1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmalloc.c 4 * 5 * Copyright (C) 1993 Linus Torvalds 6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 9 * Numa awareness, Christoph Lameter, SGI, June 2005 10 */ 11 12 #include <linux/vmalloc.h> 13 #include <linux/mm.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/sched/signal.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/interrupt.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/set_memory.h> 23 #include <linux/debugobjects.h> 24 #include <linux/kallsyms.h> 25 #include <linux/list.h> 26 #include <linux/notifier.h> 27 #include <linux/rbtree.h> 28 #include <linux/radix-tree.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/llist.h> 35 #include <linux/bitops.h> 36 #include <linux/rbtree_augmented.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/tlbflush.h> 40 #include <asm/shmparam.h> 41 42 #include "internal.h" 43 44 struct vfree_deferred { 45 struct llist_head list; 46 struct work_struct wq; 47 }; 48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 49 50 static void __vunmap(const void *, int); 51 52 static void free_work(struct work_struct *w) 53 { 54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 55 struct llist_node *t, *llnode; 56 57 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 58 __vunmap((void *)llnode, 1); 59 } 60 61 /*** Page table manipulation functions ***/ 62 63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 64 { 65 pte_t *pte; 66 67 pte = pte_offset_kernel(pmd, addr); 68 do { 69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 70 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 71 } while (pte++, addr += PAGE_SIZE, addr != end); 72 } 73 74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 75 { 76 pmd_t *pmd; 77 unsigned long next; 78 79 pmd = pmd_offset(pud, addr); 80 do { 81 next = pmd_addr_end(addr, end); 82 if (pmd_clear_huge(pmd)) 83 continue; 84 if (pmd_none_or_clear_bad(pmd)) 85 continue; 86 vunmap_pte_range(pmd, addr, next); 87 } while (pmd++, addr = next, addr != end); 88 } 89 90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 91 { 92 pud_t *pud; 93 unsigned long next; 94 95 pud = pud_offset(p4d, addr); 96 do { 97 next = pud_addr_end(addr, end); 98 if (pud_clear_huge(pud)) 99 continue; 100 if (pud_none_or_clear_bad(pud)) 101 continue; 102 vunmap_pmd_range(pud, addr, next); 103 } while (pud++, addr = next, addr != end); 104 } 105 106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 107 { 108 p4d_t *p4d; 109 unsigned long next; 110 111 p4d = p4d_offset(pgd, addr); 112 do { 113 next = p4d_addr_end(addr, end); 114 if (p4d_clear_huge(p4d)) 115 continue; 116 if (p4d_none_or_clear_bad(p4d)) 117 continue; 118 vunmap_pud_range(p4d, addr, next); 119 } while (p4d++, addr = next, addr != end); 120 } 121 122 static void vunmap_page_range(unsigned long addr, unsigned long end) 123 { 124 pgd_t *pgd; 125 unsigned long next; 126 127 BUG_ON(addr >= end); 128 pgd = pgd_offset_k(addr); 129 do { 130 next = pgd_addr_end(addr, end); 131 if (pgd_none_or_clear_bad(pgd)) 132 continue; 133 vunmap_p4d_range(pgd, addr, next); 134 } while (pgd++, addr = next, addr != end); 135 } 136 137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 139 { 140 pte_t *pte; 141 142 /* 143 * nr is a running index into the array which helps higher level 144 * callers keep track of where we're up to. 145 */ 146 147 pte = pte_alloc_kernel(pmd, addr); 148 if (!pte) 149 return -ENOMEM; 150 do { 151 struct page *page = pages[*nr]; 152 153 if (WARN_ON(!pte_none(*pte))) 154 return -EBUSY; 155 if (WARN_ON(!page)) 156 return -ENOMEM; 157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 158 (*nr)++; 159 } while (pte++, addr += PAGE_SIZE, addr != end); 160 return 0; 161 } 162 163 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 164 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 165 { 166 pmd_t *pmd; 167 unsigned long next; 168 169 pmd = pmd_alloc(&init_mm, pud, addr); 170 if (!pmd) 171 return -ENOMEM; 172 do { 173 next = pmd_addr_end(addr, end); 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 175 return -ENOMEM; 176 } while (pmd++, addr = next, addr != end); 177 return 0; 178 } 179 180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 182 { 183 pud_t *pud; 184 unsigned long next; 185 186 pud = pud_alloc(&init_mm, p4d, addr); 187 if (!pud) 188 return -ENOMEM; 189 do { 190 next = pud_addr_end(addr, end); 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 192 return -ENOMEM; 193 } while (pud++, addr = next, addr != end); 194 return 0; 195 } 196 197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 198 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 199 { 200 p4d_t *p4d; 201 unsigned long next; 202 203 p4d = p4d_alloc(&init_mm, pgd, addr); 204 if (!p4d) 205 return -ENOMEM; 206 do { 207 next = p4d_addr_end(addr, end); 208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 209 return -ENOMEM; 210 } while (p4d++, addr = next, addr != end); 211 return 0; 212 } 213 214 /* 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 216 * will have pfns corresponding to the "pages" array. 217 * 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 219 */ 220 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 221 pgprot_t prot, struct page **pages) 222 { 223 pgd_t *pgd; 224 unsigned long next; 225 unsigned long addr = start; 226 int err = 0; 227 int nr = 0; 228 229 BUG_ON(addr >= end); 230 pgd = pgd_offset_k(addr); 231 do { 232 next = pgd_addr_end(addr, end); 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 234 if (err) 235 return err; 236 } while (pgd++, addr = next, addr != end); 237 238 return nr; 239 } 240 241 static int vmap_page_range(unsigned long start, unsigned long end, 242 pgprot_t prot, struct page **pages) 243 { 244 int ret; 245 246 ret = vmap_page_range_noflush(start, end, prot, pages); 247 flush_cache_vmap(start, end); 248 return ret; 249 } 250 251 int is_vmalloc_or_module_addr(const void *x) 252 { 253 /* 254 * ARM, x86-64 and sparc64 put modules in a special place, 255 * and fall back on vmalloc() if that fails. Others 256 * just put it in the vmalloc space. 257 */ 258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 259 unsigned long addr = (unsigned long)x; 260 if (addr >= MODULES_VADDR && addr < MODULES_END) 261 return 1; 262 #endif 263 return is_vmalloc_addr(x); 264 } 265 266 /* 267 * Walk a vmap address to the struct page it maps. 268 */ 269 struct page *vmalloc_to_page(const void *vmalloc_addr) 270 { 271 unsigned long addr = (unsigned long) vmalloc_addr; 272 struct page *page = NULL; 273 pgd_t *pgd = pgd_offset_k(addr); 274 p4d_t *p4d; 275 pud_t *pud; 276 pmd_t *pmd; 277 pte_t *ptep, pte; 278 279 /* 280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 281 * architectures that do not vmalloc module space 282 */ 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 284 285 if (pgd_none(*pgd)) 286 return NULL; 287 p4d = p4d_offset(pgd, addr); 288 if (p4d_none(*p4d)) 289 return NULL; 290 pud = pud_offset(p4d, addr); 291 292 /* 293 * Don't dereference bad PUD or PMD (below) entries. This will also 294 * identify huge mappings, which we may encounter on architectures 295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 296 * identified as vmalloc addresses by is_vmalloc_addr(), but are 297 * not [unambiguously] associated with a struct page, so there is 298 * no correct value to return for them. 299 */ 300 WARN_ON_ONCE(pud_bad(*pud)); 301 if (pud_none(*pud) || pud_bad(*pud)) 302 return NULL; 303 pmd = pmd_offset(pud, addr); 304 WARN_ON_ONCE(pmd_bad(*pmd)); 305 if (pmd_none(*pmd) || pmd_bad(*pmd)) 306 return NULL; 307 308 ptep = pte_offset_map(pmd, addr); 309 pte = *ptep; 310 if (pte_present(pte)) 311 page = pte_page(pte); 312 pte_unmap(ptep); 313 return page; 314 } 315 EXPORT_SYMBOL(vmalloc_to_page); 316 317 /* 318 * Map a vmalloc()-space virtual address to the physical page frame number. 319 */ 320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 321 { 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 323 } 324 EXPORT_SYMBOL(vmalloc_to_pfn); 325 326 327 /*** Global kva allocator ***/ 328 329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 331 332 #define VM_LAZY_FREE 0x02 333 #define VM_VM_AREA 0x04 334 335 static DEFINE_SPINLOCK(vmap_area_lock); 336 /* Export for kexec only */ 337 LIST_HEAD(vmap_area_list); 338 static LLIST_HEAD(vmap_purge_list); 339 static struct rb_root vmap_area_root = RB_ROOT; 340 static bool vmap_initialized __read_mostly; 341 342 /* 343 * This kmem_cache is used for vmap_area objects. Instead of 344 * allocating from slab we reuse an object from this cache to 345 * make things faster. Especially in "no edge" splitting of 346 * free block. 347 */ 348 static struct kmem_cache *vmap_area_cachep; 349 350 /* 351 * This linked list is used in pair with free_vmap_area_root. 352 * It gives O(1) access to prev/next to perform fast coalescing. 353 */ 354 static LIST_HEAD(free_vmap_area_list); 355 356 /* 357 * This augment red-black tree represents the free vmap space. 358 * All vmap_area objects in this tree are sorted by va->va_start 359 * address. It is used for allocation and merging when a vmap 360 * object is released. 361 * 362 * Each vmap_area node contains a maximum available free block 363 * of its sub-tree, right or left. Therefore it is possible to 364 * find a lowest match of free area. 365 */ 366 static struct rb_root free_vmap_area_root = RB_ROOT; 367 368 static __always_inline unsigned long 369 va_size(struct vmap_area *va) 370 { 371 return (va->va_end - va->va_start); 372 } 373 374 static __always_inline unsigned long 375 get_subtree_max_size(struct rb_node *node) 376 { 377 struct vmap_area *va; 378 379 va = rb_entry_safe(node, struct vmap_area, rb_node); 380 return va ? va->subtree_max_size : 0; 381 } 382 383 /* 384 * Gets called when remove the node and rotate. 385 */ 386 static __always_inline unsigned long 387 compute_subtree_max_size(struct vmap_area *va) 388 { 389 return max3(va_size(va), 390 get_subtree_max_size(va->rb_node.rb_left), 391 get_subtree_max_size(va->rb_node.rb_right)); 392 } 393 394 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb, 395 struct vmap_area, rb_node, unsigned long, subtree_max_size, 396 compute_subtree_max_size) 397 398 static void purge_vmap_area_lazy(void); 399 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 400 static unsigned long lazy_max_pages(void); 401 402 static struct vmap_area *__find_vmap_area(unsigned long addr) 403 { 404 struct rb_node *n = vmap_area_root.rb_node; 405 406 while (n) { 407 struct vmap_area *va; 408 409 va = rb_entry(n, struct vmap_area, rb_node); 410 if (addr < va->va_start) 411 n = n->rb_left; 412 else if (addr >= va->va_end) 413 n = n->rb_right; 414 else 415 return va; 416 } 417 418 return NULL; 419 } 420 421 /* 422 * This function returns back addresses of parent node 423 * and its left or right link for further processing. 424 */ 425 static __always_inline struct rb_node ** 426 find_va_links(struct vmap_area *va, 427 struct rb_root *root, struct rb_node *from, 428 struct rb_node **parent) 429 { 430 struct vmap_area *tmp_va; 431 struct rb_node **link; 432 433 if (root) { 434 link = &root->rb_node; 435 if (unlikely(!*link)) { 436 *parent = NULL; 437 return link; 438 } 439 } else { 440 link = &from; 441 } 442 443 /* 444 * Go to the bottom of the tree. When we hit the last point 445 * we end up with parent rb_node and correct direction, i name 446 * it link, where the new va->rb_node will be attached to. 447 */ 448 do { 449 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 450 451 /* 452 * During the traversal we also do some sanity check. 453 * Trigger the BUG() if there are sides(left/right) 454 * or full overlaps. 455 */ 456 if (va->va_start < tmp_va->va_end && 457 va->va_end <= tmp_va->va_start) 458 link = &(*link)->rb_left; 459 else if (va->va_end > tmp_va->va_start && 460 va->va_start >= tmp_va->va_end) 461 link = &(*link)->rb_right; 462 else 463 BUG(); 464 } while (*link); 465 466 *parent = &tmp_va->rb_node; 467 return link; 468 } 469 470 static __always_inline struct list_head * 471 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 472 { 473 struct list_head *list; 474 475 if (unlikely(!parent)) 476 /* 477 * The red-black tree where we try to find VA neighbors 478 * before merging or inserting is empty, i.e. it means 479 * there is no free vmap space. Normally it does not 480 * happen but we handle this case anyway. 481 */ 482 return NULL; 483 484 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 485 return (&parent->rb_right == link ? list->next : list); 486 } 487 488 static __always_inline void 489 link_va(struct vmap_area *va, struct rb_root *root, 490 struct rb_node *parent, struct rb_node **link, struct list_head *head) 491 { 492 /* 493 * VA is still not in the list, but we can 494 * identify its future previous list_head node. 495 */ 496 if (likely(parent)) { 497 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 498 if (&parent->rb_right != link) 499 head = head->prev; 500 } 501 502 /* Insert to the rb-tree */ 503 rb_link_node(&va->rb_node, parent, link); 504 if (root == &free_vmap_area_root) { 505 /* 506 * Some explanation here. Just perform simple insertion 507 * to the tree. We do not set va->subtree_max_size to 508 * its current size before calling rb_insert_augmented(). 509 * It is because of we populate the tree from the bottom 510 * to parent levels when the node _is_ in the tree. 511 * 512 * Therefore we set subtree_max_size to zero after insertion, 513 * to let __augment_tree_propagate_from() puts everything to 514 * the correct order later on. 515 */ 516 rb_insert_augmented(&va->rb_node, 517 root, &free_vmap_area_rb_augment_cb); 518 va->subtree_max_size = 0; 519 } else { 520 rb_insert_color(&va->rb_node, root); 521 } 522 523 /* Address-sort this list */ 524 list_add(&va->list, head); 525 } 526 527 static __always_inline void 528 unlink_va(struct vmap_area *va, struct rb_root *root) 529 { 530 /* 531 * During merging a VA node can be empty, therefore 532 * not linked with the tree nor list. Just check it. 533 */ 534 if (!RB_EMPTY_NODE(&va->rb_node)) { 535 if (root == &free_vmap_area_root) 536 rb_erase_augmented(&va->rb_node, 537 root, &free_vmap_area_rb_augment_cb); 538 else 539 rb_erase(&va->rb_node, root); 540 541 list_del(&va->list); 542 RB_CLEAR_NODE(&va->rb_node); 543 } 544 } 545 546 #if DEBUG_AUGMENT_PROPAGATE_CHECK 547 static void 548 augment_tree_propagate_check(struct rb_node *n) 549 { 550 struct vmap_area *va; 551 struct rb_node *node; 552 unsigned long size; 553 bool found = false; 554 555 if (n == NULL) 556 return; 557 558 va = rb_entry(n, struct vmap_area, rb_node); 559 size = va->subtree_max_size; 560 node = n; 561 562 while (node) { 563 va = rb_entry(node, struct vmap_area, rb_node); 564 565 if (get_subtree_max_size(node->rb_left) == size) { 566 node = node->rb_left; 567 } else { 568 if (va_size(va) == size) { 569 found = true; 570 break; 571 } 572 573 node = node->rb_right; 574 } 575 } 576 577 if (!found) { 578 va = rb_entry(n, struct vmap_area, rb_node); 579 pr_emerg("tree is corrupted: %lu, %lu\n", 580 va_size(va), va->subtree_max_size); 581 } 582 583 augment_tree_propagate_check(n->rb_left); 584 augment_tree_propagate_check(n->rb_right); 585 } 586 #endif 587 588 /* 589 * This function populates subtree_max_size from bottom to upper 590 * levels starting from VA point. The propagation must be done 591 * when VA size is modified by changing its va_start/va_end. Or 592 * in case of newly inserting of VA to the tree. 593 * 594 * It means that __augment_tree_propagate_from() must be called: 595 * - After VA has been inserted to the tree(free path); 596 * - After VA has been shrunk(allocation path); 597 * - After VA has been increased(merging path). 598 * 599 * Please note that, it does not mean that upper parent nodes 600 * and their subtree_max_size are recalculated all the time up 601 * to the root node. 602 * 603 * 4--8 604 * /\ 605 * / \ 606 * / \ 607 * 2--2 8--8 608 * 609 * For example if we modify the node 4, shrinking it to 2, then 610 * no any modification is required. If we shrink the node 2 to 1 611 * its subtree_max_size is updated only, and set to 1. If we shrink 612 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 613 * node becomes 4--6. 614 */ 615 static __always_inline void 616 augment_tree_propagate_from(struct vmap_area *va) 617 { 618 struct rb_node *node = &va->rb_node; 619 unsigned long new_va_sub_max_size; 620 621 while (node) { 622 va = rb_entry(node, struct vmap_area, rb_node); 623 new_va_sub_max_size = compute_subtree_max_size(va); 624 625 /* 626 * If the newly calculated maximum available size of the 627 * subtree is equal to the current one, then it means that 628 * the tree is propagated correctly. So we have to stop at 629 * this point to save cycles. 630 */ 631 if (va->subtree_max_size == new_va_sub_max_size) 632 break; 633 634 va->subtree_max_size = new_va_sub_max_size; 635 node = rb_parent(&va->rb_node); 636 } 637 638 #if DEBUG_AUGMENT_PROPAGATE_CHECK 639 augment_tree_propagate_check(free_vmap_area_root.rb_node); 640 #endif 641 } 642 643 static void 644 insert_vmap_area(struct vmap_area *va, 645 struct rb_root *root, struct list_head *head) 646 { 647 struct rb_node **link; 648 struct rb_node *parent; 649 650 link = find_va_links(va, root, NULL, &parent); 651 link_va(va, root, parent, link, head); 652 } 653 654 static void 655 insert_vmap_area_augment(struct vmap_area *va, 656 struct rb_node *from, struct rb_root *root, 657 struct list_head *head) 658 { 659 struct rb_node **link; 660 struct rb_node *parent; 661 662 if (from) 663 link = find_va_links(va, NULL, from, &parent); 664 else 665 link = find_va_links(va, root, NULL, &parent); 666 667 link_va(va, root, parent, link, head); 668 augment_tree_propagate_from(va); 669 } 670 671 /* 672 * Merge de-allocated chunk of VA memory with previous 673 * and next free blocks. If coalesce is not done a new 674 * free area is inserted. If VA has been merged, it is 675 * freed. 676 */ 677 static __always_inline void 678 merge_or_add_vmap_area(struct vmap_area *va, 679 struct rb_root *root, struct list_head *head) 680 { 681 struct vmap_area *sibling; 682 struct list_head *next; 683 struct rb_node **link; 684 struct rb_node *parent; 685 bool merged = false; 686 687 /* 688 * Find a place in the tree where VA potentially will be 689 * inserted, unless it is merged with its sibling/siblings. 690 */ 691 link = find_va_links(va, root, NULL, &parent); 692 693 /* 694 * Get next node of VA to check if merging can be done. 695 */ 696 next = get_va_next_sibling(parent, link); 697 if (unlikely(next == NULL)) 698 goto insert; 699 700 /* 701 * start end 702 * | | 703 * |<------VA------>|<-----Next----->| 704 * | | 705 * start end 706 */ 707 if (next != head) { 708 sibling = list_entry(next, struct vmap_area, list); 709 if (sibling->va_start == va->va_end) { 710 sibling->va_start = va->va_start; 711 712 /* Check and update the tree if needed. */ 713 augment_tree_propagate_from(sibling); 714 715 /* Remove this VA, it has been merged. */ 716 unlink_va(va, root); 717 718 /* Free vmap_area object. */ 719 kmem_cache_free(vmap_area_cachep, va); 720 721 /* Point to the new merged area. */ 722 va = sibling; 723 merged = true; 724 } 725 } 726 727 /* 728 * start end 729 * | | 730 * |<-----Prev----->|<------VA------>| 731 * | | 732 * start end 733 */ 734 if (next->prev != head) { 735 sibling = list_entry(next->prev, struct vmap_area, list); 736 if (sibling->va_end == va->va_start) { 737 sibling->va_end = va->va_end; 738 739 /* Check and update the tree if needed. */ 740 augment_tree_propagate_from(sibling); 741 742 /* Remove this VA, it has been merged. */ 743 unlink_va(va, root); 744 745 /* Free vmap_area object. */ 746 kmem_cache_free(vmap_area_cachep, va); 747 748 return; 749 } 750 } 751 752 insert: 753 if (!merged) { 754 link_va(va, root, parent, link, head); 755 augment_tree_propagate_from(va); 756 } 757 } 758 759 static __always_inline bool 760 is_within_this_va(struct vmap_area *va, unsigned long size, 761 unsigned long align, unsigned long vstart) 762 { 763 unsigned long nva_start_addr; 764 765 if (va->va_start > vstart) 766 nva_start_addr = ALIGN(va->va_start, align); 767 else 768 nva_start_addr = ALIGN(vstart, align); 769 770 /* Can be overflowed due to big size or alignment. */ 771 if (nva_start_addr + size < nva_start_addr || 772 nva_start_addr < vstart) 773 return false; 774 775 return (nva_start_addr + size <= va->va_end); 776 } 777 778 /* 779 * Find the first free block(lowest start address) in the tree, 780 * that will accomplish the request corresponding to passing 781 * parameters. 782 */ 783 static __always_inline struct vmap_area * 784 find_vmap_lowest_match(unsigned long size, 785 unsigned long align, unsigned long vstart) 786 { 787 struct vmap_area *va; 788 struct rb_node *node; 789 unsigned long length; 790 791 /* Start from the root. */ 792 node = free_vmap_area_root.rb_node; 793 794 /* Adjust the search size for alignment overhead. */ 795 length = size + align - 1; 796 797 while (node) { 798 va = rb_entry(node, struct vmap_area, rb_node); 799 800 if (get_subtree_max_size(node->rb_left) >= length && 801 vstart < va->va_start) { 802 node = node->rb_left; 803 } else { 804 if (is_within_this_va(va, size, align, vstart)) 805 return va; 806 807 /* 808 * Does not make sense to go deeper towards the right 809 * sub-tree if it does not have a free block that is 810 * equal or bigger to the requested search length. 811 */ 812 if (get_subtree_max_size(node->rb_right) >= length) { 813 node = node->rb_right; 814 continue; 815 } 816 817 /* 818 * OK. We roll back and find the first right sub-tree, 819 * that will satisfy the search criteria. It can happen 820 * only once due to "vstart" restriction. 821 */ 822 while ((node = rb_parent(node))) { 823 va = rb_entry(node, struct vmap_area, rb_node); 824 if (is_within_this_va(va, size, align, vstart)) 825 return va; 826 827 if (get_subtree_max_size(node->rb_right) >= length && 828 vstart <= va->va_start) { 829 node = node->rb_right; 830 break; 831 } 832 } 833 } 834 } 835 836 return NULL; 837 } 838 839 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 840 #include <linux/random.h> 841 842 static struct vmap_area * 843 find_vmap_lowest_linear_match(unsigned long size, 844 unsigned long align, unsigned long vstart) 845 { 846 struct vmap_area *va; 847 848 list_for_each_entry(va, &free_vmap_area_list, list) { 849 if (!is_within_this_va(va, size, align, vstart)) 850 continue; 851 852 return va; 853 } 854 855 return NULL; 856 } 857 858 static void 859 find_vmap_lowest_match_check(unsigned long size) 860 { 861 struct vmap_area *va_1, *va_2; 862 unsigned long vstart; 863 unsigned int rnd; 864 865 get_random_bytes(&rnd, sizeof(rnd)); 866 vstart = VMALLOC_START + rnd; 867 868 va_1 = find_vmap_lowest_match(size, 1, vstart); 869 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 870 871 if (va_1 != va_2) 872 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 873 va_1, va_2, vstart); 874 } 875 #endif 876 877 enum fit_type { 878 NOTHING_FIT = 0, 879 FL_FIT_TYPE = 1, /* full fit */ 880 LE_FIT_TYPE = 2, /* left edge fit */ 881 RE_FIT_TYPE = 3, /* right edge fit */ 882 NE_FIT_TYPE = 4 /* no edge fit */ 883 }; 884 885 static __always_inline enum fit_type 886 classify_va_fit_type(struct vmap_area *va, 887 unsigned long nva_start_addr, unsigned long size) 888 { 889 enum fit_type type; 890 891 /* Check if it is within VA. */ 892 if (nva_start_addr < va->va_start || 893 nva_start_addr + size > va->va_end) 894 return NOTHING_FIT; 895 896 /* Now classify. */ 897 if (va->va_start == nva_start_addr) { 898 if (va->va_end == nva_start_addr + size) 899 type = FL_FIT_TYPE; 900 else 901 type = LE_FIT_TYPE; 902 } else if (va->va_end == nva_start_addr + size) { 903 type = RE_FIT_TYPE; 904 } else { 905 type = NE_FIT_TYPE; 906 } 907 908 return type; 909 } 910 911 static __always_inline int 912 adjust_va_to_fit_type(struct vmap_area *va, 913 unsigned long nva_start_addr, unsigned long size, 914 enum fit_type type) 915 { 916 struct vmap_area *lva; 917 918 if (type == FL_FIT_TYPE) { 919 /* 920 * No need to split VA, it fully fits. 921 * 922 * | | 923 * V NVA V 924 * |---------------| 925 */ 926 unlink_va(va, &free_vmap_area_root); 927 kmem_cache_free(vmap_area_cachep, va); 928 } else if (type == LE_FIT_TYPE) { 929 /* 930 * Split left edge of fit VA. 931 * 932 * | | 933 * V NVA V R 934 * |-------|-------| 935 */ 936 va->va_start += size; 937 } else if (type == RE_FIT_TYPE) { 938 /* 939 * Split right edge of fit VA. 940 * 941 * | | 942 * L V NVA V 943 * |-------|-------| 944 */ 945 va->va_end = nva_start_addr; 946 } else if (type == NE_FIT_TYPE) { 947 /* 948 * Split no edge of fit VA. 949 * 950 * | | 951 * L V NVA V R 952 * |---|-------|---| 953 */ 954 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 955 if (unlikely(!lva)) 956 return -1; 957 958 /* 959 * Build the remainder. 960 */ 961 lva->va_start = va->va_start; 962 lva->va_end = nva_start_addr; 963 964 /* 965 * Shrink this VA to remaining size. 966 */ 967 va->va_start = nva_start_addr + size; 968 } else { 969 return -1; 970 } 971 972 if (type != FL_FIT_TYPE) { 973 augment_tree_propagate_from(va); 974 975 if (type == NE_FIT_TYPE) 976 insert_vmap_area_augment(lva, &va->rb_node, 977 &free_vmap_area_root, &free_vmap_area_list); 978 } 979 980 return 0; 981 } 982 983 /* 984 * Returns a start address of the newly allocated area, if success. 985 * Otherwise a vend is returned that indicates failure. 986 */ 987 static __always_inline unsigned long 988 __alloc_vmap_area(unsigned long size, unsigned long align, 989 unsigned long vstart, unsigned long vend, int node) 990 { 991 unsigned long nva_start_addr; 992 struct vmap_area *va; 993 enum fit_type type; 994 int ret; 995 996 va = find_vmap_lowest_match(size, align, vstart); 997 if (unlikely(!va)) 998 return vend; 999 1000 if (va->va_start > vstart) 1001 nva_start_addr = ALIGN(va->va_start, align); 1002 else 1003 nva_start_addr = ALIGN(vstart, align); 1004 1005 /* Check the "vend" restriction. */ 1006 if (nva_start_addr + size > vend) 1007 return vend; 1008 1009 /* Classify what we have found. */ 1010 type = classify_va_fit_type(va, nva_start_addr, size); 1011 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1012 return vend; 1013 1014 /* Update the free vmap_area. */ 1015 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1016 if (ret) 1017 return vend; 1018 1019 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1020 find_vmap_lowest_match_check(size); 1021 #endif 1022 1023 return nva_start_addr; 1024 } 1025 1026 /* 1027 * Allocate a region of KVA of the specified size and alignment, within the 1028 * vstart and vend. 1029 */ 1030 static struct vmap_area *alloc_vmap_area(unsigned long size, 1031 unsigned long align, 1032 unsigned long vstart, unsigned long vend, 1033 int node, gfp_t gfp_mask) 1034 { 1035 struct vmap_area *va; 1036 unsigned long addr; 1037 int purged = 0; 1038 1039 BUG_ON(!size); 1040 BUG_ON(offset_in_page(size)); 1041 BUG_ON(!is_power_of_2(align)); 1042 1043 if (unlikely(!vmap_initialized)) 1044 return ERR_PTR(-EBUSY); 1045 1046 might_sleep(); 1047 1048 va = kmem_cache_alloc_node(vmap_area_cachep, 1049 gfp_mask & GFP_RECLAIM_MASK, node); 1050 if (unlikely(!va)) 1051 return ERR_PTR(-ENOMEM); 1052 1053 /* 1054 * Only scan the relevant parts containing pointers to other objects 1055 * to avoid false negatives. 1056 */ 1057 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 1058 1059 retry: 1060 spin_lock(&vmap_area_lock); 1061 1062 /* 1063 * If an allocation fails, the "vend" address is 1064 * returned. Therefore trigger the overflow path. 1065 */ 1066 addr = __alloc_vmap_area(size, align, vstart, vend, node); 1067 if (unlikely(addr == vend)) 1068 goto overflow; 1069 1070 va->va_start = addr; 1071 va->va_end = addr + size; 1072 va->flags = 0; 1073 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1074 1075 spin_unlock(&vmap_area_lock); 1076 1077 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1078 BUG_ON(va->va_start < vstart); 1079 BUG_ON(va->va_end > vend); 1080 1081 return va; 1082 1083 overflow: 1084 spin_unlock(&vmap_area_lock); 1085 if (!purged) { 1086 purge_vmap_area_lazy(); 1087 purged = 1; 1088 goto retry; 1089 } 1090 1091 if (gfpflags_allow_blocking(gfp_mask)) { 1092 unsigned long freed = 0; 1093 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1094 if (freed > 0) { 1095 purged = 0; 1096 goto retry; 1097 } 1098 } 1099 1100 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1101 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1102 size); 1103 1104 kmem_cache_free(vmap_area_cachep, va); 1105 return ERR_PTR(-EBUSY); 1106 } 1107 1108 int register_vmap_purge_notifier(struct notifier_block *nb) 1109 { 1110 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1111 } 1112 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1113 1114 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1115 { 1116 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1117 } 1118 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1119 1120 static void __free_vmap_area(struct vmap_area *va) 1121 { 1122 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 1123 1124 /* 1125 * Remove from the busy tree/list. 1126 */ 1127 unlink_va(va, &vmap_area_root); 1128 1129 /* 1130 * Merge VA with its neighbors, otherwise just add it. 1131 */ 1132 merge_or_add_vmap_area(va, 1133 &free_vmap_area_root, &free_vmap_area_list); 1134 } 1135 1136 /* 1137 * Free a region of KVA allocated by alloc_vmap_area 1138 */ 1139 static void free_vmap_area(struct vmap_area *va) 1140 { 1141 spin_lock(&vmap_area_lock); 1142 __free_vmap_area(va); 1143 spin_unlock(&vmap_area_lock); 1144 } 1145 1146 /* 1147 * Clear the pagetable entries of a given vmap_area 1148 */ 1149 static void unmap_vmap_area(struct vmap_area *va) 1150 { 1151 vunmap_page_range(va->va_start, va->va_end); 1152 } 1153 1154 /* 1155 * lazy_max_pages is the maximum amount of virtual address space we gather up 1156 * before attempting to purge with a TLB flush. 1157 * 1158 * There is a tradeoff here: a larger number will cover more kernel page tables 1159 * and take slightly longer to purge, but it will linearly reduce the number of 1160 * global TLB flushes that must be performed. It would seem natural to scale 1161 * this number up linearly with the number of CPUs (because vmapping activity 1162 * could also scale linearly with the number of CPUs), however it is likely 1163 * that in practice, workloads might be constrained in other ways that mean 1164 * vmap activity will not scale linearly with CPUs. Also, I want to be 1165 * conservative and not introduce a big latency on huge systems, so go with 1166 * a less aggressive log scale. It will still be an improvement over the old 1167 * code, and it will be simple to change the scale factor if we find that it 1168 * becomes a problem on bigger systems. 1169 */ 1170 static unsigned long lazy_max_pages(void) 1171 { 1172 unsigned int log; 1173 1174 log = fls(num_online_cpus()); 1175 1176 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1177 } 1178 1179 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1180 1181 /* 1182 * Serialize vmap purging. There is no actual criticial section protected 1183 * by this look, but we want to avoid concurrent calls for performance 1184 * reasons and to make the pcpu_get_vm_areas more deterministic. 1185 */ 1186 static DEFINE_MUTEX(vmap_purge_lock); 1187 1188 /* for per-CPU blocks */ 1189 static void purge_fragmented_blocks_allcpus(void); 1190 1191 /* 1192 * called before a call to iounmap() if the caller wants vm_area_struct's 1193 * immediately freed. 1194 */ 1195 void set_iounmap_nonlazy(void) 1196 { 1197 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1198 } 1199 1200 /* 1201 * Purges all lazily-freed vmap areas. 1202 */ 1203 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1204 { 1205 unsigned long resched_threshold; 1206 struct llist_node *valist; 1207 struct vmap_area *va; 1208 struct vmap_area *n_va; 1209 1210 lockdep_assert_held(&vmap_purge_lock); 1211 1212 valist = llist_del_all(&vmap_purge_list); 1213 if (unlikely(valist == NULL)) 1214 return false; 1215 1216 /* 1217 * TODO: to calculate a flush range without looping. 1218 * The list can be up to lazy_max_pages() elements. 1219 */ 1220 llist_for_each_entry(va, valist, purge_list) { 1221 if (va->va_start < start) 1222 start = va->va_start; 1223 if (va->va_end > end) 1224 end = va->va_end; 1225 } 1226 1227 flush_tlb_kernel_range(start, end); 1228 resched_threshold = lazy_max_pages() << 1; 1229 1230 spin_lock(&vmap_area_lock); 1231 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 1232 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1233 1234 __free_vmap_area(va); 1235 atomic_long_sub(nr, &vmap_lazy_nr); 1236 1237 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1238 cond_resched_lock(&vmap_area_lock); 1239 } 1240 spin_unlock(&vmap_area_lock); 1241 return true; 1242 } 1243 1244 /* 1245 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1246 * is already purging. 1247 */ 1248 static void try_purge_vmap_area_lazy(void) 1249 { 1250 if (mutex_trylock(&vmap_purge_lock)) { 1251 __purge_vmap_area_lazy(ULONG_MAX, 0); 1252 mutex_unlock(&vmap_purge_lock); 1253 } 1254 } 1255 1256 /* 1257 * Kick off a purge of the outstanding lazy areas. 1258 */ 1259 static void purge_vmap_area_lazy(void) 1260 { 1261 mutex_lock(&vmap_purge_lock); 1262 purge_fragmented_blocks_allcpus(); 1263 __purge_vmap_area_lazy(ULONG_MAX, 0); 1264 mutex_unlock(&vmap_purge_lock); 1265 } 1266 1267 /* 1268 * Free a vmap area, caller ensuring that the area has been unmapped 1269 * and flush_cache_vunmap had been called for the correct range 1270 * previously. 1271 */ 1272 static void free_vmap_area_noflush(struct vmap_area *va) 1273 { 1274 unsigned long nr_lazy; 1275 1276 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1277 PAGE_SHIFT, &vmap_lazy_nr); 1278 1279 /* After this point, we may free va at any time */ 1280 llist_add(&va->purge_list, &vmap_purge_list); 1281 1282 if (unlikely(nr_lazy > lazy_max_pages())) 1283 try_purge_vmap_area_lazy(); 1284 } 1285 1286 /* 1287 * Free and unmap a vmap area 1288 */ 1289 static void free_unmap_vmap_area(struct vmap_area *va) 1290 { 1291 flush_cache_vunmap(va->va_start, va->va_end); 1292 unmap_vmap_area(va); 1293 if (debug_pagealloc_enabled()) 1294 flush_tlb_kernel_range(va->va_start, va->va_end); 1295 1296 free_vmap_area_noflush(va); 1297 } 1298 1299 static struct vmap_area *find_vmap_area(unsigned long addr) 1300 { 1301 struct vmap_area *va; 1302 1303 spin_lock(&vmap_area_lock); 1304 va = __find_vmap_area(addr); 1305 spin_unlock(&vmap_area_lock); 1306 1307 return va; 1308 } 1309 1310 /*** Per cpu kva allocator ***/ 1311 1312 /* 1313 * vmap space is limited especially on 32 bit architectures. Ensure there is 1314 * room for at least 16 percpu vmap blocks per CPU. 1315 */ 1316 /* 1317 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1318 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1319 * instead (we just need a rough idea) 1320 */ 1321 #if BITS_PER_LONG == 32 1322 #define VMALLOC_SPACE (128UL*1024*1024) 1323 #else 1324 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1325 #endif 1326 1327 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1328 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1329 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1330 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1331 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1332 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1333 #define VMAP_BBMAP_BITS \ 1334 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1335 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1336 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1337 1338 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1339 1340 struct vmap_block_queue { 1341 spinlock_t lock; 1342 struct list_head free; 1343 }; 1344 1345 struct vmap_block { 1346 spinlock_t lock; 1347 struct vmap_area *va; 1348 unsigned long free, dirty; 1349 unsigned long dirty_min, dirty_max; /*< dirty range */ 1350 struct list_head free_list; 1351 struct rcu_head rcu_head; 1352 struct list_head purge; 1353 }; 1354 1355 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1356 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1357 1358 /* 1359 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 1360 * in the free path. Could get rid of this if we change the API to return a 1361 * "cookie" from alloc, to be passed to free. But no big deal yet. 1362 */ 1363 static DEFINE_SPINLOCK(vmap_block_tree_lock); 1364 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 1365 1366 /* 1367 * We should probably have a fallback mechanism to allocate virtual memory 1368 * out of partially filled vmap blocks. However vmap block sizing should be 1369 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1370 * big problem. 1371 */ 1372 1373 static unsigned long addr_to_vb_idx(unsigned long addr) 1374 { 1375 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1376 addr /= VMAP_BLOCK_SIZE; 1377 return addr; 1378 } 1379 1380 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1381 { 1382 unsigned long addr; 1383 1384 addr = va_start + (pages_off << PAGE_SHIFT); 1385 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1386 return (void *)addr; 1387 } 1388 1389 /** 1390 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1391 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1392 * @order: how many 2^order pages should be occupied in newly allocated block 1393 * @gfp_mask: flags for the page level allocator 1394 * 1395 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1396 */ 1397 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1398 { 1399 struct vmap_block_queue *vbq; 1400 struct vmap_block *vb; 1401 struct vmap_area *va; 1402 unsigned long vb_idx; 1403 int node, err; 1404 void *vaddr; 1405 1406 node = numa_node_id(); 1407 1408 vb = kmalloc_node(sizeof(struct vmap_block), 1409 gfp_mask & GFP_RECLAIM_MASK, node); 1410 if (unlikely(!vb)) 1411 return ERR_PTR(-ENOMEM); 1412 1413 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1414 VMALLOC_START, VMALLOC_END, 1415 node, gfp_mask); 1416 if (IS_ERR(va)) { 1417 kfree(vb); 1418 return ERR_CAST(va); 1419 } 1420 1421 err = radix_tree_preload(gfp_mask); 1422 if (unlikely(err)) { 1423 kfree(vb); 1424 free_vmap_area(va); 1425 return ERR_PTR(err); 1426 } 1427 1428 vaddr = vmap_block_vaddr(va->va_start, 0); 1429 spin_lock_init(&vb->lock); 1430 vb->va = va; 1431 /* At least something should be left free */ 1432 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1433 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1434 vb->dirty = 0; 1435 vb->dirty_min = VMAP_BBMAP_BITS; 1436 vb->dirty_max = 0; 1437 INIT_LIST_HEAD(&vb->free_list); 1438 1439 vb_idx = addr_to_vb_idx(va->va_start); 1440 spin_lock(&vmap_block_tree_lock); 1441 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 1442 spin_unlock(&vmap_block_tree_lock); 1443 BUG_ON(err); 1444 radix_tree_preload_end(); 1445 1446 vbq = &get_cpu_var(vmap_block_queue); 1447 spin_lock(&vbq->lock); 1448 list_add_tail_rcu(&vb->free_list, &vbq->free); 1449 spin_unlock(&vbq->lock); 1450 put_cpu_var(vmap_block_queue); 1451 1452 return vaddr; 1453 } 1454 1455 static void free_vmap_block(struct vmap_block *vb) 1456 { 1457 struct vmap_block *tmp; 1458 unsigned long vb_idx; 1459 1460 vb_idx = addr_to_vb_idx(vb->va->va_start); 1461 spin_lock(&vmap_block_tree_lock); 1462 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 1463 spin_unlock(&vmap_block_tree_lock); 1464 BUG_ON(tmp != vb); 1465 1466 free_vmap_area_noflush(vb->va); 1467 kfree_rcu(vb, rcu_head); 1468 } 1469 1470 static void purge_fragmented_blocks(int cpu) 1471 { 1472 LIST_HEAD(purge); 1473 struct vmap_block *vb; 1474 struct vmap_block *n_vb; 1475 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1476 1477 rcu_read_lock(); 1478 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1479 1480 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1481 continue; 1482 1483 spin_lock(&vb->lock); 1484 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1485 vb->free = 0; /* prevent further allocs after releasing lock */ 1486 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1487 vb->dirty_min = 0; 1488 vb->dirty_max = VMAP_BBMAP_BITS; 1489 spin_lock(&vbq->lock); 1490 list_del_rcu(&vb->free_list); 1491 spin_unlock(&vbq->lock); 1492 spin_unlock(&vb->lock); 1493 list_add_tail(&vb->purge, &purge); 1494 } else 1495 spin_unlock(&vb->lock); 1496 } 1497 rcu_read_unlock(); 1498 1499 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1500 list_del(&vb->purge); 1501 free_vmap_block(vb); 1502 } 1503 } 1504 1505 static void purge_fragmented_blocks_allcpus(void) 1506 { 1507 int cpu; 1508 1509 for_each_possible_cpu(cpu) 1510 purge_fragmented_blocks(cpu); 1511 } 1512 1513 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1514 { 1515 struct vmap_block_queue *vbq; 1516 struct vmap_block *vb; 1517 void *vaddr = NULL; 1518 unsigned int order; 1519 1520 BUG_ON(offset_in_page(size)); 1521 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1522 if (WARN_ON(size == 0)) { 1523 /* 1524 * Allocating 0 bytes isn't what caller wants since 1525 * get_order(0) returns funny result. Just warn and terminate 1526 * early. 1527 */ 1528 return NULL; 1529 } 1530 order = get_order(size); 1531 1532 rcu_read_lock(); 1533 vbq = &get_cpu_var(vmap_block_queue); 1534 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1535 unsigned long pages_off; 1536 1537 spin_lock(&vb->lock); 1538 if (vb->free < (1UL << order)) { 1539 spin_unlock(&vb->lock); 1540 continue; 1541 } 1542 1543 pages_off = VMAP_BBMAP_BITS - vb->free; 1544 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1545 vb->free -= 1UL << order; 1546 if (vb->free == 0) { 1547 spin_lock(&vbq->lock); 1548 list_del_rcu(&vb->free_list); 1549 spin_unlock(&vbq->lock); 1550 } 1551 1552 spin_unlock(&vb->lock); 1553 break; 1554 } 1555 1556 put_cpu_var(vmap_block_queue); 1557 rcu_read_unlock(); 1558 1559 /* Allocate new block if nothing was found */ 1560 if (!vaddr) 1561 vaddr = new_vmap_block(order, gfp_mask); 1562 1563 return vaddr; 1564 } 1565 1566 static void vb_free(const void *addr, unsigned long size) 1567 { 1568 unsigned long offset; 1569 unsigned long vb_idx; 1570 unsigned int order; 1571 struct vmap_block *vb; 1572 1573 BUG_ON(offset_in_page(size)); 1574 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1575 1576 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1577 1578 order = get_order(size); 1579 1580 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1581 offset >>= PAGE_SHIFT; 1582 1583 vb_idx = addr_to_vb_idx((unsigned long)addr); 1584 rcu_read_lock(); 1585 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1586 rcu_read_unlock(); 1587 BUG_ON(!vb); 1588 1589 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1590 1591 if (debug_pagealloc_enabled()) 1592 flush_tlb_kernel_range((unsigned long)addr, 1593 (unsigned long)addr + size); 1594 1595 spin_lock(&vb->lock); 1596 1597 /* Expand dirty range */ 1598 vb->dirty_min = min(vb->dirty_min, offset); 1599 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1600 1601 vb->dirty += 1UL << order; 1602 if (vb->dirty == VMAP_BBMAP_BITS) { 1603 BUG_ON(vb->free); 1604 spin_unlock(&vb->lock); 1605 free_vmap_block(vb); 1606 } else 1607 spin_unlock(&vb->lock); 1608 } 1609 1610 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1611 { 1612 int cpu; 1613 1614 if (unlikely(!vmap_initialized)) 1615 return; 1616 1617 might_sleep(); 1618 1619 for_each_possible_cpu(cpu) { 1620 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1621 struct vmap_block *vb; 1622 1623 rcu_read_lock(); 1624 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1625 spin_lock(&vb->lock); 1626 if (vb->dirty) { 1627 unsigned long va_start = vb->va->va_start; 1628 unsigned long s, e; 1629 1630 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1631 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1632 1633 start = min(s, start); 1634 end = max(e, end); 1635 1636 flush = 1; 1637 } 1638 spin_unlock(&vb->lock); 1639 } 1640 rcu_read_unlock(); 1641 } 1642 1643 mutex_lock(&vmap_purge_lock); 1644 purge_fragmented_blocks_allcpus(); 1645 if (!__purge_vmap_area_lazy(start, end) && flush) 1646 flush_tlb_kernel_range(start, end); 1647 mutex_unlock(&vmap_purge_lock); 1648 } 1649 1650 /** 1651 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1652 * 1653 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1654 * to amortize TLB flushing overheads. What this means is that any page you 1655 * have now, may, in a former life, have been mapped into kernel virtual 1656 * address by the vmap layer and so there might be some CPUs with TLB entries 1657 * still referencing that page (additional to the regular 1:1 kernel mapping). 1658 * 1659 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1660 * be sure that none of the pages we have control over will have any aliases 1661 * from the vmap layer. 1662 */ 1663 void vm_unmap_aliases(void) 1664 { 1665 unsigned long start = ULONG_MAX, end = 0; 1666 int flush = 0; 1667 1668 _vm_unmap_aliases(start, end, flush); 1669 } 1670 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1671 1672 /** 1673 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1674 * @mem: the pointer returned by vm_map_ram 1675 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1676 */ 1677 void vm_unmap_ram(const void *mem, unsigned int count) 1678 { 1679 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1680 unsigned long addr = (unsigned long)mem; 1681 struct vmap_area *va; 1682 1683 might_sleep(); 1684 BUG_ON(!addr); 1685 BUG_ON(addr < VMALLOC_START); 1686 BUG_ON(addr > VMALLOC_END); 1687 BUG_ON(!PAGE_ALIGNED(addr)); 1688 1689 if (likely(count <= VMAP_MAX_ALLOC)) { 1690 debug_check_no_locks_freed(mem, size); 1691 vb_free(mem, size); 1692 return; 1693 } 1694 1695 va = find_vmap_area(addr); 1696 BUG_ON(!va); 1697 debug_check_no_locks_freed((void *)va->va_start, 1698 (va->va_end - va->va_start)); 1699 free_unmap_vmap_area(va); 1700 } 1701 EXPORT_SYMBOL(vm_unmap_ram); 1702 1703 /** 1704 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1705 * @pages: an array of pointers to the pages to be mapped 1706 * @count: number of pages 1707 * @node: prefer to allocate data structures on this node 1708 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1709 * 1710 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1711 * faster than vmap so it's good. But if you mix long-life and short-life 1712 * objects with vm_map_ram(), it could consume lots of address space through 1713 * fragmentation (especially on a 32bit machine). You could see failures in 1714 * the end. Please use this function for short-lived objects. 1715 * 1716 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1717 */ 1718 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1719 { 1720 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1721 unsigned long addr; 1722 void *mem; 1723 1724 if (likely(count <= VMAP_MAX_ALLOC)) { 1725 mem = vb_alloc(size, GFP_KERNEL); 1726 if (IS_ERR(mem)) 1727 return NULL; 1728 addr = (unsigned long)mem; 1729 } else { 1730 struct vmap_area *va; 1731 va = alloc_vmap_area(size, PAGE_SIZE, 1732 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1733 if (IS_ERR(va)) 1734 return NULL; 1735 1736 addr = va->va_start; 1737 mem = (void *)addr; 1738 } 1739 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1740 vm_unmap_ram(mem, count); 1741 return NULL; 1742 } 1743 return mem; 1744 } 1745 EXPORT_SYMBOL(vm_map_ram); 1746 1747 static struct vm_struct *vmlist __initdata; 1748 1749 /** 1750 * vm_area_add_early - add vmap area early during boot 1751 * @vm: vm_struct to add 1752 * 1753 * This function is used to add fixed kernel vm area to vmlist before 1754 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1755 * should contain proper values and the other fields should be zero. 1756 * 1757 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1758 */ 1759 void __init vm_area_add_early(struct vm_struct *vm) 1760 { 1761 struct vm_struct *tmp, **p; 1762 1763 BUG_ON(vmap_initialized); 1764 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1765 if (tmp->addr >= vm->addr) { 1766 BUG_ON(tmp->addr < vm->addr + vm->size); 1767 break; 1768 } else 1769 BUG_ON(tmp->addr + tmp->size > vm->addr); 1770 } 1771 vm->next = *p; 1772 *p = vm; 1773 } 1774 1775 /** 1776 * vm_area_register_early - register vmap area early during boot 1777 * @vm: vm_struct to register 1778 * @align: requested alignment 1779 * 1780 * This function is used to register kernel vm area before 1781 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1782 * proper values on entry and other fields should be zero. On return, 1783 * vm->addr contains the allocated address. 1784 * 1785 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1786 */ 1787 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1788 { 1789 static size_t vm_init_off __initdata; 1790 unsigned long addr; 1791 1792 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1793 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1794 1795 vm->addr = (void *)addr; 1796 1797 vm_area_add_early(vm); 1798 } 1799 1800 static void vmap_init_free_space(void) 1801 { 1802 unsigned long vmap_start = 1; 1803 const unsigned long vmap_end = ULONG_MAX; 1804 struct vmap_area *busy, *free; 1805 1806 /* 1807 * B F B B B F 1808 * -|-----|.....|-----|-----|-----|.....|- 1809 * | The KVA space | 1810 * |<--------------------------------->| 1811 */ 1812 list_for_each_entry(busy, &vmap_area_list, list) { 1813 if (busy->va_start - vmap_start > 0) { 1814 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1815 if (!WARN_ON_ONCE(!free)) { 1816 free->va_start = vmap_start; 1817 free->va_end = busy->va_start; 1818 1819 insert_vmap_area_augment(free, NULL, 1820 &free_vmap_area_root, 1821 &free_vmap_area_list); 1822 } 1823 } 1824 1825 vmap_start = busy->va_end; 1826 } 1827 1828 if (vmap_end - vmap_start > 0) { 1829 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1830 if (!WARN_ON_ONCE(!free)) { 1831 free->va_start = vmap_start; 1832 free->va_end = vmap_end; 1833 1834 insert_vmap_area_augment(free, NULL, 1835 &free_vmap_area_root, 1836 &free_vmap_area_list); 1837 } 1838 } 1839 } 1840 1841 void __init vmalloc_init(void) 1842 { 1843 struct vmap_area *va; 1844 struct vm_struct *tmp; 1845 int i; 1846 1847 /* 1848 * Create the cache for vmap_area objects. 1849 */ 1850 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 1851 1852 for_each_possible_cpu(i) { 1853 struct vmap_block_queue *vbq; 1854 struct vfree_deferred *p; 1855 1856 vbq = &per_cpu(vmap_block_queue, i); 1857 spin_lock_init(&vbq->lock); 1858 INIT_LIST_HEAD(&vbq->free); 1859 p = &per_cpu(vfree_deferred, i); 1860 init_llist_head(&p->list); 1861 INIT_WORK(&p->wq, free_work); 1862 } 1863 1864 /* Import existing vmlist entries. */ 1865 for (tmp = vmlist; tmp; tmp = tmp->next) { 1866 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1867 if (WARN_ON_ONCE(!va)) 1868 continue; 1869 1870 va->flags = VM_VM_AREA; 1871 va->va_start = (unsigned long)tmp->addr; 1872 va->va_end = va->va_start + tmp->size; 1873 va->vm = tmp; 1874 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1875 } 1876 1877 /* 1878 * Now we can initialize a free vmap space. 1879 */ 1880 vmap_init_free_space(); 1881 vmap_initialized = true; 1882 } 1883 1884 /** 1885 * map_kernel_range_noflush - map kernel VM area with the specified pages 1886 * @addr: start of the VM area to map 1887 * @size: size of the VM area to map 1888 * @prot: page protection flags to use 1889 * @pages: pages to map 1890 * 1891 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1892 * specify should have been allocated using get_vm_area() and its 1893 * friends. 1894 * 1895 * NOTE: 1896 * This function does NOT do any cache flushing. The caller is 1897 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1898 * before calling this function. 1899 * 1900 * RETURNS: 1901 * The number of pages mapped on success, -errno on failure. 1902 */ 1903 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1904 pgprot_t prot, struct page **pages) 1905 { 1906 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1907 } 1908 1909 /** 1910 * unmap_kernel_range_noflush - unmap kernel VM area 1911 * @addr: start of the VM area to unmap 1912 * @size: size of the VM area to unmap 1913 * 1914 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1915 * specify should have been allocated using get_vm_area() and its 1916 * friends. 1917 * 1918 * NOTE: 1919 * This function does NOT do any cache flushing. The caller is 1920 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1921 * before calling this function and flush_tlb_kernel_range() after. 1922 */ 1923 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1924 { 1925 vunmap_page_range(addr, addr + size); 1926 } 1927 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1928 1929 /** 1930 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1931 * @addr: start of the VM area to unmap 1932 * @size: size of the VM area to unmap 1933 * 1934 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1935 * the unmapping and tlb after. 1936 */ 1937 void unmap_kernel_range(unsigned long addr, unsigned long size) 1938 { 1939 unsigned long end = addr + size; 1940 1941 flush_cache_vunmap(addr, end); 1942 vunmap_page_range(addr, end); 1943 flush_tlb_kernel_range(addr, end); 1944 } 1945 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1946 1947 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1948 { 1949 unsigned long addr = (unsigned long)area->addr; 1950 unsigned long end = addr + get_vm_area_size(area); 1951 int err; 1952 1953 err = vmap_page_range(addr, end, prot, pages); 1954 1955 return err > 0 ? 0 : err; 1956 } 1957 EXPORT_SYMBOL_GPL(map_vm_area); 1958 1959 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1960 unsigned long flags, const void *caller) 1961 { 1962 spin_lock(&vmap_area_lock); 1963 vm->flags = flags; 1964 vm->addr = (void *)va->va_start; 1965 vm->size = va->va_end - va->va_start; 1966 vm->caller = caller; 1967 va->vm = vm; 1968 va->flags |= VM_VM_AREA; 1969 spin_unlock(&vmap_area_lock); 1970 } 1971 1972 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1973 { 1974 /* 1975 * Before removing VM_UNINITIALIZED, 1976 * we should make sure that vm has proper values. 1977 * Pair with smp_rmb() in show_numa_info(). 1978 */ 1979 smp_wmb(); 1980 vm->flags &= ~VM_UNINITIALIZED; 1981 } 1982 1983 static struct vm_struct *__get_vm_area_node(unsigned long size, 1984 unsigned long align, unsigned long flags, unsigned long start, 1985 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1986 { 1987 struct vmap_area *va; 1988 struct vm_struct *area; 1989 1990 BUG_ON(in_interrupt()); 1991 size = PAGE_ALIGN(size); 1992 if (unlikely(!size)) 1993 return NULL; 1994 1995 if (flags & VM_IOREMAP) 1996 align = 1ul << clamp_t(int, get_count_order_long(size), 1997 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1998 1999 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2000 if (unlikely(!area)) 2001 return NULL; 2002 2003 if (!(flags & VM_NO_GUARD)) 2004 size += PAGE_SIZE; 2005 2006 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2007 if (IS_ERR(va)) { 2008 kfree(area); 2009 return NULL; 2010 } 2011 2012 setup_vmalloc_vm(area, va, flags, caller); 2013 2014 return area; 2015 } 2016 2017 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 2018 unsigned long start, unsigned long end) 2019 { 2020 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2021 GFP_KERNEL, __builtin_return_address(0)); 2022 } 2023 EXPORT_SYMBOL_GPL(__get_vm_area); 2024 2025 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2026 unsigned long start, unsigned long end, 2027 const void *caller) 2028 { 2029 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2030 GFP_KERNEL, caller); 2031 } 2032 2033 /** 2034 * get_vm_area - reserve a contiguous kernel virtual area 2035 * @size: size of the area 2036 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2037 * 2038 * Search an area of @size in the kernel virtual mapping area, 2039 * and reserved it for out purposes. Returns the area descriptor 2040 * on success or %NULL on failure. 2041 * 2042 * Return: the area descriptor on success or %NULL on failure. 2043 */ 2044 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2045 { 2046 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2047 NUMA_NO_NODE, GFP_KERNEL, 2048 __builtin_return_address(0)); 2049 } 2050 2051 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2052 const void *caller) 2053 { 2054 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2055 NUMA_NO_NODE, GFP_KERNEL, caller); 2056 } 2057 2058 /** 2059 * find_vm_area - find a continuous kernel virtual area 2060 * @addr: base address 2061 * 2062 * Search for the kernel VM area starting at @addr, and return it. 2063 * It is up to the caller to do all required locking to keep the returned 2064 * pointer valid. 2065 * 2066 * Return: pointer to the found area or %NULL on faulure 2067 */ 2068 struct vm_struct *find_vm_area(const void *addr) 2069 { 2070 struct vmap_area *va; 2071 2072 va = find_vmap_area((unsigned long)addr); 2073 if (va && va->flags & VM_VM_AREA) 2074 return va->vm; 2075 2076 return NULL; 2077 } 2078 2079 /** 2080 * remove_vm_area - find and remove a continuous kernel virtual area 2081 * @addr: base address 2082 * 2083 * Search for the kernel VM area starting at @addr, and remove it. 2084 * This function returns the found VM area, but using it is NOT safe 2085 * on SMP machines, except for its size or flags. 2086 * 2087 * Return: pointer to the found area or %NULL on faulure 2088 */ 2089 struct vm_struct *remove_vm_area(const void *addr) 2090 { 2091 struct vmap_area *va; 2092 2093 might_sleep(); 2094 2095 va = find_vmap_area((unsigned long)addr); 2096 if (va && va->flags & VM_VM_AREA) { 2097 struct vm_struct *vm = va->vm; 2098 2099 spin_lock(&vmap_area_lock); 2100 va->vm = NULL; 2101 va->flags &= ~VM_VM_AREA; 2102 va->flags |= VM_LAZY_FREE; 2103 spin_unlock(&vmap_area_lock); 2104 2105 kasan_free_shadow(vm); 2106 free_unmap_vmap_area(va); 2107 2108 return vm; 2109 } 2110 return NULL; 2111 } 2112 2113 static inline void set_area_direct_map(const struct vm_struct *area, 2114 int (*set_direct_map)(struct page *page)) 2115 { 2116 int i; 2117 2118 for (i = 0; i < area->nr_pages; i++) 2119 if (page_address(area->pages[i])) 2120 set_direct_map(area->pages[i]); 2121 } 2122 2123 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2124 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2125 { 2126 unsigned long start = ULONG_MAX, end = 0; 2127 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2128 int flush_dmap = 0; 2129 int i; 2130 2131 /* 2132 * The below block can be removed when all architectures that have 2133 * direct map permissions also have set_direct_map_() implementations. 2134 * This is concerned with resetting the direct map any an vm alias with 2135 * execute permissions, without leaving a RW+X window. 2136 */ 2137 if (flush_reset && !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 2138 set_memory_nx((unsigned long)area->addr, area->nr_pages); 2139 set_memory_rw((unsigned long)area->addr, area->nr_pages); 2140 } 2141 2142 remove_vm_area(area->addr); 2143 2144 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2145 if (!flush_reset) 2146 return; 2147 2148 /* 2149 * If not deallocating pages, just do the flush of the VM area and 2150 * return. 2151 */ 2152 if (!deallocate_pages) { 2153 vm_unmap_aliases(); 2154 return; 2155 } 2156 2157 /* 2158 * If execution gets here, flush the vm mapping and reset the direct 2159 * map. Find the start and end range of the direct mappings to make sure 2160 * the vm_unmap_aliases() flush includes the direct map. 2161 */ 2162 for (i = 0; i < area->nr_pages; i++) { 2163 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2164 if (addr) { 2165 start = min(addr, start); 2166 end = max(addr + PAGE_SIZE, end); 2167 flush_dmap = 1; 2168 } 2169 } 2170 2171 /* 2172 * Set direct map to something invalid so that it won't be cached if 2173 * there are any accesses after the TLB flush, then flush the TLB and 2174 * reset the direct map permissions to the default. 2175 */ 2176 set_area_direct_map(area, set_direct_map_invalid_noflush); 2177 _vm_unmap_aliases(start, end, flush_dmap); 2178 set_area_direct_map(area, set_direct_map_default_noflush); 2179 } 2180 2181 static void __vunmap(const void *addr, int deallocate_pages) 2182 { 2183 struct vm_struct *area; 2184 2185 if (!addr) 2186 return; 2187 2188 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2189 addr)) 2190 return; 2191 2192 area = find_vm_area(addr); 2193 if (unlikely(!area)) { 2194 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2195 addr); 2196 return; 2197 } 2198 2199 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2200 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2201 2202 vm_remove_mappings(area, deallocate_pages); 2203 2204 if (deallocate_pages) { 2205 int i; 2206 2207 for (i = 0; i < area->nr_pages; i++) { 2208 struct page *page = area->pages[i]; 2209 2210 BUG_ON(!page); 2211 __free_pages(page, 0); 2212 } 2213 2214 kvfree(area->pages); 2215 } 2216 2217 kfree(area); 2218 return; 2219 } 2220 2221 static inline void __vfree_deferred(const void *addr) 2222 { 2223 /* 2224 * Use raw_cpu_ptr() because this can be called from preemptible 2225 * context. Preemption is absolutely fine here, because the llist_add() 2226 * implementation is lockless, so it works even if we are adding to 2227 * nother cpu's list. schedule_work() should be fine with this too. 2228 */ 2229 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2230 2231 if (llist_add((struct llist_node *)addr, &p->list)) 2232 schedule_work(&p->wq); 2233 } 2234 2235 /** 2236 * vfree_atomic - release memory allocated by vmalloc() 2237 * @addr: memory base address 2238 * 2239 * This one is just like vfree() but can be called in any atomic context 2240 * except NMIs. 2241 */ 2242 void vfree_atomic(const void *addr) 2243 { 2244 BUG_ON(in_nmi()); 2245 2246 kmemleak_free(addr); 2247 2248 if (!addr) 2249 return; 2250 __vfree_deferred(addr); 2251 } 2252 2253 static void __vfree(const void *addr) 2254 { 2255 if (unlikely(in_interrupt())) 2256 __vfree_deferred(addr); 2257 else 2258 __vunmap(addr, 1); 2259 } 2260 2261 /** 2262 * vfree - release memory allocated by vmalloc() 2263 * @addr: memory base address 2264 * 2265 * Free the virtually continuous memory area starting at @addr, as 2266 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 2267 * NULL, no operation is performed. 2268 * 2269 * Must not be called in NMI context (strictly speaking, only if we don't 2270 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2271 * conventions for vfree() arch-depenedent would be a really bad idea) 2272 * 2273 * May sleep if called *not* from interrupt context. 2274 * 2275 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 2276 */ 2277 void vfree(const void *addr) 2278 { 2279 BUG_ON(in_nmi()); 2280 2281 kmemleak_free(addr); 2282 2283 might_sleep_if(!in_interrupt()); 2284 2285 if (!addr) 2286 return; 2287 2288 __vfree(addr); 2289 } 2290 EXPORT_SYMBOL(vfree); 2291 2292 /** 2293 * vunmap - release virtual mapping obtained by vmap() 2294 * @addr: memory base address 2295 * 2296 * Free the virtually contiguous memory area starting at @addr, 2297 * which was created from the page array passed to vmap(). 2298 * 2299 * Must not be called in interrupt context. 2300 */ 2301 void vunmap(const void *addr) 2302 { 2303 BUG_ON(in_interrupt()); 2304 might_sleep(); 2305 if (addr) 2306 __vunmap(addr, 0); 2307 } 2308 EXPORT_SYMBOL(vunmap); 2309 2310 /** 2311 * vmap - map an array of pages into virtually contiguous space 2312 * @pages: array of page pointers 2313 * @count: number of pages to map 2314 * @flags: vm_area->flags 2315 * @prot: page protection for the mapping 2316 * 2317 * Maps @count pages from @pages into contiguous kernel virtual 2318 * space. 2319 * 2320 * Return: the address of the area or %NULL on failure 2321 */ 2322 void *vmap(struct page **pages, unsigned int count, 2323 unsigned long flags, pgprot_t prot) 2324 { 2325 struct vm_struct *area; 2326 unsigned long size; /* In bytes */ 2327 2328 might_sleep(); 2329 2330 if (count > totalram_pages()) 2331 return NULL; 2332 2333 size = (unsigned long)count << PAGE_SHIFT; 2334 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2335 if (!area) 2336 return NULL; 2337 2338 if (map_vm_area(area, prot, pages)) { 2339 vunmap(area->addr); 2340 return NULL; 2341 } 2342 2343 return area->addr; 2344 } 2345 EXPORT_SYMBOL(vmap); 2346 2347 static void *__vmalloc_node(unsigned long size, unsigned long align, 2348 gfp_t gfp_mask, pgprot_t prot, 2349 int node, const void *caller); 2350 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2351 pgprot_t prot, int node) 2352 { 2353 struct page **pages; 2354 unsigned int nr_pages, array_size, i; 2355 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2356 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 2357 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 2358 0 : 2359 __GFP_HIGHMEM; 2360 2361 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 2362 array_size = (nr_pages * sizeof(struct page *)); 2363 2364 area->nr_pages = nr_pages; 2365 /* Please note that the recursion is strictly bounded. */ 2366 if (array_size > PAGE_SIZE) { 2367 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 2368 PAGE_KERNEL, node, area->caller); 2369 } else { 2370 pages = kmalloc_node(array_size, nested_gfp, node); 2371 } 2372 area->pages = pages; 2373 if (!area->pages) { 2374 remove_vm_area(area->addr); 2375 kfree(area); 2376 return NULL; 2377 } 2378 2379 for (i = 0; i < area->nr_pages; i++) { 2380 struct page *page; 2381 2382 if (node == NUMA_NO_NODE) 2383 page = alloc_page(alloc_mask|highmem_mask); 2384 else 2385 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 2386 2387 if (unlikely(!page)) { 2388 /* Successfully allocated i pages, free them in __vunmap() */ 2389 area->nr_pages = i; 2390 goto fail; 2391 } 2392 area->pages[i] = page; 2393 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 2394 cond_resched(); 2395 } 2396 2397 if (map_vm_area(area, prot, pages)) 2398 goto fail; 2399 return area->addr; 2400 2401 fail: 2402 warn_alloc(gfp_mask, NULL, 2403 "vmalloc: allocation failure, allocated %ld of %ld bytes", 2404 (area->nr_pages*PAGE_SIZE), area->size); 2405 __vfree(area->addr); 2406 return NULL; 2407 } 2408 2409 /** 2410 * __vmalloc_node_range - allocate virtually contiguous memory 2411 * @size: allocation size 2412 * @align: desired alignment 2413 * @start: vm area range start 2414 * @end: vm area range end 2415 * @gfp_mask: flags for the page level allocator 2416 * @prot: protection mask for the allocated pages 2417 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2418 * @node: node to use for allocation or NUMA_NO_NODE 2419 * @caller: caller's return address 2420 * 2421 * Allocate enough pages to cover @size from the page level 2422 * allocator with @gfp_mask flags. Map them into contiguous 2423 * kernel virtual space, using a pagetable protection of @prot. 2424 * 2425 * Return: the address of the area or %NULL on failure 2426 */ 2427 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2428 unsigned long start, unsigned long end, gfp_t gfp_mask, 2429 pgprot_t prot, unsigned long vm_flags, int node, 2430 const void *caller) 2431 { 2432 struct vm_struct *area; 2433 void *addr; 2434 unsigned long real_size = size; 2435 2436 size = PAGE_ALIGN(size); 2437 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 2438 goto fail; 2439 2440 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 2441 vm_flags, start, end, node, gfp_mask, caller); 2442 if (!area) 2443 goto fail; 2444 2445 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 2446 if (!addr) 2447 return NULL; 2448 2449 /* 2450 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2451 * flag. It means that vm_struct is not fully initialized. 2452 * Now, it is fully initialized, so remove this flag here. 2453 */ 2454 clear_vm_uninitialized_flag(area); 2455 2456 kmemleak_vmalloc(area, size, gfp_mask); 2457 2458 return addr; 2459 2460 fail: 2461 warn_alloc(gfp_mask, NULL, 2462 "vmalloc: allocation failure: %lu bytes", real_size); 2463 return NULL; 2464 } 2465 2466 /* 2467 * This is only for performance analysis of vmalloc and stress purpose. 2468 * It is required by vmalloc test module, therefore do not use it other 2469 * than that. 2470 */ 2471 #ifdef CONFIG_TEST_VMALLOC_MODULE 2472 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 2473 #endif 2474 2475 /** 2476 * __vmalloc_node - allocate virtually contiguous memory 2477 * @size: allocation size 2478 * @align: desired alignment 2479 * @gfp_mask: flags for the page level allocator 2480 * @prot: protection mask for the allocated pages 2481 * @node: node to use for allocation or NUMA_NO_NODE 2482 * @caller: caller's return address 2483 * 2484 * Allocate enough pages to cover @size from the page level 2485 * allocator with @gfp_mask flags. Map them into contiguous 2486 * kernel virtual space, using a pagetable protection of @prot. 2487 * 2488 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 2489 * and __GFP_NOFAIL are not supported 2490 * 2491 * Any use of gfp flags outside of GFP_KERNEL should be consulted 2492 * with mm people. 2493 * 2494 * Return: pointer to the allocated memory or %NULL on error 2495 */ 2496 static void *__vmalloc_node(unsigned long size, unsigned long align, 2497 gfp_t gfp_mask, pgprot_t prot, 2498 int node, const void *caller) 2499 { 2500 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 2501 gfp_mask, prot, 0, node, caller); 2502 } 2503 2504 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 2505 { 2506 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 2507 __builtin_return_address(0)); 2508 } 2509 EXPORT_SYMBOL(__vmalloc); 2510 2511 static inline void *__vmalloc_node_flags(unsigned long size, 2512 int node, gfp_t flags) 2513 { 2514 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 2515 node, __builtin_return_address(0)); 2516 } 2517 2518 2519 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 2520 void *caller) 2521 { 2522 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 2523 } 2524 2525 /** 2526 * vmalloc - allocate virtually contiguous memory 2527 * @size: allocation size 2528 * 2529 * Allocate enough pages to cover @size from the page level 2530 * allocator and map them into contiguous kernel virtual space. 2531 * 2532 * For tight control over page level allocator and protection flags 2533 * use __vmalloc() instead. 2534 * 2535 * Return: pointer to the allocated memory or %NULL on error 2536 */ 2537 void *vmalloc(unsigned long size) 2538 { 2539 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2540 GFP_KERNEL); 2541 } 2542 EXPORT_SYMBOL(vmalloc); 2543 2544 /** 2545 * vzalloc - allocate virtually contiguous memory with zero fill 2546 * @size: allocation size 2547 * 2548 * Allocate enough pages to cover @size from the page level 2549 * allocator and map them into contiguous kernel virtual space. 2550 * The memory allocated is set to zero. 2551 * 2552 * For tight control over page level allocator and protection flags 2553 * use __vmalloc() instead. 2554 * 2555 * Return: pointer to the allocated memory or %NULL on error 2556 */ 2557 void *vzalloc(unsigned long size) 2558 { 2559 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2560 GFP_KERNEL | __GFP_ZERO); 2561 } 2562 EXPORT_SYMBOL(vzalloc); 2563 2564 /** 2565 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 2566 * @size: allocation size 2567 * 2568 * The resulting memory area is zeroed so it can be mapped to userspace 2569 * without leaking data. 2570 * 2571 * Return: pointer to the allocated memory or %NULL on error 2572 */ 2573 void *vmalloc_user(unsigned long size) 2574 { 2575 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2576 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 2577 VM_USERMAP, NUMA_NO_NODE, 2578 __builtin_return_address(0)); 2579 } 2580 EXPORT_SYMBOL(vmalloc_user); 2581 2582 /** 2583 * vmalloc_node - allocate memory on a specific node 2584 * @size: allocation size 2585 * @node: numa node 2586 * 2587 * Allocate enough pages to cover @size from the page level 2588 * allocator and map them into contiguous kernel virtual space. 2589 * 2590 * For tight control over page level allocator and protection flags 2591 * use __vmalloc() instead. 2592 * 2593 * Return: pointer to the allocated memory or %NULL on error 2594 */ 2595 void *vmalloc_node(unsigned long size, int node) 2596 { 2597 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 2598 node, __builtin_return_address(0)); 2599 } 2600 EXPORT_SYMBOL(vmalloc_node); 2601 2602 /** 2603 * vzalloc_node - allocate memory on a specific node with zero fill 2604 * @size: allocation size 2605 * @node: numa node 2606 * 2607 * Allocate enough pages to cover @size from the page level 2608 * allocator and map them into contiguous kernel virtual space. 2609 * The memory allocated is set to zero. 2610 * 2611 * For tight control over page level allocator and protection flags 2612 * use __vmalloc_node() instead. 2613 * 2614 * Return: pointer to the allocated memory or %NULL on error 2615 */ 2616 void *vzalloc_node(unsigned long size, int node) 2617 { 2618 return __vmalloc_node_flags(size, node, 2619 GFP_KERNEL | __GFP_ZERO); 2620 } 2621 EXPORT_SYMBOL(vzalloc_node); 2622 2623 /** 2624 * vmalloc_exec - allocate virtually contiguous, executable memory 2625 * @size: allocation size 2626 * 2627 * Kernel-internal function to allocate enough pages to cover @size 2628 * the page level allocator and map them into contiguous and 2629 * executable kernel virtual space. 2630 * 2631 * For tight control over page level allocator and protection flags 2632 * use __vmalloc() instead. 2633 * 2634 * Return: pointer to the allocated memory or %NULL on error 2635 */ 2636 void *vmalloc_exec(unsigned long size) 2637 { 2638 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2639 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2640 NUMA_NO_NODE, __builtin_return_address(0)); 2641 } 2642 2643 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2644 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2645 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2646 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2647 #else 2648 /* 2649 * 64b systems should always have either DMA or DMA32 zones. For others 2650 * GFP_DMA32 should do the right thing and use the normal zone. 2651 */ 2652 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2653 #endif 2654 2655 /** 2656 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2657 * @size: allocation size 2658 * 2659 * Allocate enough 32bit PA addressable pages to cover @size from the 2660 * page level allocator and map them into contiguous kernel virtual space. 2661 * 2662 * Return: pointer to the allocated memory or %NULL on error 2663 */ 2664 void *vmalloc_32(unsigned long size) 2665 { 2666 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 2667 NUMA_NO_NODE, __builtin_return_address(0)); 2668 } 2669 EXPORT_SYMBOL(vmalloc_32); 2670 2671 /** 2672 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2673 * @size: allocation size 2674 * 2675 * The resulting memory area is 32bit addressable and zeroed so it can be 2676 * mapped to userspace without leaking data. 2677 * 2678 * Return: pointer to the allocated memory or %NULL on error 2679 */ 2680 void *vmalloc_32_user(unsigned long size) 2681 { 2682 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2683 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2684 VM_USERMAP, NUMA_NO_NODE, 2685 __builtin_return_address(0)); 2686 } 2687 EXPORT_SYMBOL(vmalloc_32_user); 2688 2689 /* 2690 * small helper routine , copy contents to buf from addr. 2691 * If the page is not present, fill zero. 2692 */ 2693 2694 static int aligned_vread(char *buf, char *addr, unsigned long count) 2695 { 2696 struct page *p; 2697 int copied = 0; 2698 2699 while (count) { 2700 unsigned long offset, length; 2701 2702 offset = offset_in_page(addr); 2703 length = PAGE_SIZE - offset; 2704 if (length > count) 2705 length = count; 2706 p = vmalloc_to_page(addr); 2707 /* 2708 * To do safe access to this _mapped_ area, we need 2709 * lock. But adding lock here means that we need to add 2710 * overhead of vmalloc()/vfree() calles for this _debug_ 2711 * interface, rarely used. Instead of that, we'll use 2712 * kmap() and get small overhead in this access function. 2713 */ 2714 if (p) { 2715 /* 2716 * we can expect USER0 is not used (see vread/vwrite's 2717 * function description) 2718 */ 2719 void *map = kmap_atomic(p); 2720 memcpy(buf, map + offset, length); 2721 kunmap_atomic(map); 2722 } else 2723 memset(buf, 0, length); 2724 2725 addr += length; 2726 buf += length; 2727 copied += length; 2728 count -= length; 2729 } 2730 return copied; 2731 } 2732 2733 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2734 { 2735 struct page *p; 2736 int copied = 0; 2737 2738 while (count) { 2739 unsigned long offset, length; 2740 2741 offset = offset_in_page(addr); 2742 length = PAGE_SIZE - offset; 2743 if (length > count) 2744 length = count; 2745 p = vmalloc_to_page(addr); 2746 /* 2747 * To do safe access to this _mapped_ area, we need 2748 * lock. But adding lock here means that we need to add 2749 * overhead of vmalloc()/vfree() calles for this _debug_ 2750 * interface, rarely used. Instead of that, we'll use 2751 * kmap() and get small overhead in this access function. 2752 */ 2753 if (p) { 2754 /* 2755 * we can expect USER0 is not used (see vread/vwrite's 2756 * function description) 2757 */ 2758 void *map = kmap_atomic(p); 2759 memcpy(map + offset, buf, length); 2760 kunmap_atomic(map); 2761 } 2762 addr += length; 2763 buf += length; 2764 copied += length; 2765 count -= length; 2766 } 2767 return copied; 2768 } 2769 2770 /** 2771 * vread() - read vmalloc area in a safe way. 2772 * @buf: buffer for reading data 2773 * @addr: vm address. 2774 * @count: number of bytes to be read. 2775 * 2776 * This function checks that addr is a valid vmalloc'ed area, and 2777 * copy data from that area to a given buffer. If the given memory range 2778 * of [addr...addr+count) includes some valid address, data is copied to 2779 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2780 * IOREMAP area is treated as memory hole and no copy is done. 2781 * 2782 * If [addr...addr+count) doesn't includes any intersects with alive 2783 * vm_struct area, returns 0. @buf should be kernel's buffer. 2784 * 2785 * Note: In usual ops, vread() is never necessary because the caller 2786 * should know vmalloc() area is valid and can use memcpy(). 2787 * This is for routines which have to access vmalloc area without 2788 * any informaion, as /dev/kmem. 2789 * 2790 * Return: number of bytes for which addr and buf should be increased 2791 * (same number as @count) or %0 if [addr...addr+count) doesn't 2792 * include any intersection with valid vmalloc area 2793 */ 2794 long vread(char *buf, char *addr, unsigned long count) 2795 { 2796 struct vmap_area *va; 2797 struct vm_struct *vm; 2798 char *vaddr, *buf_start = buf; 2799 unsigned long buflen = count; 2800 unsigned long n; 2801 2802 /* Don't allow overflow */ 2803 if ((unsigned long) addr + count < count) 2804 count = -(unsigned long) addr; 2805 2806 spin_lock(&vmap_area_lock); 2807 list_for_each_entry(va, &vmap_area_list, list) { 2808 if (!count) 2809 break; 2810 2811 if (!(va->flags & VM_VM_AREA)) 2812 continue; 2813 2814 vm = va->vm; 2815 vaddr = (char *) vm->addr; 2816 if (addr >= vaddr + get_vm_area_size(vm)) 2817 continue; 2818 while (addr < vaddr) { 2819 if (count == 0) 2820 goto finished; 2821 *buf = '\0'; 2822 buf++; 2823 addr++; 2824 count--; 2825 } 2826 n = vaddr + get_vm_area_size(vm) - addr; 2827 if (n > count) 2828 n = count; 2829 if (!(vm->flags & VM_IOREMAP)) 2830 aligned_vread(buf, addr, n); 2831 else /* IOREMAP area is treated as memory hole */ 2832 memset(buf, 0, n); 2833 buf += n; 2834 addr += n; 2835 count -= n; 2836 } 2837 finished: 2838 spin_unlock(&vmap_area_lock); 2839 2840 if (buf == buf_start) 2841 return 0; 2842 /* zero-fill memory holes */ 2843 if (buf != buf_start + buflen) 2844 memset(buf, 0, buflen - (buf - buf_start)); 2845 2846 return buflen; 2847 } 2848 2849 /** 2850 * vwrite() - write vmalloc area in a safe way. 2851 * @buf: buffer for source data 2852 * @addr: vm address. 2853 * @count: number of bytes to be read. 2854 * 2855 * This function checks that addr is a valid vmalloc'ed area, and 2856 * copy data from a buffer to the given addr. If specified range of 2857 * [addr...addr+count) includes some valid address, data is copied from 2858 * proper area of @buf. If there are memory holes, no copy to hole. 2859 * IOREMAP area is treated as memory hole and no copy is done. 2860 * 2861 * If [addr...addr+count) doesn't includes any intersects with alive 2862 * vm_struct area, returns 0. @buf should be kernel's buffer. 2863 * 2864 * Note: In usual ops, vwrite() is never necessary because the caller 2865 * should know vmalloc() area is valid and can use memcpy(). 2866 * This is for routines which have to access vmalloc area without 2867 * any informaion, as /dev/kmem. 2868 * 2869 * Return: number of bytes for which addr and buf should be 2870 * increased (same number as @count) or %0 if [addr...addr+count) 2871 * doesn't include any intersection with valid vmalloc area 2872 */ 2873 long vwrite(char *buf, char *addr, unsigned long count) 2874 { 2875 struct vmap_area *va; 2876 struct vm_struct *vm; 2877 char *vaddr; 2878 unsigned long n, buflen; 2879 int copied = 0; 2880 2881 /* Don't allow overflow */ 2882 if ((unsigned long) addr + count < count) 2883 count = -(unsigned long) addr; 2884 buflen = count; 2885 2886 spin_lock(&vmap_area_lock); 2887 list_for_each_entry(va, &vmap_area_list, list) { 2888 if (!count) 2889 break; 2890 2891 if (!(va->flags & VM_VM_AREA)) 2892 continue; 2893 2894 vm = va->vm; 2895 vaddr = (char *) vm->addr; 2896 if (addr >= vaddr + get_vm_area_size(vm)) 2897 continue; 2898 while (addr < vaddr) { 2899 if (count == 0) 2900 goto finished; 2901 buf++; 2902 addr++; 2903 count--; 2904 } 2905 n = vaddr + get_vm_area_size(vm) - addr; 2906 if (n > count) 2907 n = count; 2908 if (!(vm->flags & VM_IOREMAP)) { 2909 aligned_vwrite(buf, addr, n); 2910 copied++; 2911 } 2912 buf += n; 2913 addr += n; 2914 count -= n; 2915 } 2916 finished: 2917 spin_unlock(&vmap_area_lock); 2918 if (!copied) 2919 return 0; 2920 return buflen; 2921 } 2922 2923 /** 2924 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2925 * @vma: vma to cover 2926 * @uaddr: target user address to start at 2927 * @kaddr: virtual address of vmalloc kernel memory 2928 * @size: size of map area 2929 * 2930 * Returns: 0 for success, -Exxx on failure 2931 * 2932 * This function checks that @kaddr is a valid vmalloc'ed area, 2933 * and that it is big enough to cover the range starting at 2934 * @uaddr in @vma. Will return failure if that criteria isn't 2935 * met. 2936 * 2937 * Similar to remap_pfn_range() (see mm/memory.c) 2938 */ 2939 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2940 void *kaddr, unsigned long size) 2941 { 2942 struct vm_struct *area; 2943 2944 size = PAGE_ALIGN(size); 2945 2946 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2947 return -EINVAL; 2948 2949 area = find_vm_area(kaddr); 2950 if (!area) 2951 return -EINVAL; 2952 2953 if (!(area->flags & VM_USERMAP)) 2954 return -EINVAL; 2955 2956 if (kaddr + size > area->addr + get_vm_area_size(area)) 2957 return -EINVAL; 2958 2959 do { 2960 struct page *page = vmalloc_to_page(kaddr); 2961 int ret; 2962 2963 ret = vm_insert_page(vma, uaddr, page); 2964 if (ret) 2965 return ret; 2966 2967 uaddr += PAGE_SIZE; 2968 kaddr += PAGE_SIZE; 2969 size -= PAGE_SIZE; 2970 } while (size > 0); 2971 2972 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2973 2974 return 0; 2975 } 2976 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2977 2978 /** 2979 * remap_vmalloc_range - map vmalloc pages to userspace 2980 * @vma: vma to cover (map full range of vma) 2981 * @addr: vmalloc memory 2982 * @pgoff: number of pages into addr before first page to map 2983 * 2984 * Returns: 0 for success, -Exxx on failure 2985 * 2986 * This function checks that addr is a valid vmalloc'ed area, and 2987 * that it is big enough to cover the vma. Will return failure if 2988 * that criteria isn't met. 2989 * 2990 * Similar to remap_pfn_range() (see mm/memory.c) 2991 */ 2992 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2993 unsigned long pgoff) 2994 { 2995 return remap_vmalloc_range_partial(vma, vma->vm_start, 2996 addr + (pgoff << PAGE_SHIFT), 2997 vma->vm_end - vma->vm_start); 2998 } 2999 EXPORT_SYMBOL(remap_vmalloc_range); 3000 3001 /* 3002 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 3003 * have one. 3004 */ 3005 void __weak vmalloc_sync_all(void) 3006 { 3007 } 3008 3009 3010 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 3011 { 3012 pte_t ***p = data; 3013 3014 if (p) { 3015 *(*p) = pte; 3016 (*p)++; 3017 } 3018 return 0; 3019 } 3020 3021 /** 3022 * alloc_vm_area - allocate a range of kernel address space 3023 * @size: size of the area 3024 * @ptes: returns the PTEs for the address space 3025 * 3026 * Returns: NULL on failure, vm_struct on success 3027 * 3028 * This function reserves a range of kernel address space, and 3029 * allocates pagetables to map that range. No actual mappings 3030 * are created. 3031 * 3032 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 3033 * allocated for the VM area are returned. 3034 */ 3035 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 3036 { 3037 struct vm_struct *area; 3038 3039 area = get_vm_area_caller(size, VM_IOREMAP, 3040 __builtin_return_address(0)); 3041 if (area == NULL) 3042 return NULL; 3043 3044 /* 3045 * This ensures that page tables are constructed for this region 3046 * of kernel virtual address space and mapped into init_mm. 3047 */ 3048 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3049 size, f, ptes ? &ptes : NULL)) { 3050 free_vm_area(area); 3051 return NULL; 3052 } 3053 3054 return area; 3055 } 3056 EXPORT_SYMBOL_GPL(alloc_vm_area); 3057 3058 void free_vm_area(struct vm_struct *area) 3059 { 3060 struct vm_struct *ret; 3061 ret = remove_vm_area(area->addr); 3062 BUG_ON(ret != area); 3063 kfree(area); 3064 } 3065 EXPORT_SYMBOL_GPL(free_vm_area); 3066 3067 #ifdef CONFIG_SMP 3068 static struct vmap_area *node_to_va(struct rb_node *n) 3069 { 3070 return rb_entry_safe(n, struct vmap_area, rb_node); 3071 } 3072 3073 /** 3074 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3075 * @addr: target address 3076 * 3077 * Returns: vmap_area if it is found. If there is no such area 3078 * the first highest(reverse order) vmap_area is returned 3079 * i.e. va->va_start < addr && va->va_end < addr or NULL 3080 * if there are no any areas before @addr. 3081 */ 3082 static struct vmap_area * 3083 pvm_find_va_enclose_addr(unsigned long addr) 3084 { 3085 struct vmap_area *va, *tmp; 3086 struct rb_node *n; 3087 3088 n = free_vmap_area_root.rb_node; 3089 va = NULL; 3090 3091 while (n) { 3092 tmp = rb_entry(n, struct vmap_area, rb_node); 3093 if (tmp->va_start <= addr) { 3094 va = tmp; 3095 if (tmp->va_end >= addr) 3096 break; 3097 3098 n = n->rb_right; 3099 } else { 3100 n = n->rb_left; 3101 } 3102 } 3103 3104 return va; 3105 } 3106 3107 /** 3108 * pvm_determine_end_from_reverse - find the highest aligned address 3109 * of free block below VMALLOC_END 3110 * @va: 3111 * in - the VA we start the search(reverse order); 3112 * out - the VA with the highest aligned end address. 3113 * 3114 * Returns: determined end address within vmap_area 3115 */ 3116 static unsigned long 3117 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3118 { 3119 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3120 unsigned long addr; 3121 3122 if (likely(*va)) { 3123 list_for_each_entry_from_reverse((*va), 3124 &free_vmap_area_list, list) { 3125 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3126 if ((*va)->va_start < addr) 3127 return addr; 3128 } 3129 } 3130 3131 return 0; 3132 } 3133 3134 /** 3135 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3136 * @offsets: array containing offset of each area 3137 * @sizes: array containing size of each area 3138 * @nr_vms: the number of areas to allocate 3139 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3140 * 3141 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3142 * vm_structs on success, %NULL on failure 3143 * 3144 * Percpu allocator wants to use congruent vm areas so that it can 3145 * maintain the offsets among percpu areas. This function allocates 3146 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3147 * be scattered pretty far, distance between two areas easily going up 3148 * to gigabytes. To avoid interacting with regular vmallocs, these 3149 * areas are allocated from top. 3150 * 3151 * Despite its complicated look, this allocator is rather simple. It 3152 * does everything top-down and scans free blocks from the end looking 3153 * for matching base. While scanning, if any of the areas do not fit the 3154 * base address is pulled down to fit the area. Scanning is repeated till 3155 * all the areas fit and then all necessary data structures are inserted 3156 * and the result is returned. 3157 */ 3158 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3159 const size_t *sizes, int nr_vms, 3160 size_t align) 3161 { 3162 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3163 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3164 struct vmap_area **vas, *va; 3165 struct vm_struct **vms; 3166 int area, area2, last_area, term_area; 3167 unsigned long base, start, size, end, last_end; 3168 bool purged = false; 3169 enum fit_type type; 3170 3171 /* verify parameters and allocate data structures */ 3172 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3173 for (last_area = 0, area = 0; area < nr_vms; area++) { 3174 start = offsets[area]; 3175 end = start + sizes[area]; 3176 3177 /* is everything aligned properly? */ 3178 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3179 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3180 3181 /* detect the area with the highest address */ 3182 if (start > offsets[last_area]) 3183 last_area = area; 3184 3185 for (area2 = area + 1; area2 < nr_vms; area2++) { 3186 unsigned long start2 = offsets[area2]; 3187 unsigned long end2 = start2 + sizes[area2]; 3188 3189 BUG_ON(start2 < end && start < end2); 3190 } 3191 } 3192 last_end = offsets[last_area] + sizes[last_area]; 3193 3194 if (vmalloc_end - vmalloc_start < last_end) { 3195 WARN_ON(true); 3196 return NULL; 3197 } 3198 3199 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3200 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3201 if (!vas || !vms) 3202 goto err_free2; 3203 3204 for (area = 0; area < nr_vms; area++) { 3205 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3206 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3207 if (!vas[area] || !vms[area]) 3208 goto err_free; 3209 } 3210 retry: 3211 spin_lock(&vmap_area_lock); 3212 3213 /* start scanning - we scan from the top, begin with the last area */ 3214 area = term_area = last_area; 3215 start = offsets[area]; 3216 end = start + sizes[area]; 3217 3218 va = pvm_find_va_enclose_addr(vmalloc_end); 3219 base = pvm_determine_end_from_reverse(&va, align) - end; 3220 3221 while (true) { 3222 /* 3223 * base might have underflowed, add last_end before 3224 * comparing. 3225 */ 3226 if (base + last_end < vmalloc_start + last_end) 3227 goto overflow; 3228 3229 /* 3230 * Fitting base has not been found. 3231 */ 3232 if (va == NULL) 3233 goto overflow; 3234 3235 /* 3236 * If this VA does not fit, move base downwards and recheck. 3237 */ 3238 if (base + start < va->va_start || base + end > va->va_end) { 3239 va = node_to_va(rb_prev(&va->rb_node)); 3240 base = pvm_determine_end_from_reverse(&va, align) - end; 3241 term_area = area; 3242 continue; 3243 } 3244 3245 /* 3246 * This area fits, move on to the previous one. If 3247 * the previous one is the terminal one, we're done. 3248 */ 3249 area = (area + nr_vms - 1) % nr_vms; 3250 if (area == term_area) 3251 break; 3252 3253 start = offsets[area]; 3254 end = start + sizes[area]; 3255 va = pvm_find_va_enclose_addr(base + end); 3256 } 3257 3258 /* we've found a fitting base, insert all va's */ 3259 for (area = 0; area < nr_vms; area++) { 3260 int ret; 3261 3262 start = base + offsets[area]; 3263 size = sizes[area]; 3264 3265 va = pvm_find_va_enclose_addr(start); 3266 if (WARN_ON_ONCE(va == NULL)) 3267 /* It is a BUG(), but trigger recovery instead. */ 3268 goto recovery; 3269 3270 type = classify_va_fit_type(va, start, size); 3271 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3272 /* It is a BUG(), but trigger recovery instead. */ 3273 goto recovery; 3274 3275 ret = adjust_va_to_fit_type(va, start, size, type); 3276 if (unlikely(ret)) 3277 goto recovery; 3278 3279 /* Allocated area. */ 3280 va = vas[area]; 3281 va->va_start = start; 3282 va->va_end = start + size; 3283 3284 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 3285 } 3286 3287 spin_unlock(&vmap_area_lock); 3288 3289 /* insert all vm's */ 3290 for (area = 0; area < nr_vms; area++) 3291 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 3292 pcpu_get_vm_areas); 3293 3294 kfree(vas); 3295 return vms; 3296 3297 recovery: 3298 /* Remove previously inserted areas. */ 3299 while (area--) { 3300 __free_vmap_area(vas[area]); 3301 vas[area] = NULL; 3302 } 3303 3304 overflow: 3305 spin_unlock(&vmap_area_lock); 3306 if (!purged) { 3307 purge_vmap_area_lazy(); 3308 purged = true; 3309 3310 /* Before "retry", check if we recover. */ 3311 for (area = 0; area < nr_vms; area++) { 3312 if (vas[area]) 3313 continue; 3314 3315 vas[area] = kmem_cache_zalloc( 3316 vmap_area_cachep, GFP_KERNEL); 3317 if (!vas[area]) 3318 goto err_free; 3319 } 3320 3321 goto retry; 3322 } 3323 3324 err_free: 3325 for (area = 0; area < nr_vms; area++) { 3326 if (vas[area]) 3327 kmem_cache_free(vmap_area_cachep, vas[area]); 3328 3329 kfree(vms[area]); 3330 } 3331 err_free2: 3332 kfree(vas); 3333 kfree(vms); 3334 return NULL; 3335 } 3336 3337 /** 3338 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3339 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3340 * @nr_vms: the number of allocated areas 3341 * 3342 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3343 */ 3344 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3345 { 3346 int i; 3347 3348 for (i = 0; i < nr_vms; i++) 3349 free_vm_area(vms[i]); 3350 kfree(vms); 3351 } 3352 #endif /* CONFIG_SMP */ 3353 3354 #ifdef CONFIG_PROC_FS 3355 static void *s_start(struct seq_file *m, loff_t *pos) 3356 __acquires(&vmap_area_lock) 3357 { 3358 spin_lock(&vmap_area_lock); 3359 return seq_list_start(&vmap_area_list, *pos); 3360 } 3361 3362 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3363 { 3364 return seq_list_next(p, &vmap_area_list, pos); 3365 } 3366 3367 static void s_stop(struct seq_file *m, void *p) 3368 __releases(&vmap_area_lock) 3369 { 3370 spin_unlock(&vmap_area_lock); 3371 } 3372 3373 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3374 { 3375 if (IS_ENABLED(CONFIG_NUMA)) { 3376 unsigned int nr, *counters = m->private; 3377 3378 if (!counters) 3379 return; 3380 3381 if (v->flags & VM_UNINITIALIZED) 3382 return; 3383 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3384 smp_rmb(); 3385 3386 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3387 3388 for (nr = 0; nr < v->nr_pages; nr++) 3389 counters[page_to_nid(v->pages[nr])]++; 3390 3391 for_each_node_state(nr, N_HIGH_MEMORY) 3392 if (counters[nr]) 3393 seq_printf(m, " N%u=%u", nr, counters[nr]); 3394 } 3395 } 3396 3397 static int s_show(struct seq_file *m, void *p) 3398 { 3399 struct vmap_area *va; 3400 struct vm_struct *v; 3401 3402 va = list_entry(p, struct vmap_area, list); 3403 3404 /* 3405 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 3406 * behalf of vmap area is being tear down or vm_map_ram allocation. 3407 */ 3408 if (!(va->flags & VM_VM_AREA)) { 3409 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 3410 (void *)va->va_start, (void *)va->va_end, 3411 va->va_end - va->va_start, 3412 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 3413 3414 return 0; 3415 } 3416 3417 v = va->vm; 3418 3419 seq_printf(m, "0x%pK-0x%pK %7ld", 3420 v->addr, v->addr + v->size, v->size); 3421 3422 if (v->caller) 3423 seq_printf(m, " %pS", v->caller); 3424 3425 if (v->nr_pages) 3426 seq_printf(m, " pages=%d", v->nr_pages); 3427 3428 if (v->phys_addr) 3429 seq_printf(m, " phys=%pa", &v->phys_addr); 3430 3431 if (v->flags & VM_IOREMAP) 3432 seq_puts(m, " ioremap"); 3433 3434 if (v->flags & VM_ALLOC) 3435 seq_puts(m, " vmalloc"); 3436 3437 if (v->flags & VM_MAP) 3438 seq_puts(m, " vmap"); 3439 3440 if (v->flags & VM_USERMAP) 3441 seq_puts(m, " user"); 3442 3443 if (is_vmalloc_addr(v->pages)) 3444 seq_puts(m, " vpages"); 3445 3446 show_numa_info(m, v); 3447 seq_putc(m, '\n'); 3448 return 0; 3449 } 3450 3451 static const struct seq_operations vmalloc_op = { 3452 .start = s_start, 3453 .next = s_next, 3454 .stop = s_stop, 3455 .show = s_show, 3456 }; 3457 3458 static int __init proc_vmalloc_init(void) 3459 { 3460 if (IS_ENABLED(CONFIG_NUMA)) 3461 proc_create_seq_private("vmallocinfo", 0400, NULL, 3462 &vmalloc_op, 3463 nr_node_ids * sizeof(unsigned int), NULL); 3464 else 3465 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3466 return 0; 3467 } 3468 module_init(proc_vmalloc_init); 3469 3470 #endif 3471