xref: /openbmc/linux/mm/vmalloc.c (revision 76a4f7cc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38 #include <linux/pgtable.h>
39 #include <linux/uaccess.h>
40 #include <linux/hugetlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/shmparam.h>
43 
44 #include "internal.h"
45 #include "pgalloc-track.h"
46 
47 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
48 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
49 
50 static int __init set_nohugeiomap(char *str)
51 {
52 	ioremap_max_page_shift = PAGE_SHIFT;
53 	return 0;
54 }
55 early_param("nohugeiomap", set_nohugeiomap);
56 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
57 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
58 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 
60 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
61 static bool __ro_after_init vmap_allow_huge = true;
62 
63 static int __init set_nohugevmalloc(char *str)
64 {
65 	vmap_allow_huge = false;
66 	return 0;
67 }
68 early_param("nohugevmalloc", set_nohugevmalloc);
69 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
70 static const bool vmap_allow_huge = false;
71 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 
73 bool is_vmalloc_addr(const void *x)
74 {
75 	unsigned long addr = (unsigned long)x;
76 
77 	return addr >= VMALLOC_START && addr < VMALLOC_END;
78 }
79 EXPORT_SYMBOL(is_vmalloc_addr);
80 
81 struct vfree_deferred {
82 	struct llist_head list;
83 	struct work_struct wq;
84 };
85 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
86 
87 static void __vunmap(const void *, int);
88 
89 static void free_work(struct work_struct *w)
90 {
91 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
92 	struct llist_node *t, *llnode;
93 
94 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
95 		__vunmap((void *)llnode, 1);
96 }
97 
98 /*** Page table manipulation functions ***/
99 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
100 			phys_addr_t phys_addr, pgprot_t prot,
101 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
102 {
103 	pte_t *pte;
104 	u64 pfn;
105 	unsigned long size = PAGE_SIZE;
106 
107 	pfn = phys_addr >> PAGE_SHIFT;
108 	pte = pte_alloc_kernel_track(pmd, addr, mask);
109 	if (!pte)
110 		return -ENOMEM;
111 	do {
112 		BUG_ON(!pte_none(*pte));
113 
114 #ifdef CONFIG_HUGETLB_PAGE
115 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
116 		if (size != PAGE_SIZE) {
117 			pte_t entry = pfn_pte(pfn, prot);
118 
119 			entry = pte_mkhuge(entry);
120 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
121 			set_huge_pte_at(&init_mm, addr, pte, entry);
122 			pfn += PFN_DOWN(size);
123 			continue;
124 		}
125 #endif
126 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
127 		pfn++;
128 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
129 	*mask |= PGTBL_PTE_MODIFIED;
130 	return 0;
131 }
132 
133 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
134 			phys_addr_t phys_addr, pgprot_t prot,
135 			unsigned int max_page_shift)
136 {
137 	if (max_page_shift < PMD_SHIFT)
138 		return 0;
139 
140 	if (!arch_vmap_pmd_supported(prot))
141 		return 0;
142 
143 	if ((end - addr) != PMD_SIZE)
144 		return 0;
145 
146 	if (!IS_ALIGNED(addr, PMD_SIZE))
147 		return 0;
148 
149 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
150 		return 0;
151 
152 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
153 		return 0;
154 
155 	return pmd_set_huge(pmd, phys_addr, prot);
156 }
157 
158 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
159 			phys_addr_t phys_addr, pgprot_t prot,
160 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
161 {
162 	pmd_t *pmd;
163 	unsigned long next;
164 
165 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
166 	if (!pmd)
167 		return -ENOMEM;
168 	do {
169 		next = pmd_addr_end(addr, end);
170 
171 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
172 					max_page_shift)) {
173 			*mask |= PGTBL_PMD_MODIFIED;
174 			continue;
175 		}
176 
177 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
178 			return -ENOMEM;
179 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
180 	return 0;
181 }
182 
183 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
184 			phys_addr_t phys_addr, pgprot_t prot,
185 			unsigned int max_page_shift)
186 {
187 	if (max_page_shift < PUD_SHIFT)
188 		return 0;
189 
190 	if (!arch_vmap_pud_supported(prot))
191 		return 0;
192 
193 	if ((end - addr) != PUD_SIZE)
194 		return 0;
195 
196 	if (!IS_ALIGNED(addr, PUD_SIZE))
197 		return 0;
198 
199 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
200 		return 0;
201 
202 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
203 		return 0;
204 
205 	return pud_set_huge(pud, phys_addr, prot);
206 }
207 
208 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
209 			phys_addr_t phys_addr, pgprot_t prot,
210 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
211 {
212 	pud_t *pud;
213 	unsigned long next;
214 
215 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
216 	if (!pud)
217 		return -ENOMEM;
218 	do {
219 		next = pud_addr_end(addr, end);
220 
221 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
222 					max_page_shift)) {
223 			*mask |= PGTBL_PUD_MODIFIED;
224 			continue;
225 		}
226 
227 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
228 					max_page_shift, mask))
229 			return -ENOMEM;
230 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
231 	return 0;
232 }
233 
234 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
235 			phys_addr_t phys_addr, pgprot_t prot,
236 			unsigned int max_page_shift)
237 {
238 	if (max_page_shift < P4D_SHIFT)
239 		return 0;
240 
241 	if (!arch_vmap_p4d_supported(prot))
242 		return 0;
243 
244 	if ((end - addr) != P4D_SIZE)
245 		return 0;
246 
247 	if (!IS_ALIGNED(addr, P4D_SIZE))
248 		return 0;
249 
250 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
251 		return 0;
252 
253 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
254 		return 0;
255 
256 	return p4d_set_huge(p4d, phys_addr, prot);
257 }
258 
259 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
260 			phys_addr_t phys_addr, pgprot_t prot,
261 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
262 {
263 	p4d_t *p4d;
264 	unsigned long next;
265 
266 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
267 	if (!p4d)
268 		return -ENOMEM;
269 	do {
270 		next = p4d_addr_end(addr, end);
271 
272 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
273 					max_page_shift)) {
274 			*mask |= PGTBL_P4D_MODIFIED;
275 			continue;
276 		}
277 
278 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
279 					max_page_shift, mask))
280 			return -ENOMEM;
281 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
282 	return 0;
283 }
284 
285 static int vmap_range_noflush(unsigned long addr, unsigned long end,
286 			phys_addr_t phys_addr, pgprot_t prot,
287 			unsigned int max_page_shift)
288 {
289 	pgd_t *pgd;
290 	unsigned long start;
291 	unsigned long next;
292 	int err;
293 	pgtbl_mod_mask mask = 0;
294 
295 	might_sleep();
296 	BUG_ON(addr >= end);
297 
298 	start = addr;
299 	pgd = pgd_offset_k(addr);
300 	do {
301 		next = pgd_addr_end(addr, end);
302 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
303 					max_page_shift, &mask);
304 		if (err)
305 			break;
306 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
307 
308 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
309 		arch_sync_kernel_mappings(start, end);
310 
311 	return err;
312 }
313 
314 int ioremap_page_range(unsigned long addr, unsigned long end,
315 		phys_addr_t phys_addr, pgprot_t prot)
316 {
317 	int err;
318 
319 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
320 				 ioremap_max_page_shift);
321 	flush_cache_vmap(addr, end);
322 	return err;
323 }
324 
325 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
326 			     pgtbl_mod_mask *mask)
327 {
328 	pte_t *pte;
329 
330 	pte = pte_offset_kernel(pmd, addr);
331 	do {
332 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
333 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
334 	} while (pte++, addr += PAGE_SIZE, addr != end);
335 	*mask |= PGTBL_PTE_MODIFIED;
336 }
337 
338 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
339 			     pgtbl_mod_mask *mask)
340 {
341 	pmd_t *pmd;
342 	unsigned long next;
343 	int cleared;
344 
345 	pmd = pmd_offset(pud, addr);
346 	do {
347 		next = pmd_addr_end(addr, end);
348 
349 		cleared = pmd_clear_huge(pmd);
350 		if (cleared || pmd_bad(*pmd))
351 			*mask |= PGTBL_PMD_MODIFIED;
352 
353 		if (cleared)
354 			continue;
355 		if (pmd_none_or_clear_bad(pmd))
356 			continue;
357 		vunmap_pte_range(pmd, addr, next, mask);
358 
359 		cond_resched();
360 	} while (pmd++, addr = next, addr != end);
361 }
362 
363 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
364 			     pgtbl_mod_mask *mask)
365 {
366 	pud_t *pud;
367 	unsigned long next;
368 	int cleared;
369 
370 	pud = pud_offset(p4d, addr);
371 	do {
372 		next = pud_addr_end(addr, end);
373 
374 		cleared = pud_clear_huge(pud);
375 		if (cleared || pud_bad(*pud))
376 			*mask |= PGTBL_PUD_MODIFIED;
377 
378 		if (cleared)
379 			continue;
380 		if (pud_none_or_clear_bad(pud))
381 			continue;
382 		vunmap_pmd_range(pud, addr, next, mask);
383 	} while (pud++, addr = next, addr != end);
384 }
385 
386 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
387 			     pgtbl_mod_mask *mask)
388 {
389 	p4d_t *p4d;
390 	unsigned long next;
391 	int cleared;
392 
393 	p4d = p4d_offset(pgd, addr);
394 	do {
395 		next = p4d_addr_end(addr, end);
396 
397 		cleared = p4d_clear_huge(p4d);
398 		if (cleared || p4d_bad(*p4d))
399 			*mask |= PGTBL_P4D_MODIFIED;
400 
401 		if (cleared)
402 			continue;
403 		if (p4d_none_or_clear_bad(p4d))
404 			continue;
405 		vunmap_pud_range(p4d, addr, next, mask);
406 	} while (p4d++, addr = next, addr != end);
407 }
408 
409 /*
410  * vunmap_range_noflush is similar to vunmap_range, but does not
411  * flush caches or TLBs.
412  *
413  * The caller is responsible for calling flush_cache_vmap() before calling
414  * this function, and flush_tlb_kernel_range after it has returned
415  * successfully (and before the addresses are expected to cause a page fault
416  * or be re-mapped for something else, if TLB flushes are being delayed or
417  * coalesced).
418  *
419  * This is an internal function only. Do not use outside mm/.
420  */
421 void vunmap_range_noflush(unsigned long start, unsigned long end)
422 {
423 	unsigned long next;
424 	pgd_t *pgd;
425 	unsigned long addr = start;
426 	pgtbl_mod_mask mask = 0;
427 
428 	BUG_ON(addr >= end);
429 	pgd = pgd_offset_k(addr);
430 	do {
431 		next = pgd_addr_end(addr, end);
432 		if (pgd_bad(*pgd))
433 			mask |= PGTBL_PGD_MODIFIED;
434 		if (pgd_none_or_clear_bad(pgd))
435 			continue;
436 		vunmap_p4d_range(pgd, addr, next, &mask);
437 	} while (pgd++, addr = next, addr != end);
438 
439 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
440 		arch_sync_kernel_mappings(start, end);
441 }
442 
443 /**
444  * vunmap_range - unmap kernel virtual addresses
445  * @addr: start of the VM area to unmap
446  * @end: end of the VM area to unmap (non-inclusive)
447  *
448  * Clears any present PTEs in the virtual address range, flushes TLBs and
449  * caches. Any subsequent access to the address before it has been re-mapped
450  * is a kernel bug.
451  */
452 void vunmap_range(unsigned long addr, unsigned long end)
453 {
454 	flush_cache_vunmap(addr, end);
455 	vunmap_range_noflush(addr, end);
456 	flush_tlb_kernel_range(addr, end);
457 }
458 
459 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
460 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
461 		pgtbl_mod_mask *mask)
462 {
463 	pte_t *pte;
464 
465 	/*
466 	 * nr is a running index into the array which helps higher level
467 	 * callers keep track of where we're up to.
468 	 */
469 
470 	pte = pte_alloc_kernel_track(pmd, addr, mask);
471 	if (!pte)
472 		return -ENOMEM;
473 	do {
474 		struct page *page = pages[*nr];
475 
476 		if (WARN_ON(!pte_none(*pte)))
477 			return -EBUSY;
478 		if (WARN_ON(!page))
479 			return -ENOMEM;
480 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
481 		(*nr)++;
482 	} while (pte++, addr += PAGE_SIZE, addr != end);
483 	*mask |= PGTBL_PTE_MODIFIED;
484 	return 0;
485 }
486 
487 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
488 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
489 		pgtbl_mod_mask *mask)
490 {
491 	pmd_t *pmd;
492 	unsigned long next;
493 
494 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
495 	if (!pmd)
496 		return -ENOMEM;
497 	do {
498 		next = pmd_addr_end(addr, end);
499 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
500 			return -ENOMEM;
501 	} while (pmd++, addr = next, addr != end);
502 	return 0;
503 }
504 
505 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
506 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
507 		pgtbl_mod_mask *mask)
508 {
509 	pud_t *pud;
510 	unsigned long next;
511 
512 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
513 	if (!pud)
514 		return -ENOMEM;
515 	do {
516 		next = pud_addr_end(addr, end);
517 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
518 			return -ENOMEM;
519 	} while (pud++, addr = next, addr != end);
520 	return 0;
521 }
522 
523 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
524 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
525 		pgtbl_mod_mask *mask)
526 {
527 	p4d_t *p4d;
528 	unsigned long next;
529 
530 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
531 	if (!p4d)
532 		return -ENOMEM;
533 	do {
534 		next = p4d_addr_end(addr, end);
535 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
536 			return -ENOMEM;
537 	} while (p4d++, addr = next, addr != end);
538 	return 0;
539 }
540 
541 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
542 		pgprot_t prot, struct page **pages)
543 {
544 	unsigned long start = addr;
545 	pgd_t *pgd;
546 	unsigned long next;
547 	int err = 0;
548 	int nr = 0;
549 	pgtbl_mod_mask mask = 0;
550 
551 	BUG_ON(addr >= end);
552 	pgd = pgd_offset_k(addr);
553 	do {
554 		next = pgd_addr_end(addr, end);
555 		if (pgd_bad(*pgd))
556 			mask |= PGTBL_PGD_MODIFIED;
557 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
558 		if (err)
559 			return err;
560 	} while (pgd++, addr = next, addr != end);
561 
562 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
563 		arch_sync_kernel_mappings(start, end);
564 
565 	return 0;
566 }
567 
568 /*
569  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
570  * flush caches.
571  *
572  * The caller is responsible for calling flush_cache_vmap() after this
573  * function returns successfully and before the addresses are accessed.
574  *
575  * This is an internal function only. Do not use outside mm/.
576  */
577 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
578 		pgprot_t prot, struct page **pages, unsigned int page_shift)
579 {
580 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
581 
582 	WARN_ON(page_shift < PAGE_SHIFT);
583 
584 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
585 			page_shift == PAGE_SHIFT)
586 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
587 
588 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
589 		int err;
590 
591 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
592 					__pa(page_address(pages[i])), prot,
593 					page_shift);
594 		if (err)
595 			return err;
596 
597 		addr += 1UL << page_shift;
598 	}
599 
600 	return 0;
601 }
602 
603 /**
604  * vmap_pages_range - map pages to a kernel virtual address
605  * @addr: start of the VM area to map
606  * @end: end of the VM area to map (non-inclusive)
607  * @prot: page protection flags to use
608  * @pages: pages to map (always PAGE_SIZE pages)
609  * @page_shift: maximum shift that the pages may be mapped with, @pages must
610  * be aligned and contiguous up to at least this shift.
611  *
612  * RETURNS:
613  * 0 on success, -errno on failure.
614  */
615 static int vmap_pages_range(unsigned long addr, unsigned long end,
616 		pgprot_t prot, struct page **pages, unsigned int page_shift)
617 {
618 	int err;
619 
620 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
621 	flush_cache_vmap(addr, end);
622 	return err;
623 }
624 
625 int is_vmalloc_or_module_addr(const void *x)
626 {
627 	/*
628 	 * ARM, x86-64 and sparc64 put modules in a special place,
629 	 * and fall back on vmalloc() if that fails. Others
630 	 * just put it in the vmalloc space.
631 	 */
632 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
633 	unsigned long addr = (unsigned long)x;
634 	if (addr >= MODULES_VADDR && addr < MODULES_END)
635 		return 1;
636 #endif
637 	return is_vmalloc_addr(x);
638 }
639 
640 /*
641  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
642  * return the tail page that corresponds to the base page address, which
643  * matches small vmap mappings.
644  */
645 struct page *vmalloc_to_page(const void *vmalloc_addr)
646 {
647 	unsigned long addr = (unsigned long) vmalloc_addr;
648 	struct page *page = NULL;
649 	pgd_t *pgd = pgd_offset_k(addr);
650 	p4d_t *p4d;
651 	pud_t *pud;
652 	pmd_t *pmd;
653 	pte_t *ptep, pte;
654 
655 	/*
656 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
657 	 * architectures that do not vmalloc module space
658 	 */
659 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
660 
661 	if (pgd_none(*pgd))
662 		return NULL;
663 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
664 		return NULL; /* XXX: no allowance for huge pgd */
665 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
666 		return NULL;
667 
668 	p4d = p4d_offset(pgd, addr);
669 	if (p4d_none(*p4d))
670 		return NULL;
671 	if (p4d_leaf(*p4d))
672 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
673 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
674 		return NULL;
675 
676 	pud = pud_offset(p4d, addr);
677 	if (pud_none(*pud))
678 		return NULL;
679 	if (pud_leaf(*pud))
680 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
681 	if (WARN_ON_ONCE(pud_bad(*pud)))
682 		return NULL;
683 
684 	pmd = pmd_offset(pud, addr);
685 	if (pmd_none(*pmd))
686 		return NULL;
687 	if (pmd_leaf(*pmd))
688 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
689 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
690 		return NULL;
691 
692 	ptep = pte_offset_map(pmd, addr);
693 	pte = *ptep;
694 	if (pte_present(pte))
695 		page = pte_page(pte);
696 	pte_unmap(ptep);
697 
698 	return page;
699 }
700 EXPORT_SYMBOL(vmalloc_to_page);
701 
702 /*
703  * Map a vmalloc()-space virtual address to the physical page frame number.
704  */
705 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
706 {
707 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
708 }
709 EXPORT_SYMBOL(vmalloc_to_pfn);
710 
711 
712 /*** Global kva allocator ***/
713 
714 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
715 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
716 
717 
718 static DEFINE_SPINLOCK(vmap_area_lock);
719 static DEFINE_SPINLOCK(free_vmap_area_lock);
720 /* Export for kexec only */
721 LIST_HEAD(vmap_area_list);
722 static struct rb_root vmap_area_root = RB_ROOT;
723 static bool vmap_initialized __read_mostly;
724 
725 static struct rb_root purge_vmap_area_root = RB_ROOT;
726 static LIST_HEAD(purge_vmap_area_list);
727 static DEFINE_SPINLOCK(purge_vmap_area_lock);
728 
729 /*
730  * This kmem_cache is used for vmap_area objects. Instead of
731  * allocating from slab we reuse an object from this cache to
732  * make things faster. Especially in "no edge" splitting of
733  * free block.
734  */
735 static struct kmem_cache *vmap_area_cachep;
736 
737 /*
738  * This linked list is used in pair with free_vmap_area_root.
739  * It gives O(1) access to prev/next to perform fast coalescing.
740  */
741 static LIST_HEAD(free_vmap_area_list);
742 
743 /*
744  * This augment red-black tree represents the free vmap space.
745  * All vmap_area objects in this tree are sorted by va->va_start
746  * address. It is used for allocation and merging when a vmap
747  * object is released.
748  *
749  * Each vmap_area node contains a maximum available free block
750  * of its sub-tree, right or left. Therefore it is possible to
751  * find a lowest match of free area.
752  */
753 static struct rb_root free_vmap_area_root = RB_ROOT;
754 
755 /*
756  * Preload a CPU with one object for "no edge" split case. The
757  * aim is to get rid of allocations from the atomic context, thus
758  * to use more permissive allocation masks.
759  */
760 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
761 
762 static __always_inline unsigned long
763 va_size(struct vmap_area *va)
764 {
765 	return (va->va_end - va->va_start);
766 }
767 
768 static __always_inline unsigned long
769 get_subtree_max_size(struct rb_node *node)
770 {
771 	struct vmap_area *va;
772 
773 	va = rb_entry_safe(node, struct vmap_area, rb_node);
774 	return va ? va->subtree_max_size : 0;
775 }
776 
777 /*
778  * Gets called when remove the node and rotate.
779  */
780 static __always_inline unsigned long
781 compute_subtree_max_size(struct vmap_area *va)
782 {
783 	return max3(va_size(va),
784 		get_subtree_max_size(va->rb_node.rb_left),
785 		get_subtree_max_size(va->rb_node.rb_right));
786 }
787 
788 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
789 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
790 
791 static void purge_vmap_area_lazy(void);
792 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
793 static unsigned long lazy_max_pages(void);
794 
795 static atomic_long_t nr_vmalloc_pages;
796 
797 unsigned long vmalloc_nr_pages(void)
798 {
799 	return atomic_long_read(&nr_vmalloc_pages);
800 }
801 
802 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
803 {
804 	struct vmap_area *va = NULL;
805 	struct rb_node *n = vmap_area_root.rb_node;
806 
807 	while (n) {
808 		struct vmap_area *tmp;
809 
810 		tmp = rb_entry(n, struct vmap_area, rb_node);
811 		if (tmp->va_end > addr) {
812 			va = tmp;
813 			if (tmp->va_start <= addr)
814 				break;
815 
816 			n = n->rb_left;
817 		} else
818 			n = n->rb_right;
819 	}
820 
821 	return va;
822 }
823 
824 static struct vmap_area *__find_vmap_area(unsigned long addr)
825 {
826 	struct rb_node *n = vmap_area_root.rb_node;
827 
828 	while (n) {
829 		struct vmap_area *va;
830 
831 		va = rb_entry(n, struct vmap_area, rb_node);
832 		if (addr < va->va_start)
833 			n = n->rb_left;
834 		else if (addr >= va->va_end)
835 			n = n->rb_right;
836 		else
837 			return va;
838 	}
839 
840 	return NULL;
841 }
842 
843 /*
844  * This function returns back addresses of parent node
845  * and its left or right link for further processing.
846  *
847  * Otherwise NULL is returned. In that case all further
848  * steps regarding inserting of conflicting overlap range
849  * have to be declined and actually considered as a bug.
850  */
851 static __always_inline struct rb_node **
852 find_va_links(struct vmap_area *va,
853 	struct rb_root *root, struct rb_node *from,
854 	struct rb_node **parent)
855 {
856 	struct vmap_area *tmp_va;
857 	struct rb_node **link;
858 
859 	if (root) {
860 		link = &root->rb_node;
861 		if (unlikely(!*link)) {
862 			*parent = NULL;
863 			return link;
864 		}
865 	} else {
866 		link = &from;
867 	}
868 
869 	/*
870 	 * Go to the bottom of the tree. When we hit the last point
871 	 * we end up with parent rb_node and correct direction, i name
872 	 * it link, where the new va->rb_node will be attached to.
873 	 */
874 	do {
875 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
876 
877 		/*
878 		 * During the traversal we also do some sanity check.
879 		 * Trigger the BUG() if there are sides(left/right)
880 		 * or full overlaps.
881 		 */
882 		if (va->va_start < tmp_va->va_end &&
883 				va->va_end <= tmp_va->va_start)
884 			link = &(*link)->rb_left;
885 		else if (va->va_end > tmp_va->va_start &&
886 				va->va_start >= tmp_va->va_end)
887 			link = &(*link)->rb_right;
888 		else {
889 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
890 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
891 
892 			return NULL;
893 		}
894 	} while (*link);
895 
896 	*parent = &tmp_va->rb_node;
897 	return link;
898 }
899 
900 static __always_inline struct list_head *
901 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
902 {
903 	struct list_head *list;
904 
905 	if (unlikely(!parent))
906 		/*
907 		 * The red-black tree where we try to find VA neighbors
908 		 * before merging or inserting is empty, i.e. it means
909 		 * there is no free vmap space. Normally it does not
910 		 * happen but we handle this case anyway.
911 		 */
912 		return NULL;
913 
914 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
915 	return (&parent->rb_right == link ? list->next : list);
916 }
917 
918 static __always_inline void
919 link_va(struct vmap_area *va, struct rb_root *root,
920 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
921 {
922 	/*
923 	 * VA is still not in the list, but we can
924 	 * identify its future previous list_head node.
925 	 */
926 	if (likely(parent)) {
927 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
928 		if (&parent->rb_right != link)
929 			head = head->prev;
930 	}
931 
932 	/* Insert to the rb-tree */
933 	rb_link_node(&va->rb_node, parent, link);
934 	if (root == &free_vmap_area_root) {
935 		/*
936 		 * Some explanation here. Just perform simple insertion
937 		 * to the tree. We do not set va->subtree_max_size to
938 		 * its current size before calling rb_insert_augmented().
939 		 * It is because of we populate the tree from the bottom
940 		 * to parent levels when the node _is_ in the tree.
941 		 *
942 		 * Therefore we set subtree_max_size to zero after insertion,
943 		 * to let __augment_tree_propagate_from() puts everything to
944 		 * the correct order later on.
945 		 */
946 		rb_insert_augmented(&va->rb_node,
947 			root, &free_vmap_area_rb_augment_cb);
948 		va->subtree_max_size = 0;
949 	} else {
950 		rb_insert_color(&va->rb_node, root);
951 	}
952 
953 	/* Address-sort this list */
954 	list_add(&va->list, head);
955 }
956 
957 static __always_inline void
958 unlink_va(struct vmap_area *va, struct rb_root *root)
959 {
960 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
961 		return;
962 
963 	if (root == &free_vmap_area_root)
964 		rb_erase_augmented(&va->rb_node,
965 			root, &free_vmap_area_rb_augment_cb);
966 	else
967 		rb_erase(&va->rb_node, root);
968 
969 	list_del(&va->list);
970 	RB_CLEAR_NODE(&va->rb_node);
971 }
972 
973 #if DEBUG_AUGMENT_PROPAGATE_CHECK
974 static void
975 augment_tree_propagate_check(void)
976 {
977 	struct vmap_area *va;
978 	unsigned long computed_size;
979 
980 	list_for_each_entry(va, &free_vmap_area_list, list) {
981 		computed_size = compute_subtree_max_size(va);
982 		if (computed_size != va->subtree_max_size)
983 			pr_emerg("tree is corrupted: %lu, %lu\n",
984 				va_size(va), va->subtree_max_size);
985 	}
986 }
987 #endif
988 
989 /*
990  * This function populates subtree_max_size from bottom to upper
991  * levels starting from VA point. The propagation must be done
992  * when VA size is modified by changing its va_start/va_end. Or
993  * in case of newly inserting of VA to the tree.
994  *
995  * It means that __augment_tree_propagate_from() must be called:
996  * - After VA has been inserted to the tree(free path);
997  * - After VA has been shrunk(allocation path);
998  * - After VA has been increased(merging path).
999  *
1000  * Please note that, it does not mean that upper parent nodes
1001  * and their subtree_max_size are recalculated all the time up
1002  * to the root node.
1003  *
1004  *       4--8
1005  *        /\
1006  *       /  \
1007  *      /    \
1008  *    2--2  8--8
1009  *
1010  * For example if we modify the node 4, shrinking it to 2, then
1011  * no any modification is required. If we shrink the node 2 to 1
1012  * its subtree_max_size is updated only, and set to 1. If we shrink
1013  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1014  * node becomes 4--6.
1015  */
1016 static __always_inline void
1017 augment_tree_propagate_from(struct vmap_area *va)
1018 {
1019 	/*
1020 	 * Populate the tree from bottom towards the root until
1021 	 * the calculated maximum available size of checked node
1022 	 * is equal to its current one.
1023 	 */
1024 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1025 
1026 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1027 	augment_tree_propagate_check();
1028 #endif
1029 }
1030 
1031 static void
1032 insert_vmap_area(struct vmap_area *va,
1033 	struct rb_root *root, struct list_head *head)
1034 {
1035 	struct rb_node **link;
1036 	struct rb_node *parent;
1037 
1038 	link = find_va_links(va, root, NULL, &parent);
1039 	if (link)
1040 		link_va(va, root, parent, link, head);
1041 }
1042 
1043 static void
1044 insert_vmap_area_augment(struct vmap_area *va,
1045 	struct rb_node *from, struct rb_root *root,
1046 	struct list_head *head)
1047 {
1048 	struct rb_node **link;
1049 	struct rb_node *parent;
1050 
1051 	if (from)
1052 		link = find_va_links(va, NULL, from, &parent);
1053 	else
1054 		link = find_va_links(va, root, NULL, &parent);
1055 
1056 	if (link) {
1057 		link_va(va, root, parent, link, head);
1058 		augment_tree_propagate_from(va);
1059 	}
1060 }
1061 
1062 /*
1063  * Merge de-allocated chunk of VA memory with previous
1064  * and next free blocks. If coalesce is not done a new
1065  * free area is inserted. If VA has been merged, it is
1066  * freed.
1067  *
1068  * Please note, it can return NULL in case of overlap
1069  * ranges, followed by WARN() report. Despite it is a
1070  * buggy behaviour, a system can be alive and keep
1071  * ongoing.
1072  */
1073 static __always_inline struct vmap_area *
1074 merge_or_add_vmap_area(struct vmap_area *va,
1075 	struct rb_root *root, struct list_head *head)
1076 {
1077 	struct vmap_area *sibling;
1078 	struct list_head *next;
1079 	struct rb_node **link;
1080 	struct rb_node *parent;
1081 	bool merged = false;
1082 
1083 	/*
1084 	 * Find a place in the tree where VA potentially will be
1085 	 * inserted, unless it is merged with its sibling/siblings.
1086 	 */
1087 	link = find_va_links(va, root, NULL, &parent);
1088 	if (!link)
1089 		return NULL;
1090 
1091 	/*
1092 	 * Get next node of VA to check if merging can be done.
1093 	 */
1094 	next = get_va_next_sibling(parent, link);
1095 	if (unlikely(next == NULL))
1096 		goto insert;
1097 
1098 	/*
1099 	 * start            end
1100 	 * |                |
1101 	 * |<------VA------>|<-----Next----->|
1102 	 *                  |                |
1103 	 *                  start            end
1104 	 */
1105 	if (next != head) {
1106 		sibling = list_entry(next, struct vmap_area, list);
1107 		if (sibling->va_start == va->va_end) {
1108 			sibling->va_start = va->va_start;
1109 
1110 			/* Free vmap_area object. */
1111 			kmem_cache_free(vmap_area_cachep, va);
1112 
1113 			/* Point to the new merged area. */
1114 			va = sibling;
1115 			merged = true;
1116 		}
1117 	}
1118 
1119 	/*
1120 	 * start            end
1121 	 * |                |
1122 	 * |<-----Prev----->|<------VA------>|
1123 	 *                  |                |
1124 	 *                  start            end
1125 	 */
1126 	if (next->prev != head) {
1127 		sibling = list_entry(next->prev, struct vmap_area, list);
1128 		if (sibling->va_end == va->va_start) {
1129 			/*
1130 			 * If both neighbors are coalesced, it is important
1131 			 * to unlink the "next" node first, followed by merging
1132 			 * with "previous" one. Otherwise the tree might not be
1133 			 * fully populated if a sibling's augmented value is
1134 			 * "normalized" because of rotation operations.
1135 			 */
1136 			if (merged)
1137 				unlink_va(va, root);
1138 
1139 			sibling->va_end = va->va_end;
1140 
1141 			/* Free vmap_area object. */
1142 			kmem_cache_free(vmap_area_cachep, va);
1143 
1144 			/* Point to the new merged area. */
1145 			va = sibling;
1146 			merged = true;
1147 		}
1148 	}
1149 
1150 insert:
1151 	if (!merged)
1152 		link_va(va, root, parent, link, head);
1153 
1154 	return va;
1155 }
1156 
1157 static __always_inline struct vmap_area *
1158 merge_or_add_vmap_area_augment(struct vmap_area *va,
1159 	struct rb_root *root, struct list_head *head)
1160 {
1161 	va = merge_or_add_vmap_area(va, root, head);
1162 	if (va)
1163 		augment_tree_propagate_from(va);
1164 
1165 	return va;
1166 }
1167 
1168 static __always_inline bool
1169 is_within_this_va(struct vmap_area *va, unsigned long size,
1170 	unsigned long align, unsigned long vstart)
1171 {
1172 	unsigned long nva_start_addr;
1173 
1174 	if (va->va_start > vstart)
1175 		nva_start_addr = ALIGN(va->va_start, align);
1176 	else
1177 		nva_start_addr = ALIGN(vstart, align);
1178 
1179 	/* Can be overflowed due to big size or alignment. */
1180 	if (nva_start_addr + size < nva_start_addr ||
1181 			nva_start_addr < vstart)
1182 		return false;
1183 
1184 	return (nva_start_addr + size <= va->va_end);
1185 }
1186 
1187 /*
1188  * Find the first free block(lowest start address) in the tree,
1189  * that will accomplish the request corresponding to passing
1190  * parameters.
1191  */
1192 static __always_inline struct vmap_area *
1193 find_vmap_lowest_match(unsigned long size,
1194 	unsigned long align, unsigned long vstart)
1195 {
1196 	struct vmap_area *va;
1197 	struct rb_node *node;
1198 	unsigned long length;
1199 
1200 	/* Start from the root. */
1201 	node = free_vmap_area_root.rb_node;
1202 
1203 	/* Adjust the search size for alignment overhead. */
1204 	length = size + align - 1;
1205 
1206 	while (node) {
1207 		va = rb_entry(node, struct vmap_area, rb_node);
1208 
1209 		if (get_subtree_max_size(node->rb_left) >= length &&
1210 				vstart < va->va_start) {
1211 			node = node->rb_left;
1212 		} else {
1213 			if (is_within_this_va(va, size, align, vstart))
1214 				return va;
1215 
1216 			/*
1217 			 * Does not make sense to go deeper towards the right
1218 			 * sub-tree if it does not have a free block that is
1219 			 * equal or bigger to the requested search length.
1220 			 */
1221 			if (get_subtree_max_size(node->rb_right) >= length) {
1222 				node = node->rb_right;
1223 				continue;
1224 			}
1225 
1226 			/*
1227 			 * OK. We roll back and find the first right sub-tree,
1228 			 * that will satisfy the search criteria. It can happen
1229 			 * only once due to "vstart" restriction.
1230 			 */
1231 			while ((node = rb_parent(node))) {
1232 				va = rb_entry(node, struct vmap_area, rb_node);
1233 				if (is_within_this_va(va, size, align, vstart))
1234 					return va;
1235 
1236 				if (get_subtree_max_size(node->rb_right) >= length &&
1237 						vstart <= va->va_start) {
1238 					node = node->rb_right;
1239 					break;
1240 				}
1241 			}
1242 		}
1243 	}
1244 
1245 	return NULL;
1246 }
1247 
1248 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1249 #include <linux/random.h>
1250 
1251 static struct vmap_area *
1252 find_vmap_lowest_linear_match(unsigned long size,
1253 	unsigned long align, unsigned long vstart)
1254 {
1255 	struct vmap_area *va;
1256 
1257 	list_for_each_entry(va, &free_vmap_area_list, list) {
1258 		if (!is_within_this_va(va, size, align, vstart))
1259 			continue;
1260 
1261 		return va;
1262 	}
1263 
1264 	return NULL;
1265 }
1266 
1267 static void
1268 find_vmap_lowest_match_check(unsigned long size)
1269 {
1270 	struct vmap_area *va_1, *va_2;
1271 	unsigned long vstart;
1272 	unsigned int rnd;
1273 
1274 	get_random_bytes(&rnd, sizeof(rnd));
1275 	vstart = VMALLOC_START + rnd;
1276 
1277 	va_1 = find_vmap_lowest_match(size, 1, vstart);
1278 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1279 
1280 	if (va_1 != va_2)
1281 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1282 			va_1, va_2, vstart);
1283 }
1284 #endif
1285 
1286 enum fit_type {
1287 	NOTHING_FIT = 0,
1288 	FL_FIT_TYPE = 1,	/* full fit */
1289 	LE_FIT_TYPE = 2,	/* left edge fit */
1290 	RE_FIT_TYPE = 3,	/* right edge fit */
1291 	NE_FIT_TYPE = 4		/* no edge fit */
1292 };
1293 
1294 static __always_inline enum fit_type
1295 classify_va_fit_type(struct vmap_area *va,
1296 	unsigned long nva_start_addr, unsigned long size)
1297 {
1298 	enum fit_type type;
1299 
1300 	/* Check if it is within VA. */
1301 	if (nva_start_addr < va->va_start ||
1302 			nva_start_addr + size > va->va_end)
1303 		return NOTHING_FIT;
1304 
1305 	/* Now classify. */
1306 	if (va->va_start == nva_start_addr) {
1307 		if (va->va_end == nva_start_addr + size)
1308 			type = FL_FIT_TYPE;
1309 		else
1310 			type = LE_FIT_TYPE;
1311 	} else if (va->va_end == nva_start_addr + size) {
1312 		type = RE_FIT_TYPE;
1313 	} else {
1314 		type = NE_FIT_TYPE;
1315 	}
1316 
1317 	return type;
1318 }
1319 
1320 static __always_inline int
1321 adjust_va_to_fit_type(struct vmap_area *va,
1322 	unsigned long nva_start_addr, unsigned long size,
1323 	enum fit_type type)
1324 {
1325 	struct vmap_area *lva = NULL;
1326 
1327 	if (type == FL_FIT_TYPE) {
1328 		/*
1329 		 * No need to split VA, it fully fits.
1330 		 *
1331 		 * |               |
1332 		 * V      NVA      V
1333 		 * |---------------|
1334 		 */
1335 		unlink_va(va, &free_vmap_area_root);
1336 		kmem_cache_free(vmap_area_cachep, va);
1337 	} else if (type == LE_FIT_TYPE) {
1338 		/*
1339 		 * Split left edge of fit VA.
1340 		 *
1341 		 * |       |
1342 		 * V  NVA  V   R
1343 		 * |-------|-------|
1344 		 */
1345 		va->va_start += size;
1346 	} else if (type == RE_FIT_TYPE) {
1347 		/*
1348 		 * Split right edge of fit VA.
1349 		 *
1350 		 *         |       |
1351 		 *     L   V  NVA  V
1352 		 * |-------|-------|
1353 		 */
1354 		va->va_end = nva_start_addr;
1355 	} else if (type == NE_FIT_TYPE) {
1356 		/*
1357 		 * Split no edge of fit VA.
1358 		 *
1359 		 *     |       |
1360 		 *   L V  NVA  V R
1361 		 * |---|-------|---|
1362 		 */
1363 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1364 		if (unlikely(!lva)) {
1365 			/*
1366 			 * For percpu allocator we do not do any pre-allocation
1367 			 * and leave it as it is. The reason is it most likely
1368 			 * never ends up with NE_FIT_TYPE splitting. In case of
1369 			 * percpu allocations offsets and sizes are aligned to
1370 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1371 			 * are its main fitting cases.
1372 			 *
1373 			 * There are a few exceptions though, as an example it is
1374 			 * a first allocation (early boot up) when we have "one"
1375 			 * big free space that has to be split.
1376 			 *
1377 			 * Also we can hit this path in case of regular "vmap"
1378 			 * allocations, if "this" current CPU was not preloaded.
1379 			 * See the comment in alloc_vmap_area() why. If so, then
1380 			 * GFP_NOWAIT is used instead to get an extra object for
1381 			 * split purpose. That is rare and most time does not
1382 			 * occur.
1383 			 *
1384 			 * What happens if an allocation gets failed. Basically,
1385 			 * an "overflow" path is triggered to purge lazily freed
1386 			 * areas to free some memory, then, the "retry" path is
1387 			 * triggered to repeat one more time. See more details
1388 			 * in alloc_vmap_area() function.
1389 			 */
1390 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1391 			if (!lva)
1392 				return -1;
1393 		}
1394 
1395 		/*
1396 		 * Build the remainder.
1397 		 */
1398 		lva->va_start = va->va_start;
1399 		lva->va_end = nva_start_addr;
1400 
1401 		/*
1402 		 * Shrink this VA to remaining size.
1403 		 */
1404 		va->va_start = nva_start_addr + size;
1405 	} else {
1406 		return -1;
1407 	}
1408 
1409 	if (type != FL_FIT_TYPE) {
1410 		augment_tree_propagate_from(va);
1411 
1412 		if (lva)	/* type == NE_FIT_TYPE */
1413 			insert_vmap_area_augment(lva, &va->rb_node,
1414 				&free_vmap_area_root, &free_vmap_area_list);
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 /*
1421  * Returns a start address of the newly allocated area, if success.
1422  * Otherwise a vend is returned that indicates failure.
1423  */
1424 static __always_inline unsigned long
1425 __alloc_vmap_area(unsigned long size, unsigned long align,
1426 	unsigned long vstart, unsigned long vend)
1427 {
1428 	unsigned long nva_start_addr;
1429 	struct vmap_area *va;
1430 	enum fit_type type;
1431 	int ret;
1432 
1433 	va = find_vmap_lowest_match(size, align, vstart);
1434 	if (unlikely(!va))
1435 		return vend;
1436 
1437 	if (va->va_start > vstart)
1438 		nva_start_addr = ALIGN(va->va_start, align);
1439 	else
1440 		nva_start_addr = ALIGN(vstart, align);
1441 
1442 	/* Check the "vend" restriction. */
1443 	if (nva_start_addr + size > vend)
1444 		return vend;
1445 
1446 	/* Classify what we have found. */
1447 	type = classify_va_fit_type(va, nva_start_addr, size);
1448 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1449 		return vend;
1450 
1451 	/* Update the free vmap_area. */
1452 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1453 	if (ret)
1454 		return vend;
1455 
1456 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1457 	find_vmap_lowest_match_check(size);
1458 #endif
1459 
1460 	return nva_start_addr;
1461 }
1462 
1463 /*
1464  * Free a region of KVA allocated by alloc_vmap_area
1465  */
1466 static void free_vmap_area(struct vmap_area *va)
1467 {
1468 	/*
1469 	 * Remove from the busy tree/list.
1470 	 */
1471 	spin_lock(&vmap_area_lock);
1472 	unlink_va(va, &vmap_area_root);
1473 	spin_unlock(&vmap_area_lock);
1474 
1475 	/*
1476 	 * Insert/Merge it back to the free tree/list.
1477 	 */
1478 	spin_lock(&free_vmap_area_lock);
1479 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1480 	spin_unlock(&free_vmap_area_lock);
1481 }
1482 
1483 static inline void
1484 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1485 {
1486 	struct vmap_area *va = NULL;
1487 
1488 	/*
1489 	 * Preload this CPU with one extra vmap_area object. It is used
1490 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1491 	 * a CPU that does an allocation is preloaded.
1492 	 *
1493 	 * We do it in non-atomic context, thus it allows us to use more
1494 	 * permissive allocation masks to be more stable under low memory
1495 	 * condition and high memory pressure.
1496 	 */
1497 	if (!this_cpu_read(ne_fit_preload_node))
1498 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1499 
1500 	spin_lock(lock);
1501 
1502 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1503 		kmem_cache_free(vmap_area_cachep, va);
1504 }
1505 
1506 /*
1507  * Allocate a region of KVA of the specified size and alignment, within the
1508  * vstart and vend.
1509  */
1510 static struct vmap_area *alloc_vmap_area(unsigned long size,
1511 				unsigned long align,
1512 				unsigned long vstart, unsigned long vend,
1513 				int node, gfp_t gfp_mask)
1514 {
1515 	struct vmap_area *va;
1516 	unsigned long freed;
1517 	unsigned long addr;
1518 	int purged = 0;
1519 	int ret;
1520 
1521 	BUG_ON(!size);
1522 	BUG_ON(offset_in_page(size));
1523 	BUG_ON(!is_power_of_2(align));
1524 
1525 	if (unlikely(!vmap_initialized))
1526 		return ERR_PTR(-EBUSY);
1527 
1528 	might_sleep();
1529 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1530 
1531 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1532 	if (unlikely(!va))
1533 		return ERR_PTR(-ENOMEM);
1534 
1535 	/*
1536 	 * Only scan the relevant parts containing pointers to other objects
1537 	 * to avoid false negatives.
1538 	 */
1539 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1540 
1541 retry:
1542 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1543 	addr = __alloc_vmap_area(size, align, vstart, vend);
1544 	spin_unlock(&free_vmap_area_lock);
1545 
1546 	/*
1547 	 * If an allocation fails, the "vend" address is
1548 	 * returned. Therefore trigger the overflow path.
1549 	 */
1550 	if (unlikely(addr == vend))
1551 		goto overflow;
1552 
1553 	va->va_start = addr;
1554 	va->va_end = addr + size;
1555 	va->vm = NULL;
1556 
1557 	spin_lock(&vmap_area_lock);
1558 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1559 	spin_unlock(&vmap_area_lock);
1560 
1561 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1562 	BUG_ON(va->va_start < vstart);
1563 	BUG_ON(va->va_end > vend);
1564 
1565 	ret = kasan_populate_vmalloc(addr, size);
1566 	if (ret) {
1567 		free_vmap_area(va);
1568 		return ERR_PTR(ret);
1569 	}
1570 
1571 	return va;
1572 
1573 overflow:
1574 	if (!purged) {
1575 		purge_vmap_area_lazy();
1576 		purged = 1;
1577 		goto retry;
1578 	}
1579 
1580 	freed = 0;
1581 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1582 
1583 	if (freed > 0) {
1584 		purged = 0;
1585 		goto retry;
1586 	}
1587 
1588 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1589 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1590 			size);
1591 
1592 	kmem_cache_free(vmap_area_cachep, va);
1593 	return ERR_PTR(-EBUSY);
1594 }
1595 
1596 int register_vmap_purge_notifier(struct notifier_block *nb)
1597 {
1598 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1599 }
1600 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1601 
1602 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1603 {
1604 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1605 }
1606 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1607 
1608 /*
1609  * lazy_max_pages is the maximum amount of virtual address space we gather up
1610  * before attempting to purge with a TLB flush.
1611  *
1612  * There is a tradeoff here: a larger number will cover more kernel page tables
1613  * and take slightly longer to purge, but it will linearly reduce the number of
1614  * global TLB flushes that must be performed. It would seem natural to scale
1615  * this number up linearly with the number of CPUs (because vmapping activity
1616  * could also scale linearly with the number of CPUs), however it is likely
1617  * that in practice, workloads might be constrained in other ways that mean
1618  * vmap activity will not scale linearly with CPUs. Also, I want to be
1619  * conservative and not introduce a big latency on huge systems, so go with
1620  * a less aggressive log scale. It will still be an improvement over the old
1621  * code, and it will be simple to change the scale factor if we find that it
1622  * becomes a problem on bigger systems.
1623  */
1624 static unsigned long lazy_max_pages(void)
1625 {
1626 	unsigned int log;
1627 
1628 	log = fls(num_online_cpus());
1629 
1630 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1631 }
1632 
1633 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1634 
1635 /*
1636  * Serialize vmap purging.  There is no actual critical section protected
1637  * by this look, but we want to avoid concurrent calls for performance
1638  * reasons and to make the pcpu_get_vm_areas more deterministic.
1639  */
1640 static DEFINE_MUTEX(vmap_purge_lock);
1641 
1642 /* for per-CPU blocks */
1643 static void purge_fragmented_blocks_allcpus(void);
1644 
1645 #ifdef CONFIG_X86_64
1646 /*
1647  * called before a call to iounmap() if the caller wants vm_area_struct's
1648  * immediately freed.
1649  */
1650 void set_iounmap_nonlazy(void)
1651 {
1652 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1653 }
1654 #endif /* CONFIG_X86_64 */
1655 
1656 /*
1657  * Purges all lazily-freed vmap areas.
1658  */
1659 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1660 {
1661 	unsigned long resched_threshold;
1662 	struct list_head local_pure_list;
1663 	struct vmap_area *va, *n_va;
1664 
1665 	lockdep_assert_held(&vmap_purge_lock);
1666 
1667 	spin_lock(&purge_vmap_area_lock);
1668 	purge_vmap_area_root = RB_ROOT;
1669 	list_replace_init(&purge_vmap_area_list, &local_pure_list);
1670 	spin_unlock(&purge_vmap_area_lock);
1671 
1672 	if (unlikely(list_empty(&local_pure_list)))
1673 		return false;
1674 
1675 	start = min(start,
1676 		list_first_entry(&local_pure_list,
1677 			struct vmap_area, list)->va_start);
1678 
1679 	end = max(end,
1680 		list_last_entry(&local_pure_list,
1681 			struct vmap_area, list)->va_end);
1682 
1683 	flush_tlb_kernel_range(start, end);
1684 	resched_threshold = lazy_max_pages() << 1;
1685 
1686 	spin_lock(&free_vmap_area_lock);
1687 	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1688 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1689 		unsigned long orig_start = va->va_start;
1690 		unsigned long orig_end = va->va_end;
1691 
1692 		/*
1693 		 * Finally insert or merge lazily-freed area. It is
1694 		 * detached and there is no need to "unlink" it from
1695 		 * anything.
1696 		 */
1697 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1698 				&free_vmap_area_list);
1699 
1700 		if (!va)
1701 			continue;
1702 
1703 		if (is_vmalloc_or_module_addr((void *)orig_start))
1704 			kasan_release_vmalloc(orig_start, orig_end,
1705 					      va->va_start, va->va_end);
1706 
1707 		atomic_long_sub(nr, &vmap_lazy_nr);
1708 
1709 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1710 			cond_resched_lock(&free_vmap_area_lock);
1711 	}
1712 	spin_unlock(&free_vmap_area_lock);
1713 	return true;
1714 }
1715 
1716 /*
1717  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1718  * is already purging.
1719  */
1720 static void try_purge_vmap_area_lazy(void)
1721 {
1722 	if (mutex_trylock(&vmap_purge_lock)) {
1723 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1724 		mutex_unlock(&vmap_purge_lock);
1725 	}
1726 }
1727 
1728 /*
1729  * Kick off a purge of the outstanding lazy areas.
1730  */
1731 static void purge_vmap_area_lazy(void)
1732 {
1733 	mutex_lock(&vmap_purge_lock);
1734 	purge_fragmented_blocks_allcpus();
1735 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1736 	mutex_unlock(&vmap_purge_lock);
1737 }
1738 
1739 /*
1740  * Free a vmap area, caller ensuring that the area has been unmapped
1741  * and flush_cache_vunmap had been called for the correct range
1742  * previously.
1743  */
1744 static void free_vmap_area_noflush(struct vmap_area *va)
1745 {
1746 	unsigned long nr_lazy;
1747 
1748 	spin_lock(&vmap_area_lock);
1749 	unlink_va(va, &vmap_area_root);
1750 	spin_unlock(&vmap_area_lock);
1751 
1752 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1753 				PAGE_SHIFT, &vmap_lazy_nr);
1754 
1755 	/*
1756 	 * Merge or place it to the purge tree/list.
1757 	 */
1758 	spin_lock(&purge_vmap_area_lock);
1759 	merge_or_add_vmap_area(va,
1760 		&purge_vmap_area_root, &purge_vmap_area_list);
1761 	spin_unlock(&purge_vmap_area_lock);
1762 
1763 	/* After this point, we may free va at any time */
1764 	if (unlikely(nr_lazy > lazy_max_pages()))
1765 		try_purge_vmap_area_lazy();
1766 }
1767 
1768 /*
1769  * Free and unmap a vmap area
1770  */
1771 static void free_unmap_vmap_area(struct vmap_area *va)
1772 {
1773 	flush_cache_vunmap(va->va_start, va->va_end);
1774 	vunmap_range_noflush(va->va_start, va->va_end);
1775 	if (debug_pagealloc_enabled_static())
1776 		flush_tlb_kernel_range(va->va_start, va->va_end);
1777 
1778 	free_vmap_area_noflush(va);
1779 }
1780 
1781 static struct vmap_area *find_vmap_area(unsigned long addr)
1782 {
1783 	struct vmap_area *va;
1784 
1785 	spin_lock(&vmap_area_lock);
1786 	va = __find_vmap_area(addr);
1787 	spin_unlock(&vmap_area_lock);
1788 
1789 	return va;
1790 }
1791 
1792 /*** Per cpu kva allocator ***/
1793 
1794 /*
1795  * vmap space is limited especially on 32 bit architectures. Ensure there is
1796  * room for at least 16 percpu vmap blocks per CPU.
1797  */
1798 /*
1799  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1800  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1801  * instead (we just need a rough idea)
1802  */
1803 #if BITS_PER_LONG == 32
1804 #define VMALLOC_SPACE		(128UL*1024*1024)
1805 #else
1806 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1807 #endif
1808 
1809 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1810 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1811 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1812 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1813 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1814 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1815 #define VMAP_BBMAP_BITS		\
1816 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1817 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1818 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1819 
1820 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1821 
1822 struct vmap_block_queue {
1823 	spinlock_t lock;
1824 	struct list_head free;
1825 };
1826 
1827 struct vmap_block {
1828 	spinlock_t lock;
1829 	struct vmap_area *va;
1830 	unsigned long free, dirty;
1831 	unsigned long dirty_min, dirty_max; /*< dirty range */
1832 	struct list_head free_list;
1833 	struct rcu_head rcu_head;
1834 	struct list_head purge;
1835 };
1836 
1837 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1838 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1839 
1840 /*
1841  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1842  * in the free path. Could get rid of this if we change the API to return a
1843  * "cookie" from alloc, to be passed to free. But no big deal yet.
1844  */
1845 static DEFINE_XARRAY(vmap_blocks);
1846 
1847 /*
1848  * We should probably have a fallback mechanism to allocate virtual memory
1849  * out of partially filled vmap blocks. However vmap block sizing should be
1850  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1851  * big problem.
1852  */
1853 
1854 static unsigned long addr_to_vb_idx(unsigned long addr)
1855 {
1856 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1857 	addr /= VMAP_BLOCK_SIZE;
1858 	return addr;
1859 }
1860 
1861 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1862 {
1863 	unsigned long addr;
1864 
1865 	addr = va_start + (pages_off << PAGE_SHIFT);
1866 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1867 	return (void *)addr;
1868 }
1869 
1870 /**
1871  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1872  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1873  * @order:    how many 2^order pages should be occupied in newly allocated block
1874  * @gfp_mask: flags for the page level allocator
1875  *
1876  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1877  */
1878 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1879 {
1880 	struct vmap_block_queue *vbq;
1881 	struct vmap_block *vb;
1882 	struct vmap_area *va;
1883 	unsigned long vb_idx;
1884 	int node, err;
1885 	void *vaddr;
1886 
1887 	node = numa_node_id();
1888 
1889 	vb = kmalloc_node(sizeof(struct vmap_block),
1890 			gfp_mask & GFP_RECLAIM_MASK, node);
1891 	if (unlikely(!vb))
1892 		return ERR_PTR(-ENOMEM);
1893 
1894 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1895 					VMALLOC_START, VMALLOC_END,
1896 					node, gfp_mask);
1897 	if (IS_ERR(va)) {
1898 		kfree(vb);
1899 		return ERR_CAST(va);
1900 	}
1901 
1902 	vaddr = vmap_block_vaddr(va->va_start, 0);
1903 	spin_lock_init(&vb->lock);
1904 	vb->va = va;
1905 	/* At least something should be left free */
1906 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1907 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1908 	vb->dirty = 0;
1909 	vb->dirty_min = VMAP_BBMAP_BITS;
1910 	vb->dirty_max = 0;
1911 	INIT_LIST_HEAD(&vb->free_list);
1912 
1913 	vb_idx = addr_to_vb_idx(va->va_start);
1914 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1915 	if (err) {
1916 		kfree(vb);
1917 		free_vmap_area(va);
1918 		return ERR_PTR(err);
1919 	}
1920 
1921 	vbq = &get_cpu_var(vmap_block_queue);
1922 	spin_lock(&vbq->lock);
1923 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1924 	spin_unlock(&vbq->lock);
1925 	put_cpu_var(vmap_block_queue);
1926 
1927 	return vaddr;
1928 }
1929 
1930 static void free_vmap_block(struct vmap_block *vb)
1931 {
1932 	struct vmap_block *tmp;
1933 
1934 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1935 	BUG_ON(tmp != vb);
1936 
1937 	free_vmap_area_noflush(vb->va);
1938 	kfree_rcu(vb, rcu_head);
1939 }
1940 
1941 static void purge_fragmented_blocks(int cpu)
1942 {
1943 	LIST_HEAD(purge);
1944 	struct vmap_block *vb;
1945 	struct vmap_block *n_vb;
1946 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1947 
1948 	rcu_read_lock();
1949 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1950 
1951 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1952 			continue;
1953 
1954 		spin_lock(&vb->lock);
1955 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1956 			vb->free = 0; /* prevent further allocs after releasing lock */
1957 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1958 			vb->dirty_min = 0;
1959 			vb->dirty_max = VMAP_BBMAP_BITS;
1960 			spin_lock(&vbq->lock);
1961 			list_del_rcu(&vb->free_list);
1962 			spin_unlock(&vbq->lock);
1963 			spin_unlock(&vb->lock);
1964 			list_add_tail(&vb->purge, &purge);
1965 		} else
1966 			spin_unlock(&vb->lock);
1967 	}
1968 	rcu_read_unlock();
1969 
1970 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1971 		list_del(&vb->purge);
1972 		free_vmap_block(vb);
1973 	}
1974 }
1975 
1976 static void purge_fragmented_blocks_allcpus(void)
1977 {
1978 	int cpu;
1979 
1980 	for_each_possible_cpu(cpu)
1981 		purge_fragmented_blocks(cpu);
1982 }
1983 
1984 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1985 {
1986 	struct vmap_block_queue *vbq;
1987 	struct vmap_block *vb;
1988 	void *vaddr = NULL;
1989 	unsigned int order;
1990 
1991 	BUG_ON(offset_in_page(size));
1992 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1993 	if (WARN_ON(size == 0)) {
1994 		/*
1995 		 * Allocating 0 bytes isn't what caller wants since
1996 		 * get_order(0) returns funny result. Just warn and terminate
1997 		 * early.
1998 		 */
1999 		return NULL;
2000 	}
2001 	order = get_order(size);
2002 
2003 	rcu_read_lock();
2004 	vbq = &get_cpu_var(vmap_block_queue);
2005 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2006 		unsigned long pages_off;
2007 
2008 		spin_lock(&vb->lock);
2009 		if (vb->free < (1UL << order)) {
2010 			spin_unlock(&vb->lock);
2011 			continue;
2012 		}
2013 
2014 		pages_off = VMAP_BBMAP_BITS - vb->free;
2015 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2016 		vb->free -= 1UL << order;
2017 		if (vb->free == 0) {
2018 			spin_lock(&vbq->lock);
2019 			list_del_rcu(&vb->free_list);
2020 			spin_unlock(&vbq->lock);
2021 		}
2022 
2023 		spin_unlock(&vb->lock);
2024 		break;
2025 	}
2026 
2027 	put_cpu_var(vmap_block_queue);
2028 	rcu_read_unlock();
2029 
2030 	/* Allocate new block if nothing was found */
2031 	if (!vaddr)
2032 		vaddr = new_vmap_block(order, gfp_mask);
2033 
2034 	return vaddr;
2035 }
2036 
2037 static void vb_free(unsigned long addr, unsigned long size)
2038 {
2039 	unsigned long offset;
2040 	unsigned int order;
2041 	struct vmap_block *vb;
2042 
2043 	BUG_ON(offset_in_page(size));
2044 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2045 
2046 	flush_cache_vunmap(addr, addr + size);
2047 
2048 	order = get_order(size);
2049 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2050 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2051 
2052 	vunmap_range_noflush(addr, addr + size);
2053 
2054 	if (debug_pagealloc_enabled_static())
2055 		flush_tlb_kernel_range(addr, addr + size);
2056 
2057 	spin_lock(&vb->lock);
2058 
2059 	/* Expand dirty range */
2060 	vb->dirty_min = min(vb->dirty_min, offset);
2061 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2062 
2063 	vb->dirty += 1UL << order;
2064 	if (vb->dirty == VMAP_BBMAP_BITS) {
2065 		BUG_ON(vb->free);
2066 		spin_unlock(&vb->lock);
2067 		free_vmap_block(vb);
2068 	} else
2069 		spin_unlock(&vb->lock);
2070 }
2071 
2072 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2073 {
2074 	int cpu;
2075 
2076 	if (unlikely(!vmap_initialized))
2077 		return;
2078 
2079 	might_sleep();
2080 
2081 	for_each_possible_cpu(cpu) {
2082 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2083 		struct vmap_block *vb;
2084 
2085 		rcu_read_lock();
2086 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2087 			spin_lock(&vb->lock);
2088 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2089 				unsigned long va_start = vb->va->va_start;
2090 				unsigned long s, e;
2091 
2092 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2093 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2094 
2095 				start = min(s, start);
2096 				end   = max(e, end);
2097 
2098 				flush = 1;
2099 			}
2100 			spin_unlock(&vb->lock);
2101 		}
2102 		rcu_read_unlock();
2103 	}
2104 
2105 	mutex_lock(&vmap_purge_lock);
2106 	purge_fragmented_blocks_allcpus();
2107 	if (!__purge_vmap_area_lazy(start, end) && flush)
2108 		flush_tlb_kernel_range(start, end);
2109 	mutex_unlock(&vmap_purge_lock);
2110 }
2111 
2112 /**
2113  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2114  *
2115  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2116  * to amortize TLB flushing overheads. What this means is that any page you
2117  * have now, may, in a former life, have been mapped into kernel virtual
2118  * address by the vmap layer and so there might be some CPUs with TLB entries
2119  * still referencing that page (additional to the regular 1:1 kernel mapping).
2120  *
2121  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2122  * be sure that none of the pages we have control over will have any aliases
2123  * from the vmap layer.
2124  */
2125 void vm_unmap_aliases(void)
2126 {
2127 	unsigned long start = ULONG_MAX, end = 0;
2128 	int flush = 0;
2129 
2130 	_vm_unmap_aliases(start, end, flush);
2131 }
2132 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2133 
2134 /**
2135  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2136  * @mem: the pointer returned by vm_map_ram
2137  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2138  */
2139 void vm_unmap_ram(const void *mem, unsigned int count)
2140 {
2141 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2142 	unsigned long addr = (unsigned long)mem;
2143 	struct vmap_area *va;
2144 
2145 	might_sleep();
2146 	BUG_ON(!addr);
2147 	BUG_ON(addr < VMALLOC_START);
2148 	BUG_ON(addr > VMALLOC_END);
2149 	BUG_ON(!PAGE_ALIGNED(addr));
2150 
2151 	kasan_poison_vmalloc(mem, size);
2152 
2153 	if (likely(count <= VMAP_MAX_ALLOC)) {
2154 		debug_check_no_locks_freed(mem, size);
2155 		vb_free(addr, size);
2156 		return;
2157 	}
2158 
2159 	va = find_vmap_area(addr);
2160 	BUG_ON(!va);
2161 	debug_check_no_locks_freed((void *)va->va_start,
2162 				    (va->va_end - va->va_start));
2163 	free_unmap_vmap_area(va);
2164 }
2165 EXPORT_SYMBOL(vm_unmap_ram);
2166 
2167 /**
2168  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2169  * @pages: an array of pointers to the pages to be mapped
2170  * @count: number of pages
2171  * @node: prefer to allocate data structures on this node
2172  *
2173  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2174  * faster than vmap so it's good.  But if you mix long-life and short-life
2175  * objects with vm_map_ram(), it could consume lots of address space through
2176  * fragmentation (especially on a 32bit machine).  You could see failures in
2177  * the end.  Please use this function for short-lived objects.
2178  *
2179  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2180  */
2181 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2182 {
2183 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2184 	unsigned long addr;
2185 	void *mem;
2186 
2187 	if (likely(count <= VMAP_MAX_ALLOC)) {
2188 		mem = vb_alloc(size, GFP_KERNEL);
2189 		if (IS_ERR(mem))
2190 			return NULL;
2191 		addr = (unsigned long)mem;
2192 	} else {
2193 		struct vmap_area *va;
2194 		va = alloc_vmap_area(size, PAGE_SIZE,
2195 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2196 		if (IS_ERR(va))
2197 			return NULL;
2198 
2199 		addr = va->va_start;
2200 		mem = (void *)addr;
2201 	}
2202 
2203 	kasan_unpoison_vmalloc(mem, size);
2204 
2205 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2206 				pages, PAGE_SHIFT) < 0) {
2207 		vm_unmap_ram(mem, count);
2208 		return NULL;
2209 	}
2210 
2211 	return mem;
2212 }
2213 EXPORT_SYMBOL(vm_map_ram);
2214 
2215 static struct vm_struct *vmlist __initdata;
2216 
2217 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2218 {
2219 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2220 	return vm->page_order;
2221 #else
2222 	return 0;
2223 #endif
2224 }
2225 
2226 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2227 {
2228 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2229 	vm->page_order = order;
2230 #else
2231 	BUG_ON(order != 0);
2232 #endif
2233 }
2234 
2235 /**
2236  * vm_area_add_early - add vmap area early during boot
2237  * @vm: vm_struct to add
2238  *
2239  * This function is used to add fixed kernel vm area to vmlist before
2240  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2241  * should contain proper values and the other fields should be zero.
2242  *
2243  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2244  */
2245 void __init vm_area_add_early(struct vm_struct *vm)
2246 {
2247 	struct vm_struct *tmp, **p;
2248 
2249 	BUG_ON(vmap_initialized);
2250 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2251 		if (tmp->addr >= vm->addr) {
2252 			BUG_ON(tmp->addr < vm->addr + vm->size);
2253 			break;
2254 		} else
2255 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2256 	}
2257 	vm->next = *p;
2258 	*p = vm;
2259 }
2260 
2261 /**
2262  * vm_area_register_early - register vmap area early during boot
2263  * @vm: vm_struct to register
2264  * @align: requested alignment
2265  *
2266  * This function is used to register kernel vm area before
2267  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2268  * proper values on entry and other fields should be zero.  On return,
2269  * vm->addr contains the allocated address.
2270  *
2271  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2272  */
2273 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2274 {
2275 	static size_t vm_init_off __initdata;
2276 	unsigned long addr;
2277 
2278 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
2279 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
2280 
2281 	vm->addr = (void *)addr;
2282 
2283 	vm_area_add_early(vm);
2284 }
2285 
2286 static void vmap_init_free_space(void)
2287 {
2288 	unsigned long vmap_start = 1;
2289 	const unsigned long vmap_end = ULONG_MAX;
2290 	struct vmap_area *busy, *free;
2291 
2292 	/*
2293 	 *     B     F     B     B     B     F
2294 	 * -|-----|.....|-----|-----|-----|.....|-
2295 	 *  |           The KVA space           |
2296 	 *  |<--------------------------------->|
2297 	 */
2298 	list_for_each_entry(busy, &vmap_area_list, list) {
2299 		if (busy->va_start - vmap_start > 0) {
2300 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2301 			if (!WARN_ON_ONCE(!free)) {
2302 				free->va_start = vmap_start;
2303 				free->va_end = busy->va_start;
2304 
2305 				insert_vmap_area_augment(free, NULL,
2306 					&free_vmap_area_root,
2307 						&free_vmap_area_list);
2308 			}
2309 		}
2310 
2311 		vmap_start = busy->va_end;
2312 	}
2313 
2314 	if (vmap_end - vmap_start > 0) {
2315 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2316 		if (!WARN_ON_ONCE(!free)) {
2317 			free->va_start = vmap_start;
2318 			free->va_end = vmap_end;
2319 
2320 			insert_vmap_area_augment(free, NULL,
2321 				&free_vmap_area_root,
2322 					&free_vmap_area_list);
2323 		}
2324 	}
2325 }
2326 
2327 void __init vmalloc_init(void)
2328 {
2329 	struct vmap_area *va;
2330 	struct vm_struct *tmp;
2331 	int i;
2332 
2333 	/*
2334 	 * Create the cache for vmap_area objects.
2335 	 */
2336 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2337 
2338 	for_each_possible_cpu(i) {
2339 		struct vmap_block_queue *vbq;
2340 		struct vfree_deferred *p;
2341 
2342 		vbq = &per_cpu(vmap_block_queue, i);
2343 		spin_lock_init(&vbq->lock);
2344 		INIT_LIST_HEAD(&vbq->free);
2345 		p = &per_cpu(vfree_deferred, i);
2346 		init_llist_head(&p->list);
2347 		INIT_WORK(&p->wq, free_work);
2348 	}
2349 
2350 	/* Import existing vmlist entries. */
2351 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2352 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2353 		if (WARN_ON_ONCE(!va))
2354 			continue;
2355 
2356 		va->va_start = (unsigned long)tmp->addr;
2357 		va->va_end = va->va_start + tmp->size;
2358 		va->vm = tmp;
2359 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2360 	}
2361 
2362 	/*
2363 	 * Now we can initialize a free vmap space.
2364 	 */
2365 	vmap_init_free_space();
2366 	vmap_initialized = true;
2367 }
2368 
2369 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2370 	struct vmap_area *va, unsigned long flags, const void *caller)
2371 {
2372 	vm->flags = flags;
2373 	vm->addr = (void *)va->va_start;
2374 	vm->size = va->va_end - va->va_start;
2375 	vm->caller = caller;
2376 	va->vm = vm;
2377 }
2378 
2379 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2380 			      unsigned long flags, const void *caller)
2381 {
2382 	spin_lock(&vmap_area_lock);
2383 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2384 	spin_unlock(&vmap_area_lock);
2385 }
2386 
2387 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2388 {
2389 	/*
2390 	 * Before removing VM_UNINITIALIZED,
2391 	 * we should make sure that vm has proper values.
2392 	 * Pair with smp_rmb() in show_numa_info().
2393 	 */
2394 	smp_wmb();
2395 	vm->flags &= ~VM_UNINITIALIZED;
2396 }
2397 
2398 static struct vm_struct *__get_vm_area_node(unsigned long size,
2399 		unsigned long align, unsigned long shift, unsigned long flags,
2400 		unsigned long start, unsigned long end, int node,
2401 		gfp_t gfp_mask, const void *caller)
2402 {
2403 	struct vmap_area *va;
2404 	struct vm_struct *area;
2405 	unsigned long requested_size = size;
2406 
2407 	BUG_ON(in_interrupt());
2408 	size = ALIGN(size, 1ul << shift);
2409 	if (unlikely(!size))
2410 		return NULL;
2411 
2412 	if (flags & VM_IOREMAP)
2413 		align = 1ul << clamp_t(int, get_count_order_long(size),
2414 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2415 
2416 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2417 	if (unlikely(!area))
2418 		return NULL;
2419 
2420 	if (!(flags & VM_NO_GUARD))
2421 		size += PAGE_SIZE;
2422 
2423 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2424 	if (IS_ERR(va)) {
2425 		kfree(area);
2426 		return NULL;
2427 	}
2428 
2429 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2430 
2431 	setup_vmalloc_vm(area, va, flags, caller);
2432 
2433 	return area;
2434 }
2435 
2436 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2437 				       unsigned long start, unsigned long end,
2438 				       const void *caller)
2439 {
2440 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2441 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2442 }
2443 
2444 /**
2445  * get_vm_area - reserve a contiguous kernel virtual area
2446  * @size:	 size of the area
2447  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2448  *
2449  * Search an area of @size in the kernel virtual mapping area,
2450  * and reserved it for out purposes.  Returns the area descriptor
2451  * on success or %NULL on failure.
2452  *
2453  * Return: the area descriptor on success or %NULL on failure.
2454  */
2455 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2456 {
2457 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2458 				  VMALLOC_START, VMALLOC_END,
2459 				  NUMA_NO_NODE, GFP_KERNEL,
2460 				  __builtin_return_address(0));
2461 }
2462 
2463 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2464 				const void *caller)
2465 {
2466 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2467 				  VMALLOC_START, VMALLOC_END,
2468 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2469 }
2470 
2471 /**
2472  * find_vm_area - find a continuous kernel virtual area
2473  * @addr:	  base address
2474  *
2475  * Search for the kernel VM area starting at @addr, and return it.
2476  * It is up to the caller to do all required locking to keep the returned
2477  * pointer valid.
2478  *
2479  * Return: the area descriptor on success or %NULL on failure.
2480  */
2481 struct vm_struct *find_vm_area(const void *addr)
2482 {
2483 	struct vmap_area *va;
2484 
2485 	va = find_vmap_area((unsigned long)addr);
2486 	if (!va)
2487 		return NULL;
2488 
2489 	return va->vm;
2490 }
2491 
2492 /**
2493  * remove_vm_area - find and remove a continuous kernel virtual area
2494  * @addr:	    base address
2495  *
2496  * Search for the kernel VM area starting at @addr, and remove it.
2497  * This function returns the found VM area, but using it is NOT safe
2498  * on SMP machines, except for its size or flags.
2499  *
2500  * Return: the area descriptor on success or %NULL on failure.
2501  */
2502 struct vm_struct *remove_vm_area(const void *addr)
2503 {
2504 	struct vmap_area *va;
2505 
2506 	might_sleep();
2507 
2508 	spin_lock(&vmap_area_lock);
2509 	va = __find_vmap_area((unsigned long)addr);
2510 	if (va && va->vm) {
2511 		struct vm_struct *vm = va->vm;
2512 
2513 		va->vm = NULL;
2514 		spin_unlock(&vmap_area_lock);
2515 
2516 		kasan_free_shadow(vm);
2517 		free_unmap_vmap_area(va);
2518 
2519 		return vm;
2520 	}
2521 
2522 	spin_unlock(&vmap_area_lock);
2523 	return NULL;
2524 }
2525 
2526 static inline void set_area_direct_map(const struct vm_struct *area,
2527 				       int (*set_direct_map)(struct page *page))
2528 {
2529 	int i;
2530 
2531 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2532 	for (i = 0; i < area->nr_pages; i++)
2533 		if (page_address(area->pages[i]))
2534 			set_direct_map(area->pages[i]);
2535 }
2536 
2537 /* Handle removing and resetting vm mappings related to the vm_struct. */
2538 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2539 {
2540 	unsigned long start = ULONG_MAX, end = 0;
2541 	unsigned int page_order = vm_area_page_order(area);
2542 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2543 	int flush_dmap = 0;
2544 	int i;
2545 
2546 	remove_vm_area(area->addr);
2547 
2548 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2549 	if (!flush_reset)
2550 		return;
2551 
2552 	/*
2553 	 * If not deallocating pages, just do the flush of the VM area and
2554 	 * return.
2555 	 */
2556 	if (!deallocate_pages) {
2557 		vm_unmap_aliases();
2558 		return;
2559 	}
2560 
2561 	/*
2562 	 * If execution gets here, flush the vm mapping and reset the direct
2563 	 * map. Find the start and end range of the direct mappings to make sure
2564 	 * the vm_unmap_aliases() flush includes the direct map.
2565 	 */
2566 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2567 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2568 		if (addr) {
2569 			unsigned long page_size;
2570 
2571 			page_size = PAGE_SIZE << page_order;
2572 			start = min(addr, start);
2573 			end = max(addr + page_size, end);
2574 			flush_dmap = 1;
2575 		}
2576 	}
2577 
2578 	/*
2579 	 * Set direct map to something invalid so that it won't be cached if
2580 	 * there are any accesses after the TLB flush, then flush the TLB and
2581 	 * reset the direct map permissions to the default.
2582 	 */
2583 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2584 	_vm_unmap_aliases(start, end, flush_dmap);
2585 	set_area_direct_map(area, set_direct_map_default_noflush);
2586 }
2587 
2588 static void __vunmap(const void *addr, int deallocate_pages)
2589 {
2590 	struct vm_struct *area;
2591 
2592 	if (!addr)
2593 		return;
2594 
2595 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2596 			addr))
2597 		return;
2598 
2599 	area = find_vm_area(addr);
2600 	if (unlikely(!area)) {
2601 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2602 				addr);
2603 		return;
2604 	}
2605 
2606 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2607 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2608 
2609 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2610 
2611 	vm_remove_mappings(area, deallocate_pages);
2612 
2613 	if (deallocate_pages) {
2614 		unsigned int page_order = vm_area_page_order(area);
2615 		int i;
2616 
2617 		for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2618 			struct page *page = area->pages[i];
2619 
2620 			BUG_ON(!page);
2621 			__free_pages(page, page_order);
2622 			cond_resched();
2623 		}
2624 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2625 
2626 		kvfree(area->pages);
2627 	}
2628 
2629 	kfree(area);
2630 }
2631 
2632 static inline void __vfree_deferred(const void *addr)
2633 {
2634 	/*
2635 	 * Use raw_cpu_ptr() because this can be called from preemptible
2636 	 * context. Preemption is absolutely fine here, because the llist_add()
2637 	 * implementation is lockless, so it works even if we are adding to
2638 	 * another cpu's list. schedule_work() should be fine with this too.
2639 	 */
2640 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2641 
2642 	if (llist_add((struct llist_node *)addr, &p->list))
2643 		schedule_work(&p->wq);
2644 }
2645 
2646 /**
2647  * vfree_atomic - release memory allocated by vmalloc()
2648  * @addr:	  memory base address
2649  *
2650  * This one is just like vfree() but can be called in any atomic context
2651  * except NMIs.
2652  */
2653 void vfree_atomic(const void *addr)
2654 {
2655 	BUG_ON(in_nmi());
2656 
2657 	kmemleak_free(addr);
2658 
2659 	if (!addr)
2660 		return;
2661 	__vfree_deferred(addr);
2662 }
2663 
2664 static void __vfree(const void *addr)
2665 {
2666 	if (unlikely(in_interrupt()))
2667 		__vfree_deferred(addr);
2668 	else
2669 		__vunmap(addr, 1);
2670 }
2671 
2672 /**
2673  * vfree - Release memory allocated by vmalloc()
2674  * @addr:  Memory base address
2675  *
2676  * Free the virtually continuous memory area starting at @addr, as obtained
2677  * from one of the vmalloc() family of APIs.  This will usually also free the
2678  * physical memory underlying the virtual allocation, but that memory is
2679  * reference counted, so it will not be freed until the last user goes away.
2680  *
2681  * If @addr is NULL, no operation is performed.
2682  *
2683  * Context:
2684  * May sleep if called *not* from interrupt context.
2685  * Must not be called in NMI context (strictly speaking, it could be
2686  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2687  * conventions for vfree() arch-dependent would be a really bad idea).
2688  */
2689 void vfree(const void *addr)
2690 {
2691 	BUG_ON(in_nmi());
2692 
2693 	kmemleak_free(addr);
2694 
2695 	might_sleep_if(!in_interrupt());
2696 
2697 	if (!addr)
2698 		return;
2699 
2700 	__vfree(addr);
2701 }
2702 EXPORT_SYMBOL(vfree);
2703 
2704 /**
2705  * vunmap - release virtual mapping obtained by vmap()
2706  * @addr:   memory base address
2707  *
2708  * Free the virtually contiguous memory area starting at @addr,
2709  * which was created from the page array passed to vmap().
2710  *
2711  * Must not be called in interrupt context.
2712  */
2713 void vunmap(const void *addr)
2714 {
2715 	BUG_ON(in_interrupt());
2716 	might_sleep();
2717 	if (addr)
2718 		__vunmap(addr, 0);
2719 }
2720 EXPORT_SYMBOL(vunmap);
2721 
2722 /**
2723  * vmap - map an array of pages into virtually contiguous space
2724  * @pages: array of page pointers
2725  * @count: number of pages to map
2726  * @flags: vm_area->flags
2727  * @prot: page protection for the mapping
2728  *
2729  * Maps @count pages from @pages into contiguous kernel virtual space.
2730  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2731  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2732  * are transferred from the caller to vmap(), and will be freed / dropped when
2733  * vfree() is called on the return value.
2734  *
2735  * Return: the address of the area or %NULL on failure
2736  */
2737 void *vmap(struct page **pages, unsigned int count,
2738 	   unsigned long flags, pgprot_t prot)
2739 {
2740 	struct vm_struct *area;
2741 	unsigned long addr;
2742 	unsigned long size;		/* In bytes */
2743 
2744 	might_sleep();
2745 
2746 	if (count > totalram_pages())
2747 		return NULL;
2748 
2749 	size = (unsigned long)count << PAGE_SHIFT;
2750 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2751 	if (!area)
2752 		return NULL;
2753 
2754 	addr = (unsigned long)area->addr;
2755 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2756 				pages, PAGE_SHIFT) < 0) {
2757 		vunmap(area->addr);
2758 		return NULL;
2759 	}
2760 
2761 	if (flags & VM_MAP_PUT_PAGES) {
2762 		area->pages = pages;
2763 		area->nr_pages = count;
2764 	}
2765 	return area->addr;
2766 }
2767 EXPORT_SYMBOL(vmap);
2768 
2769 #ifdef CONFIG_VMAP_PFN
2770 struct vmap_pfn_data {
2771 	unsigned long	*pfns;
2772 	pgprot_t	prot;
2773 	unsigned int	idx;
2774 };
2775 
2776 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2777 {
2778 	struct vmap_pfn_data *data = private;
2779 
2780 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2781 		return -EINVAL;
2782 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2783 	return 0;
2784 }
2785 
2786 /**
2787  * vmap_pfn - map an array of PFNs into virtually contiguous space
2788  * @pfns: array of PFNs
2789  * @count: number of pages to map
2790  * @prot: page protection for the mapping
2791  *
2792  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2793  * the start address of the mapping.
2794  */
2795 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2796 {
2797 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2798 	struct vm_struct *area;
2799 
2800 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2801 			__builtin_return_address(0));
2802 	if (!area)
2803 		return NULL;
2804 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2805 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2806 		free_vm_area(area);
2807 		return NULL;
2808 	}
2809 	return area->addr;
2810 }
2811 EXPORT_SYMBOL_GPL(vmap_pfn);
2812 #endif /* CONFIG_VMAP_PFN */
2813 
2814 static inline unsigned int
2815 vm_area_alloc_pages(gfp_t gfp, int nid,
2816 		unsigned int order, unsigned int nr_pages, struct page **pages)
2817 {
2818 	unsigned int nr_allocated = 0;
2819 
2820 	/*
2821 	 * For order-0 pages we make use of bulk allocator, if
2822 	 * the page array is partly or not at all populated due
2823 	 * to fails, fallback to a single page allocator that is
2824 	 * more permissive.
2825 	 */
2826 	if (!order) {
2827 		while (nr_allocated < nr_pages) {
2828 			unsigned int nr, nr_pages_request;
2829 
2830 			/*
2831 			 * A maximum allowed request is hard-coded and is 100
2832 			 * pages per call. That is done in order to prevent a
2833 			 * long preemption off scenario in the bulk-allocator
2834 			 * so the range is [1:100].
2835 			 */
2836 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2837 
2838 			nr = alloc_pages_bulk_array_node(gfp, nid,
2839 				nr_pages_request, pages + nr_allocated);
2840 
2841 			nr_allocated += nr;
2842 			cond_resched();
2843 
2844 			/*
2845 			 * If zero or pages were obtained partly,
2846 			 * fallback to a single page allocator.
2847 			 */
2848 			if (nr != nr_pages_request)
2849 				break;
2850 		}
2851 	} else
2852 		/*
2853 		 * Compound pages required for remap_vmalloc_page if
2854 		 * high-order pages.
2855 		 */
2856 		gfp |= __GFP_COMP;
2857 
2858 	/* High-order pages or fallback path if "bulk" fails. */
2859 	while (nr_allocated < nr_pages) {
2860 		struct page *page;
2861 		int i;
2862 
2863 		page = alloc_pages_node(nid, gfp, order);
2864 		if (unlikely(!page))
2865 			break;
2866 
2867 		/*
2868 		 * Careful, we allocate and map page-order pages, but
2869 		 * tracking is done per PAGE_SIZE page so as to keep the
2870 		 * vm_struct APIs independent of the physical/mapped size.
2871 		 */
2872 		for (i = 0; i < (1U << order); i++)
2873 			pages[nr_allocated + i] = page + i;
2874 
2875 		cond_resched();
2876 		nr_allocated += 1U << order;
2877 	}
2878 
2879 	return nr_allocated;
2880 }
2881 
2882 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2883 				 pgprot_t prot, unsigned int page_shift,
2884 				 int node)
2885 {
2886 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2887 	unsigned long addr = (unsigned long)area->addr;
2888 	unsigned long size = get_vm_area_size(area);
2889 	unsigned long array_size;
2890 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
2891 	unsigned int page_order;
2892 
2893 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2894 	gfp_mask |= __GFP_NOWARN;
2895 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2896 		gfp_mask |= __GFP_HIGHMEM;
2897 
2898 	/* Please note that the recursion is strictly bounded. */
2899 	if (array_size > PAGE_SIZE) {
2900 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2901 					area->caller);
2902 	} else {
2903 		area->pages = kmalloc_node(array_size, nested_gfp, node);
2904 	}
2905 
2906 	if (!area->pages) {
2907 		warn_alloc(gfp_mask, NULL,
2908 			"vmalloc error: size %lu, failed to allocated page array size %lu",
2909 			nr_small_pages * PAGE_SIZE, array_size);
2910 		free_vm_area(area);
2911 		return NULL;
2912 	}
2913 
2914 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2915 	page_order = vm_area_page_order(area);
2916 
2917 	area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2918 		page_order, nr_small_pages, area->pages);
2919 
2920 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2921 
2922 	/*
2923 	 * If not enough pages were obtained to accomplish an
2924 	 * allocation request, free them via __vfree() if any.
2925 	 */
2926 	if (area->nr_pages != nr_small_pages) {
2927 		warn_alloc(gfp_mask, NULL,
2928 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
2929 			area->nr_pages * PAGE_SIZE, page_order);
2930 		goto fail;
2931 	}
2932 
2933 	if (vmap_pages_range(addr, addr + size, prot, area->pages,
2934 			page_shift) < 0) {
2935 		warn_alloc(gfp_mask, NULL,
2936 			"vmalloc error: size %lu, failed to map pages",
2937 			area->nr_pages * PAGE_SIZE);
2938 		goto fail;
2939 	}
2940 
2941 	return area->addr;
2942 
2943 fail:
2944 	__vfree(area->addr);
2945 	return NULL;
2946 }
2947 
2948 /**
2949  * __vmalloc_node_range - allocate virtually contiguous memory
2950  * @size:		  allocation size
2951  * @align:		  desired alignment
2952  * @start:		  vm area range start
2953  * @end:		  vm area range end
2954  * @gfp_mask:		  flags for the page level allocator
2955  * @prot:		  protection mask for the allocated pages
2956  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2957  * @node:		  node to use for allocation or NUMA_NO_NODE
2958  * @caller:		  caller's return address
2959  *
2960  * Allocate enough pages to cover @size from the page level
2961  * allocator with @gfp_mask flags.  Map them into contiguous
2962  * kernel virtual space, using a pagetable protection of @prot.
2963  *
2964  * Return: the address of the area or %NULL on failure
2965  */
2966 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2967 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2968 			pgprot_t prot, unsigned long vm_flags, int node,
2969 			const void *caller)
2970 {
2971 	struct vm_struct *area;
2972 	void *addr;
2973 	unsigned long real_size = size;
2974 	unsigned long real_align = align;
2975 	unsigned int shift = PAGE_SHIFT;
2976 
2977 	if (WARN_ON_ONCE(!size))
2978 		return NULL;
2979 
2980 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
2981 		warn_alloc(gfp_mask, NULL,
2982 			"vmalloc error: size %lu, exceeds total pages",
2983 			real_size);
2984 		return NULL;
2985 	}
2986 
2987 	if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
2988 		unsigned long size_per_node;
2989 
2990 		/*
2991 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
2992 		 * others like modules don't yet expect huge pages in
2993 		 * their allocations due to apply_to_page_range not
2994 		 * supporting them.
2995 		 */
2996 
2997 		size_per_node = size;
2998 		if (node == NUMA_NO_NODE)
2999 			size_per_node /= num_online_nodes();
3000 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3001 			shift = PMD_SHIFT;
3002 		else
3003 			shift = arch_vmap_pte_supported_shift(size_per_node);
3004 
3005 		align = max(real_align, 1UL << shift);
3006 		size = ALIGN(real_size, 1UL << shift);
3007 	}
3008 
3009 again:
3010 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3011 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3012 				  gfp_mask, caller);
3013 	if (!area) {
3014 		warn_alloc(gfp_mask, NULL,
3015 			"vmalloc error: size %lu, vm_struct allocation failed",
3016 			real_size);
3017 		goto fail;
3018 	}
3019 
3020 	addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3021 	if (!addr)
3022 		goto fail;
3023 
3024 	/*
3025 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3026 	 * flag. It means that vm_struct is not fully initialized.
3027 	 * Now, it is fully initialized, so remove this flag here.
3028 	 */
3029 	clear_vm_uninitialized_flag(area);
3030 
3031 	size = PAGE_ALIGN(size);
3032 	kmemleak_vmalloc(area, size, gfp_mask);
3033 
3034 	return addr;
3035 
3036 fail:
3037 	if (shift > PAGE_SHIFT) {
3038 		shift = PAGE_SHIFT;
3039 		align = real_align;
3040 		size = real_size;
3041 		goto again;
3042 	}
3043 
3044 	return NULL;
3045 }
3046 
3047 /**
3048  * __vmalloc_node - allocate virtually contiguous memory
3049  * @size:	    allocation size
3050  * @align:	    desired alignment
3051  * @gfp_mask:	    flags for the page level allocator
3052  * @node:	    node to use for allocation or NUMA_NO_NODE
3053  * @caller:	    caller's return address
3054  *
3055  * Allocate enough pages to cover @size from the page level allocator with
3056  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3057  *
3058  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3059  * and __GFP_NOFAIL are not supported
3060  *
3061  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3062  * with mm people.
3063  *
3064  * Return: pointer to the allocated memory or %NULL on error
3065  */
3066 void *__vmalloc_node(unsigned long size, unsigned long align,
3067 			    gfp_t gfp_mask, int node, const void *caller)
3068 {
3069 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3070 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3071 }
3072 /*
3073  * This is only for performance analysis of vmalloc and stress purpose.
3074  * It is required by vmalloc test module, therefore do not use it other
3075  * than that.
3076  */
3077 #ifdef CONFIG_TEST_VMALLOC_MODULE
3078 EXPORT_SYMBOL_GPL(__vmalloc_node);
3079 #endif
3080 
3081 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3082 {
3083 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3084 				__builtin_return_address(0));
3085 }
3086 EXPORT_SYMBOL(__vmalloc);
3087 
3088 /**
3089  * vmalloc - allocate virtually contiguous memory
3090  * @size:    allocation size
3091  *
3092  * Allocate enough pages to cover @size from the page level
3093  * allocator and map them into contiguous kernel virtual space.
3094  *
3095  * For tight control over page level allocator and protection flags
3096  * use __vmalloc() instead.
3097  *
3098  * Return: pointer to the allocated memory or %NULL on error
3099  */
3100 void *vmalloc(unsigned long size)
3101 {
3102 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3103 				__builtin_return_address(0));
3104 }
3105 EXPORT_SYMBOL(vmalloc);
3106 
3107 /**
3108  * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3109  * @size:    allocation size
3110  *
3111  * Allocate enough non-huge pages to cover @size from the page level
3112  * allocator and map them into contiguous kernel virtual space.
3113  *
3114  * Return: pointer to the allocated memory or %NULL on error
3115  */
3116 void *vmalloc_no_huge(unsigned long size)
3117 {
3118 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3119 				    GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3120 				    NUMA_NO_NODE, __builtin_return_address(0));
3121 }
3122 EXPORT_SYMBOL(vmalloc_no_huge);
3123 
3124 /**
3125  * vzalloc - allocate virtually contiguous memory with zero fill
3126  * @size:    allocation size
3127  *
3128  * Allocate enough pages to cover @size from the page level
3129  * allocator and map them into contiguous kernel virtual space.
3130  * The memory allocated is set to zero.
3131  *
3132  * For tight control over page level allocator and protection flags
3133  * use __vmalloc() instead.
3134  *
3135  * Return: pointer to the allocated memory or %NULL on error
3136  */
3137 void *vzalloc(unsigned long size)
3138 {
3139 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3140 				__builtin_return_address(0));
3141 }
3142 EXPORT_SYMBOL(vzalloc);
3143 
3144 /**
3145  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3146  * @size: allocation size
3147  *
3148  * The resulting memory area is zeroed so it can be mapped to userspace
3149  * without leaking data.
3150  *
3151  * Return: pointer to the allocated memory or %NULL on error
3152  */
3153 void *vmalloc_user(unsigned long size)
3154 {
3155 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3156 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3157 				    VM_USERMAP, NUMA_NO_NODE,
3158 				    __builtin_return_address(0));
3159 }
3160 EXPORT_SYMBOL(vmalloc_user);
3161 
3162 /**
3163  * vmalloc_node - allocate memory on a specific node
3164  * @size:	  allocation size
3165  * @node:	  numa node
3166  *
3167  * Allocate enough pages to cover @size from the page level
3168  * allocator and map them into contiguous kernel virtual space.
3169  *
3170  * For tight control over page level allocator and protection flags
3171  * use __vmalloc() instead.
3172  *
3173  * Return: pointer to the allocated memory or %NULL on error
3174  */
3175 void *vmalloc_node(unsigned long size, int node)
3176 {
3177 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3178 			__builtin_return_address(0));
3179 }
3180 EXPORT_SYMBOL(vmalloc_node);
3181 
3182 /**
3183  * vzalloc_node - allocate memory on a specific node with zero fill
3184  * @size:	allocation size
3185  * @node:	numa node
3186  *
3187  * Allocate enough pages to cover @size from the page level
3188  * allocator and map them into contiguous kernel virtual space.
3189  * The memory allocated is set to zero.
3190  *
3191  * Return: pointer to the allocated memory or %NULL on error
3192  */
3193 void *vzalloc_node(unsigned long size, int node)
3194 {
3195 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3196 				__builtin_return_address(0));
3197 }
3198 EXPORT_SYMBOL(vzalloc_node);
3199 
3200 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3201 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3202 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3203 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3204 #else
3205 /*
3206  * 64b systems should always have either DMA or DMA32 zones. For others
3207  * GFP_DMA32 should do the right thing and use the normal zone.
3208  */
3209 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3210 #endif
3211 
3212 /**
3213  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3214  * @size:	allocation size
3215  *
3216  * Allocate enough 32bit PA addressable pages to cover @size from the
3217  * page level allocator and map them into contiguous kernel virtual space.
3218  *
3219  * Return: pointer to the allocated memory or %NULL on error
3220  */
3221 void *vmalloc_32(unsigned long size)
3222 {
3223 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3224 			__builtin_return_address(0));
3225 }
3226 EXPORT_SYMBOL(vmalloc_32);
3227 
3228 /**
3229  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3230  * @size:	     allocation size
3231  *
3232  * The resulting memory area is 32bit addressable and zeroed so it can be
3233  * mapped to userspace without leaking data.
3234  *
3235  * Return: pointer to the allocated memory or %NULL on error
3236  */
3237 void *vmalloc_32_user(unsigned long size)
3238 {
3239 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3240 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3241 				    VM_USERMAP, NUMA_NO_NODE,
3242 				    __builtin_return_address(0));
3243 }
3244 EXPORT_SYMBOL(vmalloc_32_user);
3245 
3246 /*
3247  * small helper routine , copy contents to buf from addr.
3248  * If the page is not present, fill zero.
3249  */
3250 
3251 static int aligned_vread(char *buf, char *addr, unsigned long count)
3252 {
3253 	struct page *p;
3254 	int copied = 0;
3255 
3256 	while (count) {
3257 		unsigned long offset, length;
3258 
3259 		offset = offset_in_page(addr);
3260 		length = PAGE_SIZE - offset;
3261 		if (length > count)
3262 			length = count;
3263 		p = vmalloc_to_page(addr);
3264 		/*
3265 		 * To do safe access to this _mapped_ area, we need
3266 		 * lock. But adding lock here means that we need to add
3267 		 * overhead of vmalloc()/vfree() calls for this _debug_
3268 		 * interface, rarely used. Instead of that, we'll use
3269 		 * kmap() and get small overhead in this access function.
3270 		 */
3271 		if (p) {
3272 			/* We can expect USER0 is not used -- see vread() */
3273 			void *map = kmap_atomic(p);
3274 			memcpy(buf, map + offset, length);
3275 			kunmap_atomic(map);
3276 		} else
3277 			memset(buf, 0, length);
3278 
3279 		addr += length;
3280 		buf += length;
3281 		copied += length;
3282 		count -= length;
3283 	}
3284 	return copied;
3285 }
3286 
3287 /**
3288  * vread() - read vmalloc area in a safe way.
3289  * @buf:     buffer for reading data
3290  * @addr:    vm address.
3291  * @count:   number of bytes to be read.
3292  *
3293  * This function checks that addr is a valid vmalloc'ed area, and
3294  * copy data from that area to a given buffer. If the given memory range
3295  * of [addr...addr+count) includes some valid address, data is copied to
3296  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3297  * IOREMAP area is treated as memory hole and no copy is done.
3298  *
3299  * If [addr...addr+count) doesn't includes any intersects with alive
3300  * vm_struct area, returns 0. @buf should be kernel's buffer.
3301  *
3302  * Note: In usual ops, vread() is never necessary because the caller
3303  * should know vmalloc() area is valid and can use memcpy().
3304  * This is for routines which have to access vmalloc area without
3305  * any information, as /proc/kcore.
3306  *
3307  * Return: number of bytes for which addr and buf should be increased
3308  * (same number as @count) or %0 if [addr...addr+count) doesn't
3309  * include any intersection with valid vmalloc area
3310  */
3311 long vread(char *buf, char *addr, unsigned long count)
3312 {
3313 	struct vmap_area *va;
3314 	struct vm_struct *vm;
3315 	char *vaddr, *buf_start = buf;
3316 	unsigned long buflen = count;
3317 	unsigned long n;
3318 
3319 	/* Don't allow overflow */
3320 	if ((unsigned long) addr + count < count)
3321 		count = -(unsigned long) addr;
3322 
3323 	spin_lock(&vmap_area_lock);
3324 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3325 	if (!va)
3326 		goto finished;
3327 
3328 	/* no intersects with alive vmap_area */
3329 	if ((unsigned long)addr + count <= va->va_start)
3330 		goto finished;
3331 
3332 	list_for_each_entry_from(va, &vmap_area_list, list) {
3333 		if (!count)
3334 			break;
3335 
3336 		if (!va->vm)
3337 			continue;
3338 
3339 		vm = va->vm;
3340 		vaddr = (char *) vm->addr;
3341 		if (addr >= vaddr + get_vm_area_size(vm))
3342 			continue;
3343 		while (addr < vaddr) {
3344 			if (count == 0)
3345 				goto finished;
3346 			*buf = '\0';
3347 			buf++;
3348 			addr++;
3349 			count--;
3350 		}
3351 		n = vaddr + get_vm_area_size(vm) - addr;
3352 		if (n > count)
3353 			n = count;
3354 		if (!(vm->flags & VM_IOREMAP))
3355 			aligned_vread(buf, addr, n);
3356 		else /* IOREMAP area is treated as memory hole */
3357 			memset(buf, 0, n);
3358 		buf += n;
3359 		addr += n;
3360 		count -= n;
3361 	}
3362 finished:
3363 	spin_unlock(&vmap_area_lock);
3364 
3365 	if (buf == buf_start)
3366 		return 0;
3367 	/* zero-fill memory holes */
3368 	if (buf != buf_start + buflen)
3369 		memset(buf, 0, buflen - (buf - buf_start));
3370 
3371 	return buflen;
3372 }
3373 
3374 /**
3375  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3376  * @vma:		vma to cover
3377  * @uaddr:		target user address to start at
3378  * @kaddr:		virtual address of vmalloc kernel memory
3379  * @pgoff:		offset from @kaddr to start at
3380  * @size:		size of map area
3381  *
3382  * Returns:	0 for success, -Exxx on failure
3383  *
3384  * This function checks that @kaddr is a valid vmalloc'ed area,
3385  * and that it is big enough to cover the range starting at
3386  * @uaddr in @vma. Will return failure if that criteria isn't
3387  * met.
3388  *
3389  * Similar to remap_pfn_range() (see mm/memory.c)
3390  */
3391 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3392 				void *kaddr, unsigned long pgoff,
3393 				unsigned long size)
3394 {
3395 	struct vm_struct *area;
3396 	unsigned long off;
3397 	unsigned long end_index;
3398 
3399 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3400 		return -EINVAL;
3401 
3402 	size = PAGE_ALIGN(size);
3403 
3404 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3405 		return -EINVAL;
3406 
3407 	area = find_vm_area(kaddr);
3408 	if (!area)
3409 		return -EINVAL;
3410 
3411 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3412 		return -EINVAL;
3413 
3414 	if (check_add_overflow(size, off, &end_index) ||
3415 	    end_index > get_vm_area_size(area))
3416 		return -EINVAL;
3417 	kaddr += off;
3418 
3419 	do {
3420 		struct page *page = vmalloc_to_page(kaddr);
3421 		int ret;
3422 
3423 		ret = vm_insert_page(vma, uaddr, page);
3424 		if (ret)
3425 			return ret;
3426 
3427 		uaddr += PAGE_SIZE;
3428 		kaddr += PAGE_SIZE;
3429 		size -= PAGE_SIZE;
3430 	} while (size > 0);
3431 
3432 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3433 
3434 	return 0;
3435 }
3436 
3437 /**
3438  * remap_vmalloc_range - map vmalloc pages to userspace
3439  * @vma:		vma to cover (map full range of vma)
3440  * @addr:		vmalloc memory
3441  * @pgoff:		number of pages into addr before first page to map
3442  *
3443  * Returns:	0 for success, -Exxx on failure
3444  *
3445  * This function checks that addr is a valid vmalloc'ed area, and
3446  * that it is big enough to cover the vma. Will return failure if
3447  * that criteria isn't met.
3448  *
3449  * Similar to remap_pfn_range() (see mm/memory.c)
3450  */
3451 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3452 						unsigned long pgoff)
3453 {
3454 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3455 					   addr, pgoff,
3456 					   vma->vm_end - vma->vm_start);
3457 }
3458 EXPORT_SYMBOL(remap_vmalloc_range);
3459 
3460 void free_vm_area(struct vm_struct *area)
3461 {
3462 	struct vm_struct *ret;
3463 	ret = remove_vm_area(area->addr);
3464 	BUG_ON(ret != area);
3465 	kfree(area);
3466 }
3467 EXPORT_SYMBOL_GPL(free_vm_area);
3468 
3469 #ifdef CONFIG_SMP
3470 static struct vmap_area *node_to_va(struct rb_node *n)
3471 {
3472 	return rb_entry_safe(n, struct vmap_area, rb_node);
3473 }
3474 
3475 /**
3476  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3477  * @addr: target address
3478  *
3479  * Returns: vmap_area if it is found. If there is no such area
3480  *   the first highest(reverse order) vmap_area is returned
3481  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3482  *   if there are no any areas before @addr.
3483  */
3484 static struct vmap_area *
3485 pvm_find_va_enclose_addr(unsigned long addr)
3486 {
3487 	struct vmap_area *va, *tmp;
3488 	struct rb_node *n;
3489 
3490 	n = free_vmap_area_root.rb_node;
3491 	va = NULL;
3492 
3493 	while (n) {
3494 		tmp = rb_entry(n, struct vmap_area, rb_node);
3495 		if (tmp->va_start <= addr) {
3496 			va = tmp;
3497 			if (tmp->va_end >= addr)
3498 				break;
3499 
3500 			n = n->rb_right;
3501 		} else {
3502 			n = n->rb_left;
3503 		}
3504 	}
3505 
3506 	return va;
3507 }
3508 
3509 /**
3510  * pvm_determine_end_from_reverse - find the highest aligned address
3511  * of free block below VMALLOC_END
3512  * @va:
3513  *   in - the VA we start the search(reverse order);
3514  *   out - the VA with the highest aligned end address.
3515  * @align: alignment for required highest address
3516  *
3517  * Returns: determined end address within vmap_area
3518  */
3519 static unsigned long
3520 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3521 {
3522 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3523 	unsigned long addr;
3524 
3525 	if (likely(*va)) {
3526 		list_for_each_entry_from_reverse((*va),
3527 				&free_vmap_area_list, list) {
3528 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3529 			if ((*va)->va_start < addr)
3530 				return addr;
3531 		}
3532 	}
3533 
3534 	return 0;
3535 }
3536 
3537 /**
3538  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3539  * @offsets: array containing offset of each area
3540  * @sizes: array containing size of each area
3541  * @nr_vms: the number of areas to allocate
3542  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3543  *
3544  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3545  *	    vm_structs on success, %NULL on failure
3546  *
3547  * Percpu allocator wants to use congruent vm areas so that it can
3548  * maintain the offsets among percpu areas.  This function allocates
3549  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3550  * be scattered pretty far, distance between two areas easily going up
3551  * to gigabytes.  To avoid interacting with regular vmallocs, these
3552  * areas are allocated from top.
3553  *
3554  * Despite its complicated look, this allocator is rather simple. It
3555  * does everything top-down and scans free blocks from the end looking
3556  * for matching base. While scanning, if any of the areas do not fit the
3557  * base address is pulled down to fit the area. Scanning is repeated till
3558  * all the areas fit and then all necessary data structures are inserted
3559  * and the result is returned.
3560  */
3561 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3562 				     const size_t *sizes, int nr_vms,
3563 				     size_t align)
3564 {
3565 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3566 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3567 	struct vmap_area **vas, *va;
3568 	struct vm_struct **vms;
3569 	int area, area2, last_area, term_area;
3570 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3571 	bool purged = false;
3572 	enum fit_type type;
3573 
3574 	/* verify parameters and allocate data structures */
3575 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3576 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3577 		start = offsets[area];
3578 		end = start + sizes[area];
3579 
3580 		/* is everything aligned properly? */
3581 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3582 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3583 
3584 		/* detect the area with the highest address */
3585 		if (start > offsets[last_area])
3586 			last_area = area;
3587 
3588 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3589 			unsigned long start2 = offsets[area2];
3590 			unsigned long end2 = start2 + sizes[area2];
3591 
3592 			BUG_ON(start2 < end && start < end2);
3593 		}
3594 	}
3595 	last_end = offsets[last_area] + sizes[last_area];
3596 
3597 	if (vmalloc_end - vmalloc_start < last_end) {
3598 		WARN_ON(true);
3599 		return NULL;
3600 	}
3601 
3602 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3603 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3604 	if (!vas || !vms)
3605 		goto err_free2;
3606 
3607 	for (area = 0; area < nr_vms; area++) {
3608 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3609 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3610 		if (!vas[area] || !vms[area])
3611 			goto err_free;
3612 	}
3613 retry:
3614 	spin_lock(&free_vmap_area_lock);
3615 
3616 	/* start scanning - we scan from the top, begin with the last area */
3617 	area = term_area = last_area;
3618 	start = offsets[area];
3619 	end = start + sizes[area];
3620 
3621 	va = pvm_find_va_enclose_addr(vmalloc_end);
3622 	base = pvm_determine_end_from_reverse(&va, align) - end;
3623 
3624 	while (true) {
3625 		/*
3626 		 * base might have underflowed, add last_end before
3627 		 * comparing.
3628 		 */
3629 		if (base + last_end < vmalloc_start + last_end)
3630 			goto overflow;
3631 
3632 		/*
3633 		 * Fitting base has not been found.
3634 		 */
3635 		if (va == NULL)
3636 			goto overflow;
3637 
3638 		/*
3639 		 * If required width exceeds current VA block, move
3640 		 * base downwards and then recheck.
3641 		 */
3642 		if (base + end > va->va_end) {
3643 			base = pvm_determine_end_from_reverse(&va, align) - end;
3644 			term_area = area;
3645 			continue;
3646 		}
3647 
3648 		/*
3649 		 * If this VA does not fit, move base downwards and recheck.
3650 		 */
3651 		if (base + start < va->va_start) {
3652 			va = node_to_va(rb_prev(&va->rb_node));
3653 			base = pvm_determine_end_from_reverse(&va, align) - end;
3654 			term_area = area;
3655 			continue;
3656 		}
3657 
3658 		/*
3659 		 * This area fits, move on to the previous one.  If
3660 		 * the previous one is the terminal one, we're done.
3661 		 */
3662 		area = (area + nr_vms - 1) % nr_vms;
3663 		if (area == term_area)
3664 			break;
3665 
3666 		start = offsets[area];
3667 		end = start + sizes[area];
3668 		va = pvm_find_va_enclose_addr(base + end);
3669 	}
3670 
3671 	/* we've found a fitting base, insert all va's */
3672 	for (area = 0; area < nr_vms; area++) {
3673 		int ret;
3674 
3675 		start = base + offsets[area];
3676 		size = sizes[area];
3677 
3678 		va = pvm_find_va_enclose_addr(start);
3679 		if (WARN_ON_ONCE(va == NULL))
3680 			/* It is a BUG(), but trigger recovery instead. */
3681 			goto recovery;
3682 
3683 		type = classify_va_fit_type(va, start, size);
3684 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3685 			/* It is a BUG(), but trigger recovery instead. */
3686 			goto recovery;
3687 
3688 		ret = adjust_va_to_fit_type(va, start, size, type);
3689 		if (unlikely(ret))
3690 			goto recovery;
3691 
3692 		/* Allocated area. */
3693 		va = vas[area];
3694 		va->va_start = start;
3695 		va->va_end = start + size;
3696 	}
3697 
3698 	spin_unlock(&free_vmap_area_lock);
3699 
3700 	/* populate the kasan shadow space */
3701 	for (area = 0; area < nr_vms; area++) {
3702 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3703 			goto err_free_shadow;
3704 
3705 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3706 				       sizes[area]);
3707 	}
3708 
3709 	/* insert all vm's */
3710 	spin_lock(&vmap_area_lock);
3711 	for (area = 0; area < nr_vms; area++) {
3712 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3713 
3714 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3715 				 pcpu_get_vm_areas);
3716 	}
3717 	spin_unlock(&vmap_area_lock);
3718 
3719 	kfree(vas);
3720 	return vms;
3721 
3722 recovery:
3723 	/*
3724 	 * Remove previously allocated areas. There is no
3725 	 * need in removing these areas from the busy tree,
3726 	 * because they are inserted only on the final step
3727 	 * and when pcpu_get_vm_areas() is success.
3728 	 */
3729 	while (area--) {
3730 		orig_start = vas[area]->va_start;
3731 		orig_end = vas[area]->va_end;
3732 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3733 				&free_vmap_area_list);
3734 		if (va)
3735 			kasan_release_vmalloc(orig_start, orig_end,
3736 				va->va_start, va->va_end);
3737 		vas[area] = NULL;
3738 	}
3739 
3740 overflow:
3741 	spin_unlock(&free_vmap_area_lock);
3742 	if (!purged) {
3743 		purge_vmap_area_lazy();
3744 		purged = true;
3745 
3746 		/* Before "retry", check if we recover. */
3747 		for (area = 0; area < nr_vms; area++) {
3748 			if (vas[area])
3749 				continue;
3750 
3751 			vas[area] = kmem_cache_zalloc(
3752 				vmap_area_cachep, GFP_KERNEL);
3753 			if (!vas[area])
3754 				goto err_free;
3755 		}
3756 
3757 		goto retry;
3758 	}
3759 
3760 err_free:
3761 	for (area = 0; area < nr_vms; area++) {
3762 		if (vas[area])
3763 			kmem_cache_free(vmap_area_cachep, vas[area]);
3764 
3765 		kfree(vms[area]);
3766 	}
3767 err_free2:
3768 	kfree(vas);
3769 	kfree(vms);
3770 	return NULL;
3771 
3772 err_free_shadow:
3773 	spin_lock(&free_vmap_area_lock);
3774 	/*
3775 	 * We release all the vmalloc shadows, even the ones for regions that
3776 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3777 	 * being able to tolerate this case.
3778 	 */
3779 	for (area = 0; area < nr_vms; area++) {
3780 		orig_start = vas[area]->va_start;
3781 		orig_end = vas[area]->va_end;
3782 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3783 				&free_vmap_area_list);
3784 		if (va)
3785 			kasan_release_vmalloc(orig_start, orig_end,
3786 				va->va_start, va->va_end);
3787 		vas[area] = NULL;
3788 		kfree(vms[area]);
3789 	}
3790 	spin_unlock(&free_vmap_area_lock);
3791 	kfree(vas);
3792 	kfree(vms);
3793 	return NULL;
3794 }
3795 
3796 /**
3797  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3798  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3799  * @nr_vms: the number of allocated areas
3800  *
3801  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3802  */
3803 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3804 {
3805 	int i;
3806 
3807 	for (i = 0; i < nr_vms; i++)
3808 		free_vm_area(vms[i]);
3809 	kfree(vms);
3810 }
3811 #endif	/* CONFIG_SMP */
3812 
3813 #ifdef CONFIG_PRINTK
3814 bool vmalloc_dump_obj(void *object)
3815 {
3816 	struct vm_struct *vm;
3817 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3818 
3819 	vm = find_vm_area(objp);
3820 	if (!vm)
3821 		return false;
3822 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3823 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3824 	return true;
3825 }
3826 #endif
3827 
3828 #ifdef CONFIG_PROC_FS
3829 static void *s_start(struct seq_file *m, loff_t *pos)
3830 	__acquires(&vmap_purge_lock)
3831 	__acquires(&vmap_area_lock)
3832 {
3833 	mutex_lock(&vmap_purge_lock);
3834 	spin_lock(&vmap_area_lock);
3835 
3836 	return seq_list_start(&vmap_area_list, *pos);
3837 }
3838 
3839 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3840 {
3841 	return seq_list_next(p, &vmap_area_list, pos);
3842 }
3843 
3844 static void s_stop(struct seq_file *m, void *p)
3845 	__releases(&vmap_area_lock)
3846 	__releases(&vmap_purge_lock)
3847 {
3848 	spin_unlock(&vmap_area_lock);
3849 	mutex_unlock(&vmap_purge_lock);
3850 }
3851 
3852 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3853 {
3854 	if (IS_ENABLED(CONFIG_NUMA)) {
3855 		unsigned int nr, *counters = m->private;
3856 
3857 		if (!counters)
3858 			return;
3859 
3860 		if (v->flags & VM_UNINITIALIZED)
3861 			return;
3862 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3863 		smp_rmb();
3864 
3865 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3866 
3867 		for (nr = 0; nr < v->nr_pages; nr++)
3868 			counters[page_to_nid(v->pages[nr])]++;
3869 
3870 		for_each_node_state(nr, N_HIGH_MEMORY)
3871 			if (counters[nr])
3872 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3873 	}
3874 }
3875 
3876 static void show_purge_info(struct seq_file *m)
3877 {
3878 	struct vmap_area *va;
3879 
3880 	spin_lock(&purge_vmap_area_lock);
3881 	list_for_each_entry(va, &purge_vmap_area_list, list) {
3882 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3883 			(void *)va->va_start, (void *)va->va_end,
3884 			va->va_end - va->va_start);
3885 	}
3886 	spin_unlock(&purge_vmap_area_lock);
3887 }
3888 
3889 static int s_show(struct seq_file *m, void *p)
3890 {
3891 	struct vmap_area *va;
3892 	struct vm_struct *v;
3893 
3894 	va = list_entry(p, struct vmap_area, list);
3895 
3896 	/*
3897 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3898 	 * of vmap area is being tear down or vm_map_ram allocation.
3899 	 */
3900 	if (!va->vm) {
3901 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3902 			(void *)va->va_start, (void *)va->va_end,
3903 			va->va_end - va->va_start);
3904 
3905 		return 0;
3906 	}
3907 
3908 	v = va->vm;
3909 
3910 	seq_printf(m, "0x%pK-0x%pK %7ld",
3911 		v->addr, v->addr + v->size, v->size);
3912 
3913 	if (v->caller)
3914 		seq_printf(m, " %pS", v->caller);
3915 
3916 	if (v->nr_pages)
3917 		seq_printf(m, " pages=%d", v->nr_pages);
3918 
3919 	if (v->phys_addr)
3920 		seq_printf(m, " phys=%pa", &v->phys_addr);
3921 
3922 	if (v->flags & VM_IOREMAP)
3923 		seq_puts(m, " ioremap");
3924 
3925 	if (v->flags & VM_ALLOC)
3926 		seq_puts(m, " vmalloc");
3927 
3928 	if (v->flags & VM_MAP)
3929 		seq_puts(m, " vmap");
3930 
3931 	if (v->flags & VM_USERMAP)
3932 		seq_puts(m, " user");
3933 
3934 	if (v->flags & VM_DMA_COHERENT)
3935 		seq_puts(m, " dma-coherent");
3936 
3937 	if (is_vmalloc_addr(v->pages))
3938 		seq_puts(m, " vpages");
3939 
3940 	show_numa_info(m, v);
3941 	seq_putc(m, '\n');
3942 
3943 	/*
3944 	 * As a final step, dump "unpurged" areas.
3945 	 */
3946 	if (list_is_last(&va->list, &vmap_area_list))
3947 		show_purge_info(m);
3948 
3949 	return 0;
3950 }
3951 
3952 static const struct seq_operations vmalloc_op = {
3953 	.start = s_start,
3954 	.next = s_next,
3955 	.stop = s_stop,
3956 	.show = s_show,
3957 };
3958 
3959 static int __init proc_vmalloc_init(void)
3960 {
3961 	if (IS_ENABLED(CONFIG_NUMA))
3962 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3963 				&vmalloc_op,
3964 				nr_node_ids * sizeof(unsigned int), NULL);
3965 	else
3966 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3967 	return 0;
3968 }
3969 module_init(proc_vmalloc_init);
3970 
3971 #endif
3972