 		else
505 			return va;
506 	}
507 
508 	return NULL;
509 }
510 
511 /*
512  * This function returns back addresses of parent node
513  * and its left or right link for further processing.
514  */
515 static __always_inline struct rb_node **
516 find_va_links(struct vmap_area *va,
517 	struct rb_root *root, struct rb_node *from,
518 	struct rb_node **parent)
519 {
520 	struct vmap_area *tmp_va;
521 	struct rb_node **link;
522 
523 	if (root) {
524 		link = &root->rb_node;
525 		if (unlikely(!*link)) {
526 			*parent = NULL;
527 			return link;
528 		}
529 	} else {
530 		link = &from;
531 	}
532 
533 	/*
534 	 * Go to the bottom of the tree. When we hit the last point
535 	 * we end up with parent rb_node and correct direction, i name
536 	 * it link, where the new va->rb_node will be attached to.
537 	 */
538 	do {
539 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
540 
541 		/*
542 		 * During the traversal we also do some sanity check.
543 		 * Trigger the BUG() if there are sides(left/right)
544 		 * or full overlaps.
545 		 */
546 		if (va->va_start < tmp_va->va_end &&
547 				va->va_end <= tmp_va->va_start)
548 			link = &(*link)->rb_left;
549 		else if (va->va_end > tmp_va->va_start &&
550 				va->va_start >= tmp_va->va_end)
551 			link = &(*link)->rb_right;
552 		else
553 			BUG();
554 	} while (*link);
555 
556 	*parent = &tmp_va->rb_node;
557 	return link;
558 }
559 
560 static __always_inline struct list_head *
561 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
562 {
563 	struct list_head *list;
564 
565 	if (unlikely(!parent))
566 		/*
567 		 * The red-black tree where we try to find VA neighbors
568 		 * before merging or inserting is empty, i.e. it means
569 		 * there is no free vmap space. Normally it does not
570 		 * happen but we handle this case anyway.
571 		 */
572 		return NULL;
573 
574 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
575 	return (&parent->rb_right == link ? list->next : list);
576 }
577 
578 static __always_inline void
579 link_va(struct vmap_area *va, struct rb_root *root,
580 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
581 {
582 	/*
583 	 * VA is still not in the list, but we can
584 	 * identify its future previous list_head node.
585 	 */
586 	if (likely(parent)) {
587 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
588 		if (&parent->rb_right != link)
589 			head = head->prev;
590 	}
591 
592 	/* Insert to the rb-tree */
593 	rb_link_node(&va->rb_node, parent, link);
594 	if (root == &free_vmap_area_root) {
595 		/*
596 		 * Some explanation here. Just perform simple insertion
597 		 * to the tree. We do not set va->subtree_max_size to
598 		 * its current size before calling rb_insert_augmented().
599 		 * It is because of we populate the tree from the bottom
600 		 * to parent levels when the node _is_ in the tree.
601 		 *
602 		 * Therefore we set subtree_max_size to zero after insertion,
603 		 * to let __augment_tree_propagate_from() puts everything to
604 		 * the correct order later on.
605 		 */
606 		rb_insert_augmented(&va->rb_node,
607 			root, &free_vmap_area_rb_augment_cb);
608 		va->subtree_max_size = 0;
609 	} else {
610 		rb_insert_color(&va->rb_node, root);
611 	}
612 
613 	/* Address-sort this list */
614 	list_add(&va->list, head);
615 }
616 
617 static __always_inline void
618 unlink_va(struct vmap_area *va, struct rb_root *root)
619 {
620 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
621 		return;
622 
623 	if (root == &free_vmap_area_root)
624 		rb_erase_augmented(&va->rb_node,
625 			root, &free_vmap_area_rb_augment_cb);
626 	else
627 		rb_erase(&va->rb_node, root);
628 
629 	list_del(&va->list);
630 	RB_CLEAR_NODE(&va->rb_node);
631 }
632 
633 #if DEBUG_AUGMENT_PROPAGATE_CHECK
634 static void
635 augment_tree_propagate_check(struct rb_node *n)
636 {
637 	struct vmap_area *va;
638 	struct rb_node *node;
639 	unsigned long size;
640 	bool found = false;
641 
642 	if (n == NULL)
643 		return;
644 
645 	va = rb_entry(n, struct vmap_area, rb_node);
646 	size = va->subtree_max_size;
647 	node = n;
648 
649 	while (node) {
650 		va = rb_entry(node, struct vmap_area, rb_node);
651 
652 		if (get_subtree_max_size(node->rb_left) == size) {
653 			node = node->rb_left;
654 		} else {
655 			if (va_size(va) == size) {
656 				found = true;
657 				break;
658 			}
659 
660 			node = node->rb_right;
661 		}
662 	}
663 
664 	if (!found) {
665 		va = rb_entry(n, struct vmap_area, rb_node);
666 		pr_emerg("tree is corrupted: %lu, %lu\n",
667 			va_size(va), va->subtree_max_size);
668 	}
669 
670 	augment_tree_propagate_check(n->rb_left);
671 	augment_tree_propagate_check(n->rb_right);
672 }
673 #endif
674 
675 /*
676  * This function populates subtree_max_size from bottom to upper
677  * levels starting from VA point. The propagation must be done
678  * when VA size is modified by changing its va_start/va_end. Or
679  * in case of newly inserting of VA to the tree.
680  *
681  * It means that __augment_tree_propagate_from() must be called:
682  * - After VA has been inserted to the tree(free path);
683  * - After VA has been shrunk(allocation path);
684  * - After VA has been increased(merging path).
685  *
686  * Please note that, it does not mean that upper parent nodes
687  * and their subtree_max_size are recalculated all the time up
688  * to the root node.
689  *
690  *       4--8
691  *        /\
692  *       /  \
693  *      /    \
694  *    2--2  8--8
695  *
696  * For example if we modify the node 4, shrinking it to 2, then
697  * no any modification is required. If we shrink the node 2 to 1
698  * its subtree_max_size is updated only, and set to 1. If we shrink
699  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
700  * node becomes 4--6.
701  */
702 static __always_inline void
703 augment_tree_propagate_from(struct vmap_area *va)
704 {
705 	struct rb_node *node = &va->rb_node;
706 	unsigned long new_va_sub_max_size;
707 
708 	while (node) {
709 		va = rb_entry(node, struct vmap_area, rb_node);
710 		new_va_sub_max_size = compute_subtree_max_size(va);
711 
712 		/*
713 		 * If the newly calculated maximum available size of the
714 		 * subtree is equal to the current one, then it means that
715 		 * the tree is propagated correctly. So we have to stop at
716 		 * this point to save cycles.
717 		 */
718 		if (va->subtree_max_size == new_va_sub_max_size)
719 			break;
720 
721 		va->subtree_max_size = new_va_sub_max_size;
722 		node = rb_parent(&va->rb_node);
723 	}
724 
725 #if DEBUG_AUGMENT_PROPAGATE_CHECK
726 	augment_tree_propagate_check(free_vmap_area_root.rb_node);
727 #endif
728 }
729 
730 static void
731 insert_vmap_area(struct vmap_area *va,
732 	struct rb_root *root, struct list_head *head)
733 {
734 	struct rb_node **link;
735 	struct rb_node *parent;
736 
737 	link = find_va_links(va, root, NULL, &parent);
738 	link_va(va, root, parent, link, head);
739 }
740 
741 static void
742 insert_vmap_area_augment(struct vmap_area *va,
743 	struct rb_node *from, struct rb_root *root,
744 	struct list_head *head)
745 {
746 	struct rb_node **link;
747 	struct rb_node *parent;
748 
749 	if (from)
750 		link = find_va_links(va, NULL, from, &parent);
751 	else
752 		link = find_va_links(va, root, NULL, &parent);
753 
754 	link_va(va, root, parent, link, head);
755 	augment_tree_propagate_from(va);
756 }
757 
758 /*
759  * Merge de-allocated chunk of VA memory with previous
760  * and next free blocks. If coalesce is not done a new
761  * free area is inserted. If VA has been merged, it is
762  * freed.
763  */
764 static __always_inline struct vmap_area *
765 merge_or_add_vmap_area(struct vmap_area *va,
766 	struct rb_root *root, struct list_head *head)
767 {
768 	struct vmap_area *sibling;
769 	struct list_head *next;
770 	struct rb_node **link;
771 	struct rb_node *parent;
772 	bool merged = false;
773 
774 	/*
775 	 * Find a place in the tree where VA potentially will be
776 	 * inserted, unless it is merged with its sibling/siblings.
777 	 */
778 	link = find_va_links(va, root, NULL, &parent);
779 
780 	/*
781 	 * Get next node of VA to check if merging can be done.
782 	 */
783 	next = get_va_next_sibling(parent, link);
784 	if (unlikely(next == NULL))
785 		goto insert;
786 
787 	/*
788 	 * start            end
789 	 * |                |
790 	 * |<------VA------>|<-----Next----->|
791 	 *                  |                |
792 	 *                  start            end
793 	 */
794 	if (next != head) {
795 		sibling = list_entry(next, struct vmap_area, list);
796 		if (sibling->va_start == va->va_end) {
797 			sibling->va_start = va->va_start;
798 
799 			/* Check and update the tree if needed. */
800 			augment_tree_propagate_from(sibling);
801 
802 			/* Free vmap_area object. */
803 			kmem_cache_free(vmap_area_cachep, va);
804 
805 			/* Point to the new merged area. */
806 			va = sibling;
807 			merged = true;
808 		}
809 	}
810 
811 	/*
812 	 * start            end
813 	 * |                |
814 	 * |<-----Prev----->|<------VA------>|
815 	 *                  |                |
816 	 *                  start            end
817 	 */
818 	if (next->prev != head) {
819 		sibling = list_entry(next->prev, struct vmap_area, list);
820 		if (sibling->va_end == va->va_start) {
821 			sibling->va_end = va->va_end;
822 
823 			/* Check and update the tree if needed. */
824 			augment_tree_propagate_from(sibling);
825 
826 			if (merged)
827 				unlink_va(va, root);
828 
829 			/* Free vmap_area object. */
830 			kmem_cache_free(vmap_area_cachep, va);
831 
832 			/* Point to the new merged area. */
833 			va = sibling;
834 			merged = true;
835 		}
836 	}
837 
838 insert:
839 	if (!merged) {
840 		link_va(va, root, parent, link, head);
841 		augment_tree_propagate_from(va);
842 	}
843 
844 	return va;
845 }
846 
847 static __always_inline bool
848 is_within_this_va(struct vmap_area *va, unsigned long size,
849 	unsigned long align, unsigned long vstart)
850 {
851 	unsigned long nva_start_addr;
852 
853 	if (va->va_start > vstart)
854 		nva_start_addr = ALIGN(va->va_start, align);
855 	else
856 		nva_start_addr = ALIGN(vstart, align);
857 
858 	/* Can be overflowed due to big size or alignment. */
859 	if (nva_start_addr + size < nva_start_addr ||
860 			nva_start_addr < vstart)
861 		return false;
862 
863 	return (nva_start_addr + size <= va->va_end);
864 }
865 
866 /*
867  * Find the first free block(lowest start address) in the tree,
868  * that will accomplish the request corresponding to passing
869  * parameters.
870  */
871 static __always_inline struct vmap_area *
872 find_vmap_lowest_match(unsigned long size,
873 	unsigned long align, unsigned long vstart)
874 {
875 	struct vmap_area *va;
876 	struct rb_node *node;
877 	unsigned long length;
878 
879 	/* Start from the root. */
880 	node = free_vmap_area_root.rb_node;
881 
882 	/* Adjust the search size for alignment overhead. */
883 	length = size + align - 1;
884 
885 	while (node) {
886 		va = rb_entry(node, struct vmap_area, rb_node);
887 
888 		if (get_subtree_max_size(node->rb_left) >= length &&
889 				vstart < va->va_start) {
890 			node = node->rb_left;
891 		} else {
892 			if (is_within_this_va(va, size, align, vstart))
893 				return va;
894 
895 			/*
896 			 * Does not make sense to go deeper towards the right
897 			 * sub-tree if it does not have a free block that is
898 			 * equal or bigger to the requested search length.
899 			 */
900 			if (get_subtree_max_size(node->rb_right) >= length) {
901 				node = node->rb_right;
902 				continue;
903 			}
904 
905 			/*
906 			 * OK. We roll back and find the first right sub-tree,
907 			 * that will satisfy the search criteria. It can happen
908 			 * only once due to "vstart" restriction.
909 			 */
910 			while ((node = rb_parent(node))) {
911 				va = rb_entry(node, struct vmap_area, rb_node);
912 				if (is_within_this_va(va, size, align, vstart))
913 					return va;
914 
915 				if (get_subtree_max_size(node->rb_right) >= length &&
916 						vstart <= va->va_start) {
917 					node = node->rb_right;
918 					break;
919 				}
920 			}
921 		}
922 	}
923 
924 	return NULL;
925 }
926 
927 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
928 #include <linux/random.h>
929 
930 static struct vmap_area *
931 find_vmap_lowest_linear_match(unsigned long size,
932 	unsigned long align, unsigned long vstart)
933 {
934 	struct vmap_area *va;
935 
936 	list_for_each_entry(va, &free_vmap_area_list, list) {
937 		if (!is_within_this_va(va, size, align, vstart))
938 			continue;
939 
940 		return va;
941 	}
942 
943 	return NULL;
944 }
945 
946 static void
947 find_vmap_lowest_match_check(unsigned long size)
948 {
949 	struct vmap_area *va_1, *va_2;
950 	unsigned long vstart;
951 	unsigned int rnd;
952 
953 	get_random_bytes(&rnd, sizeof(rnd));
954 	vstart = VMALLOC_START + rnd;
955 
956 	va_1 = find_vmap_lowest_match(size, 1, vstart);
957 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
958 
959 	if (va_1 != va_2)
960 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
961 			va_1, va_2, vstart);
962 }
963 #endif
964 
965 enum fit_type {
966 	NOTHING_FIT = 0,
967 	FL_FIT_TYPE = 1,	/* full fit */
968 	LE_FIT_TYPE = 2,	/* left edge fit */
969 	RE_FIT_TYPE = 3,	/* right edge fit */
970 	NE_FIT_TYPE = 4		/* no edge fit */
971 };
972 
973 static __always_inline enum fit_type
974 classify_va_fit_type(struct vmap_area *va,
975 	unsigned long nva_start_addr, unsigned long size)
976 {
977 	enum fit_type type;
978 
979 	/* Check if it is within VA. */
980 	if (nva_start_addr < va->va_start ||
981 			nva_start_addr + size > va->va_end)
982 		return NOTHING_FIT;
983 
984 	/* Now classify. */
985 	if (va->va_start == nva_start_addr) {
986 		if (va->va_end == nva_start_addr + size)
987 			type = FL_FIT_TYPE;
988 		else
989 			type = LE_FIT_TYPE;
990 	} else if (va->va_end == nva_start_addr + size) {
991 		type = RE_FIT_TYPE;
992 	} else {
993 		type = NE_FIT_TYPE;
994 	}
995 
996 	return type;
997 }
998 
999 static __always_inline int
1000 adjust_va_to_fit_type(struct vmap_area *va,
1001 	unsigned long nva_start_addr, unsigned long size,
1002 	enum fit_type type)
1003 {
1004 	struct vmap_area *lva = NULL;
1005 
1006 	if (type == FL_FIT_TYPE) {
1007 		/*
1008 		 * No need to split VA, it fully fits.
1009 		 *
1010 		 * |               |
1011 		 * V      NVA      V
1012 		 * |---------------|
1013 		 */
1014 		unlink_va(va, &free_vmap_area_root);
1015 		kmem_cache_free(vmap_area_cachep, va);
1016 	} else if (type == LE_FIT_TYPE) {
1017 		/*
1018 		 * Split left edge of fit VA.
1019 		 *
1020 		 * |       |
1021 		 * V  NVA  V   R
1022 		 * |-------|-------|
1023 		 */
1024 		va->va_start += size;
1025 	} else if (type == RE_FIT_TYPE) {
1026 		/*
1027 		 * Split right edge of fit VA.
1028 		 *
1029 		 *         |       |
1030 		 *     L   V  NVA  V
1031 		 * |-------|-------|
1032 		 */
1033 		va->va_end = nva_start_addr;
1034 	} else if (type == NE_FIT_TYPE) {
1035 		/*
1036 		 * Split no edge of fit VA.
1037 		 *
1038 		 *     |       |
1039 		 *   L V  NVA  V R
1040 		 * |---|-------|---|
1041 		 */
1042 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1043 		if (unlikely(!lva)) {
1044 			/*
1045 			 * For percpu allocator we do not do any pre-allocation
1046 			 * and leave it as it is. The reason is it most likely
1047 			 * never ends up with NE_FIT_TYPE splitting. In case of
1048 			 * percpu allocations offsets and sizes are aligned to
1049 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1050 			 * are its main fitting cases.
1051 			 *
1052 			 * There are a few exceptions though, as an example it is
1053 			 * a first allocation (early boot up) when we have "one"
1054 			 * big free space that has to be split.
1055 			 *
1056 			 * Also we can hit this path in case of regular "vmap"
1057 			 * allocations, if "this" current CPU was not preloaded.
1058 			 * See the comment in alloc_vmap_area() why. If so, then
1059 			 * GFP_NOWAIT is used instead to get an extra object for
1060 			 * split purpose. That is rare and most time does not
1061 			 * occur.
1062 			 *
1063 			 * What happens if an allocation gets failed. Basically,
1064 			 * an "overflow" path is triggered to purge lazily freed
1065 			 * areas to free some memory, then, the "retry" path is
1066 			 * triggered to repeat one more time. See more details
1067 			 * in alloc_vmap_area() function.
1068 			 */
1069 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1070 			if (!lva)
1071 				return -1;
1072 		}
1073 
1074 		/*
1075 		 * Build the remainder.
1076 		 */
1077 		lva->va_start = va->va_start;
1078 		lva->va_end = nva_start_addr;
1079 
1080 		/*
1081 		 * Shrink this VA to remaining size.
1082 		 */
1083 		va->va_start = nva_start_addr + size;
1084 	} else {
1085 		return -1;
1086 	}
1087 
1088 	if (type != FL_FIT_TYPE) {
1089 		augment_tree_propagate_from(va);
1090 
1091 		if (lva)	/* type == NE_FIT_TYPE */
1092 			insert_vmap_area_augment(lva, &va->rb_node,
1093 				&free_vmap_area_root, &free_vmap_area_list);
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Returns a start address of the newly allocated area, if success.
1101  * Otherwise a vend is returned that indicates failure.
1102  */
1103 static __always_inline unsigned long
1104 __alloc_vmap_area(unsigned long size, unsigned long align,
1105 	unsigned long vstart, unsigned long vend)
1106 {
1107 	unsigned long nva_start_addr;
1108 	struct vmap_area *va;
1109 	enum fit_type type;
1110 	int ret;
1111 
1112 	va = find_vmap_lowest_match(size, align, vstart);
1113 	if (unlikely(!va))
1114 		return vend;
1115 
1116 	if (va->va_start > vstart)
1117 		nva_start_addr = ALIGN(va->va_start, align);
1118 	else
1119 		nva_start_addr = ALIGN(vstart, align);
1120 
1121 	/* Check the "vend" restriction. */
1122 	if (nva_start_addr + size > vend)
1123 		return vend;
1124 
1125 	/* Classify what we have found. */
1126 	type = classify_va_fit_type(va, nva_start_addr, size);
1127 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1128 		return vend;
1129 
1130 	/* Update the free vmap_area. */
1131 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1132 	if (ret)
1133 		return vend;
1134 
1135 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1136 	find_vmap_lowest_match_check(size);
1137 #endif
1138 
1139 	return nva_start_addr;
1140 }
1141 
1142 /*
1143  * Free a region of KVA allocated by alloc_vmap_area
1144  */
1145 static void free_vmap_area(struct vmap_area *va)
1146 {
1147 	/*
1148 	 * Remove from the busy tree/list.
1149 	 */
1150 	spin_lock(&vmap_area_lock);
1151 	unlink_va(va, &vmap_area_root);
1152 	spin_unlock(&vmap_area_lock);
1153 
1154 	/*
1155 	 * Insert/Merge it back to the free tree/list.
1156 	 */
1157 	spin_lock(&free_vmap_area_lock);
1158 	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1159 	spin_unlock(&free_vmap_area_lock);
1160 }
1161 
1162 /*
1163  * Allocate a region of KVA of the specified size and alignment, within the
1164  * vstart and vend.
1165  */
1166 static struct vmap_area *alloc_vmap_area(unsigned long size,
1167 				unsigned long align,
1168 				unsigned long vstart, unsigned long vend,
1169 				int node, gfp_t gfp_mask)
1170 {
1171 	struct vmap_area *va, *pva;
1172 	unsigned long addr;
1173 	int purged = 0;
1174 	int ret;
1175 
1176 	BUG_ON(!size);
1177 	BUG_ON(offset_in_page(size));
1178 	BUG_ON(!is_power_of_2(align));
1179 
1180 	if (unlikely(!vmap_initialized))
1181 		return ERR_PTR(-EBUSY);
1182 
1183 	might_sleep();
1184 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1185 
1186 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1187 	if (unlikely(!va))
1188 		return ERR_PTR(-ENOMEM);
1189 
1190 	/*
1191 	 * Only scan the relevant parts containing pointers to other objects
1192 	 * to avoid false negatives.
1193 	 */
1194 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1195 
1196 retry:
1197 	/*
1198 	 * Preload this CPU with one extra vmap_area object. It is used
1199 	 * when fit type of free area is NE_FIT_TYPE. Please note, it
1200 	 * does not guarantee that an allocation occurs on a CPU that
1201 	 * is preloaded, instead we minimize the case when it is not.
1202 	 * It can happen because of cpu migration, because there is a
1203 	 * race until the below spinlock is taken.
1204 	 *
1205 	 * The preload is done in non-atomic context, thus it allows us
1206 	 * to use more permissive allocation masks to be more stable under
1207 	 * low memory condition and high memory pressure. In rare case,
1208 	 * if not preloaded, GFP_NOWAIT is used.
1209 	 *
1210 	 * Set "pva" to NULL here, because of "retry" path.
1211 	 */
1212 	pva = NULL;
1213 
1214 	if (!this_cpu_read(ne_fit_preload_node))
1215 		/*
1216 		 * Even if it fails we do not really care about that.
1217 		 * Just proceed as it is. If needed "overflow" path
1218 		 * will refill the cache we allocate from.
1219 		 */
1220 		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1221 
1222 	spin_lock(&free_vmap_area_lock);
1223 
1224 	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1225 		kmem_cache_free(vmap_area_cachep, pva);
1226 
1227 	/*
1228 	 * If an allocation fails, the "vend" address is
1229 	 * returned. Therefore trigger the overflow path.
1230 	 */
1231 	addr = __alloc_vmap_area(size, align, vstart, vend);
1232 	spin_unlock(&free_vmap_area_lock);
1233 
1234 	if (unlikely(addr == vend))
1235 		goto overflow;
1236 
1237 	va->va_start = addr;
1238 	va->va_end = addr + size;
1239 	va->vm = NULL;
1240 
1241 
1242 	spin_lock(&vmap_area_lock);
1243 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1244 	spin_unlock(&vmap_area_lock);
1245 
1246 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1247 	BUG_ON(va->va_start < vstart);
1248 	BUG_ON(va->va_end > vend);
1249 
1250 	ret = kasan_populate_vmalloc(addr, size);
1251 	if (ret) {
1252 		free_vmap_area(va);
1253 		return ERR_PTR(ret);
1254 	}
1255 
1256 	return va;
1257 
1258 overflow:
1259 	if (!purged) {
1260 		purge_vmap_area_lazy();
1261 		purged = 1;
1262 		goto retry;
1263 	}
1264 
1265 	if (gfpflags_allow_blocking(gfp_mask)) {
1266 		unsigned long freed = 0;
1267 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1268 		if (freed > 0) {
1269 			purged = 0;
1270 			goto retry;
1271 		}
1272 	}
1273 
1274 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1275 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1276 			size);
1277 
1278 	kmem_cache_free(vmap_area_cachep, va);
1279 	return ERR_PTR(-EBUSY);
1280 }
1281 
1282 int register_vmap_purge_notifier(struct notifier_block *nb)
1283 {
1284 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1285 }
1286 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1287 
1288 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1289 {
1290 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1291 }
1292 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1293 
1294 /*
1295  * lazy_max_pages is the maximum amount of virtual address space we gather up
1296  * before attempting to purge with a TLB flush.
1297  *
1298  * There is a tradeoff here: a larger number will cover more kernel page tables
1299  * and take slightly longer to purge, but it will linearly reduce the number of
1300  * global TLB flushes that must be performed. It would seem natural to scale
1301  * this number up linearly with the number of CPUs (because vmapping activity
1302  * could also scale linearly with the number of CPUs), however it is likely
1303  * that in practice, workloads might be constrained in other ways that mean
1304  * vmap activity will not scale linearly with CPUs. Also, I want to be
1305  * conservative and not introduce a big latency on huge systems, so go with
1306  * a less aggressive log scale. It will still be an improvement over the old
1307  * code, and it will be simple to change the scale factor if we find that it
1308  * becomes a problem on bigger systems.
1309  */
1310 static unsigned long lazy_max_pages(void)
1311 {
1312 	unsigned int log;
1313 
1314 	log = fls(num_online_cpus());
1315 
1316 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1317 }
1318 
1319 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1320 
1321 /*
1322  * Serialize vmap purging.  There is no actual criticial section protected
1323  * by this look, but we want to avoid concurrent calls for performance
1324  * reasons and to make the pcpu_get_vm_areas more deterministic.
1325  */
1326 static DEFINE_MUTEX(vmap_purge_lock);
1327 
1328 /* for per-CPU blocks */
1329 static void purge_fragmented_blocks_allcpus(void);
1330 
1331 /*
1332  * called before a call to iounmap() if the caller wants vm_area_struct's
1333  * immediately freed.
1334  */
1335 void set_iounmap_nonlazy(void)
1336 {
1337 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1338 }
1339 
1340 /*
1341  * Purges all lazily-freed vmap areas.
1342  */
1343 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1344 {
1345 	unsigned long resched_threshold;
1346 	struct llist_node *valist;
1347 	struct vmap_area *va;
1348 	struct vmap_area *n_va;
1349 
1350 	lockdep_assert_held(&vmap_purge_lock);
1351 
1352 	valist = llist_del_all(&vmap_purge_list);
1353 	if (unlikely(valist == NULL))
1354 		return false;
1355 
1356 	/*
1357 	 * TODO: to calculate a flush range without looping.
1358 	 * The list can be up to lazy_max_pages() elements.
1359 	 */
1360 	llist_for_each_entry(va, valist, purge_list) {
1361 		if (va->va_start < start)
1362 			start = va->va_start;
1363 		if (va->va_end > end)
1364 			end = va->va_end;
1365 	}
1366 
1367 	flush_tlb_kernel_range(start, end);
1368 	resched_threshold = lazy_max_pages() << 1;
1369 
1370 	spin_lock(&free_vmap_area_lock);
1371 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1372 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1373 		unsigned long orig_start = va->va_start;
1374 		unsigned long orig_end = va->va_end;
1375 
1376 		/*
1377 		 * Finally insert or merge lazily-freed area. It is
1378 		 * detached and there is no need to "unlink" it from
1379 		 * anything.
1380 		 */
1381 		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1382 					    &free_vmap_area_list);
1383 
1384 		if (is_vmalloc_or_module_addr((void *)orig_start))
1385 			kasan_release_vmalloc(orig_start, orig_end,
1386 					      va->va_start, va->va_end);
1387 
1388 		atomic_long_sub(nr, &vmap_lazy_nr);
1389 
1390 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1391 			cond_resched_lock(&free_vmap_area_lock);
1392 	}
1393 	spin_unlock(&free_vmap_area_lock);
1394 	return true;
1395 }
1396 
1397 /*
1398  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1399  * is already purging.
1400  */
1401 static void try_purge_vmap_area_lazy(void)
1402 {
1403 	if (mutex_trylock(&vmap_purge_lock)) {
1404 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1405 		mutex_unlock(&vmap_purge_lock);
1406 	}
1407 }
1408 
1409 /*
1410  * Kick off a purge of the outstanding lazy areas.
1411  */
1412 static void purge_vmap_area_lazy(void)
1413 {
1414 	mutex_lock(&vmap_purge_lock);
1415 	purge_fragmented_blocks_allcpus();
1416 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1417 	mutex_unlock(&vmap_purge_lock);
1418 }
1419 
1420 /*
1421  * Free a vmap area, caller ensuring that the area has been unmapped
1422  * and flush_cache_vunmap had been called for the correct range
1423  * previously.
1424  */
1425 static void free_vmap_area_noflush(struct vmap_area *va)
1426 {
1427 	unsigned long nr_lazy;
1428 
1429 	spin_lock(&vmap_area_lock);
1430 	unlink_va(va, &vmap_area_root);
1431 	spin_unlock(&vmap_area_lock);
1432 
1433 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1434 				PAGE_SHIFT, &vmap_lazy_nr);
1435 
1436 	/* After this point, we may free va at any time */
1437 	llist_add(&va->purge_list, &vmap_purge_list);
1438 
1439 	if (unlikely(nr_lazy > lazy_max_pages()))
1440 		try_purge_vmap_area_lazy();
1441 }
1442 
1443 /*
1444  * Free and unmap a vmap area
1445  */
1446 static void free_unmap_vmap_area(struct vmap_area *va)
1447 {
1448 	flush_cache_vunmap(va->va_start, va->va_end);
1449 	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1450 	if (debug_pagealloc_enabled_static())
1451 		flush_tlb_kernel_range(va->va_start, va->va_end);
1452 
1453 	free_vmap_area_noflush(va);
1454 }
1455 
1456 static struct vmap_area *find_vmap_area(unsigned long addr)
1457 {
1458 	struct vmap_area *va;
1459 
1460 	spin_lock(&vmap_area_lock);
1461 	va = __find_vmap_area(addr);
1462 	spin_unlock(&vmap_area_lock);
1463 
1464 	return va;
1465 }
1466 
1467 /*** Per cpu kva allocator ***/
1468 
1469 /*
1470  * vmap space is limited especially on 32 bit architectures. Ensure there is
1471  * room for at least 16 percpu vmap blocks per CPU.
1472  */
1473 /*
1474  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1475  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1476  * instead (we just need a rough idea)
1477  */
1478 #if BITS_PER_LONG == 32
1479 #define VMALLOC_SPACE		(128UL*1024*1024)
1480 #else
1481 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1482 #endif
1483 
1484 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1485 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1486 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1487 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1488 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1489 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1490 #define VMAP_BBMAP_BITS		\
1491 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1492 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1493 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1494 
1495 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1496 
1497 struct vmap_block_queue {
1498 	spinlock_t lock;
1499 	struct list_head free;
1500 };
1501 
1502 struct vmap_block {
1503 	spinlock_t lock;
1504 	struct vmap_area *va;
1505 	unsigned long free, dirty;
1506 	unsigned long dirty_min, dirty_max; /*< dirty range */
1507 	struct list_head free_list;
1508 	struct rcu_head rcu_head;
1509 	struct list_head purge;
1510 };
1511 
1512 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1513 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1514 
1515 /*
1516  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1517  * in the free path. Could get rid of this if we change the API to return a
1518  * "cookie" from alloc, to be passed to free. But no big deal yet.
1519  */
1520 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1521 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1522 
1523 /*
1524  * We should probably have a fallback mechanism to allocate virtual memory
1525  * out of partially filled vmap blocks. However vmap block sizing should be
1526  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1527  * big problem.
1528  */
1529 
1530 static unsigned long addr_to_vb_idx(unsigned long addr)
1531 {
1532 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1533 	addr /= VMAP_BLOCK_SIZE;
1534 	return addr;
1535 }
1536 
1537 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1538 {
1539 	unsigned long addr;
1540 
1541 	addr = va_start + (pages_off << PAGE_SHIFT);
1542 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1543 	return (void *)addr;
1544 }
1545 
1546 /**
1547  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1548  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1549  * @order:    how many 2^order pages should be occupied in newly allocated block
1550  * @gfp_mask: flags for the page level allocator
1551  *
1552  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1553  */
1554 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1555 {
1556 	struct vmap_block_queue *vbq;
1557 	struct vmap_block *vb;
1558 	struct vmap_area *va;
1559 	unsigned long vb_idx;
1560 	int node, err;
1561 	void *vaddr;
1562 
1563 	node = numa_node_id();
1564 
1565 	vb = kmalloc_node(sizeof(struct vmap_block),
1566 			gfp_mask & GFP_RECLAIM_MASK, node);
1567 	if (unlikely(!vb))
1568 		return ERR_PTR(-ENOMEM);
1569 
1570 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1571 					VMALLOC_START, VMALLOC_END,
1572 					node, gfp_mask);
1573 	if (IS_ERR(va)) {
1574 		kfree(vb);
1575 		return ERR_CAST(va);
1576 	}
1577 
1578 	err = radix_tree_preload(gfp_mask);
1579 	if (unlikely(err)) {
1580 		kfree(vb);
1581 		free_vmap_area(va);
1582 		return ERR_PTR(err);
1583 	}
1584 
1585 	vaddr = vmap_block_vaddr(va->va_start, 0);
1586 	spin_lock_init(&vb->lock);
1587 	vb->va = va;
1588 	/* At least something should be left free */
1589 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1590 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1591 	vb->dirty = 0;
1592 	vb->dirty_min = VMAP_BBMAP_BITS;
1593 	vb->dirty_max = 0;
1594 	INIT_LIST_HEAD(&vb->free_list);
1595 
1596 	vb_idx = addr_to_vb_idx(va->va_start);
1597 	spin_lock(&vmap_block_tree_lock);
1598 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1599 	spin_unlock(&vmap_block_tree_lock);
1600 	BUG_ON(err);
1601 	radix_tree_preload_end();
1602 
1603 	vbq = &get_cpu_var(vmap_block_queue);
1604 	spin_lock(&vbq->lock);
1605 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1606 	spin_unlock(&vbq->lock);
1607 	put_cpu_var(vmap_block_queue);
1608 
1609 	return vaddr;
1610 }
1611 
1612 static void free_vmap_block(struct vmap_block *vb)
1613 {
1614 	struct vmap_block *tmp;
1615 	unsigned long vb_idx;
1616 
1617 	vb_idx = addr_to_vb_idx(vb->va->va_start);
1618 	spin_lock(&vmap_block_tree_lock);
1619 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1620 	spin_unlock(&vmap_block_tree_lock);
1621 	BUG_ON(tmp != vb);
1622 
1623 	free_vmap_area_noflush(vb->va);
1624 	kfree_rcu(vb, rcu_head);
1625 }
1626 
1627 static void purge_fragmented_blocks(int cpu)
1628 {
1629 	LIST_HEAD(purge);
1630 	struct vmap_block *vb;
1631 	struct vmap_block *n_vb;
1632 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1633 
1634 	rcu_read_lock();
1635 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1636 
1637 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1638 			continue;
1639 
1640 		spin_lock(&vb->lock);
1641 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1642 			vb->free = 0; /* prevent further allocs after releasing lock */
1643 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1644 			vb->dirty_min = 0;
1645 			vb->dirty_max = VMAP_BBMAP_BITS;
1646 			spin_lock(&vbq->lock);
1647 			list_del_rcu(&vb->free_list);
1648 			spin_unlock(&vbq->lock);
1649 			spin_unlock(&vb->lock);
1650 			list_add_tail(&vb->purge, &purge);
1651 		} else
1652 			spin_unlock(&vb->lock);
1653 	}
1654 	rcu_read_unlock();
1655 
1656 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1657 		list_del(&vb->purge);
1658 		free_vmap_block(vb);
1659 	}
1660 }
1661 
1662 static void purge_fragmented_blocks_allcpus(void)
1663 {
1664 	int cpu;
1665 
1666 	for_each_possible_cpu(cpu)
1667 		purge_fragmented_blocks(cpu);
1668 }
1669 
1670 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1671 {
1672 	struct vmap_block_queue *vbq;
1673 	struct vmap_block *vb;
1674 	void *vaddr = NULL;
1675 	unsigned int order;
1676 
1677 	BUG_ON(offset_in_page(size));
1678 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1679 	if (WARN_ON(size == 0)) {
1680 		/*
1681 		 * Allocating 0 bytes isn't what caller wants since
1682 		 * get_order(0) returns funny result. Just warn and terminate
1683 		 * early.
1684 		 */
1685 		return NULL;
1686 	}
1687 	order = get_order(size);
1688 
1689 	rcu_read_lock();
1690 	vbq = &get_cpu_var(vmap_block_queue);
1691 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1692 		unsigned long pages_off;
1693 
1694 		spin_lock(&vb->lock);
1695 		if (vb->free < (1UL << order)) {
1696 			spin_unlock(&vb->lock);
1697 			continue;
1698 		}
1699 
1700 		pages_off = VMAP_BBMAP_BITS - vb->free;
1701 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1702 		vb->free -= 1UL << order;
1703 		if (vb->free == 0) {
1704 			spin_lock(&vbq->lock);
1705 			list_del_rcu(&vb->free_list);
1706 			spin_unlock(&vbq->lock);
1707 		}
1708 
1709 		spin_unlock(&vb->lock);
1710 		break;
1711 	}
1712 
1713 	put_cpu_var(vmap_block_queue);
1714 	rcu_read_unlock();
1715 
1716 	/* Allocate new block if nothing was found */
1717 	if (!vaddr)
1718 		vaddr = new_vmap_block(order, gfp_mask);
1719 
1720 	return vaddr;
1721 }
1722 
1723 static void vb_free(unsigned long addr, unsigned long size)
1724 {
1725 	unsigned long offset;
1726 	unsigned long vb_idx;
1727 	unsigned int order;
1728 	struct vmap_block *vb;
1729 
1730 	BUG_ON(offset_in_page(size));
1731 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1732 
1733 	flush_cache_vunmap(addr, addr + size);
1734 
1735 	order = get_order(size);
1736 
1737 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1738 
1739 	vb_idx = addr_to_vb_idx(addr);
1740 	rcu_read_lock();
1741 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1742 	rcu_read_unlock();
1743 	BUG_ON(!vb);
1744 
1745 	unmap_kernel_range_noflush(addr, size);
1746 
1747 	if (debug_pagealloc_enabled_static())
1748 		flush_tlb_kernel_range(addr, addr + size);
1749 
1750 	spin_lock(&vb->lock);
1751 
1752 	/* Expand dirty range */
1753 	vb->dirty_min = min(vb->dirty_min, offset);
1754 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1755 
1756 	vb->dirty += 1UL << order;
1757 	if (vb->dirty == VMAP_BBMAP_BITS) {
1758 		BUG_ON(vb->free);
1759 		spin_unlock(&vb->lock);
1760 		free_vmap_block(vb);
1761 	} else
1762 		spin_unlock(&vb->lock);
1763 }
1764 
1765 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1766 {
1767 	int cpu;
1768 
1769 	if (unlikely(!vmap_initialized))
1770 		return;
1771 
1772 	might_sleep();
1773 
1774 	for_each_possible_cpu(cpu) {
1775 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1776 		struct vmap_block *vb;
1777 
1778 		rcu_read_lock();
1779 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1780 			spin_lock(&vb->lock);
1781 			if (vb->dirty) {
1782 				unsigned long va_start = vb->va->va_start;
1783 				unsigned long s, e;
1784 
1785 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1786 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1787 
1788 				start = min(s, start);
1789 				end   = max(e, end);
1790 
1791 				flush = 1;
1792 			}
1793 			spin_unlock(&vb->lock);
1794 		}
1795 		rcu_read_unlock();
1796 	}
1797 
1798 	mutex_lock(&vmap_purge_lock);
1799 	purge_fragmented_blocks_allcpus();
1800 	if (!__purge_vmap_area_lazy(start, end) && flush)
1801 		flush_tlb_kernel_range(start, end);
1802 	mutex_unlock(&vmap_purge_lock);
1803 }
1804 
1805 /**
1806  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1807  *
1808  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1809  * to amortize TLB flushing overheads. What this means is that any page you
1810  * have now, may, in a former life, have been mapped into kernel virtual
1811  * address by the vmap layer and so there might be some CPUs with TLB entries
1812  * still referencing that page (additional to the regular 1:1 kernel mapping).
1813  *
1814  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1815  * be sure that none of the pages we have control over will have any aliases
1816  * from the vmap layer.
1817  */
1818 void vm_unmap_aliases(void)
1819 {
1820 	unsigned long start = ULONG_MAX, end = 0;
1821 	int flush = 0;
1822 
1823 	_vm_unmap_aliases(start, end, flush);
1824 }
1825 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1826 
1827 /**
1828  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1829  * @mem: the pointer returned by vm_map_ram
1830  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1831  */
1832 void vm_unmap_ram(const void *mem, unsigned int count)
1833 {
1834 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1835 	unsigned long addr = (unsigned long)mem;
1836 	struct vmap_area *va;
1837 
1838 	might_sleep();
1839 	BUG_ON(!addr);
1840 	BUG_ON(addr < VMALLOC_START);
1841 	BUG_ON(addr > VMALLOC_END);
1842 	BUG_ON(!PAGE_ALIGNED(addr));
1843 
1844 	kasan_poison_vmalloc(mem, size);
1845 
1846 	if (likely(count <= VMAP_MAX_ALLOC)) {
1847 		debug_check_no_locks_freed(mem, size);
1848 		vb_free(addr, size);
1849 		return;
1850 	}
1851 
1852 	va = find_vmap_area(addr);
1853 	BUG_ON(!va);
1854 	debug_check_no_locks_freed((void *)va->va_start,
1855 				    (va->va_end - va->va_start));
1856 	free_unmap_vmap_area(va);
1857 }
1858 EXPORT_SYMBOL(vm_unmap_ram);
1859 
1860 /**
1861  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1862  * @pages: an array of pointers to the pages to be mapped
1863  * @count: number of pages
1864  * @node: prefer to allocate data structures on this node
1865  *
1866  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1867  * faster than vmap so it's good.  But if you mix long-life and short-life
1868  * objects with vm_map_ram(), it could consume lots of address space through
1869  * fragmentation (especially on a 32bit machine).  You could see failures in
1870  * the end.  Please use this function for short-lived objects.
1871  *
1872  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1873  */
1874 void *vm_map_ram(struct page **pages, unsigned int count, int node)
1875 {
1876 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1877 	unsigned long addr;
1878 	void *mem;
1879 
1880 	if (likely(count <= VMAP_MAX_ALLOC)) {
1881 		mem = vb_alloc(size, GFP_KERNEL);
1882 		if (IS_ERR(mem))
1883 			return NULL;
1884 		addr = (unsigned long)mem;
1885 	} else {
1886 		struct vmap_area *va;
1887 		va = alloc_vmap_area(size, PAGE_SIZE,
1888 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1889 		if (IS_ERR(va))
1890 			return NULL;
1891 
1892 		addr = va->va_start;
1893 		mem = (void *)addr;
1894 	}
1895 
1896 	kasan_unpoison_vmalloc(mem, size);
1897 
1898 	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1899 		vm_unmap_ram(mem, count);
1900 		return NULL;
1901 	}
1902 	return mem;
1903 }
1904 EXPORT_SYMBOL(vm_map_ram);
1905 
1906 static struct vm_struct *vmlist __initdata;
1907 
1908 /**
1909  * vm_area_add_early - add vmap area early during boot
1910  * @vm: vm_struct to add
1911  *
1912  * This function is used to add fixed kernel vm area to vmlist before
1913  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1914  * should contain proper values and the other fields should be zero.
1915  *
1916  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1917  */
1918 void __init vm_area_add_early(struct vm_struct *vm)
1919 {
1920 	struct vm_struct *tmp, **p;
1921 
1922 	BUG_ON(vmap_initialized);
1923 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1924 		if (tmp->addr >= vm->addr) {
1925 			BUG_ON(tmp->addr < vm->addr + vm->size);
1926 			break;
1927 		} else
1928 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1929 	}
1930 	vm->next = *p;
1931 	*p = vm;
1932 }
1933 
1934 /**
1935  * vm_area_register_early - register vmap area early during boot
1936  * @vm: vm_struct to register
1937  * @align: requested alignment
1938  *
1939  * This function is used to register kernel vm area before
1940  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1941  * proper values on entry and other fields should be zero.  On return,
1942  * vm->addr contains the allocated address.
1943  *
1944  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1945  */
1946 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1947 {
1948 	static size_t vm_init_off __initdata;
1949 	unsigned long addr;
1950 
1951 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1952 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1953 
1954 	vm->addr = (void *)addr;
1955 
1956 	vm_area_add_early(vm);
1957 }
1958 
1959 static void vmap_init_free_space(void)
1960 {
1961 	unsigned long vmap_start = 1;
1962 	const unsigned long vmap_end = ULONG_MAX;
1963 	struct vmap_area *busy, *free;
1964 
1965 	/*
1966 	 *     B     F     B     B     B     F
1967 	 * -|-----|.....|-----|-----|-----|.....|-
1968 	 *  |           The KVA space           |
1969 	 *  |<--------------------------------->|
1970 	 */
1971 	list_for_each_entry(busy, &vmap_area_list, list) {
1972 		if (busy->va_start - vmap_start > 0) {
1973 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1974 			if (!WARN_ON_ONCE(!free)) {
1975 				free->va_start = vmap_start;
1976 				free->va_end = busy->va_start;
1977 
1978 				insert_vmap_area_augment(free, NULL,
1979 					&free_vmap_area_root,
1980 						&free_vmap_area_list);
1981 			}
1982 		}
1983 
1984 		vmap_start = busy->va_end;
1985 	}
1986 
1987 	if (vmap_end - vmap_start > 0) {
1988 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1989 		if (!WARN_ON_ONCE(!free)) {
1990 			free->va_start = vmap_start;
1991 			free->va_end = vmap_end;
1992 
1993 			insert_vmap_area_augment(free, NULL,
1994 				&free_vmap_area_root,
1995 					&free_vmap_area_list);
1996 		}
1997 	}
1998 }
1999 
2000 void __init vmalloc_init(void)
2001 {
2002 	struct vmap_area *va;
2003 	struct vm_struct *tmp;
2004 	int i;
2005 
2006 	/*
2007 	 * Create the cache for vmap_area objects.
2008 	 */
2009 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2010 
2011 	for_each_possible_cpu(i) {
2012 		struct vmap_block_queue *vbq;
2013 		struct vfree_deferred *p;
2014 
2015 		vbq = &per_cpu(vmap_block_queue, i);
2016 		spin_lock_init(&vbq->lock);
2017 		INIT_LIST_HEAD(&vbq->free);
2018 		p = &per_cpu(vfree_deferred, i);
2019 		init_llist_head(&p->list);
2020 		INIT_WORK(&p->wq, free_work);
2021 	}
2022 
2023 	/* Import existing vmlist entries. */
2024 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2025 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2026 		if (WARN_ON_ONCE(!va))
2027 			continue;
2028 
2029 		va->va_start = (unsigned long)tmp->addr;
2030 		va->va_end = va->va_start + tmp->size;
2031 		va->vm = tmp;
2032 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2033 	}
2034 
2035 	/*
2036 	 * Now we can initialize a free vmap space.
2037 	 */
2038 	vmap_init_free_space();
2039 	vmap_initialized = true;
2040 }
2041 
2042 /**
2043  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2044  * @addr: start of the VM area to unmap
2045  * @size: size of the VM area to unmap
2046  *
2047  * Similar to unmap_kernel_range_noflush() but flushes vcache before
2048  * the unmapping and tlb after.
2049  */
2050 void unmap_kernel_range(unsigned long addr, unsigned long size)
2051 {
2052 	unsigned long end = addr + size;
2053 
2054 	flush_cache_vunmap(addr, end);
2055 	unmap_kernel_range_noflush(addr, size);
2056 	flush_tlb_kernel_range(addr, end);
2057 }
2058 
2059 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2060 	struct vmap_area *va, unsigned long flags, const void *caller)
2061 {
2062 	vm->flags = flags;
2063 	vm->addr = (void *)va->va_start;
2064 	vm->size = va->va_end - va->va_start;
2065 	vm->caller = caller;
2066 	va->vm = vm;
2067 }
2068 
2069 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2070 			      unsigned long flags, const void *caller)
2071 {
2072 	spin_lock(&vmap_area_lock);
2073 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2074 	spin_unlock(&vmap_area_lock);
2075 }
2076 
2077 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2078 {
2079 	/*
2080 	 * Before removing VM_UNINITIALIZED,
2081 	 * we should make sure that vm has proper values.
2082 	 * Pair with smp_rmb() in show_numa_info().
2083 	 */
2084 	smp_wmb();
2085 	vm->flags &= ~VM_UNINITIALIZED;
2086 }
2087 
2088 static struct vm_struct *__get_vm_area_node(unsigned long size,
2089 		unsigned long align, unsigned long flags, unsigned long start,
2090 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2091 {
2092 	struct vmap_area *va;
2093 	struct vm_struct *area;
2094 	unsigned long requested_size = size;
2095 
2096 	BUG_ON(in_interrupt());
2097 	size = PAGE_ALIGN(size);
2098 	if (unlikely(!size))
2099 		return NULL;
2100 
2101 	if (flags & VM_IOREMAP)
2102 		align = 1ul << clamp_t(int, get_count_order_long(size),
2103 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2104 
2105 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2106 	if (unlikely(!area))
2107 		return NULL;
2108 
2109 	if (!(flags & VM_NO_GUARD))
2110 		size += PAGE_SIZE;
2111 
2112 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2113 	if (IS_ERR(va)) {
2114 		kfree(area);
2115 		return NULL;
2116 	}
2117 
2118 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2119 
2120 	setup_vmalloc_vm(area, va, flags, caller);
2121 
2122 	return area;
2123 }
2124 
2125 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2126 				       unsigned long start, unsigned long end,
2127 				       const void *caller)
2128 {
2129 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2130 				  GFP_KERNEL, caller);
2131 }
2132 
2133 /**
2134  * get_vm_area - reserve a contiguous kernel virtual area
2135  * @size:	 size of the area
2136  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2137  *
2138  * Search an area of @size in the kernel virtual mapping area,
2139  * and reserved it for out purposes.  Returns the area descriptor
2140  * on success or %NULL on failure.
2141  *
2142  * Return: the area descriptor on success or %NULL on failure.
2143  */
2144 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2145 {
2146 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2147 				  NUMA_NO_NODE, GFP_KERNEL,
2148 				  __builtin_return_address(0));
2149 }
2150 
2151 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2152 				const void *caller)
2153 {
2154 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2155 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2156 }
2157 
2158 /**
2159  * find_vm_area - find a continuous kernel virtual area
2160  * @addr:	  base address
2161  *
2162  * Search for the kernel VM area starting at @addr, and return it.
2163  * It is up to the caller to do all required locking to keep the returned
2164  * pointer valid.
2165  *
2166  * Return: pointer to the found area or %NULL on faulure
2167  */
2168 struct vm_struct *find_vm_area(const void *addr)
2169 {
2170 	struct vmap_area *va;
2171 
2172 	va = find_vmap_area((unsigned long)addr);
2173 	if (!va)
2174 		return NULL;
2175 
2176 	return va->vm;
2177 }
2178 
2179 /**
2180  * remove_vm_area - find and remove a continuous kernel virtual area
2181  * @addr:	    base address
2182  *
2183  * Search for the kernel VM area starting at @addr, and remove it.
2184  * This function returns the found VM area, but using it is NOT safe
2185  * on SMP machines, except for its size or flags.
2186  *
2187  * Return: pointer to the found area or %NULL on faulure
2188  */
2189 struct vm_struct *remove_vm_area(const void *addr)
2190 {
2191 	struct vmap_area *va;
2192 
2193 	might_sleep();
2194 
2195 	spin_lock(&vmap_area_lock);
2196 	va = __find_vmap_area((unsigned long)addr);
2197 	if (va && va->vm) {
2198 		struct vm_struct *vm = va->vm;
2199 
2200 		va->vm = NULL;
2201 		spin_unlock(&vmap_area_lock);
2202 
2203 		kasan_free_shadow(vm);
2204 		free_unmap_vmap_area(va);
2205 
2206 		return vm;
2207 	}
2208 
2209 	spin_unlock(&vmap_area_lock);
2210 	return NULL;
2211 }
2212 
2213 static inline void set_area_direct_map(const struct vm_struct *area,
2214 				       int (*set_direct_map)(struct page *page))
2215 {
2216 	int i;
2217 
2218 	for (i = 0; i < area->nr_pages; i++)
2219 		if (page_address(area->pages[i]))
2220 			set_direct_map(area->pages[i]);
2221 }
2222 
2223 /* Handle removing and resetting vm mappings related to the vm_struct. */
2224 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2225 {
2226 	unsigned long start = ULONG_MAX, end = 0;
2227 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2228 	int flush_dmap = 0;
2229 	int i;
2230 
2231 	remove_vm_area(area->addr);
2232 
2233 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2234 	if (!flush_reset)
2235 		return;
2236 
2237 	/*
2238 	 * If not deallocating pages, just do the flush of the VM area and
2239 	 * return.
2240 	 */
2241 	if (!deallocate_pages) {
2242 		vm_unmap_aliases();
2243 		return;
2244 	}
2245 
2246 	/*
2247 	 * If execution gets here, flush the vm mapping and reset the direct
2248 	 * map. Find the start and end range of the direct mappings to make sure
2249 	 * the vm_unmap_aliases() flush includes the direct map.
2250 	 */
2251 	for (i = 0; i < area->nr_pages; i++) {
2252 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2253 		if (addr) {
2254 			start = min(addr, start);
2255 			end = max(addr + PAGE_SIZE, end);
2256 			flush_dmap = 1;
2257 		}
2258 	}
2259 
2260 	/*
2261 	 * Set direct map to something invalid so that it won't be cached if
2262 	 * there are any accesses after the TLB flush, then flush the TLB and
2263 	 * reset the direct map permissions to the default.
2264 	 */
2265 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2266 	_vm_unmap_aliases(start, end, flush_dmap);
2267 	set_area_direct_map(area, set_direct_map_default_noflush);
2268 }
2269 
2270 static void __vunmap(const void *addr, int deallocate_pages)
2271 {
2272 	struct vm_struct *area;
2273 
2274 	if (!addr)
2275 		return;
2276 
2277 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2278 			addr))
2279 		return;
2280 
2281 	area = find_vm_area(addr);
2282 	if (unlikely(!area)) {
2283 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2284 				addr);
2285 		return;
2286 	}
2287 
2288 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2289 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2290 
2291 	kasan_poison_vmalloc(area->addr, area->size);
2292 
2293 	vm_remove_mappings(area, deallocate_pages);
2294 
2295 	if (deallocate_pages) {
2296 		int i;
2297 
2298 		for (i = 0; i < area->nr_pages; i++) {
2299 			struct page *page = area->pages[i];
2300 
2301 			BUG_ON(!page);
2302 			__free_pages(page, 0);
2303 		}
2304 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2305 
2306 		kvfree(area->pages);
2307 	}
2308 
2309 	kfree(area);
2310 	return;
2311 }
2312 
2313 static inline void __vfree_deferred(const void *addr)
2314 {
2315 	/*
2316 	 * Use raw_cpu_ptr() because this can be called from preemptible
2317 	 * context. Preemption is absolutely fine here, because the llist_add()
2318 	 * implementation is lockless, so it works even if we are adding to
2319 	 * another cpu's list. schedule_work() should be fine with this too.
2320 	 */
2321 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2322 
2323 	if (llist_add((struct llist_node *)addr, &p->list))
2324 		schedule_work(&p->wq);
2325 }
2326 
2327 /**
2328  * vfree_atomic - release memory allocated by vmalloc()
2329  * @addr:	  memory base address
2330  *
2331  * This one is just like vfree() but can be called in any atomic context
2332  * except NMIs.
2333  */
2334 void vfree_atomic(const void *addr)
2335 {
2336 	BUG_ON(in_nmi());
2337 
2338 	kmemleak_free(addr);
2339 
2340 	if (!addr)
2341 		return;
2342 	__vfree_deferred(addr);
2343 }
2344 
2345 static void __vfree(const void *addr)
2346 {
2347 	if (unlikely(in_interrupt()))
2348 		__vfree_deferred(addr);
2349 	else
2350 		__vunmap(addr, 1);
2351 }
2352 
2353 /**
2354  * vfree - release memory allocated by vmalloc()
2355  * @addr:  memory base address
2356  *
2357  * Free the virtually continuous memory area starting at @addr, as
2358  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2359  * NULL, no operation is performed.
2360  *
2361  * Must not be called in NMI context (strictly speaking, only if we don't
2362  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2363  * conventions for vfree() arch-depenedent would be a really bad idea)
2364  *
2365  * May sleep if called *not* from interrupt context.
2366  *
2367  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2368  */
2369 void vfree(const void *addr)
2370 {
2371 	BUG_ON(in_nmi());
2372 
2373 	kmemleak_free(addr);
2374 
2375 	might_sleep_if(!in_interrupt());
2376 
2377 	if (!addr)
2378 		return;
2379 
2380 	__vfree(addr);
2381 }
2382 EXPORT_SYMBOL(vfree);
2383 
2384 /**
2385  * vunmap - release virtual mapping obtained by vmap()
2386  * @addr:   memory base address
2387  *
2388  * Free the virtually contiguous memory area starting at @addr,
2389  * which was created from the page array passed to vmap().
2390  *
2391  * Must not be called in interrupt context.
2392  */
2393 void vunmap(const void *addr)
2394 {
2395 	BUG_ON(in_interrupt());
2396 	might_sleep();
2397 	if (addr)
2398 		__vunmap(addr, 0);
2399 }
2400 EXPORT_SYMBOL(vunmap);
2401 
2402 /**
2403  * vmap - map an array of pages into virtually contiguous space
2404  * @pages: array of page pointers
2405  * @count: number of pages to map
2406  * @flags: vm_area->flags
2407  * @prot: page protection for the mapping
2408  *
2409  * Maps @count pages from @pages into contiguous kernel virtual
2410  * space.
2411  *
2412  * Return: the address of the area or %NULL on failure
2413  */
2414 void *vmap(struct page **pages, unsigned int count,
2415 	   unsigned long flags, pgprot_t prot)
2416 {
2417 	struct vm_struct *area;
2418 	unsigned long size;		/* In bytes */
2419 
2420 	might_sleep();
2421 
2422 	if (count > totalram_pages())
2423 		return NULL;
2424 
2425 	size = (unsigned long)count << PAGE_SHIFT;
2426 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2427 	if (!area)
2428 		return NULL;
2429 
2430 	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2431 			pages) < 0) {
2432 		vunmap(area->addr);
2433 		return NULL;
2434 	}
2435 
2436 	return area->addr;
2437 }
2438 EXPORT_SYMBOL(vmap);
2439 
2440 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2441 				 pgprot_t prot, int node)
2442 {
2443 	struct page **pages;
2444 	unsigned int nr_pages, array_size, i;
2445 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2446 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2447 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2448 					0 :
2449 					__GFP_HIGHMEM;
2450 
2451 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2452 	array_size = (nr_pages * sizeof(struct page *));
2453 
2454 	/* Please note that the recursion is strictly bounded. */
2455 	if (array_size > PAGE_SIZE) {
2456 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2457 				node, area->caller);
2458 	} else {
2459 		pages = kmalloc_node(array_size, nested_gfp, node);
2460 	}
2461 
2462 	if (!pages) {
2463 		remove_vm_area(area->addr);
2464 		kfree(area);
2465 		return NULL;
2466 	}
2467 
2468 	area->pages = pages;
2469 	area->nr_pages = nr_pages;
2470 
2471 	for (i = 0; i < area->nr_pages; i++) {
2472 		struct page *page;
2473 
2474 		if (node == NUMA_NO_NODE)
2475 			page = alloc_page(alloc_mask|highmem_mask);
2476 		else
2477 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2478 
2479 		if (unlikely(!page)) {
2480 			/* Successfully allocated i pages, free them in __vunmap() */
2481 			area->nr_pages = i;
2482 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2483 			goto fail;
2484 		}
2485 		area->pages[i] = page;
2486 		if (gfpflags_allow_blocking(gfp_mask))
2487 			cond_resched();
2488 	}
2489 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2490 
2491 	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2492 			prot, pages) < 0)
2493 		goto fail;
2494 
2495 	return area->addr;
2496 
2497 fail:
2498 	warn_alloc(gfp_mask, NULL,
2499 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2500 			  (area->nr_pages*PAGE_SIZE), area->size);
2501 	__vfree(area->addr);
2502 	return NULL;
2503 }
2504 
2505 /**
2506  * __vmalloc_node_range - allocate virtually contiguous memory
2507  * @size:		  allocation size
2508  * @align:		  desired alignment
2509  * @start:		  vm area range start
2510  * @end:		  vm area range end
2511  * @gfp_mask:		  flags for the page level allocator
2512  * @prot:		  protection mask for the allocated pages
2513  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2514  * @node:		  node to use for allocation or NUMA_NO_NODE
2515  * @caller:		  caller's return address
2516  *
2517  * Allocate enough pages to cover @size from the page level
2518  * allocator with @gfp_mask flags.  Map them into contiguous
2519  * kernel virtual space, using a pagetable protection of @prot.
2520  *
2521  * Return: the address of the area or %NULL on failure
2522  */
2523 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2524 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2525 			pgprot_t prot, unsigned long vm_flags, int node,
2526 			const void *caller)
2527 {
2528 	struct vm_struct *area;
2529 	void *addr;
2530 	unsigned long real_size = size;
2531 
2532 	size = PAGE_ALIGN(size);
2533 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2534 		goto fail;
2535 
2536 	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2537 				vm_flags, start, end, node, gfp_mask, caller);
2538 	if (!area)
2539 		goto fail;
2540 
2541 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2542 	if (!addr)
2543 		return NULL;
2544 
2545 	/*
2546 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2547 	 * flag. It means that vm_struct is not fully initialized.
2548 	 * Now, it is fully initialized, so remove this flag here.
2549 	 */
2550 	clear_vm_uninitialized_flag(area);
2551 
2552 	kmemleak_vmalloc(area, size, gfp_mask);
2553 
2554 	return addr;
2555 
2556 fail:
2557 	warn_alloc(gfp_mask, NULL,
2558 			  "vmalloc: allocation failure: %lu bytes", real_size);
2559 	return NULL;
2560 }
2561 
2562 /**
2563  * __vmalloc_node - allocate virtually contiguous memory
2564  * @size:	    allocation size
2565  * @align:	    desired alignment
2566  * @gfp_mask:	    flags for the page level allocator
2567  * @node:	    node to use for allocation or NUMA_NO_NODE
2568  * @caller:	    caller's return address
2569  *
2570  * Allocate enough pages to cover @size from the page level allocator with
2571  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
2572  *
2573  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2574  * and __GFP_NOFAIL are not supported
2575  *
2576  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2577  * with mm people.
2578  *
2579  * Return: pointer to the allocated memory or %NULL on error
2580  */
2581 void *__vmalloc_node(unsigned long size, unsigned long align,
2582 			    gfp_t gfp_mask, int node, const void *caller)
2583 {
2584 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2585 				gfp_mask, PAGE_KERNEL, 0, node, caller);
2586 }
2587 /*
2588  * This is only for performance analysis of vmalloc and stress purpose.
2589  * It is required by vmalloc test module, therefore do not use it other
2590  * than that.
2591  */
2592 #ifdef CONFIG_TEST_VMALLOC_MODULE
2593 EXPORT_SYMBOL_GPL(__vmalloc_node);
2594 #endif
2595 
2596 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2597 {
2598 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2599 				__builtin_return_address(0));
2600 }
2601 EXPORT_SYMBOL(__vmalloc);
2602 
2603 /**
2604  * vmalloc - allocate virtually contiguous memory
2605  * @size:    allocation size
2606  *
2607  * Allocate enough pages to cover @size from the page level
2608  * allocator and map them into contiguous kernel virtual space.
2609  *
2610  * For tight control over page level allocator and protection flags
2611  * use __vmalloc() instead.
2612  *
2613  * Return: pointer to the allocated memory or %NULL on error
2614  */
2615 void *vmalloc(unsigned long size)
2616 {
2617 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2618 				__builtin_return_address(0));
2619 }
2620 EXPORT_SYMBOL(vmalloc);
2621 
2622 /**
2623  * vzalloc - allocate virtually contiguous memory with zero fill
2624  * @size:    allocation size
2625  *
2626  * Allocate enough pages to cover @size from the page level
2627  * allocator and map them into contiguous kernel virtual space.
2628  * The memory allocated is set to zero.
2629  *
2630  * For tight control over page level allocator and protection flags
2631  * use __vmalloc() instead.
2632  *
2633  * Return: pointer to the allocated memory or %NULL on error
2634  */
2635 void *vzalloc(unsigned long size)
2636 {
2637 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2638 				__builtin_return_address(0));
2639 }
2640 EXPORT_SYMBOL(vzalloc);
2641 
2642 /**
2643  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2644  * @size: allocation size
2645  *
2646  * The resulting memory area is zeroed so it can be mapped to userspace
2647  * without leaking data.
2648  *
2649  * Return: pointer to the allocated memory or %NULL on error
2650  */
2651 void *vmalloc_user(unsigned long size)
2652 {
2653 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2654 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2655 				    VM_USERMAP, NUMA_NO_NODE,
2656 				    __builtin_return_address(0));
2657 }
2658 EXPORT_SYMBOL(vmalloc_user);
2659 
2660 /**
2661  * vmalloc_node - allocate memory on a specific node
2662  * @size:	  allocation size
2663  * @node:	  numa node
2664  *
2665  * Allocate enough pages to cover @size from the page level
2666  * allocator and map them into contiguous kernel virtual space.
2667  *
2668  * For tight control over page level allocator and protection flags
2669  * use __vmalloc() instead.
2670  *
2671  * Return: pointer to the allocated memory or %NULL on error
2672  */
2673 void *vmalloc_node(unsigned long size, int node)
2674 {
2675 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
2676 			__builtin_return_address(0));
2677 }
2678 EXPORT_SYMBOL(vmalloc_node);
2679 
2680 /**
2681  * vzalloc_node - allocate memory on a specific node with zero fill
2682  * @size:	allocation size
2683  * @node:	numa node
2684  *
2685  * Allocate enough pages to cover @size from the page level
2686  * allocator and map them into contiguous kernel virtual space.
2687  * The memory allocated is set to zero.
2688  *
2689  * Return: pointer to the allocated memory or %NULL on error
2690  */
2691 void *vzalloc_node(unsigned long size, int node)
2692 {
2693 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2694 				__builtin_return_address(0));
2695 }
2696 EXPORT_SYMBOL(vzalloc_node);
2697 
2698 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2699 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2700 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2701 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2702 #else
2703 /*
2704  * 64b systems should always have either DMA or DMA32 zones. For others
2705  * GFP_DMA32 should do the right thing and use the normal zone.
2706  */
2707 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2708 #endif
2709 
2710 /**
2711  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2712  * @size:	allocation size
2713  *
2714  * Allocate enough 32bit PA addressable pages to cover @size from the
2715  * page level allocator and map them into contiguous kernel virtual space.
2716  *
2717  * Return: pointer to the allocated memory or %NULL on error
2718  */
2719 void *vmalloc_32(unsigned long size)
2720 {
2721 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2722 			__builtin_return_address(0));
2723 }
2724 EXPORT_SYMBOL(vmalloc_32);
2725 
2726 /**
2727  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2728  * @size:	     allocation size
2729  *
2730  * The resulting memory area is 32bit addressable and zeroed so it can be
2731  * mapped to userspace without leaking data.
2732  *
2733  * Return: pointer to the allocated memory or %NULL on error
2734  */
2735 void *vmalloc_32_user(unsigned long size)
2736 {
2737 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2738 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2739 				    VM_USERMAP, NUMA_NO_NODE,
2740 				    __builtin_return_address(0));
2741 }
2742 EXPORT_SYMBOL(vmalloc_32_user);
2743 
2744 /*
2745  * small helper routine , copy contents to buf from addr.
2746  * If the page is not present, fill zero.
2747  */
2748 
2749 static int aligned_vread(char *buf, char *addr, unsigned long count)
2750 {
2751 	struct page *p;
2752 	int copied = 0;
2753 
2754 	while (count) {
2755 		unsigned long offset, length;
2756 
2757 		offset = offset_in_page(addr);
2758 		length = PAGE_SIZE - offset;
2759 		if (length > count)
2760 			length = count;
2761 		p = vmalloc_to_page(addr);
2762 		/*
2763 		 * To do safe access to this _mapped_ area, we need
2764 		 * lock. But adding lock here means that we need to add
2765 		 * overhead of vmalloc()/vfree() calles for this _debug_
2766 		 * interface, rarely used. Instead of that, we'll use
2767 		 * kmap() and get small overhead in this access function.
2768 		 */
2769 		if (p) {
2770 			/*
2771 			 * we can expect USER0 is not used (see vread/vwrite's
2772 			 * function description)
2773 			 */
2774 			void *map = kmap_atomic(p);
2775 			memcpy(buf, map + offset, length);
2776 			kunmap_atomic(map);
2777 		} else
2778 			memset(buf, 0, length);
2779 
2780 		addr += length;
2781 		buf += length;
2782 		copied += length;
2783 		count -= length;
2784 	}
2785 	return copied;
2786 }
2787 
2788 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2789 {
2790 	struct page *p;
2791 	int copied = 0;
2792 
2793 	while (count) {
2794 		unsigned long offset, length;
2795 
2796 		offset = offset_in_page(addr);
2797 		length = PAGE_SIZE - offset;
2798 		if (length > count)
2799 			length = count;
2800 		p = vmalloc_to_page(addr);
2801 		/*
2802 		 * To do safe access to this _mapped_ area, we need
2803 		 * lock. But adding lock here means that we need to add
2804 		 * overhead of vmalloc()/vfree() calles for this _debug_
2805 		 * interface, rarely used. Instead of that, we'll use
2806 		 * kmap() and get small overhead in this access function.
2807 		 */
2808 		if (p) {
2809 			/*
2810 			 * we can expect USER0 is not used (see vread/vwrite's
2811 			 * function description)
2812 			 */
2813 			void *map = kmap_atomic(p);
2814 			memcpy(map + offset, buf, length);
2815 			kunmap_atomic(map);
2816 		}
2817 		addr += length;
2818 		buf += length;
2819 		copied += length;
2820 		count -= length;
2821 	}
2822 	return copied;
2823 }
2824 
2825 /**
2826  * vread() - read vmalloc area in a safe way.
2827  * @buf:     buffer for reading data
2828  * @addr:    vm address.
2829  * @count:   number of bytes to be read.
2830  *
2831  * This function checks that addr is a valid vmalloc'ed area, and
2832  * copy data from that area to a given buffer. If the given memory range
2833  * of [addr...addr+count) includes some valid address, data is copied to
2834  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2835  * IOREMAP area is treated as memory hole and no copy is done.
2836  *
2837  * If [addr...addr+count) doesn't includes any intersects with alive
2838  * vm_struct area, returns 0. @buf should be kernel's buffer.
2839  *
2840  * Note: In usual ops, vread() is never necessary because the caller
2841  * should know vmalloc() area is valid and can use memcpy().
2842  * This is for routines which have to access vmalloc area without
2843  * any information, as /dev/kmem.
2844  *
2845  * Return: number of bytes for which addr and buf should be increased
2846  * (same number as @count) or %0 if [addr...addr+count) doesn't
2847  * include any intersection with valid vmalloc area
2848  */
2849 long vread(char *buf, char *addr, unsigned long count)
2850 {
2851 	struct vmap_area *va;
2852 	struct vm_struct *vm;
2853 	char *vaddr, *buf_start = buf;
2854 	unsigned long buflen = count;
2855 	unsigned long n;
2856 
2857 	/* Don't allow overflow */
2858 	if ((unsigned long) addr + count < count)
2859 		count = -(unsigned long) addr;
2860 
2861 	spin_lock(&vmap_area_lock);
2862 	list_for_each_entry(va, &vmap_area_list, list) {
2863 		if (!count)
2864 			break;
2865 
2866 		if (!va->vm)
2867 			continue;
2868 
2869 		vm = va->vm;
2870 		vaddr = (char *) vm->addr;
2871 		if (addr >= vaddr + get_vm_area_size(vm))
2872 			continue;
2873 		while (addr < vaddr) {
2874 			if (count == 0)
2875 				goto finished;
2876 			*buf = '\0';
2877 			buf++;
2878 			addr++;
2879 			count--;
2880 		}
2881 		n = vaddr + get_vm_area_size(vm) - addr;
2882 		if (n > count)
2883 			n = count;
2884 		if (!(vm->flags & VM_IOREMAP))
2885 			aligned_vread(buf, addr, n);
2886 		else /* IOREMAP area is treated as memory hole */
2887 			memset(buf, 0, n);
2888 		buf += n;
2889 		addr += n;
2890 		count -= n;
2891 	}
2892 finished:
2893 	spin_unlock(&vmap_area_lock);
2894 
2895 	if (buf == buf_start)
2896 		return 0;
2897 	/* zero-fill memory holes */
2898 	if (buf != buf_start + buflen)
2899 		memset(buf, 0, buflen - (buf - buf_start));
2900 
2901 	return buflen;
2902 }
2903 
2904 /**
2905  * vwrite() - write vmalloc area in a safe way.
2906  * @buf:      buffer for source data
2907  * @addr:     vm address.
2908  * @count:    number of bytes to be read.
2909  *
2910  * This function checks that addr is a valid vmalloc'ed area, and
2911  * copy data from a buffer to the given addr. If specified range of
2912  * [addr...addr+count) includes some valid address, data is copied from
2913  * proper area of @buf. If there are memory holes, no copy to hole.
2914  * IOREMAP area is treated as memory hole and no copy is done.
2915  *
2916  * If [addr...addr+count) doesn't includes any intersects with alive
2917  * vm_struct area, returns 0. @buf should be kernel's buffer.
2918  *
2919  * Note: In usual ops, vwrite() is never necessary because the caller
2920  * should know vmalloc() area is valid and can use memcpy().
2921  * This is for routines which have to access vmalloc area without
2922  * any information, as /dev/kmem.
2923  *
2924  * Return: number of bytes for which addr and buf should be
2925  * increased (same number as @count) or %0 if [addr...addr+count)
2926  * doesn't include any intersection with valid vmalloc area
2927  */
2928 long vwrite(char *buf, char *addr, unsigned long count)
2929 {
2930 	struct vmap_area *va;
2931 	struct vm_struct *vm;
2932 	char *vaddr;
2933 	unsigned long n, buflen;
2934 	int copied = 0;
2935 
2936 	/* Don't allow overflow */
2937 	if ((unsigned long) addr + count < count)
2938 		count = -(unsigned long) addr;
2939 	buflen = count;
2940 
2941 	spin_lock(&vmap_area_lock);
2942 	list_for_each_entry(va, &vmap_area_list, list) {
2943 		if (!count)
2944 			break;
2945 
2946 		if (!va->vm)
2947 			continue;
2948 
2949 		vm = va->vm;
2950 		vaddr = (char *) vm->addr;
2951 		if (addr >= vaddr + get_vm_area_size(vm))
2952 			continue;
2953 		while (addr < vaddr) {
2954 			if (count == 0)
2955 				goto finished;
2956 			buf++;
2957 			addr++;
2958 			count--;
2959 		}
2960 		n = vaddr + get_vm_area_size(vm) - addr;
2961 		if (n > count)
2962 			n = count;
2963 		if (!(vm->flags & VM_IOREMAP)) {
2964 			aligned_vwrite(buf, addr, n);
2965 			copied++;
2966 		}
2967 		buf += n;
2968 		addr += n;
2969 		count -= n;
2970 	}
2971 finished:
2972 	spin_unlock(&vmap_area_lock);
2973 	if (!copied)
2974 		return 0;
2975 	return buflen;
2976 }
2977 
2978 /**
2979  * remap_vmalloc_range_partial - map vmalloc pages to userspace
2980  * @vma:		vma to cover
2981  * @uaddr:		target user address to start at
2982  * @kaddr:		virtual address of vmalloc kernel memory
2983  * @pgoff:		offset from @kaddr to start at
2984  * @size:		size of map area
2985  *
2986  * Returns:	0 for success, -Exxx on failure
2987  *
2988  * This function checks that @kaddr is a valid vmalloc'ed area,
2989  * and that it is big enough to cover the range starting at
2990  * @uaddr in @vma. Will return failure if that criteria isn't
2991  * met.
2992  *
2993  * Similar to remap_pfn_range() (see mm/memory.c)
2994  */
2995 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2996 				void *kaddr, unsigned long pgoff,
2997 				unsigned long size)
2998 {
2999 	struct vm_struct *area;
3000 	unsigned long off;
3001 	unsigned long end_index;
3002 
3003 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3004 		return -EINVAL;
3005 
3006 	size = PAGE_ALIGN(size);
3007 
3008 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3009 		return -EINVAL;
3010 
3011 	area = find_vm_area(kaddr);
3012 	if (!area)
3013 		return -EINVAL;
3014 
3015 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3016 		return -EINVAL;
3017 
3018 	if (check_add_overflow(size, off, &end_index) ||
3019 	    end_index > get_vm_area_size(area))
3020 		return -EINVAL;
3021 	kaddr += off;
3022 
3023 	do {
3024 		struct page *page = vmalloc_to_page(kaddr);
3025 		int ret;
3026 
3027 		ret = vm_insert_page(vma, uaddr, page);
3028 		if (ret)
3029 			return ret;
3030 
3031 		uaddr += PAGE_SIZE;
3032 		kaddr += PAGE_SIZE;
3033 		size -= PAGE_SIZE;
3034 	} while (size > 0);
3035 
3036 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3037 
3038 	return 0;
3039 }
3040 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3041 
3042 /**
3043  * remap_vmalloc_range - map vmalloc pages to userspace
3044  * @vma:		vma to cover (map full range of vma)
3045  * @addr:		vmalloc memory
3046  * @pgoff:		number of pages into addr before first page to map
3047  *
3048  * Returns:	0 for success, -Exxx on failure
3049  *
3050  * This function checks that addr is a valid vmalloc'ed area, and
3051  * that it is big enough to cover the vma. Will return failure if
3052  * that criteria isn't met.
3053  *
3054  * Similar to remap_pfn_range() (see mm/memory.c)
3055  */
3056 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3057 						unsigned long pgoff)
3058 {
3059 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3060 					   addr, pgoff,
3061 					   vma->vm_end - vma->vm_start);
3062 }
3063 EXPORT_SYMBOL(remap_vmalloc_range);
3064 
3065 static int f(pte_t *pte, unsigned long addr, void *data)
3066 {
3067 	pte_t ***p = data;
3068 
3069 	if (p) {
3070 		*(*p) = pte;
3071 		(*p)++;
3072 	}
3073 	return 0;
3074 }
3075 
3076 /**
3077  * alloc_vm_area - allocate a range of kernel address space
3078  * @size:	   size of the area
3079  * @ptes:	   returns the PTEs for the address space
3080  *
3081  * Returns:	NULL on failure, vm_struct on success
3082  *
3083  * This function reserves a range of kernel address space, and
3084  * allocates pagetables to map that range.  No actual mappings
3085  * are created.
3086  *
3087  * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3088  * allocated for the VM area are returned.
3089  */
3090 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3091 {
3092 	struct vm_struct *area;
3093 
3094 	area = get_vm_area_caller(size, VM_IOREMAP,
3095 				__builtin_return_address(0));
3096 	if (area == NULL)
3097 		return NULL;
3098 
3099 	/*
3100 	 * This ensures that page tables are constructed for this region
3101 	 * of kernel virtual address space and mapped into init_mm.
3102 	 */
3103 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3104 				size, f, ptes ? &ptes : NULL)) {
3105 		free_vm_area(area);
3106 		return NULL;
3107 	}
3108 
3109 	return area;
3110 }
3111 EXPORT_SYMBOL_GPL(alloc_vm_area);
3112 
3113 void free_vm_area(struct vm_struct *area)
3114 {
3115 	struct vm_struct *ret;
3116 	ret = remove_vm_area(area->addr);
3117 	BUG_ON(ret != area);
3118 	kfree(area);
3119 }
3120 EXPORT_SYMBOL_GPL(free_vm_area);
3121 
3122 #ifdef CONFIG_SMP
3123 static struct vmap_area *node_to_va(struct rb_node *n)
3124 {
3125 	return rb_entry_safe(n, struct vmap_area, rb_node);
3126 }
3127 
3128 /**
3129  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3130  * @addr: target address
3131  *
3132  * Returns: vmap_area if it is found. If there is no such area
3133  *   the first highest(reverse order) vmap_area is returned
3134  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3135  *   if there are no any areas before @addr.
3136  */
3137 static struct vmap_area *
3138 pvm_find_va_enclose_addr(unsigned long addr)
3139 {
3140 	struct vmap_area *va, *tmp;
3141 	struct rb_node *n;
3142 
3143 	n = free_vmap_area_root.rb_node;
3144 	va = NULL;
3145 
3146 	while (n) {
3147 		tmp = rb_entry(n, struct vmap_area, rb_node);
3148 		if (tmp->va_start <= addr) {
3149 			va = tmp;
3150 			if (tmp->va_end >= addr)
3151 				break;
3152 
3153 			n = n->rb_right;
3154 		} else {
3155 			n = n->rb_left;
3156 		}
3157 	}
3158 
3159 	return va;
3160 }
3161 
3162 /**
3163  * pvm_determine_end_from_reverse - find the highest aligned address
3164  * of free block below VMALLOC_END
3165  * @va:
3166  *   in - the VA we start the search(reverse order);
3167  *   out - the VA with the highest aligned end address.
3168  *
3169  * Returns: determined end address within vmap_area
3170  */
3171 static unsigned long
3172 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3173 {
3174 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3175 	unsigned long addr;
3176 
3177 	if (likely(*va)) {
3178 		list_for_each_entry_from_reverse((*va),
3179 				&free_vmap_area_list, list) {
3180 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3181 			if ((*va)->va_start < addr)
3182 				return addr;
3183 		}
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 /**
3190  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3191  * @offsets: array containing offset of each area
3192  * @sizes: array containing size of each area
3193  * @nr_vms: the number of areas to allocate
3194  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3195  *
3196  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3197  *	    vm_structs on success, %NULL on failure
3198  *
3199  * Percpu allocator wants to use congruent vm areas so that it can
3200  * maintain the offsets among percpu areas.  This function allocates
3201  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3202  * be scattered pretty far, distance between two areas easily going up
3203  * to gigabytes.  To avoid interacting with regular vmallocs, these
3204  * areas are allocated from top.
3205  *
3206  * Despite its complicated look, this allocator is rather simple. It
3207  * does everything top-down and scans free blocks from the end looking
3208  * for matching base. While scanning, if any of the areas do not fit the
3209  * base address is pulled down to fit the area. Scanning is repeated till
3210  * all the areas fit and then all necessary data structures are inserted
3211  * and the result is returned.
3212  */
3213 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3214 				     const size_t *sizes, int nr_vms,
3215 				     size_t align)
3216 {
3217 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3218 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3219 	struct vmap_area **vas, *va;
3220 	struct vm_struct **vms;
3221 	int area, area2, last_area, term_area;
3222 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3223 	bool purged = false;
3224 	enum fit_type type;
3225 
3226 	/* verify parameters and allocate data structures */
3227 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3228 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3229 		start = offsets[area];
3230 		end = start + sizes[area];
3231 
3232 		/* is everything aligned properly? */
3233 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3234 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3235 
3236 		/* detect the area with the highest address */
3237 		if (start > offsets[last_area])
3238 			last_area = area;
3239 
3240 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3241 			unsigned long start2 = offsets[area2];
3242 			unsigned long end2 = start2 + sizes[area2];
3243 
3244 			BUG_ON(start2 < end && start < end2);
3245 		}
3246 	}
3247 	last_end = offsets[last_area] + sizes[last_area];
3248 
3249 	if (vmalloc_end - vmalloc_start < last_end) {
3250 		WARN_ON(true);
3251 		return NULL;
3252 	}
3253 
3254 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3255 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3256 	if (!vas || !vms)
3257 		goto err_free2;
3258 
3259 	for (area = 0; area < nr_vms; area++) {
3260 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3261 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3262 		if (!vas[area] || !vms[area])
3263 			goto err_free;
3264 	}
3265 retry:
3266 	spin_lock(&free_vmap_area_lock);
3267 
3268 	/* start scanning - we scan from the top, begin with the last area */
3269 	area = term_area = last_area;
3270 	start = offsets[area];
3271 	end = start + sizes[area];
3272 
3273 	va = pvm_find_va_enclose_addr(vmalloc_end);
3274 	base = pvm_determine_end_from_reverse(&va, align) - end;
3275 
3276 	while (true) {
3277 		/*
3278 		 * base might have underflowed, add last_end before
3279 		 * comparing.
3280 		 */
3281 		if (base + last_end < vmalloc_start + last_end)
3282 			goto overflow;
3283 
3284 		/*
3285 		 * Fitting base has not been found.
3286 		 */
3287 		if (va == NULL)
3288 			goto overflow;
3289 
3290 		/*
3291 		 * If required width exceeds current VA block, move
3292 		 * base downwards and then recheck.
3293 		 */
3294 		if (base + end > va->va_end) {
3295 			base = pvm_determine_end_from_reverse(&va, align) - end;
3296 			term_area = area;
3297 			continue;
3298 		}
3299 
3300 		/*
3301 		 * If this VA does not fit, move base downwards and recheck.
3302 		 */
3303 		if (base + start < va->va_start) {
3304 			va = node_to_va(rb_prev(&va->rb_node));
3305 			base = pvm_determine_end_from_reverse(&va, align) - end;
3306 			term_area = area;
3307 			continue;
3308 		}
3309 
3310 		/*
3311 		 * This area fits, move on to the previous one.  If
3312 		 * the previous one is the terminal one, we're done.
3313 		 */
3314 		area = (area + nr_vms - 1) % nr_vms;
3315 		if (area == term_area)
3316 			break;
3317 
3318 		start = offsets[area];
3319 		end = start + sizes[area];
3320 		va = pvm_find_va_enclose_addr(base + end);
3321 	}
3322 
3323 	/* we've found a fitting base, insert all va's */
3324 	for (area = 0; area < nr_vms; area++) {
3325 		int ret;
3326 
3327 		start = base + offsets[area];
3328 		size = sizes[area];
3329 
3330 		va = pvm_find_va_enclose_addr(start);
3331 		if (WARN_ON_ONCE(va == NULL))
3332 			/* It is a BUG(), but trigger recovery instead. */
3333 			goto recovery;
3334 
3335 		type = classify_va_fit_type(va, start, size);
3336 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3337 			/* It is a BUG(), but trigger recovery instead. */
3338 			goto recovery;
3339 
3340 		ret = adjust_va_to_fit_type(va, start, size, type);
3341 		if (unlikely(ret))
3342 			goto recovery;
3343 
3344 		/* Allocated area. */
3345 		va = vas[area];
3346 		va->va_start = start;
3347 		va->va_end = start + size;
3348 	}
3349 
3350 	spin_unlock(&free_vmap_area_lock);
3351 
3352 	/* populate the kasan shadow space */
3353 	for (area = 0; area < nr_vms; area++) {
3354 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3355 			goto err_free_shadow;
3356 
3357 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3358 				       sizes[area]);
3359 	}
3360 
3361 	/* insert all vm's */
3362 	spin_lock(&vmap_area_lock);
3363 	for (area = 0; area < nr_vms; area++) {
3364 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3365 
3366 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3367 				 pcpu_get_vm_areas);
3368 	}
3369 	spin_unlock(&vmap_area_lock);
3370 
3371 	kfree(vas);
3372 	return vms;
3373 
3374 recovery:
3375 	/*
3376 	 * Remove previously allocated areas. There is no
3377 	 * need in removing these areas from the busy tree,
3378 	 * because they are inserted only on the final step
3379 	 * and when pcpu_get_vm_areas() is success.
3380 	 */
3381 	while (area--) {
3382 		orig_start = vas[area]->va_start;
3383 		orig_end = vas[area]->va_end;
3384 		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3385 					    &free_vmap_area_list);
3386 		kasan_release_vmalloc(orig_start, orig_end,
3387 				      va->va_start, va->va_end);
3388 		vas[area] = NULL;
3389 	}
3390 
3391 overflow:
3392 	spin_unlock(&free_vmap_area_lock);
3393 	if (!purged) {
3394 		purge_vmap_area_lazy();
3395 		purged = true;
3396 
3397 		/* Before "retry", check if we recover. */
3398 		for (area = 0; area < nr_vms; area++) {
3399 			if (vas[area])
3400 				continue;
3401 
3402 			vas[area] = kmem_cache_zalloc(
3403 				vmap_area_cachep, GFP_KERNEL);
3404 			if (!vas[area])
3405 				goto err_free;
3406 		}
3407 
3408 		goto retry;
3409 	}
3410 
3411 err_free:
3412 	for (area = 0; area < nr_vms; area++) {
3413 		if (vas[area])
3414 			kmem_cache_free(vmap_area_cachep, vas[area]);
3415 
3416 		kfree(vms[area]);
3417 	}
3418 err_free2:
3419 	kfree(vas);
3420 	kfree(vms);
3421 	return NULL;
3422 
3423 err_free_shadow:
3424 	spin_lock(&free_vmap_area_lock);
3425 	/*
3426 	 * We release all the vmalloc shadows, even the ones for regions that
3427 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3428 	 * being able to tolerate this case.
3429 	 */
3430 	for (area = 0; area < nr_vms; area++) {
3431 		orig_start = vas[area]->va_start;
3432 		orig_end = vas[area]->va_end;
3433 		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3434 					    &free_vmap_area_list);
3435 		kasan_release_vmalloc(orig_start, orig_end,
3436 				      va->va_start, va->va_end);
3437 		vas[area] = NULL;
3438 		kfree(vms[area]);
3439 	}
3440 	spin_unlock(&free_vmap_area_lock);
3441 	kfree(vas);
3442 	kfree(vms);
3443 	return NULL;
3444 }
3445 
3446 /**
3447  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3448  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3449  * @nr_vms: the number of allocated areas
3450  *
3451  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3452  */
3453 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3454 {
3455 	int i;
3456 
3457 	for (i = 0; i < nr_vms; i++)
3458 		free_vm_area(vms[i]);
3459 	kfree(vms);
3460 }
3461 #endif	/* CONFIG_SMP */
3462 
3463 #ifdef CONFIG_PROC_FS
3464 static void *s_start(struct seq_file *m, loff_t *pos)
3465 	__acquires(&vmap_purge_lock)
3466 	__acquires(&vmap_area_lock)
3467 {
3468 	mutex_lock(&vmap_purge_lock);
3469 	spin_lock(&vmap_area_lock);
3470 
3471 	return seq_list_start(&vmap_area_list, *pos);
3472 }
3473 
3474 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3475 {
3476 	return seq_list_next(p, &vmap_area_list, pos);
3477 }
3478 
3479 static void s_stop(struct seq_file *m, void *p)
3480 	__releases(&vmap_purge_lock)
3481 	__releases(&vmap_area_lock)
3482 {
3483 	mutex_unlock(&vmap_purge_lock);
3484 	spin_unlock(&vmap_area_lock);
3485 }
3486 
3487 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3488 {
3489 	if (IS_ENABLED(CONFIG_NUMA)) {
3490 		unsigned int nr, *counters = m->private;
3491 
3492 		if (!counters)
3493 			return;
3494 
3495 		if (v->flags & VM_UNINITIALIZED)
3496 			return;
3497 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3498 		smp_rmb();
3499 
3500 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3501 
3502 		for (nr = 0; nr < v->nr_pages; nr++)
3503 			counters[page_to_nid(v->pages[nr])]++;
3504 
3505 		for_each_node_state(nr, N_HIGH_MEMORY)
3506 			if (counters[nr])
3507 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3508 	}
3509 }
3510 
3511 static void show_purge_info(struct seq_file *m)
3512 {
3513 	struct llist_node *head;
3514 	struct vmap_area *va;
3515 
3516 	head = READ_ONCE(vmap_purge_list.first);
3517 	if (head == NULL)
3518 		return;
3519 
3520 	llist_for_each_entry(va, head, purge_list) {
3521 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3522 			(void *)va->va_start, (void *)va->va_end,
3523 			va->va_end - va->va_start);
3524 	}
3525 }
3526 
3527 static int s_show(struct seq_file *m, void *p)
3528 {
3529 	struct vmap_area *va;
3530 	struct vm_struct *v;
3531 
3532 	va = list_entry(p, struct vmap_area, list);
3533 
3534 	/*
3535 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3536 	 * of vmap area is being tear down or vm_map_ram allocation.
3537 	 */
3538 	if (!va->vm) {
3539 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3540 			(void *)va->va_start, (void *)va->va_end,
3541 			va->va_end - va->va_start);
3542 
3543 		return 0;
3544 	}
3545 
3546 	v = va->vm;
3547 
3548 	seq_printf(m, "0x%pK-0x%pK %7ld",
3549 		v->addr, v->addr + v->size, v->size);
3550 
3551 	if (v->caller)
3552 		seq_printf(m, " %pS", v->caller);
3553 
3554 	if (v->nr_pages)
3555 		seq_printf(m, " pages=%d", v->nr_pages);
3556 
3557 	if (v->phys_addr)
3558 		seq_printf(m, " phys=%pa", &v->phys_addr);
3559 
3560 	if (v->flags & VM_IOREMAP)
3561 		seq_puts(m, " ioremap");
3562 
3563 	if (v->flags & VM_ALLOC)
3564 		seq_puts(m, " vmalloc");
3565 
3566 	if (v->flags & VM_MAP)
3567 		seq_puts(m, " vmap");
3568 
3569 	if (v->flags & VM_USERMAP)
3570 		seq_puts(m, " user");
3571 
3572 	if (v->flags & VM_DMA_COHERENT)
3573 		seq_puts(m, " dma-coherent");
3574 
3575 	if (is_vmalloc_addr(v->pages))
3576 		seq_puts(m, " vpages");
3577 
3578 	show_numa_info(m, v);
3579 	seq_putc(m, '\n');
3580 
3581 	/*
3582 	 * As a final step, dump "unpurged" areas. Note,
3583 	 * that entire "/proc/vmallocinfo" output will not
3584 	 * be address sorted, because the purge list is not
3585 	 * sorted.
3586 	 */
3587 	if (list_is_last(&va->list, &vmap_area_list))
3588 		show_purge_info(m);
3589 
3590 	return 0;
3591 }
3592 
3593 static const struct seq_operations vmalloc_op = {
3594 	.start = s_start,
3595 	.next = s_next,
3596 	.stop = s_stop,
3597 	.show = s_show,
3598 };
3599 
3600 static int __init proc_vmalloc_init(void)
3601 {
3602 	if (IS_ENABLED(CONFIG_NUMA))
3603 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3604 				&vmalloc_op,
3605 				nr_node_ids * sizeof(unsigned int), NULL);
3606 	else
3607 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3608 	return 0;
3609 }
3610 module_init(proc_vmalloc_init);
3611 
3612 #endif
3613