1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmalloc.c 4 * 5 * Copyright (C) 1993 Linus Torvalds 6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 9 * Numa awareness, Christoph Lameter, SGI, June 2005 10 */ 11 12 #include <linux/vmalloc.h> 13 #include <linux/mm.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/sched/signal.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/interrupt.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/set_memory.h> 23 #include <linux/debugobjects.h> 24 #include <linux/kallsyms.h> 25 #include <linux/list.h> 26 #include <linux/notifier.h> 27 #include <linux/rbtree.h> 28 #include <linux/radix-tree.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/llist.h> 35 #include <linux/bitops.h> 36 #include <linux/rbtree_augmented.h> 37 #include <linux/overflow.h> 38 39 #include <linux/uaccess.h> 40 #include <asm/tlbflush.h> 41 #include <asm/shmparam.h> 42 43 #include "internal.h" 44 45 bool is_vmalloc_addr(const void *x) 46 { 47 unsigned long addr = (unsigned long)x; 48 49 return addr >= VMALLOC_START && addr < VMALLOC_END; 50 } 51 EXPORT_SYMBOL(is_vmalloc_addr); 52 53 struct vfree_deferred { 54 struct llist_head list; 55 struct work_struct wq; 56 }; 57 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 58 59 static void __vunmap(const void *, int); 60 61 static void free_work(struct work_struct *w) 62 { 63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 64 struct llist_node *t, *llnode; 65 66 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 67 __vunmap((void *)llnode, 1); 68 } 69 70 /*** Page table manipulation functions ***/ 71 72 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 73 pgtbl_mod_mask *mask) 74 { 75 pte_t *pte; 76 77 pte = pte_offset_kernel(pmd, addr); 78 do { 79 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 80 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 81 } while (pte++, addr += PAGE_SIZE, addr != end); 82 *mask |= PGTBL_PTE_MODIFIED; 83 } 84 85 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 86 pgtbl_mod_mask *mask) 87 { 88 pmd_t *pmd; 89 unsigned long next; 90 int cleared; 91 92 pmd = pmd_offset(pud, addr); 93 do { 94 next = pmd_addr_end(addr, end); 95 96 cleared = pmd_clear_huge(pmd); 97 if (cleared || pmd_bad(*pmd)) 98 *mask |= PGTBL_PMD_MODIFIED; 99 100 if (cleared) 101 continue; 102 if (pmd_none_or_clear_bad(pmd)) 103 continue; 104 vunmap_pte_range(pmd, addr, next, mask); 105 } while (pmd++, addr = next, addr != end); 106 } 107 108 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 109 pgtbl_mod_mask *mask) 110 { 111 pud_t *pud; 112 unsigned long next; 113 int cleared; 114 115 pud = pud_offset(p4d, addr); 116 do { 117 next = pud_addr_end(addr, end); 118 119 cleared = pud_clear_huge(pud); 120 if (cleared || pud_bad(*pud)) 121 *mask |= PGTBL_PUD_MODIFIED; 122 123 if (cleared) 124 continue; 125 if (pud_none_or_clear_bad(pud)) 126 continue; 127 vunmap_pmd_range(pud, addr, next, mask); 128 } while (pud++, addr = next, addr != end); 129 } 130 131 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 132 pgtbl_mod_mask *mask) 133 { 134 p4d_t *p4d; 135 unsigned long next; 136 int cleared; 137 138 p4d = p4d_offset(pgd, addr); 139 do { 140 next = p4d_addr_end(addr, end); 141 142 cleared = p4d_clear_huge(p4d); 143 if (cleared || p4d_bad(*p4d)) 144 *mask |= PGTBL_P4D_MODIFIED; 145 146 if (cleared) 147 continue; 148 if (p4d_none_or_clear_bad(p4d)) 149 continue; 150 vunmap_pud_range(p4d, addr, next, mask); 151 } while (p4d++, addr = next, addr != end); 152 } 153 154 /** 155 * unmap_kernel_range_noflush - unmap kernel VM area 156 * @start: start of the VM area to unmap 157 * @size: size of the VM area to unmap 158 * 159 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify 160 * should have been allocated using get_vm_area() and its friends. 161 * 162 * NOTE: 163 * This function does NOT do any cache flushing. The caller is responsible 164 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this 165 * function and flush_tlb_kernel_range() after. 166 */ 167 void unmap_kernel_range_noflush(unsigned long start, unsigned long size) 168 { 169 unsigned long end = start + size; 170 unsigned long next; 171 pgd_t *pgd; 172 unsigned long addr = start; 173 pgtbl_mod_mask mask = 0; 174 175 BUG_ON(addr >= end); 176 start = addr; 177 pgd = pgd_offset_k(addr); 178 do { 179 next = pgd_addr_end(addr, end); 180 if (pgd_bad(*pgd)) 181 mask |= PGTBL_PGD_MODIFIED; 182 if (pgd_none_or_clear_bad(pgd)) 183 continue; 184 vunmap_p4d_range(pgd, addr, next, &mask); 185 } while (pgd++, addr = next, addr != end); 186 187 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 188 arch_sync_kernel_mappings(start, end); 189 } 190 191 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 192 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 193 pgtbl_mod_mask *mask) 194 { 195 pte_t *pte; 196 197 /* 198 * nr is a running index into the array which helps higher level 199 * callers keep track of where we're up to. 200 */ 201 202 pte = pte_alloc_kernel_track(pmd, addr, mask); 203 if (!pte) 204 return -ENOMEM; 205 do { 206 struct page *page = pages[*nr]; 207 208 if (WARN_ON(!pte_none(*pte))) 209 return -EBUSY; 210 if (WARN_ON(!page)) 211 return -ENOMEM; 212 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 213 (*nr)++; 214 } while (pte++, addr += PAGE_SIZE, addr != end); 215 *mask |= PGTBL_PTE_MODIFIED; 216 return 0; 217 } 218 219 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 220 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 221 pgtbl_mod_mask *mask) 222 { 223 pmd_t *pmd; 224 unsigned long next; 225 226 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 227 if (!pmd) 228 return -ENOMEM; 229 do { 230 next = pmd_addr_end(addr, end); 231 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask)) 232 return -ENOMEM; 233 } while (pmd++, addr = next, addr != end); 234 return 0; 235 } 236 237 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 238 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 239 pgtbl_mod_mask *mask) 240 { 241 pud_t *pud; 242 unsigned long next; 243 244 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 245 if (!pud) 246 return -ENOMEM; 247 do { 248 next = pud_addr_end(addr, end); 249 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask)) 250 return -ENOMEM; 251 } while (pud++, addr = next, addr != end); 252 return 0; 253 } 254 255 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 256 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 257 pgtbl_mod_mask *mask) 258 { 259 p4d_t *p4d; 260 unsigned long next; 261 262 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 263 if (!p4d) 264 return -ENOMEM; 265 do { 266 next = p4d_addr_end(addr, end); 267 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask)) 268 return -ENOMEM; 269 } while (p4d++, addr = next, addr != end); 270 return 0; 271 } 272 273 /** 274 * map_kernel_range_noflush - map kernel VM area with the specified pages 275 * @addr: start of the VM area to map 276 * @size: size of the VM area to map 277 * @prot: page protection flags to use 278 * @pages: pages to map 279 * 280 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should 281 * have been allocated using get_vm_area() and its friends. 282 * 283 * NOTE: 284 * This function does NOT do any cache flushing. The caller is responsible for 285 * calling flush_cache_vmap() on to-be-mapped areas before calling this 286 * function. 287 * 288 * RETURNS: 289 * 0 on success, -errno on failure. 290 */ 291 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 292 pgprot_t prot, struct page **pages) 293 { 294 unsigned long start = addr; 295 unsigned long end = addr + size; 296 unsigned long next; 297 pgd_t *pgd; 298 int err = 0; 299 int nr = 0; 300 pgtbl_mod_mask mask = 0; 301 302 BUG_ON(addr >= end); 303 pgd = pgd_offset_k(addr); 304 do { 305 next = pgd_addr_end(addr, end); 306 if (pgd_bad(*pgd)) 307 mask |= PGTBL_PGD_MODIFIED; 308 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 309 if (err) 310 return err; 311 } while (pgd++, addr = next, addr != end); 312 313 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 314 arch_sync_kernel_mappings(start, end); 315 316 return 0; 317 } 318 319 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot, 320 struct page **pages) 321 { 322 int ret; 323 324 ret = map_kernel_range_noflush(start, size, prot, pages); 325 flush_cache_vmap(start, start + size); 326 return ret; 327 } 328 329 int is_vmalloc_or_module_addr(const void *x) 330 { 331 /* 332 * ARM, x86-64 and sparc64 put modules in a special place, 333 * and fall back on vmalloc() if that fails. Others 334 * just put it in the vmalloc space. 335 */ 336 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 337 unsigned long addr = (unsigned long)x; 338 if (addr >= MODULES_VADDR && addr < MODULES_END) 339 return 1; 340 #endif 341 return is_vmalloc_addr(x); 342 } 343 344 /* 345 * Walk a vmap address to the struct page it maps. 346 */ 347 struct page *vmalloc_to_page(const void *vmalloc_addr) 348 { 349 unsigned long addr = (unsigned long) vmalloc_addr; 350 struct page *page = NULL; 351 pgd_t *pgd = pgd_offset_k(addr); 352 p4d_t *p4d; 353 pud_t *pud; 354 pmd_t *pmd; 355 pte_t *ptep, pte; 356 357 /* 358 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 359 * architectures that do not vmalloc module space 360 */ 361 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 362 363 if (pgd_none(*pgd)) 364 return NULL; 365 p4d = p4d_offset(pgd, addr); 366 if (p4d_none(*p4d)) 367 return NULL; 368 pud = pud_offset(p4d, addr); 369 370 /* 371 * Don't dereference bad PUD or PMD (below) entries. This will also 372 * identify huge mappings, which we may encounter on architectures 373 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 374 * identified as vmalloc addresses by is_vmalloc_addr(), but are 375 * not [unambiguously] associated with a struct page, so there is 376 * no correct value to return for them. 377 */ 378 WARN_ON_ONCE(pud_bad(*pud)); 379 if (pud_none(*pud) || pud_bad(*pud)) 380 return NULL; 381 pmd = pmd_offset(pud, addr); 382 WARN_ON_ONCE(pmd_bad(*pmd)); 383 if (pmd_none(*pmd) || pmd_bad(*pmd)) 384 return NULL; 385 386 ptep = pte_offset_map(pmd, addr); 387 pte = *ptep; 388 if (pte_present(pte)) 389 page = pte_page(pte); 390 pte_unmap(ptep); 391 return page; 392 } 393 EXPORT_SYMBOL(vmalloc_to_page); 394 395 /* 396 * Map a vmalloc()-space virtual address to the physical page frame number. 397 */ 398 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 399 { 400 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 401 } 402 EXPORT_SYMBOL(vmalloc_to_pfn); 403 404 405 /*** Global kva allocator ***/ 406 407 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 408 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 409 410 411 static DEFINE_SPINLOCK(vmap_area_lock); 412 static DEFINE_SPINLOCK(free_vmap_area_lock); 413 /* Export for kexec only */ 414 LIST_HEAD(vmap_area_list); 415 static LLIST_HEAD(vmap_purge_list); 416 static struct rb_root vmap_area_root = RB_ROOT; 417 static bool vmap_initialized __read_mostly; 418 419 /* 420 * This kmem_cache is used for vmap_area objects. Instead of 421 * allocating from slab we reuse an object from this cache to 422 * make things faster. Especially in "no edge" splitting of 423 * free block. 424 */ 425 static struct kmem_cache *vmap_area_cachep; 426 427 /* 428 * This linked list is used in pair with free_vmap_area_root. 429 * It gives O(1) access to prev/next to perform fast coalescing. 430 */ 431 static LIST_HEAD(free_vmap_area_list); 432 433 /* 434 * This augment red-black tree represents the free vmap space. 435 * All vmap_area objects in this tree are sorted by va->va_start 436 * address. It is used for allocation and merging when a vmap 437 * object is released. 438 * 439 * Each vmap_area node contains a maximum available free block 440 * of its sub-tree, right or left. Therefore it is possible to 441 * find a lowest match of free area. 442 */ 443 static struct rb_root free_vmap_area_root = RB_ROOT; 444 445 /* 446 * Preload a CPU with one object for "no edge" split case. The 447 * aim is to get rid of allocations from the atomic context, thus 448 * to use more permissive allocation masks. 449 */ 450 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 451 452 static __always_inline unsigned long 453 va_size(struct vmap_area *va) 454 { 455 return (va->va_end - va->va_start); 456 } 457 458 static __always_inline unsigned long 459 get_subtree_max_size(struct rb_node *node) 460 { 461 struct vmap_area *va; 462 463 va = rb_entry_safe(node, struct vmap_area, rb_node); 464 return va ? va->subtree_max_size : 0; 465 } 466 467 /* 468 * Gets called when remove the node and rotate. 469 */ 470 static __always_inline unsigned long 471 compute_subtree_max_size(struct vmap_area *va) 472 { 473 return max3(va_size(va), 474 get_subtree_max_size(va->rb_node.rb_left), 475 get_subtree_max_size(va->rb_node.rb_right)); 476 } 477 478 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 479 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 480 481 static void purge_vmap_area_lazy(void); 482 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 483 static unsigned long lazy_max_pages(void); 484 485 static atomic_long_t nr_vmalloc_pages; 486 487 unsigned long vmalloc_nr_pages(void) 488 { 489 return atomic_long_read(&nr_vmalloc_pages); 490 } 491 492 static struct vmap_area *__find_vmap_area(unsigned long addr) 493 { 494 struct rb_node *n = vmap_area_root.rb_node; 495 496 while (n) { 497 struct vmap_area *va; 498 499 va = rb_entry(n, struct vmap_area, rb_node); 500 if (addr < va->va_start) 501 n = n->rb_left; 502 else if (addr >= va->va_end) 503 n = n->rb_right; 504 else 505 return va; 506 } 507 508 return NULL; 509 } 510 511 /* 512 * This function returns back addresses of parent node 513 * and its left or right link for further processing. 514 */ 515 static __always_inline struct rb_node ** 516 find_va_links(struct vmap_area *va, 517 struct rb_root *root, struct rb_node *from, 518 struct rb_node **parent) 519 { 520 struct vmap_area *tmp_va; 521 struct rb_node **link; 522 523 if (root) { 524 link = &root->rb_node; 525 if (unlikely(!*link)) { 526 *parent = NULL; 527 return link; 528 } 529 } else { 530 link = &from; 531 } 532 533 /* 534 * Go to the bottom of the tree. When we hit the last point 535 * we end up with parent rb_node and correct direction, i name 536 * it link, where the new va->rb_node will be attached to. 537 */ 538 do { 539 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 540 541 /* 542 * During the traversal we also do some sanity check. 543 * Trigger the BUG() if there are sides(left/right) 544 * or full overlaps. 545 */ 546 if (va->va_start < tmp_va->va_end && 547 va->va_end <= tmp_va->va_start) 548 link = &(*link)->rb_left; 549 else if (va->va_end > tmp_va->va_start && 550 va->va_start >= tmp_va->va_end) 551 link = &(*link)->rb_right; 552 else 553 BUG(); 554 } while (*link); 555 556 *parent = &tmp_va->rb_node; 557 return link; 558 } 559 560 static __always_inline struct list_head * 561 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 562 { 563 struct list_head *list; 564 565 if (unlikely(!parent)) 566 /* 567 * The red-black tree where we try to find VA neighbors 568 * before merging or inserting is empty, i.e. it means 569 * there is no free vmap space. Normally it does not 570 * happen but we handle this case anyway. 571 */ 572 return NULL; 573 574 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 575 return (&parent->rb_right == link ? list->next : list); 576 } 577 578 static __always_inline void 579 link_va(struct vmap_area *va, struct rb_root *root, 580 struct rb_node *parent, struct rb_node **link, struct list_head *head) 581 { 582 /* 583 * VA is still not in the list, but we can 584 * identify its future previous list_head node. 585 */ 586 if (likely(parent)) { 587 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 588 if (&parent->rb_right != link) 589 head = head->prev; 590 } 591 592 /* Insert to the rb-tree */ 593 rb_link_node(&va->rb_node, parent, link); 594 if (root == &free_vmap_area_root) { 595 /* 596 * Some explanation here. Just perform simple insertion 597 * to the tree. We do not set va->subtree_max_size to 598 * its current size before calling rb_insert_augmented(). 599 * It is because of we populate the tree from the bottom 600 * to parent levels when the node _is_ in the tree. 601 * 602 * Therefore we set subtree_max_size to zero after insertion, 603 * to let __augment_tree_propagate_from() puts everything to 604 * the correct order later on. 605 */ 606 rb_insert_augmented(&va->rb_node, 607 root, &free_vmap_area_rb_augment_cb); 608 va->subtree_max_size = 0; 609 } else { 610 rb_insert_color(&va->rb_node, root); 611 } 612 613 /* Address-sort this list */ 614 list_add(&va->list, head); 615 } 616 617 static __always_inline void 618 unlink_va(struct vmap_area *va, struct rb_root *root) 619 { 620 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 621 return; 622 623 if (root == &free_vmap_area_root) 624 rb_erase_augmented(&va->rb_node, 625 root, &free_vmap_area_rb_augment_cb); 626 else 627 rb_erase(&va->rb_node, root); 628 629 list_del(&va->list); 630 RB_CLEAR_NODE(&va->rb_node); 631 } 632 633 #if DEBUG_AUGMENT_PROPAGATE_CHECK 634 static void 635 augment_tree_propagate_check(struct rb_node *n) 636 { 637 struct vmap_area *va; 638 struct rb_node *node; 639 unsigned long size; 640 bool found = false; 641 642 if (n == NULL) 643 return; 644 645 va = rb_entry(n, struct vmap_area, rb_node); 646 size = va->subtree_max_size; 647 node = n; 648 649 while (node) { 650 va = rb_entry(node, struct vmap_area, rb_node); 651 652 if (get_subtree_max_size(node->rb_left) == size) { 653 node = node->rb_left; 654 } else { 655 if (va_size(va) == size) { 656 found = true; 657 break; 658 } 659 660 node = node->rb_right; 661 } 662 } 663 664 if (!found) { 665 va = rb_entry(n, struct vmap_area, rb_node); 666 pr_emerg("tree is corrupted: %lu, %lu\n", 667 va_size(va), va->subtree_max_size); 668 } 669 670 augment_tree_propagate_check(n->rb_left); 671 augment_tree_propagate_check(n->rb_right); 672 } 673 #endif 674 675 /* 676 * This function populates subtree_max_size from bottom to upper 677 * levels starting from VA point. The propagation must be done 678 * when VA size is modified by changing its va_start/va_end. Or 679 * in case of newly inserting of VA to the tree. 680 * 681 * It means that __augment_tree_propagate_from() must be called: 682 * - After VA has been inserted to the tree(free path); 683 * - After VA has been shrunk(allocation path); 684 * - After VA has been increased(merging path). 685 * 686 * Please note that, it does not mean that upper parent nodes 687 * and their subtree_max_size are recalculated all the time up 688 * to the root node. 689 * 690 * 4--8 691 * /\ 692 * / \ 693 * / \ 694 * 2--2 8--8 695 * 696 * For example if we modify the node 4, shrinking it to 2, then 697 * no any modification is required. If we shrink the node 2 to 1 698 * its subtree_max_size is updated only, and set to 1. If we shrink 699 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 700 * node becomes 4--6. 701 */ 702 static __always_inline void 703 augment_tree_propagate_from(struct vmap_area *va) 704 { 705 struct rb_node *node = &va->rb_node; 706 unsigned long new_va_sub_max_size; 707 708 while (node) { 709 va = rb_entry(node, struct vmap_area, rb_node); 710 new_va_sub_max_size = compute_subtree_max_size(va); 711 712 /* 713 * If the newly calculated maximum available size of the 714 * subtree is equal to the current one, then it means that 715 * the tree is propagated correctly. So we have to stop at 716 * this point to save cycles. 717 */ 718 if (va->subtree_max_size == new_va_sub_max_size) 719 break; 720 721 va->subtree_max_size = new_va_sub_max_size; 722 node = rb_parent(&va->rb_node); 723 } 724 725 #if DEBUG_AUGMENT_PROPAGATE_CHECK 726 augment_tree_propagate_check(free_vmap_area_root.rb_node); 727 #endif 728 } 729 730 static void 731 insert_vmap_area(struct vmap_area *va, 732 struct rb_root *root, struct list_head *head) 733 { 734 struct rb_node **link; 735 struct rb_node *parent; 736 737 link = find_va_links(va, root, NULL, &parent); 738 link_va(va, root, parent, link, head); 739 } 740 741 static void 742 insert_vmap_area_augment(struct vmap_area *va, 743 struct rb_node *from, struct rb_root *root, 744 struct list_head *head) 745 { 746 struct rb_node **link; 747 struct rb_node *parent; 748 749 if (from) 750 link = find_va_links(va, NULL, from, &parent); 751 else 752 link = find_va_links(va, root, NULL, &parent); 753 754 link_va(va, root, parent, link, head); 755 augment_tree_propagate_from(va); 756 } 757 758 /* 759 * Merge de-allocated chunk of VA memory with previous 760 * and next free blocks. If coalesce is not done a new 761 * free area is inserted. If VA has been merged, it is 762 * freed. 763 */ 764 static __always_inline struct vmap_area * 765 merge_or_add_vmap_area(struct vmap_area *va, 766 struct rb_root *root, struct list_head *head) 767 { 768 struct vmap_area *sibling; 769 struct list_head *next; 770 struct rb_node **link; 771 struct rb_node *parent; 772 bool merged = false; 773 774 /* 775 * Find a place in the tree where VA potentially will be 776 * inserted, unless it is merged with its sibling/siblings. 777 */ 778 link = find_va_links(va, root, NULL, &parent); 779 780 /* 781 * Get next node of VA to check if merging can be done. 782 */ 783 next = get_va_next_sibling(parent, link); 784 if (unlikely(next == NULL)) 785 goto insert; 786 787 /* 788 * start end 789 * | | 790 * |<------VA------>|<-----Next----->| 791 * | | 792 * start end 793 */ 794 if (next != head) { 795 sibling = list_entry(next, struct vmap_area, list); 796 if (sibling->va_start == va->va_end) { 797 sibling->va_start = va->va_start; 798 799 /* Check and update the tree if needed. */ 800 augment_tree_propagate_from(sibling); 801 802 /* Free vmap_area object. */ 803 kmem_cache_free(vmap_area_cachep, va); 804 805 /* Point to the new merged area. */ 806 va = sibling; 807 merged = true; 808 } 809 } 810 811 /* 812 * start end 813 * | | 814 * |<-----Prev----->|<------VA------>| 815 * | | 816 * start end 817 */ 818 if (next->prev != head) { 819 sibling = list_entry(next->prev, struct vmap_area, list); 820 if (sibling->va_end == va->va_start) { 821 sibling->va_end = va->va_end; 822 823 /* Check and update the tree if needed. */ 824 augment_tree_propagate_from(sibling); 825 826 if (merged) 827 unlink_va(va, root); 828 829 /* Free vmap_area object. */ 830 kmem_cache_free(vmap_area_cachep, va); 831 832 /* Point to the new merged area. */ 833 va = sibling; 834 merged = true; 835 } 836 } 837 838 insert: 839 if (!merged) { 840 link_va(va, root, parent, link, head); 841 augment_tree_propagate_from(va); 842 } 843 844 return va; 845 } 846 847 static __always_inline bool 848 is_within_this_va(struct vmap_area *va, unsigned long size, 849 unsigned long align, unsigned long vstart) 850 { 851 unsigned long nva_start_addr; 852 853 if (va->va_start > vstart) 854 nva_start_addr = ALIGN(va->va_start, align); 855 else 856 nva_start_addr = ALIGN(vstart, align); 857 858 /* Can be overflowed due to big size or alignment. */ 859 if (nva_start_addr + size < nva_start_addr || 860 nva_start_addr < vstart) 861 return false; 862 863 return (nva_start_addr + size <= va->va_end); 864 } 865 866 /* 867 * Find the first free block(lowest start address) in the tree, 868 * that will accomplish the request corresponding to passing 869 * parameters. 870 */ 871 static __always_inline struct vmap_area * 872 find_vmap_lowest_match(unsigned long size, 873 unsigned long align, unsigned long vstart) 874 { 875 struct vmap_area *va; 876 struct rb_node *node; 877 unsigned long length; 878 879 /* Start from the root. */ 880 node = free_vmap_area_root.rb_node; 881 882 /* Adjust the search size for alignment overhead. */ 883 length = size + align - 1; 884 885 while (node) { 886 va = rb_entry(node, struct vmap_area, rb_node); 887 888 if (get_subtree_max_size(node->rb_left) >= length && 889 vstart < va->va_start) { 890 node = node->rb_left; 891 } else { 892 if (is_within_this_va(va, size, align, vstart)) 893 return va; 894 895 /* 896 * Does not make sense to go deeper towards the right 897 * sub-tree if it does not have a free block that is 898 * equal or bigger to the requested search length. 899 */ 900 if (get_subtree_max_size(node->rb_right) >= length) { 901 node = node->rb_right; 902 continue; 903 } 904 905 /* 906 * OK. We roll back and find the first right sub-tree, 907 * that will satisfy the search criteria. It can happen 908 * only once due to "vstart" restriction. 909 */ 910 while ((node = rb_parent(node))) { 911 va = rb_entry(node, struct vmap_area, rb_node); 912 if (is_within_this_va(va, size, align, vstart)) 913 return va; 914 915 if (get_subtree_max_size(node->rb_right) >= length && 916 vstart <= va->va_start) { 917 node = node->rb_right; 918 break; 919 } 920 } 921 } 922 } 923 924 return NULL; 925 } 926 927 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 928 #include <linux/random.h> 929 930 static struct vmap_area * 931 find_vmap_lowest_linear_match(unsigned long size, 932 unsigned long align, unsigned long vstart) 933 { 934 struct vmap_area *va; 935 936 list_for_each_entry(va, &free_vmap_area_list, list) { 937 if (!is_within_this_va(va, size, align, vstart)) 938 continue; 939 940 return va; 941 } 942 943 return NULL; 944 } 945 946 static void 947 find_vmap_lowest_match_check(unsigned long size) 948 { 949 struct vmap_area *va_1, *va_2; 950 unsigned long vstart; 951 unsigned int rnd; 952 953 get_random_bytes(&rnd, sizeof(rnd)); 954 vstart = VMALLOC_START + rnd; 955 956 va_1 = find_vmap_lowest_match(size, 1, vstart); 957 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 958 959 if (va_1 != va_2) 960 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 961 va_1, va_2, vstart); 962 } 963 #endif 964 965 enum fit_type { 966 NOTHING_FIT = 0, 967 FL_FIT_TYPE = 1, /* full fit */ 968 LE_FIT_TYPE = 2, /* left edge fit */ 969 RE_FIT_TYPE = 3, /* right edge fit */ 970 NE_FIT_TYPE = 4 /* no edge fit */ 971 }; 972 973 static __always_inline enum fit_type 974 classify_va_fit_type(struct vmap_area *va, 975 unsigned long nva_start_addr, unsigned long size) 976 { 977 enum fit_type type; 978 979 /* Check if it is within VA. */ 980 if (nva_start_addr < va->va_start || 981 nva_start_addr + size > va->va_end) 982 return NOTHING_FIT; 983 984 /* Now classify. */ 985 if (va->va_start == nva_start_addr) { 986 if (va->va_end == nva_start_addr + size) 987 type = FL_FIT_TYPE; 988 else 989 type = LE_FIT_TYPE; 990 } else if (va->va_end == nva_start_addr + size) { 991 type = RE_FIT_TYPE; 992 } else { 993 type = NE_FIT_TYPE; 994 } 995 996 return type; 997 } 998 999 static __always_inline int 1000 adjust_va_to_fit_type(struct vmap_area *va, 1001 unsigned long nva_start_addr, unsigned long size, 1002 enum fit_type type) 1003 { 1004 struct vmap_area *lva = NULL; 1005 1006 if (type == FL_FIT_TYPE) { 1007 /* 1008 * No need to split VA, it fully fits. 1009 * 1010 * | | 1011 * V NVA V 1012 * |---------------| 1013 */ 1014 unlink_va(va, &free_vmap_area_root); 1015 kmem_cache_free(vmap_area_cachep, va); 1016 } else if (type == LE_FIT_TYPE) { 1017 /* 1018 * Split left edge of fit VA. 1019 * 1020 * | | 1021 * V NVA V R 1022 * |-------|-------| 1023 */ 1024 va->va_start += size; 1025 } else if (type == RE_FIT_TYPE) { 1026 /* 1027 * Split right edge of fit VA. 1028 * 1029 * | | 1030 * L V NVA V 1031 * |-------|-------| 1032 */ 1033 va->va_end = nva_start_addr; 1034 } else if (type == NE_FIT_TYPE) { 1035 /* 1036 * Split no edge of fit VA. 1037 * 1038 * | | 1039 * L V NVA V R 1040 * |---|-------|---| 1041 */ 1042 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1043 if (unlikely(!lva)) { 1044 /* 1045 * For percpu allocator we do not do any pre-allocation 1046 * and leave it as it is. The reason is it most likely 1047 * never ends up with NE_FIT_TYPE splitting. In case of 1048 * percpu allocations offsets and sizes are aligned to 1049 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1050 * are its main fitting cases. 1051 * 1052 * There are a few exceptions though, as an example it is 1053 * a first allocation (early boot up) when we have "one" 1054 * big free space that has to be split. 1055 * 1056 * Also we can hit this path in case of regular "vmap" 1057 * allocations, if "this" current CPU was not preloaded. 1058 * See the comment in alloc_vmap_area() why. If so, then 1059 * GFP_NOWAIT is used instead to get an extra object for 1060 * split purpose. That is rare and most time does not 1061 * occur. 1062 * 1063 * What happens if an allocation gets failed. Basically, 1064 * an "overflow" path is triggered to purge lazily freed 1065 * areas to free some memory, then, the "retry" path is 1066 * triggered to repeat one more time. See more details 1067 * in alloc_vmap_area() function. 1068 */ 1069 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1070 if (!lva) 1071 return -1; 1072 } 1073 1074 /* 1075 * Build the remainder. 1076 */ 1077 lva->va_start = va->va_start; 1078 lva->va_end = nva_start_addr; 1079 1080 /* 1081 * Shrink this VA to remaining size. 1082 */ 1083 va->va_start = nva_start_addr + size; 1084 } else { 1085 return -1; 1086 } 1087 1088 if (type != FL_FIT_TYPE) { 1089 augment_tree_propagate_from(va); 1090 1091 if (lva) /* type == NE_FIT_TYPE */ 1092 insert_vmap_area_augment(lva, &va->rb_node, 1093 &free_vmap_area_root, &free_vmap_area_list); 1094 } 1095 1096 return 0; 1097 } 1098 1099 /* 1100 * Returns a start address of the newly allocated area, if success. 1101 * Otherwise a vend is returned that indicates failure. 1102 */ 1103 static __always_inline unsigned long 1104 __alloc_vmap_area(unsigned long size, unsigned long align, 1105 unsigned long vstart, unsigned long vend) 1106 { 1107 unsigned long nva_start_addr; 1108 struct vmap_area *va; 1109 enum fit_type type; 1110 int ret; 1111 1112 va = find_vmap_lowest_match(size, align, vstart); 1113 if (unlikely(!va)) 1114 return vend; 1115 1116 if (va->va_start > vstart) 1117 nva_start_addr = ALIGN(va->va_start, align); 1118 else 1119 nva_start_addr = ALIGN(vstart, align); 1120 1121 /* Check the "vend" restriction. */ 1122 if (nva_start_addr + size > vend) 1123 return vend; 1124 1125 /* Classify what we have found. */ 1126 type = classify_va_fit_type(va, nva_start_addr, size); 1127 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1128 return vend; 1129 1130 /* Update the free vmap_area. */ 1131 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1132 if (ret) 1133 return vend; 1134 1135 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1136 find_vmap_lowest_match_check(size); 1137 #endif 1138 1139 return nva_start_addr; 1140 } 1141 1142 /* 1143 * Free a region of KVA allocated by alloc_vmap_area 1144 */ 1145 static void free_vmap_area(struct vmap_area *va) 1146 { 1147 /* 1148 * Remove from the busy tree/list. 1149 */ 1150 spin_lock(&vmap_area_lock); 1151 unlink_va(va, &vmap_area_root); 1152 spin_unlock(&vmap_area_lock); 1153 1154 /* 1155 * Insert/Merge it back to the free tree/list. 1156 */ 1157 spin_lock(&free_vmap_area_lock); 1158 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list); 1159 spin_unlock(&free_vmap_area_lock); 1160 } 1161 1162 /* 1163 * Allocate a region of KVA of the specified size and alignment, within the 1164 * vstart and vend. 1165 */ 1166 static struct vmap_area *alloc_vmap_area(unsigned long size, 1167 unsigned long align, 1168 unsigned long vstart, unsigned long vend, 1169 int node, gfp_t gfp_mask) 1170 { 1171 struct vmap_area *va, *pva; 1172 unsigned long addr; 1173 int purged = 0; 1174 int ret; 1175 1176 BUG_ON(!size); 1177 BUG_ON(offset_in_page(size)); 1178 BUG_ON(!is_power_of_2(align)); 1179 1180 if (unlikely(!vmap_initialized)) 1181 return ERR_PTR(-EBUSY); 1182 1183 might_sleep(); 1184 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1185 1186 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1187 if (unlikely(!va)) 1188 return ERR_PTR(-ENOMEM); 1189 1190 /* 1191 * Only scan the relevant parts containing pointers to other objects 1192 * to avoid false negatives. 1193 */ 1194 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1195 1196 retry: 1197 /* 1198 * Preload this CPU with one extra vmap_area object. It is used 1199 * when fit type of free area is NE_FIT_TYPE. Please note, it 1200 * does not guarantee that an allocation occurs on a CPU that 1201 * is preloaded, instead we minimize the case when it is not. 1202 * It can happen because of cpu migration, because there is a 1203 * race until the below spinlock is taken. 1204 * 1205 * The preload is done in non-atomic context, thus it allows us 1206 * to use more permissive allocation masks to be more stable under 1207 * low memory condition and high memory pressure. In rare case, 1208 * if not preloaded, GFP_NOWAIT is used. 1209 * 1210 * Set "pva" to NULL here, because of "retry" path. 1211 */ 1212 pva = NULL; 1213 1214 if (!this_cpu_read(ne_fit_preload_node)) 1215 /* 1216 * Even if it fails we do not really care about that. 1217 * Just proceed as it is. If needed "overflow" path 1218 * will refill the cache we allocate from. 1219 */ 1220 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1221 1222 spin_lock(&free_vmap_area_lock); 1223 1224 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) 1225 kmem_cache_free(vmap_area_cachep, pva); 1226 1227 /* 1228 * If an allocation fails, the "vend" address is 1229 * returned. Therefore trigger the overflow path. 1230 */ 1231 addr = __alloc_vmap_area(size, align, vstart, vend); 1232 spin_unlock(&free_vmap_area_lock); 1233 1234 if (unlikely(addr == vend)) 1235 goto overflow; 1236 1237 va->va_start = addr; 1238 va->va_end = addr + size; 1239 va->vm = NULL; 1240 1241 1242 spin_lock(&vmap_area_lock); 1243 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1244 spin_unlock(&vmap_area_lock); 1245 1246 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1247 BUG_ON(va->va_start < vstart); 1248 BUG_ON(va->va_end > vend); 1249 1250 ret = kasan_populate_vmalloc(addr, size); 1251 if (ret) { 1252 free_vmap_area(va); 1253 return ERR_PTR(ret); 1254 } 1255 1256 return va; 1257 1258 overflow: 1259 if (!purged) { 1260 purge_vmap_area_lazy(); 1261 purged = 1; 1262 goto retry; 1263 } 1264 1265 if (gfpflags_allow_blocking(gfp_mask)) { 1266 unsigned long freed = 0; 1267 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1268 if (freed > 0) { 1269 purged = 0; 1270 goto retry; 1271 } 1272 } 1273 1274 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1275 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1276 size); 1277 1278 kmem_cache_free(vmap_area_cachep, va); 1279 return ERR_PTR(-EBUSY); 1280 } 1281 1282 int register_vmap_purge_notifier(struct notifier_block *nb) 1283 { 1284 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1285 } 1286 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1287 1288 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1289 { 1290 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1291 } 1292 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1293 1294 /* 1295 * lazy_max_pages is the maximum amount of virtual address space we gather up 1296 * before attempting to purge with a TLB flush. 1297 * 1298 * There is a tradeoff here: a larger number will cover more kernel page tables 1299 * and take slightly longer to purge, but it will linearly reduce the number of 1300 * global TLB flushes that must be performed. It would seem natural to scale 1301 * this number up linearly with the number of CPUs (because vmapping activity 1302 * could also scale linearly with the number of CPUs), however it is likely 1303 * that in practice, workloads might be constrained in other ways that mean 1304 * vmap activity will not scale linearly with CPUs. Also, I want to be 1305 * conservative and not introduce a big latency on huge systems, so go with 1306 * a less aggressive log scale. It will still be an improvement over the old 1307 * code, and it will be simple to change the scale factor if we find that it 1308 * becomes a problem on bigger systems. 1309 */ 1310 static unsigned long lazy_max_pages(void) 1311 { 1312 unsigned int log; 1313 1314 log = fls(num_online_cpus()); 1315 1316 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1317 } 1318 1319 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1320 1321 /* 1322 * Serialize vmap purging. There is no actual criticial section protected 1323 * by this look, but we want to avoid concurrent calls for performance 1324 * reasons and to make the pcpu_get_vm_areas more deterministic. 1325 */ 1326 static DEFINE_MUTEX(vmap_purge_lock); 1327 1328 /* for per-CPU blocks */ 1329 static void purge_fragmented_blocks_allcpus(void); 1330 1331 /* 1332 * called before a call to iounmap() if the caller wants vm_area_struct's 1333 * immediately freed. 1334 */ 1335 void set_iounmap_nonlazy(void) 1336 { 1337 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1338 } 1339 1340 /* 1341 * Purges all lazily-freed vmap areas. 1342 */ 1343 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1344 { 1345 unsigned long resched_threshold; 1346 struct llist_node *valist; 1347 struct vmap_area *va; 1348 struct vmap_area *n_va; 1349 1350 lockdep_assert_held(&vmap_purge_lock); 1351 1352 valist = llist_del_all(&vmap_purge_list); 1353 if (unlikely(valist == NULL)) 1354 return false; 1355 1356 /* 1357 * TODO: to calculate a flush range without looping. 1358 * The list can be up to lazy_max_pages() elements. 1359 */ 1360 llist_for_each_entry(va, valist, purge_list) { 1361 if (va->va_start < start) 1362 start = va->va_start; 1363 if (va->va_end > end) 1364 end = va->va_end; 1365 } 1366 1367 flush_tlb_kernel_range(start, end); 1368 resched_threshold = lazy_max_pages() << 1; 1369 1370 spin_lock(&free_vmap_area_lock); 1371 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 1372 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1373 unsigned long orig_start = va->va_start; 1374 unsigned long orig_end = va->va_end; 1375 1376 /* 1377 * Finally insert or merge lazily-freed area. It is 1378 * detached and there is no need to "unlink" it from 1379 * anything. 1380 */ 1381 va = merge_or_add_vmap_area(va, &free_vmap_area_root, 1382 &free_vmap_area_list); 1383 1384 if (is_vmalloc_or_module_addr((void *)orig_start)) 1385 kasan_release_vmalloc(orig_start, orig_end, 1386 va->va_start, va->va_end); 1387 1388 atomic_long_sub(nr, &vmap_lazy_nr); 1389 1390 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1391 cond_resched_lock(&free_vmap_area_lock); 1392 } 1393 spin_unlock(&free_vmap_area_lock); 1394 return true; 1395 } 1396 1397 /* 1398 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1399 * is already purging. 1400 */ 1401 static void try_purge_vmap_area_lazy(void) 1402 { 1403 if (mutex_trylock(&vmap_purge_lock)) { 1404 __purge_vmap_area_lazy(ULONG_MAX, 0); 1405 mutex_unlock(&vmap_purge_lock); 1406 } 1407 } 1408 1409 /* 1410 * Kick off a purge of the outstanding lazy areas. 1411 */ 1412 static void purge_vmap_area_lazy(void) 1413 { 1414 mutex_lock(&vmap_purge_lock); 1415 purge_fragmented_blocks_allcpus(); 1416 __purge_vmap_area_lazy(ULONG_MAX, 0); 1417 mutex_unlock(&vmap_purge_lock); 1418 } 1419 1420 /* 1421 * Free a vmap area, caller ensuring that the area has been unmapped 1422 * and flush_cache_vunmap had been called for the correct range 1423 * previously. 1424 */ 1425 static void free_vmap_area_noflush(struct vmap_area *va) 1426 { 1427 unsigned long nr_lazy; 1428 1429 spin_lock(&vmap_area_lock); 1430 unlink_va(va, &vmap_area_root); 1431 spin_unlock(&vmap_area_lock); 1432 1433 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1434 PAGE_SHIFT, &vmap_lazy_nr); 1435 1436 /* After this point, we may free va at any time */ 1437 llist_add(&va->purge_list, &vmap_purge_list); 1438 1439 if (unlikely(nr_lazy > lazy_max_pages())) 1440 try_purge_vmap_area_lazy(); 1441 } 1442 1443 /* 1444 * Free and unmap a vmap area 1445 */ 1446 static void free_unmap_vmap_area(struct vmap_area *va) 1447 { 1448 flush_cache_vunmap(va->va_start, va->va_end); 1449 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start); 1450 if (debug_pagealloc_enabled_static()) 1451 flush_tlb_kernel_range(va->va_start, va->va_end); 1452 1453 free_vmap_area_noflush(va); 1454 } 1455 1456 static struct vmap_area *find_vmap_area(unsigned long addr) 1457 { 1458 struct vmap_area *va; 1459 1460 spin_lock(&vmap_area_lock); 1461 va = __find_vmap_area(addr); 1462 spin_unlock(&vmap_area_lock); 1463 1464 return va; 1465 } 1466 1467 /*** Per cpu kva allocator ***/ 1468 1469 /* 1470 * vmap space is limited especially on 32 bit architectures. Ensure there is 1471 * room for at least 16 percpu vmap blocks per CPU. 1472 */ 1473 /* 1474 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1475 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1476 * instead (we just need a rough idea) 1477 */ 1478 #if BITS_PER_LONG == 32 1479 #define VMALLOC_SPACE (128UL*1024*1024) 1480 #else 1481 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1482 #endif 1483 1484 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1485 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1486 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1487 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1488 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1489 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1490 #define VMAP_BBMAP_BITS \ 1491 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1492 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1493 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1494 1495 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1496 1497 struct vmap_block_queue { 1498 spinlock_t lock; 1499 struct list_head free; 1500 }; 1501 1502 struct vmap_block { 1503 spinlock_t lock; 1504 struct vmap_area *va; 1505 unsigned long free, dirty; 1506 unsigned long dirty_min, dirty_max; /*< dirty range */ 1507 struct list_head free_list; 1508 struct rcu_head rcu_head; 1509 struct list_head purge; 1510 }; 1511 1512 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1513 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1514 1515 /* 1516 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 1517 * in the free path. Could get rid of this if we change the API to return a 1518 * "cookie" from alloc, to be passed to free. But no big deal yet. 1519 */ 1520 static DEFINE_SPINLOCK(vmap_block_tree_lock); 1521 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 1522 1523 /* 1524 * We should probably have a fallback mechanism to allocate virtual memory 1525 * out of partially filled vmap blocks. However vmap block sizing should be 1526 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1527 * big problem. 1528 */ 1529 1530 static unsigned long addr_to_vb_idx(unsigned long addr) 1531 { 1532 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1533 addr /= VMAP_BLOCK_SIZE; 1534 return addr; 1535 } 1536 1537 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1538 { 1539 unsigned long addr; 1540 1541 addr = va_start + (pages_off << PAGE_SHIFT); 1542 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1543 return (void *)addr; 1544 } 1545 1546 /** 1547 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1548 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1549 * @order: how many 2^order pages should be occupied in newly allocated block 1550 * @gfp_mask: flags for the page level allocator 1551 * 1552 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1553 */ 1554 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1555 { 1556 struct vmap_block_queue *vbq; 1557 struct vmap_block *vb; 1558 struct vmap_area *va; 1559 unsigned long vb_idx; 1560 int node, err; 1561 void *vaddr; 1562 1563 node = numa_node_id(); 1564 1565 vb = kmalloc_node(sizeof(struct vmap_block), 1566 gfp_mask & GFP_RECLAIM_MASK, node); 1567 if (unlikely(!vb)) 1568 return ERR_PTR(-ENOMEM); 1569 1570 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1571 VMALLOC_START, VMALLOC_END, 1572 node, gfp_mask); 1573 if (IS_ERR(va)) { 1574 kfree(vb); 1575 return ERR_CAST(va); 1576 } 1577 1578 err = radix_tree_preload(gfp_mask); 1579 if (unlikely(err)) { 1580 kfree(vb); 1581 free_vmap_area(va); 1582 return ERR_PTR(err); 1583 } 1584 1585 vaddr = vmap_block_vaddr(va->va_start, 0); 1586 spin_lock_init(&vb->lock); 1587 vb->va = va; 1588 /* At least something should be left free */ 1589 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1590 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1591 vb->dirty = 0; 1592 vb->dirty_min = VMAP_BBMAP_BITS; 1593 vb->dirty_max = 0; 1594 INIT_LIST_HEAD(&vb->free_list); 1595 1596 vb_idx = addr_to_vb_idx(va->va_start); 1597 spin_lock(&vmap_block_tree_lock); 1598 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 1599 spin_unlock(&vmap_block_tree_lock); 1600 BUG_ON(err); 1601 radix_tree_preload_end(); 1602 1603 vbq = &get_cpu_var(vmap_block_queue); 1604 spin_lock(&vbq->lock); 1605 list_add_tail_rcu(&vb->free_list, &vbq->free); 1606 spin_unlock(&vbq->lock); 1607 put_cpu_var(vmap_block_queue); 1608 1609 return vaddr; 1610 } 1611 1612 static void free_vmap_block(struct vmap_block *vb) 1613 { 1614 struct vmap_block *tmp; 1615 unsigned long vb_idx; 1616 1617 vb_idx = addr_to_vb_idx(vb->va->va_start); 1618 spin_lock(&vmap_block_tree_lock); 1619 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 1620 spin_unlock(&vmap_block_tree_lock); 1621 BUG_ON(tmp != vb); 1622 1623 free_vmap_area_noflush(vb->va); 1624 kfree_rcu(vb, rcu_head); 1625 } 1626 1627 static void purge_fragmented_blocks(int cpu) 1628 { 1629 LIST_HEAD(purge); 1630 struct vmap_block *vb; 1631 struct vmap_block *n_vb; 1632 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1633 1634 rcu_read_lock(); 1635 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1636 1637 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1638 continue; 1639 1640 spin_lock(&vb->lock); 1641 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1642 vb->free = 0; /* prevent further allocs after releasing lock */ 1643 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1644 vb->dirty_min = 0; 1645 vb->dirty_max = VMAP_BBMAP_BITS; 1646 spin_lock(&vbq->lock); 1647 list_del_rcu(&vb->free_list); 1648 spin_unlock(&vbq->lock); 1649 spin_unlock(&vb->lock); 1650 list_add_tail(&vb->purge, &purge); 1651 } else 1652 spin_unlock(&vb->lock); 1653 } 1654 rcu_read_unlock(); 1655 1656 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1657 list_del(&vb->purge); 1658 free_vmap_block(vb); 1659 } 1660 } 1661 1662 static void purge_fragmented_blocks_allcpus(void) 1663 { 1664 int cpu; 1665 1666 for_each_possible_cpu(cpu) 1667 purge_fragmented_blocks(cpu); 1668 } 1669 1670 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1671 { 1672 struct vmap_block_queue *vbq; 1673 struct vmap_block *vb; 1674 void *vaddr = NULL; 1675 unsigned int order; 1676 1677 BUG_ON(offset_in_page(size)); 1678 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1679 if (WARN_ON(size == 0)) { 1680 /* 1681 * Allocating 0 bytes isn't what caller wants since 1682 * get_order(0) returns funny result. Just warn and terminate 1683 * early. 1684 */ 1685 return NULL; 1686 } 1687 order = get_order(size); 1688 1689 rcu_read_lock(); 1690 vbq = &get_cpu_var(vmap_block_queue); 1691 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1692 unsigned long pages_off; 1693 1694 spin_lock(&vb->lock); 1695 if (vb->free < (1UL << order)) { 1696 spin_unlock(&vb->lock); 1697 continue; 1698 } 1699 1700 pages_off = VMAP_BBMAP_BITS - vb->free; 1701 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1702 vb->free -= 1UL << order; 1703 if (vb->free == 0) { 1704 spin_lock(&vbq->lock); 1705 list_del_rcu(&vb->free_list); 1706 spin_unlock(&vbq->lock); 1707 } 1708 1709 spin_unlock(&vb->lock); 1710 break; 1711 } 1712 1713 put_cpu_var(vmap_block_queue); 1714 rcu_read_unlock(); 1715 1716 /* Allocate new block if nothing was found */ 1717 if (!vaddr) 1718 vaddr = new_vmap_block(order, gfp_mask); 1719 1720 return vaddr; 1721 } 1722 1723 static void vb_free(unsigned long addr, unsigned long size) 1724 { 1725 unsigned long offset; 1726 unsigned long vb_idx; 1727 unsigned int order; 1728 struct vmap_block *vb; 1729 1730 BUG_ON(offset_in_page(size)); 1731 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1732 1733 flush_cache_vunmap(addr, addr + size); 1734 1735 order = get_order(size); 1736 1737 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 1738 1739 vb_idx = addr_to_vb_idx(addr); 1740 rcu_read_lock(); 1741 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1742 rcu_read_unlock(); 1743 BUG_ON(!vb); 1744 1745 unmap_kernel_range_noflush(addr, size); 1746 1747 if (debug_pagealloc_enabled_static()) 1748 flush_tlb_kernel_range(addr, addr + size); 1749 1750 spin_lock(&vb->lock); 1751 1752 /* Expand dirty range */ 1753 vb->dirty_min = min(vb->dirty_min, offset); 1754 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1755 1756 vb->dirty += 1UL << order; 1757 if (vb->dirty == VMAP_BBMAP_BITS) { 1758 BUG_ON(vb->free); 1759 spin_unlock(&vb->lock); 1760 free_vmap_block(vb); 1761 } else 1762 spin_unlock(&vb->lock); 1763 } 1764 1765 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1766 { 1767 int cpu; 1768 1769 if (unlikely(!vmap_initialized)) 1770 return; 1771 1772 might_sleep(); 1773 1774 for_each_possible_cpu(cpu) { 1775 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1776 struct vmap_block *vb; 1777 1778 rcu_read_lock(); 1779 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1780 spin_lock(&vb->lock); 1781 if (vb->dirty) { 1782 unsigned long va_start = vb->va->va_start; 1783 unsigned long s, e; 1784 1785 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1786 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1787 1788 start = min(s, start); 1789 end = max(e, end); 1790 1791 flush = 1; 1792 } 1793 spin_unlock(&vb->lock); 1794 } 1795 rcu_read_unlock(); 1796 } 1797 1798 mutex_lock(&vmap_purge_lock); 1799 purge_fragmented_blocks_allcpus(); 1800 if (!__purge_vmap_area_lazy(start, end) && flush) 1801 flush_tlb_kernel_range(start, end); 1802 mutex_unlock(&vmap_purge_lock); 1803 } 1804 1805 /** 1806 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1807 * 1808 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1809 * to amortize TLB flushing overheads. What this means is that any page you 1810 * have now, may, in a former life, have been mapped into kernel virtual 1811 * address by the vmap layer and so there might be some CPUs with TLB entries 1812 * still referencing that page (additional to the regular 1:1 kernel mapping). 1813 * 1814 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1815 * be sure that none of the pages we have control over will have any aliases 1816 * from the vmap layer. 1817 */ 1818 void vm_unmap_aliases(void) 1819 { 1820 unsigned long start = ULONG_MAX, end = 0; 1821 int flush = 0; 1822 1823 _vm_unmap_aliases(start, end, flush); 1824 } 1825 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1826 1827 /** 1828 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1829 * @mem: the pointer returned by vm_map_ram 1830 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1831 */ 1832 void vm_unmap_ram(const void *mem, unsigned int count) 1833 { 1834 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1835 unsigned long addr = (unsigned long)mem; 1836 struct vmap_area *va; 1837 1838 might_sleep(); 1839 BUG_ON(!addr); 1840 BUG_ON(addr < VMALLOC_START); 1841 BUG_ON(addr > VMALLOC_END); 1842 BUG_ON(!PAGE_ALIGNED(addr)); 1843 1844 kasan_poison_vmalloc(mem, size); 1845 1846 if (likely(count <= VMAP_MAX_ALLOC)) { 1847 debug_check_no_locks_freed(mem, size); 1848 vb_free(addr, size); 1849 return; 1850 } 1851 1852 va = find_vmap_area(addr); 1853 BUG_ON(!va); 1854 debug_check_no_locks_freed((void *)va->va_start, 1855 (va->va_end - va->va_start)); 1856 free_unmap_vmap_area(va); 1857 } 1858 EXPORT_SYMBOL(vm_unmap_ram); 1859 1860 /** 1861 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1862 * @pages: an array of pointers to the pages to be mapped 1863 * @count: number of pages 1864 * @node: prefer to allocate data structures on this node 1865 * 1866 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1867 * faster than vmap so it's good. But if you mix long-life and short-life 1868 * objects with vm_map_ram(), it could consume lots of address space through 1869 * fragmentation (especially on a 32bit machine). You could see failures in 1870 * the end. Please use this function for short-lived objects. 1871 * 1872 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1873 */ 1874 void *vm_map_ram(struct page **pages, unsigned int count, int node) 1875 { 1876 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1877 unsigned long addr; 1878 void *mem; 1879 1880 if (likely(count <= VMAP_MAX_ALLOC)) { 1881 mem = vb_alloc(size, GFP_KERNEL); 1882 if (IS_ERR(mem)) 1883 return NULL; 1884 addr = (unsigned long)mem; 1885 } else { 1886 struct vmap_area *va; 1887 va = alloc_vmap_area(size, PAGE_SIZE, 1888 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1889 if (IS_ERR(va)) 1890 return NULL; 1891 1892 addr = va->va_start; 1893 mem = (void *)addr; 1894 } 1895 1896 kasan_unpoison_vmalloc(mem, size); 1897 1898 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) { 1899 vm_unmap_ram(mem, count); 1900 return NULL; 1901 } 1902 return mem; 1903 } 1904 EXPORT_SYMBOL(vm_map_ram); 1905 1906 static struct vm_struct *vmlist __initdata; 1907 1908 /** 1909 * vm_area_add_early - add vmap area early during boot 1910 * @vm: vm_struct to add 1911 * 1912 * This function is used to add fixed kernel vm area to vmlist before 1913 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1914 * should contain proper values and the other fields should be zero. 1915 * 1916 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1917 */ 1918 void __init vm_area_add_early(struct vm_struct *vm) 1919 { 1920 struct vm_struct *tmp, **p; 1921 1922 BUG_ON(vmap_initialized); 1923 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1924 if (tmp->addr >= vm->addr) { 1925 BUG_ON(tmp->addr < vm->addr + vm->size); 1926 break; 1927 } else 1928 BUG_ON(tmp->addr + tmp->size > vm->addr); 1929 } 1930 vm->next = *p; 1931 *p = vm; 1932 } 1933 1934 /** 1935 * vm_area_register_early - register vmap area early during boot 1936 * @vm: vm_struct to register 1937 * @align: requested alignment 1938 * 1939 * This function is used to register kernel vm area before 1940 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1941 * proper values on entry and other fields should be zero. On return, 1942 * vm->addr contains the allocated address. 1943 * 1944 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1945 */ 1946 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1947 { 1948 static size_t vm_init_off __initdata; 1949 unsigned long addr; 1950 1951 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1952 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1953 1954 vm->addr = (void *)addr; 1955 1956 vm_area_add_early(vm); 1957 } 1958 1959 static void vmap_init_free_space(void) 1960 { 1961 unsigned long vmap_start = 1; 1962 const unsigned long vmap_end = ULONG_MAX; 1963 struct vmap_area *busy, *free; 1964 1965 /* 1966 * B F B B B F 1967 * -|-----|.....|-----|-----|-----|.....|- 1968 * | The KVA space | 1969 * |<--------------------------------->| 1970 */ 1971 list_for_each_entry(busy, &vmap_area_list, list) { 1972 if (busy->va_start - vmap_start > 0) { 1973 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1974 if (!WARN_ON_ONCE(!free)) { 1975 free->va_start = vmap_start; 1976 free->va_end = busy->va_start; 1977 1978 insert_vmap_area_augment(free, NULL, 1979 &free_vmap_area_root, 1980 &free_vmap_area_list); 1981 } 1982 } 1983 1984 vmap_start = busy->va_end; 1985 } 1986 1987 if (vmap_end - vmap_start > 0) { 1988 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1989 if (!WARN_ON_ONCE(!free)) { 1990 free->va_start = vmap_start; 1991 free->va_end = vmap_end; 1992 1993 insert_vmap_area_augment(free, NULL, 1994 &free_vmap_area_root, 1995 &free_vmap_area_list); 1996 } 1997 } 1998 } 1999 2000 void __init vmalloc_init(void) 2001 { 2002 struct vmap_area *va; 2003 struct vm_struct *tmp; 2004 int i; 2005 2006 /* 2007 * Create the cache for vmap_area objects. 2008 */ 2009 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2010 2011 for_each_possible_cpu(i) { 2012 struct vmap_block_queue *vbq; 2013 struct vfree_deferred *p; 2014 2015 vbq = &per_cpu(vmap_block_queue, i); 2016 spin_lock_init(&vbq->lock); 2017 INIT_LIST_HEAD(&vbq->free); 2018 p = &per_cpu(vfree_deferred, i); 2019 init_llist_head(&p->list); 2020 INIT_WORK(&p->wq, free_work); 2021 } 2022 2023 /* Import existing vmlist entries. */ 2024 for (tmp = vmlist; tmp; tmp = tmp->next) { 2025 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2026 if (WARN_ON_ONCE(!va)) 2027 continue; 2028 2029 va->va_start = (unsigned long)tmp->addr; 2030 va->va_end = va->va_start + tmp->size; 2031 va->vm = tmp; 2032 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2033 } 2034 2035 /* 2036 * Now we can initialize a free vmap space. 2037 */ 2038 vmap_init_free_space(); 2039 vmap_initialized = true; 2040 } 2041 2042 /** 2043 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 2044 * @addr: start of the VM area to unmap 2045 * @size: size of the VM area to unmap 2046 * 2047 * Similar to unmap_kernel_range_noflush() but flushes vcache before 2048 * the unmapping and tlb after. 2049 */ 2050 void unmap_kernel_range(unsigned long addr, unsigned long size) 2051 { 2052 unsigned long end = addr + size; 2053 2054 flush_cache_vunmap(addr, end); 2055 unmap_kernel_range_noflush(addr, size); 2056 flush_tlb_kernel_range(addr, end); 2057 } 2058 2059 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2060 struct vmap_area *va, unsigned long flags, const void *caller) 2061 { 2062 vm->flags = flags; 2063 vm->addr = (void *)va->va_start; 2064 vm->size = va->va_end - va->va_start; 2065 vm->caller = caller; 2066 va->vm = vm; 2067 } 2068 2069 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2070 unsigned long flags, const void *caller) 2071 { 2072 spin_lock(&vmap_area_lock); 2073 setup_vmalloc_vm_locked(vm, va, flags, caller); 2074 spin_unlock(&vmap_area_lock); 2075 } 2076 2077 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2078 { 2079 /* 2080 * Before removing VM_UNINITIALIZED, 2081 * we should make sure that vm has proper values. 2082 * Pair with smp_rmb() in show_numa_info(). 2083 */ 2084 smp_wmb(); 2085 vm->flags &= ~VM_UNINITIALIZED; 2086 } 2087 2088 static struct vm_struct *__get_vm_area_node(unsigned long size, 2089 unsigned long align, unsigned long flags, unsigned long start, 2090 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 2091 { 2092 struct vmap_area *va; 2093 struct vm_struct *area; 2094 unsigned long requested_size = size; 2095 2096 BUG_ON(in_interrupt()); 2097 size = PAGE_ALIGN(size); 2098 if (unlikely(!size)) 2099 return NULL; 2100 2101 if (flags & VM_IOREMAP) 2102 align = 1ul << clamp_t(int, get_count_order_long(size), 2103 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2104 2105 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2106 if (unlikely(!area)) 2107 return NULL; 2108 2109 if (!(flags & VM_NO_GUARD)) 2110 size += PAGE_SIZE; 2111 2112 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2113 if (IS_ERR(va)) { 2114 kfree(area); 2115 return NULL; 2116 } 2117 2118 kasan_unpoison_vmalloc((void *)va->va_start, requested_size); 2119 2120 setup_vmalloc_vm(area, va, flags, caller); 2121 2122 return area; 2123 } 2124 2125 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2126 unsigned long start, unsigned long end, 2127 const void *caller) 2128 { 2129 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2130 GFP_KERNEL, caller); 2131 } 2132 2133 /** 2134 * get_vm_area - reserve a contiguous kernel virtual area 2135 * @size: size of the area 2136 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2137 * 2138 * Search an area of @size in the kernel virtual mapping area, 2139 * and reserved it for out purposes. Returns the area descriptor 2140 * on success or %NULL on failure. 2141 * 2142 * Return: the area descriptor on success or %NULL on failure. 2143 */ 2144 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2145 { 2146 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2147 NUMA_NO_NODE, GFP_KERNEL, 2148 __builtin_return_address(0)); 2149 } 2150 2151 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2152 const void *caller) 2153 { 2154 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2155 NUMA_NO_NODE, GFP_KERNEL, caller); 2156 } 2157 2158 /** 2159 * find_vm_area - find a continuous kernel virtual area 2160 * @addr: base address 2161 * 2162 * Search for the kernel VM area starting at @addr, and return it. 2163 * It is up to the caller to do all required locking to keep the returned 2164 * pointer valid. 2165 * 2166 * Return: pointer to the found area or %NULL on faulure 2167 */ 2168 struct vm_struct *find_vm_area(const void *addr) 2169 { 2170 struct vmap_area *va; 2171 2172 va = find_vmap_area((unsigned long)addr); 2173 if (!va) 2174 return NULL; 2175 2176 return va->vm; 2177 } 2178 2179 /** 2180 * remove_vm_area - find and remove a continuous kernel virtual area 2181 * @addr: base address 2182 * 2183 * Search for the kernel VM area starting at @addr, and remove it. 2184 * This function returns the found VM area, but using it is NOT safe 2185 * on SMP machines, except for its size or flags. 2186 * 2187 * Return: pointer to the found area or %NULL on faulure 2188 */ 2189 struct vm_struct *remove_vm_area(const void *addr) 2190 { 2191 struct vmap_area *va; 2192 2193 might_sleep(); 2194 2195 spin_lock(&vmap_area_lock); 2196 va = __find_vmap_area((unsigned long)addr); 2197 if (va && va->vm) { 2198 struct vm_struct *vm = va->vm; 2199 2200 va->vm = NULL; 2201 spin_unlock(&vmap_area_lock); 2202 2203 kasan_free_shadow(vm); 2204 free_unmap_vmap_area(va); 2205 2206 return vm; 2207 } 2208 2209 spin_unlock(&vmap_area_lock); 2210 return NULL; 2211 } 2212 2213 static inline void set_area_direct_map(const struct vm_struct *area, 2214 int (*set_direct_map)(struct page *page)) 2215 { 2216 int i; 2217 2218 for (i = 0; i < area->nr_pages; i++) 2219 if (page_address(area->pages[i])) 2220 set_direct_map(area->pages[i]); 2221 } 2222 2223 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2224 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2225 { 2226 unsigned long start = ULONG_MAX, end = 0; 2227 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2228 int flush_dmap = 0; 2229 int i; 2230 2231 remove_vm_area(area->addr); 2232 2233 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2234 if (!flush_reset) 2235 return; 2236 2237 /* 2238 * If not deallocating pages, just do the flush of the VM area and 2239 * return. 2240 */ 2241 if (!deallocate_pages) { 2242 vm_unmap_aliases(); 2243 return; 2244 } 2245 2246 /* 2247 * If execution gets here, flush the vm mapping and reset the direct 2248 * map. Find the start and end range of the direct mappings to make sure 2249 * the vm_unmap_aliases() flush includes the direct map. 2250 */ 2251 for (i = 0; i < area->nr_pages; i++) { 2252 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2253 if (addr) { 2254 start = min(addr, start); 2255 end = max(addr + PAGE_SIZE, end); 2256 flush_dmap = 1; 2257 } 2258 } 2259 2260 /* 2261 * Set direct map to something invalid so that it won't be cached if 2262 * there are any accesses after the TLB flush, then flush the TLB and 2263 * reset the direct map permissions to the default. 2264 */ 2265 set_area_direct_map(area, set_direct_map_invalid_noflush); 2266 _vm_unmap_aliases(start, end, flush_dmap); 2267 set_area_direct_map(area, set_direct_map_default_noflush); 2268 } 2269 2270 static void __vunmap(const void *addr, int deallocate_pages) 2271 { 2272 struct vm_struct *area; 2273 2274 if (!addr) 2275 return; 2276 2277 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2278 addr)) 2279 return; 2280 2281 area = find_vm_area(addr); 2282 if (unlikely(!area)) { 2283 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2284 addr); 2285 return; 2286 } 2287 2288 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2289 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2290 2291 kasan_poison_vmalloc(area->addr, area->size); 2292 2293 vm_remove_mappings(area, deallocate_pages); 2294 2295 if (deallocate_pages) { 2296 int i; 2297 2298 for (i = 0; i < area->nr_pages; i++) { 2299 struct page *page = area->pages[i]; 2300 2301 BUG_ON(!page); 2302 __free_pages(page, 0); 2303 } 2304 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2305 2306 kvfree(area->pages); 2307 } 2308 2309 kfree(area); 2310 return; 2311 } 2312 2313 static inline void __vfree_deferred(const void *addr) 2314 { 2315 /* 2316 * Use raw_cpu_ptr() because this can be called from preemptible 2317 * context. Preemption is absolutely fine here, because the llist_add() 2318 * implementation is lockless, so it works even if we are adding to 2319 * another cpu's list. schedule_work() should be fine with this too. 2320 */ 2321 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2322 2323 if (llist_add((struct llist_node *)addr, &p->list)) 2324 schedule_work(&p->wq); 2325 } 2326 2327 /** 2328 * vfree_atomic - release memory allocated by vmalloc() 2329 * @addr: memory base address 2330 * 2331 * This one is just like vfree() but can be called in any atomic context 2332 * except NMIs. 2333 */ 2334 void vfree_atomic(const void *addr) 2335 { 2336 BUG_ON(in_nmi()); 2337 2338 kmemleak_free(addr); 2339 2340 if (!addr) 2341 return; 2342 __vfree_deferred(addr); 2343 } 2344 2345 static void __vfree(const void *addr) 2346 { 2347 if (unlikely(in_interrupt())) 2348 __vfree_deferred(addr); 2349 else 2350 __vunmap(addr, 1); 2351 } 2352 2353 /** 2354 * vfree - release memory allocated by vmalloc() 2355 * @addr: memory base address 2356 * 2357 * Free the virtually continuous memory area starting at @addr, as 2358 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 2359 * NULL, no operation is performed. 2360 * 2361 * Must not be called in NMI context (strictly speaking, only if we don't 2362 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2363 * conventions for vfree() arch-depenedent would be a really bad idea) 2364 * 2365 * May sleep if called *not* from interrupt context. 2366 * 2367 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 2368 */ 2369 void vfree(const void *addr) 2370 { 2371 BUG_ON(in_nmi()); 2372 2373 kmemleak_free(addr); 2374 2375 might_sleep_if(!in_interrupt()); 2376 2377 if (!addr) 2378 return; 2379 2380 __vfree(addr); 2381 } 2382 EXPORT_SYMBOL(vfree); 2383 2384 /** 2385 * vunmap - release virtual mapping obtained by vmap() 2386 * @addr: memory base address 2387 * 2388 * Free the virtually contiguous memory area starting at @addr, 2389 * which was created from the page array passed to vmap(). 2390 * 2391 * Must not be called in interrupt context. 2392 */ 2393 void vunmap(const void *addr) 2394 { 2395 BUG_ON(in_interrupt()); 2396 might_sleep(); 2397 if (addr) 2398 __vunmap(addr, 0); 2399 } 2400 EXPORT_SYMBOL(vunmap); 2401 2402 /** 2403 * vmap - map an array of pages into virtually contiguous space 2404 * @pages: array of page pointers 2405 * @count: number of pages to map 2406 * @flags: vm_area->flags 2407 * @prot: page protection for the mapping 2408 * 2409 * Maps @count pages from @pages into contiguous kernel virtual 2410 * space. 2411 * 2412 * Return: the address of the area or %NULL on failure 2413 */ 2414 void *vmap(struct page **pages, unsigned int count, 2415 unsigned long flags, pgprot_t prot) 2416 { 2417 struct vm_struct *area; 2418 unsigned long size; /* In bytes */ 2419 2420 might_sleep(); 2421 2422 if (count > totalram_pages()) 2423 return NULL; 2424 2425 size = (unsigned long)count << PAGE_SHIFT; 2426 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2427 if (!area) 2428 return NULL; 2429 2430 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot), 2431 pages) < 0) { 2432 vunmap(area->addr); 2433 return NULL; 2434 } 2435 2436 return area->addr; 2437 } 2438 EXPORT_SYMBOL(vmap); 2439 2440 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2441 pgprot_t prot, int node) 2442 { 2443 struct page **pages; 2444 unsigned int nr_pages, array_size, i; 2445 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2446 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 2447 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 2448 0 : 2449 __GFP_HIGHMEM; 2450 2451 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 2452 array_size = (nr_pages * sizeof(struct page *)); 2453 2454 /* Please note that the recursion is strictly bounded. */ 2455 if (array_size > PAGE_SIZE) { 2456 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 2457 node, area->caller); 2458 } else { 2459 pages = kmalloc_node(array_size, nested_gfp, node); 2460 } 2461 2462 if (!pages) { 2463 remove_vm_area(area->addr); 2464 kfree(area); 2465 return NULL; 2466 } 2467 2468 area->pages = pages; 2469 area->nr_pages = nr_pages; 2470 2471 for (i = 0; i < area->nr_pages; i++) { 2472 struct page *page; 2473 2474 if (node == NUMA_NO_NODE) 2475 page = alloc_page(alloc_mask|highmem_mask); 2476 else 2477 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 2478 2479 if (unlikely(!page)) { 2480 /* Successfully allocated i pages, free them in __vunmap() */ 2481 area->nr_pages = i; 2482 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2483 goto fail; 2484 } 2485 area->pages[i] = page; 2486 if (gfpflags_allow_blocking(gfp_mask)) 2487 cond_resched(); 2488 } 2489 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2490 2491 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area), 2492 prot, pages) < 0) 2493 goto fail; 2494 2495 return area->addr; 2496 2497 fail: 2498 warn_alloc(gfp_mask, NULL, 2499 "vmalloc: allocation failure, allocated %ld of %ld bytes", 2500 (area->nr_pages*PAGE_SIZE), area->size); 2501 __vfree(area->addr); 2502 return NULL; 2503 } 2504 2505 /** 2506 * __vmalloc_node_range - allocate virtually contiguous memory 2507 * @size: allocation size 2508 * @align: desired alignment 2509 * @start: vm area range start 2510 * @end: vm area range end 2511 * @gfp_mask: flags for the page level allocator 2512 * @prot: protection mask for the allocated pages 2513 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2514 * @node: node to use for allocation or NUMA_NO_NODE 2515 * @caller: caller's return address 2516 * 2517 * Allocate enough pages to cover @size from the page level 2518 * allocator with @gfp_mask flags. Map them into contiguous 2519 * kernel virtual space, using a pagetable protection of @prot. 2520 * 2521 * Return: the address of the area or %NULL on failure 2522 */ 2523 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2524 unsigned long start, unsigned long end, gfp_t gfp_mask, 2525 pgprot_t prot, unsigned long vm_flags, int node, 2526 const void *caller) 2527 { 2528 struct vm_struct *area; 2529 void *addr; 2530 unsigned long real_size = size; 2531 2532 size = PAGE_ALIGN(size); 2533 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 2534 goto fail; 2535 2536 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED | 2537 vm_flags, start, end, node, gfp_mask, caller); 2538 if (!area) 2539 goto fail; 2540 2541 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 2542 if (!addr) 2543 return NULL; 2544 2545 /* 2546 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2547 * flag. It means that vm_struct is not fully initialized. 2548 * Now, it is fully initialized, so remove this flag here. 2549 */ 2550 clear_vm_uninitialized_flag(area); 2551 2552 kmemleak_vmalloc(area, size, gfp_mask); 2553 2554 return addr; 2555 2556 fail: 2557 warn_alloc(gfp_mask, NULL, 2558 "vmalloc: allocation failure: %lu bytes", real_size); 2559 return NULL; 2560 } 2561 2562 /** 2563 * __vmalloc_node - allocate virtually contiguous memory 2564 * @size: allocation size 2565 * @align: desired alignment 2566 * @gfp_mask: flags for the page level allocator 2567 * @node: node to use for allocation or NUMA_NO_NODE 2568 * @caller: caller's return address 2569 * 2570 * Allocate enough pages to cover @size from the page level allocator with 2571 * @gfp_mask flags. Map them into contiguous kernel virtual space. 2572 * 2573 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 2574 * and __GFP_NOFAIL are not supported 2575 * 2576 * Any use of gfp flags outside of GFP_KERNEL should be consulted 2577 * with mm people. 2578 * 2579 * Return: pointer to the allocated memory or %NULL on error 2580 */ 2581 void *__vmalloc_node(unsigned long size, unsigned long align, 2582 gfp_t gfp_mask, int node, const void *caller) 2583 { 2584 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 2585 gfp_mask, PAGE_KERNEL, 0, node, caller); 2586 } 2587 /* 2588 * This is only for performance analysis of vmalloc and stress purpose. 2589 * It is required by vmalloc test module, therefore do not use it other 2590 * than that. 2591 */ 2592 #ifdef CONFIG_TEST_VMALLOC_MODULE 2593 EXPORT_SYMBOL_GPL(__vmalloc_node); 2594 #endif 2595 2596 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 2597 { 2598 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 2599 __builtin_return_address(0)); 2600 } 2601 EXPORT_SYMBOL(__vmalloc); 2602 2603 /** 2604 * vmalloc - allocate virtually contiguous memory 2605 * @size: allocation size 2606 * 2607 * Allocate enough pages to cover @size from the page level 2608 * allocator and map them into contiguous kernel virtual space. 2609 * 2610 * For tight control over page level allocator and protection flags 2611 * use __vmalloc() instead. 2612 * 2613 * Return: pointer to the allocated memory or %NULL on error 2614 */ 2615 void *vmalloc(unsigned long size) 2616 { 2617 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 2618 __builtin_return_address(0)); 2619 } 2620 EXPORT_SYMBOL(vmalloc); 2621 2622 /** 2623 * vzalloc - allocate virtually contiguous memory with zero fill 2624 * @size: allocation size 2625 * 2626 * Allocate enough pages to cover @size from the page level 2627 * allocator and map them into contiguous kernel virtual space. 2628 * The memory allocated is set to zero. 2629 * 2630 * For tight control over page level allocator and protection flags 2631 * use __vmalloc() instead. 2632 * 2633 * Return: pointer to the allocated memory or %NULL on error 2634 */ 2635 void *vzalloc(unsigned long size) 2636 { 2637 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 2638 __builtin_return_address(0)); 2639 } 2640 EXPORT_SYMBOL(vzalloc); 2641 2642 /** 2643 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 2644 * @size: allocation size 2645 * 2646 * The resulting memory area is zeroed so it can be mapped to userspace 2647 * without leaking data. 2648 * 2649 * Return: pointer to the allocated memory or %NULL on error 2650 */ 2651 void *vmalloc_user(unsigned long size) 2652 { 2653 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2654 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 2655 VM_USERMAP, NUMA_NO_NODE, 2656 __builtin_return_address(0)); 2657 } 2658 EXPORT_SYMBOL(vmalloc_user); 2659 2660 /** 2661 * vmalloc_node - allocate memory on a specific node 2662 * @size: allocation size 2663 * @node: numa node 2664 * 2665 * Allocate enough pages to cover @size from the page level 2666 * allocator and map them into contiguous kernel virtual space. 2667 * 2668 * For tight control over page level allocator and protection flags 2669 * use __vmalloc() instead. 2670 * 2671 * Return: pointer to the allocated memory or %NULL on error 2672 */ 2673 void *vmalloc_node(unsigned long size, int node) 2674 { 2675 return __vmalloc_node(size, 1, GFP_KERNEL, node, 2676 __builtin_return_address(0)); 2677 } 2678 EXPORT_SYMBOL(vmalloc_node); 2679 2680 /** 2681 * vzalloc_node - allocate memory on a specific node with zero fill 2682 * @size: allocation size 2683 * @node: numa node 2684 * 2685 * Allocate enough pages to cover @size from the page level 2686 * allocator and map them into contiguous kernel virtual space. 2687 * The memory allocated is set to zero. 2688 * 2689 * Return: pointer to the allocated memory or %NULL on error 2690 */ 2691 void *vzalloc_node(unsigned long size, int node) 2692 { 2693 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 2694 __builtin_return_address(0)); 2695 } 2696 EXPORT_SYMBOL(vzalloc_node); 2697 2698 /** 2699 * vmalloc_exec - allocate virtually contiguous, executable memory 2700 * @size: allocation size 2701 * 2702 * Kernel-internal function to allocate enough pages to cover @size 2703 * the page level allocator and map them into contiguous and 2704 * executable kernel virtual space. 2705 * 2706 * For tight control over page level allocator and protection flags 2707 * use __vmalloc() instead. 2708 * 2709 * Return: pointer to the allocated memory or %NULL on error 2710 */ 2711 void *vmalloc_exec(unsigned long size) 2712 { 2713 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2714 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2715 NUMA_NO_NODE, __builtin_return_address(0)); 2716 } 2717 2718 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2719 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2720 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2721 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2722 #else 2723 /* 2724 * 64b systems should always have either DMA or DMA32 zones. For others 2725 * GFP_DMA32 should do the right thing and use the normal zone. 2726 */ 2727 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2728 #endif 2729 2730 /** 2731 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2732 * @size: allocation size 2733 * 2734 * Allocate enough 32bit PA addressable pages to cover @size from the 2735 * page level allocator and map them into contiguous kernel virtual space. 2736 * 2737 * Return: pointer to the allocated memory or %NULL on error 2738 */ 2739 void *vmalloc_32(unsigned long size) 2740 { 2741 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 2742 __builtin_return_address(0)); 2743 } 2744 EXPORT_SYMBOL(vmalloc_32); 2745 2746 /** 2747 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2748 * @size: allocation size 2749 * 2750 * The resulting memory area is 32bit addressable and zeroed so it can be 2751 * mapped to userspace without leaking data. 2752 * 2753 * Return: pointer to the allocated memory or %NULL on error 2754 */ 2755 void *vmalloc_32_user(unsigned long size) 2756 { 2757 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2758 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2759 VM_USERMAP, NUMA_NO_NODE, 2760 __builtin_return_address(0)); 2761 } 2762 EXPORT_SYMBOL(vmalloc_32_user); 2763 2764 /* 2765 * small helper routine , copy contents to buf from addr. 2766 * If the page is not present, fill zero. 2767 */ 2768 2769 static int aligned_vread(char *buf, char *addr, unsigned long count) 2770 { 2771 struct page *p; 2772 int copied = 0; 2773 2774 while (count) { 2775 unsigned long offset, length; 2776 2777 offset = offset_in_page(addr); 2778 length = PAGE_SIZE - offset; 2779 if (length > count) 2780 length = count; 2781 p = vmalloc_to_page(addr); 2782 /* 2783 * To do safe access to this _mapped_ area, we need 2784 * lock. But adding lock here means that we need to add 2785 * overhead of vmalloc()/vfree() calles for this _debug_ 2786 * interface, rarely used. Instead of that, we'll use 2787 * kmap() and get small overhead in this access function. 2788 */ 2789 if (p) { 2790 /* 2791 * we can expect USER0 is not used (see vread/vwrite's 2792 * function description) 2793 */ 2794 void *map = kmap_atomic(p); 2795 memcpy(buf, map + offset, length); 2796 kunmap_atomic(map); 2797 } else 2798 memset(buf, 0, length); 2799 2800 addr += length; 2801 buf += length; 2802 copied += length; 2803 count -= length; 2804 } 2805 return copied; 2806 } 2807 2808 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2809 { 2810 struct page *p; 2811 int copied = 0; 2812 2813 while (count) { 2814 unsigned long offset, length; 2815 2816 offset = offset_in_page(addr); 2817 length = PAGE_SIZE - offset; 2818 if (length > count) 2819 length = count; 2820 p = vmalloc_to_page(addr); 2821 /* 2822 * To do safe access to this _mapped_ area, we need 2823 * lock. But adding lock here means that we need to add 2824 * overhead of vmalloc()/vfree() calles for this _debug_ 2825 * interface, rarely used. Instead of that, we'll use 2826 * kmap() and get small overhead in this access function. 2827 */ 2828 if (p) { 2829 /* 2830 * we can expect USER0 is not used (see vread/vwrite's 2831 * function description) 2832 */ 2833 void *map = kmap_atomic(p); 2834 memcpy(map + offset, buf, length); 2835 kunmap_atomic(map); 2836 } 2837 addr += length; 2838 buf += length; 2839 copied += length; 2840 count -= length; 2841 } 2842 return copied; 2843 } 2844 2845 /** 2846 * vread() - read vmalloc area in a safe way. 2847 * @buf: buffer for reading data 2848 * @addr: vm address. 2849 * @count: number of bytes to be read. 2850 * 2851 * This function checks that addr is a valid vmalloc'ed area, and 2852 * copy data from that area to a given buffer. If the given memory range 2853 * of [addr...addr+count) includes some valid address, data is copied to 2854 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2855 * IOREMAP area is treated as memory hole and no copy is done. 2856 * 2857 * If [addr...addr+count) doesn't includes any intersects with alive 2858 * vm_struct area, returns 0. @buf should be kernel's buffer. 2859 * 2860 * Note: In usual ops, vread() is never necessary because the caller 2861 * should know vmalloc() area is valid and can use memcpy(). 2862 * This is for routines which have to access vmalloc area without 2863 * any information, as /dev/kmem. 2864 * 2865 * Return: number of bytes for which addr and buf should be increased 2866 * (same number as @count) or %0 if [addr...addr+count) doesn't 2867 * include any intersection with valid vmalloc area 2868 */ 2869 long vread(char *buf, char *addr, unsigned long count) 2870 { 2871 struct vmap_area *va; 2872 struct vm_struct *vm; 2873 char *vaddr, *buf_start = buf; 2874 unsigned long buflen = count; 2875 unsigned long n; 2876 2877 /* Don't allow overflow */ 2878 if ((unsigned long) addr + count < count) 2879 count = -(unsigned long) addr; 2880 2881 spin_lock(&vmap_area_lock); 2882 list_for_each_entry(va, &vmap_area_list, list) { 2883 if (!count) 2884 break; 2885 2886 if (!va->vm) 2887 continue; 2888 2889 vm = va->vm; 2890 vaddr = (char *) vm->addr; 2891 if (addr >= vaddr + get_vm_area_size(vm)) 2892 continue; 2893 while (addr < vaddr) { 2894 if (count == 0) 2895 goto finished; 2896 *buf = '\0'; 2897 buf++; 2898 addr++; 2899 count--; 2900 } 2901 n = vaddr + get_vm_area_size(vm) - addr; 2902 if (n > count) 2903 n = count; 2904 if (!(vm->flags & VM_IOREMAP)) 2905 aligned_vread(buf, addr, n); 2906 else /* IOREMAP area is treated as memory hole */ 2907 memset(buf, 0, n); 2908 buf += n; 2909 addr += n; 2910 count -= n; 2911 } 2912 finished: 2913 spin_unlock(&vmap_area_lock); 2914 2915 if (buf == buf_start) 2916 return 0; 2917 /* zero-fill memory holes */ 2918 if (buf != buf_start + buflen) 2919 memset(buf, 0, buflen - (buf - buf_start)); 2920 2921 return buflen; 2922 } 2923 2924 /** 2925 * vwrite() - write vmalloc area in a safe way. 2926 * @buf: buffer for source data 2927 * @addr: vm address. 2928 * @count: number of bytes to be read. 2929 * 2930 * This function checks that addr is a valid vmalloc'ed area, and 2931 * copy data from a buffer to the given addr. If specified range of 2932 * [addr...addr+count) includes some valid address, data is copied from 2933 * proper area of @buf. If there are memory holes, no copy to hole. 2934 * IOREMAP area is treated as memory hole and no copy is done. 2935 * 2936 * If [addr...addr+count) doesn't includes any intersects with alive 2937 * vm_struct area, returns 0. @buf should be kernel's buffer. 2938 * 2939 * Note: In usual ops, vwrite() is never necessary because the caller 2940 * should know vmalloc() area is valid and can use memcpy(). 2941 * This is for routines which have to access vmalloc area without 2942 * any information, as /dev/kmem. 2943 * 2944 * Return: number of bytes for which addr and buf should be 2945 * increased (same number as @count) or %0 if [addr...addr+count) 2946 * doesn't include any intersection with valid vmalloc area 2947 */ 2948 long vwrite(char *buf, char *addr, unsigned long count) 2949 { 2950 struct vmap_area *va; 2951 struct vm_struct *vm; 2952 char *vaddr; 2953 unsigned long n, buflen; 2954 int copied = 0; 2955 2956 /* Don't allow overflow */ 2957 if ((unsigned long) addr + count < count) 2958 count = -(unsigned long) addr; 2959 buflen = count; 2960 2961 spin_lock(&vmap_area_lock); 2962 list_for_each_entry(va, &vmap_area_list, list) { 2963 if (!count) 2964 break; 2965 2966 if (!va->vm) 2967 continue; 2968 2969 vm = va->vm; 2970 vaddr = (char *) vm->addr; 2971 if (addr >= vaddr + get_vm_area_size(vm)) 2972 continue; 2973 while (addr < vaddr) { 2974 if (count == 0) 2975 goto finished; 2976 buf++; 2977 addr++; 2978 count--; 2979 } 2980 n = vaddr + get_vm_area_size(vm) - addr; 2981 if (n > count) 2982 n = count; 2983 if (!(vm->flags & VM_IOREMAP)) { 2984 aligned_vwrite(buf, addr, n); 2985 copied++; 2986 } 2987 buf += n; 2988 addr += n; 2989 count -= n; 2990 } 2991 finished: 2992 spin_unlock(&vmap_area_lock); 2993 if (!copied) 2994 return 0; 2995 return buflen; 2996 } 2997 2998 /** 2999 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3000 * @vma: vma to cover 3001 * @uaddr: target user address to start at 3002 * @kaddr: virtual address of vmalloc kernel memory 3003 * @pgoff: offset from @kaddr to start at 3004 * @size: size of map area 3005 * 3006 * Returns: 0 for success, -Exxx on failure 3007 * 3008 * This function checks that @kaddr is a valid vmalloc'ed area, 3009 * and that it is big enough to cover the range starting at 3010 * @uaddr in @vma. Will return failure if that criteria isn't 3011 * met. 3012 * 3013 * Similar to remap_pfn_range() (see mm/memory.c) 3014 */ 3015 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3016 void *kaddr, unsigned long pgoff, 3017 unsigned long size) 3018 { 3019 struct vm_struct *area; 3020 unsigned long off; 3021 unsigned long end_index; 3022 3023 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3024 return -EINVAL; 3025 3026 size = PAGE_ALIGN(size); 3027 3028 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3029 return -EINVAL; 3030 3031 area = find_vm_area(kaddr); 3032 if (!area) 3033 return -EINVAL; 3034 3035 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3036 return -EINVAL; 3037 3038 if (check_add_overflow(size, off, &end_index) || 3039 end_index > get_vm_area_size(area)) 3040 return -EINVAL; 3041 kaddr += off; 3042 3043 do { 3044 struct page *page = vmalloc_to_page(kaddr); 3045 int ret; 3046 3047 ret = vm_insert_page(vma, uaddr, page); 3048 if (ret) 3049 return ret; 3050 3051 uaddr += PAGE_SIZE; 3052 kaddr += PAGE_SIZE; 3053 size -= PAGE_SIZE; 3054 } while (size > 0); 3055 3056 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3057 3058 return 0; 3059 } 3060 EXPORT_SYMBOL(remap_vmalloc_range_partial); 3061 3062 /** 3063 * remap_vmalloc_range - map vmalloc pages to userspace 3064 * @vma: vma to cover (map full range of vma) 3065 * @addr: vmalloc memory 3066 * @pgoff: number of pages into addr before first page to map 3067 * 3068 * Returns: 0 for success, -Exxx on failure 3069 * 3070 * This function checks that addr is a valid vmalloc'ed area, and 3071 * that it is big enough to cover the vma. Will return failure if 3072 * that criteria isn't met. 3073 * 3074 * Similar to remap_pfn_range() (see mm/memory.c) 3075 */ 3076 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3077 unsigned long pgoff) 3078 { 3079 return remap_vmalloc_range_partial(vma, vma->vm_start, 3080 addr, pgoff, 3081 vma->vm_end - vma->vm_start); 3082 } 3083 EXPORT_SYMBOL(remap_vmalloc_range); 3084 3085 static int f(pte_t *pte, unsigned long addr, void *data) 3086 { 3087 pte_t ***p = data; 3088 3089 if (p) { 3090 *(*p) = pte; 3091 (*p)++; 3092 } 3093 return 0; 3094 } 3095 3096 /** 3097 * alloc_vm_area - allocate a range of kernel address space 3098 * @size: size of the area 3099 * @ptes: returns the PTEs for the address space 3100 * 3101 * Returns: NULL on failure, vm_struct on success 3102 * 3103 * This function reserves a range of kernel address space, and 3104 * allocates pagetables to map that range. No actual mappings 3105 * are created. 3106 * 3107 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 3108 * allocated for the VM area are returned. 3109 */ 3110 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 3111 { 3112 struct vm_struct *area; 3113 3114 area = get_vm_area_caller(size, VM_IOREMAP, 3115 __builtin_return_address(0)); 3116 if (area == NULL) 3117 return NULL; 3118 3119 /* 3120 * This ensures that page tables are constructed for this region 3121 * of kernel virtual address space and mapped into init_mm. 3122 */ 3123 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3124 size, f, ptes ? &ptes : NULL)) { 3125 free_vm_area(area); 3126 return NULL; 3127 } 3128 3129 return area; 3130 } 3131 EXPORT_SYMBOL_GPL(alloc_vm_area); 3132 3133 void free_vm_area(struct vm_struct *area) 3134 { 3135 struct vm_struct *ret; 3136 ret = remove_vm_area(area->addr); 3137 BUG_ON(ret != area); 3138 kfree(area); 3139 } 3140 EXPORT_SYMBOL_GPL(free_vm_area); 3141 3142 #ifdef CONFIG_SMP 3143 static struct vmap_area *node_to_va(struct rb_node *n) 3144 { 3145 return rb_entry_safe(n, struct vmap_area, rb_node); 3146 } 3147 3148 /** 3149 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3150 * @addr: target address 3151 * 3152 * Returns: vmap_area if it is found. If there is no such area 3153 * the first highest(reverse order) vmap_area is returned 3154 * i.e. va->va_start < addr && va->va_end < addr or NULL 3155 * if there are no any areas before @addr. 3156 */ 3157 static struct vmap_area * 3158 pvm_find_va_enclose_addr(unsigned long addr) 3159 { 3160 struct vmap_area *va, *tmp; 3161 struct rb_node *n; 3162 3163 n = free_vmap_area_root.rb_node; 3164 va = NULL; 3165 3166 while (n) { 3167 tmp = rb_entry(n, struct vmap_area, rb_node); 3168 if (tmp->va_start <= addr) { 3169 va = tmp; 3170 if (tmp->va_end >= addr) 3171 break; 3172 3173 n = n->rb_right; 3174 } else { 3175 n = n->rb_left; 3176 } 3177 } 3178 3179 return va; 3180 } 3181 3182 /** 3183 * pvm_determine_end_from_reverse - find the highest aligned address 3184 * of free block below VMALLOC_END 3185 * @va: 3186 * in - the VA we start the search(reverse order); 3187 * out - the VA with the highest aligned end address. 3188 * 3189 * Returns: determined end address within vmap_area 3190 */ 3191 static unsigned long 3192 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3193 { 3194 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3195 unsigned long addr; 3196 3197 if (likely(*va)) { 3198 list_for_each_entry_from_reverse((*va), 3199 &free_vmap_area_list, list) { 3200 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3201 if ((*va)->va_start < addr) 3202 return addr; 3203 } 3204 } 3205 3206 return 0; 3207 } 3208 3209 /** 3210 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3211 * @offsets: array containing offset of each area 3212 * @sizes: array containing size of each area 3213 * @nr_vms: the number of areas to allocate 3214 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3215 * 3216 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3217 * vm_structs on success, %NULL on failure 3218 * 3219 * Percpu allocator wants to use congruent vm areas so that it can 3220 * maintain the offsets among percpu areas. This function allocates 3221 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3222 * be scattered pretty far, distance between two areas easily going up 3223 * to gigabytes. To avoid interacting with regular vmallocs, these 3224 * areas are allocated from top. 3225 * 3226 * Despite its complicated look, this allocator is rather simple. It 3227 * does everything top-down and scans free blocks from the end looking 3228 * for matching base. While scanning, if any of the areas do not fit the 3229 * base address is pulled down to fit the area. Scanning is repeated till 3230 * all the areas fit and then all necessary data structures are inserted 3231 * and the result is returned. 3232 */ 3233 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3234 const size_t *sizes, int nr_vms, 3235 size_t align) 3236 { 3237 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3238 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3239 struct vmap_area **vas, *va; 3240 struct vm_struct **vms; 3241 int area, area2, last_area, term_area; 3242 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3243 bool purged = false; 3244 enum fit_type type; 3245 3246 /* verify parameters and allocate data structures */ 3247 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3248 for (last_area = 0, area = 0; area < nr_vms; area++) { 3249 start = offsets[area]; 3250 end = start + sizes[area]; 3251 3252 /* is everything aligned properly? */ 3253 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3254 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3255 3256 /* detect the area with the highest address */ 3257 if (start > offsets[last_area]) 3258 last_area = area; 3259 3260 for (area2 = area + 1; area2 < nr_vms; area2++) { 3261 unsigned long start2 = offsets[area2]; 3262 unsigned long end2 = start2 + sizes[area2]; 3263 3264 BUG_ON(start2 < end && start < end2); 3265 } 3266 } 3267 last_end = offsets[last_area] + sizes[last_area]; 3268 3269 if (vmalloc_end - vmalloc_start < last_end) { 3270 WARN_ON(true); 3271 return NULL; 3272 } 3273 3274 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3275 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3276 if (!vas || !vms) 3277 goto err_free2; 3278 3279 for (area = 0; area < nr_vms; area++) { 3280 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3281 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3282 if (!vas[area] || !vms[area]) 3283 goto err_free; 3284 } 3285 retry: 3286 spin_lock(&free_vmap_area_lock); 3287 3288 /* start scanning - we scan from the top, begin with the last area */ 3289 area = term_area = last_area; 3290 start = offsets[area]; 3291 end = start + sizes[area]; 3292 3293 va = pvm_find_va_enclose_addr(vmalloc_end); 3294 base = pvm_determine_end_from_reverse(&va, align) - end; 3295 3296 while (true) { 3297 /* 3298 * base might have underflowed, add last_end before 3299 * comparing. 3300 */ 3301 if (base + last_end < vmalloc_start + last_end) 3302 goto overflow; 3303 3304 /* 3305 * Fitting base has not been found. 3306 */ 3307 if (va == NULL) 3308 goto overflow; 3309 3310 /* 3311 * If required width exceeds current VA block, move 3312 * base downwards and then recheck. 3313 */ 3314 if (base + end > va->va_end) { 3315 base = pvm_determine_end_from_reverse(&va, align) - end; 3316 term_area = area; 3317 continue; 3318 } 3319 3320 /* 3321 * If this VA does not fit, move base downwards and recheck. 3322 */ 3323 if (base + start < va->va_start) { 3324 va = node_to_va(rb_prev(&va->rb_node)); 3325 base = pvm_determine_end_from_reverse(&va, align) - end; 3326 term_area = area; 3327 continue; 3328 } 3329 3330 /* 3331 * This area fits, move on to the previous one. If 3332 * the previous one is the terminal one, we're done. 3333 */ 3334 area = (area + nr_vms - 1) % nr_vms; 3335 if (area == term_area) 3336 break; 3337 3338 start = offsets[area]; 3339 end = start + sizes[area]; 3340 va = pvm_find_va_enclose_addr(base + end); 3341 } 3342 3343 /* we've found a fitting base, insert all va's */ 3344 for (area = 0; area < nr_vms; area++) { 3345 int ret; 3346 3347 start = base + offsets[area]; 3348 size = sizes[area]; 3349 3350 va = pvm_find_va_enclose_addr(start); 3351 if (WARN_ON_ONCE(va == NULL)) 3352 /* It is a BUG(), but trigger recovery instead. */ 3353 goto recovery; 3354 3355 type = classify_va_fit_type(va, start, size); 3356 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3357 /* It is a BUG(), but trigger recovery instead. */ 3358 goto recovery; 3359 3360 ret = adjust_va_to_fit_type(va, start, size, type); 3361 if (unlikely(ret)) 3362 goto recovery; 3363 3364 /* Allocated area. */ 3365 va = vas[area]; 3366 va->va_start = start; 3367 va->va_end = start + size; 3368 } 3369 3370 spin_unlock(&free_vmap_area_lock); 3371 3372 /* populate the kasan shadow space */ 3373 for (area = 0; area < nr_vms; area++) { 3374 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3375 goto err_free_shadow; 3376 3377 kasan_unpoison_vmalloc((void *)vas[area]->va_start, 3378 sizes[area]); 3379 } 3380 3381 /* insert all vm's */ 3382 spin_lock(&vmap_area_lock); 3383 for (area = 0; area < nr_vms; area++) { 3384 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3385 3386 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3387 pcpu_get_vm_areas); 3388 } 3389 spin_unlock(&vmap_area_lock); 3390 3391 kfree(vas); 3392 return vms; 3393 3394 recovery: 3395 /* 3396 * Remove previously allocated areas. There is no 3397 * need in removing these areas from the busy tree, 3398 * because they are inserted only on the final step 3399 * and when pcpu_get_vm_areas() is success. 3400 */ 3401 while (area--) { 3402 orig_start = vas[area]->va_start; 3403 orig_end = vas[area]->va_end; 3404 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, 3405 &free_vmap_area_list); 3406 kasan_release_vmalloc(orig_start, orig_end, 3407 va->va_start, va->va_end); 3408 vas[area] = NULL; 3409 } 3410 3411 overflow: 3412 spin_unlock(&free_vmap_area_lock); 3413 if (!purged) { 3414 purge_vmap_area_lazy(); 3415 purged = true; 3416 3417 /* Before "retry", check if we recover. */ 3418 for (area = 0; area < nr_vms; area++) { 3419 if (vas[area]) 3420 continue; 3421 3422 vas[area] = kmem_cache_zalloc( 3423 vmap_area_cachep, GFP_KERNEL); 3424 if (!vas[area]) 3425 goto err_free; 3426 } 3427 3428 goto retry; 3429 } 3430 3431 err_free: 3432 for (area = 0; area < nr_vms; area++) { 3433 if (vas[area]) 3434 kmem_cache_free(vmap_area_cachep, vas[area]); 3435 3436 kfree(vms[area]); 3437 } 3438 err_free2: 3439 kfree(vas); 3440 kfree(vms); 3441 return NULL; 3442 3443 err_free_shadow: 3444 spin_lock(&free_vmap_area_lock); 3445 /* 3446 * We release all the vmalloc shadows, even the ones for regions that 3447 * hadn't been successfully added. This relies on kasan_release_vmalloc 3448 * being able to tolerate this case. 3449 */ 3450 for (area = 0; area < nr_vms; area++) { 3451 orig_start = vas[area]->va_start; 3452 orig_end = vas[area]->va_end; 3453 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, 3454 &free_vmap_area_list); 3455 kasan_release_vmalloc(orig_start, orig_end, 3456 va->va_start, va->va_end); 3457 vas[area] = NULL; 3458 kfree(vms[area]); 3459 } 3460 spin_unlock(&free_vmap_area_lock); 3461 kfree(vas); 3462 kfree(vms); 3463 return NULL; 3464 } 3465 3466 /** 3467 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3468 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3469 * @nr_vms: the number of allocated areas 3470 * 3471 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3472 */ 3473 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3474 { 3475 int i; 3476 3477 for (i = 0; i < nr_vms; i++) 3478 free_vm_area(vms[i]); 3479 kfree(vms); 3480 } 3481 #endif /* CONFIG_SMP */ 3482 3483 #ifdef CONFIG_PROC_FS 3484 static void *s_start(struct seq_file *m, loff_t *pos) 3485 __acquires(&vmap_purge_lock) 3486 __acquires(&vmap_area_lock) 3487 { 3488 mutex_lock(&vmap_purge_lock); 3489 spin_lock(&vmap_area_lock); 3490 3491 return seq_list_start(&vmap_area_list, *pos); 3492 } 3493 3494 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3495 { 3496 return seq_list_next(p, &vmap_area_list, pos); 3497 } 3498 3499 static void s_stop(struct seq_file *m, void *p) 3500 __releases(&vmap_purge_lock) 3501 __releases(&vmap_area_lock) 3502 { 3503 mutex_unlock(&vmap_purge_lock); 3504 spin_unlock(&vmap_area_lock); 3505 } 3506 3507 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3508 { 3509 if (IS_ENABLED(CONFIG_NUMA)) { 3510 unsigned int nr, *counters = m->private; 3511 3512 if (!counters) 3513 return; 3514 3515 if (v->flags & VM_UNINITIALIZED) 3516 return; 3517 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3518 smp_rmb(); 3519 3520 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3521 3522 for (nr = 0; nr < v->nr_pages; nr++) 3523 counters[page_to_nid(v->pages[nr])]++; 3524 3525 for_each_node_state(nr, N_HIGH_MEMORY) 3526 if (counters[nr]) 3527 seq_printf(m, " N%u=%u", nr, counters[nr]); 3528 } 3529 } 3530 3531 static void show_purge_info(struct seq_file *m) 3532 { 3533 struct llist_node *head; 3534 struct vmap_area *va; 3535 3536 head = READ_ONCE(vmap_purge_list.first); 3537 if (head == NULL) 3538 return; 3539 3540 llist_for_each_entry(va, head, purge_list) { 3541 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 3542 (void *)va->va_start, (void *)va->va_end, 3543 va->va_end - va->va_start); 3544 } 3545 } 3546 3547 static int s_show(struct seq_file *m, void *p) 3548 { 3549 struct vmap_area *va; 3550 struct vm_struct *v; 3551 3552 va = list_entry(p, struct vmap_area, list); 3553 3554 /* 3555 * s_show can encounter race with remove_vm_area, !vm on behalf 3556 * of vmap area is being tear down or vm_map_ram allocation. 3557 */ 3558 if (!va->vm) { 3559 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 3560 (void *)va->va_start, (void *)va->va_end, 3561 va->va_end - va->va_start); 3562 3563 return 0; 3564 } 3565 3566 v = va->vm; 3567 3568 seq_printf(m, "0x%pK-0x%pK %7ld", 3569 v->addr, v->addr + v->size, v->size); 3570 3571 if (v->caller) 3572 seq_printf(m, " %pS", v->caller); 3573 3574 if (v->nr_pages) 3575 seq_printf(m, " pages=%d", v->nr_pages); 3576 3577 if (v->phys_addr) 3578 seq_printf(m, " phys=%pa", &v->phys_addr); 3579 3580 if (v->flags & VM_IOREMAP) 3581 seq_puts(m, " ioremap"); 3582 3583 if (v->flags & VM_ALLOC) 3584 seq_puts(m, " vmalloc"); 3585 3586 if (v->flags & VM_MAP) 3587 seq_puts(m, " vmap"); 3588 3589 if (v->flags & VM_USERMAP) 3590 seq_puts(m, " user"); 3591 3592 if (v->flags & VM_DMA_COHERENT) 3593 seq_puts(m, " dma-coherent"); 3594 3595 if (is_vmalloc_addr(v->pages)) 3596 seq_puts(m, " vpages"); 3597 3598 show_numa_info(m, v); 3599 seq_putc(m, '\n'); 3600 3601 /* 3602 * As a final step, dump "unpurged" areas. Note, 3603 * that entire "/proc/vmallocinfo" output will not 3604 * be address sorted, because the purge list is not 3605 * sorted. 3606 */ 3607 if (list_is_last(&va->list, &vmap_area_list)) 3608 show_purge_info(m); 3609 3610 return 0; 3611 } 3612 3613 static const struct seq_operations vmalloc_op = { 3614 .start = s_start, 3615 .next = s_next, 3616 .stop = s_stop, 3617 .show = s_show, 3618 }; 3619 3620 static int __init proc_vmalloc_init(void) 3621 { 3622 if (IS_ENABLED(CONFIG_NUMA)) 3623 proc_create_seq_private("vmallocinfo", 0400, NULL, 3624 &vmalloc_op, 3625 nr_node_ids * sizeof(unsigned int), NULL); 3626 else 3627 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3628 return 0; 3629 } 3630 module_init(proc_vmalloc_init); 3631 3632 #endif 3633