xref: /openbmc/linux/mm/vmalloc.c (revision 7fe2f639)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
33 
34 /*** Page table manipulation functions ***/
35 
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 {
38 	pte_t *pte;
39 
40 	pte = pte_offset_kernel(pmd, addr);
41 	do {
42 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 	} while (pte++, addr += PAGE_SIZE, addr != end);
45 }
46 
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 {
49 	pmd_t *pmd;
50 	unsigned long next;
51 
52 	pmd = pmd_offset(pud, addr);
53 	do {
54 		next = pmd_addr_end(addr, end);
55 		if (pmd_none_or_clear_bad(pmd))
56 			continue;
57 		vunmap_pte_range(pmd, addr, next);
58 	} while (pmd++, addr = next, addr != end);
59 }
60 
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 {
63 	pud_t *pud;
64 	unsigned long next;
65 
66 	pud = pud_offset(pgd, addr);
67 	do {
68 		next = pud_addr_end(addr, end);
69 		if (pud_none_or_clear_bad(pud))
70 			continue;
71 		vunmap_pmd_range(pud, addr, next);
72 	} while (pud++, addr = next, addr != end);
73 }
74 
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 {
77 	pgd_t *pgd;
78 	unsigned long next;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	do {
83 		next = pgd_addr_end(addr, end);
84 		if (pgd_none_or_clear_bad(pgd))
85 			continue;
86 		vunmap_pud_range(pgd, addr, next);
87 	} while (pgd++, addr = next, addr != end);
88 }
89 
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 {
93 	pte_t *pte;
94 
95 	/*
96 	 * nr is a running index into the array which helps higher level
97 	 * callers keep track of where we're up to.
98 	 */
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = pages[*nr];
105 
106 		if (WARN_ON(!pte_none(*pte)))
107 			return -EBUSY;
108 		if (WARN_ON(!page))
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*nr)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 /*
151  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152  * will have pfns corresponding to the "pages" array.
153  *
154  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155  */
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 				   pgprot_t prot, struct page **pages)
158 {
159 	pgd_t *pgd;
160 	unsigned long next;
161 	unsigned long addr = start;
162 	int err = 0;
163 	int nr = 0;
164 
165 	BUG_ON(addr >= end);
166 	pgd = pgd_offset_k(addr);
167 	do {
168 		next = pgd_addr_end(addr, end);
169 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 		if (err)
171 			return err;
172 	} while (pgd++, addr = next, addr != end);
173 
174 	return nr;
175 }
176 
177 static int vmap_page_range(unsigned long start, unsigned long end,
178 			   pgprot_t prot, struct page **pages)
179 {
180 	int ret;
181 
182 	ret = vmap_page_range_noflush(start, end, prot, pages);
183 	flush_cache_vmap(start, end);
184 	return ret;
185 }
186 
187 int is_vmalloc_or_module_addr(const void *x)
188 {
189 	/*
190 	 * ARM, x86-64 and sparc64 put modules in a special place,
191 	 * and fall back on vmalloc() if that fails. Others
192 	 * just put it in the vmalloc space.
193 	 */
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 	unsigned long addr = (unsigned long)x;
196 	if (addr >= MODULES_VADDR && addr < MODULES_END)
197 		return 1;
198 #endif
199 	return is_vmalloc_addr(x);
200 }
201 
202 /*
203  * Walk a vmap address to the struct page it maps.
204  */
205 struct page *vmalloc_to_page(const void *vmalloc_addr)
206 {
207 	unsigned long addr = (unsigned long) vmalloc_addr;
208 	struct page *page = NULL;
209 	pgd_t *pgd = pgd_offset_k(addr);
210 
211 	/*
212 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 	 * architectures that do not vmalloc module space
214 	 */
215 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
216 
217 	if (!pgd_none(*pgd)) {
218 		pud_t *pud = pud_offset(pgd, addr);
219 		if (!pud_none(*pud)) {
220 			pmd_t *pmd = pmd_offset(pud, addr);
221 			if (!pmd_none(*pmd)) {
222 				pte_t *ptep, pte;
223 
224 				ptep = pte_offset_map(pmd, addr);
225 				pte = *ptep;
226 				if (pte_present(pte))
227 					page = pte_page(pte);
228 				pte_unmap(ptep);
229 			}
230 		}
231 	}
232 	return page;
233 }
234 EXPORT_SYMBOL(vmalloc_to_page);
235 
236 /*
237  * Map a vmalloc()-space virtual address to the physical page frame number.
238  */
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
240 {
241 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242 }
243 EXPORT_SYMBOL(vmalloc_to_pfn);
244 
245 
246 /*** Global kva allocator ***/
247 
248 #define VM_LAZY_FREE	0x01
249 #define VM_LAZY_FREEING	0x02
250 #define VM_VM_AREA	0x04
251 
252 struct vmap_area {
253 	unsigned long va_start;
254 	unsigned long va_end;
255 	unsigned long flags;
256 	struct rb_node rb_node;		/* address sorted rbtree */
257 	struct list_head list;		/* address sorted list */
258 	struct list_head purge_list;	/* "lazy purge" list */
259 	void *private;
260 	struct rcu_head rcu_head;
261 };
262 
263 static DEFINE_SPINLOCK(vmap_area_lock);
264 static LIST_HEAD(vmap_area_list);
265 static struct rb_root vmap_area_root = RB_ROOT;
266 
267 /* The vmap cache globals are protected by vmap_area_lock */
268 static struct rb_node *free_vmap_cache;
269 static unsigned long cached_hole_size;
270 static unsigned long cached_vstart;
271 static unsigned long cached_align;
272 
273 static unsigned long vmap_area_pcpu_hole;
274 
275 static struct vmap_area *__find_vmap_area(unsigned long addr)
276 {
277 	struct rb_node *n = vmap_area_root.rb_node;
278 
279 	while (n) {
280 		struct vmap_area *va;
281 
282 		va = rb_entry(n, struct vmap_area, rb_node);
283 		if (addr < va->va_start)
284 			n = n->rb_left;
285 		else if (addr > va->va_start)
286 			n = n->rb_right;
287 		else
288 			return va;
289 	}
290 
291 	return NULL;
292 }
293 
294 static void __insert_vmap_area(struct vmap_area *va)
295 {
296 	struct rb_node **p = &vmap_area_root.rb_node;
297 	struct rb_node *parent = NULL;
298 	struct rb_node *tmp;
299 
300 	while (*p) {
301 		struct vmap_area *tmp_va;
302 
303 		parent = *p;
304 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
305 		if (va->va_start < tmp_va->va_end)
306 			p = &(*p)->rb_left;
307 		else if (va->va_end > tmp_va->va_start)
308 			p = &(*p)->rb_right;
309 		else
310 			BUG();
311 	}
312 
313 	rb_link_node(&va->rb_node, parent, p);
314 	rb_insert_color(&va->rb_node, &vmap_area_root);
315 
316 	/* address-sort this list so it is usable like the vmlist */
317 	tmp = rb_prev(&va->rb_node);
318 	if (tmp) {
319 		struct vmap_area *prev;
320 		prev = rb_entry(tmp, struct vmap_area, rb_node);
321 		list_add_rcu(&va->list, &prev->list);
322 	} else
323 		list_add_rcu(&va->list, &vmap_area_list);
324 }
325 
326 static void purge_vmap_area_lazy(void);
327 
328 /*
329  * Allocate a region of KVA of the specified size and alignment, within the
330  * vstart and vend.
331  */
332 static struct vmap_area *alloc_vmap_area(unsigned long size,
333 				unsigned long align,
334 				unsigned long vstart, unsigned long vend,
335 				int node, gfp_t gfp_mask)
336 {
337 	struct vmap_area *va;
338 	struct rb_node *n;
339 	unsigned long addr;
340 	int purged = 0;
341 	struct vmap_area *first;
342 
343 	BUG_ON(!size);
344 	BUG_ON(size & ~PAGE_MASK);
345 	BUG_ON(!is_power_of_2(align));
346 
347 	va = kmalloc_node(sizeof(struct vmap_area),
348 			gfp_mask & GFP_RECLAIM_MASK, node);
349 	if (unlikely(!va))
350 		return ERR_PTR(-ENOMEM);
351 
352 retry:
353 	spin_lock(&vmap_area_lock);
354 	/*
355 	 * Invalidate cache if we have more permissive parameters.
356 	 * cached_hole_size notes the largest hole noticed _below_
357 	 * the vmap_area cached in free_vmap_cache: if size fits
358 	 * into that hole, we want to scan from vstart to reuse
359 	 * the hole instead of allocating above free_vmap_cache.
360 	 * Note that __free_vmap_area may update free_vmap_cache
361 	 * without updating cached_hole_size or cached_align.
362 	 */
363 	if (!free_vmap_cache ||
364 			size < cached_hole_size ||
365 			vstart < cached_vstart ||
366 			align < cached_align) {
367 nocache:
368 		cached_hole_size = 0;
369 		free_vmap_cache = NULL;
370 	}
371 	/* record if we encounter less permissive parameters */
372 	cached_vstart = vstart;
373 	cached_align = align;
374 
375 	/* find starting point for our search */
376 	if (free_vmap_cache) {
377 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
378 		addr = ALIGN(first->va_end, align);
379 		if (addr < vstart)
380 			goto nocache;
381 		if (addr + size - 1 < addr)
382 			goto overflow;
383 
384 	} else {
385 		addr = ALIGN(vstart, align);
386 		if (addr + size - 1 < addr)
387 			goto overflow;
388 
389 		n = vmap_area_root.rb_node;
390 		first = NULL;
391 
392 		while (n) {
393 			struct vmap_area *tmp;
394 			tmp = rb_entry(n, struct vmap_area, rb_node);
395 			if (tmp->va_end >= addr) {
396 				first = tmp;
397 				if (tmp->va_start <= addr)
398 					break;
399 				n = n->rb_left;
400 			} else
401 				n = n->rb_right;
402 		}
403 
404 		if (!first)
405 			goto found;
406 	}
407 
408 	/* from the starting point, walk areas until a suitable hole is found */
409 	while (addr + size > first->va_start && addr + size <= vend) {
410 		if (addr + cached_hole_size < first->va_start)
411 			cached_hole_size = first->va_start - addr;
412 		addr = ALIGN(first->va_end, align);
413 		if (addr + size - 1 < addr)
414 			goto overflow;
415 
416 		n = rb_next(&first->rb_node);
417 		if (n)
418 			first = rb_entry(n, struct vmap_area, rb_node);
419 		else
420 			goto found;
421 	}
422 
423 found:
424 	if (addr + size > vend)
425 		goto overflow;
426 
427 	va->va_start = addr;
428 	va->va_end = addr + size;
429 	va->flags = 0;
430 	__insert_vmap_area(va);
431 	free_vmap_cache = &va->rb_node;
432 	spin_unlock(&vmap_area_lock);
433 
434 	BUG_ON(va->va_start & (align-1));
435 	BUG_ON(va->va_start < vstart);
436 	BUG_ON(va->va_end > vend);
437 
438 	return va;
439 
440 overflow:
441 	spin_unlock(&vmap_area_lock);
442 	if (!purged) {
443 		purge_vmap_area_lazy();
444 		purged = 1;
445 		goto retry;
446 	}
447 	if (printk_ratelimit())
448 		printk(KERN_WARNING
449 			"vmap allocation for size %lu failed: "
450 			"use vmalloc=<size> to increase size.\n", size);
451 	kfree(va);
452 	return ERR_PTR(-EBUSY);
453 }
454 
455 static void rcu_free_va(struct rcu_head *head)
456 {
457 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
458 
459 	kfree(va);
460 }
461 
462 static void __free_vmap_area(struct vmap_area *va)
463 {
464 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
465 
466 	if (free_vmap_cache) {
467 		if (va->va_end < cached_vstart) {
468 			free_vmap_cache = NULL;
469 		} else {
470 			struct vmap_area *cache;
471 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
472 			if (va->va_start <= cache->va_start) {
473 				free_vmap_cache = rb_prev(&va->rb_node);
474 				/*
475 				 * We don't try to update cached_hole_size or
476 				 * cached_align, but it won't go very wrong.
477 				 */
478 			}
479 		}
480 	}
481 	rb_erase(&va->rb_node, &vmap_area_root);
482 	RB_CLEAR_NODE(&va->rb_node);
483 	list_del_rcu(&va->list);
484 
485 	/*
486 	 * Track the highest possible candidate for pcpu area
487 	 * allocation.  Areas outside of vmalloc area can be returned
488 	 * here too, consider only end addresses which fall inside
489 	 * vmalloc area proper.
490 	 */
491 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
492 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
493 
494 	call_rcu(&va->rcu_head, rcu_free_va);
495 }
496 
497 /*
498  * Free a region of KVA allocated by alloc_vmap_area
499  */
500 static void free_vmap_area(struct vmap_area *va)
501 {
502 	spin_lock(&vmap_area_lock);
503 	__free_vmap_area(va);
504 	spin_unlock(&vmap_area_lock);
505 }
506 
507 /*
508  * Clear the pagetable entries of a given vmap_area
509  */
510 static void unmap_vmap_area(struct vmap_area *va)
511 {
512 	vunmap_page_range(va->va_start, va->va_end);
513 }
514 
515 static void vmap_debug_free_range(unsigned long start, unsigned long end)
516 {
517 	/*
518 	 * Unmap page tables and force a TLB flush immediately if
519 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
520 	 * bugs similarly to those in linear kernel virtual address
521 	 * space after a page has been freed.
522 	 *
523 	 * All the lazy freeing logic is still retained, in order to
524 	 * minimise intrusiveness of this debugging feature.
525 	 *
526 	 * This is going to be *slow* (linear kernel virtual address
527 	 * debugging doesn't do a broadcast TLB flush so it is a lot
528 	 * faster).
529 	 */
530 #ifdef CONFIG_DEBUG_PAGEALLOC
531 	vunmap_page_range(start, end);
532 	flush_tlb_kernel_range(start, end);
533 #endif
534 }
535 
536 /*
537  * lazy_max_pages is the maximum amount of virtual address space we gather up
538  * before attempting to purge with a TLB flush.
539  *
540  * There is a tradeoff here: a larger number will cover more kernel page tables
541  * and take slightly longer to purge, but it will linearly reduce the number of
542  * global TLB flushes that must be performed. It would seem natural to scale
543  * this number up linearly with the number of CPUs (because vmapping activity
544  * could also scale linearly with the number of CPUs), however it is likely
545  * that in practice, workloads might be constrained in other ways that mean
546  * vmap activity will not scale linearly with CPUs. Also, I want to be
547  * conservative and not introduce a big latency on huge systems, so go with
548  * a less aggressive log scale. It will still be an improvement over the old
549  * code, and it will be simple to change the scale factor if we find that it
550  * becomes a problem on bigger systems.
551  */
552 static unsigned long lazy_max_pages(void)
553 {
554 	unsigned int log;
555 
556 	log = fls(num_online_cpus());
557 
558 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
559 }
560 
561 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
562 
563 /* for per-CPU blocks */
564 static void purge_fragmented_blocks_allcpus(void);
565 
566 /*
567  * called before a call to iounmap() if the caller wants vm_area_struct's
568  * immediately freed.
569  */
570 void set_iounmap_nonlazy(void)
571 {
572 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
573 }
574 
575 /*
576  * Purges all lazily-freed vmap areas.
577  *
578  * If sync is 0 then don't purge if there is already a purge in progress.
579  * If force_flush is 1, then flush kernel TLBs between *start and *end even
580  * if we found no lazy vmap areas to unmap (callers can use this to optimise
581  * their own TLB flushing).
582  * Returns with *start = min(*start, lowest purged address)
583  *              *end = max(*end, highest purged address)
584  */
585 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
586 					int sync, int force_flush)
587 {
588 	static DEFINE_SPINLOCK(purge_lock);
589 	LIST_HEAD(valist);
590 	struct vmap_area *va;
591 	struct vmap_area *n_va;
592 	int nr = 0;
593 
594 	/*
595 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
596 	 * should not expect such behaviour. This just simplifies locking for
597 	 * the case that isn't actually used at the moment anyway.
598 	 */
599 	if (!sync && !force_flush) {
600 		if (!spin_trylock(&purge_lock))
601 			return;
602 	} else
603 		spin_lock(&purge_lock);
604 
605 	if (sync)
606 		purge_fragmented_blocks_allcpus();
607 
608 	rcu_read_lock();
609 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
610 		if (va->flags & VM_LAZY_FREE) {
611 			if (va->va_start < *start)
612 				*start = va->va_start;
613 			if (va->va_end > *end)
614 				*end = va->va_end;
615 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
616 			list_add_tail(&va->purge_list, &valist);
617 			va->flags |= VM_LAZY_FREEING;
618 			va->flags &= ~VM_LAZY_FREE;
619 		}
620 	}
621 	rcu_read_unlock();
622 
623 	if (nr)
624 		atomic_sub(nr, &vmap_lazy_nr);
625 
626 	if (nr || force_flush)
627 		flush_tlb_kernel_range(*start, *end);
628 
629 	if (nr) {
630 		spin_lock(&vmap_area_lock);
631 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
632 			__free_vmap_area(va);
633 		spin_unlock(&vmap_area_lock);
634 	}
635 	spin_unlock(&purge_lock);
636 }
637 
638 /*
639  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
640  * is already purging.
641  */
642 static void try_purge_vmap_area_lazy(void)
643 {
644 	unsigned long start = ULONG_MAX, end = 0;
645 
646 	__purge_vmap_area_lazy(&start, &end, 0, 0);
647 }
648 
649 /*
650  * Kick off a purge of the outstanding lazy areas.
651  */
652 static void purge_vmap_area_lazy(void)
653 {
654 	unsigned long start = ULONG_MAX, end = 0;
655 
656 	__purge_vmap_area_lazy(&start, &end, 1, 0);
657 }
658 
659 /*
660  * Free a vmap area, caller ensuring that the area has been unmapped
661  * and flush_cache_vunmap had been called for the correct range
662  * previously.
663  */
664 static void free_vmap_area_noflush(struct vmap_area *va)
665 {
666 	va->flags |= VM_LAZY_FREE;
667 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
668 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
669 		try_purge_vmap_area_lazy();
670 }
671 
672 /*
673  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
674  * called for the correct range previously.
675  */
676 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
677 {
678 	unmap_vmap_area(va);
679 	free_vmap_area_noflush(va);
680 }
681 
682 /*
683  * Free and unmap a vmap area
684  */
685 static void free_unmap_vmap_area(struct vmap_area *va)
686 {
687 	flush_cache_vunmap(va->va_start, va->va_end);
688 	free_unmap_vmap_area_noflush(va);
689 }
690 
691 static struct vmap_area *find_vmap_area(unsigned long addr)
692 {
693 	struct vmap_area *va;
694 
695 	spin_lock(&vmap_area_lock);
696 	va = __find_vmap_area(addr);
697 	spin_unlock(&vmap_area_lock);
698 
699 	return va;
700 }
701 
702 static void free_unmap_vmap_area_addr(unsigned long addr)
703 {
704 	struct vmap_area *va;
705 
706 	va = find_vmap_area(addr);
707 	BUG_ON(!va);
708 	free_unmap_vmap_area(va);
709 }
710 
711 
712 /*** Per cpu kva allocator ***/
713 
714 /*
715  * vmap space is limited especially on 32 bit architectures. Ensure there is
716  * room for at least 16 percpu vmap blocks per CPU.
717  */
718 /*
719  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
720  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
721  * instead (we just need a rough idea)
722  */
723 #if BITS_PER_LONG == 32
724 #define VMALLOC_SPACE		(128UL*1024*1024)
725 #else
726 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
727 #endif
728 
729 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
730 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
731 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
732 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
733 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
734 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
735 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
736 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
737 						VMALLOC_PAGES / NR_CPUS / 16))
738 
739 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
740 
741 static bool vmap_initialized __read_mostly = false;
742 
743 struct vmap_block_queue {
744 	spinlock_t lock;
745 	struct list_head free;
746 };
747 
748 struct vmap_block {
749 	spinlock_t lock;
750 	struct vmap_area *va;
751 	struct vmap_block_queue *vbq;
752 	unsigned long free, dirty;
753 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
754 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
755 	struct list_head free_list;
756 	struct rcu_head rcu_head;
757 	struct list_head purge;
758 };
759 
760 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
761 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
762 
763 /*
764  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
765  * in the free path. Could get rid of this if we change the API to return a
766  * "cookie" from alloc, to be passed to free. But no big deal yet.
767  */
768 static DEFINE_SPINLOCK(vmap_block_tree_lock);
769 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
770 
771 /*
772  * We should probably have a fallback mechanism to allocate virtual memory
773  * out of partially filled vmap blocks. However vmap block sizing should be
774  * fairly reasonable according to the vmalloc size, so it shouldn't be a
775  * big problem.
776  */
777 
778 static unsigned long addr_to_vb_idx(unsigned long addr)
779 {
780 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
781 	addr /= VMAP_BLOCK_SIZE;
782 	return addr;
783 }
784 
785 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
786 {
787 	struct vmap_block_queue *vbq;
788 	struct vmap_block *vb;
789 	struct vmap_area *va;
790 	unsigned long vb_idx;
791 	int node, err;
792 
793 	node = numa_node_id();
794 
795 	vb = kmalloc_node(sizeof(struct vmap_block),
796 			gfp_mask & GFP_RECLAIM_MASK, node);
797 	if (unlikely(!vb))
798 		return ERR_PTR(-ENOMEM);
799 
800 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
801 					VMALLOC_START, VMALLOC_END,
802 					node, gfp_mask);
803 	if (IS_ERR(va)) {
804 		kfree(vb);
805 		return ERR_CAST(va);
806 	}
807 
808 	err = radix_tree_preload(gfp_mask);
809 	if (unlikely(err)) {
810 		kfree(vb);
811 		free_vmap_area(va);
812 		return ERR_PTR(err);
813 	}
814 
815 	spin_lock_init(&vb->lock);
816 	vb->va = va;
817 	vb->free = VMAP_BBMAP_BITS;
818 	vb->dirty = 0;
819 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
820 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
821 	INIT_LIST_HEAD(&vb->free_list);
822 
823 	vb_idx = addr_to_vb_idx(va->va_start);
824 	spin_lock(&vmap_block_tree_lock);
825 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
826 	spin_unlock(&vmap_block_tree_lock);
827 	BUG_ON(err);
828 	radix_tree_preload_end();
829 
830 	vbq = &get_cpu_var(vmap_block_queue);
831 	vb->vbq = vbq;
832 	spin_lock(&vbq->lock);
833 	list_add_rcu(&vb->free_list, &vbq->free);
834 	spin_unlock(&vbq->lock);
835 	put_cpu_var(vmap_block_queue);
836 
837 	return vb;
838 }
839 
840 static void rcu_free_vb(struct rcu_head *head)
841 {
842 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
843 
844 	kfree(vb);
845 }
846 
847 static void free_vmap_block(struct vmap_block *vb)
848 {
849 	struct vmap_block *tmp;
850 	unsigned long vb_idx;
851 
852 	vb_idx = addr_to_vb_idx(vb->va->va_start);
853 	spin_lock(&vmap_block_tree_lock);
854 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
855 	spin_unlock(&vmap_block_tree_lock);
856 	BUG_ON(tmp != vb);
857 
858 	free_vmap_area_noflush(vb->va);
859 	call_rcu(&vb->rcu_head, rcu_free_vb);
860 }
861 
862 static void purge_fragmented_blocks(int cpu)
863 {
864 	LIST_HEAD(purge);
865 	struct vmap_block *vb;
866 	struct vmap_block *n_vb;
867 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
868 
869 	rcu_read_lock();
870 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
871 
872 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
873 			continue;
874 
875 		spin_lock(&vb->lock);
876 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
877 			vb->free = 0; /* prevent further allocs after releasing lock */
878 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
879 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
880 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
881 			spin_lock(&vbq->lock);
882 			list_del_rcu(&vb->free_list);
883 			spin_unlock(&vbq->lock);
884 			spin_unlock(&vb->lock);
885 			list_add_tail(&vb->purge, &purge);
886 		} else
887 			spin_unlock(&vb->lock);
888 	}
889 	rcu_read_unlock();
890 
891 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
892 		list_del(&vb->purge);
893 		free_vmap_block(vb);
894 	}
895 }
896 
897 static void purge_fragmented_blocks_thiscpu(void)
898 {
899 	purge_fragmented_blocks(smp_processor_id());
900 }
901 
902 static void purge_fragmented_blocks_allcpus(void)
903 {
904 	int cpu;
905 
906 	for_each_possible_cpu(cpu)
907 		purge_fragmented_blocks(cpu);
908 }
909 
910 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
911 {
912 	struct vmap_block_queue *vbq;
913 	struct vmap_block *vb;
914 	unsigned long addr = 0;
915 	unsigned int order;
916 	int purge = 0;
917 
918 	BUG_ON(size & ~PAGE_MASK);
919 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
920 	order = get_order(size);
921 
922 again:
923 	rcu_read_lock();
924 	vbq = &get_cpu_var(vmap_block_queue);
925 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
926 		int i;
927 
928 		spin_lock(&vb->lock);
929 		if (vb->free < 1UL << order)
930 			goto next;
931 
932 		i = bitmap_find_free_region(vb->alloc_map,
933 						VMAP_BBMAP_BITS, order);
934 
935 		if (i < 0) {
936 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
937 				/* fragmented and no outstanding allocations */
938 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
939 				purge = 1;
940 			}
941 			goto next;
942 		}
943 		addr = vb->va->va_start + (i << PAGE_SHIFT);
944 		BUG_ON(addr_to_vb_idx(addr) !=
945 				addr_to_vb_idx(vb->va->va_start));
946 		vb->free -= 1UL << order;
947 		if (vb->free == 0) {
948 			spin_lock(&vbq->lock);
949 			list_del_rcu(&vb->free_list);
950 			spin_unlock(&vbq->lock);
951 		}
952 		spin_unlock(&vb->lock);
953 		break;
954 next:
955 		spin_unlock(&vb->lock);
956 	}
957 
958 	if (purge)
959 		purge_fragmented_blocks_thiscpu();
960 
961 	put_cpu_var(vmap_block_queue);
962 	rcu_read_unlock();
963 
964 	if (!addr) {
965 		vb = new_vmap_block(gfp_mask);
966 		if (IS_ERR(vb))
967 			return vb;
968 		goto again;
969 	}
970 
971 	return (void *)addr;
972 }
973 
974 static void vb_free(const void *addr, unsigned long size)
975 {
976 	unsigned long offset;
977 	unsigned long vb_idx;
978 	unsigned int order;
979 	struct vmap_block *vb;
980 
981 	BUG_ON(size & ~PAGE_MASK);
982 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
983 
984 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
985 
986 	order = get_order(size);
987 
988 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
989 
990 	vb_idx = addr_to_vb_idx((unsigned long)addr);
991 	rcu_read_lock();
992 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
993 	rcu_read_unlock();
994 	BUG_ON(!vb);
995 
996 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
997 
998 	spin_lock(&vb->lock);
999 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
1000 
1001 	vb->dirty += 1UL << order;
1002 	if (vb->dirty == VMAP_BBMAP_BITS) {
1003 		BUG_ON(vb->free);
1004 		spin_unlock(&vb->lock);
1005 		free_vmap_block(vb);
1006 	} else
1007 		spin_unlock(&vb->lock);
1008 }
1009 
1010 /**
1011  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1012  *
1013  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1014  * to amortize TLB flushing overheads. What this means is that any page you
1015  * have now, may, in a former life, have been mapped into kernel virtual
1016  * address by the vmap layer and so there might be some CPUs with TLB entries
1017  * still referencing that page (additional to the regular 1:1 kernel mapping).
1018  *
1019  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1020  * be sure that none of the pages we have control over will have any aliases
1021  * from the vmap layer.
1022  */
1023 void vm_unmap_aliases(void)
1024 {
1025 	unsigned long start = ULONG_MAX, end = 0;
1026 	int cpu;
1027 	int flush = 0;
1028 
1029 	if (unlikely(!vmap_initialized))
1030 		return;
1031 
1032 	for_each_possible_cpu(cpu) {
1033 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1034 		struct vmap_block *vb;
1035 
1036 		rcu_read_lock();
1037 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1038 			int i;
1039 
1040 			spin_lock(&vb->lock);
1041 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1042 			while (i < VMAP_BBMAP_BITS) {
1043 				unsigned long s, e;
1044 				int j;
1045 				j = find_next_zero_bit(vb->dirty_map,
1046 					VMAP_BBMAP_BITS, i);
1047 
1048 				s = vb->va->va_start + (i << PAGE_SHIFT);
1049 				e = vb->va->va_start + (j << PAGE_SHIFT);
1050 				flush = 1;
1051 
1052 				if (s < start)
1053 					start = s;
1054 				if (e > end)
1055 					end = e;
1056 
1057 				i = j;
1058 				i = find_next_bit(vb->dirty_map,
1059 							VMAP_BBMAP_BITS, i);
1060 			}
1061 			spin_unlock(&vb->lock);
1062 		}
1063 		rcu_read_unlock();
1064 	}
1065 
1066 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1067 }
1068 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1069 
1070 /**
1071  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1072  * @mem: the pointer returned by vm_map_ram
1073  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1074  */
1075 void vm_unmap_ram(const void *mem, unsigned int count)
1076 {
1077 	unsigned long size = count << PAGE_SHIFT;
1078 	unsigned long addr = (unsigned long)mem;
1079 
1080 	BUG_ON(!addr);
1081 	BUG_ON(addr < VMALLOC_START);
1082 	BUG_ON(addr > VMALLOC_END);
1083 	BUG_ON(addr & (PAGE_SIZE-1));
1084 
1085 	debug_check_no_locks_freed(mem, size);
1086 	vmap_debug_free_range(addr, addr+size);
1087 
1088 	if (likely(count <= VMAP_MAX_ALLOC))
1089 		vb_free(mem, size);
1090 	else
1091 		free_unmap_vmap_area_addr(addr);
1092 }
1093 EXPORT_SYMBOL(vm_unmap_ram);
1094 
1095 /**
1096  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1097  * @pages: an array of pointers to the pages to be mapped
1098  * @count: number of pages
1099  * @node: prefer to allocate data structures on this node
1100  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1101  *
1102  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1103  */
1104 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1105 {
1106 	unsigned long size = count << PAGE_SHIFT;
1107 	unsigned long addr;
1108 	void *mem;
1109 
1110 	if (likely(count <= VMAP_MAX_ALLOC)) {
1111 		mem = vb_alloc(size, GFP_KERNEL);
1112 		if (IS_ERR(mem))
1113 			return NULL;
1114 		addr = (unsigned long)mem;
1115 	} else {
1116 		struct vmap_area *va;
1117 		va = alloc_vmap_area(size, PAGE_SIZE,
1118 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1119 		if (IS_ERR(va))
1120 			return NULL;
1121 
1122 		addr = va->va_start;
1123 		mem = (void *)addr;
1124 	}
1125 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1126 		vm_unmap_ram(mem, count);
1127 		return NULL;
1128 	}
1129 	return mem;
1130 }
1131 EXPORT_SYMBOL(vm_map_ram);
1132 
1133 /**
1134  * vm_area_register_early - register vmap area early during boot
1135  * @vm: vm_struct to register
1136  * @align: requested alignment
1137  *
1138  * This function is used to register kernel vm area before
1139  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1140  * proper values on entry and other fields should be zero.  On return,
1141  * vm->addr contains the allocated address.
1142  *
1143  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1144  */
1145 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1146 {
1147 	static size_t vm_init_off __initdata;
1148 	unsigned long addr;
1149 
1150 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1151 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1152 
1153 	vm->addr = (void *)addr;
1154 
1155 	vm->next = vmlist;
1156 	vmlist = vm;
1157 }
1158 
1159 void __init vmalloc_init(void)
1160 {
1161 	struct vmap_area *va;
1162 	struct vm_struct *tmp;
1163 	int i;
1164 
1165 	for_each_possible_cpu(i) {
1166 		struct vmap_block_queue *vbq;
1167 
1168 		vbq = &per_cpu(vmap_block_queue, i);
1169 		spin_lock_init(&vbq->lock);
1170 		INIT_LIST_HEAD(&vbq->free);
1171 	}
1172 
1173 	/* Import existing vmlist entries. */
1174 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1175 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1176 		va->flags = tmp->flags | VM_VM_AREA;
1177 		va->va_start = (unsigned long)tmp->addr;
1178 		va->va_end = va->va_start + tmp->size;
1179 		__insert_vmap_area(va);
1180 	}
1181 
1182 	vmap_area_pcpu_hole = VMALLOC_END;
1183 
1184 	vmap_initialized = true;
1185 }
1186 
1187 /**
1188  * map_kernel_range_noflush - map kernel VM area with the specified pages
1189  * @addr: start of the VM area to map
1190  * @size: size of the VM area to map
1191  * @prot: page protection flags to use
1192  * @pages: pages to map
1193  *
1194  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1195  * specify should have been allocated using get_vm_area() and its
1196  * friends.
1197  *
1198  * NOTE:
1199  * This function does NOT do any cache flushing.  The caller is
1200  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1201  * before calling this function.
1202  *
1203  * RETURNS:
1204  * The number of pages mapped on success, -errno on failure.
1205  */
1206 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1207 			     pgprot_t prot, struct page **pages)
1208 {
1209 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1210 }
1211 
1212 /**
1213  * unmap_kernel_range_noflush - unmap kernel VM area
1214  * @addr: start of the VM area to unmap
1215  * @size: size of the VM area to unmap
1216  *
1217  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1218  * specify should have been allocated using get_vm_area() and its
1219  * friends.
1220  *
1221  * NOTE:
1222  * This function does NOT do any cache flushing.  The caller is
1223  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1224  * before calling this function and flush_tlb_kernel_range() after.
1225  */
1226 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1227 {
1228 	vunmap_page_range(addr, addr + size);
1229 }
1230 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1231 
1232 /**
1233  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1234  * @addr: start of the VM area to unmap
1235  * @size: size of the VM area to unmap
1236  *
1237  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1238  * the unmapping and tlb after.
1239  */
1240 void unmap_kernel_range(unsigned long addr, unsigned long size)
1241 {
1242 	unsigned long end = addr + size;
1243 
1244 	flush_cache_vunmap(addr, end);
1245 	vunmap_page_range(addr, end);
1246 	flush_tlb_kernel_range(addr, end);
1247 }
1248 
1249 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1250 {
1251 	unsigned long addr = (unsigned long)area->addr;
1252 	unsigned long end = addr + area->size - PAGE_SIZE;
1253 	int err;
1254 
1255 	err = vmap_page_range(addr, end, prot, *pages);
1256 	if (err > 0) {
1257 		*pages += err;
1258 		err = 0;
1259 	}
1260 
1261 	return err;
1262 }
1263 EXPORT_SYMBOL_GPL(map_vm_area);
1264 
1265 /*** Old vmalloc interfaces ***/
1266 DEFINE_RWLOCK(vmlist_lock);
1267 struct vm_struct *vmlist;
1268 
1269 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1270 			      unsigned long flags, void *caller)
1271 {
1272 	struct vm_struct *tmp, **p;
1273 
1274 	vm->flags = flags;
1275 	vm->addr = (void *)va->va_start;
1276 	vm->size = va->va_end - va->va_start;
1277 	vm->caller = caller;
1278 	va->private = vm;
1279 	va->flags |= VM_VM_AREA;
1280 
1281 	write_lock(&vmlist_lock);
1282 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1283 		if (tmp->addr >= vm->addr)
1284 			break;
1285 	}
1286 	vm->next = *p;
1287 	*p = vm;
1288 	write_unlock(&vmlist_lock);
1289 }
1290 
1291 static struct vm_struct *__get_vm_area_node(unsigned long size,
1292 		unsigned long align, unsigned long flags, unsigned long start,
1293 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1294 {
1295 	static struct vmap_area *va;
1296 	struct vm_struct *area;
1297 
1298 	BUG_ON(in_interrupt());
1299 	if (flags & VM_IOREMAP) {
1300 		int bit = fls(size);
1301 
1302 		if (bit > IOREMAP_MAX_ORDER)
1303 			bit = IOREMAP_MAX_ORDER;
1304 		else if (bit < PAGE_SHIFT)
1305 			bit = PAGE_SHIFT;
1306 
1307 		align = 1ul << bit;
1308 	}
1309 
1310 	size = PAGE_ALIGN(size);
1311 	if (unlikely(!size))
1312 		return NULL;
1313 
1314 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1315 	if (unlikely(!area))
1316 		return NULL;
1317 
1318 	/*
1319 	 * We always allocate a guard page.
1320 	 */
1321 	size += PAGE_SIZE;
1322 
1323 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1324 	if (IS_ERR(va)) {
1325 		kfree(area);
1326 		return NULL;
1327 	}
1328 
1329 	insert_vmalloc_vm(area, va, flags, caller);
1330 	return area;
1331 }
1332 
1333 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1334 				unsigned long start, unsigned long end)
1335 {
1336 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1337 						__builtin_return_address(0));
1338 }
1339 EXPORT_SYMBOL_GPL(__get_vm_area);
1340 
1341 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1342 				       unsigned long start, unsigned long end,
1343 				       void *caller)
1344 {
1345 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1346 				  caller);
1347 }
1348 
1349 /**
1350  *	get_vm_area  -  reserve a contiguous kernel virtual area
1351  *	@size:		size of the area
1352  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1353  *
1354  *	Search an area of @size in the kernel virtual mapping area,
1355  *	and reserved it for out purposes.  Returns the area descriptor
1356  *	on success or %NULL on failure.
1357  */
1358 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1359 {
1360 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1361 				-1, GFP_KERNEL, __builtin_return_address(0));
1362 }
1363 
1364 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1365 				void *caller)
1366 {
1367 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1368 						-1, GFP_KERNEL, caller);
1369 }
1370 
1371 static struct vm_struct *find_vm_area(const void *addr)
1372 {
1373 	struct vmap_area *va;
1374 
1375 	va = find_vmap_area((unsigned long)addr);
1376 	if (va && va->flags & VM_VM_AREA)
1377 		return va->private;
1378 
1379 	return NULL;
1380 }
1381 
1382 /**
1383  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1384  *	@addr:		base address
1385  *
1386  *	Search for the kernel VM area starting at @addr, and remove it.
1387  *	This function returns the found VM area, but using it is NOT safe
1388  *	on SMP machines, except for its size or flags.
1389  */
1390 struct vm_struct *remove_vm_area(const void *addr)
1391 {
1392 	struct vmap_area *va;
1393 
1394 	va = find_vmap_area((unsigned long)addr);
1395 	if (va && va->flags & VM_VM_AREA) {
1396 		struct vm_struct *vm = va->private;
1397 		struct vm_struct *tmp, **p;
1398 		/*
1399 		 * remove from list and disallow access to this vm_struct
1400 		 * before unmap. (address range confliction is maintained by
1401 		 * vmap.)
1402 		 */
1403 		write_lock(&vmlist_lock);
1404 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1405 			;
1406 		*p = tmp->next;
1407 		write_unlock(&vmlist_lock);
1408 
1409 		vmap_debug_free_range(va->va_start, va->va_end);
1410 		free_unmap_vmap_area(va);
1411 		vm->size -= PAGE_SIZE;
1412 
1413 		return vm;
1414 	}
1415 	return NULL;
1416 }
1417 
1418 static void __vunmap(const void *addr, int deallocate_pages)
1419 {
1420 	struct vm_struct *area;
1421 
1422 	if (!addr)
1423 		return;
1424 
1425 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1426 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1427 		return;
1428 	}
1429 
1430 	area = remove_vm_area(addr);
1431 	if (unlikely(!area)) {
1432 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1433 				addr);
1434 		return;
1435 	}
1436 
1437 	debug_check_no_locks_freed(addr, area->size);
1438 	debug_check_no_obj_freed(addr, area->size);
1439 
1440 	if (deallocate_pages) {
1441 		int i;
1442 
1443 		for (i = 0; i < area->nr_pages; i++) {
1444 			struct page *page = area->pages[i];
1445 
1446 			BUG_ON(!page);
1447 			__free_page(page);
1448 		}
1449 
1450 		if (area->flags & VM_VPAGES)
1451 			vfree(area->pages);
1452 		else
1453 			kfree(area->pages);
1454 	}
1455 
1456 	kfree(area);
1457 	return;
1458 }
1459 
1460 /**
1461  *	vfree  -  release memory allocated by vmalloc()
1462  *	@addr:		memory base address
1463  *
1464  *	Free the virtually continuous memory area starting at @addr, as
1465  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1466  *	NULL, no operation is performed.
1467  *
1468  *	Must not be called in interrupt context.
1469  */
1470 void vfree(const void *addr)
1471 {
1472 	BUG_ON(in_interrupt());
1473 
1474 	kmemleak_free(addr);
1475 
1476 	__vunmap(addr, 1);
1477 }
1478 EXPORT_SYMBOL(vfree);
1479 
1480 /**
1481  *	vunmap  -  release virtual mapping obtained by vmap()
1482  *	@addr:		memory base address
1483  *
1484  *	Free the virtually contiguous memory area starting at @addr,
1485  *	which was created from the page array passed to vmap().
1486  *
1487  *	Must not be called in interrupt context.
1488  */
1489 void vunmap(const void *addr)
1490 {
1491 	BUG_ON(in_interrupt());
1492 	might_sleep();
1493 	__vunmap(addr, 0);
1494 }
1495 EXPORT_SYMBOL(vunmap);
1496 
1497 /**
1498  *	vmap  -  map an array of pages into virtually contiguous space
1499  *	@pages:		array of page pointers
1500  *	@count:		number of pages to map
1501  *	@flags:		vm_area->flags
1502  *	@prot:		page protection for the mapping
1503  *
1504  *	Maps @count pages from @pages into contiguous kernel virtual
1505  *	space.
1506  */
1507 void *vmap(struct page **pages, unsigned int count,
1508 		unsigned long flags, pgprot_t prot)
1509 {
1510 	struct vm_struct *area;
1511 
1512 	might_sleep();
1513 
1514 	if (count > totalram_pages)
1515 		return NULL;
1516 
1517 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1518 					__builtin_return_address(0));
1519 	if (!area)
1520 		return NULL;
1521 
1522 	if (map_vm_area(area, prot, &pages)) {
1523 		vunmap(area->addr);
1524 		return NULL;
1525 	}
1526 
1527 	return area->addr;
1528 }
1529 EXPORT_SYMBOL(vmap);
1530 
1531 static void *__vmalloc_node(unsigned long size, unsigned long align,
1532 			    gfp_t gfp_mask, pgprot_t prot,
1533 			    int node, void *caller);
1534 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1535 				 pgprot_t prot, int node, void *caller)
1536 {
1537 	const int order = 0;
1538 	struct page **pages;
1539 	unsigned int nr_pages, array_size, i;
1540 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1541 
1542 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1543 	array_size = (nr_pages * sizeof(struct page *));
1544 
1545 	area->nr_pages = nr_pages;
1546 	/* Please note that the recursion is strictly bounded. */
1547 	if (array_size > PAGE_SIZE) {
1548 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1549 				PAGE_KERNEL, node, caller);
1550 		area->flags |= VM_VPAGES;
1551 	} else {
1552 		pages = kmalloc_node(array_size, nested_gfp, node);
1553 	}
1554 	area->pages = pages;
1555 	area->caller = caller;
1556 	if (!area->pages) {
1557 		remove_vm_area(area->addr);
1558 		kfree(area);
1559 		return NULL;
1560 	}
1561 
1562 	for (i = 0; i < area->nr_pages; i++) {
1563 		struct page *page;
1564 		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1565 
1566 		if (node < 0)
1567 			page = alloc_page(tmp_mask);
1568 		else
1569 			page = alloc_pages_node(node, tmp_mask, order);
1570 
1571 		if (unlikely(!page)) {
1572 			/* Successfully allocated i pages, free them in __vunmap() */
1573 			area->nr_pages = i;
1574 			goto fail;
1575 		}
1576 		area->pages[i] = page;
1577 	}
1578 
1579 	if (map_vm_area(area, prot, &pages))
1580 		goto fail;
1581 	return area->addr;
1582 
1583 fail:
1584 	warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, "
1585 			  "allocated %ld of %ld bytes\n",
1586 			  (area->nr_pages*PAGE_SIZE), area->size);
1587 	vfree(area->addr);
1588 	return NULL;
1589 }
1590 
1591 /**
1592  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1593  *	@size:		allocation size
1594  *	@align:		desired alignment
1595  *	@start:		vm area range start
1596  *	@end:		vm area range end
1597  *	@gfp_mask:	flags for the page level allocator
1598  *	@prot:		protection mask for the allocated pages
1599  *	@node:		node to use for allocation or -1
1600  *	@caller:	caller's return address
1601  *
1602  *	Allocate enough pages to cover @size from the page level
1603  *	allocator with @gfp_mask flags.  Map them into contiguous
1604  *	kernel virtual space, using a pagetable protection of @prot.
1605  */
1606 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1607 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1608 			pgprot_t prot, int node, void *caller)
1609 {
1610 	struct vm_struct *area;
1611 	void *addr;
1612 	unsigned long real_size = size;
1613 
1614 	size = PAGE_ALIGN(size);
1615 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1616 		return NULL;
1617 
1618 	area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
1619 				  gfp_mask, caller);
1620 
1621 	if (!area)
1622 		return NULL;
1623 
1624 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1625 
1626 	/*
1627 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1628 	 * structures allocated in the __get_vm_area_node() function contain
1629 	 * references to the virtual address of the vmalloc'ed block.
1630 	 */
1631 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1632 
1633 	return addr;
1634 }
1635 
1636 /**
1637  *	__vmalloc_node  -  allocate virtually contiguous memory
1638  *	@size:		allocation size
1639  *	@align:		desired alignment
1640  *	@gfp_mask:	flags for the page level allocator
1641  *	@prot:		protection mask for the allocated pages
1642  *	@node:		node to use for allocation or -1
1643  *	@caller:	caller's return address
1644  *
1645  *	Allocate enough pages to cover @size from the page level
1646  *	allocator with @gfp_mask flags.  Map them into contiguous
1647  *	kernel virtual space, using a pagetable protection of @prot.
1648  */
1649 static void *__vmalloc_node(unsigned long size, unsigned long align,
1650 			    gfp_t gfp_mask, pgprot_t prot,
1651 			    int node, void *caller)
1652 {
1653 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1654 				gfp_mask, prot, node, caller);
1655 }
1656 
1657 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1658 {
1659 	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1660 				__builtin_return_address(0));
1661 }
1662 EXPORT_SYMBOL(__vmalloc);
1663 
1664 static inline void *__vmalloc_node_flags(unsigned long size,
1665 					int node, gfp_t flags)
1666 {
1667 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1668 					node, __builtin_return_address(0));
1669 }
1670 
1671 /**
1672  *	vmalloc  -  allocate virtually contiguous memory
1673  *	@size:		allocation size
1674  *	Allocate enough pages to cover @size from the page level
1675  *	allocator and map them into contiguous kernel virtual space.
1676  *
1677  *	For tight control over page level allocator and protection flags
1678  *	use __vmalloc() instead.
1679  */
1680 void *vmalloc(unsigned long size)
1681 {
1682 	return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1683 }
1684 EXPORT_SYMBOL(vmalloc);
1685 
1686 /**
1687  *	vzalloc - allocate virtually contiguous memory with zero fill
1688  *	@size:	allocation size
1689  *	Allocate enough pages to cover @size from the page level
1690  *	allocator and map them into contiguous kernel virtual space.
1691  *	The memory allocated is set to zero.
1692  *
1693  *	For tight control over page level allocator and protection flags
1694  *	use __vmalloc() instead.
1695  */
1696 void *vzalloc(unsigned long size)
1697 {
1698 	return __vmalloc_node_flags(size, -1,
1699 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1700 }
1701 EXPORT_SYMBOL(vzalloc);
1702 
1703 /**
1704  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1705  * @size: allocation size
1706  *
1707  * The resulting memory area is zeroed so it can be mapped to userspace
1708  * without leaking data.
1709  */
1710 void *vmalloc_user(unsigned long size)
1711 {
1712 	struct vm_struct *area;
1713 	void *ret;
1714 
1715 	ret = __vmalloc_node(size, SHMLBA,
1716 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1717 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1718 	if (ret) {
1719 		area = find_vm_area(ret);
1720 		area->flags |= VM_USERMAP;
1721 	}
1722 	return ret;
1723 }
1724 EXPORT_SYMBOL(vmalloc_user);
1725 
1726 /**
1727  *	vmalloc_node  -  allocate memory on a specific node
1728  *	@size:		allocation size
1729  *	@node:		numa node
1730  *
1731  *	Allocate enough pages to cover @size from the page level
1732  *	allocator and map them into contiguous kernel virtual space.
1733  *
1734  *	For tight control over page level allocator and protection flags
1735  *	use __vmalloc() instead.
1736  */
1737 void *vmalloc_node(unsigned long size, int node)
1738 {
1739 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1740 					node, __builtin_return_address(0));
1741 }
1742 EXPORT_SYMBOL(vmalloc_node);
1743 
1744 /**
1745  * vzalloc_node - allocate memory on a specific node with zero fill
1746  * @size:	allocation size
1747  * @node:	numa node
1748  *
1749  * Allocate enough pages to cover @size from the page level
1750  * allocator and map them into contiguous kernel virtual space.
1751  * The memory allocated is set to zero.
1752  *
1753  * For tight control over page level allocator and protection flags
1754  * use __vmalloc_node() instead.
1755  */
1756 void *vzalloc_node(unsigned long size, int node)
1757 {
1758 	return __vmalloc_node_flags(size, node,
1759 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1760 }
1761 EXPORT_SYMBOL(vzalloc_node);
1762 
1763 #ifndef PAGE_KERNEL_EXEC
1764 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1765 #endif
1766 
1767 /**
1768  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1769  *	@size:		allocation size
1770  *
1771  *	Kernel-internal function to allocate enough pages to cover @size
1772  *	the page level allocator and map them into contiguous and
1773  *	executable kernel virtual space.
1774  *
1775  *	For tight control over page level allocator and protection flags
1776  *	use __vmalloc() instead.
1777  */
1778 
1779 void *vmalloc_exec(unsigned long size)
1780 {
1781 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1782 			      -1, __builtin_return_address(0));
1783 }
1784 
1785 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1786 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1787 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1788 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1789 #else
1790 #define GFP_VMALLOC32 GFP_KERNEL
1791 #endif
1792 
1793 /**
1794  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1795  *	@size:		allocation size
1796  *
1797  *	Allocate enough 32bit PA addressable pages to cover @size from the
1798  *	page level allocator and map them into contiguous kernel virtual space.
1799  */
1800 void *vmalloc_32(unsigned long size)
1801 {
1802 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1803 			      -1, __builtin_return_address(0));
1804 }
1805 EXPORT_SYMBOL(vmalloc_32);
1806 
1807 /**
1808  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1809  *	@size:		allocation size
1810  *
1811  * The resulting memory area is 32bit addressable and zeroed so it can be
1812  * mapped to userspace without leaking data.
1813  */
1814 void *vmalloc_32_user(unsigned long size)
1815 {
1816 	struct vm_struct *area;
1817 	void *ret;
1818 
1819 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1820 			     -1, __builtin_return_address(0));
1821 	if (ret) {
1822 		area = find_vm_area(ret);
1823 		area->flags |= VM_USERMAP;
1824 	}
1825 	return ret;
1826 }
1827 EXPORT_SYMBOL(vmalloc_32_user);
1828 
1829 /*
1830  * small helper routine , copy contents to buf from addr.
1831  * If the page is not present, fill zero.
1832  */
1833 
1834 static int aligned_vread(char *buf, char *addr, unsigned long count)
1835 {
1836 	struct page *p;
1837 	int copied = 0;
1838 
1839 	while (count) {
1840 		unsigned long offset, length;
1841 
1842 		offset = (unsigned long)addr & ~PAGE_MASK;
1843 		length = PAGE_SIZE - offset;
1844 		if (length > count)
1845 			length = count;
1846 		p = vmalloc_to_page(addr);
1847 		/*
1848 		 * To do safe access to this _mapped_ area, we need
1849 		 * lock. But adding lock here means that we need to add
1850 		 * overhead of vmalloc()/vfree() calles for this _debug_
1851 		 * interface, rarely used. Instead of that, we'll use
1852 		 * kmap() and get small overhead in this access function.
1853 		 */
1854 		if (p) {
1855 			/*
1856 			 * we can expect USER0 is not used (see vread/vwrite's
1857 			 * function description)
1858 			 */
1859 			void *map = kmap_atomic(p, KM_USER0);
1860 			memcpy(buf, map + offset, length);
1861 			kunmap_atomic(map, KM_USER0);
1862 		} else
1863 			memset(buf, 0, length);
1864 
1865 		addr += length;
1866 		buf += length;
1867 		copied += length;
1868 		count -= length;
1869 	}
1870 	return copied;
1871 }
1872 
1873 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1874 {
1875 	struct page *p;
1876 	int copied = 0;
1877 
1878 	while (count) {
1879 		unsigned long offset, length;
1880 
1881 		offset = (unsigned long)addr & ~PAGE_MASK;
1882 		length = PAGE_SIZE - offset;
1883 		if (length > count)
1884 			length = count;
1885 		p = vmalloc_to_page(addr);
1886 		/*
1887 		 * To do safe access to this _mapped_ area, we need
1888 		 * lock. But adding lock here means that we need to add
1889 		 * overhead of vmalloc()/vfree() calles for this _debug_
1890 		 * interface, rarely used. Instead of that, we'll use
1891 		 * kmap() and get small overhead in this access function.
1892 		 */
1893 		if (p) {
1894 			/*
1895 			 * we can expect USER0 is not used (see vread/vwrite's
1896 			 * function description)
1897 			 */
1898 			void *map = kmap_atomic(p, KM_USER0);
1899 			memcpy(map + offset, buf, length);
1900 			kunmap_atomic(map, KM_USER0);
1901 		}
1902 		addr += length;
1903 		buf += length;
1904 		copied += length;
1905 		count -= length;
1906 	}
1907 	return copied;
1908 }
1909 
1910 /**
1911  *	vread() -  read vmalloc area in a safe way.
1912  *	@buf:		buffer for reading data
1913  *	@addr:		vm address.
1914  *	@count:		number of bytes to be read.
1915  *
1916  *	Returns # of bytes which addr and buf should be increased.
1917  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1918  *	includes any intersect with alive vmalloc area.
1919  *
1920  *	This function checks that addr is a valid vmalloc'ed area, and
1921  *	copy data from that area to a given buffer. If the given memory range
1922  *	of [addr...addr+count) includes some valid address, data is copied to
1923  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1924  *	IOREMAP area is treated as memory hole and no copy is done.
1925  *
1926  *	If [addr...addr+count) doesn't includes any intersects with alive
1927  *	vm_struct area, returns 0.
1928  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1929  *	the caller should guarantee KM_USER0 is not used.
1930  *
1931  *	Note: In usual ops, vread() is never necessary because the caller
1932  *	should know vmalloc() area is valid and can use memcpy().
1933  *	This is for routines which have to access vmalloc area without
1934  *	any informaion, as /dev/kmem.
1935  *
1936  */
1937 
1938 long vread(char *buf, char *addr, unsigned long count)
1939 {
1940 	struct vm_struct *tmp;
1941 	char *vaddr, *buf_start = buf;
1942 	unsigned long buflen = count;
1943 	unsigned long n;
1944 
1945 	/* Don't allow overflow */
1946 	if ((unsigned long) addr + count < count)
1947 		count = -(unsigned long) addr;
1948 
1949 	read_lock(&vmlist_lock);
1950 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1951 		vaddr = (char *) tmp->addr;
1952 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1953 			continue;
1954 		while (addr < vaddr) {
1955 			if (count == 0)
1956 				goto finished;
1957 			*buf = '\0';
1958 			buf++;
1959 			addr++;
1960 			count--;
1961 		}
1962 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1963 		if (n > count)
1964 			n = count;
1965 		if (!(tmp->flags & VM_IOREMAP))
1966 			aligned_vread(buf, addr, n);
1967 		else /* IOREMAP area is treated as memory hole */
1968 			memset(buf, 0, n);
1969 		buf += n;
1970 		addr += n;
1971 		count -= n;
1972 	}
1973 finished:
1974 	read_unlock(&vmlist_lock);
1975 
1976 	if (buf == buf_start)
1977 		return 0;
1978 	/* zero-fill memory holes */
1979 	if (buf != buf_start + buflen)
1980 		memset(buf, 0, buflen - (buf - buf_start));
1981 
1982 	return buflen;
1983 }
1984 
1985 /**
1986  *	vwrite() -  write vmalloc area in a safe way.
1987  *	@buf:		buffer for source data
1988  *	@addr:		vm address.
1989  *	@count:		number of bytes to be read.
1990  *
1991  *	Returns # of bytes which addr and buf should be incresed.
1992  *	(same number to @count).
1993  *	If [addr...addr+count) doesn't includes any intersect with valid
1994  *	vmalloc area, returns 0.
1995  *
1996  *	This function checks that addr is a valid vmalloc'ed area, and
1997  *	copy data from a buffer to the given addr. If specified range of
1998  *	[addr...addr+count) includes some valid address, data is copied from
1999  *	proper area of @buf. If there are memory holes, no copy to hole.
2000  *	IOREMAP area is treated as memory hole and no copy is done.
2001  *
2002  *	If [addr...addr+count) doesn't includes any intersects with alive
2003  *	vm_struct area, returns 0.
2004  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
2005  *	the caller should guarantee KM_USER0 is not used.
2006  *
2007  *	Note: In usual ops, vwrite() is never necessary because the caller
2008  *	should know vmalloc() area is valid and can use memcpy().
2009  *	This is for routines which have to access vmalloc area without
2010  *	any informaion, as /dev/kmem.
2011  */
2012 
2013 long vwrite(char *buf, char *addr, unsigned long count)
2014 {
2015 	struct vm_struct *tmp;
2016 	char *vaddr;
2017 	unsigned long n, buflen;
2018 	int copied = 0;
2019 
2020 	/* Don't allow overflow */
2021 	if ((unsigned long) addr + count < count)
2022 		count = -(unsigned long) addr;
2023 	buflen = count;
2024 
2025 	read_lock(&vmlist_lock);
2026 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2027 		vaddr = (char *) tmp->addr;
2028 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
2029 			continue;
2030 		while (addr < vaddr) {
2031 			if (count == 0)
2032 				goto finished;
2033 			buf++;
2034 			addr++;
2035 			count--;
2036 		}
2037 		n = vaddr + tmp->size - PAGE_SIZE - addr;
2038 		if (n > count)
2039 			n = count;
2040 		if (!(tmp->flags & VM_IOREMAP)) {
2041 			aligned_vwrite(buf, addr, n);
2042 			copied++;
2043 		}
2044 		buf += n;
2045 		addr += n;
2046 		count -= n;
2047 	}
2048 finished:
2049 	read_unlock(&vmlist_lock);
2050 	if (!copied)
2051 		return 0;
2052 	return buflen;
2053 }
2054 
2055 /**
2056  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2057  *	@vma:		vma to cover (map full range of vma)
2058  *	@addr:		vmalloc memory
2059  *	@pgoff:		number of pages into addr before first page to map
2060  *
2061  *	Returns:	0 for success, -Exxx on failure
2062  *
2063  *	This function checks that addr is a valid vmalloc'ed area, and
2064  *	that it is big enough to cover the vma. Will return failure if
2065  *	that criteria isn't met.
2066  *
2067  *	Similar to remap_pfn_range() (see mm/memory.c)
2068  */
2069 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2070 						unsigned long pgoff)
2071 {
2072 	struct vm_struct *area;
2073 	unsigned long uaddr = vma->vm_start;
2074 	unsigned long usize = vma->vm_end - vma->vm_start;
2075 
2076 	if ((PAGE_SIZE-1) & (unsigned long)addr)
2077 		return -EINVAL;
2078 
2079 	area = find_vm_area(addr);
2080 	if (!area)
2081 		return -EINVAL;
2082 
2083 	if (!(area->flags & VM_USERMAP))
2084 		return -EINVAL;
2085 
2086 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2087 		return -EINVAL;
2088 
2089 	addr += pgoff << PAGE_SHIFT;
2090 	do {
2091 		struct page *page = vmalloc_to_page(addr);
2092 		int ret;
2093 
2094 		ret = vm_insert_page(vma, uaddr, page);
2095 		if (ret)
2096 			return ret;
2097 
2098 		uaddr += PAGE_SIZE;
2099 		addr += PAGE_SIZE;
2100 		usize -= PAGE_SIZE;
2101 	} while (usize > 0);
2102 
2103 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
2104 	vma->vm_flags |= VM_RESERVED;
2105 
2106 	return 0;
2107 }
2108 EXPORT_SYMBOL(remap_vmalloc_range);
2109 
2110 /*
2111  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2112  * have one.
2113  */
2114 void  __attribute__((weak)) vmalloc_sync_all(void)
2115 {
2116 }
2117 
2118 
2119 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2120 {
2121 	/* apply_to_page_range() does all the hard work. */
2122 	return 0;
2123 }
2124 
2125 /**
2126  *	alloc_vm_area - allocate a range of kernel address space
2127  *	@size:		size of the area
2128  *
2129  *	Returns:	NULL on failure, vm_struct on success
2130  *
2131  *	This function reserves a range of kernel address space, and
2132  *	allocates pagetables to map that range.  No actual mappings
2133  *	are created.  If the kernel address space is not shared
2134  *	between processes, it syncs the pagetable across all
2135  *	processes.
2136  */
2137 struct vm_struct *alloc_vm_area(size_t size)
2138 {
2139 	struct vm_struct *area;
2140 
2141 	area = get_vm_area_caller(size, VM_IOREMAP,
2142 				__builtin_return_address(0));
2143 	if (area == NULL)
2144 		return NULL;
2145 
2146 	/*
2147 	 * This ensures that page tables are constructed for this region
2148 	 * of kernel virtual address space and mapped into init_mm.
2149 	 */
2150 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2151 				area->size, f, NULL)) {
2152 		free_vm_area(area);
2153 		return NULL;
2154 	}
2155 
2156 	return area;
2157 }
2158 EXPORT_SYMBOL_GPL(alloc_vm_area);
2159 
2160 void free_vm_area(struct vm_struct *area)
2161 {
2162 	struct vm_struct *ret;
2163 	ret = remove_vm_area(area->addr);
2164 	BUG_ON(ret != area);
2165 	kfree(area);
2166 }
2167 EXPORT_SYMBOL_GPL(free_vm_area);
2168 
2169 #ifdef CONFIG_SMP
2170 static struct vmap_area *node_to_va(struct rb_node *n)
2171 {
2172 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2173 }
2174 
2175 /**
2176  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2177  * @end: target address
2178  * @pnext: out arg for the next vmap_area
2179  * @pprev: out arg for the previous vmap_area
2180  *
2181  * Returns: %true if either or both of next and prev are found,
2182  *	    %false if no vmap_area exists
2183  *
2184  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2185  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2186  */
2187 static bool pvm_find_next_prev(unsigned long end,
2188 			       struct vmap_area **pnext,
2189 			       struct vmap_area **pprev)
2190 {
2191 	struct rb_node *n = vmap_area_root.rb_node;
2192 	struct vmap_area *va = NULL;
2193 
2194 	while (n) {
2195 		va = rb_entry(n, struct vmap_area, rb_node);
2196 		if (end < va->va_end)
2197 			n = n->rb_left;
2198 		else if (end > va->va_end)
2199 			n = n->rb_right;
2200 		else
2201 			break;
2202 	}
2203 
2204 	if (!va)
2205 		return false;
2206 
2207 	if (va->va_end > end) {
2208 		*pnext = va;
2209 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2210 	} else {
2211 		*pprev = va;
2212 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2213 	}
2214 	return true;
2215 }
2216 
2217 /**
2218  * pvm_determine_end - find the highest aligned address between two vmap_areas
2219  * @pnext: in/out arg for the next vmap_area
2220  * @pprev: in/out arg for the previous vmap_area
2221  * @align: alignment
2222  *
2223  * Returns: determined end address
2224  *
2225  * Find the highest aligned address between *@pnext and *@pprev below
2226  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2227  * down address is between the end addresses of the two vmap_areas.
2228  *
2229  * Please note that the address returned by this function may fall
2230  * inside *@pnext vmap_area.  The caller is responsible for checking
2231  * that.
2232  */
2233 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2234 				       struct vmap_area **pprev,
2235 				       unsigned long align)
2236 {
2237 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2238 	unsigned long addr;
2239 
2240 	if (*pnext)
2241 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2242 	else
2243 		addr = vmalloc_end;
2244 
2245 	while (*pprev && (*pprev)->va_end > addr) {
2246 		*pnext = *pprev;
2247 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2248 	}
2249 
2250 	return addr;
2251 }
2252 
2253 /**
2254  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2255  * @offsets: array containing offset of each area
2256  * @sizes: array containing size of each area
2257  * @nr_vms: the number of areas to allocate
2258  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2259  *
2260  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2261  *	    vm_structs on success, %NULL on failure
2262  *
2263  * Percpu allocator wants to use congruent vm areas so that it can
2264  * maintain the offsets among percpu areas.  This function allocates
2265  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2266  * be scattered pretty far, distance between two areas easily going up
2267  * to gigabytes.  To avoid interacting with regular vmallocs, these
2268  * areas are allocated from top.
2269  *
2270  * Despite its complicated look, this allocator is rather simple.  It
2271  * does everything top-down and scans areas from the end looking for
2272  * matching slot.  While scanning, if any of the areas overlaps with
2273  * existing vmap_area, the base address is pulled down to fit the
2274  * area.  Scanning is repeated till all the areas fit and then all
2275  * necessary data structres are inserted and the result is returned.
2276  */
2277 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2278 				     const size_t *sizes, int nr_vms,
2279 				     size_t align)
2280 {
2281 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2282 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2283 	struct vmap_area **vas, *prev, *next;
2284 	struct vm_struct **vms;
2285 	int area, area2, last_area, term_area;
2286 	unsigned long base, start, end, last_end;
2287 	bool purged = false;
2288 
2289 	/* verify parameters and allocate data structures */
2290 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2291 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2292 		start = offsets[area];
2293 		end = start + sizes[area];
2294 
2295 		/* is everything aligned properly? */
2296 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2297 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2298 
2299 		/* detect the area with the highest address */
2300 		if (start > offsets[last_area])
2301 			last_area = area;
2302 
2303 		for (area2 = 0; area2 < nr_vms; area2++) {
2304 			unsigned long start2 = offsets[area2];
2305 			unsigned long end2 = start2 + sizes[area2];
2306 
2307 			if (area2 == area)
2308 				continue;
2309 
2310 			BUG_ON(start2 >= start && start2 < end);
2311 			BUG_ON(end2 <= end && end2 > start);
2312 		}
2313 	}
2314 	last_end = offsets[last_area] + sizes[last_area];
2315 
2316 	if (vmalloc_end - vmalloc_start < last_end) {
2317 		WARN_ON(true);
2318 		return NULL;
2319 	}
2320 
2321 	vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2322 	vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2323 	if (!vas || !vms)
2324 		goto err_free;
2325 
2326 	for (area = 0; area < nr_vms; area++) {
2327 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2328 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2329 		if (!vas[area] || !vms[area])
2330 			goto err_free;
2331 	}
2332 retry:
2333 	spin_lock(&vmap_area_lock);
2334 
2335 	/* start scanning - we scan from the top, begin with the last area */
2336 	area = term_area = last_area;
2337 	start = offsets[area];
2338 	end = start + sizes[area];
2339 
2340 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2341 		base = vmalloc_end - last_end;
2342 		goto found;
2343 	}
2344 	base = pvm_determine_end(&next, &prev, align) - end;
2345 
2346 	while (true) {
2347 		BUG_ON(next && next->va_end <= base + end);
2348 		BUG_ON(prev && prev->va_end > base + end);
2349 
2350 		/*
2351 		 * base might have underflowed, add last_end before
2352 		 * comparing.
2353 		 */
2354 		if (base + last_end < vmalloc_start + last_end) {
2355 			spin_unlock(&vmap_area_lock);
2356 			if (!purged) {
2357 				purge_vmap_area_lazy();
2358 				purged = true;
2359 				goto retry;
2360 			}
2361 			goto err_free;
2362 		}
2363 
2364 		/*
2365 		 * If next overlaps, move base downwards so that it's
2366 		 * right below next and then recheck.
2367 		 */
2368 		if (next && next->va_start < base + end) {
2369 			base = pvm_determine_end(&next, &prev, align) - end;
2370 			term_area = area;
2371 			continue;
2372 		}
2373 
2374 		/*
2375 		 * If prev overlaps, shift down next and prev and move
2376 		 * base so that it's right below new next and then
2377 		 * recheck.
2378 		 */
2379 		if (prev && prev->va_end > base + start)  {
2380 			next = prev;
2381 			prev = node_to_va(rb_prev(&next->rb_node));
2382 			base = pvm_determine_end(&next, &prev, align) - end;
2383 			term_area = area;
2384 			continue;
2385 		}
2386 
2387 		/*
2388 		 * This area fits, move on to the previous one.  If
2389 		 * the previous one is the terminal one, we're done.
2390 		 */
2391 		area = (area + nr_vms - 1) % nr_vms;
2392 		if (area == term_area)
2393 			break;
2394 		start = offsets[area];
2395 		end = start + sizes[area];
2396 		pvm_find_next_prev(base + end, &next, &prev);
2397 	}
2398 found:
2399 	/* we've found a fitting base, insert all va's */
2400 	for (area = 0; area < nr_vms; area++) {
2401 		struct vmap_area *va = vas[area];
2402 
2403 		va->va_start = base + offsets[area];
2404 		va->va_end = va->va_start + sizes[area];
2405 		__insert_vmap_area(va);
2406 	}
2407 
2408 	vmap_area_pcpu_hole = base + offsets[last_area];
2409 
2410 	spin_unlock(&vmap_area_lock);
2411 
2412 	/* insert all vm's */
2413 	for (area = 0; area < nr_vms; area++)
2414 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2415 				  pcpu_get_vm_areas);
2416 
2417 	kfree(vas);
2418 	return vms;
2419 
2420 err_free:
2421 	for (area = 0; area < nr_vms; area++) {
2422 		if (vas)
2423 			kfree(vas[area]);
2424 		if (vms)
2425 			kfree(vms[area]);
2426 	}
2427 	kfree(vas);
2428 	kfree(vms);
2429 	return NULL;
2430 }
2431 
2432 /**
2433  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2434  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2435  * @nr_vms: the number of allocated areas
2436  *
2437  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2438  */
2439 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2440 {
2441 	int i;
2442 
2443 	for (i = 0; i < nr_vms; i++)
2444 		free_vm_area(vms[i]);
2445 	kfree(vms);
2446 }
2447 #endif	/* CONFIG_SMP */
2448 
2449 #ifdef CONFIG_PROC_FS
2450 static void *s_start(struct seq_file *m, loff_t *pos)
2451 	__acquires(&vmlist_lock)
2452 {
2453 	loff_t n = *pos;
2454 	struct vm_struct *v;
2455 
2456 	read_lock(&vmlist_lock);
2457 	v = vmlist;
2458 	while (n > 0 && v) {
2459 		n--;
2460 		v = v->next;
2461 	}
2462 	if (!n)
2463 		return v;
2464 
2465 	return NULL;
2466 
2467 }
2468 
2469 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2470 {
2471 	struct vm_struct *v = p;
2472 
2473 	++*pos;
2474 	return v->next;
2475 }
2476 
2477 static void s_stop(struct seq_file *m, void *p)
2478 	__releases(&vmlist_lock)
2479 {
2480 	read_unlock(&vmlist_lock);
2481 }
2482 
2483 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2484 {
2485 	if (NUMA_BUILD) {
2486 		unsigned int nr, *counters = m->private;
2487 
2488 		if (!counters)
2489 			return;
2490 
2491 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2492 
2493 		for (nr = 0; nr < v->nr_pages; nr++)
2494 			counters[page_to_nid(v->pages[nr])]++;
2495 
2496 		for_each_node_state(nr, N_HIGH_MEMORY)
2497 			if (counters[nr])
2498 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2499 	}
2500 }
2501 
2502 static int s_show(struct seq_file *m, void *p)
2503 {
2504 	struct vm_struct *v = p;
2505 
2506 	seq_printf(m, "0x%p-0x%p %7ld",
2507 		v->addr, v->addr + v->size, v->size);
2508 
2509 	if (v->caller)
2510 		seq_printf(m, " %pS", v->caller);
2511 
2512 	if (v->nr_pages)
2513 		seq_printf(m, " pages=%d", v->nr_pages);
2514 
2515 	if (v->phys_addr)
2516 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2517 
2518 	if (v->flags & VM_IOREMAP)
2519 		seq_printf(m, " ioremap");
2520 
2521 	if (v->flags & VM_ALLOC)
2522 		seq_printf(m, " vmalloc");
2523 
2524 	if (v->flags & VM_MAP)
2525 		seq_printf(m, " vmap");
2526 
2527 	if (v->flags & VM_USERMAP)
2528 		seq_printf(m, " user");
2529 
2530 	if (v->flags & VM_VPAGES)
2531 		seq_printf(m, " vpages");
2532 
2533 	show_numa_info(m, v);
2534 	seq_putc(m, '\n');
2535 	return 0;
2536 }
2537 
2538 static const struct seq_operations vmalloc_op = {
2539 	.start = s_start,
2540 	.next = s_next,
2541 	.stop = s_stop,
2542 	.show = s_show,
2543 };
2544 
2545 static int vmalloc_open(struct inode *inode, struct file *file)
2546 {
2547 	unsigned int *ptr = NULL;
2548 	int ret;
2549 
2550 	if (NUMA_BUILD) {
2551 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2552 		if (ptr == NULL)
2553 			return -ENOMEM;
2554 	}
2555 	ret = seq_open(file, &vmalloc_op);
2556 	if (!ret) {
2557 		struct seq_file *m = file->private_data;
2558 		m->private = ptr;
2559 	} else
2560 		kfree(ptr);
2561 	return ret;
2562 }
2563 
2564 static const struct file_operations proc_vmalloc_operations = {
2565 	.open		= vmalloc_open,
2566 	.read		= seq_read,
2567 	.llseek		= seq_lseek,
2568 	.release	= seq_release_private,
2569 };
2570 
2571 static int __init proc_vmalloc_init(void)
2572 {
2573 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2574 	return 0;
2575 }
2576 module_init(proc_vmalloc_init);
2577 #endif
2578 
2579