xref: /openbmc/linux/mm/vmalloc.c (revision 9b93eb47)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmalloc.c
4  *
5  *  Copyright (C) 1993  Linus Torvalds
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9  *  Numa awareness, Christoph Lameter, SGI, June 2005
10  */
11 
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41 
42 #include "internal.h"
43 
44 struct vfree_deferred {
45 	struct llist_head list;
46 	struct work_struct wq;
47 };
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49 
50 static void __vunmap(const void *, int);
51 
52 static void free_work(struct work_struct *w)
53 {
54 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 	struct llist_node *t, *llnode;
56 
57 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 		__vunmap((void *)llnode, 1);
59 }
60 
61 /*** Page table manipulation functions ***/
62 
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64 {
65 	pte_t *pte;
66 
67 	pte = pte_offset_kernel(pmd, addr);
68 	do {
69 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 	} while (pte++, addr += PAGE_SIZE, addr != end);
72 }
73 
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75 {
76 	pmd_t *pmd;
77 	unsigned long next;
78 
79 	pmd = pmd_offset(pud, addr);
80 	do {
81 		next = pmd_addr_end(addr, end);
82 		if (pmd_clear_huge(pmd))
83 			continue;
84 		if (pmd_none_or_clear_bad(pmd))
85 			continue;
86 		vunmap_pte_range(pmd, addr, next);
87 	} while (pmd++, addr = next, addr != end);
88 }
89 
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
91 {
92 	pud_t *pud;
93 	unsigned long next;
94 
95 	pud = pud_offset(p4d, addr);
96 	do {
97 		next = pud_addr_end(addr, end);
98 		if (pud_clear_huge(pud))
99 			continue;
100 		if (pud_none_or_clear_bad(pud))
101 			continue;
102 		vunmap_pmd_range(pud, addr, next);
103 	} while (pud++, addr = next, addr != end);
104 }
105 
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107 {
108 	p4d_t *p4d;
109 	unsigned long next;
110 
111 	p4d = p4d_offset(pgd, addr);
112 	do {
113 		next = p4d_addr_end(addr, end);
114 		if (p4d_clear_huge(p4d))
115 			continue;
116 		if (p4d_none_or_clear_bad(p4d))
117 			continue;
118 		vunmap_pud_range(p4d, addr, next);
119 	} while (p4d++, addr = next, addr != end);
120 }
121 
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
123 {
124 	pgd_t *pgd;
125 	unsigned long next;
126 
127 	BUG_ON(addr >= end);
128 	pgd = pgd_offset_k(addr);
129 	do {
130 		next = pgd_addr_end(addr, end);
131 		if (pgd_none_or_clear_bad(pgd))
132 			continue;
133 		vunmap_p4d_range(pgd, addr, next);
134 	} while (pgd++, addr = next, addr != end);
135 }
136 
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
139 {
140 	pte_t *pte;
141 
142 	/*
143 	 * nr is a running index into the array which helps higher level
144 	 * callers keep track of where we're up to.
145 	 */
146 
147 	pte = pte_alloc_kernel(pmd, addr);
148 	if (!pte)
149 		return -ENOMEM;
150 	do {
151 		struct page *page = pages[*nr];
152 
153 		if (WARN_ON(!pte_none(*pte)))
154 			return -EBUSY;
155 		if (WARN_ON(!page))
156 			return -ENOMEM;
157 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
158 		(*nr)++;
159 	} while (pte++, addr += PAGE_SIZE, addr != end);
160 	return 0;
161 }
162 
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 	pmd_t *pmd;
167 	unsigned long next;
168 
169 	pmd = pmd_alloc(&init_mm, pud, addr);
170 	if (!pmd)
171 		return -ENOMEM;
172 	do {
173 		next = pmd_addr_end(addr, end);
174 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
175 			return -ENOMEM;
176 	} while (pmd++, addr = next, addr != end);
177 	return 0;
178 }
179 
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 
186 	pud = pud_alloc(&init_mm, p4d, addr);
187 	if (!pud)
188 		return -ENOMEM;
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
192 			return -ENOMEM;
193 	} while (pud++, addr = next, addr != end);
194 	return 0;
195 }
196 
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199 {
200 	p4d_t *p4d;
201 	unsigned long next;
202 
203 	p4d = p4d_alloc(&init_mm, pgd, addr);
204 	if (!p4d)
205 		return -ENOMEM;
206 	do {
207 		next = p4d_addr_end(addr, end);
208 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 			return -ENOMEM;
210 	} while (p4d++, addr = next, addr != end);
211 	return 0;
212 }
213 
214 /*
215  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216  * will have pfns corresponding to the "pages" array.
217  *
218  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219  */
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 				   pgprot_t prot, struct page **pages)
222 {
223 	pgd_t *pgd;
224 	unsigned long next;
225 	unsigned long addr = start;
226 	int err = 0;
227 	int nr = 0;
228 
229 	BUG_ON(addr >= end);
230 	pgd = pgd_offset_k(addr);
231 	do {
232 		next = pgd_addr_end(addr, end);
233 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
234 		if (err)
235 			return err;
236 	} while (pgd++, addr = next, addr != end);
237 
238 	return nr;
239 }
240 
241 static int vmap_page_range(unsigned long start, unsigned long end,
242 			   pgprot_t prot, struct page **pages)
243 {
244 	int ret;
245 
246 	ret = vmap_page_range_noflush(start, end, prot, pages);
247 	flush_cache_vmap(start, end);
248 	return ret;
249 }
250 
251 int is_vmalloc_or_module_addr(const void *x)
252 {
253 	/*
254 	 * ARM, x86-64 and sparc64 put modules in a special place,
255 	 * and fall back on vmalloc() if that fails. Others
256 	 * just put it in the vmalloc space.
257 	 */
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 	unsigned long addr = (unsigned long)x;
260 	if (addr >= MODULES_VADDR && addr < MODULES_END)
261 		return 1;
262 #endif
263 	return is_vmalloc_addr(x);
264 }
265 
266 /*
267  * Walk a vmap address to the struct page it maps.
268  */
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
270 {
271 	unsigned long addr = (unsigned long) vmalloc_addr;
272 	struct page *page = NULL;
273 	pgd_t *pgd = pgd_offset_k(addr);
274 	p4d_t *p4d;
275 	pud_t *pud;
276 	pmd_t *pmd;
277 	pte_t *ptep, pte;
278 
279 	/*
280 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 	 * architectures that do not vmalloc module space
282 	 */
283 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
284 
285 	if (pgd_none(*pgd))
286 		return NULL;
287 	p4d = p4d_offset(pgd, addr);
288 	if (p4d_none(*p4d))
289 		return NULL;
290 	pud = pud_offset(p4d, addr);
291 
292 	/*
293 	 * Don't dereference bad PUD or PMD (below) entries. This will also
294 	 * identify huge mappings, which we may encounter on architectures
295 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 	 * not [unambiguously] associated with a struct page, so there is
298 	 * no correct value to return for them.
299 	 */
300 	WARN_ON_ONCE(pud_bad(*pud));
301 	if (pud_none(*pud) || pud_bad(*pud))
302 		return NULL;
303 	pmd = pmd_offset(pud, addr);
304 	WARN_ON_ONCE(pmd_bad(*pmd));
305 	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 		return NULL;
307 
308 	ptep = pte_offset_map(pmd, addr);
309 	pte = *ptep;
310 	if (pte_present(pte))
311 		page = pte_page(pte);
312 	pte_unmap(ptep);
313 	return page;
314 }
315 EXPORT_SYMBOL(vmalloc_to_page);
316 
317 /*
318  * Map a vmalloc()-space virtual address to the physical page frame number.
319  */
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321 {
322 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323 }
324 EXPORT_SYMBOL(vmalloc_to_pfn);
325 
326 
327 /*** Global kva allocator ***/
328 
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331 
332 #define VM_LAZY_FREE	0x02
333 #define VM_VM_AREA	0x04
334 
335 static DEFINE_SPINLOCK(vmap_area_lock);
336 /* Export for kexec only */
337 LIST_HEAD(vmap_area_list);
338 static LLIST_HEAD(vmap_purge_list);
339 static struct rb_root vmap_area_root = RB_ROOT;
340 static bool vmap_initialized __read_mostly;
341 
342 /*
343  * This kmem_cache is used for vmap_area objects. Instead of
344  * allocating from slab we reuse an object from this cache to
345  * make things faster. Especially in "no edge" splitting of
346  * free block.
347  */
348 static struct kmem_cache *vmap_area_cachep;
349 
350 /*
351  * This linked list is used in pair with free_vmap_area_root.
352  * It gives O(1) access to prev/next to perform fast coalescing.
353  */
354 static LIST_HEAD(free_vmap_area_list);
355 
356 /*
357  * This augment red-black tree represents the free vmap space.
358  * All vmap_area objects in this tree are sorted by va->va_start
359  * address. It is used for allocation and merging when a vmap
360  * object is released.
361  *
362  * Each vmap_area node contains a maximum available free block
363  * of its sub-tree, right or left. Therefore it is possible to
364  * find a lowest match of free area.
365  */
366 static struct rb_root free_vmap_area_root = RB_ROOT;
367 
368 static __always_inline unsigned long
369 va_size(struct vmap_area *va)
370 {
371 	return (va->va_end - va->va_start);
372 }
373 
374 static __always_inline unsigned long
375 get_subtree_max_size(struct rb_node *node)
376 {
377 	struct vmap_area *va;
378 
379 	va = rb_entry_safe(node, struct vmap_area, rb_node);
380 	return va ? va->subtree_max_size : 0;
381 }
382 
383 /*
384  * Gets called when remove the node and rotate.
385  */
386 static __always_inline unsigned long
387 compute_subtree_max_size(struct vmap_area *va)
388 {
389 	return max3(va_size(va),
390 		get_subtree_max_size(va->rb_node.rb_left),
391 		get_subtree_max_size(va->rb_node.rb_right));
392 }
393 
394 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
395 	struct vmap_area, rb_node, unsigned long, subtree_max_size,
396 	compute_subtree_max_size)
397 
398 static void purge_vmap_area_lazy(void);
399 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
400 static unsigned long lazy_max_pages(void);
401 
402 static struct vmap_area *__find_vmap_area(unsigned long addr)
403 {
404 	struct rb_node *n = vmap_area_root.rb_node;
405 
406 	while (n) {
407 		struct vmap_area *va;
408 
409 		va = rb_entry(n, struct vmap_area, rb_node);
410 		if (addr < va->va_start)
411 			n = n->rb_left;
412 		else if (addr >= va->va_end)
413 			n = n->rb_right;
414 		else
415 			return va;
416 	}
417 
418 	return NULL;
419 }
420 
421 /*
422  * This function returns back addresses of parent node
423  * and its left or right link for further processing.
424  */
425 static __always_inline struct rb_node **
426 find_va_links(struct vmap_area *va,
427 	struct rb_root *root, struct rb_node *from,
428 	struct rb_node **parent)
429 {
430 	struct vmap_area *tmp_va;
431 	struct rb_node **link;
432 
433 	if (root) {
434 		link = &root->rb_node;
435 		if (unlikely(!*link)) {
436 			*parent = NULL;
437 			return link;
438 		}
439 	} else {
440 		link = &from;
441 	}
442 
443 	/*
444 	 * Go to the bottom of the tree. When we hit the last point
445 	 * we end up with parent rb_node and correct direction, i name
446 	 * it link, where the new va->rb_node will be attached to.
447 	 */
448 	do {
449 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
450 
451 		/*
452 		 * During the traversal we also do some sanity check.
453 		 * Trigger the BUG() if there are sides(left/right)
454 		 * or full overlaps.
455 		 */
456 		if (va->va_start < tmp_va->va_end &&
457 				va->va_end <= tmp_va->va_start)
458 			link = &(*link)->rb_left;
459 		else if (va->va_end > tmp_va->va_start &&
460 				va->va_start >= tmp_va->va_end)
461 			link = &(*link)->rb_right;
462 		else
463 			BUG();
464 	} while (*link);
465 
466 	*parent = &tmp_va->rb_node;
467 	return link;
468 }
469 
470 static __always_inline struct list_head *
471 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
472 {
473 	struct list_head *list;
474 
475 	if (unlikely(!parent))
476 		/*
477 		 * The red-black tree where we try to find VA neighbors
478 		 * before merging or inserting is empty, i.e. it means
479 		 * there is no free vmap space. Normally it does not
480 		 * happen but we handle this case anyway.
481 		 */
482 		return NULL;
483 
484 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
485 	return (&parent->rb_right == link ? list->next : list);
486 }
487 
488 static __always_inline void
489 link_va(struct vmap_area *va, struct rb_root *root,
490 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
491 {
492 	/*
493 	 * VA is still not in the list, but we can
494 	 * identify its future previous list_head node.
495 	 */
496 	if (likely(parent)) {
497 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
498 		if (&parent->rb_right != link)
499 			head = head->prev;
500 	}
501 
502 	/* Insert to the rb-tree */
503 	rb_link_node(&va->rb_node, parent, link);
504 	if (root == &free_vmap_area_root) {
505 		/*
506 		 * Some explanation here. Just perform simple insertion
507 		 * to the tree. We do not set va->subtree_max_size to
508 		 * its current size before calling rb_insert_augmented().
509 		 * It is because of we populate the tree from the bottom
510 		 * to parent levels when the node _is_ in the tree.
511 		 *
512 		 * Therefore we set subtree_max_size to zero after insertion,
513 		 * to let __augment_tree_propagate_from() puts everything to
514 		 * the correct order later on.
515 		 */
516 		rb_insert_augmented(&va->rb_node,
517 			root, &free_vmap_area_rb_augment_cb);
518 		va->subtree_max_size = 0;
519 	} else {
520 		rb_insert_color(&va->rb_node, root);
521 	}
522 
523 	/* Address-sort this list */
524 	list_add(&va->list, head);
525 }
526 
527 static __always_inline void
528 unlink_va(struct vmap_area *va, struct rb_root *root)
529 {
530 	/*
531 	 * During merging a VA node can be empty, therefore
532 	 * not linked with the tree nor list. Just check it.
533 	 */
534 	if (!RB_EMPTY_NODE(&va->rb_node)) {
535 		if (root == &free_vmap_area_root)
536 			rb_erase_augmented(&va->rb_node,
537 				root, &free_vmap_area_rb_augment_cb);
538 		else
539 			rb_erase(&va->rb_node, root);
540 
541 		list_del(&va->list);
542 		RB_CLEAR_NODE(&va->rb_node);
543 	}
544 }
545 
546 #if DEBUG_AUGMENT_PROPAGATE_CHECK
547 static void
548 augment_tree_propagate_check(struct rb_node *n)
549 {
550 	struct vmap_area *va;
551 	struct rb_node *node;
552 	unsigned long size;
553 	bool found = false;
554 
555 	if (n == NULL)
556 		return;
557 
558 	va = rb_entry(n, struct vmap_area, rb_node);
559 	size = va->subtree_max_size;
560 	node = n;
561 
562 	while (node) {
563 		va = rb_entry(node, struct vmap_area, rb_node);
564 
565 		if (get_subtree_max_size(node->rb_left) == size) {
566 			node = node->rb_left;
567 		} else {
568 			if (va_size(va) == size) {
569 				found = true;
570 				break;
571 			}
572 
573 			node = node->rb_right;
574 		}
575 	}
576 
577 	if (!found) {
578 		va = rb_entry(n, struct vmap_area, rb_node);
579 		pr_emerg("tree is corrupted: %lu, %lu\n",
580 			va_size(va), va->subtree_max_size);
581 	}
582 
583 	augment_tree_propagate_check(n->rb_left);
584 	augment_tree_propagate_check(n->rb_right);
585 }
586 #endif
587 
588 /*
589  * This function populates subtree_max_size from bottom to upper
590  * levels starting from VA point. The propagation must be done
591  * when VA size is modified by changing its va_start/va_end. Or
592  * in case of newly inserting of VA to the tree.
593  *
594  * It means that __augment_tree_propagate_from() must be called:
595  * - After VA has been inserted to the tree(free path);
596  * - After VA has been shrunk(allocation path);
597  * - After VA has been increased(merging path).
598  *
599  * Please note that, it does not mean that upper parent nodes
600  * and their subtree_max_size are recalculated all the time up
601  * to the root node.
602  *
603  *       4--8
604  *        /\
605  *       /  \
606  *      /    \
607  *    2--2  8--8
608  *
609  * For example if we modify the node 4, shrinking it to 2, then
610  * no any modification is required. If we shrink the node 2 to 1
611  * its subtree_max_size is updated only, and set to 1. If we shrink
612  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
613  * node becomes 4--6.
614  */
615 static __always_inline void
616 augment_tree_propagate_from(struct vmap_area *va)
617 {
618 	struct rb_node *node = &va->rb_node;
619 	unsigned long new_va_sub_max_size;
620 
621 	while (node) {
622 		va = rb_entry(node, struct vmap_area, rb_node);
623 		new_va_sub_max_size = compute_subtree_max_size(va);
624 
625 		/*
626 		 * If the newly calculated maximum available size of the
627 		 * subtree is equal to the current one, then it means that
628 		 * the tree is propagated correctly. So we have to stop at
629 		 * this point to save cycles.
630 		 */
631 		if (va->subtree_max_size == new_va_sub_max_size)
632 			break;
633 
634 		va->subtree_max_size = new_va_sub_max_size;
635 		node = rb_parent(&va->rb_node);
636 	}
637 
638 #if DEBUG_AUGMENT_PROPAGATE_CHECK
639 	augment_tree_propagate_check(free_vmap_area_root.rb_node);
640 #endif
641 }
642 
643 static void
644 insert_vmap_area(struct vmap_area *va,
645 	struct rb_root *root, struct list_head *head)
646 {
647 	struct rb_node **link;
648 	struct rb_node *parent;
649 
650 	link = find_va_links(va, root, NULL, &parent);
651 	link_va(va, root, parent, link, head);
652 }
653 
654 static void
655 insert_vmap_area_augment(struct vmap_area *va,
656 	struct rb_node *from, struct rb_root *root,
657 	struct list_head *head)
658 {
659 	struct rb_node **link;
660 	struct rb_node *parent;
661 
662 	if (from)
663 		link = find_va_links(va, NULL, from, &parent);
664 	else
665 		link = find_va_links(va, root, NULL, &parent);
666 
667 	link_va(va, root, parent, link, head);
668 	augment_tree_propagate_from(va);
669 }
670 
671 /*
672  * Merge de-allocated chunk of VA memory with previous
673  * and next free blocks. If coalesce is not done a new
674  * free area is inserted. If VA has been merged, it is
675  * freed.
676  */
677 static __always_inline void
678 merge_or_add_vmap_area(struct vmap_area *va,
679 	struct rb_root *root, struct list_head *head)
680 {
681 	struct vmap_area *sibling;
682 	struct list_head *next;
683 	struct rb_node **link;
684 	struct rb_node *parent;
685 	bool merged = false;
686 
687 	/*
688 	 * Find a place in the tree where VA potentially will be
689 	 * inserted, unless it is merged with its sibling/siblings.
690 	 */
691 	link = find_va_links(va, root, NULL, &parent);
692 
693 	/*
694 	 * Get next node of VA to check if merging can be done.
695 	 */
696 	next = get_va_next_sibling(parent, link);
697 	if (unlikely(next == NULL))
698 		goto insert;
699 
700 	/*
701 	 * start            end
702 	 * |                |
703 	 * |<------VA------>|<-----Next----->|
704 	 *                  |                |
705 	 *                  start            end
706 	 */
707 	if (next != head) {
708 		sibling = list_entry(next, struct vmap_area, list);
709 		if (sibling->va_start == va->va_end) {
710 			sibling->va_start = va->va_start;
711 
712 			/* Check and update the tree if needed. */
713 			augment_tree_propagate_from(sibling);
714 
715 			/* Remove this VA, it has been merged. */
716 			unlink_va(va, root);
717 
718 			/* Free vmap_area object. */
719 			kmem_cache_free(vmap_area_cachep, va);
720 
721 			/* Point to the new merged area. */
722 			va = sibling;
723 			merged = true;
724 		}
725 	}
726 
727 	/*
728 	 * start            end
729 	 * |                |
730 	 * |<-----Prev----->|<------VA------>|
731 	 *                  |                |
732 	 *                  start            end
733 	 */
734 	if (next->prev != head) {
735 		sibling = list_entry(next->prev, struct vmap_area, list);
736 		if (sibling->va_end == va->va_start) {
737 			sibling->va_end = va->va_end;
738 
739 			/* Check and update the tree if needed. */
740 			augment_tree_propagate_from(sibling);
741 
742 			/* Remove this VA, it has been merged. */
743 			unlink_va(va, root);
744 
745 			/* Free vmap_area object. */
746 			kmem_cache_free(vmap_area_cachep, va);
747 
748 			return;
749 		}
750 	}
751 
752 insert:
753 	if (!merged) {
754 		link_va(va, root, parent, link, head);
755 		augment_tree_propagate_from(va);
756 	}
757 }
758 
759 static __always_inline bool
760 is_within_this_va(struct vmap_area *va, unsigned long size,
761 	unsigned long align, unsigned long vstart)
762 {
763 	unsigned long nva_start_addr;
764 
765 	if (va->va_start > vstart)
766 		nva_start_addr = ALIGN(va->va_start, align);
767 	else
768 		nva_start_addr = ALIGN(vstart, align);
769 
770 	/* Can be overflowed due to big size or alignment. */
771 	if (nva_start_addr + size < nva_start_addr ||
772 			nva_start_addr < vstart)
773 		return false;
774 
775 	return (nva_start_addr + size <= va->va_end);
776 }
777 
778 /*
779  * Find the first free block(lowest start address) in the tree,
780  * that will accomplish the request corresponding to passing
781  * parameters.
782  */
783 static __always_inline struct vmap_area *
784 find_vmap_lowest_match(unsigned long size,
785 	unsigned long align, unsigned long vstart)
786 {
787 	struct vmap_area *va;
788 	struct rb_node *node;
789 	unsigned long length;
790 
791 	/* Start from the root. */
792 	node = free_vmap_area_root.rb_node;
793 
794 	/* Adjust the search size for alignment overhead. */
795 	length = size + align - 1;
796 
797 	while (node) {
798 		va = rb_entry(node, struct vmap_area, rb_node);
799 
800 		if (get_subtree_max_size(node->rb_left) >= length &&
801 				vstart < va->va_start) {
802 			node = node->rb_left;
803 		} else {
804 			if (is_within_this_va(va, size, align, vstart))
805 				return va;
806 
807 			/*
808 			 * Does not make sense to go deeper towards the right
809 			 * sub-tree if it does not have a free block that is
810 			 * equal or bigger to the requested search length.
811 			 */
812 			if (get_subtree_max_size(node->rb_right) >= length) {
813 				node = node->rb_right;
814 				continue;
815 			}
816 
817 			/*
818 			 * OK. We roll back and find the fist right sub-tree,
819 			 * that will satisfy the search criteria. It can happen
820 			 * only once due to "vstart" restriction.
821 			 */
822 			while ((node = rb_parent(node))) {
823 				va = rb_entry(node, struct vmap_area, rb_node);
824 				if (is_within_this_va(va, size, align, vstart))
825 					return va;
826 
827 				if (get_subtree_max_size(node->rb_right) >= length &&
828 						vstart <= va->va_start) {
829 					node = node->rb_right;
830 					break;
831 				}
832 			}
833 		}
834 	}
835 
836 	return NULL;
837 }
838 
839 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
840 #include <linux/random.h>
841 
842 static struct vmap_area *
843 find_vmap_lowest_linear_match(unsigned long size,
844 	unsigned long align, unsigned long vstart)
845 {
846 	struct vmap_area *va;
847 
848 	list_for_each_entry(va, &free_vmap_area_list, list) {
849 		if (!is_within_this_va(va, size, align, vstart))
850 			continue;
851 
852 		return va;
853 	}
854 
855 	return NULL;
856 }
857 
858 static void
859 find_vmap_lowest_match_check(unsigned long size)
860 {
861 	struct vmap_area *va_1, *va_2;
862 	unsigned long vstart;
863 	unsigned int rnd;
864 
865 	get_random_bytes(&rnd, sizeof(rnd));
866 	vstart = VMALLOC_START + rnd;
867 
868 	va_1 = find_vmap_lowest_match(size, 1, vstart);
869 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
870 
871 	if (va_1 != va_2)
872 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
873 			va_1, va_2, vstart);
874 }
875 #endif
876 
877 enum fit_type {
878 	NOTHING_FIT = 0,
879 	FL_FIT_TYPE = 1,	/* full fit */
880 	LE_FIT_TYPE = 2,	/* left edge fit */
881 	RE_FIT_TYPE = 3,	/* right edge fit */
882 	NE_FIT_TYPE = 4		/* no edge fit */
883 };
884 
885 static __always_inline enum fit_type
886 classify_va_fit_type(struct vmap_area *va,
887 	unsigned long nva_start_addr, unsigned long size)
888 {
889 	enum fit_type type;
890 
891 	/* Check if it is within VA. */
892 	if (nva_start_addr < va->va_start ||
893 			nva_start_addr + size > va->va_end)
894 		return NOTHING_FIT;
895 
896 	/* Now classify. */
897 	if (va->va_start == nva_start_addr) {
898 		if (va->va_end == nva_start_addr + size)
899 			type = FL_FIT_TYPE;
900 		else
901 			type = LE_FIT_TYPE;
902 	} else if (va->va_end == nva_start_addr + size) {
903 		type = RE_FIT_TYPE;
904 	} else {
905 		type = NE_FIT_TYPE;
906 	}
907 
908 	return type;
909 }
910 
911 static __always_inline int
912 adjust_va_to_fit_type(struct vmap_area *va,
913 	unsigned long nva_start_addr, unsigned long size,
914 	enum fit_type type)
915 {
916 	struct vmap_area *lva;
917 
918 	if (type == FL_FIT_TYPE) {
919 		/*
920 		 * No need to split VA, it fully fits.
921 		 *
922 		 * |               |
923 		 * V      NVA      V
924 		 * |---------------|
925 		 */
926 		unlink_va(va, &free_vmap_area_root);
927 		kmem_cache_free(vmap_area_cachep, va);
928 	} else if (type == LE_FIT_TYPE) {
929 		/*
930 		 * Split left edge of fit VA.
931 		 *
932 		 * |       |
933 		 * V  NVA  V   R
934 		 * |-------|-------|
935 		 */
936 		va->va_start += size;
937 	} else if (type == RE_FIT_TYPE) {
938 		/*
939 		 * Split right edge of fit VA.
940 		 *
941 		 *         |       |
942 		 *     L   V  NVA  V
943 		 * |-------|-------|
944 		 */
945 		va->va_end = nva_start_addr;
946 	} else if (type == NE_FIT_TYPE) {
947 		/*
948 		 * Split no edge of fit VA.
949 		 *
950 		 *     |       |
951 		 *   L V  NVA  V R
952 		 * |---|-------|---|
953 		 */
954 		lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
955 		if (unlikely(!lva))
956 			return -1;
957 
958 		/*
959 		 * Build the remainder.
960 		 */
961 		lva->va_start = va->va_start;
962 		lva->va_end = nva_start_addr;
963 
964 		/*
965 		 * Shrink this VA to remaining size.
966 		 */
967 		va->va_start = nva_start_addr + size;
968 	} else {
969 		return -1;
970 	}
971 
972 	if (type != FL_FIT_TYPE) {
973 		augment_tree_propagate_from(va);
974 
975 		if (type == NE_FIT_TYPE)
976 			insert_vmap_area_augment(lva, &va->rb_node,
977 				&free_vmap_area_root, &free_vmap_area_list);
978 	}
979 
980 	return 0;
981 }
982 
983 /*
984  * Returns a start address of the newly allocated area, if success.
985  * Otherwise a vend is returned that indicates failure.
986  */
987 static __always_inline unsigned long
988 __alloc_vmap_area(unsigned long size, unsigned long align,
989 	unsigned long vstart, unsigned long vend, int node)
990 {
991 	unsigned long nva_start_addr;
992 	struct vmap_area *va;
993 	enum fit_type type;
994 	int ret;
995 
996 	va = find_vmap_lowest_match(size, align, vstart);
997 	if (unlikely(!va))
998 		return vend;
999 
1000 	if (va->va_start > vstart)
1001 		nva_start_addr = ALIGN(va->va_start, align);
1002 	else
1003 		nva_start_addr = ALIGN(vstart, align);
1004 
1005 	/* Check the "vend" restriction. */
1006 	if (nva_start_addr + size > vend)
1007 		return vend;
1008 
1009 	/* Classify what we have found. */
1010 	type = classify_va_fit_type(va, nva_start_addr, size);
1011 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1012 		return vend;
1013 
1014 	/* Update the free vmap_area. */
1015 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1016 	if (ret)
1017 		return vend;
1018 
1019 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1020 	find_vmap_lowest_match_check(size);
1021 #endif
1022 
1023 	return nva_start_addr;
1024 }
1025 
1026 /*
1027  * Allocate a region of KVA of the specified size and alignment, within the
1028  * vstart and vend.
1029  */
1030 static struct vmap_area *alloc_vmap_area(unsigned long size,
1031 				unsigned long align,
1032 				unsigned long vstart, unsigned long vend,
1033 				int node, gfp_t gfp_mask)
1034 {
1035 	struct vmap_area *va;
1036 	unsigned long addr;
1037 	int purged = 0;
1038 
1039 	BUG_ON(!size);
1040 	BUG_ON(offset_in_page(size));
1041 	BUG_ON(!is_power_of_2(align));
1042 
1043 	if (unlikely(!vmap_initialized))
1044 		return ERR_PTR(-EBUSY);
1045 
1046 	might_sleep();
1047 
1048 	va = kmem_cache_alloc_node(vmap_area_cachep,
1049 			gfp_mask & GFP_RECLAIM_MASK, node);
1050 	if (unlikely(!va))
1051 		return ERR_PTR(-ENOMEM);
1052 
1053 	/*
1054 	 * Only scan the relevant parts containing pointers to other objects
1055 	 * to avoid false negatives.
1056 	 */
1057 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1058 
1059 retry:
1060 	spin_lock(&vmap_area_lock);
1061 
1062 	/*
1063 	 * If an allocation fails, the "vend" address is
1064 	 * returned. Therefore trigger the overflow path.
1065 	 */
1066 	addr = __alloc_vmap_area(size, align, vstart, vend, node);
1067 	if (unlikely(addr == vend))
1068 		goto overflow;
1069 
1070 	va->va_start = addr;
1071 	va->va_end = addr + size;
1072 	va->flags = 0;
1073 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1074 
1075 	spin_unlock(&vmap_area_lock);
1076 
1077 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1078 	BUG_ON(va->va_start < vstart);
1079 	BUG_ON(va->va_end > vend);
1080 
1081 	return va;
1082 
1083 overflow:
1084 	spin_unlock(&vmap_area_lock);
1085 	if (!purged) {
1086 		purge_vmap_area_lazy();
1087 		purged = 1;
1088 		goto retry;
1089 	}
1090 
1091 	if (gfpflags_allow_blocking(gfp_mask)) {
1092 		unsigned long freed = 0;
1093 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1094 		if (freed > 0) {
1095 			purged = 0;
1096 			goto retry;
1097 		}
1098 	}
1099 
1100 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1101 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1102 			size);
1103 
1104 	kmem_cache_free(vmap_area_cachep, va);
1105 	return ERR_PTR(-EBUSY);
1106 }
1107 
1108 int register_vmap_purge_notifier(struct notifier_block *nb)
1109 {
1110 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1111 }
1112 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1113 
1114 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1115 {
1116 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1117 }
1118 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1119 
1120 static void __free_vmap_area(struct vmap_area *va)
1121 {
1122 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
1123 
1124 	/*
1125 	 * Remove from the busy tree/list.
1126 	 */
1127 	unlink_va(va, &vmap_area_root);
1128 
1129 	/*
1130 	 * Merge VA with its neighbors, otherwise just add it.
1131 	 */
1132 	merge_or_add_vmap_area(va,
1133 		&free_vmap_area_root, &free_vmap_area_list);
1134 }
1135 
1136 /*
1137  * Free a region of KVA allocated by alloc_vmap_area
1138  */
1139 static void free_vmap_area(struct vmap_area *va)
1140 {
1141 	spin_lock(&vmap_area_lock);
1142 	__free_vmap_area(va);
1143 	spin_unlock(&vmap_area_lock);
1144 }
1145 
1146 /*
1147  * Clear the pagetable entries of a given vmap_area
1148  */
1149 static void unmap_vmap_area(struct vmap_area *va)
1150 {
1151 	vunmap_page_range(va->va_start, va->va_end);
1152 }
1153 
1154 /*
1155  * lazy_max_pages is the maximum amount of virtual address space we gather up
1156  * before attempting to purge with a TLB flush.
1157  *
1158  * There is a tradeoff here: a larger number will cover more kernel page tables
1159  * and take slightly longer to purge, but it will linearly reduce the number of
1160  * global TLB flushes that must be performed. It would seem natural to scale
1161  * this number up linearly with the number of CPUs (because vmapping activity
1162  * could also scale linearly with the number of CPUs), however it is likely
1163  * that in practice, workloads might be constrained in other ways that mean
1164  * vmap activity will not scale linearly with CPUs. Also, I want to be
1165  * conservative and not introduce a big latency on huge systems, so go with
1166  * a less aggressive log scale. It will still be an improvement over the old
1167  * code, and it will be simple to change the scale factor if we find that it
1168  * becomes a problem on bigger systems.
1169  */
1170 static unsigned long lazy_max_pages(void)
1171 {
1172 	unsigned int log;
1173 
1174 	log = fls(num_online_cpus());
1175 
1176 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1177 }
1178 
1179 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1180 
1181 /*
1182  * Serialize vmap purging.  There is no actual criticial section protected
1183  * by this look, but we want to avoid concurrent calls for performance
1184  * reasons and to make the pcpu_get_vm_areas more deterministic.
1185  */
1186 static DEFINE_MUTEX(vmap_purge_lock);
1187 
1188 /* for per-CPU blocks */
1189 static void purge_fragmented_blocks_allcpus(void);
1190 
1191 /*
1192  * called before a call to iounmap() if the caller wants vm_area_struct's
1193  * immediately freed.
1194  */
1195 void set_iounmap_nonlazy(void)
1196 {
1197 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1198 }
1199 
1200 /*
1201  * Purges all lazily-freed vmap areas.
1202  */
1203 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1204 {
1205 	unsigned long resched_threshold;
1206 	struct llist_node *valist;
1207 	struct vmap_area *va;
1208 	struct vmap_area *n_va;
1209 
1210 	lockdep_assert_held(&vmap_purge_lock);
1211 
1212 	valist = llist_del_all(&vmap_purge_list);
1213 	if (unlikely(valist == NULL))
1214 		return false;
1215 
1216 	/*
1217 	 * TODO: to calculate a flush range without looping.
1218 	 * The list can be up to lazy_max_pages() elements.
1219 	 */
1220 	llist_for_each_entry(va, valist, purge_list) {
1221 		if (va->va_start < start)
1222 			start = va->va_start;
1223 		if (va->va_end > end)
1224 			end = va->va_end;
1225 	}
1226 
1227 	flush_tlb_kernel_range(start, end);
1228 	resched_threshold = lazy_max_pages() << 1;
1229 
1230 	spin_lock(&vmap_area_lock);
1231 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1232 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1233 
1234 		__free_vmap_area(va);
1235 		atomic_long_sub(nr, &vmap_lazy_nr);
1236 
1237 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1238 			cond_resched_lock(&vmap_area_lock);
1239 	}
1240 	spin_unlock(&vmap_area_lock);
1241 	return true;
1242 }
1243 
1244 /*
1245  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1246  * is already purging.
1247  */
1248 static void try_purge_vmap_area_lazy(void)
1249 {
1250 	if (mutex_trylock(&vmap_purge_lock)) {
1251 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1252 		mutex_unlock(&vmap_purge_lock);
1253 	}
1254 }
1255 
1256 /*
1257  * Kick off a purge of the outstanding lazy areas.
1258  */
1259 static void purge_vmap_area_lazy(void)
1260 {
1261 	mutex_lock(&vmap_purge_lock);
1262 	purge_fragmented_blocks_allcpus();
1263 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1264 	mutex_unlock(&vmap_purge_lock);
1265 }
1266 
1267 /*
1268  * Free a vmap area, caller ensuring that the area has been unmapped
1269  * and flush_cache_vunmap had been called for the correct range
1270  * previously.
1271  */
1272 static void free_vmap_area_noflush(struct vmap_area *va)
1273 {
1274 	unsigned long nr_lazy;
1275 
1276 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1277 				PAGE_SHIFT, &vmap_lazy_nr);
1278 
1279 	/* After this point, we may free va at any time */
1280 	llist_add(&va->purge_list, &vmap_purge_list);
1281 
1282 	if (unlikely(nr_lazy > lazy_max_pages()))
1283 		try_purge_vmap_area_lazy();
1284 }
1285 
1286 /*
1287  * Free and unmap a vmap area
1288  */
1289 static void free_unmap_vmap_area(struct vmap_area *va)
1290 {
1291 	flush_cache_vunmap(va->va_start, va->va_end);
1292 	unmap_vmap_area(va);
1293 	if (debug_pagealloc_enabled())
1294 		flush_tlb_kernel_range(va->va_start, va->va_end);
1295 
1296 	free_vmap_area_noflush(va);
1297 }
1298 
1299 static struct vmap_area *find_vmap_area(unsigned long addr)
1300 {
1301 	struct vmap_area *va;
1302 
1303 	spin_lock(&vmap_area_lock);
1304 	va = __find_vmap_area(addr);
1305 	spin_unlock(&vmap_area_lock);
1306 
1307 	return va;
1308 }
1309 
1310 /*** Per cpu kva allocator ***/
1311 
1312 /*
1313  * vmap space is limited especially on 32 bit architectures. Ensure there is
1314  * room for at least 16 percpu vmap blocks per CPU.
1315  */
1316 /*
1317  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1318  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1319  * instead (we just need a rough idea)
1320  */
1321 #if BITS_PER_LONG == 32
1322 #define VMALLOC_SPACE		(128UL*1024*1024)
1323 #else
1324 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1325 #endif
1326 
1327 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1328 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1329 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1330 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1331 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1332 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1333 #define VMAP_BBMAP_BITS		\
1334 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1335 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1336 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1337 
1338 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1339 
1340 struct vmap_block_queue {
1341 	spinlock_t lock;
1342 	struct list_head free;
1343 };
1344 
1345 struct vmap_block {
1346 	spinlock_t lock;
1347 	struct vmap_area *va;
1348 	unsigned long free, dirty;
1349 	unsigned long dirty_min, dirty_max; /*< dirty range */
1350 	struct list_head free_list;
1351 	struct rcu_head rcu_head;
1352 	struct list_head purge;
1353 };
1354 
1355 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1356 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1357 
1358 /*
1359  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1360  * in the free path. Could get rid of this if we change the API to return a
1361  * "cookie" from alloc, to be passed to free. But no big deal yet.
1362  */
1363 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1364 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1365 
1366 /*
1367  * We should probably have a fallback mechanism to allocate virtual memory
1368  * out of partially filled vmap blocks. However vmap block sizing should be
1369  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1370  * big problem.
1371  */
1372 
1373 static unsigned long addr_to_vb_idx(unsigned long addr)
1374 {
1375 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1376 	addr /= VMAP_BLOCK_SIZE;
1377 	return addr;
1378 }
1379 
1380 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1381 {
1382 	unsigned long addr;
1383 
1384 	addr = va_start + (pages_off << PAGE_SHIFT);
1385 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1386 	return (void *)addr;
1387 }
1388 
1389 /**
1390  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1391  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1392  * @order:    how many 2^order pages should be occupied in newly allocated block
1393  * @gfp_mask: flags for the page level allocator
1394  *
1395  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1396  */
1397 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1398 {
1399 	struct vmap_block_queue *vbq;
1400 	struct vmap_block *vb;
1401 	struct vmap_area *va;
1402 	unsigned long vb_idx;
1403 	int node, err;
1404 	void *vaddr;
1405 
1406 	node = numa_node_id();
1407 
1408 	vb = kmalloc_node(sizeof(struct vmap_block),
1409 			gfp_mask & GFP_RECLAIM_MASK, node);
1410 	if (unlikely(!vb))
1411 		return ERR_PTR(-ENOMEM);
1412 
1413 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1414 					VMALLOC_START, VMALLOC_END,
1415 					node, gfp_mask);
1416 	if (IS_ERR(va)) {
1417 		kfree(vb);
1418 		return ERR_CAST(va);
1419 	}
1420 
1421 	err = radix_tree_preload(gfp_mask);
1422 	if (unlikely(err)) {
1423 		kfree(vb);
1424 		free_vmap_area(va);
1425 		return ERR_PTR(err);
1426 	}
1427 
1428 	vaddr = vmap_block_vaddr(va->va_start, 0);
1429 	spin_lock_init(&vb->lock);
1430 	vb->va = va;
1431 	/* At least something should be left free */
1432 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1433 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1434 	vb->dirty = 0;
1435 	vb->dirty_min = VMAP_BBMAP_BITS;
1436 	vb->dirty_max = 0;
1437 	INIT_LIST_HEAD(&vb->free_list);
1438 
1439 	vb_idx = addr_to_vb_idx(va->va_start);
1440 	spin_lock(&vmap_block_tree_lock);
1441 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1442 	spin_unlock(&vmap_block_tree_lock);
1443 	BUG_ON(err);
1444 	radix_tree_preload_end();
1445 
1446 	vbq = &get_cpu_var(vmap_block_queue);
1447 	spin_lock(&vbq->lock);
1448 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1449 	spin_unlock(&vbq->lock);
1450 	put_cpu_var(vmap_block_queue);
1451 
1452 	return vaddr;
1453 }
1454 
1455 static void free_vmap_block(struct vmap_block *vb)
1456 {
1457 	struct vmap_block *tmp;
1458 	unsigned long vb_idx;
1459 
1460 	vb_idx = addr_to_vb_idx(vb->va->va_start);
1461 	spin_lock(&vmap_block_tree_lock);
1462 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1463 	spin_unlock(&vmap_block_tree_lock);
1464 	BUG_ON(tmp != vb);
1465 
1466 	free_vmap_area_noflush(vb->va);
1467 	kfree_rcu(vb, rcu_head);
1468 }
1469 
1470 static void purge_fragmented_blocks(int cpu)
1471 {
1472 	LIST_HEAD(purge);
1473 	struct vmap_block *vb;
1474 	struct vmap_block *n_vb;
1475 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1476 
1477 	rcu_read_lock();
1478 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1479 
1480 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1481 			continue;
1482 
1483 		spin_lock(&vb->lock);
1484 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1485 			vb->free = 0; /* prevent further allocs after releasing lock */
1486 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1487 			vb->dirty_min = 0;
1488 			vb->dirty_max = VMAP_BBMAP_BITS;
1489 			spin_lock(&vbq->lock);
1490 			list_del_rcu(&vb->free_list);
1491 			spin_unlock(&vbq->lock);
1492 			spin_unlock(&vb->lock);
1493 			list_add_tail(&vb->purge, &purge);
1494 		} else
1495 			spin_unlock(&vb->lock);
1496 	}
1497 	rcu_read_unlock();
1498 
1499 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1500 		list_del(&vb->purge);
1501 		free_vmap_block(vb);
1502 	}
1503 }
1504 
1505 static void purge_fragmented_blocks_allcpus(void)
1506 {
1507 	int cpu;
1508 
1509 	for_each_possible_cpu(cpu)
1510 		purge_fragmented_blocks(cpu);
1511 }
1512 
1513 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1514 {
1515 	struct vmap_block_queue *vbq;
1516 	struct vmap_block *vb;
1517 	void *vaddr = NULL;
1518 	unsigned int order;
1519 
1520 	BUG_ON(offset_in_page(size));
1521 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1522 	if (WARN_ON(size == 0)) {
1523 		/*
1524 		 * Allocating 0 bytes isn't what caller wants since
1525 		 * get_order(0) returns funny result. Just warn and terminate
1526 		 * early.
1527 		 */
1528 		return NULL;
1529 	}
1530 	order = get_order(size);
1531 
1532 	rcu_read_lock();
1533 	vbq = &get_cpu_var(vmap_block_queue);
1534 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1535 		unsigned long pages_off;
1536 
1537 		spin_lock(&vb->lock);
1538 		if (vb->free < (1UL << order)) {
1539 			spin_unlock(&vb->lock);
1540 			continue;
1541 		}
1542 
1543 		pages_off = VMAP_BBMAP_BITS - vb->free;
1544 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1545 		vb->free -= 1UL << order;
1546 		if (vb->free == 0) {
1547 			spin_lock(&vbq->lock);
1548 			list_del_rcu(&vb->free_list);
1549 			spin_unlock(&vbq->lock);
1550 		}
1551 
1552 		spin_unlock(&vb->lock);
1553 		break;
1554 	}
1555 
1556 	put_cpu_var(vmap_block_queue);
1557 	rcu_read_unlock();
1558 
1559 	/* Allocate new block if nothing was found */
1560 	if (!vaddr)
1561 		vaddr = new_vmap_block(order, gfp_mask);
1562 
1563 	return vaddr;
1564 }
1565 
1566 static void vb_free(const void *addr, unsigned long size)
1567 {
1568 	unsigned long offset;
1569 	unsigned long vb_idx;
1570 	unsigned int order;
1571 	struct vmap_block *vb;
1572 
1573 	BUG_ON(offset_in_page(size));
1574 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1575 
1576 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1577 
1578 	order = get_order(size);
1579 
1580 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1581 	offset >>= PAGE_SHIFT;
1582 
1583 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1584 	rcu_read_lock();
1585 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1586 	rcu_read_unlock();
1587 	BUG_ON(!vb);
1588 
1589 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1590 
1591 	if (debug_pagealloc_enabled())
1592 		flush_tlb_kernel_range((unsigned long)addr,
1593 					(unsigned long)addr + size);
1594 
1595 	spin_lock(&vb->lock);
1596 
1597 	/* Expand dirty range */
1598 	vb->dirty_min = min(vb->dirty_min, offset);
1599 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1600 
1601 	vb->dirty += 1UL << order;
1602 	if (vb->dirty == VMAP_BBMAP_BITS) {
1603 		BUG_ON(vb->free);
1604 		spin_unlock(&vb->lock);
1605 		free_vmap_block(vb);
1606 	} else
1607 		spin_unlock(&vb->lock);
1608 }
1609 
1610 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1611 {
1612 	int cpu;
1613 
1614 	if (unlikely(!vmap_initialized))
1615 		return;
1616 
1617 	might_sleep();
1618 
1619 	for_each_possible_cpu(cpu) {
1620 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1621 		struct vmap_block *vb;
1622 
1623 		rcu_read_lock();
1624 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1625 			spin_lock(&vb->lock);
1626 			if (vb->dirty) {
1627 				unsigned long va_start = vb->va->va_start;
1628 				unsigned long s, e;
1629 
1630 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1631 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1632 
1633 				start = min(s, start);
1634 				end   = max(e, end);
1635 
1636 				flush = 1;
1637 			}
1638 			spin_unlock(&vb->lock);
1639 		}
1640 		rcu_read_unlock();
1641 	}
1642 
1643 	mutex_lock(&vmap_purge_lock);
1644 	purge_fragmented_blocks_allcpus();
1645 	if (!__purge_vmap_area_lazy(start, end) && flush)
1646 		flush_tlb_kernel_range(start, end);
1647 	mutex_unlock(&vmap_purge_lock);
1648 }
1649 
1650 /**
1651  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1652  *
1653  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1654  * to amortize TLB flushing overheads. What this means is that any page you
1655  * have now, may, in a former life, have been mapped into kernel virtual
1656  * address by the vmap layer and so there might be some CPUs with TLB entries
1657  * still referencing that page (additional to the regular 1:1 kernel mapping).
1658  *
1659  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1660  * be sure that none of the pages we have control over will have any aliases
1661  * from the vmap layer.
1662  */
1663 void vm_unmap_aliases(void)
1664 {
1665 	unsigned long start = ULONG_MAX, end = 0;
1666 	int flush = 0;
1667 
1668 	_vm_unmap_aliases(start, end, flush);
1669 }
1670 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1671 
1672 /**
1673  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1674  * @mem: the pointer returned by vm_map_ram
1675  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1676  */
1677 void vm_unmap_ram(const void *mem, unsigned int count)
1678 {
1679 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1680 	unsigned long addr = (unsigned long)mem;
1681 	struct vmap_area *va;
1682 
1683 	might_sleep();
1684 	BUG_ON(!addr);
1685 	BUG_ON(addr < VMALLOC_START);
1686 	BUG_ON(addr > VMALLOC_END);
1687 	BUG_ON(!PAGE_ALIGNED(addr));
1688 
1689 	if (likely(count <= VMAP_MAX_ALLOC)) {
1690 		debug_check_no_locks_freed(mem, size);
1691 		vb_free(mem, size);
1692 		return;
1693 	}
1694 
1695 	va = find_vmap_area(addr);
1696 	BUG_ON(!va);
1697 	debug_check_no_locks_freed((void *)va->va_start,
1698 				    (va->va_end - va->va_start));
1699 	free_unmap_vmap_area(va);
1700 }
1701 EXPORT_SYMBOL(vm_unmap_ram);
1702 
1703 /**
1704  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1705  * @pages: an array of pointers to the pages to be mapped
1706  * @count: number of pages
1707  * @node: prefer to allocate data structures on this node
1708  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1709  *
1710  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1711  * faster than vmap so it's good.  But if you mix long-life and short-life
1712  * objects with vm_map_ram(), it could consume lots of address space through
1713  * fragmentation (especially on a 32bit machine).  You could see failures in
1714  * the end.  Please use this function for short-lived objects.
1715  *
1716  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1717  */
1718 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1719 {
1720 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1721 	unsigned long addr;
1722 	void *mem;
1723 
1724 	if (likely(count <= VMAP_MAX_ALLOC)) {
1725 		mem = vb_alloc(size, GFP_KERNEL);
1726 		if (IS_ERR(mem))
1727 			return NULL;
1728 		addr = (unsigned long)mem;
1729 	} else {
1730 		struct vmap_area *va;
1731 		va = alloc_vmap_area(size, PAGE_SIZE,
1732 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1733 		if (IS_ERR(va))
1734 			return NULL;
1735 
1736 		addr = va->va_start;
1737 		mem = (void *)addr;
1738 	}
1739 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1740 		vm_unmap_ram(mem, count);
1741 		return NULL;
1742 	}
1743 	return mem;
1744 }
1745 EXPORT_SYMBOL(vm_map_ram);
1746 
1747 static struct vm_struct *vmlist __initdata;
1748 
1749 /**
1750  * vm_area_add_early - add vmap area early during boot
1751  * @vm: vm_struct to add
1752  *
1753  * This function is used to add fixed kernel vm area to vmlist before
1754  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1755  * should contain proper values and the other fields should be zero.
1756  *
1757  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1758  */
1759 void __init vm_area_add_early(struct vm_struct *vm)
1760 {
1761 	struct vm_struct *tmp, **p;
1762 
1763 	BUG_ON(vmap_initialized);
1764 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1765 		if (tmp->addr >= vm->addr) {
1766 			BUG_ON(tmp->addr < vm->addr + vm->size);
1767 			break;
1768 		} else
1769 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1770 	}
1771 	vm->next = *p;
1772 	*p = vm;
1773 }
1774 
1775 /**
1776  * vm_area_register_early - register vmap area early during boot
1777  * @vm: vm_struct to register
1778  * @align: requested alignment
1779  *
1780  * This function is used to register kernel vm area before
1781  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1782  * proper values on entry and other fields should be zero.  On return,
1783  * vm->addr contains the allocated address.
1784  *
1785  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1786  */
1787 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1788 {
1789 	static size_t vm_init_off __initdata;
1790 	unsigned long addr;
1791 
1792 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1793 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1794 
1795 	vm->addr = (void *)addr;
1796 
1797 	vm_area_add_early(vm);
1798 }
1799 
1800 static void vmap_init_free_space(void)
1801 {
1802 	unsigned long vmap_start = 1;
1803 	const unsigned long vmap_end = ULONG_MAX;
1804 	struct vmap_area *busy, *free;
1805 
1806 	/*
1807 	 *     B     F     B     B     B     F
1808 	 * -|-----|.....|-----|-----|-----|.....|-
1809 	 *  |           The KVA space           |
1810 	 *  |<--------------------------------->|
1811 	 */
1812 	list_for_each_entry(busy, &vmap_area_list, list) {
1813 		if (busy->va_start - vmap_start > 0) {
1814 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1815 			if (!WARN_ON_ONCE(!free)) {
1816 				free->va_start = vmap_start;
1817 				free->va_end = busy->va_start;
1818 
1819 				insert_vmap_area_augment(free, NULL,
1820 					&free_vmap_area_root,
1821 						&free_vmap_area_list);
1822 			}
1823 		}
1824 
1825 		vmap_start = busy->va_end;
1826 	}
1827 
1828 	if (vmap_end - vmap_start > 0) {
1829 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1830 		if (!WARN_ON_ONCE(!free)) {
1831 			free->va_start = vmap_start;
1832 			free->va_end = vmap_end;
1833 
1834 			insert_vmap_area_augment(free, NULL,
1835 				&free_vmap_area_root,
1836 					&free_vmap_area_list);
1837 		}
1838 	}
1839 }
1840 
1841 void __init vmalloc_init(void)
1842 {
1843 	struct vmap_area *va;
1844 	struct vm_struct *tmp;
1845 	int i;
1846 
1847 	/*
1848 	 * Create the cache for vmap_area objects.
1849 	 */
1850 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1851 
1852 	for_each_possible_cpu(i) {
1853 		struct vmap_block_queue *vbq;
1854 		struct vfree_deferred *p;
1855 
1856 		vbq = &per_cpu(vmap_block_queue, i);
1857 		spin_lock_init(&vbq->lock);
1858 		INIT_LIST_HEAD(&vbq->free);
1859 		p = &per_cpu(vfree_deferred, i);
1860 		init_llist_head(&p->list);
1861 		INIT_WORK(&p->wq, free_work);
1862 	}
1863 
1864 	/* Import existing vmlist entries. */
1865 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1866 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1867 		if (WARN_ON_ONCE(!va))
1868 			continue;
1869 
1870 		va->flags = VM_VM_AREA;
1871 		va->va_start = (unsigned long)tmp->addr;
1872 		va->va_end = va->va_start + tmp->size;
1873 		va->vm = tmp;
1874 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1875 	}
1876 
1877 	/*
1878 	 * Now we can initialize a free vmap space.
1879 	 */
1880 	vmap_init_free_space();
1881 	vmap_initialized = true;
1882 }
1883 
1884 /**
1885  * map_kernel_range_noflush - map kernel VM area with the specified pages
1886  * @addr: start of the VM area to map
1887  * @size: size of the VM area to map
1888  * @prot: page protection flags to use
1889  * @pages: pages to map
1890  *
1891  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1892  * specify should have been allocated using get_vm_area() and its
1893  * friends.
1894  *
1895  * NOTE:
1896  * This function does NOT do any cache flushing.  The caller is
1897  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1898  * before calling this function.
1899  *
1900  * RETURNS:
1901  * The number of pages mapped on success, -errno on failure.
1902  */
1903 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1904 			     pgprot_t prot, struct page **pages)
1905 {
1906 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1907 }
1908 
1909 /**
1910  * unmap_kernel_range_noflush - unmap kernel VM area
1911  * @addr: start of the VM area to unmap
1912  * @size: size of the VM area to unmap
1913  *
1914  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1915  * specify should have been allocated using get_vm_area() and its
1916  * friends.
1917  *
1918  * NOTE:
1919  * This function does NOT do any cache flushing.  The caller is
1920  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1921  * before calling this function and flush_tlb_kernel_range() after.
1922  */
1923 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1924 {
1925 	vunmap_page_range(addr, addr + size);
1926 }
1927 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1928 
1929 /**
1930  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1931  * @addr: start of the VM area to unmap
1932  * @size: size of the VM area to unmap
1933  *
1934  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1935  * the unmapping and tlb after.
1936  */
1937 void unmap_kernel_range(unsigned long addr, unsigned long size)
1938 {
1939 	unsigned long end = addr + size;
1940 
1941 	flush_cache_vunmap(addr, end);
1942 	vunmap_page_range(addr, end);
1943 	flush_tlb_kernel_range(addr, end);
1944 }
1945 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1946 
1947 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1948 {
1949 	unsigned long addr = (unsigned long)area->addr;
1950 	unsigned long end = addr + get_vm_area_size(area);
1951 	int err;
1952 
1953 	err = vmap_page_range(addr, end, prot, pages);
1954 
1955 	return err > 0 ? 0 : err;
1956 }
1957 EXPORT_SYMBOL_GPL(map_vm_area);
1958 
1959 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1960 			      unsigned long flags, const void *caller)
1961 {
1962 	spin_lock(&vmap_area_lock);
1963 	vm->flags = flags;
1964 	vm->addr = (void *)va->va_start;
1965 	vm->size = va->va_end - va->va_start;
1966 	vm->caller = caller;
1967 	va->vm = vm;
1968 	va->flags |= VM_VM_AREA;
1969 	spin_unlock(&vmap_area_lock);
1970 }
1971 
1972 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1973 {
1974 	/*
1975 	 * Before removing VM_UNINITIALIZED,
1976 	 * we should make sure that vm has proper values.
1977 	 * Pair with smp_rmb() in show_numa_info().
1978 	 */
1979 	smp_wmb();
1980 	vm->flags &= ~VM_UNINITIALIZED;
1981 }
1982 
1983 static struct vm_struct *__get_vm_area_node(unsigned long size,
1984 		unsigned long align, unsigned long flags, unsigned long start,
1985 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1986 {
1987 	struct vmap_area *va;
1988 	struct vm_struct *area;
1989 
1990 	BUG_ON(in_interrupt());
1991 	size = PAGE_ALIGN(size);
1992 	if (unlikely(!size))
1993 		return NULL;
1994 
1995 	if (flags & VM_IOREMAP)
1996 		align = 1ul << clamp_t(int, get_count_order_long(size),
1997 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1998 
1999 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2000 	if (unlikely(!area))
2001 		return NULL;
2002 
2003 	if (!(flags & VM_NO_GUARD))
2004 		size += PAGE_SIZE;
2005 
2006 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2007 	if (IS_ERR(va)) {
2008 		kfree(area);
2009 		return NULL;
2010 	}
2011 
2012 	setup_vmalloc_vm(area, va, flags, caller);
2013 
2014 	return area;
2015 }
2016 
2017 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2018 				unsigned long start, unsigned long end)
2019 {
2020 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2021 				  GFP_KERNEL, __builtin_return_address(0));
2022 }
2023 EXPORT_SYMBOL_GPL(__get_vm_area);
2024 
2025 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2026 				       unsigned long start, unsigned long end,
2027 				       const void *caller)
2028 {
2029 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2030 				  GFP_KERNEL, caller);
2031 }
2032 
2033 /**
2034  * get_vm_area - reserve a contiguous kernel virtual area
2035  * @size:	 size of the area
2036  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2037  *
2038  * Search an area of @size in the kernel virtual mapping area,
2039  * and reserved it for out purposes.  Returns the area descriptor
2040  * on success or %NULL on failure.
2041  *
2042  * Return: the area descriptor on success or %NULL on failure.
2043  */
2044 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2045 {
2046 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2047 				  NUMA_NO_NODE, GFP_KERNEL,
2048 				  __builtin_return_address(0));
2049 }
2050 
2051 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2052 				const void *caller)
2053 {
2054 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2055 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2056 }
2057 
2058 /**
2059  * find_vm_area - find a continuous kernel virtual area
2060  * @addr:	  base address
2061  *
2062  * Search for the kernel VM area starting at @addr, and return it.
2063  * It is up to the caller to do all required locking to keep the returned
2064  * pointer valid.
2065  *
2066  * Return: pointer to the found area or %NULL on faulure
2067  */
2068 struct vm_struct *find_vm_area(const void *addr)
2069 {
2070 	struct vmap_area *va;
2071 
2072 	va = find_vmap_area((unsigned long)addr);
2073 	if (va && va->flags & VM_VM_AREA)
2074 		return va->vm;
2075 
2076 	return NULL;
2077 }
2078 
2079 /**
2080  * remove_vm_area - find and remove a continuous kernel virtual area
2081  * @addr:	    base address
2082  *
2083  * Search for the kernel VM area starting at @addr, and remove it.
2084  * This function returns the found VM area, but using it is NOT safe
2085  * on SMP machines, except for its size or flags.
2086  *
2087  * Return: pointer to the found area or %NULL on faulure
2088  */
2089 struct vm_struct *remove_vm_area(const void *addr)
2090 {
2091 	struct vmap_area *va;
2092 
2093 	might_sleep();
2094 
2095 	va = find_vmap_area((unsigned long)addr);
2096 	if (va && va->flags & VM_VM_AREA) {
2097 		struct vm_struct *vm = va->vm;
2098 
2099 		spin_lock(&vmap_area_lock);
2100 		va->vm = NULL;
2101 		va->flags &= ~VM_VM_AREA;
2102 		va->flags |= VM_LAZY_FREE;
2103 		spin_unlock(&vmap_area_lock);
2104 
2105 		kasan_free_shadow(vm);
2106 		free_unmap_vmap_area(va);
2107 
2108 		return vm;
2109 	}
2110 	return NULL;
2111 }
2112 
2113 static inline void set_area_direct_map(const struct vm_struct *area,
2114 				       int (*set_direct_map)(struct page *page))
2115 {
2116 	int i;
2117 
2118 	for (i = 0; i < area->nr_pages; i++)
2119 		if (page_address(area->pages[i]))
2120 			set_direct_map(area->pages[i]);
2121 }
2122 
2123 /* Handle removing and resetting vm mappings related to the vm_struct. */
2124 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2125 {
2126 	unsigned long addr = (unsigned long)area->addr;
2127 	unsigned long start = ULONG_MAX, end = 0;
2128 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2129 	int i;
2130 
2131 	/*
2132 	 * The below block can be removed when all architectures that have
2133 	 * direct map permissions also have set_direct_map_() implementations.
2134 	 * This is concerned with resetting the direct map any an vm alias with
2135 	 * execute permissions, without leaving a RW+X window.
2136 	 */
2137 	if (flush_reset && !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
2138 		set_memory_nx(addr, area->nr_pages);
2139 		set_memory_rw(addr, area->nr_pages);
2140 	}
2141 
2142 	remove_vm_area(area->addr);
2143 
2144 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2145 	if (!flush_reset)
2146 		return;
2147 
2148 	/*
2149 	 * If not deallocating pages, just do the flush of the VM area and
2150 	 * return.
2151 	 */
2152 	if (!deallocate_pages) {
2153 		vm_unmap_aliases();
2154 		return;
2155 	}
2156 
2157 	/*
2158 	 * If execution gets here, flush the vm mapping and reset the direct
2159 	 * map. Find the start and end range of the direct mappings to make sure
2160 	 * the vm_unmap_aliases() flush includes the direct map.
2161 	 */
2162 	for (i = 0; i < area->nr_pages; i++) {
2163 		if (page_address(area->pages[i])) {
2164 			start = min(addr, start);
2165 			end = max(addr, end);
2166 		}
2167 	}
2168 
2169 	/*
2170 	 * Set direct map to something invalid so that it won't be cached if
2171 	 * there are any accesses after the TLB flush, then flush the TLB and
2172 	 * reset the direct map permissions to the default.
2173 	 */
2174 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2175 	_vm_unmap_aliases(start, end, 1);
2176 	set_area_direct_map(area, set_direct_map_default_noflush);
2177 }
2178 
2179 static void __vunmap(const void *addr, int deallocate_pages)
2180 {
2181 	struct vm_struct *area;
2182 
2183 	if (!addr)
2184 		return;
2185 
2186 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2187 			addr))
2188 		return;
2189 
2190 	area = find_vm_area(addr);
2191 	if (unlikely(!area)) {
2192 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2193 				addr);
2194 		return;
2195 	}
2196 
2197 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2198 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2199 
2200 	vm_remove_mappings(area, deallocate_pages);
2201 
2202 	if (deallocate_pages) {
2203 		int i;
2204 
2205 		for (i = 0; i < area->nr_pages; i++) {
2206 			struct page *page = area->pages[i];
2207 
2208 			BUG_ON(!page);
2209 			__free_pages(page, 0);
2210 		}
2211 
2212 		kvfree(area->pages);
2213 	}
2214 
2215 	kfree(area);
2216 	return;
2217 }
2218 
2219 static inline void __vfree_deferred(const void *addr)
2220 {
2221 	/*
2222 	 * Use raw_cpu_ptr() because this can be called from preemptible
2223 	 * context. Preemption is absolutely fine here, because the llist_add()
2224 	 * implementation is lockless, so it works even if we are adding to
2225 	 * nother cpu's list.  schedule_work() should be fine with this too.
2226 	 */
2227 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2228 
2229 	if (llist_add((struct llist_node *)addr, &p->list))
2230 		schedule_work(&p->wq);
2231 }
2232 
2233 /**
2234  * vfree_atomic - release memory allocated by vmalloc()
2235  * @addr:	  memory base address
2236  *
2237  * This one is just like vfree() but can be called in any atomic context
2238  * except NMIs.
2239  */
2240 void vfree_atomic(const void *addr)
2241 {
2242 	BUG_ON(in_nmi());
2243 
2244 	kmemleak_free(addr);
2245 
2246 	if (!addr)
2247 		return;
2248 	__vfree_deferred(addr);
2249 }
2250 
2251 static void __vfree(const void *addr)
2252 {
2253 	if (unlikely(in_interrupt()))
2254 		__vfree_deferred(addr);
2255 	else
2256 		__vunmap(addr, 1);
2257 }
2258 
2259 /**
2260  * vfree - release memory allocated by vmalloc()
2261  * @addr:  memory base address
2262  *
2263  * Free the virtually continuous memory area starting at @addr, as
2264  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2265  * NULL, no operation is performed.
2266  *
2267  * Must not be called in NMI context (strictly speaking, only if we don't
2268  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2269  * conventions for vfree() arch-depenedent would be a really bad idea)
2270  *
2271  * May sleep if called *not* from interrupt context.
2272  *
2273  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2274  */
2275 void vfree(const void *addr)
2276 {
2277 	BUG_ON(in_nmi());
2278 
2279 	kmemleak_free(addr);
2280 
2281 	might_sleep_if(!in_interrupt());
2282 
2283 	if (!addr)
2284 		return;
2285 
2286 	__vfree(addr);
2287 }
2288 EXPORT_SYMBOL(vfree);
2289 
2290 /**
2291  * vunmap - release virtual mapping obtained by vmap()
2292  * @addr:   memory base address
2293  *
2294  * Free the virtually contiguous memory area starting at @addr,
2295  * which was created from the page array passed to vmap().
2296  *
2297  * Must not be called in interrupt context.
2298  */
2299 void vunmap(const void *addr)
2300 {
2301 	BUG_ON(in_interrupt());
2302 	might_sleep();
2303 	if (addr)
2304 		__vunmap(addr, 0);
2305 }
2306 EXPORT_SYMBOL(vunmap);
2307 
2308 /**
2309  * vmap - map an array of pages into virtually contiguous space
2310  * @pages: array of page pointers
2311  * @count: number of pages to map
2312  * @flags: vm_area->flags
2313  * @prot: page protection for the mapping
2314  *
2315  * Maps @count pages from @pages into contiguous kernel virtual
2316  * space.
2317  *
2318  * Return: the address of the area or %NULL on failure
2319  */
2320 void *vmap(struct page **pages, unsigned int count,
2321 	   unsigned long flags, pgprot_t prot)
2322 {
2323 	struct vm_struct *area;
2324 	unsigned long size;		/* In bytes */
2325 
2326 	might_sleep();
2327 
2328 	if (count > totalram_pages())
2329 		return NULL;
2330 
2331 	size = (unsigned long)count << PAGE_SHIFT;
2332 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2333 	if (!area)
2334 		return NULL;
2335 
2336 	if (map_vm_area(area, prot, pages)) {
2337 		vunmap(area->addr);
2338 		return NULL;
2339 	}
2340 
2341 	return area->addr;
2342 }
2343 EXPORT_SYMBOL(vmap);
2344 
2345 static void *__vmalloc_node(unsigned long size, unsigned long align,
2346 			    gfp_t gfp_mask, pgprot_t prot,
2347 			    int node, const void *caller);
2348 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2349 				 pgprot_t prot, int node)
2350 {
2351 	struct page **pages;
2352 	unsigned int nr_pages, array_size, i;
2353 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2354 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2355 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2356 					0 :
2357 					__GFP_HIGHMEM;
2358 
2359 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2360 	array_size = (nr_pages * sizeof(struct page *));
2361 
2362 	area->nr_pages = nr_pages;
2363 	/* Please note that the recursion is strictly bounded. */
2364 	if (array_size > PAGE_SIZE) {
2365 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2366 				PAGE_KERNEL, node, area->caller);
2367 	} else {
2368 		pages = kmalloc_node(array_size, nested_gfp, node);
2369 	}
2370 	area->pages = pages;
2371 	if (!area->pages) {
2372 		remove_vm_area(area->addr);
2373 		kfree(area);
2374 		return NULL;
2375 	}
2376 
2377 	for (i = 0; i < area->nr_pages; i++) {
2378 		struct page *page;
2379 
2380 		if (node == NUMA_NO_NODE)
2381 			page = alloc_page(alloc_mask|highmem_mask);
2382 		else
2383 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2384 
2385 		if (unlikely(!page)) {
2386 			/* Successfully allocated i pages, free them in __vunmap() */
2387 			area->nr_pages = i;
2388 			goto fail;
2389 		}
2390 		area->pages[i] = page;
2391 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2392 			cond_resched();
2393 	}
2394 
2395 	if (map_vm_area(area, prot, pages))
2396 		goto fail;
2397 	return area->addr;
2398 
2399 fail:
2400 	warn_alloc(gfp_mask, NULL,
2401 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2402 			  (area->nr_pages*PAGE_SIZE), area->size);
2403 	__vfree(area->addr);
2404 	return NULL;
2405 }
2406 
2407 /**
2408  * __vmalloc_node_range - allocate virtually contiguous memory
2409  * @size:		  allocation size
2410  * @align:		  desired alignment
2411  * @start:		  vm area range start
2412  * @end:		  vm area range end
2413  * @gfp_mask:		  flags for the page level allocator
2414  * @prot:		  protection mask for the allocated pages
2415  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2416  * @node:		  node to use for allocation or NUMA_NO_NODE
2417  * @caller:		  caller's return address
2418  *
2419  * Allocate enough pages to cover @size from the page level
2420  * allocator with @gfp_mask flags.  Map them into contiguous
2421  * kernel virtual space, using a pagetable protection of @prot.
2422  *
2423  * Return: the address of the area or %NULL on failure
2424  */
2425 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2426 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2427 			pgprot_t prot, unsigned long vm_flags, int node,
2428 			const void *caller)
2429 {
2430 	struct vm_struct *area;
2431 	void *addr;
2432 	unsigned long real_size = size;
2433 
2434 	size = PAGE_ALIGN(size);
2435 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2436 		goto fail;
2437 
2438 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2439 				vm_flags, start, end, node, gfp_mask, caller);
2440 	if (!area)
2441 		goto fail;
2442 
2443 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2444 	if (!addr)
2445 		return NULL;
2446 
2447 	/*
2448 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2449 	 * flag. It means that vm_struct is not fully initialized.
2450 	 * Now, it is fully initialized, so remove this flag here.
2451 	 */
2452 	clear_vm_uninitialized_flag(area);
2453 
2454 	kmemleak_vmalloc(area, size, gfp_mask);
2455 
2456 	return addr;
2457 
2458 fail:
2459 	warn_alloc(gfp_mask, NULL,
2460 			  "vmalloc: allocation failure: %lu bytes", real_size);
2461 	return NULL;
2462 }
2463 
2464 /*
2465  * This is only for performance analysis of vmalloc and stress purpose.
2466  * It is required by vmalloc test module, therefore do not use it other
2467  * than that.
2468  */
2469 #ifdef CONFIG_TEST_VMALLOC_MODULE
2470 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2471 #endif
2472 
2473 /**
2474  * __vmalloc_node - allocate virtually contiguous memory
2475  * @size:	    allocation size
2476  * @align:	    desired alignment
2477  * @gfp_mask:	    flags for the page level allocator
2478  * @prot:	    protection mask for the allocated pages
2479  * @node:	    node to use for allocation or NUMA_NO_NODE
2480  * @caller:	    caller's return address
2481  *
2482  * Allocate enough pages to cover @size from the page level
2483  * allocator with @gfp_mask flags.  Map them into contiguous
2484  * kernel virtual space, using a pagetable protection of @prot.
2485  *
2486  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2487  * and __GFP_NOFAIL are not supported
2488  *
2489  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2490  * with mm people.
2491  *
2492  * Return: pointer to the allocated memory or %NULL on error
2493  */
2494 static void *__vmalloc_node(unsigned long size, unsigned long align,
2495 			    gfp_t gfp_mask, pgprot_t prot,
2496 			    int node, const void *caller)
2497 {
2498 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2499 				gfp_mask, prot, 0, node, caller);
2500 }
2501 
2502 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2503 {
2504 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2505 				__builtin_return_address(0));
2506 }
2507 EXPORT_SYMBOL(__vmalloc);
2508 
2509 static inline void *__vmalloc_node_flags(unsigned long size,
2510 					int node, gfp_t flags)
2511 {
2512 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2513 					node, __builtin_return_address(0));
2514 }
2515 
2516 
2517 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2518 				  void *caller)
2519 {
2520 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2521 }
2522 
2523 /**
2524  * vmalloc - allocate virtually contiguous memory
2525  * @size:    allocation size
2526  *
2527  * Allocate enough pages to cover @size from the page level
2528  * allocator and map them into contiguous kernel virtual space.
2529  *
2530  * For tight control over page level allocator and protection flags
2531  * use __vmalloc() instead.
2532  *
2533  * Return: pointer to the allocated memory or %NULL on error
2534  */
2535 void *vmalloc(unsigned long size)
2536 {
2537 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2538 				    GFP_KERNEL);
2539 }
2540 EXPORT_SYMBOL(vmalloc);
2541 
2542 /**
2543  * vzalloc - allocate virtually contiguous memory with zero fill
2544  * @size:    allocation size
2545  *
2546  * Allocate enough pages to cover @size from the page level
2547  * allocator and map them into contiguous kernel virtual space.
2548  * The memory allocated is set to zero.
2549  *
2550  * For tight control over page level allocator and protection flags
2551  * use __vmalloc() instead.
2552  *
2553  * Return: pointer to the allocated memory or %NULL on error
2554  */
2555 void *vzalloc(unsigned long size)
2556 {
2557 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2558 				GFP_KERNEL | __GFP_ZERO);
2559 }
2560 EXPORT_SYMBOL(vzalloc);
2561 
2562 /**
2563  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2564  * @size: allocation size
2565  *
2566  * The resulting memory area is zeroed so it can be mapped to userspace
2567  * without leaking data.
2568  *
2569  * Return: pointer to the allocated memory or %NULL on error
2570  */
2571 void *vmalloc_user(unsigned long size)
2572 {
2573 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2574 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2575 				    VM_USERMAP, NUMA_NO_NODE,
2576 				    __builtin_return_address(0));
2577 }
2578 EXPORT_SYMBOL(vmalloc_user);
2579 
2580 /**
2581  * vmalloc_node - allocate memory on a specific node
2582  * @size:	  allocation size
2583  * @node:	  numa node
2584  *
2585  * Allocate enough pages to cover @size from the page level
2586  * allocator and map them into contiguous kernel virtual space.
2587  *
2588  * For tight control over page level allocator and protection flags
2589  * use __vmalloc() instead.
2590  *
2591  * Return: pointer to the allocated memory or %NULL on error
2592  */
2593 void *vmalloc_node(unsigned long size, int node)
2594 {
2595 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2596 					node, __builtin_return_address(0));
2597 }
2598 EXPORT_SYMBOL(vmalloc_node);
2599 
2600 /**
2601  * vzalloc_node - allocate memory on a specific node with zero fill
2602  * @size:	allocation size
2603  * @node:	numa node
2604  *
2605  * Allocate enough pages to cover @size from the page level
2606  * allocator and map them into contiguous kernel virtual space.
2607  * The memory allocated is set to zero.
2608  *
2609  * For tight control over page level allocator and protection flags
2610  * use __vmalloc_node() instead.
2611  *
2612  * Return: pointer to the allocated memory or %NULL on error
2613  */
2614 void *vzalloc_node(unsigned long size, int node)
2615 {
2616 	return __vmalloc_node_flags(size, node,
2617 			 GFP_KERNEL | __GFP_ZERO);
2618 }
2619 EXPORT_SYMBOL(vzalloc_node);
2620 
2621 /**
2622  * vmalloc_exec - allocate virtually contiguous, executable memory
2623  * @size:	  allocation size
2624  *
2625  * Kernel-internal function to allocate enough pages to cover @size
2626  * the page level allocator and map them into contiguous and
2627  * executable kernel virtual space.
2628  *
2629  * For tight control over page level allocator and protection flags
2630  * use __vmalloc() instead.
2631  *
2632  * Return: pointer to the allocated memory or %NULL on error
2633  */
2634 void *vmalloc_exec(unsigned long size)
2635 {
2636 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2637 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2638 			NUMA_NO_NODE, __builtin_return_address(0));
2639 }
2640 
2641 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2642 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2643 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2644 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2645 #else
2646 /*
2647  * 64b systems should always have either DMA or DMA32 zones. For others
2648  * GFP_DMA32 should do the right thing and use the normal zone.
2649  */
2650 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2651 #endif
2652 
2653 /**
2654  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2655  * @size:	allocation size
2656  *
2657  * Allocate enough 32bit PA addressable pages to cover @size from the
2658  * page level allocator and map them into contiguous kernel virtual space.
2659  *
2660  * Return: pointer to the allocated memory or %NULL on error
2661  */
2662 void *vmalloc_32(unsigned long size)
2663 {
2664 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2665 			      NUMA_NO_NODE, __builtin_return_address(0));
2666 }
2667 EXPORT_SYMBOL(vmalloc_32);
2668 
2669 /**
2670  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2671  * @size:	     allocation size
2672  *
2673  * The resulting memory area is 32bit addressable and zeroed so it can be
2674  * mapped to userspace without leaking data.
2675  *
2676  * Return: pointer to the allocated memory or %NULL on error
2677  */
2678 void *vmalloc_32_user(unsigned long size)
2679 {
2680 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2681 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2682 				    VM_USERMAP, NUMA_NO_NODE,
2683 				    __builtin_return_address(0));
2684 }
2685 EXPORT_SYMBOL(vmalloc_32_user);
2686 
2687 /*
2688  * small helper routine , copy contents to buf from addr.
2689  * If the page is not present, fill zero.
2690  */
2691 
2692 static int aligned_vread(char *buf, char *addr, unsigned long count)
2693 {
2694 	struct page *p;
2695 	int copied = 0;
2696 
2697 	while (count) {
2698 		unsigned long offset, length;
2699 
2700 		offset = offset_in_page(addr);
2701 		length = PAGE_SIZE - offset;
2702 		if (length > count)
2703 			length = count;
2704 		p = vmalloc_to_page(addr);
2705 		/*
2706 		 * To do safe access to this _mapped_ area, we need
2707 		 * lock. But adding lock here means that we need to add
2708 		 * overhead of vmalloc()/vfree() calles for this _debug_
2709 		 * interface, rarely used. Instead of that, we'll use
2710 		 * kmap() and get small overhead in this access function.
2711 		 */
2712 		if (p) {
2713 			/*
2714 			 * we can expect USER0 is not used (see vread/vwrite's
2715 			 * function description)
2716 			 */
2717 			void *map = kmap_atomic(p);
2718 			memcpy(buf, map + offset, length);
2719 			kunmap_atomic(map);
2720 		} else
2721 			memset(buf, 0, length);
2722 
2723 		addr += length;
2724 		buf += length;
2725 		copied += length;
2726 		count -= length;
2727 	}
2728 	return copied;
2729 }
2730 
2731 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2732 {
2733 	struct page *p;
2734 	int copied = 0;
2735 
2736 	while (count) {
2737 		unsigned long offset, length;
2738 
2739 		offset = offset_in_page(addr);
2740 		length = PAGE_SIZE - offset;
2741 		if (length > count)
2742 			length = count;
2743 		p = vmalloc_to_page(addr);
2744 		/*
2745 		 * To do safe access to this _mapped_ area, we need
2746 		 * lock. But adding lock here means that we need to add
2747 		 * overhead of vmalloc()/vfree() calles for this _debug_
2748 		 * interface, rarely used. Instead of that, we'll use
2749 		 * kmap() and get small overhead in this access function.
2750 		 */
2751 		if (p) {
2752 			/*
2753 			 * we can expect USER0 is not used (see vread/vwrite's
2754 			 * function description)
2755 			 */
2756 			void *map = kmap_atomic(p);
2757 			memcpy(map + offset, buf, length);
2758 			kunmap_atomic(map);
2759 		}
2760 		addr += length;
2761 		buf += length;
2762 		copied += length;
2763 		count -= length;
2764 	}
2765 	return copied;
2766 }
2767 
2768 /**
2769  * vread() - read vmalloc area in a safe way.
2770  * @buf:     buffer for reading data
2771  * @addr:    vm address.
2772  * @count:   number of bytes to be read.
2773  *
2774  * This function checks that addr is a valid vmalloc'ed area, and
2775  * copy data from that area to a given buffer. If the given memory range
2776  * of [addr...addr+count) includes some valid address, data is copied to
2777  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2778  * IOREMAP area is treated as memory hole and no copy is done.
2779  *
2780  * If [addr...addr+count) doesn't includes any intersects with alive
2781  * vm_struct area, returns 0. @buf should be kernel's buffer.
2782  *
2783  * Note: In usual ops, vread() is never necessary because the caller
2784  * should know vmalloc() area is valid and can use memcpy().
2785  * This is for routines which have to access vmalloc area without
2786  * any informaion, as /dev/kmem.
2787  *
2788  * Return: number of bytes for which addr and buf should be increased
2789  * (same number as @count) or %0 if [addr...addr+count) doesn't
2790  * include any intersection with valid vmalloc area
2791  */
2792 long vread(char *buf, char *addr, unsigned long count)
2793 {
2794 	struct vmap_area *va;
2795 	struct vm_struct *vm;
2796 	char *vaddr, *buf_start = buf;
2797 	unsigned long buflen = count;
2798 	unsigned long n;
2799 
2800 	/* Don't allow overflow */
2801 	if ((unsigned long) addr + count < count)
2802 		count = -(unsigned long) addr;
2803 
2804 	spin_lock(&vmap_area_lock);
2805 	list_for_each_entry(va, &vmap_area_list, list) {
2806 		if (!count)
2807 			break;
2808 
2809 		if (!(va->flags & VM_VM_AREA))
2810 			continue;
2811 
2812 		vm = va->vm;
2813 		vaddr = (char *) vm->addr;
2814 		if (addr >= vaddr + get_vm_area_size(vm))
2815 			continue;
2816 		while (addr < vaddr) {
2817 			if (count == 0)
2818 				goto finished;
2819 			*buf = '\0';
2820 			buf++;
2821 			addr++;
2822 			count--;
2823 		}
2824 		n = vaddr + get_vm_area_size(vm) - addr;
2825 		if (n > count)
2826 			n = count;
2827 		if (!(vm->flags & VM_IOREMAP))
2828 			aligned_vread(buf, addr, n);
2829 		else /* IOREMAP area is treated as memory hole */
2830 			memset(buf, 0, n);
2831 		buf += n;
2832 		addr += n;
2833 		count -= n;
2834 	}
2835 finished:
2836 	spin_unlock(&vmap_area_lock);
2837 
2838 	if (buf == buf_start)
2839 		return 0;
2840 	/* zero-fill memory holes */
2841 	if (buf != buf_start + buflen)
2842 		memset(buf, 0, buflen - (buf - buf_start));
2843 
2844 	return buflen;
2845 }
2846 
2847 /**
2848  * vwrite() - write vmalloc area in a safe way.
2849  * @buf:      buffer for source data
2850  * @addr:     vm address.
2851  * @count:    number of bytes to be read.
2852  *
2853  * This function checks that addr is a valid vmalloc'ed area, and
2854  * copy data from a buffer to the given addr. If specified range of
2855  * [addr...addr+count) includes some valid address, data is copied from
2856  * proper area of @buf. If there are memory holes, no copy to hole.
2857  * IOREMAP area is treated as memory hole and no copy is done.
2858  *
2859  * If [addr...addr+count) doesn't includes any intersects with alive
2860  * vm_struct area, returns 0. @buf should be kernel's buffer.
2861  *
2862  * Note: In usual ops, vwrite() is never necessary because the caller
2863  * should know vmalloc() area is valid and can use memcpy().
2864  * This is for routines which have to access vmalloc area without
2865  * any informaion, as /dev/kmem.
2866  *
2867  * Return: number of bytes for which addr and buf should be
2868  * increased (same number as @count) or %0 if [addr...addr+count)
2869  * doesn't include any intersection with valid vmalloc area
2870  */
2871 long vwrite(char *buf, char *addr, unsigned long count)
2872 {
2873 	struct vmap_area *va;
2874 	struct vm_struct *vm;
2875 	char *vaddr;
2876 	unsigned long n, buflen;
2877 	int copied = 0;
2878 
2879 	/* Don't allow overflow */
2880 	if ((unsigned long) addr + count < count)
2881 		count = -(unsigned long) addr;
2882 	buflen = count;
2883 
2884 	spin_lock(&vmap_area_lock);
2885 	list_for_each_entry(va, &vmap_area_list, list) {
2886 		if (!count)
2887 			break;
2888 
2889 		if (!(va->flags & VM_VM_AREA))
2890 			continue;
2891 
2892 		vm = va->vm;
2893 		vaddr = (char *) vm->addr;
2894 		if (addr >= vaddr + get_vm_area_size(vm))
2895 			continue;
2896 		while (addr < vaddr) {
2897 			if (count == 0)
2898 				goto finished;
2899 			buf++;
2900 			addr++;
2901 			count--;
2902 		}
2903 		n = vaddr + get_vm_area_size(vm) - addr;
2904 		if (n > count)
2905 			n = count;
2906 		if (!(vm->flags & VM_IOREMAP)) {
2907 			aligned_vwrite(buf, addr, n);
2908 			copied++;
2909 		}
2910 		buf += n;
2911 		addr += n;
2912 		count -= n;
2913 	}
2914 finished:
2915 	spin_unlock(&vmap_area_lock);
2916 	if (!copied)
2917 		return 0;
2918 	return buflen;
2919 }
2920 
2921 /**
2922  * remap_vmalloc_range_partial - map vmalloc pages to userspace
2923  * @vma:		vma to cover
2924  * @uaddr:		target user address to start at
2925  * @kaddr:		virtual address of vmalloc kernel memory
2926  * @size:		size of map area
2927  *
2928  * Returns:	0 for success, -Exxx on failure
2929  *
2930  * This function checks that @kaddr is a valid vmalloc'ed area,
2931  * and that it is big enough to cover the range starting at
2932  * @uaddr in @vma. Will return failure if that criteria isn't
2933  * met.
2934  *
2935  * Similar to remap_pfn_range() (see mm/memory.c)
2936  */
2937 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2938 				void *kaddr, unsigned long size)
2939 {
2940 	struct vm_struct *area;
2941 
2942 	size = PAGE_ALIGN(size);
2943 
2944 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2945 		return -EINVAL;
2946 
2947 	area = find_vm_area(kaddr);
2948 	if (!area)
2949 		return -EINVAL;
2950 
2951 	if (!(area->flags & VM_USERMAP))
2952 		return -EINVAL;
2953 
2954 	if (kaddr + size > area->addr + get_vm_area_size(area))
2955 		return -EINVAL;
2956 
2957 	do {
2958 		struct page *page = vmalloc_to_page(kaddr);
2959 		int ret;
2960 
2961 		ret = vm_insert_page(vma, uaddr, page);
2962 		if (ret)
2963 			return ret;
2964 
2965 		uaddr += PAGE_SIZE;
2966 		kaddr += PAGE_SIZE;
2967 		size -= PAGE_SIZE;
2968 	} while (size > 0);
2969 
2970 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2971 
2972 	return 0;
2973 }
2974 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2975 
2976 /**
2977  * remap_vmalloc_range - map vmalloc pages to userspace
2978  * @vma:		vma to cover (map full range of vma)
2979  * @addr:		vmalloc memory
2980  * @pgoff:		number of pages into addr before first page to map
2981  *
2982  * Returns:	0 for success, -Exxx on failure
2983  *
2984  * This function checks that addr is a valid vmalloc'ed area, and
2985  * that it is big enough to cover the vma. Will return failure if
2986  * that criteria isn't met.
2987  *
2988  * Similar to remap_pfn_range() (see mm/memory.c)
2989  */
2990 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2991 						unsigned long pgoff)
2992 {
2993 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2994 					   addr + (pgoff << PAGE_SHIFT),
2995 					   vma->vm_end - vma->vm_start);
2996 }
2997 EXPORT_SYMBOL(remap_vmalloc_range);
2998 
2999 /*
3000  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3001  * have one.
3002  */
3003 void __weak vmalloc_sync_all(void)
3004 {
3005 }
3006 
3007 
3008 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
3009 {
3010 	pte_t ***p = data;
3011 
3012 	if (p) {
3013 		*(*p) = pte;
3014 		(*p)++;
3015 	}
3016 	return 0;
3017 }
3018 
3019 /**
3020  * alloc_vm_area - allocate a range of kernel address space
3021  * @size:	   size of the area
3022  * @ptes:	   returns the PTEs for the address space
3023  *
3024  * Returns:	NULL on failure, vm_struct on success
3025  *
3026  * This function reserves a range of kernel address space, and
3027  * allocates pagetables to map that range.  No actual mappings
3028  * are created.
3029  *
3030  * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3031  * allocated for the VM area are returned.
3032  */
3033 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3034 {
3035 	struct vm_struct *area;
3036 
3037 	area = get_vm_area_caller(size, VM_IOREMAP,
3038 				__builtin_return_address(0));
3039 	if (area == NULL)
3040 		return NULL;
3041 
3042 	/*
3043 	 * This ensures that page tables are constructed for this region
3044 	 * of kernel virtual address space and mapped into init_mm.
3045 	 */
3046 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3047 				size, f, ptes ? &ptes : NULL)) {
3048 		free_vm_area(area);
3049 		return NULL;
3050 	}
3051 
3052 	return area;
3053 }
3054 EXPORT_SYMBOL_GPL(alloc_vm_area);
3055 
3056 void free_vm_area(struct vm_struct *area)
3057 {
3058 	struct vm_struct *ret;
3059 	ret = remove_vm_area(area->addr);
3060 	BUG_ON(ret != area);
3061 	kfree(area);
3062 }
3063 EXPORT_SYMBOL_GPL(free_vm_area);
3064 
3065 #ifdef CONFIG_SMP
3066 static struct vmap_area *node_to_va(struct rb_node *n)
3067 {
3068 	return rb_entry_safe(n, struct vmap_area, rb_node);
3069 }
3070 
3071 /**
3072  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3073  * @addr: target address
3074  *
3075  * Returns: vmap_area if it is found. If there is no such area
3076  *   the first highest(reverse order) vmap_area is returned
3077  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3078  *   if there are no any areas before @addr.
3079  */
3080 static struct vmap_area *
3081 pvm_find_va_enclose_addr(unsigned long addr)
3082 {
3083 	struct vmap_area *va, *tmp;
3084 	struct rb_node *n;
3085 
3086 	n = free_vmap_area_root.rb_node;
3087 	va = NULL;
3088 
3089 	while (n) {
3090 		tmp = rb_entry(n, struct vmap_area, rb_node);
3091 		if (tmp->va_start <= addr) {
3092 			va = tmp;
3093 			if (tmp->va_end >= addr)
3094 				break;
3095 
3096 			n = n->rb_right;
3097 		} else {
3098 			n = n->rb_left;
3099 		}
3100 	}
3101 
3102 	return va;
3103 }
3104 
3105 /**
3106  * pvm_determine_end_from_reverse - find the highest aligned address
3107  * of free block below VMALLOC_END
3108  * @va:
3109  *   in - the VA we start the search(reverse order);
3110  *   out - the VA with the highest aligned end address.
3111  *
3112  * Returns: determined end address within vmap_area
3113  */
3114 static unsigned long
3115 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3116 {
3117 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3118 	unsigned long addr;
3119 
3120 	if (likely(*va)) {
3121 		list_for_each_entry_from_reverse((*va),
3122 				&free_vmap_area_list, list) {
3123 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3124 			if ((*va)->va_start < addr)
3125 				return addr;
3126 		}
3127 	}
3128 
3129 	return 0;
3130 }
3131 
3132 /**
3133  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3134  * @offsets: array containing offset of each area
3135  * @sizes: array containing size of each area
3136  * @nr_vms: the number of areas to allocate
3137  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3138  *
3139  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3140  *	    vm_structs on success, %NULL on failure
3141  *
3142  * Percpu allocator wants to use congruent vm areas so that it can
3143  * maintain the offsets among percpu areas.  This function allocates
3144  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3145  * be scattered pretty far, distance between two areas easily going up
3146  * to gigabytes.  To avoid interacting with regular vmallocs, these
3147  * areas are allocated from top.
3148  *
3149  * Despite its complicated look, this allocator is rather simple. It
3150  * does everything top-down and scans free blocks from the end looking
3151  * for matching base. While scanning, if any of the areas do not fit the
3152  * base address is pulled down to fit the area. Scanning is repeated till
3153  * all the areas fit and then all necessary data structures are inserted
3154  * and the result is returned.
3155  */
3156 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3157 				     const size_t *sizes, int nr_vms,
3158 				     size_t align)
3159 {
3160 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3161 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3162 	struct vmap_area **vas, *va;
3163 	struct vm_struct **vms;
3164 	int area, area2, last_area, term_area;
3165 	unsigned long base, start, size, end, last_end;
3166 	bool purged = false;
3167 	enum fit_type type;
3168 
3169 	/* verify parameters and allocate data structures */
3170 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3171 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3172 		start = offsets[area];
3173 		end = start + sizes[area];
3174 
3175 		/* is everything aligned properly? */
3176 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3177 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3178 
3179 		/* detect the area with the highest address */
3180 		if (start > offsets[last_area])
3181 			last_area = area;
3182 
3183 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3184 			unsigned long start2 = offsets[area2];
3185 			unsigned long end2 = start2 + sizes[area2];
3186 
3187 			BUG_ON(start2 < end && start < end2);
3188 		}
3189 	}
3190 	last_end = offsets[last_area] + sizes[last_area];
3191 
3192 	if (vmalloc_end - vmalloc_start < last_end) {
3193 		WARN_ON(true);
3194 		return NULL;
3195 	}
3196 
3197 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3198 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3199 	if (!vas || !vms)
3200 		goto err_free2;
3201 
3202 	for (area = 0; area < nr_vms; area++) {
3203 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3204 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3205 		if (!vas[area] || !vms[area])
3206 			goto err_free;
3207 	}
3208 retry:
3209 	spin_lock(&vmap_area_lock);
3210 
3211 	/* start scanning - we scan from the top, begin with the last area */
3212 	area = term_area = last_area;
3213 	start = offsets[area];
3214 	end = start + sizes[area];
3215 
3216 	va = pvm_find_va_enclose_addr(vmalloc_end);
3217 	base = pvm_determine_end_from_reverse(&va, align) - end;
3218 
3219 	while (true) {
3220 		/*
3221 		 * base might have underflowed, add last_end before
3222 		 * comparing.
3223 		 */
3224 		if (base + last_end < vmalloc_start + last_end)
3225 			goto overflow;
3226 
3227 		/*
3228 		 * Fitting base has not been found.
3229 		 */
3230 		if (va == NULL)
3231 			goto overflow;
3232 
3233 		/*
3234 		 * If this VA does not fit, move base downwards and recheck.
3235 		 */
3236 		if (base + start < va->va_start || base + end > va->va_end) {
3237 			va = node_to_va(rb_prev(&va->rb_node));
3238 			base = pvm_determine_end_from_reverse(&va, align) - end;
3239 			term_area = area;
3240 			continue;
3241 		}
3242 
3243 		/*
3244 		 * This area fits, move on to the previous one.  If
3245 		 * the previous one is the terminal one, we're done.
3246 		 */
3247 		area = (area + nr_vms - 1) % nr_vms;
3248 		if (area == term_area)
3249 			break;
3250 
3251 		start = offsets[area];
3252 		end = start + sizes[area];
3253 		va = pvm_find_va_enclose_addr(base + end);
3254 	}
3255 
3256 	/* we've found a fitting base, insert all va's */
3257 	for (area = 0; area < nr_vms; area++) {
3258 		int ret;
3259 
3260 		start = base + offsets[area];
3261 		size = sizes[area];
3262 
3263 		va = pvm_find_va_enclose_addr(start);
3264 		if (WARN_ON_ONCE(va == NULL))
3265 			/* It is a BUG(), but trigger recovery instead. */
3266 			goto recovery;
3267 
3268 		type = classify_va_fit_type(va, start, size);
3269 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3270 			/* It is a BUG(), but trigger recovery instead. */
3271 			goto recovery;
3272 
3273 		ret = adjust_va_to_fit_type(va, start, size, type);
3274 		if (unlikely(ret))
3275 			goto recovery;
3276 
3277 		/* Allocated area. */
3278 		va = vas[area];
3279 		va->va_start = start;
3280 		va->va_end = start + size;
3281 
3282 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3283 	}
3284 
3285 	spin_unlock(&vmap_area_lock);
3286 
3287 	/* insert all vm's */
3288 	for (area = 0; area < nr_vms; area++)
3289 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3290 				 pcpu_get_vm_areas);
3291 
3292 	kfree(vas);
3293 	return vms;
3294 
3295 recovery:
3296 	/* Remove previously inserted areas. */
3297 	while (area--) {
3298 		__free_vmap_area(vas[area]);
3299 		vas[area] = NULL;
3300 	}
3301 
3302 overflow:
3303 	spin_unlock(&vmap_area_lock);
3304 	if (!purged) {
3305 		purge_vmap_area_lazy();
3306 		purged = true;
3307 
3308 		/* Before "retry", check if we recover. */
3309 		for (area = 0; area < nr_vms; area++) {
3310 			if (vas[area])
3311 				continue;
3312 
3313 			vas[area] = kmem_cache_zalloc(
3314 				vmap_area_cachep, GFP_KERNEL);
3315 			if (!vas[area])
3316 				goto err_free;
3317 		}
3318 
3319 		goto retry;
3320 	}
3321 
3322 err_free:
3323 	for (area = 0; area < nr_vms; area++) {
3324 		if (vas[area])
3325 			kmem_cache_free(vmap_area_cachep, vas[area]);
3326 
3327 		kfree(vms[area]);
3328 	}
3329 err_free2:
3330 	kfree(vas);
3331 	kfree(vms);
3332 	return NULL;
3333 }
3334 
3335 /**
3336  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3337  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3338  * @nr_vms: the number of allocated areas
3339  *
3340  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3341  */
3342 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3343 {
3344 	int i;
3345 
3346 	for (i = 0; i < nr_vms; i++)
3347 		free_vm_area(vms[i]);
3348 	kfree(vms);
3349 }
3350 #endif	/* CONFIG_SMP */
3351 
3352 #ifdef CONFIG_PROC_FS
3353 static void *s_start(struct seq_file *m, loff_t *pos)
3354 	__acquires(&vmap_area_lock)
3355 {
3356 	spin_lock(&vmap_area_lock);
3357 	return seq_list_start(&vmap_area_list, *pos);
3358 }
3359 
3360 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3361 {
3362 	return seq_list_next(p, &vmap_area_list, pos);
3363 }
3364 
3365 static void s_stop(struct seq_file *m, void *p)
3366 	__releases(&vmap_area_lock)
3367 {
3368 	spin_unlock(&vmap_area_lock);
3369 }
3370 
3371 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3372 {
3373 	if (IS_ENABLED(CONFIG_NUMA)) {
3374 		unsigned int nr, *counters = m->private;
3375 
3376 		if (!counters)
3377 			return;
3378 
3379 		if (v->flags & VM_UNINITIALIZED)
3380 			return;
3381 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3382 		smp_rmb();
3383 
3384 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3385 
3386 		for (nr = 0; nr < v->nr_pages; nr++)
3387 			counters[page_to_nid(v->pages[nr])]++;
3388 
3389 		for_each_node_state(nr, N_HIGH_MEMORY)
3390 			if (counters[nr])
3391 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3392 	}
3393 }
3394 
3395 static int s_show(struct seq_file *m, void *p)
3396 {
3397 	struct vmap_area *va;
3398 	struct vm_struct *v;
3399 
3400 	va = list_entry(p, struct vmap_area, list);
3401 
3402 	/*
3403 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3404 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
3405 	 */
3406 	if (!(va->flags & VM_VM_AREA)) {
3407 		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3408 			(void *)va->va_start, (void *)va->va_end,
3409 			va->va_end - va->va_start,
3410 			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3411 
3412 		return 0;
3413 	}
3414 
3415 	v = va->vm;
3416 
3417 	seq_printf(m, "0x%pK-0x%pK %7ld",
3418 		v->addr, v->addr + v->size, v->size);
3419 
3420 	if (v->caller)
3421 		seq_printf(m, " %pS", v->caller);
3422 
3423 	if (v->nr_pages)
3424 		seq_printf(m, " pages=%d", v->nr_pages);
3425 
3426 	if (v->phys_addr)
3427 		seq_printf(m, " phys=%pa", &v->phys_addr);
3428 
3429 	if (v->flags & VM_IOREMAP)
3430 		seq_puts(m, " ioremap");
3431 
3432 	if (v->flags & VM_ALLOC)
3433 		seq_puts(m, " vmalloc");
3434 
3435 	if (v->flags & VM_MAP)
3436 		seq_puts(m, " vmap");
3437 
3438 	if (v->flags & VM_USERMAP)
3439 		seq_puts(m, " user");
3440 
3441 	if (is_vmalloc_addr(v->pages))
3442 		seq_puts(m, " vpages");
3443 
3444 	show_numa_info(m, v);
3445 	seq_putc(m, '\n');
3446 	return 0;
3447 }
3448 
3449 static const struct seq_operations vmalloc_op = {
3450 	.start = s_start,
3451 	.next = s_next,
3452 	.stop = s_stop,
3453 	.show = s_show,
3454 };
3455 
3456 static int __init proc_vmalloc_init(void)
3457 {
3458 	if (IS_ENABLED(CONFIG_NUMA))
3459 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3460 				&vmalloc_op,
3461 				nr_node_ids * sizeof(unsigned int), NULL);
3462 	else
3463 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3464 	return 0;
3465 }
3466 module_init(proc_vmalloc_init);
3467 
3468 #endif
3469