1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmalloc.c 4 * 5 * Copyright (C) 1993 Linus Torvalds 6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 9 * Numa awareness, Christoph Lameter, SGI, June 2005 10 */ 11 12 #include <linux/vmalloc.h> 13 #include <linux/mm.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/sched/signal.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/interrupt.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/set_memory.h> 23 #include <linux/debugobjects.h> 24 #include <linux/kallsyms.h> 25 #include <linux/list.h> 26 #include <linux/notifier.h> 27 #include <linux/rbtree.h> 28 #include <linux/radix-tree.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/llist.h> 35 #include <linux/bitops.h> 36 #include <linux/rbtree_augmented.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/tlbflush.h> 40 #include <asm/shmparam.h> 41 42 #include "internal.h" 43 44 struct vfree_deferred { 45 struct llist_head list; 46 struct work_struct wq; 47 }; 48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 49 50 static void __vunmap(const void *, int); 51 52 static void free_work(struct work_struct *w) 53 { 54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 55 struct llist_node *t, *llnode; 56 57 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 58 __vunmap((void *)llnode, 1); 59 } 60 61 /*** Page table manipulation functions ***/ 62 63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 64 { 65 pte_t *pte; 66 67 pte = pte_offset_kernel(pmd, addr); 68 do { 69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 70 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 71 } while (pte++, addr += PAGE_SIZE, addr != end); 72 } 73 74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 75 { 76 pmd_t *pmd; 77 unsigned long next; 78 79 pmd = pmd_offset(pud, addr); 80 do { 81 next = pmd_addr_end(addr, end); 82 if (pmd_clear_huge(pmd)) 83 continue; 84 if (pmd_none_or_clear_bad(pmd)) 85 continue; 86 vunmap_pte_range(pmd, addr, next); 87 } while (pmd++, addr = next, addr != end); 88 } 89 90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 91 { 92 pud_t *pud; 93 unsigned long next; 94 95 pud = pud_offset(p4d, addr); 96 do { 97 next = pud_addr_end(addr, end); 98 if (pud_clear_huge(pud)) 99 continue; 100 if (pud_none_or_clear_bad(pud)) 101 continue; 102 vunmap_pmd_range(pud, addr, next); 103 } while (pud++, addr = next, addr != end); 104 } 105 106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 107 { 108 p4d_t *p4d; 109 unsigned long next; 110 111 p4d = p4d_offset(pgd, addr); 112 do { 113 next = p4d_addr_end(addr, end); 114 if (p4d_clear_huge(p4d)) 115 continue; 116 if (p4d_none_or_clear_bad(p4d)) 117 continue; 118 vunmap_pud_range(p4d, addr, next); 119 } while (p4d++, addr = next, addr != end); 120 } 121 122 static void vunmap_page_range(unsigned long addr, unsigned long end) 123 { 124 pgd_t *pgd; 125 unsigned long next; 126 127 BUG_ON(addr >= end); 128 pgd = pgd_offset_k(addr); 129 do { 130 next = pgd_addr_end(addr, end); 131 if (pgd_none_or_clear_bad(pgd)) 132 continue; 133 vunmap_p4d_range(pgd, addr, next); 134 } while (pgd++, addr = next, addr != end); 135 } 136 137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 139 { 140 pte_t *pte; 141 142 /* 143 * nr is a running index into the array which helps higher level 144 * callers keep track of where we're up to. 145 */ 146 147 pte = pte_alloc_kernel(pmd, addr); 148 if (!pte) 149 return -ENOMEM; 150 do { 151 struct page *page = pages[*nr]; 152 153 if (WARN_ON(!pte_none(*pte))) 154 return -EBUSY; 155 if (WARN_ON(!page)) 156 return -ENOMEM; 157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 158 (*nr)++; 159 } while (pte++, addr += PAGE_SIZE, addr != end); 160 return 0; 161 } 162 163 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 164 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 165 { 166 pmd_t *pmd; 167 unsigned long next; 168 169 pmd = pmd_alloc(&init_mm, pud, addr); 170 if (!pmd) 171 return -ENOMEM; 172 do { 173 next = pmd_addr_end(addr, end); 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 175 return -ENOMEM; 176 } while (pmd++, addr = next, addr != end); 177 return 0; 178 } 179 180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 182 { 183 pud_t *pud; 184 unsigned long next; 185 186 pud = pud_alloc(&init_mm, p4d, addr); 187 if (!pud) 188 return -ENOMEM; 189 do { 190 next = pud_addr_end(addr, end); 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 192 return -ENOMEM; 193 } while (pud++, addr = next, addr != end); 194 return 0; 195 } 196 197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 198 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 199 { 200 p4d_t *p4d; 201 unsigned long next; 202 203 p4d = p4d_alloc(&init_mm, pgd, addr); 204 if (!p4d) 205 return -ENOMEM; 206 do { 207 next = p4d_addr_end(addr, end); 208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 209 return -ENOMEM; 210 } while (p4d++, addr = next, addr != end); 211 return 0; 212 } 213 214 /* 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 216 * will have pfns corresponding to the "pages" array. 217 * 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 219 */ 220 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 221 pgprot_t prot, struct page **pages) 222 { 223 pgd_t *pgd; 224 unsigned long next; 225 unsigned long addr = start; 226 int err = 0; 227 int nr = 0; 228 229 BUG_ON(addr >= end); 230 pgd = pgd_offset_k(addr); 231 do { 232 next = pgd_addr_end(addr, end); 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 234 if (err) 235 return err; 236 } while (pgd++, addr = next, addr != end); 237 238 return nr; 239 } 240 241 static int vmap_page_range(unsigned long start, unsigned long end, 242 pgprot_t prot, struct page **pages) 243 { 244 int ret; 245 246 ret = vmap_page_range_noflush(start, end, prot, pages); 247 flush_cache_vmap(start, end); 248 return ret; 249 } 250 251 int is_vmalloc_or_module_addr(const void *x) 252 { 253 /* 254 * ARM, x86-64 and sparc64 put modules in a special place, 255 * and fall back on vmalloc() if that fails. Others 256 * just put it in the vmalloc space. 257 */ 258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 259 unsigned long addr = (unsigned long)x; 260 if (addr >= MODULES_VADDR && addr < MODULES_END) 261 return 1; 262 #endif 263 return is_vmalloc_addr(x); 264 } 265 266 /* 267 * Walk a vmap address to the struct page it maps. 268 */ 269 struct page *vmalloc_to_page(const void *vmalloc_addr) 270 { 271 unsigned long addr = (unsigned long) vmalloc_addr; 272 struct page *page = NULL; 273 pgd_t *pgd = pgd_offset_k(addr); 274 p4d_t *p4d; 275 pud_t *pud; 276 pmd_t *pmd; 277 pte_t *ptep, pte; 278 279 /* 280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 281 * architectures that do not vmalloc module space 282 */ 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 284 285 if (pgd_none(*pgd)) 286 return NULL; 287 p4d = p4d_offset(pgd, addr); 288 if (p4d_none(*p4d)) 289 return NULL; 290 pud = pud_offset(p4d, addr); 291 292 /* 293 * Don't dereference bad PUD or PMD (below) entries. This will also 294 * identify huge mappings, which we may encounter on architectures 295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 296 * identified as vmalloc addresses by is_vmalloc_addr(), but are 297 * not [unambiguously] associated with a struct page, so there is 298 * no correct value to return for them. 299 */ 300 WARN_ON_ONCE(pud_bad(*pud)); 301 if (pud_none(*pud) || pud_bad(*pud)) 302 return NULL; 303 pmd = pmd_offset(pud, addr); 304 WARN_ON_ONCE(pmd_bad(*pmd)); 305 if (pmd_none(*pmd) || pmd_bad(*pmd)) 306 return NULL; 307 308 ptep = pte_offset_map(pmd, addr); 309 pte = *ptep; 310 if (pte_present(pte)) 311 page = pte_page(pte); 312 pte_unmap(ptep); 313 return page; 314 } 315 EXPORT_SYMBOL(vmalloc_to_page); 316 317 /* 318 * Map a vmalloc()-space virtual address to the physical page frame number. 319 */ 320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 321 { 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 323 } 324 EXPORT_SYMBOL(vmalloc_to_pfn); 325 326 327 /*** Global kva allocator ***/ 328 329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 331 332 333 static DEFINE_SPINLOCK(vmap_area_lock); 334 /* Export for kexec only */ 335 LIST_HEAD(vmap_area_list); 336 static LLIST_HEAD(vmap_purge_list); 337 static struct rb_root vmap_area_root = RB_ROOT; 338 static bool vmap_initialized __read_mostly; 339 340 /* 341 * This kmem_cache is used for vmap_area objects. Instead of 342 * allocating from slab we reuse an object from this cache to 343 * make things faster. Especially in "no edge" splitting of 344 * free block. 345 */ 346 static struct kmem_cache *vmap_area_cachep; 347 348 /* 349 * This linked list is used in pair with free_vmap_area_root. 350 * It gives O(1) access to prev/next to perform fast coalescing. 351 */ 352 static LIST_HEAD(free_vmap_area_list); 353 354 /* 355 * This augment red-black tree represents the free vmap space. 356 * All vmap_area objects in this tree are sorted by va->va_start 357 * address. It is used for allocation and merging when a vmap 358 * object is released. 359 * 360 * Each vmap_area node contains a maximum available free block 361 * of its sub-tree, right or left. Therefore it is possible to 362 * find a lowest match of free area. 363 */ 364 static struct rb_root free_vmap_area_root = RB_ROOT; 365 366 /* 367 * Preload a CPU with one object for "no edge" split case. The 368 * aim is to get rid of allocations from the atomic context, thus 369 * to use more permissive allocation masks. 370 */ 371 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 372 373 static __always_inline unsigned long 374 va_size(struct vmap_area *va) 375 { 376 return (va->va_end - va->va_start); 377 } 378 379 static __always_inline unsigned long 380 get_subtree_max_size(struct rb_node *node) 381 { 382 struct vmap_area *va; 383 384 va = rb_entry_safe(node, struct vmap_area, rb_node); 385 return va ? va->subtree_max_size : 0; 386 } 387 388 /* 389 * Gets called when remove the node and rotate. 390 */ 391 static __always_inline unsigned long 392 compute_subtree_max_size(struct vmap_area *va) 393 { 394 return max3(va_size(va), 395 get_subtree_max_size(va->rb_node.rb_left), 396 get_subtree_max_size(va->rb_node.rb_right)); 397 } 398 399 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 400 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 401 402 static void purge_vmap_area_lazy(void); 403 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 404 static unsigned long lazy_max_pages(void); 405 406 static atomic_long_t nr_vmalloc_pages; 407 408 unsigned long vmalloc_nr_pages(void) 409 { 410 return atomic_long_read(&nr_vmalloc_pages); 411 } 412 413 static struct vmap_area *__find_vmap_area(unsigned long addr) 414 { 415 struct rb_node *n = vmap_area_root.rb_node; 416 417 while (n) { 418 struct vmap_area *va; 419 420 va = rb_entry(n, struct vmap_area, rb_node); 421 if (addr < va->va_start) 422 n = n->rb_left; 423 else if (addr >= va->va_end) 424 n = n->rb_right; 425 else 426 return va; 427 } 428 429 return NULL; 430 } 431 432 /* 433 * This function returns back addresses of parent node 434 * and its left or right link for further processing. 435 */ 436 static __always_inline struct rb_node ** 437 find_va_links(struct vmap_area *va, 438 struct rb_root *root, struct rb_node *from, 439 struct rb_node **parent) 440 { 441 struct vmap_area *tmp_va; 442 struct rb_node **link; 443 444 if (root) { 445 link = &root->rb_node; 446 if (unlikely(!*link)) { 447 *parent = NULL; 448 return link; 449 } 450 } else { 451 link = &from; 452 } 453 454 /* 455 * Go to the bottom of the tree. When we hit the last point 456 * we end up with parent rb_node and correct direction, i name 457 * it link, where the new va->rb_node will be attached to. 458 */ 459 do { 460 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 461 462 /* 463 * During the traversal we also do some sanity check. 464 * Trigger the BUG() if there are sides(left/right) 465 * or full overlaps. 466 */ 467 if (va->va_start < tmp_va->va_end && 468 va->va_end <= tmp_va->va_start) 469 link = &(*link)->rb_left; 470 else if (va->va_end > tmp_va->va_start && 471 va->va_start >= tmp_va->va_end) 472 link = &(*link)->rb_right; 473 else 474 BUG(); 475 } while (*link); 476 477 *parent = &tmp_va->rb_node; 478 return link; 479 } 480 481 static __always_inline struct list_head * 482 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 483 { 484 struct list_head *list; 485 486 if (unlikely(!parent)) 487 /* 488 * The red-black tree where we try to find VA neighbors 489 * before merging or inserting is empty, i.e. it means 490 * there is no free vmap space. Normally it does not 491 * happen but we handle this case anyway. 492 */ 493 return NULL; 494 495 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 496 return (&parent->rb_right == link ? list->next : list); 497 } 498 499 static __always_inline void 500 link_va(struct vmap_area *va, struct rb_root *root, 501 struct rb_node *parent, struct rb_node **link, struct list_head *head) 502 { 503 /* 504 * VA is still not in the list, but we can 505 * identify its future previous list_head node. 506 */ 507 if (likely(parent)) { 508 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 509 if (&parent->rb_right != link) 510 head = head->prev; 511 } 512 513 /* Insert to the rb-tree */ 514 rb_link_node(&va->rb_node, parent, link); 515 if (root == &free_vmap_area_root) { 516 /* 517 * Some explanation here. Just perform simple insertion 518 * to the tree. We do not set va->subtree_max_size to 519 * its current size before calling rb_insert_augmented(). 520 * It is because of we populate the tree from the bottom 521 * to parent levels when the node _is_ in the tree. 522 * 523 * Therefore we set subtree_max_size to zero after insertion, 524 * to let __augment_tree_propagate_from() puts everything to 525 * the correct order later on. 526 */ 527 rb_insert_augmented(&va->rb_node, 528 root, &free_vmap_area_rb_augment_cb); 529 va->subtree_max_size = 0; 530 } else { 531 rb_insert_color(&va->rb_node, root); 532 } 533 534 /* Address-sort this list */ 535 list_add(&va->list, head); 536 } 537 538 static __always_inline void 539 unlink_va(struct vmap_area *va, struct rb_root *root) 540 { 541 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 542 return; 543 544 if (root == &free_vmap_area_root) 545 rb_erase_augmented(&va->rb_node, 546 root, &free_vmap_area_rb_augment_cb); 547 else 548 rb_erase(&va->rb_node, root); 549 550 list_del(&va->list); 551 RB_CLEAR_NODE(&va->rb_node); 552 } 553 554 #if DEBUG_AUGMENT_PROPAGATE_CHECK 555 static void 556 augment_tree_propagate_check(struct rb_node *n) 557 { 558 struct vmap_area *va; 559 struct rb_node *node; 560 unsigned long size; 561 bool found = false; 562 563 if (n == NULL) 564 return; 565 566 va = rb_entry(n, struct vmap_area, rb_node); 567 size = va->subtree_max_size; 568 node = n; 569 570 while (node) { 571 va = rb_entry(node, struct vmap_area, rb_node); 572 573 if (get_subtree_max_size(node->rb_left) == size) { 574 node = node->rb_left; 575 } else { 576 if (va_size(va) == size) { 577 found = true; 578 break; 579 } 580 581 node = node->rb_right; 582 } 583 } 584 585 if (!found) { 586 va = rb_entry(n, struct vmap_area, rb_node); 587 pr_emerg("tree is corrupted: %lu, %lu\n", 588 va_size(va), va->subtree_max_size); 589 } 590 591 augment_tree_propagate_check(n->rb_left); 592 augment_tree_propagate_check(n->rb_right); 593 } 594 #endif 595 596 /* 597 * This function populates subtree_max_size from bottom to upper 598 * levels starting from VA point. The propagation must be done 599 * when VA size is modified by changing its va_start/va_end. Or 600 * in case of newly inserting of VA to the tree. 601 * 602 * It means that __augment_tree_propagate_from() must be called: 603 * - After VA has been inserted to the tree(free path); 604 * - After VA has been shrunk(allocation path); 605 * - After VA has been increased(merging path). 606 * 607 * Please note that, it does not mean that upper parent nodes 608 * and their subtree_max_size are recalculated all the time up 609 * to the root node. 610 * 611 * 4--8 612 * /\ 613 * / \ 614 * / \ 615 * 2--2 8--8 616 * 617 * For example if we modify the node 4, shrinking it to 2, then 618 * no any modification is required. If we shrink the node 2 to 1 619 * its subtree_max_size is updated only, and set to 1. If we shrink 620 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 621 * node becomes 4--6. 622 */ 623 static __always_inline void 624 augment_tree_propagate_from(struct vmap_area *va) 625 { 626 struct rb_node *node = &va->rb_node; 627 unsigned long new_va_sub_max_size; 628 629 while (node) { 630 va = rb_entry(node, struct vmap_area, rb_node); 631 new_va_sub_max_size = compute_subtree_max_size(va); 632 633 /* 634 * If the newly calculated maximum available size of the 635 * subtree is equal to the current one, then it means that 636 * the tree is propagated correctly. So we have to stop at 637 * this point to save cycles. 638 */ 639 if (va->subtree_max_size == new_va_sub_max_size) 640 break; 641 642 va->subtree_max_size = new_va_sub_max_size; 643 node = rb_parent(&va->rb_node); 644 } 645 646 #if DEBUG_AUGMENT_PROPAGATE_CHECK 647 augment_tree_propagate_check(free_vmap_area_root.rb_node); 648 #endif 649 } 650 651 static void 652 insert_vmap_area(struct vmap_area *va, 653 struct rb_root *root, struct list_head *head) 654 { 655 struct rb_node **link; 656 struct rb_node *parent; 657 658 link = find_va_links(va, root, NULL, &parent); 659 link_va(va, root, parent, link, head); 660 } 661 662 static void 663 insert_vmap_area_augment(struct vmap_area *va, 664 struct rb_node *from, struct rb_root *root, 665 struct list_head *head) 666 { 667 struct rb_node **link; 668 struct rb_node *parent; 669 670 if (from) 671 link = find_va_links(va, NULL, from, &parent); 672 else 673 link = find_va_links(va, root, NULL, &parent); 674 675 link_va(va, root, parent, link, head); 676 augment_tree_propagate_from(va); 677 } 678 679 /* 680 * Merge de-allocated chunk of VA memory with previous 681 * and next free blocks. If coalesce is not done a new 682 * free area is inserted. If VA has been merged, it is 683 * freed. 684 */ 685 static __always_inline void 686 merge_or_add_vmap_area(struct vmap_area *va, 687 struct rb_root *root, struct list_head *head) 688 { 689 struct vmap_area *sibling; 690 struct list_head *next; 691 struct rb_node **link; 692 struct rb_node *parent; 693 bool merged = false; 694 695 /* 696 * Find a place in the tree where VA potentially will be 697 * inserted, unless it is merged with its sibling/siblings. 698 */ 699 link = find_va_links(va, root, NULL, &parent); 700 701 /* 702 * Get next node of VA to check if merging can be done. 703 */ 704 next = get_va_next_sibling(parent, link); 705 if (unlikely(next == NULL)) 706 goto insert; 707 708 /* 709 * start end 710 * | | 711 * |<------VA------>|<-----Next----->| 712 * | | 713 * start end 714 */ 715 if (next != head) { 716 sibling = list_entry(next, struct vmap_area, list); 717 if (sibling->va_start == va->va_end) { 718 sibling->va_start = va->va_start; 719 720 /* Check and update the tree if needed. */ 721 augment_tree_propagate_from(sibling); 722 723 /* Free vmap_area object. */ 724 kmem_cache_free(vmap_area_cachep, va); 725 726 /* Point to the new merged area. */ 727 va = sibling; 728 merged = true; 729 } 730 } 731 732 /* 733 * start end 734 * | | 735 * |<-----Prev----->|<------VA------>| 736 * | | 737 * start end 738 */ 739 if (next->prev != head) { 740 sibling = list_entry(next->prev, struct vmap_area, list); 741 if (sibling->va_end == va->va_start) { 742 sibling->va_end = va->va_end; 743 744 /* Check and update the tree if needed. */ 745 augment_tree_propagate_from(sibling); 746 747 if (merged) 748 unlink_va(va, root); 749 750 /* Free vmap_area object. */ 751 kmem_cache_free(vmap_area_cachep, va); 752 return; 753 } 754 } 755 756 insert: 757 if (!merged) { 758 link_va(va, root, parent, link, head); 759 augment_tree_propagate_from(va); 760 } 761 } 762 763 static __always_inline bool 764 is_within_this_va(struct vmap_area *va, unsigned long size, 765 unsigned long align, unsigned long vstart) 766 { 767 unsigned long nva_start_addr; 768 769 if (va->va_start > vstart) 770 nva_start_addr = ALIGN(va->va_start, align); 771 else 772 nva_start_addr = ALIGN(vstart, align); 773 774 /* Can be overflowed due to big size or alignment. */ 775 if (nva_start_addr + size < nva_start_addr || 776 nva_start_addr < vstart) 777 return false; 778 779 return (nva_start_addr + size <= va->va_end); 780 } 781 782 /* 783 * Find the first free block(lowest start address) in the tree, 784 * that will accomplish the request corresponding to passing 785 * parameters. 786 */ 787 static __always_inline struct vmap_area * 788 find_vmap_lowest_match(unsigned long size, 789 unsigned long align, unsigned long vstart) 790 { 791 struct vmap_area *va; 792 struct rb_node *node; 793 unsigned long length; 794 795 /* Start from the root. */ 796 node = free_vmap_area_root.rb_node; 797 798 /* Adjust the search size for alignment overhead. */ 799 length = size + align - 1; 800 801 while (node) { 802 va = rb_entry(node, struct vmap_area, rb_node); 803 804 if (get_subtree_max_size(node->rb_left) >= length && 805 vstart < va->va_start) { 806 node = node->rb_left; 807 } else { 808 if (is_within_this_va(va, size, align, vstart)) 809 return va; 810 811 /* 812 * Does not make sense to go deeper towards the right 813 * sub-tree if it does not have a free block that is 814 * equal or bigger to the requested search length. 815 */ 816 if (get_subtree_max_size(node->rb_right) >= length) { 817 node = node->rb_right; 818 continue; 819 } 820 821 /* 822 * OK. We roll back and find the first right sub-tree, 823 * that will satisfy the search criteria. It can happen 824 * only once due to "vstart" restriction. 825 */ 826 while ((node = rb_parent(node))) { 827 va = rb_entry(node, struct vmap_area, rb_node); 828 if (is_within_this_va(va, size, align, vstart)) 829 return va; 830 831 if (get_subtree_max_size(node->rb_right) >= length && 832 vstart <= va->va_start) { 833 node = node->rb_right; 834 break; 835 } 836 } 837 } 838 } 839 840 return NULL; 841 } 842 843 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 844 #include <linux/random.h> 845 846 static struct vmap_area * 847 find_vmap_lowest_linear_match(unsigned long size, 848 unsigned long align, unsigned long vstart) 849 { 850 struct vmap_area *va; 851 852 list_for_each_entry(va, &free_vmap_area_list, list) { 853 if (!is_within_this_va(va, size, align, vstart)) 854 continue; 855 856 return va; 857 } 858 859 return NULL; 860 } 861 862 static void 863 find_vmap_lowest_match_check(unsigned long size) 864 { 865 struct vmap_area *va_1, *va_2; 866 unsigned long vstart; 867 unsigned int rnd; 868 869 get_random_bytes(&rnd, sizeof(rnd)); 870 vstart = VMALLOC_START + rnd; 871 872 va_1 = find_vmap_lowest_match(size, 1, vstart); 873 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 874 875 if (va_1 != va_2) 876 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 877 va_1, va_2, vstart); 878 } 879 #endif 880 881 enum fit_type { 882 NOTHING_FIT = 0, 883 FL_FIT_TYPE = 1, /* full fit */ 884 LE_FIT_TYPE = 2, /* left edge fit */ 885 RE_FIT_TYPE = 3, /* right edge fit */ 886 NE_FIT_TYPE = 4 /* no edge fit */ 887 }; 888 889 static __always_inline enum fit_type 890 classify_va_fit_type(struct vmap_area *va, 891 unsigned long nva_start_addr, unsigned long size) 892 { 893 enum fit_type type; 894 895 /* Check if it is within VA. */ 896 if (nva_start_addr < va->va_start || 897 nva_start_addr + size > va->va_end) 898 return NOTHING_FIT; 899 900 /* Now classify. */ 901 if (va->va_start == nva_start_addr) { 902 if (va->va_end == nva_start_addr + size) 903 type = FL_FIT_TYPE; 904 else 905 type = LE_FIT_TYPE; 906 } else if (va->va_end == nva_start_addr + size) { 907 type = RE_FIT_TYPE; 908 } else { 909 type = NE_FIT_TYPE; 910 } 911 912 return type; 913 } 914 915 static __always_inline int 916 adjust_va_to_fit_type(struct vmap_area *va, 917 unsigned long nva_start_addr, unsigned long size, 918 enum fit_type type) 919 { 920 struct vmap_area *lva = NULL; 921 922 if (type == FL_FIT_TYPE) { 923 /* 924 * No need to split VA, it fully fits. 925 * 926 * | | 927 * V NVA V 928 * |---------------| 929 */ 930 unlink_va(va, &free_vmap_area_root); 931 kmem_cache_free(vmap_area_cachep, va); 932 } else if (type == LE_FIT_TYPE) { 933 /* 934 * Split left edge of fit VA. 935 * 936 * | | 937 * V NVA V R 938 * |-------|-------| 939 */ 940 va->va_start += size; 941 } else if (type == RE_FIT_TYPE) { 942 /* 943 * Split right edge of fit VA. 944 * 945 * | | 946 * L V NVA V 947 * |-------|-------| 948 */ 949 va->va_end = nva_start_addr; 950 } else if (type == NE_FIT_TYPE) { 951 /* 952 * Split no edge of fit VA. 953 * 954 * | | 955 * L V NVA V R 956 * |---|-------|---| 957 */ 958 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 959 if (unlikely(!lva)) { 960 /* 961 * For percpu allocator we do not do any pre-allocation 962 * and leave it as it is. The reason is it most likely 963 * never ends up with NE_FIT_TYPE splitting. In case of 964 * percpu allocations offsets and sizes are aligned to 965 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 966 * are its main fitting cases. 967 * 968 * There are a few exceptions though, as an example it is 969 * a first allocation (early boot up) when we have "one" 970 * big free space that has to be split. 971 */ 972 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 973 if (!lva) 974 return -1; 975 } 976 977 /* 978 * Build the remainder. 979 */ 980 lva->va_start = va->va_start; 981 lva->va_end = nva_start_addr; 982 983 /* 984 * Shrink this VA to remaining size. 985 */ 986 va->va_start = nva_start_addr + size; 987 } else { 988 return -1; 989 } 990 991 if (type != FL_FIT_TYPE) { 992 augment_tree_propagate_from(va); 993 994 if (lva) /* type == NE_FIT_TYPE */ 995 insert_vmap_area_augment(lva, &va->rb_node, 996 &free_vmap_area_root, &free_vmap_area_list); 997 } 998 999 return 0; 1000 } 1001 1002 /* 1003 * Returns a start address of the newly allocated area, if success. 1004 * Otherwise a vend is returned that indicates failure. 1005 */ 1006 static __always_inline unsigned long 1007 __alloc_vmap_area(unsigned long size, unsigned long align, 1008 unsigned long vstart, unsigned long vend) 1009 { 1010 unsigned long nva_start_addr; 1011 struct vmap_area *va; 1012 enum fit_type type; 1013 int ret; 1014 1015 va = find_vmap_lowest_match(size, align, vstart); 1016 if (unlikely(!va)) 1017 return vend; 1018 1019 if (va->va_start > vstart) 1020 nva_start_addr = ALIGN(va->va_start, align); 1021 else 1022 nva_start_addr = ALIGN(vstart, align); 1023 1024 /* Check the "vend" restriction. */ 1025 if (nva_start_addr + size > vend) 1026 return vend; 1027 1028 /* Classify what we have found. */ 1029 type = classify_va_fit_type(va, nva_start_addr, size); 1030 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1031 return vend; 1032 1033 /* Update the free vmap_area. */ 1034 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1035 if (ret) 1036 return vend; 1037 1038 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1039 find_vmap_lowest_match_check(size); 1040 #endif 1041 1042 return nva_start_addr; 1043 } 1044 1045 /* 1046 * Allocate a region of KVA of the specified size and alignment, within the 1047 * vstart and vend. 1048 */ 1049 static struct vmap_area *alloc_vmap_area(unsigned long size, 1050 unsigned long align, 1051 unsigned long vstart, unsigned long vend, 1052 int node, gfp_t gfp_mask) 1053 { 1054 struct vmap_area *va, *pva; 1055 unsigned long addr; 1056 int purged = 0; 1057 1058 BUG_ON(!size); 1059 BUG_ON(offset_in_page(size)); 1060 BUG_ON(!is_power_of_2(align)); 1061 1062 if (unlikely(!vmap_initialized)) 1063 return ERR_PTR(-EBUSY); 1064 1065 might_sleep(); 1066 1067 va = kmem_cache_alloc_node(vmap_area_cachep, 1068 gfp_mask & GFP_RECLAIM_MASK, node); 1069 if (unlikely(!va)) 1070 return ERR_PTR(-ENOMEM); 1071 1072 /* 1073 * Only scan the relevant parts containing pointers to other objects 1074 * to avoid false negatives. 1075 */ 1076 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 1077 1078 retry: 1079 /* 1080 * Preload this CPU with one extra vmap_area object to ensure 1081 * that we have it available when fit type of free area is 1082 * NE_FIT_TYPE. 1083 * 1084 * The preload is done in non-atomic context, thus it allows us 1085 * to use more permissive allocation masks to be more stable under 1086 * low memory condition and high memory pressure. 1087 * 1088 * Even if it fails we do not really care about that. Just proceed 1089 * as it is. "overflow" path will refill the cache we allocate from. 1090 */ 1091 preempt_disable(); 1092 if (!__this_cpu_read(ne_fit_preload_node)) { 1093 preempt_enable(); 1094 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node); 1095 preempt_disable(); 1096 1097 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) { 1098 if (pva) 1099 kmem_cache_free(vmap_area_cachep, pva); 1100 } 1101 } 1102 1103 spin_lock(&vmap_area_lock); 1104 preempt_enable(); 1105 1106 /* 1107 * If an allocation fails, the "vend" address is 1108 * returned. Therefore trigger the overflow path. 1109 */ 1110 addr = __alloc_vmap_area(size, align, vstart, vend); 1111 if (unlikely(addr == vend)) 1112 goto overflow; 1113 1114 va->va_start = addr; 1115 va->va_end = addr + size; 1116 va->vm = NULL; 1117 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1118 1119 spin_unlock(&vmap_area_lock); 1120 1121 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1122 BUG_ON(va->va_start < vstart); 1123 BUG_ON(va->va_end > vend); 1124 1125 return va; 1126 1127 overflow: 1128 spin_unlock(&vmap_area_lock); 1129 if (!purged) { 1130 purge_vmap_area_lazy(); 1131 purged = 1; 1132 goto retry; 1133 } 1134 1135 if (gfpflags_allow_blocking(gfp_mask)) { 1136 unsigned long freed = 0; 1137 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1138 if (freed > 0) { 1139 purged = 0; 1140 goto retry; 1141 } 1142 } 1143 1144 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1145 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1146 size); 1147 1148 kmem_cache_free(vmap_area_cachep, va); 1149 return ERR_PTR(-EBUSY); 1150 } 1151 1152 int register_vmap_purge_notifier(struct notifier_block *nb) 1153 { 1154 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1155 } 1156 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1157 1158 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1159 { 1160 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1161 } 1162 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1163 1164 static void __free_vmap_area(struct vmap_area *va) 1165 { 1166 /* 1167 * Remove from the busy tree/list. 1168 */ 1169 unlink_va(va, &vmap_area_root); 1170 1171 /* 1172 * Merge VA with its neighbors, otherwise just add it. 1173 */ 1174 merge_or_add_vmap_area(va, 1175 &free_vmap_area_root, &free_vmap_area_list); 1176 } 1177 1178 /* 1179 * Free a region of KVA allocated by alloc_vmap_area 1180 */ 1181 static void free_vmap_area(struct vmap_area *va) 1182 { 1183 spin_lock(&vmap_area_lock); 1184 __free_vmap_area(va); 1185 spin_unlock(&vmap_area_lock); 1186 } 1187 1188 /* 1189 * Clear the pagetable entries of a given vmap_area 1190 */ 1191 static void unmap_vmap_area(struct vmap_area *va) 1192 { 1193 vunmap_page_range(va->va_start, va->va_end); 1194 } 1195 1196 /* 1197 * lazy_max_pages is the maximum amount of virtual address space we gather up 1198 * before attempting to purge with a TLB flush. 1199 * 1200 * There is a tradeoff here: a larger number will cover more kernel page tables 1201 * and take slightly longer to purge, but it will linearly reduce the number of 1202 * global TLB flushes that must be performed. It would seem natural to scale 1203 * this number up linearly with the number of CPUs (because vmapping activity 1204 * could also scale linearly with the number of CPUs), however it is likely 1205 * that in practice, workloads might be constrained in other ways that mean 1206 * vmap activity will not scale linearly with CPUs. Also, I want to be 1207 * conservative and not introduce a big latency on huge systems, so go with 1208 * a less aggressive log scale. It will still be an improvement over the old 1209 * code, and it will be simple to change the scale factor if we find that it 1210 * becomes a problem on bigger systems. 1211 */ 1212 static unsigned long lazy_max_pages(void) 1213 { 1214 unsigned int log; 1215 1216 log = fls(num_online_cpus()); 1217 1218 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1219 } 1220 1221 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1222 1223 /* 1224 * Serialize vmap purging. There is no actual criticial section protected 1225 * by this look, but we want to avoid concurrent calls for performance 1226 * reasons and to make the pcpu_get_vm_areas more deterministic. 1227 */ 1228 static DEFINE_MUTEX(vmap_purge_lock); 1229 1230 /* for per-CPU blocks */ 1231 static void purge_fragmented_blocks_allcpus(void); 1232 1233 /* 1234 * called before a call to iounmap() if the caller wants vm_area_struct's 1235 * immediately freed. 1236 */ 1237 void set_iounmap_nonlazy(void) 1238 { 1239 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1240 } 1241 1242 /* 1243 * Purges all lazily-freed vmap areas. 1244 */ 1245 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1246 { 1247 unsigned long resched_threshold; 1248 struct llist_node *valist; 1249 struct vmap_area *va; 1250 struct vmap_area *n_va; 1251 1252 lockdep_assert_held(&vmap_purge_lock); 1253 1254 valist = llist_del_all(&vmap_purge_list); 1255 if (unlikely(valist == NULL)) 1256 return false; 1257 1258 /* 1259 * First make sure the mappings are removed from all page-tables 1260 * before they are freed. 1261 */ 1262 vmalloc_sync_all(); 1263 1264 /* 1265 * TODO: to calculate a flush range without looping. 1266 * The list can be up to lazy_max_pages() elements. 1267 */ 1268 llist_for_each_entry(va, valist, purge_list) { 1269 if (va->va_start < start) 1270 start = va->va_start; 1271 if (va->va_end > end) 1272 end = va->va_end; 1273 } 1274 1275 flush_tlb_kernel_range(start, end); 1276 resched_threshold = lazy_max_pages() << 1; 1277 1278 spin_lock(&vmap_area_lock); 1279 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 1280 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1281 1282 /* 1283 * Finally insert or merge lazily-freed area. It is 1284 * detached and there is no need to "unlink" it from 1285 * anything. 1286 */ 1287 merge_or_add_vmap_area(va, 1288 &free_vmap_area_root, &free_vmap_area_list); 1289 1290 atomic_long_sub(nr, &vmap_lazy_nr); 1291 1292 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1293 cond_resched_lock(&vmap_area_lock); 1294 } 1295 spin_unlock(&vmap_area_lock); 1296 return true; 1297 } 1298 1299 /* 1300 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1301 * is already purging. 1302 */ 1303 static void try_purge_vmap_area_lazy(void) 1304 { 1305 if (mutex_trylock(&vmap_purge_lock)) { 1306 __purge_vmap_area_lazy(ULONG_MAX, 0); 1307 mutex_unlock(&vmap_purge_lock); 1308 } 1309 } 1310 1311 /* 1312 * Kick off a purge of the outstanding lazy areas. 1313 */ 1314 static void purge_vmap_area_lazy(void) 1315 { 1316 mutex_lock(&vmap_purge_lock); 1317 purge_fragmented_blocks_allcpus(); 1318 __purge_vmap_area_lazy(ULONG_MAX, 0); 1319 mutex_unlock(&vmap_purge_lock); 1320 } 1321 1322 /* 1323 * Free a vmap area, caller ensuring that the area has been unmapped 1324 * and flush_cache_vunmap had been called for the correct range 1325 * previously. 1326 */ 1327 static void free_vmap_area_noflush(struct vmap_area *va) 1328 { 1329 unsigned long nr_lazy; 1330 1331 spin_lock(&vmap_area_lock); 1332 unlink_va(va, &vmap_area_root); 1333 spin_unlock(&vmap_area_lock); 1334 1335 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1336 PAGE_SHIFT, &vmap_lazy_nr); 1337 1338 /* After this point, we may free va at any time */ 1339 llist_add(&va->purge_list, &vmap_purge_list); 1340 1341 if (unlikely(nr_lazy > lazy_max_pages())) 1342 try_purge_vmap_area_lazy(); 1343 } 1344 1345 /* 1346 * Free and unmap a vmap area 1347 */ 1348 static void free_unmap_vmap_area(struct vmap_area *va) 1349 { 1350 flush_cache_vunmap(va->va_start, va->va_end); 1351 unmap_vmap_area(va); 1352 if (debug_pagealloc_enabled()) 1353 flush_tlb_kernel_range(va->va_start, va->va_end); 1354 1355 free_vmap_area_noflush(va); 1356 } 1357 1358 static struct vmap_area *find_vmap_area(unsigned long addr) 1359 { 1360 struct vmap_area *va; 1361 1362 spin_lock(&vmap_area_lock); 1363 va = __find_vmap_area(addr); 1364 spin_unlock(&vmap_area_lock); 1365 1366 return va; 1367 } 1368 1369 /*** Per cpu kva allocator ***/ 1370 1371 /* 1372 * vmap space is limited especially on 32 bit architectures. Ensure there is 1373 * room for at least 16 percpu vmap blocks per CPU. 1374 */ 1375 /* 1376 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1377 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1378 * instead (we just need a rough idea) 1379 */ 1380 #if BITS_PER_LONG == 32 1381 #define VMALLOC_SPACE (128UL*1024*1024) 1382 #else 1383 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1384 #endif 1385 1386 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1387 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1388 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1389 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1390 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1391 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1392 #define VMAP_BBMAP_BITS \ 1393 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1394 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1395 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1396 1397 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1398 1399 struct vmap_block_queue { 1400 spinlock_t lock; 1401 struct list_head free; 1402 }; 1403 1404 struct vmap_block { 1405 spinlock_t lock; 1406 struct vmap_area *va; 1407 unsigned long free, dirty; 1408 unsigned long dirty_min, dirty_max; /*< dirty range */ 1409 struct list_head free_list; 1410 struct rcu_head rcu_head; 1411 struct list_head purge; 1412 }; 1413 1414 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1415 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1416 1417 /* 1418 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 1419 * in the free path. Could get rid of this if we change the API to return a 1420 * "cookie" from alloc, to be passed to free. But no big deal yet. 1421 */ 1422 static DEFINE_SPINLOCK(vmap_block_tree_lock); 1423 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 1424 1425 /* 1426 * We should probably have a fallback mechanism to allocate virtual memory 1427 * out of partially filled vmap blocks. However vmap block sizing should be 1428 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1429 * big problem. 1430 */ 1431 1432 static unsigned long addr_to_vb_idx(unsigned long addr) 1433 { 1434 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1435 addr /= VMAP_BLOCK_SIZE; 1436 return addr; 1437 } 1438 1439 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1440 { 1441 unsigned long addr; 1442 1443 addr = va_start + (pages_off << PAGE_SHIFT); 1444 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1445 return (void *)addr; 1446 } 1447 1448 /** 1449 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1450 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1451 * @order: how many 2^order pages should be occupied in newly allocated block 1452 * @gfp_mask: flags for the page level allocator 1453 * 1454 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1455 */ 1456 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1457 { 1458 struct vmap_block_queue *vbq; 1459 struct vmap_block *vb; 1460 struct vmap_area *va; 1461 unsigned long vb_idx; 1462 int node, err; 1463 void *vaddr; 1464 1465 node = numa_node_id(); 1466 1467 vb = kmalloc_node(sizeof(struct vmap_block), 1468 gfp_mask & GFP_RECLAIM_MASK, node); 1469 if (unlikely(!vb)) 1470 return ERR_PTR(-ENOMEM); 1471 1472 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1473 VMALLOC_START, VMALLOC_END, 1474 node, gfp_mask); 1475 if (IS_ERR(va)) { 1476 kfree(vb); 1477 return ERR_CAST(va); 1478 } 1479 1480 err = radix_tree_preload(gfp_mask); 1481 if (unlikely(err)) { 1482 kfree(vb); 1483 free_vmap_area(va); 1484 return ERR_PTR(err); 1485 } 1486 1487 vaddr = vmap_block_vaddr(va->va_start, 0); 1488 spin_lock_init(&vb->lock); 1489 vb->va = va; 1490 /* At least something should be left free */ 1491 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1492 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1493 vb->dirty = 0; 1494 vb->dirty_min = VMAP_BBMAP_BITS; 1495 vb->dirty_max = 0; 1496 INIT_LIST_HEAD(&vb->free_list); 1497 1498 vb_idx = addr_to_vb_idx(va->va_start); 1499 spin_lock(&vmap_block_tree_lock); 1500 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 1501 spin_unlock(&vmap_block_tree_lock); 1502 BUG_ON(err); 1503 radix_tree_preload_end(); 1504 1505 vbq = &get_cpu_var(vmap_block_queue); 1506 spin_lock(&vbq->lock); 1507 list_add_tail_rcu(&vb->free_list, &vbq->free); 1508 spin_unlock(&vbq->lock); 1509 put_cpu_var(vmap_block_queue); 1510 1511 return vaddr; 1512 } 1513 1514 static void free_vmap_block(struct vmap_block *vb) 1515 { 1516 struct vmap_block *tmp; 1517 unsigned long vb_idx; 1518 1519 vb_idx = addr_to_vb_idx(vb->va->va_start); 1520 spin_lock(&vmap_block_tree_lock); 1521 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 1522 spin_unlock(&vmap_block_tree_lock); 1523 BUG_ON(tmp != vb); 1524 1525 free_vmap_area_noflush(vb->va); 1526 kfree_rcu(vb, rcu_head); 1527 } 1528 1529 static void purge_fragmented_blocks(int cpu) 1530 { 1531 LIST_HEAD(purge); 1532 struct vmap_block *vb; 1533 struct vmap_block *n_vb; 1534 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1535 1536 rcu_read_lock(); 1537 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1538 1539 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1540 continue; 1541 1542 spin_lock(&vb->lock); 1543 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1544 vb->free = 0; /* prevent further allocs after releasing lock */ 1545 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1546 vb->dirty_min = 0; 1547 vb->dirty_max = VMAP_BBMAP_BITS; 1548 spin_lock(&vbq->lock); 1549 list_del_rcu(&vb->free_list); 1550 spin_unlock(&vbq->lock); 1551 spin_unlock(&vb->lock); 1552 list_add_tail(&vb->purge, &purge); 1553 } else 1554 spin_unlock(&vb->lock); 1555 } 1556 rcu_read_unlock(); 1557 1558 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1559 list_del(&vb->purge); 1560 free_vmap_block(vb); 1561 } 1562 } 1563 1564 static void purge_fragmented_blocks_allcpus(void) 1565 { 1566 int cpu; 1567 1568 for_each_possible_cpu(cpu) 1569 purge_fragmented_blocks(cpu); 1570 } 1571 1572 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1573 { 1574 struct vmap_block_queue *vbq; 1575 struct vmap_block *vb; 1576 void *vaddr = NULL; 1577 unsigned int order; 1578 1579 BUG_ON(offset_in_page(size)); 1580 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1581 if (WARN_ON(size == 0)) { 1582 /* 1583 * Allocating 0 bytes isn't what caller wants since 1584 * get_order(0) returns funny result. Just warn and terminate 1585 * early. 1586 */ 1587 return NULL; 1588 } 1589 order = get_order(size); 1590 1591 rcu_read_lock(); 1592 vbq = &get_cpu_var(vmap_block_queue); 1593 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1594 unsigned long pages_off; 1595 1596 spin_lock(&vb->lock); 1597 if (vb->free < (1UL << order)) { 1598 spin_unlock(&vb->lock); 1599 continue; 1600 } 1601 1602 pages_off = VMAP_BBMAP_BITS - vb->free; 1603 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1604 vb->free -= 1UL << order; 1605 if (vb->free == 0) { 1606 spin_lock(&vbq->lock); 1607 list_del_rcu(&vb->free_list); 1608 spin_unlock(&vbq->lock); 1609 } 1610 1611 spin_unlock(&vb->lock); 1612 break; 1613 } 1614 1615 put_cpu_var(vmap_block_queue); 1616 rcu_read_unlock(); 1617 1618 /* Allocate new block if nothing was found */ 1619 if (!vaddr) 1620 vaddr = new_vmap_block(order, gfp_mask); 1621 1622 return vaddr; 1623 } 1624 1625 static void vb_free(const void *addr, unsigned long size) 1626 { 1627 unsigned long offset; 1628 unsigned long vb_idx; 1629 unsigned int order; 1630 struct vmap_block *vb; 1631 1632 BUG_ON(offset_in_page(size)); 1633 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1634 1635 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1636 1637 order = get_order(size); 1638 1639 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1640 offset >>= PAGE_SHIFT; 1641 1642 vb_idx = addr_to_vb_idx((unsigned long)addr); 1643 rcu_read_lock(); 1644 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1645 rcu_read_unlock(); 1646 BUG_ON(!vb); 1647 1648 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1649 1650 if (debug_pagealloc_enabled()) 1651 flush_tlb_kernel_range((unsigned long)addr, 1652 (unsigned long)addr + size); 1653 1654 spin_lock(&vb->lock); 1655 1656 /* Expand dirty range */ 1657 vb->dirty_min = min(vb->dirty_min, offset); 1658 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1659 1660 vb->dirty += 1UL << order; 1661 if (vb->dirty == VMAP_BBMAP_BITS) { 1662 BUG_ON(vb->free); 1663 spin_unlock(&vb->lock); 1664 free_vmap_block(vb); 1665 } else 1666 spin_unlock(&vb->lock); 1667 } 1668 1669 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1670 { 1671 int cpu; 1672 1673 if (unlikely(!vmap_initialized)) 1674 return; 1675 1676 might_sleep(); 1677 1678 for_each_possible_cpu(cpu) { 1679 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1680 struct vmap_block *vb; 1681 1682 rcu_read_lock(); 1683 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1684 spin_lock(&vb->lock); 1685 if (vb->dirty) { 1686 unsigned long va_start = vb->va->va_start; 1687 unsigned long s, e; 1688 1689 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1690 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1691 1692 start = min(s, start); 1693 end = max(e, end); 1694 1695 flush = 1; 1696 } 1697 spin_unlock(&vb->lock); 1698 } 1699 rcu_read_unlock(); 1700 } 1701 1702 mutex_lock(&vmap_purge_lock); 1703 purge_fragmented_blocks_allcpus(); 1704 if (!__purge_vmap_area_lazy(start, end) && flush) 1705 flush_tlb_kernel_range(start, end); 1706 mutex_unlock(&vmap_purge_lock); 1707 } 1708 1709 /** 1710 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1711 * 1712 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1713 * to amortize TLB flushing overheads. What this means is that any page you 1714 * have now, may, in a former life, have been mapped into kernel virtual 1715 * address by the vmap layer and so there might be some CPUs with TLB entries 1716 * still referencing that page (additional to the regular 1:1 kernel mapping). 1717 * 1718 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1719 * be sure that none of the pages we have control over will have any aliases 1720 * from the vmap layer. 1721 */ 1722 void vm_unmap_aliases(void) 1723 { 1724 unsigned long start = ULONG_MAX, end = 0; 1725 int flush = 0; 1726 1727 _vm_unmap_aliases(start, end, flush); 1728 } 1729 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1730 1731 /** 1732 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1733 * @mem: the pointer returned by vm_map_ram 1734 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1735 */ 1736 void vm_unmap_ram(const void *mem, unsigned int count) 1737 { 1738 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1739 unsigned long addr = (unsigned long)mem; 1740 struct vmap_area *va; 1741 1742 might_sleep(); 1743 BUG_ON(!addr); 1744 BUG_ON(addr < VMALLOC_START); 1745 BUG_ON(addr > VMALLOC_END); 1746 BUG_ON(!PAGE_ALIGNED(addr)); 1747 1748 if (likely(count <= VMAP_MAX_ALLOC)) { 1749 debug_check_no_locks_freed(mem, size); 1750 vb_free(mem, size); 1751 return; 1752 } 1753 1754 va = find_vmap_area(addr); 1755 BUG_ON(!va); 1756 debug_check_no_locks_freed((void *)va->va_start, 1757 (va->va_end - va->va_start)); 1758 free_unmap_vmap_area(va); 1759 } 1760 EXPORT_SYMBOL(vm_unmap_ram); 1761 1762 /** 1763 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1764 * @pages: an array of pointers to the pages to be mapped 1765 * @count: number of pages 1766 * @node: prefer to allocate data structures on this node 1767 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1768 * 1769 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1770 * faster than vmap so it's good. But if you mix long-life and short-life 1771 * objects with vm_map_ram(), it could consume lots of address space through 1772 * fragmentation (especially on a 32bit machine). You could see failures in 1773 * the end. Please use this function for short-lived objects. 1774 * 1775 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1776 */ 1777 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1778 { 1779 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1780 unsigned long addr; 1781 void *mem; 1782 1783 if (likely(count <= VMAP_MAX_ALLOC)) { 1784 mem = vb_alloc(size, GFP_KERNEL); 1785 if (IS_ERR(mem)) 1786 return NULL; 1787 addr = (unsigned long)mem; 1788 } else { 1789 struct vmap_area *va; 1790 va = alloc_vmap_area(size, PAGE_SIZE, 1791 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1792 if (IS_ERR(va)) 1793 return NULL; 1794 1795 addr = va->va_start; 1796 mem = (void *)addr; 1797 } 1798 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1799 vm_unmap_ram(mem, count); 1800 return NULL; 1801 } 1802 return mem; 1803 } 1804 EXPORT_SYMBOL(vm_map_ram); 1805 1806 static struct vm_struct *vmlist __initdata; 1807 1808 /** 1809 * vm_area_add_early - add vmap area early during boot 1810 * @vm: vm_struct to add 1811 * 1812 * This function is used to add fixed kernel vm area to vmlist before 1813 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1814 * should contain proper values and the other fields should be zero. 1815 * 1816 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1817 */ 1818 void __init vm_area_add_early(struct vm_struct *vm) 1819 { 1820 struct vm_struct *tmp, **p; 1821 1822 BUG_ON(vmap_initialized); 1823 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1824 if (tmp->addr >= vm->addr) { 1825 BUG_ON(tmp->addr < vm->addr + vm->size); 1826 break; 1827 } else 1828 BUG_ON(tmp->addr + tmp->size > vm->addr); 1829 } 1830 vm->next = *p; 1831 *p = vm; 1832 } 1833 1834 /** 1835 * vm_area_register_early - register vmap area early during boot 1836 * @vm: vm_struct to register 1837 * @align: requested alignment 1838 * 1839 * This function is used to register kernel vm area before 1840 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1841 * proper values on entry and other fields should be zero. On return, 1842 * vm->addr contains the allocated address. 1843 * 1844 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1845 */ 1846 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1847 { 1848 static size_t vm_init_off __initdata; 1849 unsigned long addr; 1850 1851 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1852 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1853 1854 vm->addr = (void *)addr; 1855 1856 vm_area_add_early(vm); 1857 } 1858 1859 static void vmap_init_free_space(void) 1860 { 1861 unsigned long vmap_start = 1; 1862 const unsigned long vmap_end = ULONG_MAX; 1863 struct vmap_area *busy, *free; 1864 1865 /* 1866 * B F B B B F 1867 * -|-----|.....|-----|-----|-----|.....|- 1868 * | The KVA space | 1869 * |<--------------------------------->| 1870 */ 1871 list_for_each_entry(busy, &vmap_area_list, list) { 1872 if (busy->va_start - vmap_start > 0) { 1873 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1874 if (!WARN_ON_ONCE(!free)) { 1875 free->va_start = vmap_start; 1876 free->va_end = busy->va_start; 1877 1878 insert_vmap_area_augment(free, NULL, 1879 &free_vmap_area_root, 1880 &free_vmap_area_list); 1881 } 1882 } 1883 1884 vmap_start = busy->va_end; 1885 } 1886 1887 if (vmap_end - vmap_start > 0) { 1888 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1889 if (!WARN_ON_ONCE(!free)) { 1890 free->va_start = vmap_start; 1891 free->va_end = vmap_end; 1892 1893 insert_vmap_area_augment(free, NULL, 1894 &free_vmap_area_root, 1895 &free_vmap_area_list); 1896 } 1897 } 1898 } 1899 1900 void __init vmalloc_init(void) 1901 { 1902 struct vmap_area *va; 1903 struct vm_struct *tmp; 1904 int i; 1905 1906 /* 1907 * Create the cache for vmap_area objects. 1908 */ 1909 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 1910 1911 for_each_possible_cpu(i) { 1912 struct vmap_block_queue *vbq; 1913 struct vfree_deferred *p; 1914 1915 vbq = &per_cpu(vmap_block_queue, i); 1916 spin_lock_init(&vbq->lock); 1917 INIT_LIST_HEAD(&vbq->free); 1918 p = &per_cpu(vfree_deferred, i); 1919 init_llist_head(&p->list); 1920 INIT_WORK(&p->wq, free_work); 1921 } 1922 1923 /* Import existing vmlist entries. */ 1924 for (tmp = vmlist; tmp; tmp = tmp->next) { 1925 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1926 if (WARN_ON_ONCE(!va)) 1927 continue; 1928 1929 va->va_start = (unsigned long)tmp->addr; 1930 va->va_end = va->va_start + tmp->size; 1931 va->vm = tmp; 1932 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1933 } 1934 1935 /* 1936 * Now we can initialize a free vmap space. 1937 */ 1938 vmap_init_free_space(); 1939 vmap_initialized = true; 1940 } 1941 1942 /** 1943 * map_kernel_range_noflush - map kernel VM area with the specified pages 1944 * @addr: start of the VM area to map 1945 * @size: size of the VM area to map 1946 * @prot: page protection flags to use 1947 * @pages: pages to map 1948 * 1949 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1950 * specify should have been allocated using get_vm_area() and its 1951 * friends. 1952 * 1953 * NOTE: 1954 * This function does NOT do any cache flushing. The caller is 1955 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1956 * before calling this function. 1957 * 1958 * RETURNS: 1959 * The number of pages mapped on success, -errno on failure. 1960 */ 1961 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1962 pgprot_t prot, struct page **pages) 1963 { 1964 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1965 } 1966 1967 /** 1968 * unmap_kernel_range_noflush - unmap kernel VM area 1969 * @addr: start of the VM area to unmap 1970 * @size: size of the VM area to unmap 1971 * 1972 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1973 * specify should have been allocated using get_vm_area() and its 1974 * friends. 1975 * 1976 * NOTE: 1977 * This function does NOT do any cache flushing. The caller is 1978 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1979 * before calling this function and flush_tlb_kernel_range() after. 1980 */ 1981 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1982 { 1983 vunmap_page_range(addr, addr + size); 1984 } 1985 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1986 1987 /** 1988 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1989 * @addr: start of the VM area to unmap 1990 * @size: size of the VM area to unmap 1991 * 1992 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1993 * the unmapping and tlb after. 1994 */ 1995 void unmap_kernel_range(unsigned long addr, unsigned long size) 1996 { 1997 unsigned long end = addr + size; 1998 1999 flush_cache_vunmap(addr, end); 2000 vunmap_page_range(addr, end); 2001 flush_tlb_kernel_range(addr, end); 2002 } 2003 EXPORT_SYMBOL_GPL(unmap_kernel_range); 2004 2005 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 2006 { 2007 unsigned long addr = (unsigned long)area->addr; 2008 unsigned long end = addr + get_vm_area_size(area); 2009 int err; 2010 2011 err = vmap_page_range(addr, end, prot, pages); 2012 2013 return err > 0 ? 0 : err; 2014 } 2015 EXPORT_SYMBOL_GPL(map_vm_area); 2016 2017 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2018 unsigned long flags, const void *caller) 2019 { 2020 spin_lock(&vmap_area_lock); 2021 vm->flags = flags; 2022 vm->addr = (void *)va->va_start; 2023 vm->size = va->va_end - va->va_start; 2024 vm->caller = caller; 2025 va->vm = vm; 2026 spin_unlock(&vmap_area_lock); 2027 } 2028 2029 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2030 { 2031 /* 2032 * Before removing VM_UNINITIALIZED, 2033 * we should make sure that vm has proper values. 2034 * Pair with smp_rmb() in show_numa_info(). 2035 */ 2036 smp_wmb(); 2037 vm->flags &= ~VM_UNINITIALIZED; 2038 } 2039 2040 static struct vm_struct *__get_vm_area_node(unsigned long size, 2041 unsigned long align, unsigned long flags, unsigned long start, 2042 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 2043 { 2044 struct vmap_area *va; 2045 struct vm_struct *area; 2046 2047 BUG_ON(in_interrupt()); 2048 size = PAGE_ALIGN(size); 2049 if (unlikely(!size)) 2050 return NULL; 2051 2052 if (flags & VM_IOREMAP) 2053 align = 1ul << clamp_t(int, get_count_order_long(size), 2054 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2055 2056 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2057 if (unlikely(!area)) 2058 return NULL; 2059 2060 if (!(flags & VM_NO_GUARD)) 2061 size += PAGE_SIZE; 2062 2063 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2064 if (IS_ERR(va)) { 2065 kfree(area); 2066 return NULL; 2067 } 2068 2069 setup_vmalloc_vm(area, va, flags, caller); 2070 2071 return area; 2072 } 2073 2074 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 2075 unsigned long start, unsigned long end) 2076 { 2077 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2078 GFP_KERNEL, __builtin_return_address(0)); 2079 } 2080 EXPORT_SYMBOL_GPL(__get_vm_area); 2081 2082 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2083 unsigned long start, unsigned long end, 2084 const void *caller) 2085 { 2086 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2087 GFP_KERNEL, caller); 2088 } 2089 2090 /** 2091 * get_vm_area - reserve a contiguous kernel virtual area 2092 * @size: size of the area 2093 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2094 * 2095 * Search an area of @size in the kernel virtual mapping area, 2096 * and reserved it for out purposes. Returns the area descriptor 2097 * on success or %NULL on failure. 2098 * 2099 * Return: the area descriptor on success or %NULL on failure. 2100 */ 2101 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2102 { 2103 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2104 NUMA_NO_NODE, GFP_KERNEL, 2105 __builtin_return_address(0)); 2106 } 2107 2108 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2109 const void *caller) 2110 { 2111 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2112 NUMA_NO_NODE, GFP_KERNEL, caller); 2113 } 2114 2115 /** 2116 * find_vm_area - find a continuous kernel virtual area 2117 * @addr: base address 2118 * 2119 * Search for the kernel VM area starting at @addr, and return it. 2120 * It is up to the caller to do all required locking to keep the returned 2121 * pointer valid. 2122 * 2123 * Return: pointer to the found area or %NULL on faulure 2124 */ 2125 struct vm_struct *find_vm_area(const void *addr) 2126 { 2127 struct vmap_area *va; 2128 2129 va = find_vmap_area((unsigned long)addr); 2130 if (!va) 2131 return NULL; 2132 2133 return va->vm; 2134 } 2135 2136 /** 2137 * remove_vm_area - find and remove a continuous kernel virtual area 2138 * @addr: base address 2139 * 2140 * Search for the kernel VM area starting at @addr, and remove it. 2141 * This function returns the found VM area, but using it is NOT safe 2142 * on SMP machines, except for its size or flags. 2143 * 2144 * Return: pointer to the found area or %NULL on faulure 2145 */ 2146 struct vm_struct *remove_vm_area(const void *addr) 2147 { 2148 struct vmap_area *va; 2149 2150 might_sleep(); 2151 2152 spin_lock(&vmap_area_lock); 2153 va = __find_vmap_area((unsigned long)addr); 2154 if (va && va->vm) { 2155 struct vm_struct *vm = va->vm; 2156 2157 va->vm = NULL; 2158 spin_unlock(&vmap_area_lock); 2159 2160 kasan_free_shadow(vm); 2161 free_unmap_vmap_area(va); 2162 2163 return vm; 2164 } 2165 2166 spin_unlock(&vmap_area_lock); 2167 return NULL; 2168 } 2169 2170 static inline void set_area_direct_map(const struct vm_struct *area, 2171 int (*set_direct_map)(struct page *page)) 2172 { 2173 int i; 2174 2175 for (i = 0; i < area->nr_pages; i++) 2176 if (page_address(area->pages[i])) 2177 set_direct_map(area->pages[i]); 2178 } 2179 2180 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2181 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2182 { 2183 unsigned long start = ULONG_MAX, end = 0; 2184 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2185 int flush_dmap = 0; 2186 int i; 2187 2188 remove_vm_area(area->addr); 2189 2190 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2191 if (!flush_reset) 2192 return; 2193 2194 /* 2195 * If not deallocating pages, just do the flush of the VM area and 2196 * return. 2197 */ 2198 if (!deallocate_pages) { 2199 vm_unmap_aliases(); 2200 return; 2201 } 2202 2203 /* 2204 * If execution gets here, flush the vm mapping and reset the direct 2205 * map. Find the start and end range of the direct mappings to make sure 2206 * the vm_unmap_aliases() flush includes the direct map. 2207 */ 2208 for (i = 0; i < area->nr_pages; i++) { 2209 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2210 if (addr) { 2211 start = min(addr, start); 2212 end = max(addr + PAGE_SIZE, end); 2213 flush_dmap = 1; 2214 } 2215 } 2216 2217 /* 2218 * Set direct map to something invalid so that it won't be cached if 2219 * there are any accesses after the TLB flush, then flush the TLB and 2220 * reset the direct map permissions to the default. 2221 */ 2222 set_area_direct_map(area, set_direct_map_invalid_noflush); 2223 _vm_unmap_aliases(start, end, flush_dmap); 2224 set_area_direct_map(area, set_direct_map_default_noflush); 2225 } 2226 2227 static void __vunmap(const void *addr, int deallocate_pages) 2228 { 2229 struct vm_struct *area; 2230 2231 if (!addr) 2232 return; 2233 2234 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2235 addr)) 2236 return; 2237 2238 area = find_vm_area(addr); 2239 if (unlikely(!area)) { 2240 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2241 addr); 2242 return; 2243 } 2244 2245 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2246 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2247 2248 vm_remove_mappings(area, deallocate_pages); 2249 2250 if (deallocate_pages) { 2251 int i; 2252 2253 for (i = 0; i < area->nr_pages; i++) { 2254 struct page *page = area->pages[i]; 2255 2256 BUG_ON(!page); 2257 __free_pages(page, 0); 2258 } 2259 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2260 2261 kvfree(area->pages); 2262 } 2263 2264 kfree(area); 2265 return; 2266 } 2267 2268 static inline void __vfree_deferred(const void *addr) 2269 { 2270 /* 2271 * Use raw_cpu_ptr() because this can be called from preemptible 2272 * context. Preemption is absolutely fine here, because the llist_add() 2273 * implementation is lockless, so it works even if we are adding to 2274 * nother cpu's list. schedule_work() should be fine with this too. 2275 */ 2276 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2277 2278 if (llist_add((struct llist_node *)addr, &p->list)) 2279 schedule_work(&p->wq); 2280 } 2281 2282 /** 2283 * vfree_atomic - release memory allocated by vmalloc() 2284 * @addr: memory base address 2285 * 2286 * This one is just like vfree() but can be called in any atomic context 2287 * except NMIs. 2288 */ 2289 void vfree_atomic(const void *addr) 2290 { 2291 BUG_ON(in_nmi()); 2292 2293 kmemleak_free(addr); 2294 2295 if (!addr) 2296 return; 2297 __vfree_deferred(addr); 2298 } 2299 2300 static void __vfree(const void *addr) 2301 { 2302 if (unlikely(in_interrupt())) 2303 __vfree_deferred(addr); 2304 else 2305 __vunmap(addr, 1); 2306 } 2307 2308 /** 2309 * vfree - release memory allocated by vmalloc() 2310 * @addr: memory base address 2311 * 2312 * Free the virtually continuous memory area starting at @addr, as 2313 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 2314 * NULL, no operation is performed. 2315 * 2316 * Must not be called in NMI context (strictly speaking, only if we don't 2317 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2318 * conventions for vfree() arch-depenedent would be a really bad idea) 2319 * 2320 * May sleep if called *not* from interrupt context. 2321 * 2322 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 2323 */ 2324 void vfree(const void *addr) 2325 { 2326 BUG_ON(in_nmi()); 2327 2328 kmemleak_free(addr); 2329 2330 might_sleep_if(!in_interrupt()); 2331 2332 if (!addr) 2333 return; 2334 2335 __vfree(addr); 2336 } 2337 EXPORT_SYMBOL(vfree); 2338 2339 /** 2340 * vunmap - release virtual mapping obtained by vmap() 2341 * @addr: memory base address 2342 * 2343 * Free the virtually contiguous memory area starting at @addr, 2344 * which was created from the page array passed to vmap(). 2345 * 2346 * Must not be called in interrupt context. 2347 */ 2348 void vunmap(const void *addr) 2349 { 2350 BUG_ON(in_interrupt()); 2351 might_sleep(); 2352 if (addr) 2353 __vunmap(addr, 0); 2354 } 2355 EXPORT_SYMBOL(vunmap); 2356 2357 /** 2358 * vmap - map an array of pages into virtually contiguous space 2359 * @pages: array of page pointers 2360 * @count: number of pages to map 2361 * @flags: vm_area->flags 2362 * @prot: page protection for the mapping 2363 * 2364 * Maps @count pages from @pages into contiguous kernel virtual 2365 * space. 2366 * 2367 * Return: the address of the area or %NULL on failure 2368 */ 2369 void *vmap(struct page **pages, unsigned int count, 2370 unsigned long flags, pgprot_t prot) 2371 { 2372 struct vm_struct *area; 2373 unsigned long size; /* In bytes */ 2374 2375 might_sleep(); 2376 2377 if (count > totalram_pages()) 2378 return NULL; 2379 2380 size = (unsigned long)count << PAGE_SHIFT; 2381 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2382 if (!area) 2383 return NULL; 2384 2385 if (map_vm_area(area, prot, pages)) { 2386 vunmap(area->addr); 2387 return NULL; 2388 } 2389 2390 return area->addr; 2391 } 2392 EXPORT_SYMBOL(vmap); 2393 2394 static void *__vmalloc_node(unsigned long size, unsigned long align, 2395 gfp_t gfp_mask, pgprot_t prot, 2396 int node, const void *caller); 2397 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2398 pgprot_t prot, int node) 2399 { 2400 struct page **pages; 2401 unsigned int nr_pages, array_size, i; 2402 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2403 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 2404 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 2405 0 : 2406 __GFP_HIGHMEM; 2407 2408 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 2409 array_size = (nr_pages * sizeof(struct page *)); 2410 2411 /* Please note that the recursion is strictly bounded. */ 2412 if (array_size > PAGE_SIZE) { 2413 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 2414 PAGE_KERNEL, node, area->caller); 2415 } else { 2416 pages = kmalloc_node(array_size, nested_gfp, node); 2417 } 2418 2419 if (!pages) { 2420 remove_vm_area(area->addr); 2421 kfree(area); 2422 return NULL; 2423 } 2424 2425 area->pages = pages; 2426 area->nr_pages = nr_pages; 2427 2428 for (i = 0; i < area->nr_pages; i++) { 2429 struct page *page; 2430 2431 if (node == NUMA_NO_NODE) 2432 page = alloc_page(alloc_mask|highmem_mask); 2433 else 2434 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 2435 2436 if (unlikely(!page)) { 2437 /* Successfully allocated i pages, free them in __vunmap() */ 2438 area->nr_pages = i; 2439 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2440 goto fail; 2441 } 2442 area->pages[i] = page; 2443 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 2444 cond_resched(); 2445 } 2446 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2447 2448 if (map_vm_area(area, prot, pages)) 2449 goto fail; 2450 return area->addr; 2451 2452 fail: 2453 warn_alloc(gfp_mask, NULL, 2454 "vmalloc: allocation failure, allocated %ld of %ld bytes", 2455 (area->nr_pages*PAGE_SIZE), area->size); 2456 __vfree(area->addr); 2457 return NULL; 2458 } 2459 2460 /** 2461 * __vmalloc_node_range - allocate virtually contiguous memory 2462 * @size: allocation size 2463 * @align: desired alignment 2464 * @start: vm area range start 2465 * @end: vm area range end 2466 * @gfp_mask: flags for the page level allocator 2467 * @prot: protection mask for the allocated pages 2468 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2469 * @node: node to use for allocation or NUMA_NO_NODE 2470 * @caller: caller's return address 2471 * 2472 * Allocate enough pages to cover @size from the page level 2473 * allocator with @gfp_mask flags. Map them into contiguous 2474 * kernel virtual space, using a pagetable protection of @prot. 2475 * 2476 * Return: the address of the area or %NULL on failure 2477 */ 2478 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2479 unsigned long start, unsigned long end, gfp_t gfp_mask, 2480 pgprot_t prot, unsigned long vm_flags, int node, 2481 const void *caller) 2482 { 2483 struct vm_struct *area; 2484 void *addr; 2485 unsigned long real_size = size; 2486 2487 size = PAGE_ALIGN(size); 2488 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 2489 goto fail; 2490 2491 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 2492 vm_flags, start, end, node, gfp_mask, caller); 2493 if (!area) 2494 goto fail; 2495 2496 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 2497 if (!addr) 2498 return NULL; 2499 2500 /* 2501 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2502 * flag. It means that vm_struct is not fully initialized. 2503 * Now, it is fully initialized, so remove this flag here. 2504 */ 2505 clear_vm_uninitialized_flag(area); 2506 2507 kmemleak_vmalloc(area, size, gfp_mask); 2508 2509 return addr; 2510 2511 fail: 2512 warn_alloc(gfp_mask, NULL, 2513 "vmalloc: allocation failure: %lu bytes", real_size); 2514 return NULL; 2515 } 2516 2517 /* 2518 * This is only for performance analysis of vmalloc and stress purpose. 2519 * It is required by vmalloc test module, therefore do not use it other 2520 * than that. 2521 */ 2522 #ifdef CONFIG_TEST_VMALLOC_MODULE 2523 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 2524 #endif 2525 2526 /** 2527 * __vmalloc_node - allocate virtually contiguous memory 2528 * @size: allocation size 2529 * @align: desired alignment 2530 * @gfp_mask: flags for the page level allocator 2531 * @prot: protection mask for the allocated pages 2532 * @node: node to use for allocation or NUMA_NO_NODE 2533 * @caller: caller's return address 2534 * 2535 * Allocate enough pages to cover @size from the page level 2536 * allocator with @gfp_mask flags. Map them into contiguous 2537 * kernel virtual space, using a pagetable protection of @prot. 2538 * 2539 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 2540 * and __GFP_NOFAIL are not supported 2541 * 2542 * Any use of gfp flags outside of GFP_KERNEL should be consulted 2543 * with mm people. 2544 * 2545 * Return: pointer to the allocated memory or %NULL on error 2546 */ 2547 static void *__vmalloc_node(unsigned long size, unsigned long align, 2548 gfp_t gfp_mask, pgprot_t prot, 2549 int node, const void *caller) 2550 { 2551 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 2552 gfp_mask, prot, 0, node, caller); 2553 } 2554 2555 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 2556 { 2557 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 2558 __builtin_return_address(0)); 2559 } 2560 EXPORT_SYMBOL(__vmalloc); 2561 2562 static inline void *__vmalloc_node_flags(unsigned long size, 2563 int node, gfp_t flags) 2564 { 2565 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 2566 node, __builtin_return_address(0)); 2567 } 2568 2569 2570 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 2571 void *caller) 2572 { 2573 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 2574 } 2575 2576 /** 2577 * vmalloc - allocate virtually contiguous memory 2578 * @size: allocation size 2579 * 2580 * Allocate enough pages to cover @size from the page level 2581 * allocator and map them into contiguous kernel virtual space. 2582 * 2583 * For tight control over page level allocator and protection flags 2584 * use __vmalloc() instead. 2585 * 2586 * Return: pointer to the allocated memory or %NULL on error 2587 */ 2588 void *vmalloc(unsigned long size) 2589 { 2590 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2591 GFP_KERNEL); 2592 } 2593 EXPORT_SYMBOL(vmalloc); 2594 2595 /** 2596 * vzalloc - allocate virtually contiguous memory with zero fill 2597 * @size: allocation size 2598 * 2599 * Allocate enough pages to cover @size from the page level 2600 * allocator and map them into contiguous kernel virtual space. 2601 * The memory allocated is set to zero. 2602 * 2603 * For tight control over page level allocator and protection flags 2604 * use __vmalloc() instead. 2605 * 2606 * Return: pointer to the allocated memory or %NULL on error 2607 */ 2608 void *vzalloc(unsigned long size) 2609 { 2610 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2611 GFP_KERNEL | __GFP_ZERO); 2612 } 2613 EXPORT_SYMBOL(vzalloc); 2614 2615 /** 2616 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 2617 * @size: allocation size 2618 * 2619 * The resulting memory area is zeroed so it can be mapped to userspace 2620 * without leaking data. 2621 * 2622 * Return: pointer to the allocated memory or %NULL on error 2623 */ 2624 void *vmalloc_user(unsigned long size) 2625 { 2626 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2627 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 2628 VM_USERMAP, NUMA_NO_NODE, 2629 __builtin_return_address(0)); 2630 } 2631 EXPORT_SYMBOL(vmalloc_user); 2632 2633 /** 2634 * vmalloc_node - allocate memory on a specific node 2635 * @size: allocation size 2636 * @node: numa node 2637 * 2638 * Allocate enough pages to cover @size from the page level 2639 * allocator and map them into contiguous kernel virtual space. 2640 * 2641 * For tight control over page level allocator and protection flags 2642 * use __vmalloc() instead. 2643 * 2644 * Return: pointer to the allocated memory or %NULL on error 2645 */ 2646 void *vmalloc_node(unsigned long size, int node) 2647 { 2648 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 2649 node, __builtin_return_address(0)); 2650 } 2651 EXPORT_SYMBOL(vmalloc_node); 2652 2653 /** 2654 * vzalloc_node - allocate memory on a specific node with zero fill 2655 * @size: allocation size 2656 * @node: numa node 2657 * 2658 * Allocate enough pages to cover @size from the page level 2659 * allocator and map them into contiguous kernel virtual space. 2660 * The memory allocated is set to zero. 2661 * 2662 * For tight control over page level allocator and protection flags 2663 * use __vmalloc_node() instead. 2664 * 2665 * Return: pointer to the allocated memory or %NULL on error 2666 */ 2667 void *vzalloc_node(unsigned long size, int node) 2668 { 2669 return __vmalloc_node_flags(size, node, 2670 GFP_KERNEL | __GFP_ZERO); 2671 } 2672 EXPORT_SYMBOL(vzalloc_node); 2673 2674 /** 2675 * vmalloc_exec - allocate virtually contiguous, executable memory 2676 * @size: allocation size 2677 * 2678 * Kernel-internal function to allocate enough pages to cover @size 2679 * the page level allocator and map them into contiguous and 2680 * executable kernel virtual space. 2681 * 2682 * For tight control over page level allocator and protection flags 2683 * use __vmalloc() instead. 2684 * 2685 * Return: pointer to the allocated memory or %NULL on error 2686 */ 2687 void *vmalloc_exec(unsigned long size) 2688 { 2689 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2690 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2691 NUMA_NO_NODE, __builtin_return_address(0)); 2692 } 2693 2694 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2695 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2696 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2697 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2698 #else 2699 /* 2700 * 64b systems should always have either DMA or DMA32 zones. For others 2701 * GFP_DMA32 should do the right thing and use the normal zone. 2702 */ 2703 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2704 #endif 2705 2706 /** 2707 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2708 * @size: allocation size 2709 * 2710 * Allocate enough 32bit PA addressable pages to cover @size from the 2711 * page level allocator and map them into contiguous kernel virtual space. 2712 * 2713 * Return: pointer to the allocated memory or %NULL on error 2714 */ 2715 void *vmalloc_32(unsigned long size) 2716 { 2717 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 2718 NUMA_NO_NODE, __builtin_return_address(0)); 2719 } 2720 EXPORT_SYMBOL(vmalloc_32); 2721 2722 /** 2723 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2724 * @size: allocation size 2725 * 2726 * The resulting memory area is 32bit addressable and zeroed so it can be 2727 * mapped to userspace without leaking data. 2728 * 2729 * Return: pointer to the allocated memory or %NULL on error 2730 */ 2731 void *vmalloc_32_user(unsigned long size) 2732 { 2733 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2734 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2735 VM_USERMAP, NUMA_NO_NODE, 2736 __builtin_return_address(0)); 2737 } 2738 EXPORT_SYMBOL(vmalloc_32_user); 2739 2740 /* 2741 * small helper routine , copy contents to buf from addr. 2742 * If the page is not present, fill zero. 2743 */ 2744 2745 static int aligned_vread(char *buf, char *addr, unsigned long count) 2746 { 2747 struct page *p; 2748 int copied = 0; 2749 2750 while (count) { 2751 unsigned long offset, length; 2752 2753 offset = offset_in_page(addr); 2754 length = PAGE_SIZE - offset; 2755 if (length > count) 2756 length = count; 2757 p = vmalloc_to_page(addr); 2758 /* 2759 * To do safe access to this _mapped_ area, we need 2760 * lock. But adding lock here means that we need to add 2761 * overhead of vmalloc()/vfree() calles for this _debug_ 2762 * interface, rarely used. Instead of that, we'll use 2763 * kmap() and get small overhead in this access function. 2764 */ 2765 if (p) { 2766 /* 2767 * we can expect USER0 is not used (see vread/vwrite's 2768 * function description) 2769 */ 2770 void *map = kmap_atomic(p); 2771 memcpy(buf, map + offset, length); 2772 kunmap_atomic(map); 2773 } else 2774 memset(buf, 0, length); 2775 2776 addr += length; 2777 buf += length; 2778 copied += length; 2779 count -= length; 2780 } 2781 return copied; 2782 } 2783 2784 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2785 { 2786 struct page *p; 2787 int copied = 0; 2788 2789 while (count) { 2790 unsigned long offset, length; 2791 2792 offset = offset_in_page(addr); 2793 length = PAGE_SIZE - offset; 2794 if (length > count) 2795 length = count; 2796 p = vmalloc_to_page(addr); 2797 /* 2798 * To do safe access to this _mapped_ area, we need 2799 * lock. But adding lock here means that we need to add 2800 * overhead of vmalloc()/vfree() calles for this _debug_ 2801 * interface, rarely used. Instead of that, we'll use 2802 * kmap() and get small overhead in this access function. 2803 */ 2804 if (p) { 2805 /* 2806 * we can expect USER0 is not used (see vread/vwrite's 2807 * function description) 2808 */ 2809 void *map = kmap_atomic(p); 2810 memcpy(map + offset, buf, length); 2811 kunmap_atomic(map); 2812 } 2813 addr += length; 2814 buf += length; 2815 copied += length; 2816 count -= length; 2817 } 2818 return copied; 2819 } 2820 2821 /** 2822 * vread() - read vmalloc area in a safe way. 2823 * @buf: buffer for reading data 2824 * @addr: vm address. 2825 * @count: number of bytes to be read. 2826 * 2827 * This function checks that addr is a valid vmalloc'ed area, and 2828 * copy data from that area to a given buffer. If the given memory range 2829 * of [addr...addr+count) includes some valid address, data is copied to 2830 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2831 * IOREMAP area is treated as memory hole and no copy is done. 2832 * 2833 * If [addr...addr+count) doesn't includes any intersects with alive 2834 * vm_struct area, returns 0. @buf should be kernel's buffer. 2835 * 2836 * Note: In usual ops, vread() is never necessary because the caller 2837 * should know vmalloc() area is valid and can use memcpy(). 2838 * This is for routines which have to access vmalloc area without 2839 * any information, as /dev/kmem. 2840 * 2841 * Return: number of bytes for which addr and buf should be increased 2842 * (same number as @count) or %0 if [addr...addr+count) doesn't 2843 * include any intersection with valid vmalloc area 2844 */ 2845 long vread(char *buf, char *addr, unsigned long count) 2846 { 2847 struct vmap_area *va; 2848 struct vm_struct *vm; 2849 char *vaddr, *buf_start = buf; 2850 unsigned long buflen = count; 2851 unsigned long n; 2852 2853 /* Don't allow overflow */ 2854 if ((unsigned long) addr + count < count) 2855 count = -(unsigned long) addr; 2856 2857 spin_lock(&vmap_area_lock); 2858 list_for_each_entry(va, &vmap_area_list, list) { 2859 if (!count) 2860 break; 2861 2862 if (!va->vm) 2863 continue; 2864 2865 vm = va->vm; 2866 vaddr = (char *) vm->addr; 2867 if (addr >= vaddr + get_vm_area_size(vm)) 2868 continue; 2869 while (addr < vaddr) { 2870 if (count == 0) 2871 goto finished; 2872 *buf = '\0'; 2873 buf++; 2874 addr++; 2875 count--; 2876 } 2877 n = vaddr + get_vm_area_size(vm) - addr; 2878 if (n > count) 2879 n = count; 2880 if (!(vm->flags & VM_IOREMAP)) 2881 aligned_vread(buf, addr, n); 2882 else /* IOREMAP area is treated as memory hole */ 2883 memset(buf, 0, n); 2884 buf += n; 2885 addr += n; 2886 count -= n; 2887 } 2888 finished: 2889 spin_unlock(&vmap_area_lock); 2890 2891 if (buf == buf_start) 2892 return 0; 2893 /* zero-fill memory holes */ 2894 if (buf != buf_start + buflen) 2895 memset(buf, 0, buflen - (buf - buf_start)); 2896 2897 return buflen; 2898 } 2899 2900 /** 2901 * vwrite() - write vmalloc area in a safe way. 2902 * @buf: buffer for source data 2903 * @addr: vm address. 2904 * @count: number of bytes to be read. 2905 * 2906 * This function checks that addr is a valid vmalloc'ed area, and 2907 * copy data from a buffer to the given addr. If specified range of 2908 * [addr...addr+count) includes some valid address, data is copied from 2909 * proper area of @buf. If there are memory holes, no copy to hole. 2910 * IOREMAP area is treated as memory hole and no copy is done. 2911 * 2912 * If [addr...addr+count) doesn't includes any intersects with alive 2913 * vm_struct area, returns 0. @buf should be kernel's buffer. 2914 * 2915 * Note: In usual ops, vwrite() is never necessary because the caller 2916 * should know vmalloc() area is valid and can use memcpy(). 2917 * This is for routines which have to access vmalloc area without 2918 * any information, as /dev/kmem. 2919 * 2920 * Return: number of bytes for which addr and buf should be 2921 * increased (same number as @count) or %0 if [addr...addr+count) 2922 * doesn't include any intersection with valid vmalloc area 2923 */ 2924 long vwrite(char *buf, char *addr, unsigned long count) 2925 { 2926 struct vmap_area *va; 2927 struct vm_struct *vm; 2928 char *vaddr; 2929 unsigned long n, buflen; 2930 int copied = 0; 2931 2932 /* Don't allow overflow */ 2933 if ((unsigned long) addr + count < count) 2934 count = -(unsigned long) addr; 2935 buflen = count; 2936 2937 spin_lock(&vmap_area_lock); 2938 list_for_each_entry(va, &vmap_area_list, list) { 2939 if (!count) 2940 break; 2941 2942 if (!va->vm) 2943 continue; 2944 2945 vm = va->vm; 2946 vaddr = (char *) vm->addr; 2947 if (addr >= vaddr + get_vm_area_size(vm)) 2948 continue; 2949 while (addr < vaddr) { 2950 if (count == 0) 2951 goto finished; 2952 buf++; 2953 addr++; 2954 count--; 2955 } 2956 n = vaddr + get_vm_area_size(vm) - addr; 2957 if (n > count) 2958 n = count; 2959 if (!(vm->flags & VM_IOREMAP)) { 2960 aligned_vwrite(buf, addr, n); 2961 copied++; 2962 } 2963 buf += n; 2964 addr += n; 2965 count -= n; 2966 } 2967 finished: 2968 spin_unlock(&vmap_area_lock); 2969 if (!copied) 2970 return 0; 2971 return buflen; 2972 } 2973 2974 /** 2975 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2976 * @vma: vma to cover 2977 * @uaddr: target user address to start at 2978 * @kaddr: virtual address of vmalloc kernel memory 2979 * @size: size of map area 2980 * 2981 * Returns: 0 for success, -Exxx on failure 2982 * 2983 * This function checks that @kaddr is a valid vmalloc'ed area, 2984 * and that it is big enough to cover the range starting at 2985 * @uaddr in @vma. Will return failure if that criteria isn't 2986 * met. 2987 * 2988 * Similar to remap_pfn_range() (see mm/memory.c) 2989 */ 2990 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2991 void *kaddr, unsigned long size) 2992 { 2993 struct vm_struct *area; 2994 2995 size = PAGE_ALIGN(size); 2996 2997 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2998 return -EINVAL; 2999 3000 area = find_vm_area(kaddr); 3001 if (!area) 3002 return -EINVAL; 3003 3004 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3005 return -EINVAL; 3006 3007 if (kaddr + size > area->addr + get_vm_area_size(area)) 3008 return -EINVAL; 3009 3010 do { 3011 struct page *page = vmalloc_to_page(kaddr); 3012 int ret; 3013 3014 ret = vm_insert_page(vma, uaddr, page); 3015 if (ret) 3016 return ret; 3017 3018 uaddr += PAGE_SIZE; 3019 kaddr += PAGE_SIZE; 3020 size -= PAGE_SIZE; 3021 } while (size > 0); 3022 3023 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3024 3025 return 0; 3026 } 3027 EXPORT_SYMBOL(remap_vmalloc_range_partial); 3028 3029 /** 3030 * remap_vmalloc_range - map vmalloc pages to userspace 3031 * @vma: vma to cover (map full range of vma) 3032 * @addr: vmalloc memory 3033 * @pgoff: number of pages into addr before first page to map 3034 * 3035 * Returns: 0 for success, -Exxx on failure 3036 * 3037 * This function checks that addr is a valid vmalloc'ed area, and 3038 * that it is big enough to cover the vma. Will return failure if 3039 * that criteria isn't met. 3040 * 3041 * Similar to remap_pfn_range() (see mm/memory.c) 3042 */ 3043 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3044 unsigned long pgoff) 3045 { 3046 return remap_vmalloc_range_partial(vma, vma->vm_start, 3047 addr + (pgoff << PAGE_SHIFT), 3048 vma->vm_end - vma->vm_start); 3049 } 3050 EXPORT_SYMBOL(remap_vmalloc_range); 3051 3052 /* 3053 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 3054 * have one. 3055 * 3056 * The purpose of this function is to make sure the vmalloc area 3057 * mappings are identical in all page-tables in the system. 3058 */ 3059 void __weak vmalloc_sync_all(void) 3060 { 3061 } 3062 3063 3064 static int f(pte_t *pte, unsigned long addr, void *data) 3065 { 3066 pte_t ***p = data; 3067 3068 if (p) { 3069 *(*p) = pte; 3070 (*p)++; 3071 } 3072 return 0; 3073 } 3074 3075 /** 3076 * alloc_vm_area - allocate a range of kernel address space 3077 * @size: size of the area 3078 * @ptes: returns the PTEs for the address space 3079 * 3080 * Returns: NULL on failure, vm_struct on success 3081 * 3082 * This function reserves a range of kernel address space, and 3083 * allocates pagetables to map that range. No actual mappings 3084 * are created. 3085 * 3086 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 3087 * allocated for the VM area are returned. 3088 */ 3089 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 3090 { 3091 struct vm_struct *area; 3092 3093 area = get_vm_area_caller(size, VM_IOREMAP, 3094 __builtin_return_address(0)); 3095 if (area == NULL) 3096 return NULL; 3097 3098 /* 3099 * This ensures that page tables are constructed for this region 3100 * of kernel virtual address space and mapped into init_mm. 3101 */ 3102 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3103 size, f, ptes ? &ptes : NULL)) { 3104 free_vm_area(area); 3105 return NULL; 3106 } 3107 3108 return area; 3109 } 3110 EXPORT_SYMBOL_GPL(alloc_vm_area); 3111 3112 void free_vm_area(struct vm_struct *area) 3113 { 3114 struct vm_struct *ret; 3115 ret = remove_vm_area(area->addr); 3116 BUG_ON(ret != area); 3117 kfree(area); 3118 } 3119 EXPORT_SYMBOL_GPL(free_vm_area); 3120 3121 #ifdef CONFIG_SMP 3122 static struct vmap_area *node_to_va(struct rb_node *n) 3123 { 3124 return rb_entry_safe(n, struct vmap_area, rb_node); 3125 } 3126 3127 /** 3128 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3129 * @addr: target address 3130 * 3131 * Returns: vmap_area if it is found. If there is no such area 3132 * the first highest(reverse order) vmap_area is returned 3133 * i.e. va->va_start < addr && va->va_end < addr or NULL 3134 * if there are no any areas before @addr. 3135 */ 3136 static struct vmap_area * 3137 pvm_find_va_enclose_addr(unsigned long addr) 3138 { 3139 struct vmap_area *va, *tmp; 3140 struct rb_node *n; 3141 3142 n = free_vmap_area_root.rb_node; 3143 va = NULL; 3144 3145 while (n) { 3146 tmp = rb_entry(n, struct vmap_area, rb_node); 3147 if (tmp->va_start <= addr) { 3148 va = tmp; 3149 if (tmp->va_end >= addr) 3150 break; 3151 3152 n = n->rb_right; 3153 } else { 3154 n = n->rb_left; 3155 } 3156 } 3157 3158 return va; 3159 } 3160 3161 /** 3162 * pvm_determine_end_from_reverse - find the highest aligned address 3163 * of free block below VMALLOC_END 3164 * @va: 3165 * in - the VA we start the search(reverse order); 3166 * out - the VA with the highest aligned end address. 3167 * 3168 * Returns: determined end address within vmap_area 3169 */ 3170 static unsigned long 3171 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3172 { 3173 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3174 unsigned long addr; 3175 3176 if (likely(*va)) { 3177 list_for_each_entry_from_reverse((*va), 3178 &free_vmap_area_list, list) { 3179 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3180 if ((*va)->va_start < addr) 3181 return addr; 3182 } 3183 } 3184 3185 return 0; 3186 } 3187 3188 /** 3189 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3190 * @offsets: array containing offset of each area 3191 * @sizes: array containing size of each area 3192 * @nr_vms: the number of areas to allocate 3193 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3194 * 3195 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3196 * vm_structs on success, %NULL on failure 3197 * 3198 * Percpu allocator wants to use congruent vm areas so that it can 3199 * maintain the offsets among percpu areas. This function allocates 3200 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3201 * be scattered pretty far, distance between two areas easily going up 3202 * to gigabytes. To avoid interacting with regular vmallocs, these 3203 * areas are allocated from top. 3204 * 3205 * Despite its complicated look, this allocator is rather simple. It 3206 * does everything top-down and scans free blocks from the end looking 3207 * for matching base. While scanning, if any of the areas do not fit the 3208 * base address is pulled down to fit the area. Scanning is repeated till 3209 * all the areas fit and then all necessary data structures are inserted 3210 * and the result is returned. 3211 */ 3212 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3213 const size_t *sizes, int nr_vms, 3214 size_t align) 3215 { 3216 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3217 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3218 struct vmap_area **vas, *va; 3219 struct vm_struct **vms; 3220 int area, area2, last_area, term_area; 3221 unsigned long base, start, size, end, last_end; 3222 bool purged = false; 3223 enum fit_type type; 3224 3225 /* verify parameters and allocate data structures */ 3226 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3227 for (last_area = 0, area = 0; area < nr_vms; area++) { 3228 start = offsets[area]; 3229 end = start + sizes[area]; 3230 3231 /* is everything aligned properly? */ 3232 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3233 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3234 3235 /* detect the area with the highest address */ 3236 if (start > offsets[last_area]) 3237 last_area = area; 3238 3239 for (area2 = area + 1; area2 < nr_vms; area2++) { 3240 unsigned long start2 = offsets[area2]; 3241 unsigned long end2 = start2 + sizes[area2]; 3242 3243 BUG_ON(start2 < end && start < end2); 3244 } 3245 } 3246 last_end = offsets[last_area] + sizes[last_area]; 3247 3248 if (vmalloc_end - vmalloc_start < last_end) { 3249 WARN_ON(true); 3250 return NULL; 3251 } 3252 3253 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3254 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3255 if (!vas || !vms) 3256 goto err_free2; 3257 3258 for (area = 0; area < nr_vms; area++) { 3259 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3260 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3261 if (!vas[area] || !vms[area]) 3262 goto err_free; 3263 } 3264 retry: 3265 spin_lock(&vmap_area_lock); 3266 3267 /* start scanning - we scan from the top, begin with the last area */ 3268 area = term_area = last_area; 3269 start = offsets[area]; 3270 end = start + sizes[area]; 3271 3272 va = pvm_find_va_enclose_addr(vmalloc_end); 3273 base = pvm_determine_end_from_reverse(&va, align) - end; 3274 3275 while (true) { 3276 /* 3277 * base might have underflowed, add last_end before 3278 * comparing. 3279 */ 3280 if (base + last_end < vmalloc_start + last_end) 3281 goto overflow; 3282 3283 /* 3284 * Fitting base has not been found. 3285 */ 3286 if (va == NULL) 3287 goto overflow; 3288 3289 /* 3290 * If required width exeeds current VA block, move 3291 * base downwards and then recheck. 3292 */ 3293 if (base + end > va->va_end) { 3294 base = pvm_determine_end_from_reverse(&va, align) - end; 3295 term_area = area; 3296 continue; 3297 } 3298 3299 /* 3300 * If this VA does not fit, move base downwards and recheck. 3301 */ 3302 if (base + start < va->va_start) { 3303 va = node_to_va(rb_prev(&va->rb_node)); 3304 base = pvm_determine_end_from_reverse(&va, align) - end; 3305 term_area = area; 3306 continue; 3307 } 3308 3309 /* 3310 * This area fits, move on to the previous one. If 3311 * the previous one is the terminal one, we're done. 3312 */ 3313 area = (area + nr_vms - 1) % nr_vms; 3314 if (area == term_area) 3315 break; 3316 3317 start = offsets[area]; 3318 end = start + sizes[area]; 3319 va = pvm_find_va_enclose_addr(base + end); 3320 } 3321 3322 /* we've found a fitting base, insert all va's */ 3323 for (area = 0; area < nr_vms; area++) { 3324 int ret; 3325 3326 start = base + offsets[area]; 3327 size = sizes[area]; 3328 3329 va = pvm_find_va_enclose_addr(start); 3330 if (WARN_ON_ONCE(va == NULL)) 3331 /* It is a BUG(), but trigger recovery instead. */ 3332 goto recovery; 3333 3334 type = classify_va_fit_type(va, start, size); 3335 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3336 /* It is a BUG(), but trigger recovery instead. */ 3337 goto recovery; 3338 3339 ret = adjust_va_to_fit_type(va, start, size, type); 3340 if (unlikely(ret)) 3341 goto recovery; 3342 3343 /* Allocated area. */ 3344 va = vas[area]; 3345 va->va_start = start; 3346 va->va_end = start + size; 3347 3348 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 3349 } 3350 3351 spin_unlock(&vmap_area_lock); 3352 3353 /* insert all vm's */ 3354 for (area = 0; area < nr_vms; area++) 3355 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 3356 pcpu_get_vm_areas); 3357 3358 kfree(vas); 3359 return vms; 3360 3361 recovery: 3362 /* Remove previously inserted areas. */ 3363 while (area--) { 3364 __free_vmap_area(vas[area]); 3365 vas[area] = NULL; 3366 } 3367 3368 overflow: 3369 spin_unlock(&vmap_area_lock); 3370 if (!purged) { 3371 purge_vmap_area_lazy(); 3372 purged = true; 3373 3374 /* Before "retry", check if we recover. */ 3375 for (area = 0; area < nr_vms; area++) { 3376 if (vas[area]) 3377 continue; 3378 3379 vas[area] = kmem_cache_zalloc( 3380 vmap_area_cachep, GFP_KERNEL); 3381 if (!vas[area]) 3382 goto err_free; 3383 } 3384 3385 goto retry; 3386 } 3387 3388 err_free: 3389 for (area = 0; area < nr_vms; area++) { 3390 if (vas[area]) 3391 kmem_cache_free(vmap_area_cachep, vas[area]); 3392 3393 kfree(vms[area]); 3394 } 3395 err_free2: 3396 kfree(vas); 3397 kfree(vms); 3398 return NULL; 3399 } 3400 3401 /** 3402 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3403 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3404 * @nr_vms: the number of allocated areas 3405 * 3406 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3407 */ 3408 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3409 { 3410 int i; 3411 3412 for (i = 0; i < nr_vms; i++) 3413 free_vm_area(vms[i]); 3414 kfree(vms); 3415 } 3416 #endif /* CONFIG_SMP */ 3417 3418 #ifdef CONFIG_PROC_FS 3419 static void *s_start(struct seq_file *m, loff_t *pos) 3420 __acquires(&vmap_area_lock) 3421 { 3422 spin_lock(&vmap_area_lock); 3423 return seq_list_start(&vmap_area_list, *pos); 3424 } 3425 3426 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3427 { 3428 return seq_list_next(p, &vmap_area_list, pos); 3429 } 3430 3431 static void s_stop(struct seq_file *m, void *p) 3432 __releases(&vmap_area_lock) 3433 { 3434 spin_unlock(&vmap_area_lock); 3435 } 3436 3437 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3438 { 3439 if (IS_ENABLED(CONFIG_NUMA)) { 3440 unsigned int nr, *counters = m->private; 3441 3442 if (!counters) 3443 return; 3444 3445 if (v->flags & VM_UNINITIALIZED) 3446 return; 3447 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3448 smp_rmb(); 3449 3450 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3451 3452 for (nr = 0; nr < v->nr_pages; nr++) 3453 counters[page_to_nid(v->pages[nr])]++; 3454 3455 for_each_node_state(nr, N_HIGH_MEMORY) 3456 if (counters[nr]) 3457 seq_printf(m, " N%u=%u", nr, counters[nr]); 3458 } 3459 } 3460 3461 static void show_purge_info(struct seq_file *m) 3462 { 3463 struct llist_node *head; 3464 struct vmap_area *va; 3465 3466 head = READ_ONCE(vmap_purge_list.first); 3467 if (head == NULL) 3468 return; 3469 3470 llist_for_each_entry(va, head, purge_list) { 3471 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 3472 (void *)va->va_start, (void *)va->va_end, 3473 va->va_end - va->va_start); 3474 } 3475 } 3476 3477 static int s_show(struct seq_file *m, void *p) 3478 { 3479 struct vmap_area *va; 3480 struct vm_struct *v; 3481 3482 va = list_entry(p, struct vmap_area, list); 3483 3484 /* 3485 * s_show can encounter race with remove_vm_area, !vm on behalf 3486 * of vmap area is being tear down or vm_map_ram allocation. 3487 */ 3488 if (!va->vm) { 3489 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 3490 (void *)va->va_start, (void *)va->va_end, 3491 va->va_end - va->va_start); 3492 3493 return 0; 3494 } 3495 3496 v = va->vm; 3497 3498 seq_printf(m, "0x%pK-0x%pK %7ld", 3499 v->addr, v->addr + v->size, v->size); 3500 3501 if (v->caller) 3502 seq_printf(m, " %pS", v->caller); 3503 3504 if (v->nr_pages) 3505 seq_printf(m, " pages=%d", v->nr_pages); 3506 3507 if (v->phys_addr) 3508 seq_printf(m, " phys=%pa", &v->phys_addr); 3509 3510 if (v->flags & VM_IOREMAP) 3511 seq_puts(m, " ioremap"); 3512 3513 if (v->flags & VM_ALLOC) 3514 seq_puts(m, " vmalloc"); 3515 3516 if (v->flags & VM_MAP) 3517 seq_puts(m, " vmap"); 3518 3519 if (v->flags & VM_USERMAP) 3520 seq_puts(m, " user"); 3521 3522 if (v->flags & VM_DMA_COHERENT) 3523 seq_puts(m, " dma-coherent"); 3524 3525 if (is_vmalloc_addr(v->pages)) 3526 seq_puts(m, " vpages"); 3527 3528 show_numa_info(m, v); 3529 seq_putc(m, '\n'); 3530 3531 /* 3532 * As a final step, dump "unpurged" areas. Note, 3533 * that entire "/proc/vmallocinfo" output will not 3534 * be address sorted, because the purge list is not 3535 * sorted. 3536 */ 3537 if (list_is_last(&va->list, &vmap_area_list)) 3538 show_purge_info(m); 3539 3540 return 0; 3541 } 3542 3543 static const struct seq_operations vmalloc_op = { 3544 .start = s_start, 3545 .next = s_next, 3546 .stop = s_stop, 3547 .show = s_show, 3548 }; 3549 3550 static int __init proc_vmalloc_init(void) 3551 { 3552 if (IS_ENABLED(CONFIG_NUMA)) 3553 proc_create_seq_private("vmallocinfo", 0400, NULL, 3554 &vmalloc_op, 3555 nr_node_ids * sizeof(unsigned int), NULL); 3556 else 3557 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3558 return 0; 3559 } 3560 module_init(proc_vmalloc_init); 3561 3562 #endif 3563