xref: /openbmc/linux/mm/vmalloc.c (revision 78c99ba1)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/pfn.h>
27 #include <linux/kmemleak.h>
28 
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 
33 
34 /*** Page table manipulation functions ***/
35 
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 {
38 	pte_t *pte;
39 
40 	pte = pte_offset_kernel(pmd, addr);
41 	do {
42 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 	} while (pte++, addr += PAGE_SIZE, addr != end);
45 }
46 
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 {
49 	pmd_t *pmd;
50 	unsigned long next;
51 
52 	pmd = pmd_offset(pud, addr);
53 	do {
54 		next = pmd_addr_end(addr, end);
55 		if (pmd_none_or_clear_bad(pmd))
56 			continue;
57 		vunmap_pte_range(pmd, addr, next);
58 	} while (pmd++, addr = next, addr != end);
59 }
60 
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 {
63 	pud_t *pud;
64 	unsigned long next;
65 
66 	pud = pud_offset(pgd, addr);
67 	do {
68 		next = pud_addr_end(addr, end);
69 		if (pud_none_or_clear_bad(pud))
70 			continue;
71 		vunmap_pmd_range(pud, addr, next);
72 	} while (pud++, addr = next, addr != end);
73 }
74 
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 {
77 	pgd_t *pgd;
78 	unsigned long next;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	do {
83 		next = pgd_addr_end(addr, end);
84 		if (pgd_none_or_clear_bad(pgd))
85 			continue;
86 		vunmap_pud_range(pgd, addr, next);
87 	} while (pgd++, addr = next, addr != end);
88 }
89 
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 {
93 	pte_t *pte;
94 
95 	/*
96 	 * nr is a running index into the array which helps higher level
97 	 * callers keep track of where we're up to.
98 	 */
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = pages[*nr];
105 
106 		if (WARN_ON(!pte_none(*pte)))
107 			return -EBUSY;
108 		if (WARN_ON(!page))
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*nr)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 /*
151  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152  * will have pfns corresponding to the "pages" array.
153  *
154  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155  */
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 				   pgprot_t prot, struct page **pages)
158 {
159 	pgd_t *pgd;
160 	unsigned long next;
161 	unsigned long addr = start;
162 	int err = 0;
163 	int nr = 0;
164 
165 	BUG_ON(addr >= end);
166 	pgd = pgd_offset_k(addr);
167 	do {
168 		next = pgd_addr_end(addr, end);
169 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 		if (err)
171 			break;
172 	} while (pgd++, addr = next, addr != end);
173 
174 	if (unlikely(err))
175 		return err;
176 	return nr;
177 }
178 
179 static int vmap_page_range(unsigned long start, unsigned long end,
180 			   pgprot_t prot, struct page **pages)
181 {
182 	int ret;
183 
184 	ret = vmap_page_range_noflush(start, end, prot, pages);
185 	flush_cache_vmap(start, end);
186 	return ret;
187 }
188 
189 static inline int is_vmalloc_or_module_addr(const void *x)
190 {
191 	/*
192 	 * ARM, x86-64 and sparc64 put modules in a special place,
193 	 * and fall back on vmalloc() if that fails. Others
194 	 * just put it in the vmalloc space.
195 	 */
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 	unsigned long addr = (unsigned long)x;
198 	if (addr >= MODULES_VADDR && addr < MODULES_END)
199 		return 1;
200 #endif
201 	return is_vmalloc_addr(x);
202 }
203 
204 /*
205  * Walk a vmap address to the struct page it maps.
206  */
207 struct page *vmalloc_to_page(const void *vmalloc_addr)
208 {
209 	unsigned long addr = (unsigned long) vmalloc_addr;
210 	struct page *page = NULL;
211 	pgd_t *pgd = pgd_offset_k(addr);
212 
213 	/*
214 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 	 * architectures that do not vmalloc module space
216 	 */
217 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
218 
219 	if (!pgd_none(*pgd)) {
220 		pud_t *pud = pud_offset(pgd, addr);
221 		if (!pud_none(*pud)) {
222 			pmd_t *pmd = pmd_offset(pud, addr);
223 			if (!pmd_none(*pmd)) {
224 				pte_t *ptep, pte;
225 
226 				ptep = pte_offset_map(pmd, addr);
227 				pte = *ptep;
228 				if (pte_present(pte))
229 					page = pte_page(pte);
230 				pte_unmap(ptep);
231 			}
232 		}
233 	}
234 	return page;
235 }
236 EXPORT_SYMBOL(vmalloc_to_page);
237 
238 /*
239  * Map a vmalloc()-space virtual address to the physical page frame number.
240  */
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
242 {
243 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
244 }
245 EXPORT_SYMBOL(vmalloc_to_pfn);
246 
247 
248 /*** Global kva allocator ***/
249 
250 #define VM_LAZY_FREE	0x01
251 #define VM_LAZY_FREEING	0x02
252 #define VM_VM_AREA	0x04
253 
254 struct vmap_area {
255 	unsigned long va_start;
256 	unsigned long va_end;
257 	unsigned long flags;
258 	struct rb_node rb_node;		/* address sorted rbtree */
259 	struct list_head list;		/* address sorted list */
260 	struct list_head purge_list;	/* "lazy purge" list */
261 	void *private;
262 	struct rcu_head rcu_head;
263 };
264 
265 static DEFINE_SPINLOCK(vmap_area_lock);
266 static struct rb_root vmap_area_root = RB_ROOT;
267 static LIST_HEAD(vmap_area_list);
268 
269 static struct vmap_area *__find_vmap_area(unsigned long addr)
270 {
271 	struct rb_node *n = vmap_area_root.rb_node;
272 
273 	while (n) {
274 		struct vmap_area *va;
275 
276 		va = rb_entry(n, struct vmap_area, rb_node);
277 		if (addr < va->va_start)
278 			n = n->rb_left;
279 		else if (addr > va->va_start)
280 			n = n->rb_right;
281 		else
282 			return va;
283 	}
284 
285 	return NULL;
286 }
287 
288 static void __insert_vmap_area(struct vmap_area *va)
289 {
290 	struct rb_node **p = &vmap_area_root.rb_node;
291 	struct rb_node *parent = NULL;
292 	struct rb_node *tmp;
293 
294 	while (*p) {
295 		struct vmap_area *tmp;
296 
297 		parent = *p;
298 		tmp = rb_entry(parent, struct vmap_area, rb_node);
299 		if (va->va_start < tmp->va_end)
300 			p = &(*p)->rb_left;
301 		else if (va->va_end > tmp->va_start)
302 			p = &(*p)->rb_right;
303 		else
304 			BUG();
305 	}
306 
307 	rb_link_node(&va->rb_node, parent, p);
308 	rb_insert_color(&va->rb_node, &vmap_area_root);
309 
310 	/* address-sort this list so it is usable like the vmlist */
311 	tmp = rb_prev(&va->rb_node);
312 	if (tmp) {
313 		struct vmap_area *prev;
314 		prev = rb_entry(tmp, struct vmap_area, rb_node);
315 		list_add_rcu(&va->list, &prev->list);
316 	} else
317 		list_add_rcu(&va->list, &vmap_area_list);
318 }
319 
320 static void purge_vmap_area_lazy(void);
321 
322 /*
323  * Allocate a region of KVA of the specified size and alignment, within the
324  * vstart and vend.
325  */
326 static struct vmap_area *alloc_vmap_area(unsigned long size,
327 				unsigned long align,
328 				unsigned long vstart, unsigned long vend,
329 				int node, gfp_t gfp_mask)
330 {
331 	struct vmap_area *va;
332 	struct rb_node *n;
333 	unsigned long addr;
334 	int purged = 0;
335 
336 	BUG_ON(!size);
337 	BUG_ON(size & ~PAGE_MASK);
338 
339 	va = kmalloc_node(sizeof(struct vmap_area),
340 			gfp_mask & GFP_RECLAIM_MASK, node);
341 	if (unlikely(!va))
342 		return ERR_PTR(-ENOMEM);
343 
344 retry:
345 	addr = ALIGN(vstart, align);
346 
347 	spin_lock(&vmap_area_lock);
348 	if (addr + size - 1 < addr)
349 		goto overflow;
350 
351 	/* XXX: could have a last_hole cache */
352 	n = vmap_area_root.rb_node;
353 	if (n) {
354 		struct vmap_area *first = NULL;
355 
356 		do {
357 			struct vmap_area *tmp;
358 			tmp = rb_entry(n, struct vmap_area, rb_node);
359 			if (tmp->va_end >= addr) {
360 				if (!first && tmp->va_start < addr + size)
361 					first = tmp;
362 				n = n->rb_left;
363 			} else {
364 				first = tmp;
365 				n = n->rb_right;
366 			}
367 		} while (n);
368 
369 		if (!first)
370 			goto found;
371 
372 		if (first->va_end < addr) {
373 			n = rb_next(&first->rb_node);
374 			if (n)
375 				first = rb_entry(n, struct vmap_area, rb_node);
376 			else
377 				goto found;
378 		}
379 
380 		while (addr + size > first->va_start && addr + size <= vend) {
381 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
382 			if (addr + size - 1 < addr)
383 				goto overflow;
384 
385 			n = rb_next(&first->rb_node);
386 			if (n)
387 				first = rb_entry(n, struct vmap_area, rb_node);
388 			else
389 				goto found;
390 		}
391 	}
392 found:
393 	if (addr + size > vend) {
394 overflow:
395 		spin_unlock(&vmap_area_lock);
396 		if (!purged) {
397 			purge_vmap_area_lazy();
398 			purged = 1;
399 			goto retry;
400 		}
401 		if (printk_ratelimit())
402 			printk(KERN_WARNING
403 				"vmap allocation for size %lu failed: "
404 				"use vmalloc=<size> to increase size.\n", size);
405 		kfree(va);
406 		return ERR_PTR(-EBUSY);
407 	}
408 
409 	BUG_ON(addr & (align-1));
410 
411 	va->va_start = addr;
412 	va->va_end = addr + size;
413 	va->flags = 0;
414 	__insert_vmap_area(va);
415 	spin_unlock(&vmap_area_lock);
416 
417 	return va;
418 }
419 
420 static void rcu_free_va(struct rcu_head *head)
421 {
422 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
423 
424 	kfree(va);
425 }
426 
427 static void __free_vmap_area(struct vmap_area *va)
428 {
429 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
430 	rb_erase(&va->rb_node, &vmap_area_root);
431 	RB_CLEAR_NODE(&va->rb_node);
432 	list_del_rcu(&va->list);
433 
434 	call_rcu(&va->rcu_head, rcu_free_va);
435 }
436 
437 /*
438  * Free a region of KVA allocated by alloc_vmap_area
439  */
440 static void free_vmap_area(struct vmap_area *va)
441 {
442 	spin_lock(&vmap_area_lock);
443 	__free_vmap_area(va);
444 	spin_unlock(&vmap_area_lock);
445 }
446 
447 /*
448  * Clear the pagetable entries of a given vmap_area
449  */
450 static void unmap_vmap_area(struct vmap_area *va)
451 {
452 	vunmap_page_range(va->va_start, va->va_end);
453 }
454 
455 static void vmap_debug_free_range(unsigned long start, unsigned long end)
456 {
457 	/*
458 	 * Unmap page tables and force a TLB flush immediately if
459 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
460 	 * bugs similarly to those in linear kernel virtual address
461 	 * space after a page has been freed.
462 	 *
463 	 * All the lazy freeing logic is still retained, in order to
464 	 * minimise intrusiveness of this debugging feature.
465 	 *
466 	 * This is going to be *slow* (linear kernel virtual address
467 	 * debugging doesn't do a broadcast TLB flush so it is a lot
468 	 * faster).
469 	 */
470 #ifdef CONFIG_DEBUG_PAGEALLOC
471 	vunmap_page_range(start, end);
472 	flush_tlb_kernel_range(start, end);
473 #endif
474 }
475 
476 /*
477  * lazy_max_pages is the maximum amount of virtual address space we gather up
478  * before attempting to purge with a TLB flush.
479  *
480  * There is a tradeoff here: a larger number will cover more kernel page tables
481  * and take slightly longer to purge, but it will linearly reduce the number of
482  * global TLB flushes that must be performed. It would seem natural to scale
483  * this number up linearly with the number of CPUs (because vmapping activity
484  * could also scale linearly with the number of CPUs), however it is likely
485  * that in practice, workloads might be constrained in other ways that mean
486  * vmap activity will not scale linearly with CPUs. Also, I want to be
487  * conservative and not introduce a big latency on huge systems, so go with
488  * a less aggressive log scale. It will still be an improvement over the old
489  * code, and it will be simple to change the scale factor if we find that it
490  * becomes a problem on bigger systems.
491  */
492 static unsigned long lazy_max_pages(void)
493 {
494 	unsigned int log;
495 
496 	log = fls(num_online_cpus());
497 
498 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
499 }
500 
501 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
502 
503 /*
504  * Purges all lazily-freed vmap areas.
505  *
506  * If sync is 0 then don't purge if there is already a purge in progress.
507  * If force_flush is 1, then flush kernel TLBs between *start and *end even
508  * if we found no lazy vmap areas to unmap (callers can use this to optimise
509  * their own TLB flushing).
510  * Returns with *start = min(*start, lowest purged address)
511  *              *end = max(*end, highest purged address)
512  */
513 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
514 					int sync, int force_flush)
515 {
516 	static DEFINE_SPINLOCK(purge_lock);
517 	LIST_HEAD(valist);
518 	struct vmap_area *va;
519 	struct vmap_area *n_va;
520 	int nr = 0;
521 
522 	/*
523 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
524 	 * should not expect such behaviour. This just simplifies locking for
525 	 * the case that isn't actually used at the moment anyway.
526 	 */
527 	if (!sync && !force_flush) {
528 		if (!spin_trylock(&purge_lock))
529 			return;
530 	} else
531 		spin_lock(&purge_lock);
532 
533 	rcu_read_lock();
534 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
535 		if (va->flags & VM_LAZY_FREE) {
536 			if (va->va_start < *start)
537 				*start = va->va_start;
538 			if (va->va_end > *end)
539 				*end = va->va_end;
540 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
541 			unmap_vmap_area(va);
542 			list_add_tail(&va->purge_list, &valist);
543 			va->flags |= VM_LAZY_FREEING;
544 			va->flags &= ~VM_LAZY_FREE;
545 		}
546 	}
547 	rcu_read_unlock();
548 
549 	if (nr) {
550 		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
551 		atomic_sub(nr, &vmap_lazy_nr);
552 	}
553 
554 	if (nr || force_flush)
555 		flush_tlb_kernel_range(*start, *end);
556 
557 	if (nr) {
558 		spin_lock(&vmap_area_lock);
559 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
560 			__free_vmap_area(va);
561 		spin_unlock(&vmap_area_lock);
562 	}
563 	spin_unlock(&purge_lock);
564 }
565 
566 /*
567  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
568  * is already purging.
569  */
570 static void try_purge_vmap_area_lazy(void)
571 {
572 	unsigned long start = ULONG_MAX, end = 0;
573 
574 	__purge_vmap_area_lazy(&start, &end, 0, 0);
575 }
576 
577 /*
578  * Kick off a purge of the outstanding lazy areas.
579  */
580 static void purge_vmap_area_lazy(void)
581 {
582 	unsigned long start = ULONG_MAX, end = 0;
583 
584 	__purge_vmap_area_lazy(&start, &end, 1, 0);
585 }
586 
587 /*
588  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
589  * called for the correct range previously.
590  */
591 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
592 {
593 	va->flags |= VM_LAZY_FREE;
594 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
595 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
596 		try_purge_vmap_area_lazy();
597 }
598 
599 /*
600  * Free and unmap a vmap area
601  */
602 static void free_unmap_vmap_area(struct vmap_area *va)
603 {
604 	flush_cache_vunmap(va->va_start, va->va_end);
605 	free_unmap_vmap_area_noflush(va);
606 }
607 
608 static struct vmap_area *find_vmap_area(unsigned long addr)
609 {
610 	struct vmap_area *va;
611 
612 	spin_lock(&vmap_area_lock);
613 	va = __find_vmap_area(addr);
614 	spin_unlock(&vmap_area_lock);
615 
616 	return va;
617 }
618 
619 static void free_unmap_vmap_area_addr(unsigned long addr)
620 {
621 	struct vmap_area *va;
622 
623 	va = find_vmap_area(addr);
624 	BUG_ON(!va);
625 	free_unmap_vmap_area(va);
626 }
627 
628 
629 /*** Per cpu kva allocator ***/
630 
631 /*
632  * vmap space is limited especially on 32 bit architectures. Ensure there is
633  * room for at least 16 percpu vmap blocks per CPU.
634  */
635 /*
636  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
637  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
638  * instead (we just need a rough idea)
639  */
640 #if BITS_PER_LONG == 32
641 #define VMALLOC_SPACE		(128UL*1024*1024)
642 #else
643 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
644 #endif
645 
646 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
647 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
648 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
649 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
650 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
651 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
652 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
653 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
654 						VMALLOC_PAGES / NR_CPUS / 16))
655 
656 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
657 
658 static bool vmap_initialized __read_mostly = false;
659 
660 struct vmap_block_queue {
661 	spinlock_t lock;
662 	struct list_head free;
663 	struct list_head dirty;
664 	unsigned int nr_dirty;
665 };
666 
667 struct vmap_block {
668 	spinlock_t lock;
669 	struct vmap_area *va;
670 	struct vmap_block_queue *vbq;
671 	unsigned long free, dirty;
672 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
673 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
674 	union {
675 		struct list_head free_list;
676 		struct rcu_head rcu_head;
677 	};
678 };
679 
680 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
681 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
682 
683 /*
684  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
685  * in the free path. Could get rid of this if we change the API to return a
686  * "cookie" from alloc, to be passed to free. But no big deal yet.
687  */
688 static DEFINE_SPINLOCK(vmap_block_tree_lock);
689 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
690 
691 /*
692  * We should probably have a fallback mechanism to allocate virtual memory
693  * out of partially filled vmap blocks. However vmap block sizing should be
694  * fairly reasonable according to the vmalloc size, so it shouldn't be a
695  * big problem.
696  */
697 
698 static unsigned long addr_to_vb_idx(unsigned long addr)
699 {
700 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
701 	addr /= VMAP_BLOCK_SIZE;
702 	return addr;
703 }
704 
705 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
706 {
707 	struct vmap_block_queue *vbq;
708 	struct vmap_block *vb;
709 	struct vmap_area *va;
710 	unsigned long vb_idx;
711 	int node, err;
712 
713 	node = numa_node_id();
714 
715 	vb = kmalloc_node(sizeof(struct vmap_block),
716 			gfp_mask & GFP_RECLAIM_MASK, node);
717 	if (unlikely(!vb))
718 		return ERR_PTR(-ENOMEM);
719 
720 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
721 					VMALLOC_START, VMALLOC_END,
722 					node, gfp_mask);
723 	if (unlikely(IS_ERR(va))) {
724 		kfree(vb);
725 		return ERR_PTR(PTR_ERR(va));
726 	}
727 
728 	err = radix_tree_preload(gfp_mask);
729 	if (unlikely(err)) {
730 		kfree(vb);
731 		free_vmap_area(va);
732 		return ERR_PTR(err);
733 	}
734 
735 	spin_lock_init(&vb->lock);
736 	vb->va = va;
737 	vb->free = VMAP_BBMAP_BITS;
738 	vb->dirty = 0;
739 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
740 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
741 	INIT_LIST_HEAD(&vb->free_list);
742 
743 	vb_idx = addr_to_vb_idx(va->va_start);
744 	spin_lock(&vmap_block_tree_lock);
745 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
746 	spin_unlock(&vmap_block_tree_lock);
747 	BUG_ON(err);
748 	radix_tree_preload_end();
749 
750 	vbq = &get_cpu_var(vmap_block_queue);
751 	vb->vbq = vbq;
752 	spin_lock(&vbq->lock);
753 	list_add(&vb->free_list, &vbq->free);
754 	spin_unlock(&vbq->lock);
755 	put_cpu_var(vmap_cpu_blocks);
756 
757 	return vb;
758 }
759 
760 static void rcu_free_vb(struct rcu_head *head)
761 {
762 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
763 
764 	kfree(vb);
765 }
766 
767 static void free_vmap_block(struct vmap_block *vb)
768 {
769 	struct vmap_block *tmp;
770 	unsigned long vb_idx;
771 
772 	BUG_ON(!list_empty(&vb->free_list));
773 
774 	vb_idx = addr_to_vb_idx(vb->va->va_start);
775 	spin_lock(&vmap_block_tree_lock);
776 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
777 	spin_unlock(&vmap_block_tree_lock);
778 	BUG_ON(tmp != vb);
779 
780 	free_unmap_vmap_area_noflush(vb->va);
781 	call_rcu(&vb->rcu_head, rcu_free_vb);
782 }
783 
784 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
785 {
786 	struct vmap_block_queue *vbq;
787 	struct vmap_block *vb;
788 	unsigned long addr = 0;
789 	unsigned int order;
790 
791 	BUG_ON(size & ~PAGE_MASK);
792 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
793 	order = get_order(size);
794 
795 again:
796 	rcu_read_lock();
797 	vbq = &get_cpu_var(vmap_block_queue);
798 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
799 		int i;
800 
801 		spin_lock(&vb->lock);
802 		i = bitmap_find_free_region(vb->alloc_map,
803 						VMAP_BBMAP_BITS, order);
804 
805 		if (i >= 0) {
806 			addr = vb->va->va_start + (i << PAGE_SHIFT);
807 			BUG_ON(addr_to_vb_idx(addr) !=
808 					addr_to_vb_idx(vb->va->va_start));
809 			vb->free -= 1UL << order;
810 			if (vb->free == 0) {
811 				spin_lock(&vbq->lock);
812 				list_del_init(&vb->free_list);
813 				spin_unlock(&vbq->lock);
814 			}
815 			spin_unlock(&vb->lock);
816 			break;
817 		}
818 		spin_unlock(&vb->lock);
819 	}
820 	put_cpu_var(vmap_cpu_blocks);
821 	rcu_read_unlock();
822 
823 	if (!addr) {
824 		vb = new_vmap_block(gfp_mask);
825 		if (IS_ERR(vb))
826 			return vb;
827 		goto again;
828 	}
829 
830 	return (void *)addr;
831 }
832 
833 static void vb_free(const void *addr, unsigned long size)
834 {
835 	unsigned long offset;
836 	unsigned long vb_idx;
837 	unsigned int order;
838 	struct vmap_block *vb;
839 
840 	BUG_ON(size & ~PAGE_MASK);
841 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
842 
843 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
844 
845 	order = get_order(size);
846 
847 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
848 
849 	vb_idx = addr_to_vb_idx((unsigned long)addr);
850 	rcu_read_lock();
851 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
852 	rcu_read_unlock();
853 	BUG_ON(!vb);
854 
855 	spin_lock(&vb->lock);
856 	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
857 
858 	vb->dirty += 1UL << order;
859 	if (vb->dirty == VMAP_BBMAP_BITS) {
860 		BUG_ON(vb->free || !list_empty(&vb->free_list));
861 		spin_unlock(&vb->lock);
862 		free_vmap_block(vb);
863 	} else
864 		spin_unlock(&vb->lock);
865 }
866 
867 /**
868  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
869  *
870  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
871  * to amortize TLB flushing overheads. What this means is that any page you
872  * have now, may, in a former life, have been mapped into kernel virtual
873  * address by the vmap layer and so there might be some CPUs with TLB entries
874  * still referencing that page (additional to the regular 1:1 kernel mapping).
875  *
876  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
877  * be sure that none of the pages we have control over will have any aliases
878  * from the vmap layer.
879  */
880 void vm_unmap_aliases(void)
881 {
882 	unsigned long start = ULONG_MAX, end = 0;
883 	int cpu;
884 	int flush = 0;
885 
886 	if (unlikely(!vmap_initialized))
887 		return;
888 
889 	for_each_possible_cpu(cpu) {
890 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
891 		struct vmap_block *vb;
892 
893 		rcu_read_lock();
894 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
895 			int i;
896 
897 			spin_lock(&vb->lock);
898 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
899 			while (i < VMAP_BBMAP_BITS) {
900 				unsigned long s, e;
901 				int j;
902 				j = find_next_zero_bit(vb->dirty_map,
903 					VMAP_BBMAP_BITS, i);
904 
905 				s = vb->va->va_start + (i << PAGE_SHIFT);
906 				e = vb->va->va_start + (j << PAGE_SHIFT);
907 				vunmap_page_range(s, e);
908 				flush = 1;
909 
910 				if (s < start)
911 					start = s;
912 				if (e > end)
913 					end = e;
914 
915 				i = j;
916 				i = find_next_bit(vb->dirty_map,
917 							VMAP_BBMAP_BITS, i);
918 			}
919 			spin_unlock(&vb->lock);
920 		}
921 		rcu_read_unlock();
922 	}
923 
924 	__purge_vmap_area_lazy(&start, &end, 1, flush);
925 }
926 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
927 
928 /**
929  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
930  * @mem: the pointer returned by vm_map_ram
931  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
932  */
933 void vm_unmap_ram(const void *mem, unsigned int count)
934 {
935 	unsigned long size = count << PAGE_SHIFT;
936 	unsigned long addr = (unsigned long)mem;
937 
938 	BUG_ON(!addr);
939 	BUG_ON(addr < VMALLOC_START);
940 	BUG_ON(addr > VMALLOC_END);
941 	BUG_ON(addr & (PAGE_SIZE-1));
942 
943 	debug_check_no_locks_freed(mem, size);
944 	vmap_debug_free_range(addr, addr+size);
945 
946 	if (likely(count <= VMAP_MAX_ALLOC))
947 		vb_free(mem, size);
948 	else
949 		free_unmap_vmap_area_addr(addr);
950 }
951 EXPORT_SYMBOL(vm_unmap_ram);
952 
953 /**
954  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
955  * @pages: an array of pointers to the pages to be mapped
956  * @count: number of pages
957  * @node: prefer to allocate data structures on this node
958  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
959  *
960  * Returns: a pointer to the address that has been mapped, or %NULL on failure
961  */
962 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
963 {
964 	unsigned long size = count << PAGE_SHIFT;
965 	unsigned long addr;
966 	void *mem;
967 
968 	if (likely(count <= VMAP_MAX_ALLOC)) {
969 		mem = vb_alloc(size, GFP_KERNEL);
970 		if (IS_ERR(mem))
971 			return NULL;
972 		addr = (unsigned long)mem;
973 	} else {
974 		struct vmap_area *va;
975 		va = alloc_vmap_area(size, PAGE_SIZE,
976 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
977 		if (IS_ERR(va))
978 			return NULL;
979 
980 		addr = va->va_start;
981 		mem = (void *)addr;
982 	}
983 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
984 		vm_unmap_ram(mem, count);
985 		return NULL;
986 	}
987 	return mem;
988 }
989 EXPORT_SYMBOL(vm_map_ram);
990 
991 /**
992  * vm_area_register_early - register vmap area early during boot
993  * @vm: vm_struct to register
994  * @align: requested alignment
995  *
996  * This function is used to register kernel vm area before
997  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
998  * proper values on entry and other fields should be zero.  On return,
999  * vm->addr contains the allocated address.
1000  *
1001  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1002  */
1003 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1004 {
1005 	static size_t vm_init_off __initdata;
1006 	unsigned long addr;
1007 
1008 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1009 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1010 
1011 	vm->addr = (void *)addr;
1012 
1013 	vm->next = vmlist;
1014 	vmlist = vm;
1015 }
1016 
1017 void __init vmalloc_init(void)
1018 {
1019 	struct vmap_area *va;
1020 	struct vm_struct *tmp;
1021 	int i;
1022 
1023 	for_each_possible_cpu(i) {
1024 		struct vmap_block_queue *vbq;
1025 
1026 		vbq = &per_cpu(vmap_block_queue, i);
1027 		spin_lock_init(&vbq->lock);
1028 		INIT_LIST_HEAD(&vbq->free);
1029 		INIT_LIST_HEAD(&vbq->dirty);
1030 		vbq->nr_dirty = 0;
1031 	}
1032 
1033 	/* Import existing vmlist entries. */
1034 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1035 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1036 		va->flags = tmp->flags | VM_VM_AREA;
1037 		va->va_start = (unsigned long)tmp->addr;
1038 		va->va_end = va->va_start + tmp->size;
1039 		__insert_vmap_area(va);
1040 	}
1041 	vmap_initialized = true;
1042 }
1043 
1044 /**
1045  * map_kernel_range_noflush - map kernel VM area with the specified pages
1046  * @addr: start of the VM area to map
1047  * @size: size of the VM area to map
1048  * @prot: page protection flags to use
1049  * @pages: pages to map
1050  *
1051  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1052  * specify should have been allocated using get_vm_area() and its
1053  * friends.
1054  *
1055  * NOTE:
1056  * This function does NOT do any cache flushing.  The caller is
1057  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1058  * before calling this function.
1059  *
1060  * RETURNS:
1061  * The number of pages mapped on success, -errno on failure.
1062  */
1063 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1064 			     pgprot_t prot, struct page **pages)
1065 {
1066 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1067 }
1068 
1069 /**
1070  * unmap_kernel_range_noflush - unmap kernel VM area
1071  * @addr: start of the VM area to unmap
1072  * @size: size of the VM area to unmap
1073  *
1074  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1075  * specify should have been allocated using get_vm_area() and its
1076  * friends.
1077  *
1078  * NOTE:
1079  * This function does NOT do any cache flushing.  The caller is
1080  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1081  * before calling this function and flush_tlb_kernel_range() after.
1082  */
1083 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1084 {
1085 	vunmap_page_range(addr, addr + size);
1086 }
1087 
1088 /**
1089  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1090  * @addr: start of the VM area to unmap
1091  * @size: size of the VM area to unmap
1092  *
1093  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1094  * the unmapping and tlb after.
1095  */
1096 void unmap_kernel_range(unsigned long addr, unsigned long size)
1097 {
1098 	unsigned long end = addr + size;
1099 
1100 	flush_cache_vunmap(addr, end);
1101 	vunmap_page_range(addr, end);
1102 	flush_tlb_kernel_range(addr, end);
1103 }
1104 
1105 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1106 {
1107 	unsigned long addr = (unsigned long)area->addr;
1108 	unsigned long end = addr + area->size - PAGE_SIZE;
1109 	int err;
1110 
1111 	err = vmap_page_range(addr, end, prot, *pages);
1112 	if (err > 0) {
1113 		*pages += err;
1114 		err = 0;
1115 	}
1116 
1117 	return err;
1118 }
1119 EXPORT_SYMBOL_GPL(map_vm_area);
1120 
1121 /*** Old vmalloc interfaces ***/
1122 DEFINE_RWLOCK(vmlist_lock);
1123 struct vm_struct *vmlist;
1124 
1125 static struct vm_struct *__get_vm_area_node(unsigned long size,
1126 		unsigned long flags, unsigned long start, unsigned long end,
1127 		int node, gfp_t gfp_mask, void *caller)
1128 {
1129 	static struct vmap_area *va;
1130 	struct vm_struct *area;
1131 	struct vm_struct *tmp, **p;
1132 	unsigned long align = 1;
1133 
1134 	BUG_ON(in_interrupt());
1135 	if (flags & VM_IOREMAP) {
1136 		int bit = fls(size);
1137 
1138 		if (bit > IOREMAP_MAX_ORDER)
1139 			bit = IOREMAP_MAX_ORDER;
1140 		else if (bit < PAGE_SHIFT)
1141 			bit = PAGE_SHIFT;
1142 
1143 		align = 1ul << bit;
1144 	}
1145 
1146 	size = PAGE_ALIGN(size);
1147 	if (unlikely(!size))
1148 		return NULL;
1149 
1150 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1151 	if (unlikely(!area))
1152 		return NULL;
1153 
1154 	/*
1155 	 * We always allocate a guard page.
1156 	 */
1157 	size += PAGE_SIZE;
1158 
1159 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1160 	if (IS_ERR(va)) {
1161 		kfree(area);
1162 		return NULL;
1163 	}
1164 
1165 	area->flags = flags;
1166 	area->addr = (void *)va->va_start;
1167 	area->size = size;
1168 	area->pages = NULL;
1169 	area->nr_pages = 0;
1170 	area->phys_addr = 0;
1171 	area->caller = caller;
1172 	va->private = area;
1173 	va->flags |= VM_VM_AREA;
1174 
1175 	write_lock(&vmlist_lock);
1176 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1177 		if (tmp->addr >= area->addr)
1178 			break;
1179 	}
1180 	area->next = *p;
1181 	*p = area;
1182 	write_unlock(&vmlist_lock);
1183 
1184 	return area;
1185 }
1186 
1187 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1188 				unsigned long start, unsigned long end)
1189 {
1190 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1191 						__builtin_return_address(0));
1192 }
1193 EXPORT_SYMBOL_GPL(__get_vm_area);
1194 
1195 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1196 				       unsigned long start, unsigned long end,
1197 				       void *caller)
1198 {
1199 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1200 				  caller);
1201 }
1202 
1203 /**
1204  *	get_vm_area  -  reserve a contiguous kernel virtual area
1205  *	@size:		size of the area
1206  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1207  *
1208  *	Search an area of @size in the kernel virtual mapping area,
1209  *	and reserved it for out purposes.  Returns the area descriptor
1210  *	on success or %NULL on failure.
1211  */
1212 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1213 {
1214 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1215 				-1, GFP_KERNEL, __builtin_return_address(0));
1216 }
1217 
1218 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1219 				void *caller)
1220 {
1221 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1222 						-1, GFP_KERNEL, caller);
1223 }
1224 
1225 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1226 				   int node, gfp_t gfp_mask)
1227 {
1228 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1229 				  gfp_mask, __builtin_return_address(0));
1230 }
1231 
1232 static struct vm_struct *find_vm_area(const void *addr)
1233 {
1234 	struct vmap_area *va;
1235 
1236 	va = find_vmap_area((unsigned long)addr);
1237 	if (va && va->flags & VM_VM_AREA)
1238 		return va->private;
1239 
1240 	return NULL;
1241 }
1242 
1243 /**
1244  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1245  *	@addr:		base address
1246  *
1247  *	Search for the kernel VM area starting at @addr, and remove it.
1248  *	This function returns the found VM area, but using it is NOT safe
1249  *	on SMP machines, except for its size or flags.
1250  */
1251 struct vm_struct *remove_vm_area(const void *addr)
1252 {
1253 	struct vmap_area *va;
1254 
1255 	va = find_vmap_area((unsigned long)addr);
1256 	if (va && va->flags & VM_VM_AREA) {
1257 		struct vm_struct *vm = va->private;
1258 		struct vm_struct *tmp, **p;
1259 
1260 		vmap_debug_free_range(va->va_start, va->va_end);
1261 		free_unmap_vmap_area(va);
1262 		vm->size -= PAGE_SIZE;
1263 
1264 		write_lock(&vmlist_lock);
1265 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1266 			;
1267 		*p = tmp->next;
1268 		write_unlock(&vmlist_lock);
1269 
1270 		return vm;
1271 	}
1272 	return NULL;
1273 }
1274 
1275 static void __vunmap(const void *addr, int deallocate_pages)
1276 {
1277 	struct vm_struct *area;
1278 
1279 	if (!addr)
1280 		return;
1281 
1282 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1283 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1284 		return;
1285 	}
1286 
1287 	area = remove_vm_area(addr);
1288 	if (unlikely(!area)) {
1289 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1290 				addr);
1291 		return;
1292 	}
1293 
1294 	debug_check_no_locks_freed(addr, area->size);
1295 	debug_check_no_obj_freed(addr, area->size);
1296 
1297 	if (deallocate_pages) {
1298 		int i;
1299 
1300 		for (i = 0; i < area->nr_pages; i++) {
1301 			struct page *page = area->pages[i];
1302 
1303 			BUG_ON(!page);
1304 			__free_page(page);
1305 		}
1306 
1307 		if (area->flags & VM_VPAGES)
1308 			vfree(area->pages);
1309 		else
1310 			kfree(area->pages);
1311 	}
1312 
1313 	kfree(area);
1314 	return;
1315 }
1316 
1317 /**
1318  *	vfree  -  release memory allocated by vmalloc()
1319  *	@addr:		memory base address
1320  *
1321  *	Free the virtually continuous memory area starting at @addr, as
1322  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1323  *	NULL, no operation is performed.
1324  *
1325  *	Must not be called in interrupt context.
1326  */
1327 void vfree(const void *addr)
1328 {
1329 	BUG_ON(in_interrupt());
1330 
1331 	kmemleak_free(addr);
1332 
1333 	__vunmap(addr, 1);
1334 }
1335 EXPORT_SYMBOL(vfree);
1336 
1337 /**
1338  *	vunmap  -  release virtual mapping obtained by vmap()
1339  *	@addr:		memory base address
1340  *
1341  *	Free the virtually contiguous memory area starting at @addr,
1342  *	which was created from the page array passed to vmap().
1343  *
1344  *	Must not be called in interrupt context.
1345  */
1346 void vunmap(const void *addr)
1347 {
1348 	BUG_ON(in_interrupt());
1349 	might_sleep();
1350 	__vunmap(addr, 0);
1351 }
1352 EXPORT_SYMBOL(vunmap);
1353 
1354 /**
1355  *	vmap  -  map an array of pages into virtually contiguous space
1356  *	@pages:		array of page pointers
1357  *	@count:		number of pages to map
1358  *	@flags:		vm_area->flags
1359  *	@prot:		page protection for the mapping
1360  *
1361  *	Maps @count pages from @pages into contiguous kernel virtual
1362  *	space.
1363  */
1364 void *vmap(struct page **pages, unsigned int count,
1365 		unsigned long flags, pgprot_t prot)
1366 {
1367 	struct vm_struct *area;
1368 
1369 	might_sleep();
1370 
1371 	if (count > num_physpages)
1372 		return NULL;
1373 
1374 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1375 					__builtin_return_address(0));
1376 	if (!area)
1377 		return NULL;
1378 
1379 	if (map_vm_area(area, prot, &pages)) {
1380 		vunmap(area->addr);
1381 		return NULL;
1382 	}
1383 
1384 	return area->addr;
1385 }
1386 EXPORT_SYMBOL(vmap);
1387 
1388 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1389 			    int node, void *caller);
1390 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1391 				 pgprot_t prot, int node, void *caller)
1392 {
1393 	struct page **pages;
1394 	unsigned int nr_pages, array_size, i;
1395 
1396 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1397 	array_size = (nr_pages * sizeof(struct page *));
1398 
1399 	area->nr_pages = nr_pages;
1400 	/* Please note that the recursion is strictly bounded. */
1401 	if (array_size > PAGE_SIZE) {
1402 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1403 				PAGE_KERNEL, node, caller);
1404 		area->flags |= VM_VPAGES;
1405 	} else {
1406 		pages = kmalloc_node(array_size,
1407 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1408 				node);
1409 	}
1410 	area->pages = pages;
1411 	area->caller = caller;
1412 	if (!area->pages) {
1413 		remove_vm_area(area->addr);
1414 		kfree(area);
1415 		return NULL;
1416 	}
1417 
1418 	for (i = 0; i < area->nr_pages; i++) {
1419 		struct page *page;
1420 
1421 		if (node < 0)
1422 			page = alloc_page(gfp_mask);
1423 		else
1424 			page = alloc_pages_node(node, gfp_mask, 0);
1425 
1426 		if (unlikely(!page)) {
1427 			/* Successfully allocated i pages, free them in __vunmap() */
1428 			area->nr_pages = i;
1429 			goto fail;
1430 		}
1431 		area->pages[i] = page;
1432 	}
1433 
1434 	if (map_vm_area(area, prot, &pages))
1435 		goto fail;
1436 	return area->addr;
1437 
1438 fail:
1439 	vfree(area->addr);
1440 	return NULL;
1441 }
1442 
1443 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1444 {
1445 	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1446 					 __builtin_return_address(0));
1447 
1448 	/*
1449 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1450 	 * structures allocated in the __get_vm_area_node() function contain
1451 	 * references to the virtual address of the vmalloc'ed block.
1452 	 */
1453 	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1454 
1455 	return addr;
1456 }
1457 
1458 /**
1459  *	__vmalloc_node  -  allocate virtually contiguous memory
1460  *	@size:		allocation size
1461  *	@gfp_mask:	flags for the page level allocator
1462  *	@prot:		protection mask for the allocated pages
1463  *	@node:		node to use for allocation or -1
1464  *	@caller:	caller's return address
1465  *
1466  *	Allocate enough pages to cover @size from the page level
1467  *	allocator with @gfp_mask flags.  Map them into contiguous
1468  *	kernel virtual space, using a pagetable protection of @prot.
1469  */
1470 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1471 						int node, void *caller)
1472 {
1473 	struct vm_struct *area;
1474 	void *addr;
1475 	unsigned long real_size = size;
1476 
1477 	size = PAGE_ALIGN(size);
1478 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
1479 		return NULL;
1480 
1481 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1482 						node, gfp_mask, caller);
1483 
1484 	if (!area)
1485 		return NULL;
1486 
1487 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1488 
1489 	/*
1490 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1491 	 * structures allocated in the __get_vm_area_node() function contain
1492 	 * references to the virtual address of the vmalloc'ed block.
1493 	 */
1494 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1495 
1496 	return addr;
1497 }
1498 
1499 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1500 {
1501 	return __vmalloc_node(size, gfp_mask, prot, -1,
1502 				__builtin_return_address(0));
1503 }
1504 EXPORT_SYMBOL(__vmalloc);
1505 
1506 /**
1507  *	vmalloc  -  allocate virtually contiguous memory
1508  *	@size:		allocation size
1509  *	Allocate enough pages to cover @size from the page level
1510  *	allocator and map them into contiguous kernel virtual space.
1511  *
1512  *	For tight control over page level allocator and protection flags
1513  *	use __vmalloc() instead.
1514  */
1515 void *vmalloc(unsigned long size)
1516 {
1517 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1518 					-1, __builtin_return_address(0));
1519 }
1520 EXPORT_SYMBOL(vmalloc);
1521 
1522 /**
1523  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1524  * @size: allocation size
1525  *
1526  * The resulting memory area is zeroed so it can be mapped to userspace
1527  * without leaking data.
1528  */
1529 void *vmalloc_user(unsigned long size)
1530 {
1531 	struct vm_struct *area;
1532 	void *ret;
1533 
1534 	ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1535 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1536 	if (ret) {
1537 		area = find_vm_area(ret);
1538 		area->flags |= VM_USERMAP;
1539 	}
1540 	return ret;
1541 }
1542 EXPORT_SYMBOL(vmalloc_user);
1543 
1544 /**
1545  *	vmalloc_node  -  allocate memory on a specific node
1546  *	@size:		allocation size
1547  *	@node:		numa node
1548  *
1549  *	Allocate enough pages to cover @size from the page level
1550  *	allocator and map them into contiguous kernel virtual space.
1551  *
1552  *	For tight control over page level allocator and protection flags
1553  *	use __vmalloc() instead.
1554  */
1555 void *vmalloc_node(unsigned long size, int node)
1556 {
1557 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1558 					node, __builtin_return_address(0));
1559 }
1560 EXPORT_SYMBOL(vmalloc_node);
1561 
1562 #ifndef PAGE_KERNEL_EXEC
1563 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1564 #endif
1565 
1566 /**
1567  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1568  *	@size:		allocation size
1569  *
1570  *	Kernel-internal function to allocate enough pages to cover @size
1571  *	the page level allocator and map them into contiguous and
1572  *	executable kernel virtual space.
1573  *
1574  *	For tight control over page level allocator and protection flags
1575  *	use __vmalloc() instead.
1576  */
1577 
1578 void *vmalloc_exec(unsigned long size)
1579 {
1580 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1581 			      -1, __builtin_return_address(0));
1582 }
1583 
1584 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1585 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1586 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1587 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1588 #else
1589 #define GFP_VMALLOC32 GFP_KERNEL
1590 #endif
1591 
1592 /**
1593  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1594  *	@size:		allocation size
1595  *
1596  *	Allocate enough 32bit PA addressable pages to cover @size from the
1597  *	page level allocator and map them into contiguous kernel virtual space.
1598  */
1599 void *vmalloc_32(unsigned long size)
1600 {
1601 	return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1602 			      -1, __builtin_return_address(0));
1603 }
1604 EXPORT_SYMBOL(vmalloc_32);
1605 
1606 /**
1607  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1608  *	@size:		allocation size
1609  *
1610  * The resulting memory area is 32bit addressable and zeroed so it can be
1611  * mapped to userspace without leaking data.
1612  */
1613 void *vmalloc_32_user(unsigned long size)
1614 {
1615 	struct vm_struct *area;
1616 	void *ret;
1617 
1618 	ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1619 			     -1, __builtin_return_address(0));
1620 	if (ret) {
1621 		area = find_vm_area(ret);
1622 		area->flags |= VM_USERMAP;
1623 	}
1624 	return ret;
1625 }
1626 EXPORT_SYMBOL(vmalloc_32_user);
1627 
1628 long vread(char *buf, char *addr, unsigned long count)
1629 {
1630 	struct vm_struct *tmp;
1631 	char *vaddr, *buf_start = buf;
1632 	unsigned long n;
1633 
1634 	/* Don't allow overflow */
1635 	if ((unsigned long) addr + count < count)
1636 		count = -(unsigned long) addr;
1637 
1638 	read_lock(&vmlist_lock);
1639 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1640 		vaddr = (char *) tmp->addr;
1641 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1642 			continue;
1643 		while (addr < vaddr) {
1644 			if (count == 0)
1645 				goto finished;
1646 			*buf = '\0';
1647 			buf++;
1648 			addr++;
1649 			count--;
1650 		}
1651 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1652 		do {
1653 			if (count == 0)
1654 				goto finished;
1655 			*buf = *addr;
1656 			buf++;
1657 			addr++;
1658 			count--;
1659 		} while (--n > 0);
1660 	}
1661 finished:
1662 	read_unlock(&vmlist_lock);
1663 	return buf - buf_start;
1664 }
1665 
1666 long vwrite(char *buf, char *addr, unsigned long count)
1667 {
1668 	struct vm_struct *tmp;
1669 	char *vaddr, *buf_start = buf;
1670 	unsigned long n;
1671 
1672 	/* Don't allow overflow */
1673 	if ((unsigned long) addr + count < count)
1674 		count = -(unsigned long) addr;
1675 
1676 	read_lock(&vmlist_lock);
1677 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1678 		vaddr = (char *) tmp->addr;
1679 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1680 			continue;
1681 		while (addr < vaddr) {
1682 			if (count == 0)
1683 				goto finished;
1684 			buf++;
1685 			addr++;
1686 			count--;
1687 		}
1688 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1689 		do {
1690 			if (count == 0)
1691 				goto finished;
1692 			*addr = *buf;
1693 			buf++;
1694 			addr++;
1695 			count--;
1696 		} while (--n > 0);
1697 	}
1698 finished:
1699 	read_unlock(&vmlist_lock);
1700 	return buf - buf_start;
1701 }
1702 
1703 /**
1704  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1705  *	@vma:		vma to cover (map full range of vma)
1706  *	@addr:		vmalloc memory
1707  *	@pgoff:		number of pages into addr before first page to map
1708  *
1709  *	Returns:	0 for success, -Exxx on failure
1710  *
1711  *	This function checks that addr is a valid vmalloc'ed area, and
1712  *	that it is big enough to cover the vma. Will return failure if
1713  *	that criteria isn't met.
1714  *
1715  *	Similar to remap_pfn_range() (see mm/memory.c)
1716  */
1717 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1718 						unsigned long pgoff)
1719 {
1720 	struct vm_struct *area;
1721 	unsigned long uaddr = vma->vm_start;
1722 	unsigned long usize = vma->vm_end - vma->vm_start;
1723 
1724 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1725 		return -EINVAL;
1726 
1727 	area = find_vm_area(addr);
1728 	if (!area)
1729 		return -EINVAL;
1730 
1731 	if (!(area->flags & VM_USERMAP))
1732 		return -EINVAL;
1733 
1734 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1735 		return -EINVAL;
1736 
1737 	addr += pgoff << PAGE_SHIFT;
1738 	do {
1739 		struct page *page = vmalloc_to_page(addr);
1740 		int ret;
1741 
1742 		ret = vm_insert_page(vma, uaddr, page);
1743 		if (ret)
1744 			return ret;
1745 
1746 		uaddr += PAGE_SIZE;
1747 		addr += PAGE_SIZE;
1748 		usize -= PAGE_SIZE;
1749 	} while (usize > 0);
1750 
1751 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1752 	vma->vm_flags |= VM_RESERVED;
1753 
1754 	return 0;
1755 }
1756 EXPORT_SYMBOL(remap_vmalloc_range);
1757 
1758 /*
1759  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1760  * have one.
1761  */
1762 void  __attribute__((weak)) vmalloc_sync_all(void)
1763 {
1764 }
1765 
1766 
1767 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1768 {
1769 	/* apply_to_page_range() does all the hard work. */
1770 	return 0;
1771 }
1772 
1773 /**
1774  *	alloc_vm_area - allocate a range of kernel address space
1775  *	@size:		size of the area
1776  *
1777  *	Returns:	NULL on failure, vm_struct on success
1778  *
1779  *	This function reserves a range of kernel address space, and
1780  *	allocates pagetables to map that range.  No actual mappings
1781  *	are created.  If the kernel address space is not shared
1782  *	between processes, it syncs the pagetable across all
1783  *	processes.
1784  */
1785 struct vm_struct *alloc_vm_area(size_t size)
1786 {
1787 	struct vm_struct *area;
1788 
1789 	area = get_vm_area_caller(size, VM_IOREMAP,
1790 				__builtin_return_address(0));
1791 	if (area == NULL)
1792 		return NULL;
1793 
1794 	/*
1795 	 * This ensures that page tables are constructed for this region
1796 	 * of kernel virtual address space and mapped into init_mm.
1797 	 */
1798 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1799 				area->size, f, NULL)) {
1800 		free_vm_area(area);
1801 		return NULL;
1802 	}
1803 
1804 	/* Make sure the pagetables are constructed in process kernel
1805 	   mappings */
1806 	vmalloc_sync_all();
1807 
1808 	return area;
1809 }
1810 EXPORT_SYMBOL_GPL(alloc_vm_area);
1811 
1812 void free_vm_area(struct vm_struct *area)
1813 {
1814 	struct vm_struct *ret;
1815 	ret = remove_vm_area(area->addr);
1816 	BUG_ON(ret != area);
1817 	kfree(area);
1818 }
1819 EXPORT_SYMBOL_GPL(free_vm_area);
1820 
1821 
1822 #ifdef CONFIG_PROC_FS
1823 static void *s_start(struct seq_file *m, loff_t *pos)
1824 {
1825 	loff_t n = *pos;
1826 	struct vm_struct *v;
1827 
1828 	read_lock(&vmlist_lock);
1829 	v = vmlist;
1830 	while (n > 0 && v) {
1831 		n--;
1832 		v = v->next;
1833 	}
1834 	if (!n)
1835 		return v;
1836 
1837 	return NULL;
1838 
1839 }
1840 
1841 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1842 {
1843 	struct vm_struct *v = p;
1844 
1845 	++*pos;
1846 	return v->next;
1847 }
1848 
1849 static void s_stop(struct seq_file *m, void *p)
1850 {
1851 	read_unlock(&vmlist_lock);
1852 }
1853 
1854 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1855 {
1856 	if (NUMA_BUILD) {
1857 		unsigned int nr, *counters = m->private;
1858 
1859 		if (!counters)
1860 			return;
1861 
1862 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1863 
1864 		for (nr = 0; nr < v->nr_pages; nr++)
1865 			counters[page_to_nid(v->pages[nr])]++;
1866 
1867 		for_each_node_state(nr, N_HIGH_MEMORY)
1868 			if (counters[nr])
1869 				seq_printf(m, " N%u=%u", nr, counters[nr]);
1870 	}
1871 }
1872 
1873 static int s_show(struct seq_file *m, void *p)
1874 {
1875 	struct vm_struct *v = p;
1876 
1877 	seq_printf(m, "0x%p-0x%p %7ld",
1878 		v->addr, v->addr + v->size, v->size);
1879 
1880 	if (v->caller) {
1881 		char buff[KSYM_SYMBOL_LEN];
1882 
1883 		seq_putc(m, ' ');
1884 		sprint_symbol(buff, (unsigned long)v->caller);
1885 		seq_puts(m, buff);
1886 	}
1887 
1888 	if (v->nr_pages)
1889 		seq_printf(m, " pages=%d", v->nr_pages);
1890 
1891 	if (v->phys_addr)
1892 		seq_printf(m, " phys=%lx", v->phys_addr);
1893 
1894 	if (v->flags & VM_IOREMAP)
1895 		seq_printf(m, " ioremap");
1896 
1897 	if (v->flags & VM_ALLOC)
1898 		seq_printf(m, " vmalloc");
1899 
1900 	if (v->flags & VM_MAP)
1901 		seq_printf(m, " vmap");
1902 
1903 	if (v->flags & VM_USERMAP)
1904 		seq_printf(m, " user");
1905 
1906 	if (v->flags & VM_VPAGES)
1907 		seq_printf(m, " vpages");
1908 
1909 	show_numa_info(m, v);
1910 	seq_putc(m, '\n');
1911 	return 0;
1912 }
1913 
1914 static const struct seq_operations vmalloc_op = {
1915 	.start = s_start,
1916 	.next = s_next,
1917 	.stop = s_stop,
1918 	.show = s_show,
1919 };
1920 
1921 static int vmalloc_open(struct inode *inode, struct file *file)
1922 {
1923 	unsigned int *ptr = NULL;
1924 	int ret;
1925 
1926 	if (NUMA_BUILD)
1927 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1928 	ret = seq_open(file, &vmalloc_op);
1929 	if (!ret) {
1930 		struct seq_file *m = file->private_data;
1931 		m->private = ptr;
1932 	} else
1933 		kfree(ptr);
1934 	return ret;
1935 }
1936 
1937 static const struct file_operations proc_vmalloc_operations = {
1938 	.open		= vmalloc_open,
1939 	.read		= seq_read,
1940 	.llseek		= seq_lseek,
1941 	.release	= seq_release_private,
1942 };
1943 
1944 static int __init proc_vmalloc_init(void)
1945 {
1946 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1947 	return 0;
1948 }
1949 module_init(proc_vmalloc_init);
1950 #endif
1951 
1952