xref: /openbmc/linux/mm/vmalloc.c (revision 752beb5e)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/radix-tree.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 
36 #include <linux/uaccess.h>
37 #include <asm/tlbflush.h>
38 #include <asm/shmparam.h>
39 
40 #include "internal.h"
41 
42 struct vfree_deferred {
43 	struct llist_head list;
44 	struct work_struct wq;
45 };
46 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
47 
48 static void __vunmap(const void *, int);
49 
50 static void free_work(struct work_struct *w)
51 {
52 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
53 	struct llist_node *t, *llnode;
54 
55 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
56 		__vunmap((void *)llnode, 1);
57 }
58 
59 /*** Page table manipulation functions ***/
60 
61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62 {
63 	pte_t *pte;
64 
65 	pte = pte_offset_kernel(pmd, addr);
66 	do {
67 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 	} while (pte++, addr += PAGE_SIZE, addr != end);
70 }
71 
72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
73 {
74 	pmd_t *pmd;
75 	unsigned long next;
76 
77 	pmd = pmd_offset(pud, addr);
78 	do {
79 		next = pmd_addr_end(addr, end);
80 		if (pmd_clear_huge(pmd))
81 			continue;
82 		if (pmd_none_or_clear_bad(pmd))
83 			continue;
84 		vunmap_pte_range(pmd, addr, next);
85 	} while (pmd++, addr = next, addr != end);
86 }
87 
88 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
89 {
90 	pud_t *pud;
91 	unsigned long next;
92 
93 	pud = pud_offset(p4d, addr);
94 	do {
95 		next = pud_addr_end(addr, end);
96 		if (pud_clear_huge(pud))
97 			continue;
98 		if (pud_none_or_clear_bad(pud))
99 			continue;
100 		vunmap_pmd_range(pud, addr, next);
101 	} while (pud++, addr = next, addr != end);
102 }
103 
104 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
105 {
106 	p4d_t *p4d;
107 	unsigned long next;
108 
109 	p4d = p4d_offset(pgd, addr);
110 	do {
111 		next = p4d_addr_end(addr, end);
112 		if (p4d_clear_huge(p4d))
113 			continue;
114 		if (p4d_none_or_clear_bad(p4d))
115 			continue;
116 		vunmap_pud_range(p4d, addr, next);
117 	} while (p4d++, addr = next, addr != end);
118 }
119 
120 static void vunmap_page_range(unsigned long addr, unsigned long end)
121 {
122 	pgd_t *pgd;
123 	unsigned long next;
124 
125 	BUG_ON(addr >= end);
126 	pgd = pgd_offset_k(addr);
127 	do {
128 		next = pgd_addr_end(addr, end);
129 		if (pgd_none_or_clear_bad(pgd))
130 			continue;
131 		vunmap_p4d_range(pgd, addr, next);
132 	} while (pgd++, addr = next, addr != end);
133 }
134 
135 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
136 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137 {
138 	pte_t *pte;
139 
140 	/*
141 	 * nr is a running index into the array which helps higher level
142 	 * callers keep track of where we're up to.
143 	 */
144 
145 	pte = pte_alloc_kernel(pmd, addr);
146 	if (!pte)
147 		return -ENOMEM;
148 	do {
149 		struct page *page = pages[*nr];
150 
151 		if (WARN_ON(!pte_none(*pte)))
152 			return -EBUSY;
153 		if (WARN_ON(!page))
154 			return -ENOMEM;
155 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
156 		(*nr)++;
157 	} while (pte++, addr += PAGE_SIZE, addr != end);
158 	return 0;
159 }
160 
161 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
162 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
163 {
164 	pmd_t *pmd;
165 	unsigned long next;
166 
167 	pmd = pmd_alloc(&init_mm, pud, addr);
168 	if (!pmd)
169 		return -ENOMEM;
170 	do {
171 		next = pmd_addr_end(addr, end);
172 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
173 			return -ENOMEM;
174 	} while (pmd++, addr = next, addr != end);
175 	return 0;
176 }
177 
178 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
179 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
180 {
181 	pud_t *pud;
182 	unsigned long next;
183 
184 	pud = pud_alloc(&init_mm, p4d, addr);
185 	if (!pud)
186 		return -ENOMEM;
187 	do {
188 		next = pud_addr_end(addr, end);
189 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
190 			return -ENOMEM;
191 	} while (pud++, addr = next, addr != end);
192 	return 0;
193 }
194 
195 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
196 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
197 {
198 	p4d_t *p4d;
199 	unsigned long next;
200 
201 	p4d = p4d_alloc(&init_mm, pgd, addr);
202 	if (!p4d)
203 		return -ENOMEM;
204 	do {
205 		next = p4d_addr_end(addr, end);
206 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
207 			return -ENOMEM;
208 	} while (p4d++, addr = next, addr != end);
209 	return 0;
210 }
211 
212 /*
213  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
214  * will have pfns corresponding to the "pages" array.
215  *
216  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
217  */
218 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
219 				   pgprot_t prot, struct page **pages)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long addr = start;
224 	int err = 0;
225 	int nr = 0;
226 
227 	BUG_ON(addr >= end);
228 	pgd = pgd_offset_k(addr);
229 	do {
230 		next = pgd_addr_end(addr, end);
231 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
232 		if (err)
233 			return err;
234 	} while (pgd++, addr = next, addr != end);
235 
236 	return nr;
237 }
238 
239 static int vmap_page_range(unsigned long start, unsigned long end,
240 			   pgprot_t prot, struct page **pages)
241 {
242 	int ret;
243 
244 	ret = vmap_page_range_noflush(start, end, prot, pages);
245 	flush_cache_vmap(start, end);
246 	return ret;
247 }
248 
249 int is_vmalloc_or_module_addr(const void *x)
250 {
251 	/*
252 	 * ARM, x86-64 and sparc64 put modules in a special place,
253 	 * and fall back on vmalloc() if that fails. Others
254 	 * just put it in the vmalloc space.
255 	 */
256 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
257 	unsigned long addr = (unsigned long)x;
258 	if (addr >= MODULES_VADDR && addr < MODULES_END)
259 		return 1;
260 #endif
261 	return is_vmalloc_addr(x);
262 }
263 
264 /*
265  * Walk a vmap address to the struct page it maps.
266  */
267 struct page *vmalloc_to_page(const void *vmalloc_addr)
268 {
269 	unsigned long addr = (unsigned long) vmalloc_addr;
270 	struct page *page = NULL;
271 	pgd_t *pgd = pgd_offset_k(addr);
272 	p4d_t *p4d;
273 	pud_t *pud;
274 	pmd_t *pmd;
275 	pte_t *ptep, pte;
276 
277 	/*
278 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
279 	 * architectures that do not vmalloc module space
280 	 */
281 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
282 
283 	if (pgd_none(*pgd))
284 		return NULL;
285 	p4d = p4d_offset(pgd, addr);
286 	if (p4d_none(*p4d))
287 		return NULL;
288 	pud = pud_offset(p4d, addr);
289 
290 	/*
291 	 * Don't dereference bad PUD or PMD (below) entries. This will also
292 	 * identify huge mappings, which we may encounter on architectures
293 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
294 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
295 	 * not [unambiguously] associated with a struct page, so there is
296 	 * no correct value to return for them.
297 	 */
298 	WARN_ON_ONCE(pud_bad(*pud));
299 	if (pud_none(*pud) || pud_bad(*pud))
300 		return NULL;
301 	pmd = pmd_offset(pud, addr);
302 	WARN_ON_ONCE(pmd_bad(*pmd));
303 	if (pmd_none(*pmd) || pmd_bad(*pmd))
304 		return NULL;
305 
306 	ptep = pte_offset_map(pmd, addr);
307 	pte = *ptep;
308 	if (pte_present(pte))
309 		page = pte_page(pte);
310 	pte_unmap(ptep);
311 	return page;
312 }
313 EXPORT_SYMBOL(vmalloc_to_page);
314 
315 /*
316  * Map a vmalloc()-space virtual address to the physical page frame number.
317  */
318 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
319 {
320 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
321 }
322 EXPORT_SYMBOL(vmalloc_to_pfn);
323 
324 
325 /*** Global kva allocator ***/
326 
327 #define VM_LAZY_FREE	0x02
328 #define VM_VM_AREA	0x04
329 
330 static DEFINE_SPINLOCK(vmap_area_lock);
331 /* Export for kexec only */
332 LIST_HEAD(vmap_area_list);
333 static LLIST_HEAD(vmap_purge_list);
334 static struct rb_root vmap_area_root = RB_ROOT;
335 
336 /* The vmap cache globals are protected by vmap_area_lock */
337 static struct rb_node *free_vmap_cache;
338 static unsigned long cached_hole_size;
339 static unsigned long cached_vstart;
340 static unsigned long cached_align;
341 
342 static unsigned long vmap_area_pcpu_hole;
343 
344 static struct vmap_area *__find_vmap_area(unsigned long addr)
345 {
346 	struct rb_node *n = vmap_area_root.rb_node;
347 
348 	while (n) {
349 		struct vmap_area *va;
350 
351 		va = rb_entry(n, struct vmap_area, rb_node);
352 		if (addr < va->va_start)
353 			n = n->rb_left;
354 		else if (addr >= va->va_end)
355 			n = n->rb_right;
356 		else
357 			return va;
358 	}
359 
360 	return NULL;
361 }
362 
363 static void __insert_vmap_area(struct vmap_area *va)
364 {
365 	struct rb_node **p = &vmap_area_root.rb_node;
366 	struct rb_node *parent = NULL;
367 	struct rb_node *tmp;
368 
369 	while (*p) {
370 		struct vmap_area *tmp_va;
371 
372 		parent = *p;
373 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
374 		if (va->va_start < tmp_va->va_end)
375 			p = &(*p)->rb_left;
376 		else if (va->va_end > tmp_va->va_start)
377 			p = &(*p)->rb_right;
378 		else
379 			BUG();
380 	}
381 
382 	rb_link_node(&va->rb_node, parent, p);
383 	rb_insert_color(&va->rb_node, &vmap_area_root);
384 
385 	/* address-sort this list */
386 	tmp = rb_prev(&va->rb_node);
387 	if (tmp) {
388 		struct vmap_area *prev;
389 		prev = rb_entry(tmp, struct vmap_area, rb_node);
390 		list_add_rcu(&va->list, &prev->list);
391 	} else
392 		list_add_rcu(&va->list, &vmap_area_list);
393 }
394 
395 static void purge_vmap_area_lazy(void);
396 
397 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
398 
399 /*
400  * Allocate a region of KVA of the specified size and alignment, within the
401  * vstart and vend.
402  */
403 static struct vmap_area *alloc_vmap_area(unsigned long size,
404 				unsigned long align,
405 				unsigned long vstart, unsigned long vend,
406 				int node, gfp_t gfp_mask)
407 {
408 	struct vmap_area *va;
409 	struct rb_node *n;
410 	unsigned long addr;
411 	int purged = 0;
412 	struct vmap_area *first;
413 
414 	BUG_ON(!size);
415 	BUG_ON(offset_in_page(size));
416 	BUG_ON(!is_power_of_2(align));
417 
418 	might_sleep();
419 
420 	va = kmalloc_node(sizeof(struct vmap_area),
421 			gfp_mask & GFP_RECLAIM_MASK, node);
422 	if (unlikely(!va))
423 		return ERR_PTR(-ENOMEM);
424 
425 	/*
426 	 * Only scan the relevant parts containing pointers to other objects
427 	 * to avoid false negatives.
428 	 */
429 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
430 
431 retry:
432 	spin_lock(&vmap_area_lock);
433 	/*
434 	 * Invalidate cache if we have more permissive parameters.
435 	 * cached_hole_size notes the largest hole noticed _below_
436 	 * the vmap_area cached in free_vmap_cache: if size fits
437 	 * into that hole, we want to scan from vstart to reuse
438 	 * the hole instead of allocating above free_vmap_cache.
439 	 * Note that __free_vmap_area may update free_vmap_cache
440 	 * without updating cached_hole_size or cached_align.
441 	 */
442 	if (!free_vmap_cache ||
443 			size < cached_hole_size ||
444 			vstart < cached_vstart ||
445 			align < cached_align) {
446 nocache:
447 		cached_hole_size = 0;
448 		free_vmap_cache = NULL;
449 	}
450 	/* record if we encounter less permissive parameters */
451 	cached_vstart = vstart;
452 	cached_align = align;
453 
454 	/* find starting point for our search */
455 	if (free_vmap_cache) {
456 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
457 		addr = ALIGN(first->va_end, align);
458 		if (addr < vstart)
459 			goto nocache;
460 		if (addr + size < addr)
461 			goto overflow;
462 
463 	} else {
464 		addr = ALIGN(vstart, align);
465 		if (addr + size < addr)
466 			goto overflow;
467 
468 		n = vmap_area_root.rb_node;
469 		first = NULL;
470 
471 		while (n) {
472 			struct vmap_area *tmp;
473 			tmp = rb_entry(n, struct vmap_area, rb_node);
474 			if (tmp->va_end >= addr) {
475 				first = tmp;
476 				if (tmp->va_start <= addr)
477 					break;
478 				n = n->rb_left;
479 			} else
480 				n = n->rb_right;
481 		}
482 
483 		if (!first)
484 			goto found;
485 	}
486 
487 	/* from the starting point, walk areas until a suitable hole is found */
488 	while (addr + size > first->va_start && addr + size <= vend) {
489 		if (addr + cached_hole_size < first->va_start)
490 			cached_hole_size = first->va_start - addr;
491 		addr = ALIGN(first->va_end, align);
492 		if (addr + size < addr)
493 			goto overflow;
494 
495 		if (list_is_last(&first->list, &vmap_area_list))
496 			goto found;
497 
498 		first = list_next_entry(first, list);
499 	}
500 
501 found:
502 	/*
503 	 * Check also calculated address against the vstart,
504 	 * because it can be 0 because of big align request.
505 	 */
506 	if (addr + size > vend || addr < vstart)
507 		goto overflow;
508 
509 	va->va_start = addr;
510 	va->va_end = addr + size;
511 	va->flags = 0;
512 	__insert_vmap_area(va);
513 	free_vmap_cache = &va->rb_node;
514 	spin_unlock(&vmap_area_lock);
515 
516 	BUG_ON(!IS_ALIGNED(va->va_start, align));
517 	BUG_ON(va->va_start < vstart);
518 	BUG_ON(va->va_end > vend);
519 
520 	return va;
521 
522 overflow:
523 	spin_unlock(&vmap_area_lock);
524 	if (!purged) {
525 		purge_vmap_area_lazy();
526 		purged = 1;
527 		goto retry;
528 	}
529 
530 	if (gfpflags_allow_blocking(gfp_mask)) {
531 		unsigned long freed = 0;
532 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
533 		if (freed > 0) {
534 			purged = 0;
535 			goto retry;
536 		}
537 	}
538 
539 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
540 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
541 			size);
542 	kfree(va);
543 	return ERR_PTR(-EBUSY);
544 }
545 
546 int register_vmap_purge_notifier(struct notifier_block *nb)
547 {
548 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
549 }
550 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
551 
552 int unregister_vmap_purge_notifier(struct notifier_block *nb)
553 {
554 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
555 }
556 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
557 
558 static void __free_vmap_area(struct vmap_area *va)
559 {
560 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
561 
562 	if (free_vmap_cache) {
563 		if (va->va_end < cached_vstart) {
564 			free_vmap_cache = NULL;
565 		} else {
566 			struct vmap_area *cache;
567 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
568 			if (va->va_start <= cache->va_start) {
569 				free_vmap_cache = rb_prev(&va->rb_node);
570 				/*
571 				 * We don't try to update cached_hole_size or
572 				 * cached_align, but it won't go very wrong.
573 				 */
574 			}
575 		}
576 	}
577 	rb_erase(&va->rb_node, &vmap_area_root);
578 	RB_CLEAR_NODE(&va->rb_node);
579 	list_del_rcu(&va->list);
580 
581 	/*
582 	 * Track the highest possible candidate for pcpu area
583 	 * allocation.  Areas outside of vmalloc area can be returned
584 	 * here too, consider only end addresses which fall inside
585 	 * vmalloc area proper.
586 	 */
587 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
588 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
589 
590 	kfree_rcu(va, rcu_head);
591 }
592 
593 /*
594  * Free a region of KVA allocated by alloc_vmap_area
595  */
596 static void free_vmap_area(struct vmap_area *va)
597 {
598 	spin_lock(&vmap_area_lock);
599 	__free_vmap_area(va);
600 	spin_unlock(&vmap_area_lock);
601 }
602 
603 /*
604  * Clear the pagetable entries of a given vmap_area
605  */
606 static void unmap_vmap_area(struct vmap_area *va)
607 {
608 	vunmap_page_range(va->va_start, va->va_end);
609 }
610 
611 /*
612  * lazy_max_pages is the maximum amount of virtual address space we gather up
613  * before attempting to purge with a TLB flush.
614  *
615  * There is a tradeoff here: a larger number will cover more kernel page tables
616  * and take slightly longer to purge, but it will linearly reduce the number of
617  * global TLB flushes that must be performed. It would seem natural to scale
618  * this number up linearly with the number of CPUs (because vmapping activity
619  * could also scale linearly with the number of CPUs), however it is likely
620  * that in practice, workloads might be constrained in other ways that mean
621  * vmap activity will not scale linearly with CPUs. Also, I want to be
622  * conservative and not introduce a big latency on huge systems, so go with
623  * a less aggressive log scale. It will still be an improvement over the old
624  * code, and it will be simple to change the scale factor if we find that it
625  * becomes a problem on bigger systems.
626  */
627 static unsigned long lazy_max_pages(void)
628 {
629 	unsigned int log;
630 
631 	log = fls(num_online_cpus());
632 
633 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
634 }
635 
636 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
637 
638 /*
639  * Serialize vmap purging.  There is no actual criticial section protected
640  * by this look, but we want to avoid concurrent calls for performance
641  * reasons and to make the pcpu_get_vm_areas more deterministic.
642  */
643 static DEFINE_MUTEX(vmap_purge_lock);
644 
645 /* for per-CPU blocks */
646 static void purge_fragmented_blocks_allcpus(void);
647 
648 /*
649  * called before a call to iounmap() if the caller wants vm_area_struct's
650  * immediately freed.
651  */
652 void set_iounmap_nonlazy(void)
653 {
654 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
655 }
656 
657 /*
658  * Purges all lazily-freed vmap areas.
659  */
660 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
661 {
662 	struct llist_node *valist;
663 	struct vmap_area *va;
664 	struct vmap_area *n_va;
665 	bool do_free = false;
666 
667 	lockdep_assert_held(&vmap_purge_lock);
668 
669 	valist = llist_del_all(&vmap_purge_list);
670 	llist_for_each_entry(va, valist, purge_list) {
671 		if (va->va_start < start)
672 			start = va->va_start;
673 		if (va->va_end > end)
674 			end = va->va_end;
675 		do_free = true;
676 	}
677 
678 	if (!do_free)
679 		return false;
680 
681 	flush_tlb_kernel_range(start, end);
682 
683 	spin_lock(&vmap_area_lock);
684 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
685 		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
686 
687 		__free_vmap_area(va);
688 		atomic_sub(nr, &vmap_lazy_nr);
689 		cond_resched_lock(&vmap_area_lock);
690 	}
691 	spin_unlock(&vmap_area_lock);
692 	return true;
693 }
694 
695 /*
696  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
697  * is already purging.
698  */
699 static void try_purge_vmap_area_lazy(void)
700 {
701 	if (mutex_trylock(&vmap_purge_lock)) {
702 		__purge_vmap_area_lazy(ULONG_MAX, 0);
703 		mutex_unlock(&vmap_purge_lock);
704 	}
705 }
706 
707 /*
708  * Kick off a purge of the outstanding lazy areas.
709  */
710 static void purge_vmap_area_lazy(void)
711 {
712 	mutex_lock(&vmap_purge_lock);
713 	purge_fragmented_blocks_allcpus();
714 	__purge_vmap_area_lazy(ULONG_MAX, 0);
715 	mutex_unlock(&vmap_purge_lock);
716 }
717 
718 /*
719  * Free a vmap area, caller ensuring that the area has been unmapped
720  * and flush_cache_vunmap had been called for the correct range
721  * previously.
722  */
723 static void free_vmap_area_noflush(struct vmap_area *va)
724 {
725 	int nr_lazy;
726 
727 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
728 				    &vmap_lazy_nr);
729 
730 	/* After this point, we may free va at any time */
731 	llist_add(&va->purge_list, &vmap_purge_list);
732 
733 	if (unlikely(nr_lazy > lazy_max_pages()))
734 		try_purge_vmap_area_lazy();
735 }
736 
737 /*
738  * Free and unmap a vmap area
739  */
740 static void free_unmap_vmap_area(struct vmap_area *va)
741 {
742 	flush_cache_vunmap(va->va_start, va->va_end);
743 	unmap_vmap_area(va);
744 	if (debug_pagealloc_enabled())
745 		flush_tlb_kernel_range(va->va_start, va->va_end);
746 
747 	free_vmap_area_noflush(va);
748 }
749 
750 static struct vmap_area *find_vmap_area(unsigned long addr)
751 {
752 	struct vmap_area *va;
753 
754 	spin_lock(&vmap_area_lock);
755 	va = __find_vmap_area(addr);
756 	spin_unlock(&vmap_area_lock);
757 
758 	return va;
759 }
760 
761 /*** Per cpu kva allocator ***/
762 
763 /*
764  * vmap space is limited especially on 32 bit architectures. Ensure there is
765  * room for at least 16 percpu vmap blocks per CPU.
766  */
767 /*
768  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
769  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
770  * instead (we just need a rough idea)
771  */
772 #if BITS_PER_LONG == 32
773 #define VMALLOC_SPACE		(128UL*1024*1024)
774 #else
775 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
776 #endif
777 
778 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
779 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
780 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
781 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
782 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
783 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
784 #define VMAP_BBMAP_BITS		\
785 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
786 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
787 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
788 
789 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
790 
791 static bool vmap_initialized __read_mostly = false;
792 
793 struct vmap_block_queue {
794 	spinlock_t lock;
795 	struct list_head free;
796 };
797 
798 struct vmap_block {
799 	spinlock_t lock;
800 	struct vmap_area *va;
801 	unsigned long free, dirty;
802 	unsigned long dirty_min, dirty_max; /*< dirty range */
803 	struct list_head free_list;
804 	struct rcu_head rcu_head;
805 	struct list_head purge;
806 };
807 
808 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
809 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
810 
811 /*
812  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
813  * in the free path. Could get rid of this if we change the API to return a
814  * "cookie" from alloc, to be passed to free. But no big deal yet.
815  */
816 static DEFINE_SPINLOCK(vmap_block_tree_lock);
817 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
818 
819 /*
820  * We should probably have a fallback mechanism to allocate virtual memory
821  * out of partially filled vmap blocks. However vmap block sizing should be
822  * fairly reasonable according to the vmalloc size, so it shouldn't be a
823  * big problem.
824  */
825 
826 static unsigned long addr_to_vb_idx(unsigned long addr)
827 {
828 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
829 	addr /= VMAP_BLOCK_SIZE;
830 	return addr;
831 }
832 
833 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
834 {
835 	unsigned long addr;
836 
837 	addr = va_start + (pages_off << PAGE_SHIFT);
838 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
839 	return (void *)addr;
840 }
841 
842 /**
843  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
844  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
845  * @order:    how many 2^order pages should be occupied in newly allocated block
846  * @gfp_mask: flags for the page level allocator
847  *
848  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
849  */
850 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
851 {
852 	struct vmap_block_queue *vbq;
853 	struct vmap_block *vb;
854 	struct vmap_area *va;
855 	unsigned long vb_idx;
856 	int node, err;
857 	void *vaddr;
858 
859 	node = numa_node_id();
860 
861 	vb = kmalloc_node(sizeof(struct vmap_block),
862 			gfp_mask & GFP_RECLAIM_MASK, node);
863 	if (unlikely(!vb))
864 		return ERR_PTR(-ENOMEM);
865 
866 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
867 					VMALLOC_START, VMALLOC_END,
868 					node, gfp_mask);
869 	if (IS_ERR(va)) {
870 		kfree(vb);
871 		return ERR_CAST(va);
872 	}
873 
874 	err = radix_tree_preload(gfp_mask);
875 	if (unlikely(err)) {
876 		kfree(vb);
877 		free_vmap_area(va);
878 		return ERR_PTR(err);
879 	}
880 
881 	vaddr = vmap_block_vaddr(va->va_start, 0);
882 	spin_lock_init(&vb->lock);
883 	vb->va = va;
884 	/* At least something should be left free */
885 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
886 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
887 	vb->dirty = 0;
888 	vb->dirty_min = VMAP_BBMAP_BITS;
889 	vb->dirty_max = 0;
890 	INIT_LIST_HEAD(&vb->free_list);
891 
892 	vb_idx = addr_to_vb_idx(va->va_start);
893 	spin_lock(&vmap_block_tree_lock);
894 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
895 	spin_unlock(&vmap_block_tree_lock);
896 	BUG_ON(err);
897 	radix_tree_preload_end();
898 
899 	vbq = &get_cpu_var(vmap_block_queue);
900 	spin_lock(&vbq->lock);
901 	list_add_tail_rcu(&vb->free_list, &vbq->free);
902 	spin_unlock(&vbq->lock);
903 	put_cpu_var(vmap_block_queue);
904 
905 	return vaddr;
906 }
907 
908 static void free_vmap_block(struct vmap_block *vb)
909 {
910 	struct vmap_block *tmp;
911 	unsigned long vb_idx;
912 
913 	vb_idx = addr_to_vb_idx(vb->va->va_start);
914 	spin_lock(&vmap_block_tree_lock);
915 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
916 	spin_unlock(&vmap_block_tree_lock);
917 	BUG_ON(tmp != vb);
918 
919 	free_vmap_area_noflush(vb->va);
920 	kfree_rcu(vb, rcu_head);
921 }
922 
923 static void purge_fragmented_blocks(int cpu)
924 {
925 	LIST_HEAD(purge);
926 	struct vmap_block *vb;
927 	struct vmap_block *n_vb;
928 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
929 
930 	rcu_read_lock();
931 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
932 
933 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
934 			continue;
935 
936 		spin_lock(&vb->lock);
937 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
938 			vb->free = 0; /* prevent further allocs after releasing lock */
939 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
940 			vb->dirty_min = 0;
941 			vb->dirty_max = VMAP_BBMAP_BITS;
942 			spin_lock(&vbq->lock);
943 			list_del_rcu(&vb->free_list);
944 			spin_unlock(&vbq->lock);
945 			spin_unlock(&vb->lock);
946 			list_add_tail(&vb->purge, &purge);
947 		} else
948 			spin_unlock(&vb->lock);
949 	}
950 	rcu_read_unlock();
951 
952 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
953 		list_del(&vb->purge);
954 		free_vmap_block(vb);
955 	}
956 }
957 
958 static void purge_fragmented_blocks_allcpus(void)
959 {
960 	int cpu;
961 
962 	for_each_possible_cpu(cpu)
963 		purge_fragmented_blocks(cpu);
964 }
965 
966 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
967 {
968 	struct vmap_block_queue *vbq;
969 	struct vmap_block *vb;
970 	void *vaddr = NULL;
971 	unsigned int order;
972 
973 	BUG_ON(offset_in_page(size));
974 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
975 	if (WARN_ON(size == 0)) {
976 		/*
977 		 * Allocating 0 bytes isn't what caller wants since
978 		 * get_order(0) returns funny result. Just warn and terminate
979 		 * early.
980 		 */
981 		return NULL;
982 	}
983 	order = get_order(size);
984 
985 	rcu_read_lock();
986 	vbq = &get_cpu_var(vmap_block_queue);
987 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
988 		unsigned long pages_off;
989 
990 		spin_lock(&vb->lock);
991 		if (vb->free < (1UL << order)) {
992 			spin_unlock(&vb->lock);
993 			continue;
994 		}
995 
996 		pages_off = VMAP_BBMAP_BITS - vb->free;
997 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
998 		vb->free -= 1UL << order;
999 		if (vb->free == 0) {
1000 			spin_lock(&vbq->lock);
1001 			list_del_rcu(&vb->free_list);
1002 			spin_unlock(&vbq->lock);
1003 		}
1004 
1005 		spin_unlock(&vb->lock);
1006 		break;
1007 	}
1008 
1009 	put_cpu_var(vmap_block_queue);
1010 	rcu_read_unlock();
1011 
1012 	/* Allocate new block if nothing was found */
1013 	if (!vaddr)
1014 		vaddr = new_vmap_block(order, gfp_mask);
1015 
1016 	return vaddr;
1017 }
1018 
1019 static void vb_free(const void *addr, unsigned long size)
1020 {
1021 	unsigned long offset;
1022 	unsigned long vb_idx;
1023 	unsigned int order;
1024 	struct vmap_block *vb;
1025 
1026 	BUG_ON(offset_in_page(size));
1027 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1028 
1029 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1030 
1031 	order = get_order(size);
1032 
1033 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1034 	offset >>= PAGE_SHIFT;
1035 
1036 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1037 	rcu_read_lock();
1038 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1039 	rcu_read_unlock();
1040 	BUG_ON(!vb);
1041 
1042 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1043 
1044 	if (debug_pagealloc_enabled())
1045 		flush_tlb_kernel_range((unsigned long)addr,
1046 					(unsigned long)addr + size);
1047 
1048 	spin_lock(&vb->lock);
1049 
1050 	/* Expand dirty range */
1051 	vb->dirty_min = min(vb->dirty_min, offset);
1052 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1053 
1054 	vb->dirty += 1UL << order;
1055 	if (vb->dirty == VMAP_BBMAP_BITS) {
1056 		BUG_ON(vb->free);
1057 		spin_unlock(&vb->lock);
1058 		free_vmap_block(vb);
1059 	} else
1060 		spin_unlock(&vb->lock);
1061 }
1062 
1063 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1064 {
1065 	int cpu;
1066 
1067 	if (unlikely(!vmap_initialized))
1068 		return;
1069 
1070 	might_sleep();
1071 
1072 	for_each_possible_cpu(cpu) {
1073 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1074 		struct vmap_block *vb;
1075 
1076 		rcu_read_lock();
1077 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1078 			spin_lock(&vb->lock);
1079 			if (vb->dirty) {
1080 				unsigned long va_start = vb->va->va_start;
1081 				unsigned long s, e;
1082 
1083 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1084 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1085 
1086 				start = min(s, start);
1087 				end   = max(e, end);
1088 
1089 				flush = 1;
1090 			}
1091 			spin_unlock(&vb->lock);
1092 		}
1093 		rcu_read_unlock();
1094 	}
1095 
1096 	mutex_lock(&vmap_purge_lock);
1097 	purge_fragmented_blocks_allcpus();
1098 	if (!__purge_vmap_area_lazy(start, end) && flush)
1099 		flush_tlb_kernel_range(start, end);
1100 	mutex_unlock(&vmap_purge_lock);
1101 }
1102 
1103 /**
1104  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1105  *
1106  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1107  * to amortize TLB flushing overheads. What this means is that any page you
1108  * have now, may, in a former life, have been mapped into kernel virtual
1109  * address by the vmap layer and so there might be some CPUs with TLB entries
1110  * still referencing that page (additional to the regular 1:1 kernel mapping).
1111  *
1112  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1113  * be sure that none of the pages we have control over will have any aliases
1114  * from the vmap layer.
1115  */
1116 void vm_unmap_aliases(void)
1117 {
1118 	unsigned long start = ULONG_MAX, end = 0;
1119 	int flush = 0;
1120 
1121 	_vm_unmap_aliases(start, end, flush);
1122 }
1123 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1124 
1125 /**
1126  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1127  * @mem: the pointer returned by vm_map_ram
1128  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1129  */
1130 void vm_unmap_ram(const void *mem, unsigned int count)
1131 {
1132 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1133 	unsigned long addr = (unsigned long)mem;
1134 	struct vmap_area *va;
1135 
1136 	might_sleep();
1137 	BUG_ON(!addr);
1138 	BUG_ON(addr < VMALLOC_START);
1139 	BUG_ON(addr > VMALLOC_END);
1140 	BUG_ON(!PAGE_ALIGNED(addr));
1141 
1142 	if (likely(count <= VMAP_MAX_ALLOC)) {
1143 		debug_check_no_locks_freed(mem, size);
1144 		vb_free(mem, size);
1145 		return;
1146 	}
1147 
1148 	va = find_vmap_area(addr);
1149 	BUG_ON(!va);
1150 	debug_check_no_locks_freed((void *)va->va_start,
1151 				    (va->va_end - va->va_start));
1152 	free_unmap_vmap_area(va);
1153 }
1154 EXPORT_SYMBOL(vm_unmap_ram);
1155 
1156 /**
1157  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1158  * @pages: an array of pointers to the pages to be mapped
1159  * @count: number of pages
1160  * @node: prefer to allocate data structures on this node
1161  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1162  *
1163  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1164  * faster than vmap so it's good.  But if you mix long-life and short-life
1165  * objects with vm_map_ram(), it could consume lots of address space through
1166  * fragmentation (especially on a 32bit machine).  You could see failures in
1167  * the end.  Please use this function for short-lived objects.
1168  *
1169  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1170  */
1171 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1172 {
1173 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1174 	unsigned long addr;
1175 	void *mem;
1176 
1177 	if (likely(count <= VMAP_MAX_ALLOC)) {
1178 		mem = vb_alloc(size, GFP_KERNEL);
1179 		if (IS_ERR(mem))
1180 			return NULL;
1181 		addr = (unsigned long)mem;
1182 	} else {
1183 		struct vmap_area *va;
1184 		va = alloc_vmap_area(size, PAGE_SIZE,
1185 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1186 		if (IS_ERR(va))
1187 			return NULL;
1188 
1189 		addr = va->va_start;
1190 		mem = (void *)addr;
1191 	}
1192 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1193 		vm_unmap_ram(mem, count);
1194 		return NULL;
1195 	}
1196 	return mem;
1197 }
1198 EXPORT_SYMBOL(vm_map_ram);
1199 
1200 static struct vm_struct *vmlist __initdata;
1201 
1202 /**
1203  * vm_area_add_early - add vmap area early during boot
1204  * @vm: vm_struct to add
1205  *
1206  * This function is used to add fixed kernel vm area to vmlist before
1207  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1208  * should contain proper values and the other fields should be zero.
1209  *
1210  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1211  */
1212 void __init vm_area_add_early(struct vm_struct *vm)
1213 {
1214 	struct vm_struct *tmp, **p;
1215 
1216 	BUG_ON(vmap_initialized);
1217 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1218 		if (tmp->addr >= vm->addr) {
1219 			BUG_ON(tmp->addr < vm->addr + vm->size);
1220 			break;
1221 		} else
1222 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1223 	}
1224 	vm->next = *p;
1225 	*p = vm;
1226 }
1227 
1228 /**
1229  * vm_area_register_early - register vmap area early during boot
1230  * @vm: vm_struct to register
1231  * @align: requested alignment
1232  *
1233  * This function is used to register kernel vm area before
1234  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1235  * proper values on entry and other fields should be zero.  On return,
1236  * vm->addr contains the allocated address.
1237  *
1238  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1239  */
1240 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1241 {
1242 	static size_t vm_init_off __initdata;
1243 	unsigned long addr;
1244 
1245 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1246 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1247 
1248 	vm->addr = (void *)addr;
1249 
1250 	vm_area_add_early(vm);
1251 }
1252 
1253 void __init vmalloc_init(void)
1254 {
1255 	struct vmap_area *va;
1256 	struct vm_struct *tmp;
1257 	int i;
1258 
1259 	for_each_possible_cpu(i) {
1260 		struct vmap_block_queue *vbq;
1261 		struct vfree_deferred *p;
1262 
1263 		vbq = &per_cpu(vmap_block_queue, i);
1264 		spin_lock_init(&vbq->lock);
1265 		INIT_LIST_HEAD(&vbq->free);
1266 		p = &per_cpu(vfree_deferred, i);
1267 		init_llist_head(&p->list);
1268 		INIT_WORK(&p->wq, free_work);
1269 	}
1270 
1271 	/* Import existing vmlist entries. */
1272 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1273 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1274 		va->flags = VM_VM_AREA;
1275 		va->va_start = (unsigned long)tmp->addr;
1276 		va->va_end = va->va_start + tmp->size;
1277 		va->vm = tmp;
1278 		__insert_vmap_area(va);
1279 	}
1280 
1281 	vmap_area_pcpu_hole = VMALLOC_END;
1282 
1283 	vmap_initialized = true;
1284 }
1285 
1286 /**
1287  * map_kernel_range_noflush - map kernel VM area with the specified pages
1288  * @addr: start of the VM area to map
1289  * @size: size of the VM area to map
1290  * @prot: page protection flags to use
1291  * @pages: pages to map
1292  *
1293  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1294  * specify should have been allocated using get_vm_area() and its
1295  * friends.
1296  *
1297  * NOTE:
1298  * This function does NOT do any cache flushing.  The caller is
1299  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1300  * before calling this function.
1301  *
1302  * RETURNS:
1303  * The number of pages mapped on success, -errno on failure.
1304  */
1305 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1306 			     pgprot_t prot, struct page **pages)
1307 {
1308 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1309 }
1310 
1311 /**
1312  * unmap_kernel_range_noflush - unmap kernel VM area
1313  * @addr: start of the VM area to unmap
1314  * @size: size of the VM area to unmap
1315  *
1316  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1317  * specify should have been allocated using get_vm_area() and its
1318  * friends.
1319  *
1320  * NOTE:
1321  * This function does NOT do any cache flushing.  The caller is
1322  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1323  * before calling this function and flush_tlb_kernel_range() after.
1324  */
1325 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1326 {
1327 	vunmap_page_range(addr, addr + size);
1328 }
1329 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1330 
1331 /**
1332  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1333  * @addr: start of the VM area to unmap
1334  * @size: size of the VM area to unmap
1335  *
1336  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1337  * the unmapping and tlb after.
1338  */
1339 void unmap_kernel_range(unsigned long addr, unsigned long size)
1340 {
1341 	unsigned long end = addr + size;
1342 
1343 	flush_cache_vunmap(addr, end);
1344 	vunmap_page_range(addr, end);
1345 	flush_tlb_kernel_range(addr, end);
1346 }
1347 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1348 
1349 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1350 {
1351 	unsigned long addr = (unsigned long)area->addr;
1352 	unsigned long end = addr + get_vm_area_size(area);
1353 	int err;
1354 
1355 	err = vmap_page_range(addr, end, prot, pages);
1356 
1357 	return err > 0 ? 0 : err;
1358 }
1359 EXPORT_SYMBOL_GPL(map_vm_area);
1360 
1361 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1362 			      unsigned long flags, const void *caller)
1363 {
1364 	spin_lock(&vmap_area_lock);
1365 	vm->flags = flags;
1366 	vm->addr = (void *)va->va_start;
1367 	vm->size = va->va_end - va->va_start;
1368 	vm->caller = caller;
1369 	va->vm = vm;
1370 	va->flags |= VM_VM_AREA;
1371 	spin_unlock(&vmap_area_lock);
1372 }
1373 
1374 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1375 {
1376 	/*
1377 	 * Before removing VM_UNINITIALIZED,
1378 	 * we should make sure that vm has proper values.
1379 	 * Pair with smp_rmb() in show_numa_info().
1380 	 */
1381 	smp_wmb();
1382 	vm->flags &= ~VM_UNINITIALIZED;
1383 }
1384 
1385 static struct vm_struct *__get_vm_area_node(unsigned long size,
1386 		unsigned long align, unsigned long flags, unsigned long start,
1387 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1388 {
1389 	struct vmap_area *va;
1390 	struct vm_struct *area;
1391 
1392 	BUG_ON(in_interrupt());
1393 	size = PAGE_ALIGN(size);
1394 	if (unlikely(!size))
1395 		return NULL;
1396 
1397 	if (flags & VM_IOREMAP)
1398 		align = 1ul << clamp_t(int, get_count_order_long(size),
1399 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1400 
1401 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1402 	if (unlikely(!area))
1403 		return NULL;
1404 
1405 	if (!(flags & VM_NO_GUARD))
1406 		size += PAGE_SIZE;
1407 
1408 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1409 	if (IS_ERR(va)) {
1410 		kfree(area);
1411 		return NULL;
1412 	}
1413 
1414 	setup_vmalloc_vm(area, va, flags, caller);
1415 
1416 	return area;
1417 }
1418 
1419 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1420 				unsigned long start, unsigned long end)
1421 {
1422 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1423 				  GFP_KERNEL, __builtin_return_address(0));
1424 }
1425 EXPORT_SYMBOL_GPL(__get_vm_area);
1426 
1427 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1428 				       unsigned long start, unsigned long end,
1429 				       const void *caller)
1430 {
1431 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1432 				  GFP_KERNEL, caller);
1433 }
1434 
1435 /**
1436  * get_vm_area - reserve a contiguous kernel virtual area
1437  * @size:	 size of the area
1438  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
1439  *
1440  * Search an area of @size in the kernel virtual mapping area,
1441  * and reserved it for out purposes.  Returns the area descriptor
1442  * on success or %NULL on failure.
1443  *
1444  * Return: the area descriptor on success or %NULL on failure.
1445  */
1446 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1447 {
1448 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1449 				  NUMA_NO_NODE, GFP_KERNEL,
1450 				  __builtin_return_address(0));
1451 }
1452 
1453 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1454 				const void *caller)
1455 {
1456 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1457 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1458 }
1459 
1460 /**
1461  * find_vm_area - find a continuous kernel virtual area
1462  * @addr:	  base address
1463  *
1464  * Search for the kernel VM area starting at @addr, and return it.
1465  * It is up to the caller to do all required locking to keep the returned
1466  * pointer valid.
1467  *
1468  * Return: pointer to the found area or %NULL on faulure
1469  */
1470 struct vm_struct *find_vm_area(const void *addr)
1471 {
1472 	struct vmap_area *va;
1473 
1474 	va = find_vmap_area((unsigned long)addr);
1475 	if (va && va->flags & VM_VM_AREA)
1476 		return va->vm;
1477 
1478 	return NULL;
1479 }
1480 
1481 /**
1482  * remove_vm_area - find and remove a continuous kernel virtual area
1483  * @addr:	    base address
1484  *
1485  * Search for the kernel VM area starting at @addr, and remove it.
1486  * This function returns the found VM area, but using it is NOT safe
1487  * on SMP machines, except for its size or flags.
1488  *
1489  * Return: pointer to the found area or %NULL on faulure
1490  */
1491 struct vm_struct *remove_vm_area(const void *addr)
1492 {
1493 	struct vmap_area *va;
1494 
1495 	might_sleep();
1496 
1497 	va = find_vmap_area((unsigned long)addr);
1498 	if (va && va->flags & VM_VM_AREA) {
1499 		struct vm_struct *vm = va->vm;
1500 
1501 		spin_lock(&vmap_area_lock);
1502 		va->vm = NULL;
1503 		va->flags &= ~VM_VM_AREA;
1504 		va->flags |= VM_LAZY_FREE;
1505 		spin_unlock(&vmap_area_lock);
1506 
1507 		kasan_free_shadow(vm);
1508 		free_unmap_vmap_area(va);
1509 
1510 		return vm;
1511 	}
1512 	return NULL;
1513 }
1514 
1515 static inline void set_area_direct_map(const struct vm_struct *area,
1516 				       int (*set_direct_map)(struct page *page))
1517 {
1518 	int i;
1519 
1520 	for (i = 0; i < area->nr_pages; i++)
1521 		if (page_address(area->pages[i]))
1522 			set_direct_map(area->pages[i]);
1523 }
1524 
1525 /* Handle removing and resetting vm mappings related to the vm_struct. */
1526 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
1527 {
1528 	unsigned long addr = (unsigned long)area->addr;
1529 	unsigned long start = ULONG_MAX, end = 0;
1530 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
1531 	int i;
1532 
1533 	/*
1534 	 * The below block can be removed when all architectures that have
1535 	 * direct map permissions also have set_direct_map_() implementations.
1536 	 * This is concerned with resetting the direct map any an vm alias with
1537 	 * execute permissions, without leaving a RW+X window.
1538 	 */
1539 	if (flush_reset && !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
1540 		set_memory_nx(addr, area->nr_pages);
1541 		set_memory_rw(addr, area->nr_pages);
1542 	}
1543 
1544 	remove_vm_area(area->addr);
1545 
1546 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
1547 	if (!flush_reset)
1548 		return;
1549 
1550 	/*
1551 	 * If not deallocating pages, just do the flush of the VM area and
1552 	 * return.
1553 	 */
1554 	if (!deallocate_pages) {
1555 		vm_unmap_aliases();
1556 		return;
1557 	}
1558 
1559 	/*
1560 	 * If execution gets here, flush the vm mapping and reset the direct
1561 	 * map. Find the start and end range of the direct mappings to make sure
1562 	 * the vm_unmap_aliases() flush includes the direct map.
1563 	 */
1564 	for (i = 0; i < area->nr_pages; i++) {
1565 		if (page_address(area->pages[i])) {
1566 			start = min(addr, start);
1567 			end = max(addr, end);
1568 		}
1569 	}
1570 
1571 	/*
1572 	 * Set direct map to something invalid so that it won't be cached if
1573 	 * there are any accesses after the TLB flush, then flush the TLB and
1574 	 * reset the direct map permissions to the default.
1575 	 */
1576 	set_area_direct_map(area, set_direct_map_invalid_noflush);
1577 	_vm_unmap_aliases(start, end, 1);
1578 	set_area_direct_map(area, set_direct_map_default_noflush);
1579 }
1580 
1581 static void __vunmap(const void *addr, int deallocate_pages)
1582 {
1583 	struct vm_struct *area;
1584 
1585 	if (!addr)
1586 		return;
1587 
1588 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1589 			addr))
1590 		return;
1591 
1592 	area = find_vm_area(addr);
1593 	if (unlikely(!area)) {
1594 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1595 				addr);
1596 		return;
1597 	}
1598 
1599 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
1600 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
1601 
1602 	vm_remove_mappings(area, deallocate_pages);
1603 
1604 	if (deallocate_pages) {
1605 		int i;
1606 
1607 		for (i = 0; i < area->nr_pages; i++) {
1608 			struct page *page = area->pages[i];
1609 
1610 			BUG_ON(!page);
1611 			__free_pages(page, 0);
1612 		}
1613 
1614 		kvfree(area->pages);
1615 	}
1616 
1617 	kfree(area);
1618 	return;
1619 }
1620 
1621 static inline void __vfree_deferred(const void *addr)
1622 {
1623 	/*
1624 	 * Use raw_cpu_ptr() because this can be called from preemptible
1625 	 * context. Preemption is absolutely fine here, because the llist_add()
1626 	 * implementation is lockless, so it works even if we are adding to
1627 	 * nother cpu's list.  schedule_work() should be fine with this too.
1628 	 */
1629 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1630 
1631 	if (llist_add((struct llist_node *)addr, &p->list))
1632 		schedule_work(&p->wq);
1633 }
1634 
1635 /**
1636  * vfree_atomic - release memory allocated by vmalloc()
1637  * @addr:	  memory base address
1638  *
1639  * This one is just like vfree() but can be called in any atomic context
1640  * except NMIs.
1641  */
1642 void vfree_atomic(const void *addr)
1643 {
1644 	BUG_ON(in_nmi());
1645 
1646 	kmemleak_free(addr);
1647 
1648 	if (!addr)
1649 		return;
1650 	__vfree_deferred(addr);
1651 }
1652 
1653 static void __vfree(const void *addr)
1654 {
1655 	if (unlikely(in_interrupt()))
1656 		__vfree_deferred(addr);
1657 	else
1658 		__vunmap(addr, 1);
1659 }
1660 
1661 /**
1662  * vfree - release memory allocated by vmalloc()
1663  * @addr:  memory base address
1664  *
1665  * Free the virtually continuous memory area starting at @addr, as
1666  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1667  * NULL, no operation is performed.
1668  *
1669  * Must not be called in NMI context (strictly speaking, only if we don't
1670  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1671  * conventions for vfree() arch-depenedent would be a really bad idea)
1672  *
1673  * May sleep if called *not* from interrupt context.
1674  *
1675  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1676  */
1677 void vfree(const void *addr)
1678 {
1679 	BUG_ON(in_nmi());
1680 
1681 	kmemleak_free(addr);
1682 
1683 	might_sleep_if(!in_interrupt());
1684 
1685 	if (!addr)
1686 		return;
1687 
1688 	__vfree(addr);
1689 }
1690 EXPORT_SYMBOL(vfree);
1691 
1692 /**
1693  * vunmap - release virtual mapping obtained by vmap()
1694  * @addr:   memory base address
1695  *
1696  * Free the virtually contiguous memory area starting at @addr,
1697  * which was created from the page array passed to vmap().
1698  *
1699  * Must not be called in interrupt context.
1700  */
1701 void vunmap(const void *addr)
1702 {
1703 	BUG_ON(in_interrupt());
1704 	might_sleep();
1705 	if (addr)
1706 		__vunmap(addr, 0);
1707 }
1708 EXPORT_SYMBOL(vunmap);
1709 
1710 /**
1711  * vmap - map an array of pages into virtually contiguous space
1712  * @pages: array of page pointers
1713  * @count: number of pages to map
1714  * @flags: vm_area->flags
1715  * @prot: page protection for the mapping
1716  *
1717  * Maps @count pages from @pages into contiguous kernel virtual
1718  * space.
1719  *
1720  * Return: the address of the area or %NULL on failure
1721  */
1722 void *vmap(struct page **pages, unsigned int count,
1723 	   unsigned long flags, pgprot_t prot)
1724 {
1725 	struct vm_struct *area;
1726 	unsigned long size;		/* In bytes */
1727 
1728 	might_sleep();
1729 
1730 	if (count > totalram_pages())
1731 		return NULL;
1732 
1733 	size = (unsigned long)count << PAGE_SHIFT;
1734 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1735 	if (!area)
1736 		return NULL;
1737 
1738 	if (map_vm_area(area, prot, pages)) {
1739 		vunmap(area->addr);
1740 		return NULL;
1741 	}
1742 
1743 	return area->addr;
1744 }
1745 EXPORT_SYMBOL(vmap);
1746 
1747 static void *__vmalloc_node(unsigned long size, unsigned long align,
1748 			    gfp_t gfp_mask, pgprot_t prot,
1749 			    int node, const void *caller);
1750 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1751 				 pgprot_t prot, int node)
1752 {
1753 	struct page **pages;
1754 	unsigned int nr_pages, array_size, i;
1755 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1756 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1757 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1758 					0 :
1759 					__GFP_HIGHMEM;
1760 
1761 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1762 	array_size = (nr_pages * sizeof(struct page *));
1763 
1764 	area->nr_pages = nr_pages;
1765 	/* Please note that the recursion is strictly bounded. */
1766 	if (array_size > PAGE_SIZE) {
1767 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1768 				PAGE_KERNEL, node, area->caller);
1769 	} else {
1770 		pages = kmalloc_node(array_size, nested_gfp, node);
1771 	}
1772 	area->pages = pages;
1773 	if (!area->pages) {
1774 		remove_vm_area(area->addr);
1775 		kfree(area);
1776 		return NULL;
1777 	}
1778 
1779 	for (i = 0; i < area->nr_pages; i++) {
1780 		struct page *page;
1781 
1782 		if (node == NUMA_NO_NODE)
1783 			page = alloc_page(alloc_mask|highmem_mask);
1784 		else
1785 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1786 
1787 		if (unlikely(!page)) {
1788 			/* Successfully allocated i pages, free them in __vunmap() */
1789 			area->nr_pages = i;
1790 			goto fail;
1791 		}
1792 		area->pages[i] = page;
1793 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1794 			cond_resched();
1795 	}
1796 
1797 	if (map_vm_area(area, prot, pages))
1798 		goto fail;
1799 	return area->addr;
1800 
1801 fail:
1802 	warn_alloc(gfp_mask, NULL,
1803 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1804 			  (area->nr_pages*PAGE_SIZE), area->size);
1805 	__vfree(area->addr);
1806 	return NULL;
1807 }
1808 
1809 /**
1810  * __vmalloc_node_range - allocate virtually contiguous memory
1811  * @size:		  allocation size
1812  * @align:		  desired alignment
1813  * @start:		  vm area range start
1814  * @end:		  vm area range end
1815  * @gfp_mask:		  flags for the page level allocator
1816  * @prot:		  protection mask for the allocated pages
1817  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
1818  * @node:		  node to use for allocation or NUMA_NO_NODE
1819  * @caller:		  caller's return address
1820  *
1821  * Allocate enough pages to cover @size from the page level
1822  * allocator with @gfp_mask flags.  Map them into contiguous
1823  * kernel virtual space, using a pagetable protection of @prot.
1824  *
1825  * Return: the address of the area or %NULL on failure
1826  */
1827 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1828 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1829 			pgprot_t prot, unsigned long vm_flags, int node,
1830 			const void *caller)
1831 {
1832 	struct vm_struct *area;
1833 	void *addr;
1834 	unsigned long real_size = size;
1835 
1836 	size = PAGE_ALIGN(size);
1837 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
1838 		goto fail;
1839 
1840 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1841 				vm_flags, start, end, node, gfp_mask, caller);
1842 	if (!area)
1843 		goto fail;
1844 
1845 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1846 	if (!addr)
1847 		return NULL;
1848 
1849 	/*
1850 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1851 	 * flag. It means that vm_struct is not fully initialized.
1852 	 * Now, it is fully initialized, so remove this flag here.
1853 	 */
1854 	clear_vm_uninitialized_flag(area);
1855 
1856 	kmemleak_vmalloc(area, size, gfp_mask);
1857 
1858 	return addr;
1859 
1860 fail:
1861 	warn_alloc(gfp_mask, NULL,
1862 			  "vmalloc: allocation failure: %lu bytes", real_size);
1863 	return NULL;
1864 }
1865 
1866 /*
1867  * This is only for performance analysis of vmalloc and stress purpose.
1868  * It is required by vmalloc test module, therefore do not use it other
1869  * than that.
1870  */
1871 #ifdef CONFIG_TEST_VMALLOC_MODULE
1872 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
1873 #endif
1874 
1875 /**
1876  * __vmalloc_node - allocate virtually contiguous memory
1877  * @size:	    allocation size
1878  * @align:	    desired alignment
1879  * @gfp_mask:	    flags for the page level allocator
1880  * @prot:	    protection mask for the allocated pages
1881  * @node:	    node to use for allocation or NUMA_NO_NODE
1882  * @caller:	    caller's return address
1883  *
1884  * Allocate enough pages to cover @size from the page level
1885  * allocator with @gfp_mask flags.  Map them into contiguous
1886  * kernel virtual space, using a pagetable protection of @prot.
1887  *
1888  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1889  * and __GFP_NOFAIL are not supported
1890  *
1891  * Any use of gfp flags outside of GFP_KERNEL should be consulted
1892  * with mm people.
1893  *
1894  * Return: pointer to the allocated memory or %NULL on error
1895  */
1896 static void *__vmalloc_node(unsigned long size, unsigned long align,
1897 			    gfp_t gfp_mask, pgprot_t prot,
1898 			    int node, const void *caller)
1899 {
1900 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1901 				gfp_mask, prot, 0, node, caller);
1902 }
1903 
1904 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1905 {
1906 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1907 				__builtin_return_address(0));
1908 }
1909 EXPORT_SYMBOL(__vmalloc);
1910 
1911 static inline void *__vmalloc_node_flags(unsigned long size,
1912 					int node, gfp_t flags)
1913 {
1914 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1915 					node, __builtin_return_address(0));
1916 }
1917 
1918 
1919 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1920 				  void *caller)
1921 {
1922 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1923 }
1924 
1925 /**
1926  * vmalloc - allocate virtually contiguous memory
1927  * @size:    allocation size
1928  *
1929  * Allocate enough pages to cover @size from the page level
1930  * allocator and map them into contiguous kernel virtual space.
1931  *
1932  * For tight control over page level allocator and protection flags
1933  * use __vmalloc() instead.
1934  *
1935  * Return: pointer to the allocated memory or %NULL on error
1936  */
1937 void *vmalloc(unsigned long size)
1938 {
1939 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1940 				    GFP_KERNEL);
1941 }
1942 EXPORT_SYMBOL(vmalloc);
1943 
1944 /**
1945  * vzalloc - allocate virtually contiguous memory with zero fill
1946  * @size:    allocation size
1947  *
1948  * Allocate enough pages to cover @size from the page level
1949  * allocator and map them into contiguous kernel virtual space.
1950  * The memory allocated is set to zero.
1951  *
1952  * For tight control over page level allocator and protection flags
1953  * use __vmalloc() instead.
1954  *
1955  * Return: pointer to the allocated memory or %NULL on error
1956  */
1957 void *vzalloc(unsigned long size)
1958 {
1959 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1960 				GFP_KERNEL | __GFP_ZERO);
1961 }
1962 EXPORT_SYMBOL(vzalloc);
1963 
1964 /**
1965  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1966  * @size: allocation size
1967  *
1968  * The resulting memory area is zeroed so it can be mapped to userspace
1969  * without leaking data.
1970  *
1971  * Return: pointer to the allocated memory or %NULL on error
1972  */
1973 void *vmalloc_user(unsigned long size)
1974 {
1975 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
1976 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
1977 				    VM_USERMAP, NUMA_NO_NODE,
1978 				    __builtin_return_address(0));
1979 }
1980 EXPORT_SYMBOL(vmalloc_user);
1981 
1982 /**
1983  * vmalloc_node - allocate memory on a specific node
1984  * @size:	  allocation size
1985  * @node:	  numa node
1986  *
1987  * Allocate enough pages to cover @size from the page level
1988  * allocator and map them into contiguous kernel virtual space.
1989  *
1990  * For tight control over page level allocator and protection flags
1991  * use __vmalloc() instead.
1992  *
1993  * Return: pointer to the allocated memory or %NULL on error
1994  */
1995 void *vmalloc_node(unsigned long size, int node)
1996 {
1997 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1998 					node, __builtin_return_address(0));
1999 }
2000 EXPORT_SYMBOL(vmalloc_node);
2001 
2002 /**
2003  * vzalloc_node - allocate memory on a specific node with zero fill
2004  * @size:	allocation size
2005  * @node:	numa node
2006  *
2007  * Allocate enough pages to cover @size from the page level
2008  * allocator and map them into contiguous kernel virtual space.
2009  * The memory allocated is set to zero.
2010  *
2011  * For tight control over page level allocator and protection flags
2012  * use __vmalloc_node() instead.
2013  *
2014  * Return: pointer to the allocated memory or %NULL on error
2015  */
2016 void *vzalloc_node(unsigned long size, int node)
2017 {
2018 	return __vmalloc_node_flags(size, node,
2019 			 GFP_KERNEL | __GFP_ZERO);
2020 }
2021 EXPORT_SYMBOL(vzalloc_node);
2022 
2023 /**
2024  * vmalloc_exec - allocate virtually contiguous, executable memory
2025  * @size:	  allocation size
2026  *
2027  * Kernel-internal function to allocate enough pages to cover @size
2028  * the page level allocator and map them into contiguous and
2029  * executable kernel virtual space.
2030  *
2031  * For tight control over page level allocator and protection flags
2032  * use __vmalloc() instead.
2033  *
2034  * Return: pointer to the allocated memory or %NULL on error
2035  */
2036 void *vmalloc_exec(unsigned long size)
2037 {
2038 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2039 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2040 			NUMA_NO_NODE, __builtin_return_address(0));
2041 }
2042 
2043 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2044 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2045 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2046 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2047 #else
2048 /*
2049  * 64b systems should always have either DMA or DMA32 zones. For others
2050  * GFP_DMA32 should do the right thing and use the normal zone.
2051  */
2052 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2053 #endif
2054 
2055 /**
2056  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2057  * @size:	allocation size
2058  *
2059  * Allocate enough 32bit PA addressable pages to cover @size from the
2060  * page level allocator and map them into contiguous kernel virtual space.
2061  *
2062  * Return: pointer to the allocated memory or %NULL on error
2063  */
2064 void *vmalloc_32(unsigned long size)
2065 {
2066 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2067 			      NUMA_NO_NODE, __builtin_return_address(0));
2068 }
2069 EXPORT_SYMBOL(vmalloc_32);
2070 
2071 /**
2072  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2073  * @size:	     allocation size
2074  *
2075  * The resulting memory area is 32bit addressable and zeroed so it can be
2076  * mapped to userspace without leaking data.
2077  *
2078  * Return: pointer to the allocated memory or %NULL on error
2079  */
2080 void *vmalloc_32_user(unsigned long size)
2081 {
2082 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2083 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2084 				    VM_USERMAP, NUMA_NO_NODE,
2085 				    __builtin_return_address(0));
2086 }
2087 EXPORT_SYMBOL(vmalloc_32_user);
2088 
2089 /*
2090  * small helper routine , copy contents to buf from addr.
2091  * If the page is not present, fill zero.
2092  */
2093 
2094 static int aligned_vread(char *buf, char *addr, unsigned long count)
2095 {
2096 	struct page *p;
2097 	int copied = 0;
2098 
2099 	while (count) {
2100 		unsigned long offset, length;
2101 
2102 		offset = offset_in_page(addr);
2103 		length = PAGE_SIZE - offset;
2104 		if (length > count)
2105 			length = count;
2106 		p = vmalloc_to_page(addr);
2107 		/*
2108 		 * To do safe access to this _mapped_ area, we need
2109 		 * lock. But adding lock here means that we need to add
2110 		 * overhead of vmalloc()/vfree() calles for this _debug_
2111 		 * interface, rarely used. Instead of that, we'll use
2112 		 * kmap() and get small overhead in this access function.
2113 		 */
2114 		if (p) {
2115 			/*
2116 			 * we can expect USER0 is not used (see vread/vwrite's
2117 			 * function description)
2118 			 */
2119 			void *map = kmap_atomic(p);
2120 			memcpy(buf, map + offset, length);
2121 			kunmap_atomic(map);
2122 		} else
2123 			memset(buf, 0, length);
2124 
2125 		addr += length;
2126 		buf += length;
2127 		copied += length;
2128 		count -= length;
2129 	}
2130 	return copied;
2131 }
2132 
2133 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2134 {
2135 	struct page *p;
2136 	int copied = 0;
2137 
2138 	while (count) {
2139 		unsigned long offset, length;
2140 
2141 		offset = offset_in_page(addr);
2142 		length = PAGE_SIZE - offset;
2143 		if (length > count)
2144 			length = count;
2145 		p = vmalloc_to_page(addr);
2146 		/*
2147 		 * To do safe access to this _mapped_ area, we need
2148 		 * lock. But adding lock here means that we need to add
2149 		 * overhead of vmalloc()/vfree() calles for this _debug_
2150 		 * interface, rarely used. Instead of that, we'll use
2151 		 * kmap() and get small overhead in this access function.
2152 		 */
2153 		if (p) {
2154 			/*
2155 			 * we can expect USER0 is not used (see vread/vwrite's
2156 			 * function description)
2157 			 */
2158 			void *map = kmap_atomic(p);
2159 			memcpy(map + offset, buf, length);
2160 			kunmap_atomic(map);
2161 		}
2162 		addr += length;
2163 		buf += length;
2164 		copied += length;
2165 		count -= length;
2166 	}
2167 	return copied;
2168 }
2169 
2170 /**
2171  * vread() - read vmalloc area in a safe way.
2172  * @buf:     buffer for reading data
2173  * @addr:    vm address.
2174  * @count:   number of bytes to be read.
2175  *
2176  * This function checks that addr is a valid vmalloc'ed area, and
2177  * copy data from that area to a given buffer. If the given memory range
2178  * of [addr...addr+count) includes some valid address, data is copied to
2179  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2180  * IOREMAP area is treated as memory hole and no copy is done.
2181  *
2182  * If [addr...addr+count) doesn't includes any intersects with alive
2183  * vm_struct area, returns 0. @buf should be kernel's buffer.
2184  *
2185  * Note: In usual ops, vread() is never necessary because the caller
2186  * should know vmalloc() area is valid and can use memcpy().
2187  * This is for routines which have to access vmalloc area without
2188  * any informaion, as /dev/kmem.
2189  *
2190  * Return: number of bytes for which addr and buf should be increased
2191  * (same number as @count) or %0 if [addr...addr+count) doesn't
2192  * include any intersection with valid vmalloc area
2193  */
2194 long vread(char *buf, char *addr, unsigned long count)
2195 {
2196 	struct vmap_area *va;
2197 	struct vm_struct *vm;
2198 	char *vaddr, *buf_start = buf;
2199 	unsigned long buflen = count;
2200 	unsigned long n;
2201 
2202 	/* Don't allow overflow */
2203 	if ((unsigned long) addr + count < count)
2204 		count = -(unsigned long) addr;
2205 
2206 	spin_lock(&vmap_area_lock);
2207 	list_for_each_entry(va, &vmap_area_list, list) {
2208 		if (!count)
2209 			break;
2210 
2211 		if (!(va->flags & VM_VM_AREA))
2212 			continue;
2213 
2214 		vm = va->vm;
2215 		vaddr = (char *) vm->addr;
2216 		if (addr >= vaddr + get_vm_area_size(vm))
2217 			continue;
2218 		while (addr < vaddr) {
2219 			if (count == 0)
2220 				goto finished;
2221 			*buf = '\0';
2222 			buf++;
2223 			addr++;
2224 			count--;
2225 		}
2226 		n = vaddr + get_vm_area_size(vm) - addr;
2227 		if (n > count)
2228 			n = count;
2229 		if (!(vm->flags & VM_IOREMAP))
2230 			aligned_vread(buf, addr, n);
2231 		else /* IOREMAP area is treated as memory hole */
2232 			memset(buf, 0, n);
2233 		buf += n;
2234 		addr += n;
2235 		count -= n;
2236 	}
2237 finished:
2238 	spin_unlock(&vmap_area_lock);
2239 
2240 	if (buf == buf_start)
2241 		return 0;
2242 	/* zero-fill memory holes */
2243 	if (buf != buf_start + buflen)
2244 		memset(buf, 0, buflen - (buf - buf_start));
2245 
2246 	return buflen;
2247 }
2248 
2249 /**
2250  * vwrite() - write vmalloc area in a safe way.
2251  * @buf:      buffer for source data
2252  * @addr:     vm address.
2253  * @count:    number of bytes to be read.
2254  *
2255  * This function checks that addr is a valid vmalloc'ed area, and
2256  * copy data from a buffer to the given addr. If specified range of
2257  * [addr...addr+count) includes some valid address, data is copied from
2258  * proper area of @buf. If there are memory holes, no copy to hole.
2259  * IOREMAP area is treated as memory hole and no copy is done.
2260  *
2261  * If [addr...addr+count) doesn't includes any intersects with alive
2262  * vm_struct area, returns 0. @buf should be kernel's buffer.
2263  *
2264  * Note: In usual ops, vwrite() is never necessary because the caller
2265  * should know vmalloc() area is valid and can use memcpy().
2266  * This is for routines which have to access vmalloc area without
2267  * any informaion, as /dev/kmem.
2268  *
2269  * Return: number of bytes for which addr and buf should be
2270  * increased (same number as @count) or %0 if [addr...addr+count)
2271  * doesn't include any intersection with valid vmalloc area
2272  */
2273 long vwrite(char *buf, char *addr, unsigned long count)
2274 {
2275 	struct vmap_area *va;
2276 	struct vm_struct *vm;
2277 	char *vaddr;
2278 	unsigned long n, buflen;
2279 	int copied = 0;
2280 
2281 	/* Don't allow overflow */
2282 	if ((unsigned long) addr + count < count)
2283 		count = -(unsigned long) addr;
2284 	buflen = count;
2285 
2286 	spin_lock(&vmap_area_lock);
2287 	list_for_each_entry(va, &vmap_area_list, list) {
2288 		if (!count)
2289 			break;
2290 
2291 		if (!(va->flags & VM_VM_AREA))
2292 			continue;
2293 
2294 		vm = va->vm;
2295 		vaddr = (char *) vm->addr;
2296 		if (addr >= vaddr + get_vm_area_size(vm))
2297 			continue;
2298 		while (addr < vaddr) {
2299 			if (count == 0)
2300 				goto finished;
2301 			buf++;
2302 			addr++;
2303 			count--;
2304 		}
2305 		n = vaddr + get_vm_area_size(vm) - addr;
2306 		if (n > count)
2307 			n = count;
2308 		if (!(vm->flags & VM_IOREMAP)) {
2309 			aligned_vwrite(buf, addr, n);
2310 			copied++;
2311 		}
2312 		buf += n;
2313 		addr += n;
2314 		count -= n;
2315 	}
2316 finished:
2317 	spin_unlock(&vmap_area_lock);
2318 	if (!copied)
2319 		return 0;
2320 	return buflen;
2321 }
2322 
2323 /**
2324  * remap_vmalloc_range_partial - map vmalloc pages to userspace
2325  * @vma:		vma to cover
2326  * @uaddr:		target user address to start at
2327  * @kaddr:		virtual address of vmalloc kernel memory
2328  * @size:		size of map area
2329  *
2330  * Returns:	0 for success, -Exxx on failure
2331  *
2332  * This function checks that @kaddr is a valid vmalloc'ed area,
2333  * and that it is big enough to cover the range starting at
2334  * @uaddr in @vma. Will return failure if that criteria isn't
2335  * met.
2336  *
2337  * Similar to remap_pfn_range() (see mm/memory.c)
2338  */
2339 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2340 				void *kaddr, unsigned long size)
2341 {
2342 	struct vm_struct *area;
2343 
2344 	size = PAGE_ALIGN(size);
2345 
2346 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2347 		return -EINVAL;
2348 
2349 	area = find_vm_area(kaddr);
2350 	if (!area)
2351 		return -EINVAL;
2352 
2353 	if (!(area->flags & VM_USERMAP))
2354 		return -EINVAL;
2355 
2356 	if (kaddr + size > area->addr + get_vm_area_size(area))
2357 		return -EINVAL;
2358 
2359 	do {
2360 		struct page *page = vmalloc_to_page(kaddr);
2361 		int ret;
2362 
2363 		ret = vm_insert_page(vma, uaddr, page);
2364 		if (ret)
2365 			return ret;
2366 
2367 		uaddr += PAGE_SIZE;
2368 		kaddr += PAGE_SIZE;
2369 		size -= PAGE_SIZE;
2370 	} while (size > 0);
2371 
2372 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2373 
2374 	return 0;
2375 }
2376 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2377 
2378 /**
2379  * remap_vmalloc_range - map vmalloc pages to userspace
2380  * @vma:		vma to cover (map full range of vma)
2381  * @addr:		vmalloc memory
2382  * @pgoff:		number of pages into addr before first page to map
2383  *
2384  * Returns:	0 for success, -Exxx on failure
2385  *
2386  * This function checks that addr is a valid vmalloc'ed area, and
2387  * that it is big enough to cover the vma. Will return failure if
2388  * that criteria isn't met.
2389  *
2390  * Similar to remap_pfn_range() (see mm/memory.c)
2391  */
2392 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2393 						unsigned long pgoff)
2394 {
2395 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2396 					   addr + (pgoff << PAGE_SHIFT),
2397 					   vma->vm_end - vma->vm_start);
2398 }
2399 EXPORT_SYMBOL(remap_vmalloc_range);
2400 
2401 /*
2402  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2403  * have one.
2404  */
2405 void __weak vmalloc_sync_all(void)
2406 {
2407 }
2408 
2409 
2410 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2411 {
2412 	pte_t ***p = data;
2413 
2414 	if (p) {
2415 		*(*p) = pte;
2416 		(*p)++;
2417 	}
2418 	return 0;
2419 }
2420 
2421 /**
2422  * alloc_vm_area - allocate a range of kernel address space
2423  * @size:	   size of the area
2424  * @ptes:	   returns the PTEs for the address space
2425  *
2426  * Returns:	NULL on failure, vm_struct on success
2427  *
2428  * This function reserves a range of kernel address space, and
2429  * allocates pagetables to map that range.  No actual mappings
2430  * are created.
2431  *
2432  * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2433  * allocated for the VM area are returned.
2434  */
2435 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2436 {
2437 	struct vm_struct *area;
2438 
2439 	area = get_vm_area_caller(size, VM_IOREMAP,
2440 				__builtin_return_address(0));
2441 	if (area == NULL)
2442 		return NULL;
2443 
2444 	/*
2445 	 * This ensures that page tables are constructed for this region
2446 	 * of kernel virtual address space and mapped into init_mm.
2447 	 */
2448 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2449 				size, f, ptes ? &ptes : NULL)) {
2450 		free_vm_area(area);
2451 		return NULL;
2452 	}
2453 
2454 	return area;
2455 }
2456 EXPORT_SYMBOL_GPL(alloc_vm_area);
2457 
2458 void free_vm_area(struct vm_struct *area)
2459 {
2460 	struct vm_struct *ret;
2461 	ret = remove_vm_area(area->addr);
2462 	BUG_ON(ret != area);
2463 	kfree(area);
2464 }
2465 EXPORT_SYMBOL_GPL(free_vm_area);
2466 
2467 #ifdef CONFIG_SMP
2468 static struct vmap_area *node_to_va(struct rb_node *n)
2469 {
2470 	return rb_entry_safe(n, struct vmap_area, rb_node);
2471 }
2472 
2473 /**
2474  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2475  * @end: target address
2476  * @pnext: out arg for the next vmap_area
2477  * @pprev: out arg for the previous vmap_area
2478  *
2479  * Returns: %true if either or both of next and prev are found,
2480  *	    %false if no vmap_area exists
2481  *
2482  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2483  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2484  */
2485 static bool pvm_find_next_prev(unsigned long end,
2486 			       struct vmap_area **pnext,
2487 			       struct vmap_area **pprev)
2488 {
2489 	struct rb_node *n = vmap_area_root.rb_node;
2490 	struct vmap_area *va = NULL;
2491 
2492 	while (n) {
2493 		va = rb_entry(n, struct vmap_area, rb_node);
2494 		if (end < va->va_end)
2495 			n = n->rb_left;
2496 		else if (end > va->va_end)
2497 			n = n->rb_right;
2498 		else
2499 			break;
2500 	}
2501 
2502 	if (!va)
2503 		return false;
2504 
2505 	if (va->va_end > end) {
2506 		*pnext = va;
2507 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2508 	} else {
2509 		*pprev = va;
2510 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2511 	}
2512 	return true;
2513 }
2514 
2515 /**
2516  * pvm_determine_end - find the highest aligned address between two vmap_areas
2517  * @pnext: in/out arg for the next vmap_area
2518  * @pprev: in/out arg for the previous vmap_area
2519  * @align: alignment
2520  *
2521  * Returns: determined end address
2522  *
2523  * Find the highest aligned address between *@pnext and *@pprev below
2524  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2525  * down address is between the end addresses of the two vmap_areas.
2526  *
2527  * Please note that the address returned by this function may fall
2528  * inside *@pnext vmap_area.  The caller is responsible for checking
2529  * that.
2530  */
2531 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2532 				       struct vmap_area **pprev,
2533 				       unsigned long align)
2534 {
2535 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2536 	unsigned long addr;
2537 
2538 	if (*pnext)
2539 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2540 	else
2541 		addr = vmalloc_end;
2542 
2543 	while (*pprev && (*pprev)->va_end > addr) {
2544 		*pnext = *pprev;
2545 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2546 	}
2547 
2548 	return addr;
2549 }
2550 
2551 /**
2552  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2553  * @offsets: array containing offset of each area
2554  * @sizes: array containing size of each area
2555  * @nr_vms: the number of areas to allocate
2556  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2557  *
2558  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2559  *	    vm_structs on success, %NULL on failure
2560  *
2561  * Percpu allocator wants to use congruent vm areas so that it can
2562  * maintain the offsets among percpu areas.  This function allocates
2563  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2564  * be scattered pretty far, distance between two areas easily going up
2565  * to gigabytes.  To avoid interacting with regular vmallocs, these
2566  * areas are allocated from top.
2567  *
2568  * Despite its complicated look, this allocator is rather simple.  It
2569  * does everything top-down and scans areas from the end looking for
2570  * matching slot.  While scanning, if any of the areas overlaps with
2571  * existing vmap_area, the base address is pulled down to fit the
2572  * area.  Scanning is repeated till all the areas fit and then all
2573  * necessary data structures are inserted and the result is returned.
2574  */
2575 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2576 				     const size_t *sizes, int nr_vms,
2577 				     size_t align)
2578 {
2579 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2580 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2581 	struct vmap_area **vas, *prev, *next;
2582 	struct vm_struct **vms;
2583 	int area, area2, last_area, term_area;
2584 	unsigned long base, start, end, last_end;
2585 	bool purged = false;
2586 
2587 	/* verify parameters and allocate data structures */
2588 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2589 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2590 		start = offsets[area];
2591 		end = start + sizes[area];
2592 
2593 		/* is everything aligned properly? */
2594 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2595 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2596 
2597 		/* detect the area with the highest address */
2598 		if (start > offsets[last_area])
2599 			last_area = area;
2600 
2601 		for (area2 = area + 1; area2 < nr_vms; area2++) {
2602 			unsigned long start2 = offsets[area2];
2603 			unsigned long end2 = start2 + sizes[area2];
2604 
2605 			BUG_ON(start2 < end && start < end2);
2606 		}
2607 	}
2608 	last_end = offsets[last_area] + sizes[last_area];
2609 
2610 	if (vmalloc_end - vmalloc_start < last_end) {
2611 		WARN_ON(true);
2612 		return NULL;
2613 	}
2614 
2615 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2616 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2617 	if (!vas || !vms)
2618 		goto err_free2;
2619 
2620 	for (area = 0; area < nr_vms; area++) {
2621 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2622 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2623 		if (!vas[area] || !vms[area])
2624 			goto err_free;
2625 	}
2626 retry:
2627 	spin_lock(&vmap_area_lock);
2628 
2629 	/* start scanning - we scan from the top, begin with the last area */
2630 	area = term_area = last_area;
2631 	start = offsets[area];
2632 	end = start + sizes[area];
2633 
2634 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2635 		base = vmalloc_end - last_end;
2636 		goto found;
2637 	}
2638 	base = pvm_determine_end(&next, &prev, align) - end;
2639 
2640 	while (true) {
2641 		BUG_ON(next && next->va_end <= base + end);
2642 		BUG_ON(prev && prev->va_end > base + end);
2643 
2644 		/*
2645 		 * base might have underflowed, add last_end before
2646 		 * comparing.
2647 		 */
2648 		if (base + last_end < vmalloc_start + last_end) {
2649 			spin_unlock(&vmap_area_lock);
2650 			if (!purged) {
2651 				purge_vmap_area_lazy();
2652 				purged = true;
2653 				goto retry;
2654 			}
2655 			goto err_free;
2656 		}
2657 
2658 		/*
2659 		 * If next overlaps, move base downwards so that it's
2660 		 * right below next and then recheck.
2661 		 */
2662 		if (next && next->va_start < base + end) {
2663 			base = pvm_determine_end(&next, &prev, align) - end;
2664 			term_area = area;
2665 			continue;
2666 		}
2667 
2668 		/*
2669 		 * If prev overlaps, shift down next and prev and move
2670 		 * base so that it's right below new next and then
2671 		 * recheck.
2672 		 */
2673 		if (prev && prev->va_end > base + start)  {
2674 			next = prev;
2675 			prev = node_to_va(rb_prev(&next->rb_node));
2676 			base = pvm_determine_end(&next, &prev, align) - end;
2677 			term_area = area;
2678 			continue;
2679 		}
2680 
2681 		/*
2682 		 * This area fits, move on to the previous one.  If
2683 		 * the previous one is the terminal one, we're done.
2684 		 */
2685 		area = (area + nr_vms - 1) % nr_vms;
2686 		if (area == term_area)
2687 			break;
2688 		start = offsets[area];
2689 		end = start + sizes[area];
2690 		pvm_find_next_prev(base + end, &next, &prev);
2691 	}
2692 found:
2693 	/* we've found a fitting base, insert all va's */
2694 	for (area = 0; area < nr_vms; area++) {
2695 		struct vmap_area *va = vas[area];
2696 
2697 		va->va_start = base + offsets[area];
2698 		va->va_end = va->va_start + sizes[area];
2699 		__insert_vmap_area(va);
2700 	}
2701 
2702 	vmap_area_pcpu_hole = base + offsets[last_area];
2703 
2704 	spin_unlock(&vmap_area_lock);
2705 
2706 	/* insert all vm's */
2707 	for (area = 0; area < nr_vms; area++)
2708 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2709 				 pcpu_get_vm_areas);
2710 
2711 	kfree(vas);
2712 	return vms;
2713 
2714 err_free:
2715 	for (area = 0; area < nr_vms; area++) {
2716 		kfree(vas[area]);
2717 		kfree(vms[area]);
2718 	}
2719 err_free2:
2720 	kfree(vas);
2721 	kfree(vms);
2722 	return NULL;
2723 }
2724 
2725 /**
2726  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2727  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2728  * @nr_vms: the number of allocated areas
2729  *
2730  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2731  */
2732 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2733 {
2734 	int i;
2735 
2736 	for (i = 0; i < nr_vms; i++)
2737 		free_vm_area(vms[i]);
2738 	kfree(vms);
2739 }
2740 #endif	/* CONFIG_SMP */
2741 
2742 #ifdef CONFIG_PROC_FS
2743 static void *s_start(struct seq_file *m, loff_t *pos)
2744 	__acquires(&vmap_area_lock)
2745 {
2746 	spin_lock(&vmap_area_lock);
2747 	return seq_list_start(&vmap_area_list, *pos);
2748 }
2749 
2750 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2751 {
2752 	return seq_list_next(p, &vmap_area_list, pos);
2753 }
2754 
2755 static void s_stop(struct seq_file *m, void *p)
2756 	__releases(&vmap_area_lock)
2757 {
2758 	spin_unlock(&vmap_area_lock);
2759 }
2760 
2761 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2762 {
2763 	if (IS_ENABLED(CONFIG_NUMA)) {
2764 		unsigned int nr, *counters = m->private;
2765 
2766 		if (!counters)
2767 			return;
2768 
2769 		if (v->flags & VM_UNINITIALIZED)
2770 			return;
2771 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2772 		smp_rmb();
2773 
2774 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2775 
2776 		for (nr = 0; nr < v->nr_pages; nr++)
2777 			counters[page_to_nid(v->pages[nr])]++;
2778 
2779 		for_each_node_state(nr, N_HIGH_MEMORY)
2780 			if (counters[nr])
2781 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2782 	}
2783 }
2784 
2785 static int s_show(struct seq_file *m, void *p)
2786 {
2787 	struct vmap_area *va;
2788 	struct vm_struct *v;
2789 
2790 	va = list_entry(p, struct vmap_area, list);
2791 
2792 	/*
2793 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2794 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2795 	 */
2796 	if (!(va->flags & VM_VM_AREA)) {
2797 		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2798 			(void *)va->va_start, (void *)va->va_end,
2799 			va->va_end - va->va_start,
2800 			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2801 
2802 		return 0;
2803 	}
2804 
2805 	v = va->vm;
2806 
2807 	seq_printf(m, "0x%pK-0x%pK %7ld",
2808 		v->addr, v->addr + v->size, v->size);
2809 
2810 	if (v->caller)
2811 		seq_printf(m, " %pS", v->caller);
2812 
2813 	if (v->nr_pages)
2814 		seq_printf(m, " pages=%d", v->nr_pages);
2815 
2816 	if (v->phys_addr)
2817 		seq_printf(m, " phys=%pa", &v->phys_addr);
2818 
2819 	if (v->flags & VM_IOREMAP)
2820 		seq_puts(m, " ioremap");
2821 
2822 	if (v->flags & VM_ALLOC)
2823 		seq_puts(m, " vmalloc");
2824 
2825 	if (v->flags & VM_MAP)
2826 		seq_puts(m, " vmap");
2827 
2828 	if (v->flags & VM_USERMAP)
2829 		seq_puts(m, " user");
2830 
2831 	if (is_vmalloc_addr(v->pages))
2832 		seq_puts(m, " vpages");
2833 
2834 	show_numa_info(m, v);
2835 	seq_putc(m, '\n');
2836 	return 0;
2837 }
2838 
2839 static const struct seq_operations vmalloc_op = {
2840 	.start = s_start,
2841 	.next = s_next,
2842 	.stop = s_stop,
2843 	.show = s_show,
2844 };
2845 
2846 static int __init proc_vmalloc_init(void)
2847 {
2848 	if (IS_ENABLED(CONFIG_NUMA))
2849 		proc_create_seq_private("vmallocinfo", 0400, NULL,
2850 				&vmalloc_op,
2851 				nr_node_ids * sizeof(unsigned int), NULL);
2852 	else
2853 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
2854 	return 0;
2855 }
2856 module_init(proc_vmalloc_init);
2857 
2858 #endif
2859