1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/radix-tree.h> 28 #include <linux/rcupdate.h> 29 #include <linux/pfn.h> 30 #include <linux/kmemleak.h> 31 #include <linux/atomic.h> 32 #include <linux/compiler.h> 33 #include <linux/llist.h> 34 #include <linux/bitops.h> 35 36 #include <linux/uaccess.h> 37 #include <asm/tlbflush.h> 38 #include <asm/shmparam.h> 39 40 #include "internal.h" 41 42 struct vfree_deferred { 43 struct llist_head list; 44 struct work_struct wq; 45 }; 46 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 47 48 static void __vunmap(const void *, int); 49 50 static void free_work(struct work_struct *w) 51 { 52 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 53 struct llist_node *t, *llnode; 54 55 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 56 __vunmap((void *)llnode, 1); 57 } 58 59 /*** Page table manipulation functions ***/ 60 61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 62 { 63 pte_t *pte; 64 65 pte = pte_offset_kernel(pmd, addr); 66 do { 67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 68 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 69 } while (pte++, addr += PAGE_SIZE, addr != end); 70 } 71 72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 73 { 74 pmd_t *pmd; 75 unsigned long next; 76 77 pmd = pmd_offset(pud, addr); 78 do { 79 next = pmd_addr_end(addr, end); 80 if (pmd_clear_huge(pmd)) 81 continue; 82 if (pmd_none_or_clear_bad(pmd)) 83 continue; 84 vunmap_pte_range(pmd, addr, next); 85 } while (pmd++, addr = next, addr != end); 86 } 87 88 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 89 { 90 pud_t *pud; 91 unsigned long next; 92 93 pud = pud_offset(p4d, addr); 94 do { 95 next = pud_addr_end(addr, end); 96 if (pud_clear_huge(pud)) 97 continue; 98 if (pud_none_or_clear_bad(pud)) 99 continue; 100 vunmap_pmd_range(pud, addr, next); 101 } while (pud++, addr = next, addr != end); 102 } 103 104 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 105 { 106 p4d_t *p4d; 107 unsigned long next; 108 109 p4d = p4d_offset(pgd, addr); 110 do { 111 next = p4d_addr_end(addr, end); 112 if (p4d_clear_huge(p4d)) 113 continue; 114 if (p4d_none_or_clear_bad(p4d)) 115 continue; 116 vunmap_pud_range(p4d, addr, next); 117 } while (p4d++, addr = next, addr != end); 118 } 119 120 static void vunmap_page_range(unsigned long addr, unsigned long end) 121 { 122 pgd_t *pgd; 123 unsigned long next; 124 125 BUG_ON(addr >= end); 126 pgd = pgd_offset_k(addr); 127 do { 128 next = pgd_addr_end(addr, end); 129 if (pgd_none_or_clear_bad(pgd)) 130 continue; 131 vunmap_p4d_range(pgd, addr, next); 132 } while (pgd++, addr = next, addr != end); 133 } 134 135 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 136 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 137 { 138 pte_t *pte; 139 140 /* 141 * nr is a running index into the array which helps higher level 142 * callers keep track of where we're up to. 143 */ 144 145 pte = pte_alloc_kernel(pmd, addr); 146 if (!pte) 147 return -ENOMEM; 148 do { 149 struct page *page = pages[*nr]; 150 151 if (WARN_ON(!pte_none(*pte))) 152 return -EBUSY; 153 if (WARN_ON(!page)) 154 return -ENOMEM; 155 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 156 (*nr)++; 157 } while (pte++, addr += PAGE_SIZE, addr != end); 158 return 0; 159 } 160 161 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 162 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 163 { 164 pmd_t *pmd; 165 unsigned long next; 166 167 pmd = pmd_alloc(&init_mm, pud, addr); 168 if (!pmd) 169 return -ENOMEM; 170 do { 171 next = pmd_addr_end(addr, end); 172 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 173 return -ENOMEM; 174 } while (pmd++, addr = next, addr != end); 175 return 0; 176 } 177 178 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 179 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 180 { 181 pud_t *pud; 182 unsigned long next; 183 184 pud = pud_alloc(&init_mm, p4d, addr); 185 if (!pud) 186 return -ENOMEM; 187 do { 188 next = pud_addr_end(addr, end); 189 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 190 return -ENOMEM; 191 } while (pud++, addr = next, addr != end); 192 return 0; 193 } 194 195 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 196 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 197 { 198 p4d_t *p4d; 199 unsigned long next; 200 201 p4d = p4d_alloc(&init_mm, pgd, addr); 202 if (!p4d) 203 return -ENOMEM; 204 do { 205 next = p4d_addr_end(addr, end); 206 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 207 return -ENOMEM; 208 } while (p4d++, addr = next, addr != end); 209 return 0; 210 } 211 212 /* 213 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 214 * will have pfns corresponding to the "pages" array. 215 * 216 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 217 */ 218 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 219 pgprot_t prot, struct page **pages) 220 { 221 pgd_t *pgd; 222 unsigned long next; 223 unsigned long addr = start; 224 int err = 0; 225 int nr = 0; 226 227 BUG_ON(addr >= end); 228 pgd = pgd_offset_k(addr); 229 do { 230 next = pgd_addr_end(addr, end); 231 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 232 if (err) 233 return err; 234 } while (pgd++, addr = next, addr != end); 235 236 return nr; 237 } 238 239 static int vmap_page_range(unsigned long start, unsigned long end, 240 pgprot_t prot, struct page **pages) 241 { 242 int ret; 243 244 ret = vmap_page_range_noflush(start, end, prot, pages); 245 flush_cache_vmap(start, end); 246 return ret; 247 } 248 249 int is_vmalloc_or_module_addr(const void *x) 250 { 251 /* 252 * ARM, x86-64 and sparc64 put modules in a special place, 253 * and fall back on vmalloc() if that fails. Others 254 * just put it in the vmalloc space. 255 */ 256 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 257 unsigned long addr = (unsigned long)x; 258 if (addr >= MODULES_VADDR && addr < MODULES_END) 259 return 1; 260 #endif 261 return is_vmalloc_addr(x); 262 } 263 264 /* 265 * Walk a vmap address to the struct page it maps. 266 */ 267 struct page *vmalloc_to_page(const void *vmalloc_addr) 268 { 269 unsigned long addr = (unsigned long) vmalloc_addr; 270 struct page *page = NULL; 271 pgd_t *pgd = pgd_offset_k(addr); 272 p4d_t *p4d; 273 pud_t *pud; 274 pmd_t *pmd; 275 pte_t *ptep, pte; 276 277 /* 278 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 279 * architectures that do not vmalloc module space 280 */ 281 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 282 283 if (pgd_none(*pgd)) 284 return NULL; 285 p4d = p4d_offset(pgd, addr); 286 if (p4d_none(*p4d)) 287 return NULL; 288 pud = pud_offset(p4d, addr); 289 290 /* 291 * Don't dereference bad PUD or PMD (below) entries. This will also 292 * identify huge mappings, which we may encounter on architectures 293 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 294 * identified as vmalloc addresses by is_vmalloc_addr(), but are 295 * not [unambiguously] associated with a struct page, so there is 296 * no correct value to return for them. 297 */ 298 WARN_ON_ONCE(pud_bad(*pud)); 299 if (pud_none(*pud) || pud_bad(*pud)) 300 return NULL; 301 pmd = pmd_offset(pud, addr); 302 WARN_ON_ONCE(pmd_bad(*pmd)); 303 if (pmd_none(*pmd) || pmd_bad(*pmd)) 304 return NULL; 305 306 ptep = pte_offset_map(pmd, addr); 307 pte = *ptep; 308 if (pte_present(pte)) 309 page = pte_page(pte); 310 pte_unmap(ptep); 311 return page; 312 } 313 EXPORT_SYMBOL(vmalloc_to_page); 314 315 /* 316 * Map a vmalloc()-space virtual address to the physical page frame number. 317 */ 318 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 319 { 320 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 321 } 322 EXPORT_SYMBOL(vmalloc_to_pfn); 323 324 325 /*** Global kva allocator ***/ 326 327 #define VM_LAZY_FREE 0x02 328 #define VM_VM_AREA 0x04 329 330 static DEFINE_SPINLOCK(vmap_area_lock); 331 /* Export for kexec only */ 332 LIST_HEAD(vmap_area_list); 333 static LLIST_HEAD(vmap_purge_list); 334 static struct rb_root vmap_area_root = RB_ROOT; 335 336 /* The vmap cache globals are protected by vmap_area_lock */ 337 static struct rb_node *free_vmap_cache; 338 static unsigned long cached_hole_size; 339 static unsigned long cached_vstart; 340 static unsigned long cached_align; 341 342 static unsigned long vmap_area_pcpu_hole; 343 344 static struct vmap_area *__find_vmap_area(unsigned long addr) 345 { 346 struct rb_node *n = vmap_area_root.rb_node; 347 348 while (n) { 349 struct vmap_area *va; 350 351 va = rb_entry(n, struct vmap_area, rb_node); 352 if (addr < va->va_start) 353 n = n->rb_left; 354 else if (addr >= va->va_end) 355 n = n->rb_right; 356 else 357 return va; 358 } 359 360 return NULL; 361 } 362 363 static void __insert_vmap_area(struct vmap_area *va) 364 { 365 struct rb_node **p = &vmap_area_root.rb_node; 366 struct rb_node *parent = NULL; 367 struct rb_node *tmp; 368 369 while (*p) { 370 struct vmap_area *tmp_va; 371 372 parent = *p; 373 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 374 if (va->va_start < tmp_va->va_end) 375 p = &(*p)->rb_left; 376 else if (va->va_end > tmp_va->va_start) 377 p = &(*p)->rb_right; 378 else 379 BUG(); 380 } 381 382 rb_link_node(&va->rb_node, parent, p); 383 rb_insert_color(&va->rb_node, &vmap_area_root); 384 385 /* address-sort this list */ 386 tmp = rb_prev(&va->rb_node); 387 if (tmp) { 388 struct vmap_area *prev; 389 prev = rb_entry(tmp, struct vmap_area, rb_node); 390 list_add_rcu(&va->list, &prev->list); 391 } else 392 list_add_rcu(&va->list, &vmap_area_list); 393 } 394 395 static void purge_vmap_area_lazy(void); 396 397 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 398 399 /* 400 * Allocate a region of KVA of the specified size and alignment, within the 401 * vstart and vend. 402 */ 403 static struct vmap_area *alloc_vmap_area(unsigned long size, 404 unsigned long align, 405 unsigned long vstart, unsigned long vend, 406 int node, gfp_t gfp_mask) 407 { 408 struct vmap_area *va; 409 struct rb_node *n; 410 unsigned long addr; 411 int purged = 0; 412 struct vmap_area *first; 413 414 BUG_ON(!size); 415 BUG_ON(offset_in_page(size)); 416 BUG_ON(!is_power_of_2(align)); 417 418 might_sleep(); 419 420 va = kmalloc_node(sizeof(struct vmap_area), 421 gfp_mask & GFP_RECLAIM_MASK, node); 422 if (unlikely(!va)) 423 return ERR_PTR(-ENOMEM); 424 425 /* 426 * Only scan the relevant parts containing pointers to other objects 427 * to avoid false negatives. 428 */ 429 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 430 431 retry: 432 spin_lock(&vmap_area_lock); 433 /* 434 * Invalidate cache if we have more permissive parameters. 435 * cached_hole_size notes the largest hole noticed _below_ 436 * the vmap_area cached in free_vmap_cache: if size fits 437 * into that hole, we want to scan from vstart to reuse 438 * the hole instead of allocating above free_vmap_cache. 439 * Note that __free_vmap_area may update free_vmap_cache 440 * without updating cached_hole_size or cached_align. 441 */ 442 if (!free_vmap_cache || 443 size < cached_hole_size || 444 vstart < cached_vstart || 445 align < cached_align) { 446 nocache: 447 cached_hole_size = 0; 448 free_vmap_cache = NULL; 449 } 450 /* record if we encounter less permissive parameters */ 451 cached_vstart = vstart; 452 cached_align = align; 453 454 /* find starting point for our search */ 455 if (free_vmap_cache) { 456 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 457 addr = ALIGN(first->va_end, align); 458 if (addr < vstart) 459 goto nocache; 460 if (addr + size < addr) 461 goto overflow; 462 463 } else { 464 addr = ALIGN(vstart, align); 465 if (addr + size < addr) 466 goto overflow; 467 468 n = vmap_area_root.rb_node; 469 first = NULL; 470 471 while (n) { 472 struct vmap_area *tmp; 473 tmp = rb_entry(n, struct vmap_area, rb_node); 474 if (tmp->va_end >= addr) { 475 first = tmp; 476 if (tmp->va_start <= addr) 477 break; 478 n = n->rb_left; 479 } else 480 n = n->rb_right; 481 } 482 483 if (!first) 484 goto found; 485 } 486 487 /* from the starting point, walk areas until a suitable hole is found */ 488 while (addr + size > first->va_start && addr + size <= vend) { 489 if (addr + cached_hole_size < first->va_start) 490 cached_hole_size = first->va_start - addr; 491 addr = ALIGN(first->va_end, align); 492 if (addr + size < addr) 493 goto overflow; 494 495 if (list_is_last(&first->list, &vmap_area_list)) 496 goto found; 497 498 first = list_next_entry(first, list); 499 } 500 501 found: 502 /* 503 * Check also calculated address against the vstart, 504 * because it can be 0 because of big align request. 505 */ 506 if (addr + size > vend || addr < vstart) 507 goto overflow; 508 509 va->va_start = addr; 510 va->va_end = addr + size; 511 va->flags = 0; 512 __insert_vmap_area(va); 513 free_vmap_cache = &va->rb_node; 514 spin_unlock(&vmap_area_lock); 515 516 BUG_ON(!IS_ALIGNED(va->va_start, align)); 517 BUG_ON(va->va_start < vstart); 518 BUG_ON(va->va_end > vend); 519 520 return va; 521 522 overflow: 523 spin_unlock(&vmap_area_lock); 524 if (!purged) { 525 purge_vmap_area_lazy(); 526 purged = 1; 527 goto retry; 528 } 529 530 if (gfpflags_allow_blocking(gfp_mask)) { 531 unsigned long freed = 0; 532 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 533 if (freed > 0) { 534 purged = 0; 535 goto retry; 536 } 537 } 538 539 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 540 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 541 size); 542 kfree(va); 543 return ERR_PTR(-EBUSY); 544 } 545 546 int register_vmap_purge_notifier(struct notifier_block *nb) 547 { 548 return blocking_notifier_chain_register(&vmap_notify_list, nb); 549 } 550 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 551 552 int unregister_vmap_purge_notifier(struct notifier_block *nb) 553 { 554 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 555 } 556 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 557 558 static void __free_vmap_area(struct vmap_area *va) 559 { 560 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 561 562 if (free_vmap_cache) { 563 if (va->va_end < cached_vstart) { 564 free_vmap_cache = NULL; 565 } else { 566 struct vmap_area *cache; 567 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 568 if (va->va_start <= cache->va_start) { 569 free_vmap_cache = rb_prev(&va->rb_node); 570 /* 571 * We don't try to update cached_hole_size or 572 * cached_align, but it won't go very wrong. 573 */ 574 } 575 } 576 } 577 rb_erase(&va->rb_node, &vmap_area_root); 578 RB_CLEAR_NODE(&va->rb_node); 579 list_del_rcu(&va->list); 580 581 /* 582 * Track the highest possible candidate for pcpu area 583 * allocation. Areas outside of vmalloc area can be returned 584 * here too, consider only end addresses which fall inside 585 * vmalloc area proper. 586 */ 587 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 588 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 589 590 kfree_rcu(va, rcu_head); 591 } 592 593 /* 594 * Free a region of KVA allocated by alloc_vmap_area 595 */ 596 static void free_vmap_area(struct vmap_area *va) 597 { 598 spin_lock(&vmap_area_lock); 599 __free_vmap_area(va); 600 spin_unlock(&vmap_area_lock); 601 } 602 603 /* 604 * Clear the pagetable entries of a given vmap_area 605 */ 606 static void unmap_vmap_area(struct vmap_area *va) 607 { 608 vunmap_page_range(va->va_start, va->va_end); 609 } 610 611 /* 612 * lazy_max_pages is the maximum amount of virtual address space we gather up 613 * before attempting to purge with a TLB flush. 614 * 615 * There is a tradeoff here: a larger number will cover more kernel page tables 616 * and take slightly longer to purge, but it will linearly reduce the number of 617 * global TLB flushes that must be performed. It would seem natural to scale 618 * this number up linearly with the number of CPUs (because vmapping activity 619 * could also scale linearly with the number of CPUs), however it is likely 620 * that in practice, workloads might be constrained in other ways that mean 621 * vmap activity will not scale linearly with CPUs. Also, I want to be 622 * conservative and not introduce a big latency on huge systems, so go with 623 * a less aggressive log scale. It will still be an improvement over the old 624 * code, and it will be simple to change the scale factor if we find that it 625 * becomes a problem on bigger systems. 626 */ 627 static unsigned long lazy_max_pages(void) 628 { 629 unsigned int log; 630 631 log = fls(num_online_cpus()); 632 633 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 634 } 635 636 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 637 638 /* 639 * Serialize vmap purging. There is no actual criticial section protected 640 * by this look, but we want to avoid concurrent calls for performance 641 * reasons and to make the pcpu_get_vm_areas more deterministic. 642 */ 643 static DEFINE_MUTEX(vmap_purge_lock); 644 645 /* for per-CPU blocks */ 646 static void purge_fragmented_blocks_allcpus(void); 647 648 /* 649 * called before a call to iounmap() if the caller wants vm_area_struct's 650 * immediately freed. 651 */ 652 void set_iounmap_nonlazy(void) 653 { 654 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 655 } 656 657 /* 658 * Purges all lazily-freed vmap areas. 659 */ 660 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 661 { 662 struct llist_node *valist; 663 struct vmap_area *va; 664 struct vmap_area *n_va; 665 bool do_free = false; 666 667 lockdep_assert_held(&vmap_purge_lock); 668 669 valist = llist_del_all(&vmap_purge_list); 670 llist_for_each_entry(va, valist, purge_list) { 671 if (va->va_start < start) 672 start = va->va_start; 673 if (va->va_end > end) 674 end = va->va_end; 675 do_free = true; 676 } 677 678 if (!do_free) 679 return false; 680 681 flush_tlb_kernel_range(start, end); 682 683 spin_lock(&vmap_area_lock); 684 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 685 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 686 687 __free_vmap_area(va); 688 atomic_sub(nr, &vmap_lazy_nr); 689 cond_resched_lock(&vmap_area_lock); 690 } 691 spin_unlock(&vmap_area_lock); 692 return true; 693 } 694 695 /* 696 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 697 * is already purging. 698 */ 699 static void try_purge_vmap_area_lazy(void) 700 { 701 if (mutex_trylock(&vmap_purge_lock)) { 702 __purge_vmap_area_lazy(ULONG_MAX, 0); 703 mutex_unlock(&vmap_purge_lock); 704 } 705 } 706 707 /* 708 * Kick off a purge of the outstanding lazy areas. 709 */ 710 static void purge_vmap_area_lazy(void) 711 { 712 mutex_lock(&vmap_purge_lock); 713 purge_fragmented_blocks_allcpus(); 714 __purge_vmap_area_lazy(ULONG_MAX, 0); 715 mutex_unlock(&vmap_purge_lock); 716 } 717 718 /* 719 * Free a vmap area, caller ensuring that the area has been unmapped 720 * and flush_cache_vunmap had been called for the correct range 721 * previously. 722 */ 723 static void free_vmap_area_noflush(struct vmap_area *va) 724 { 725 int nr_lazy; 726 727 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, 728 &vmap_lazy_nr); 729 730 /* After this point, we may free va at any time */ 731 llist_add(&va->purge_list, &vmap_purge_list); 732 733 if (unlikely(nr_lazy > lazy_max_pages())) 734 try_purge_vmap_area_lazy(); 735 } 736 737 /* 738 * Free and unmap a vmap area 739 */ 740 static void free_unmap_vmap_area(struct vmap_area *va) 741 { 742 flush_cache_vunmap(va->va_start, va->va_end); 743 unmap_vmap_area(va); 744 if (debug_pagealloc_enabled()) 745 flush_tlb_kernel_range(va->va_start, va->va_end); 746 747 free_vmap_area_noflush(va); 748 } 749 750 static struct vmap_area *find_vmap_area(unsigned long addr) 751 { 752 struct vmap_area *va; 753 754 spin_lock(&vmap_area_lock); 755 va = __find_vmap_area(addr); 756 spin_unlock(&vmap_area_lock); 757 758 return va; 759 } 760 761 /*** Per cpu kva allocator ***/ 762 763 /* 764 * vmap space is limited especially on 32 bit architectures. Ensure there is 765 * room for at least 16 percpu vmap blocks per CPU. 766 */ 767 /* 768 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 769 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 770 * instead (we just need a rough idea) 771 */ 772 #if BITS_PER_LONG == 32 773 #define VMALLOC_SPACE (128UL*1024*1024) 774 #else 775 #define VMALLOC_SPACE (128UL*1024*1024*1024) 776 #endif 777 778 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 779 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 780 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 781 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 782 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 783 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 784 #define VMAP_BBMAP_BITS \ 785 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 786 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 787 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 788 789 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 790 791 static bool vmap_initialized __read_mostly = false; 792 793 struct vmap_block_queue { 794 spinlock_t lock; 795 struct list_head free; 796 }; 797 798 struct vmap_block { 799 spinlock_t lock; 800 struct vmap_area *va; 801 unsigned long free, dirty; 802 unsigned long dirty_min, dirty_max; /*< dirty range */ 803 struct list_head free_list; 804 struct rcu_head rcu_head; 805 struct list_head purge; 806 }; 807 808 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 809 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 810 811 /* 812 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 813 * in the free path. Could get rid of this if we change the API to return a 814 * "cookie" from alloc, to be passed to free. But no big deal yet. 815 */ 816 static DEFINE_SPINLOCK(vmap_block_tree_lock); 817 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 818 819 /* 820 * We should probably have a fallback mechanism to allocate virtual memory 821 * out of partially filled vmap blocks. However vmap block sizing should be 822 * fairly reasonable according to the vmalloc size, so it shouldn't be a 823 * big problem. 824 */ 825 826 static unsigned long addr_to_vb_idx(unsigned long addr) 827 { 828 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 829 addr /= VMAP_BLOCK_SIZE; 830 return addr; 831 } 832 833 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 834 { 835 unsigned long addr; 836 837 addr = va_start + (pages_off << PAGE_SHIFT); 838 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 839 return (void *)addr; 840 } 841 842 /** 843 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 844 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 845 * @order: how many 2^order pages should be occupied in newly allocated block 846 * @gfp_mask: flags for the page level allocator 847 * 848 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 849 */ 850 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 851 { 852 struct vmap_block_queue *vbq; 853 struct vmap_block *vb; 854 struct vmap_area *va; 855 unsigned long vb_idx; 856 int node, err; 857 void *vaddr; 858 859 node = numa_node_id(); 860 861 vb = kmalloc_node(sizeof(struct vmap_block), 862 gfp_mask & GFP_RECLAIM_MASK, node); 863 if (unlikely(!vb)) 864 return ERR_PTR(-ENOMEM); 865 866 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 867 VMALLOC_START, VMALLOC_END, 868 node, gfp_mask); 869 if (IS_ERR(va)) { 870 kfree(vb); 871 return ERR_CAST(va); 872 } 873 874 err = radix_tree_preload(gfp_mask); 875 if (unlikely(err)) { 876 kfree(vb); 877 free_vmap_area(va); 878 return ERR_PTR(err); 879 } 880 881 vaddr = vmap_block_vaddr(va->va_start, 0); 882 spin_lock_init(&vb->lock); 883 vb->va = va; 884 /* At least something should be left free */ 885 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 886 vb->free = VMAP_BBMAP_BITS - (1UL << order); 887 vb->dirty = 0; 888 vb->dirty_min = VMAP_BBMAP_BITS; 889 vb->dirty_max = 0; 890 INIT_LIST_HEAD(&vb->free_list); 891 892 vb_idx = addr_to_vb_idx(va->va_start); 893 spin_lock(&vmap_block_tree_lock); 894 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 895 spin_unlock(&vmap_block_tree_lock); 896 BUG_ON(err); 897 radix_tree_preload_end(); 898 899 vbq = &get_cpu_var(vmap_block_queue); 900 spin_lock(&vbq->lock); 901 list_add_tail_rcu(&vb->free_list, &vbq->free); 902 spin_unlock(&vbq->lock); 903 put_cpu_var(vmap_block_queue); 904 905 return vaddr; 906 } 907 908 static void free_vmap_block(struct vmap_block *vb) 909 { 910 struct vmap_block *tmp; 911 unsigned long vb_idx; 912 913 vb_idx = addr_to_vb_idx(vb->va->va_start); 914 spin_lock(&vmap_block_tree_lock); 915 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 916 spin_unlock(&vmap_block_tree_lock); 917 BUG_ON(tmp != vb); 918 919 free_vmap_area_noflush(vb->va); 920 kfree_rcu(vb, rcu_head); 921 } 922 923 static void purge_fragmented_blocks(int cpu) 924 { 925 LIST_HEAD(purge); 926 struct vmap_block *vb; 927 struct vmap_block *n_vb; 928 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 929 930 rcu_read_lock(); 931 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 932 933 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 934 continue; 935 936 spin_lock(&vb->lock); 937 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 938 vb->free = 0; /* prevent further allocs after releasing lock */ 939 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 940 vb->dirty_min = 0; 941 vb->dirty_max = VMAP_BBMAP_BITS; 942 spin_lock(&vbq->lock); 943 list_del_rcu(&vb->free_list); 944 spin_unlock(&vbq->lock); 945 spin_unlock(&vb->lock); 946 list_add_tail(&vb->purge, &purge); 947 } else 948 spin_unlock(&vb->lock); 949 } 950 rcu_read_unlock(); 951 952 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 953 list_del(&vb->purge); 954 free_vmap_block(vb); 955 } 956 } 957 958 static void purge_fragmented_blocks_allcpus(void) 959 { 960 int cpu; 961 962 for_each_possible_cpu(cpu) 963 purge_fragmented_blocks(cpu); 964 } 965 966 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 967 { 968 struct vmap_block_queue *vbq; 969 struct vmap_block *vb; 970 void *vaddr = NULL; 971 unsigned int order; 972 973 BUG_ON(offset_in_page(size)); 974 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 975 if (WARN_ON(size == 0)) { 976 /* 977 * Allocating 0 bytes isn't what caller wants since 978 * get_order(0) returns funny result. Just warn and terminate 979 * early. 980 */ 981 return NULL; 982 } 983 order = get_order(size); 984 985 rcu_read_lock(); 986 vbq = &get_cpu_var(vmap_block_queue); 987 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 988 unsigned long pages_off; 989 990 spin_lock(&vb->lock); 991 if (vb->free < (1UL << order)) { 992 spin_unlock(&vb->lock); 993 continue; 994 } 995 996 pages_off = VMAP_BBMAP_BITS - vb->free; 997 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 998 vb->free -= 1UL << order; 999 if (vb->free == 0) { 1000 spin_lock(&vbq->lock); 1001 list_del_rcu(&vb->free_list); 1002 spin_unlock(&vbq->lock); 1003 } 1004 1005 spin_unlock(&vb->lock); 1006 break; 1007 } 1008 1009 put_cpu_var(vmap_block_queue); 1010 rcu_read_unlock(); 1011 1012 /* Allocate new block if nothing was found */ 1013 if (!vaddr) 1014 vaddr = new_vmap_block(order, gfp_mask); 1015 1016 return vaddr; 1017 } 1018 1019 static void vb_free(const void *addr, unsigned long size) 1020 { 1021 unsigned long offset; 1022 unsigned long vb_idx; 1023 unsigned int order; 1024 struct vmap_block *vb; 1025 1026 BUG_ON(offset_in_page(size)); 1027 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1028 1029 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1030 1031 order = get_order(size); 1032 1033 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1034 offset >>= PAGE_SHIFT; 1035 1036 vb_idx = addr_to_vb_idx((unsigned long)addr); 1037 rcu_read_lock(); 1038 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1039 rcu_read_unlock(); 1040 BUG_ON(!vb); 1041 1042 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1043 1044 if (debug_pagealloc_enabled()) 1045 flush_tlb_kernel_range((unsigned long)addr, 1046 (unsigned long)addr + size); 1047 1048 spin_lock(&vb->lock); 1049 1050 /* Expand dirty range */ 1051 vb->dirty_min = min(vb->dirty_min, offset); 1052 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1053 1054 vb->dirty += 1UL << order; 1055 if (vb->dirty == VMAP_BBMAP_BITS) { 1056 BUG_ON(vb->free); 1057 spin_unlock(&vb->lock); 1058 free_vmap_block(vb); 1059 } else 1060 spin_unlock(&vb->lock); 1061 } 1062 1063 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1064 { 1065 int cpu; 1066 1067 if (unlikely(!vmap_initialized)) 1068 return; 1069 1070 might_sleep(); 1071 1072 for_each_possible_cpu(cpu) { 1073 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1074 struct vmap_block *vb; 1075 1076 rcu_read_lock(); 1077 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1078 spin_lock(&vb->lock); 1079 if (vb->dirty) { 1080 unsigned long va_start = vb->va->va_start; 1081 unsigned long s, e; 1082 1083 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1084 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1085 1086 start = min(s, start); 1087 end = max(e, end); 1088 1089 flush = 1; 1090 } 1091 spin_unlock(&vb->lock); 1092 } 1093 rcu_read_unlock(); 1094 } 1095 1096 mutex_lock(&vmap_purge_lock); 1097 purge_fragmented_blocks_allcpus(); 1098 if (!__purge_vmap_area_lazy(start, end) && flush) 1099 flush_tlb_kernel_range(start, end); 1100 mutex_unlock(&vmap_purge_lock); 1101 } 1102 1103 /** 1104 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1105 * 1106 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1107 * to amortize TLB flushing overheads. What this means is that any page you 1108 * have now, may, in a former life, have been mapped into kernel virtual 1109 * address by the vmap layer and so there might be some CPUs with TLB entries 1110 * still referencing that page (additional to the regular 1:1 kernel mapping). 1111 * 1112 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1113 * be sure that none of the pages we have control over will have any aliases 1114 * from the vmap layer. 1115 */ 1116 void vm_unmap_aliases(void) 1117 { 1118 unsigned long start = ULONG_MAX, end = 0; 1119 int flush = 0; 1120 1121 _vm_unmap_aliases(start, end, flush); 1122 } 1123 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1124 1125 /** 1126 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1127 * @mem: the pointer returned by vm_map_ram 1128 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1129 */ 1130 void vm_unmap_ram(const void *mem, unsigned int count) 1131 { 1132 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1133 unsigned long addr = (unsigned long)mem; 1134 struct vmap_area *va; 1135 1136 might_sleep(); 1137 BUG_ON(!addr); 1138 BUG_ON(addr < VMALLOC_START); 1139 BUG_ON(addr > VMALLOC_END); 1140 BUG_ON(!PAGE_ALIGNED(addr)); 1141 1142 if (likely(count <= VMAP_MAX_ALLOC)) { 1143 debug_check_no_locks_freed(mem, size); 1144 vb_free(mem, size); 1145 return; 1146 } 1147 1148 va = find_vmap_area(addr); 1149 BUG_ON(!va); 1150 debug_check_no_locks_freed((void *)va->va_start, 1151 (va->va_end - va->va_start)); 1152 free_unmap_vmap_area(va); 1153 } 1154 EXPORT_SYMBOL(vm_unmap_ram); 1155 1156 /** 1157 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1158 * @pages: an array of pointers to the pages to be mapped 1159 * @count: number of pages 1160 * @node: prefer to allocate data structures on this node 1161 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1162 * 1163 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1164 * faster than vmap so it's good. But if you mix long-life and short-life 1165 * objects with vm_map_ram(), it could consume lots of address space through 1166 * fragmentation (especially on a 32bit machine). You could see failures in 1167 * the end. Please use this function for short-lived objects. 1168 * 1169 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1170 */ 1171 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1172 { 1173 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1174 unsigned long addr; 1175 void *mem; 1176 1177 if (likely(count <= VMAP_MAX_ALLOC)) { 1178 mem = vb_alloc(size, GFP_KERNEL); 1179 if (IS_ERR(mem)) 1180 return NULL; 1181 addr = (unsigned long)mem; 1182 } else { 1183 struct vmap_area *va; 1184 va = alloc_vmap_area(size, PAGE_SIZE, 1185 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1186 if (IS_ERR(va)) 1187 return NULL; 1188 1189 addr = va->va_start; 1190 mem = (void *)addr; 1191 } 1192 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1193 vm_unmap_ram(mem, count); 1194 return NULL; 1195 } 1196 return mem; 1197 } 1198 EXPORT_SYMBOL(vm_map_ram); 1199 1200 static struct vm_struct *vmlist __initdata; 1201 1202 /** 1203 * vm_area_add_early - add vmap area early during boot 1204 * @vm: vm_struct to add 1205 * 1206 * This function is used to add fixed kernel vm area to vmlist before 1207 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1208 * should contain proper values and the other fields should be zero. 1209 * 1210 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1211 */ 1212 void __init vm_area_add_early(struct vm_struct *vm) 1213 { 1214 struct vm_struct *tmp, **p; 1215 1216 BUG_ON(vmap_initialized); 1217 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1218 if (tmp->addr >= vm->addr) { 1219 BUG_ON(tmp->addr < vm->addr + vm->size); 1220 break; 1221 } else 1222 BUG_ON(tmp->addr + tmp->size > vm->addr); 1223 } 1224 vm->next = *p; 1225 *p = vm; 1226 } 1227 1228 /** 1229 * vm_area_register_early - register vmap area early during boot 1230 * @vm: vm_struct to register 1231 * @align: requested alignment 1232 * 1233 * This function is used to register kernel vm area before 1234 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1235 * proper values on entry and other fields should be zero. On return, 1236 * vm->addr contains the allocated address. 1237 * 1238 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1239 */ 1240 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1241 { 1242 static size_t vm_init_off __initdata; 1243 unsigned long addr; 1244 1245 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1246 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1247 1248 vm->addr = (void *)addr; 1249 1250 vm_area_add_early(vm); 1251 } 1252 1253 void __init vmalloc_init(void) 1254 { 1255 struct vmap_area *va; 1256 struct vm_struct *tmp; 1257 int i; 1258 1259 for_each_possible_cpu(i) { 1260 struct vmap_block_queue *vbq; 1261 struct vfree_deferred *p; 1262 1263 vbq = &per_cpu(vmap_block_queue, i); 1264 spin_lock_init(&vbq->lock); 1265 INIT_LIST_HEAD(&vbq->free); 1266 p = &per_cpu(vfree_deferred, i); 1267 init_llist_head(&p->list); 1268 INIT_WORK(&p->wq, free_work); 1269 } 1270 1271 /* Import existing vmlist entries. */ 1272 for (tmp = vmlist; tmp; tmp = tmp->next) { 1273 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1274 va->flags = VM_VM_AREA; 1275 va->va_start = (unsigned long)tmp->addr; 1276 va->va_end = va->va_start + tmp->size; 1277 va->vm = tmp; 1278 __insert_vmap_area(va); 1279 } 1280 1281 vmap_area_pcpu_hole = VMALLOC_END; 1282 1283 vmap_initialized = true; 1284 } 1285 1286 /** 1287 * map_kernel_range_noflush - map kernel VM area with the specified pages 1288 * @addr: start of the VM area to map 1289 * @size: size of the VM area to map 1290 * @prot: page protection flags to use 1291 * @pages: pages to map 1292 * 1293 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1294 * specify should have been allocated using get_vm_area() and its 1295 * friends. 1296 * 1297 * NOTE: 1298 * This function does NOT do any cache flushing. The caller is 1299 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1300 * before calling this function. 1301 * 1302 * RETURNS: 1303 * The number of pages mapped on success, -errno on failure. 1304 */ 1305 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1306 pgprot_t prot, struct page **pages) 1307 { 1308 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1309 } 1310 1311 /** 1312 * unmap_kernel_range_noflush - unmap kernel VM area 1313 * @addr: start of the VM area to unmap 1314 * @size: size of the VM area to unmap 1315 * 1316 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1317 * specify should have been allocated using get_vm_area() and its 1318 * friends. 1319 * 1320 * NOTE: 1321 * This function does NOT do any cache flushing. The caller is 1322 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1323 * before calling this function and flush_tlb_kernel_range() after. 1324 */ 1325 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1326 { 1327 vunmap_page_range(addr, addr + size); 1328 } 1329 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1330 1331 /** 1332 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1333 * @addr: start of the VM area to unmap 1334 * @size: size of the VM area to unmap 1335 * 1336 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1337 * the unmapping and tlb after. 1338 */ 1339 void unmap_kernel_range(unsigned long addr, unsigned long size) 1340 { 1341 unsigned long end = addr + size; 1342 1343 flush_cache_vunmap(addr, end); 1344 vunmap_page_range(addr, end); 1345 flush_tlb_kernel_range(addr, end); 1346 } 1347 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1348 1349 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1350 { 1351 unsigned long addr = (unsigned long)area->addr; 1352 unsigned long end = addr + get_vm_area_size(area); 1353 int err; 1354 1355 err = vmap_page_range(addr, end, prot, pages); 1356 1357 return err > 0 ? 0 : err; 1358 } 1359 EXPORT_SYMBOL_GPL(map_vm_area); 1360 1361 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1362 unsigned long flags, const void *caller) 1363 { 1364 spin_lock(&vmap_area_lock); 1365 vm->flags = flags; 1366 vm->addr = (void *)va->va_start; 1367 vm->size = va->va_end - va->va_start; 1368 vm->caller = caller; 1369 va->vm = vm; 1370 va->flags |= VM_VM_AREA; 1371 spin_unlock(&vmap_area_lock); 1372 } 1373 1374 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1375 { 1376 /* 1377 * Before removing VM_UNINITIALIZED, 1378 * we should make sure that vm has proper values. 1379 * Pair with smp_rmb() in show_numa_info(). 1380 */ 1381 smp_wmb(); 1382 vm->flags &= ~VM_UNINITIALIZED; 1383 } 1384 1385 static struct vm_struct *__get_vm_area_node(unsigned long size, 1386 unsigned long align, unsigned long flags, unsigned long start, 1387 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1388 { 1389 struct vmap_area *va; 1390 struct vm_struct *area; 1391 1392 BUG_ON(in_interrupt()); 1393 size = PAGE_ALIGN(size); 1394 if (unlikely(!size)) 1395 return NULL; 1396 1397 if (flags & VM_IOREMAP) 1398 align = 1ul << clamp_t(int, get_count_order_long(size), 1399 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1400 1401 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1402 if (unlikely(!area)) 1403 return NULL; 1404 1405 if (!(flags & VM_NO_GUARD)) 1406 size += PAGE_SIZE; 1407 1408 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1409 if (IS_ERR(va)) { 1410 kfree(area); 1411 return NULL; 1412 } 1413 1414 setup_vmalloc_vm(area, va, flags, caller); 1415 1416 return area; 1417 } 1418 1419 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1420 unsigned long start, unsigned long end) 1421 { 1422 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1423 GFP_KERNEL, __builtin_return_address(0)); 1424 } 1425 EXPORT_SYMBOL_GPL(__get_vm_area); 1426 1427 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1428 unsigned long start, unsigned long end, 1429 const void *caller) 1430 { 1431 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1432 GFP_KERNEL, caller); 1433 } 1434 1435 /** 1436 * get_vm_area - reserve a contiguous kernel virtual area 1437 * @size: size of the area 1438 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1439 * 1440 * Search an area of @size in the kernel virtual mapping area, 1441 * and reserved it for out purposes. Returns the area descriptor 1442 * on success or %NULL on failure. 1443 * 1444 * Return: the area descriptor on success or %NULL on failure. 1445 */ 1446 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1447 { 1448 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1449 NUMA_NO_NODE, GFP_KERNEL, 1450 __builtin_return_address(0)); 1451 } 1452 1453 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1454 const void *caller) 1455 { 1456 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1457 NUMA_NO_NODE, GFP_KERNEL, caller); 1458 } 1459 1460 /** 1461 * find_vm_area - find a continuous kernel virtual area 1462 * @addr: base address 1463 * 1464 * Search for the kernel VM area starting at @addr, and return it. 1465 * It is up to the caller to do all required locking to keep the returned 1466 * pointer valid. 1467 * 1468 * Return: pointer to the found area or %NULL on faulure 1469 */ 1470 struct vm_struct *find_vm_area(const void *addr) 1471 { 1472 struct vmap_area *va; 1473 1474 va = find_vmap_area((unsigned long)addr); 1475 if (va && va->flags & VM_VM_AREA) 1476 return va->vm; 1477 1478 return NULL; 1479 } 1480 1481 /** 1482 * remove_vm_area - find and remove a continuous kernel virtual area 1483 * @addr: base address 1484 * 1485 * Search for the kernel VM area starting at @addr, and remove it. 1486 * This function returns the found VM area, but using it is NOT safe 1487 * on SMP machines, except for its size or flags. 1488 * 1489 * Return: pointer to the found area or %NULL on faulure 1490 */ 1491 struct vm_struct *remove_vm_area(const void *addr) 1492 { 1493 struct vmap_area *va; 1494 1495 might_sleep(); 1496 1497 va = find_vmap_area((unsigned long)addr); 1498 if (va && va->flags & VM_VM_AREA) { 1499 struct vm_struct *vm = va->vm; 1500 1501 spin_lock(&vmap_area_lock); 1502 va->vm = NULL; 1503 va->flags &= ~VM_VM_AREA; 1504 va->flags |= VM_LAZY_FREE; 1505 spin_unlock(&vmap_area_lock); 1506 1507 kasan_free_shadow(vm); 1508 free_unmap_vmap_area(va); 1509 1510 return vm; 1511 } 1512 return NULL; 1513 } 1514 1515 static inline void set_area_direct_map(const struct vm_struct *area, 1516 int (*set_direct_map)(struct page *page)) 1517 { 1518 int i; 1519 1520 for (i = 0; i < area->nr_pages; i++) 1521 if (page_address(area->pages[i])) 1522 set_direct_map(area->pages[i]); 1523 } 1524 1525 /* Handle removing and resetting vm mappings related to the vm_struct. */ 1526 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 1527 { 1528 unsigned long addr = (unsigned long)area->addr; 1529 unsigned long start = ULONG_MAX, end = 0; 1530 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 1531 int i; 1532 1533 /* 1534 * The below block can be removed when all architectures that have 1535 * direct map permissions also have set_direct_map_() implementations. 1536 * This is concerned with resetting the direct map any an vm alias with 1537 * execute permissions, without leaving a RW+X window. 1538 */ 1539 if (flush_reset && !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 1540 set_memory_nx(addr, area->nr_pages); 1541 set_memory_rw(addr, area->nr_pages); 1542 } 1543 1544 remove_vm_area(area->addr); 1545 1546 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 1547 if (!flush_reset) 1548 return; 1549 1550 /* 1551 * If not deallocating pages, just do the flush of the VM area and 1552 * return. 1553 */ 1554 if (!deallocate_pages) { 1555 vm_unmap_aliases(); 1556 return; 1557 } 1558 1559 /* 1560 * If execution gets here, flush the vm mapping and reset the direct 1561 * map. Find the start and end range of the direct mappings to make sure 1562 * the vm_unmap_aliases() flush includes the direct map. 1563 */ 1564 for (i = 0; i < area->nr_pages; i++) { 1565 if (page_address(area->pages[i])) { 1566 start = min(addr, start); 1567 end = max(addr, end); 1568 } 1569 } 1570 1571 /* 1572 * Set direct map to something invalid so that it won't be cached if 1573 * there are any accesses after the TLB flush, then flush the TLB and 1574 * reset the direct map permissions to the default. 1575 */ 1576 set_area_direct_map(area, set_direct_map_invalid_noflush); 1577 _vm_unmap_aliases(start, end, 1); 1578 set_area_direct_map(area, set_direct_map_default_noflush); 1579 } 1580 1581 static void __vunmap(const void *addr, int deallocate_pages) 1582 { 1583 struct vm_struct *area; 1584 1585 if (!addr) 1586 return; 1587 1588 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1589 addr)) 1590 return; 1591 1592 area = find_vm_area(addr); 1593 if (unlikely(!area)) { 1594 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1595 addr); 1596 return; 1597 } 1598 1599 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 1600 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 1601 1602 vm_remove_mappings(area, deallocate_pages); 1603 1604 if (deallocate_pages) { 1605 int i; 1606 1607 for (i = 0; i < area->nr_pages; i++) { 1608 struct page *page = area->pages[i]; 1609 1610 BUG_ON(!page); 1611 __free_pages(page, 0); 1612 } 1613 1614 kvfree(area->pages); 1615 } 1616 1617 kfree(area); 1618 return; 1619 } 1620 1621 static inline void __vfree_deferred(const void *addr) 1622 { 1623 /* 1624 * Use raw_cpu_ptr() because this can be called from preemptible 1625 * context. Preemption is absolutely fine here, because the llist_add() 1626 * implementation is lockless, so it works even if we are adding to 1627 * nother cpu's list. schedule_work() should be fine with this too. 1628 */ 1629 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 1630 1631 if (llist_add((struct llist_node *)addr, &p->list)) 1632 schedule_work(&p->wq); 1633 } 1634 1635 /** 1636 * vfree_atomic - release memory allocated by vmalloc() 1637 * @addr: memory base address 1638 * 1639 * This one is just like vfree() but can be called in any atomic context 1640 * except NMIs. 1641 */ 1642 void vfree_atomic(const void *addr) 1643 { 1644 BUG_ON(in_nmi()); 1645 1646 kmemleak_free(addr); 1647 1648 if (!addr) 1649 return; 1650 __vfree_deferred(addr); 1651 } 1652 1653 static void __vfree(const void *addr) 1654 { 1655 if (unlikely(in_interrupt())) 1656 __vfree_deferred(addr); 1657 else 1658 __vunmap(addr, 1); 1659 } 1660 1661 /** 1662 * vfree - release memory allocated by vmalloc() 1663 * @addr: memory base address 1664 * 1665 * Free the virtually continuous memory area starting at @addr, as 1666 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1667 * NULL, no operation is performed. 1668 * 1669 * Must not be called in NMI context (strictly speaking, only if we don't 1670 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1671 * conventions for vfree() arch-depenedent would be a really bad idea) 1672 * 1673 * May sleep if called *not* from interrupt context. 1674 * 1675 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 1676 */ 1677 void vfree(const void *addr) 1678 { 1679 BUG_ON(in_nmi()); 1680 1681 kmemleak_free(addr); 1682 1683 might_sleep_if(!in_interrupt()); 1684 1685 if (!addr) 1686 return; 1687 1688 __vfree(addr); 1689 } 1690 EXPORT_SYMBOL(vfree); 1691 1692 /** 1693 * vunmap - release virtual mapping obtained by vmap() 1694 * @addr: memory base address 1695 * 1696 * Free the virtually contiguous memory area starting at @addr, 1697 * which was created from the page array passed to vmap(). 1698 * 1699 * Must not be called in interrupt context. 1700 */ 1701 void vunmap(const void *addr) 1702 { 1703 BUG_ON(in_interrupt()); 1704 might_sleep(); 1705 if (addr) 1706 __vunmap(addr, 0); 1707 } 1708 EXPORT_SYMBOL(vunmap); 1709 1710 /** 1711 * vmap - map an array of pages into virtually contiguous space 1712 * @pages: array of page pointers 1713 * @count: number of pages to map 1714 * @flags: vm_area->flags 1715 * @prot: page protection for the mapping 1716 * 1717 * Maps @count pages from @pages into contiguous kernel virtual 1718 * space. 1719 * 1720 * Return: the address of the area or %NULL on failure 1721 */ 1722 void *vmap(struct page **pages, unsigned int count, 1723 unsigned long flags, pgprot_t prot) 1724 { 1725 struct vm_struct *area; 1726 unsigned long size; /* In bytes */ 1727 1728 might_sleep(); 1729 1730 if (count > totalram_pages()) 1731 return NULL; 1732 1733 size = (unsigned long)count << PAGE_SHIFT; 1734 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 1735 if (!area) 1736 return NULL; 1737 1738 if (map_vm_area(area, prot, pages)) { 1739 vunmap(area->addr); 1740 return NULL; 1741 } 1742 1743 return area->addr; 1744 } 1745 EXPORT_SYMBOL(vmap); 1746 1747 static void *__vmalloc_node(unsigned long size, unsigned long align, 1748 gfp_t gfp_mask, pgprot_t prot, 1749 int node, const void *caller); 1750 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1751 pgprot_t prot, int node) 1752 { 1753 struct page **pages; 1754 unsigned int nr_pages, array_size, i; 1755 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1756 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1757 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 1758 0 : 1759 __GFP_HIGHMEM; 1760 1761 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1762 array_size = (nr_pages * sizeof(struct page *)); 1763 1764 area->nr_pages = nr_pages; 1765 /* Please note that the recursion is strictly bounded. */ 1766 if (array_size > PAGE_SIZE) { 1767 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 1768 PAGE_KERNEL, node, area->caller); 1769 } else { 1770 pages = kmalloc_node(array_size, nested_gfp, node); 1771 } 1772 area->pages = pages; 1773 if (!area->pages) { 1774 remove_vm_area(area->addr); 1775 kfree(area); 1776 return NULL; 1777 } 1778 1779 for (i = 0; i < area->nr_pages; i++) { 1780 struct page *page; 1781 1782 if (node == NUMA_NO_NODE) 1783 page = alloc_page(alloc_mask|highmem_mask); 1784 else 1785 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 1786 1787 if (unlikely(!page)) { 1788 /* Successfully allocated i pages, free them in __vunmap() */ 1789 area->nr_pages = i; 1790 goto fail; 1791 } 1792 area->pages[i] = page; 1793 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 1794 cond_resched(); 1795 } 1796 1797 if (map_vm_area(area, prot, pages)) 1798 goto fail; 1799 return area->addr; 1800 1801 fail: 1802 warn_alloc(gfp_mask, NULL, 1803 "vmalloc: allocation failure, allocated %ld of %ld bytes", 1804 (area->nr_pages*PAGE_SIZE), area->size); 1805 __vfree(area->addr); 1806 return NULL; 1807 } 1808 1809 /** 1810 * __vmalloc_node_range - allocate virtually contiguous memory 1811 * @size: allocation size 1812 * @align: desired alignment 1813 * @start: vm area range start 1814 * @end: vm area range end 1815 * @gfp_mask: flags for the page level allocator 1816 * @prot: protection mask for the allocated pages 1817 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1818 * @node: node to use for allocation or NUMA_NO_NODE 1819 * @caller: caller's return address 1820 * 1821 * Allocate enough pages to cover @size from the page level 1822 * allocator with @gfp_mask flags. Map them into contiguous 1823 * kernel virtual space, using a pagetable protection of @prot. 1824 * 1825 * Return: the address of the area or %NULL on failure 1826 */ 1827 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1828 unsigned long start, unsigned long end, gfp_t gfp_mask, 1829 pgprot_t prot, unsigned long vm_flags, int node, 1830 const void *caller) 1831 { 1832 struct vm_struct *area; 1833 void *addr; 1834 unsigned long real_size = size; 1835 1836 size = PAGE_ALIGN(size); 1837 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 1838 goto fail; 1839 1840 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1841 vm_flags, start, end, node, gfp_mask, caller); 1842 if (!area) 1843 goto fail; 1844 1845 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1846 if (!addr) 1847 return NULL; 1848 1849 /* 1850 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1851 * flag. It means that vm_struct is not fully initialized. 1852 * Now, it is fully initialized, so remove this flag here. 1853 */ 1854 clear_vm_uninitialized_flag(area); 1855 1856 kmemleak_vmalloc(area, size, gfp_mask); 1857 1858 return addr; 1859 1860 fail: 1861 warn_alloc(gfp_mask, NULL, 1862 "vmalloc: allocation failure: %lu bytes", real_size); 1863 return NULL; 1864 } 1865 1866 /* 1867 * This is only for performance analysis of vmalloc and stress purpose. 1868 * It is required by vmalloc test module, therefore do not use it other 1869 * than that. 1870 */ 1871 #ifdef CONFIG_TEST_VMALLOC_MODULE 1872 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 1873 #endif 1874 1875 /** 1876 * __vmalloc_node - allocate virtually contiguous memory 1877 * @size: allocation size 1878 * @align: desired alignment 1879 * @gfp_mask: flags for the page level allocator 1880 * @prot: protection mask for the allocated pages 1881 * @node: node to use for allocation or NUMA_NO_NODE 1882 * @caller: caller's return address 1883 * 1884 * Allocate enough pages to cover @size from the page level 1885 * allocator with @gfp_mask flags. Map them into contiguous 1886 * kernel virtual space, using a pagetable protection of @prot. 1887 * 1888 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 1889 * and __GFP_NOFAIL are not supported 1890 * 1891 * Any use of gfp flags outside of GFP_KERNEL should be consulted 1892 * with mm people. 1893 * 1894 * Return: pointer to the allocated memory or %NULL on error 1895 */ 1896 static void *__vmalloc_node(unsigned long size, unsigned long align, 1897 gfp_t gfp_mask, pgprot_t prot, 1898 int node, const void *caller) 1899 { 1900 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1901 gfp_mask, prot, 0, node, caller); 1902 } 1903 1904 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1905 { 1906 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1907 __builtin_return_address(0)); 1908 } 1909 EXPORT_SYMBOL(__vmalloc); 1910 1911 static inline void *__vmalloc_node_flags(unsigned long size, 1912 int node, gfp_t flags) 1913 { 1914 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1915 node, __builtin_return_address(0)); 1916 } 1917 1918 1919 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 1920 void *caller) 1921 { 1922 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 1923 } 1924 1925 /** 1926 * vmalloc - allocate virtually contiguous memory 1927 * @size: allocation size 1928 * 1929 * Allocate enough pages to cover @size from the page level 1930 * allocator and map them into contiguous kernel virtual space. 1931 * 1932 * For tight control over page level allocator and protection flags 1933 * use __vmalloc() instead. 1934 * 1935 * Return: pointer to the allocated memory or %NULL on error 1936 */ 1937 void *vmalloc(unsigned long size) 1938 { 1939 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1940 GFP_KERNEL); 1941 } 1942 EXPORT_SYMBOL(vmalloc); 1943 1944 /** 1945 * vzalloc - allocate virtually contiguous memory with zero fill 1946 * @size: allocation size 1947 * 1948 * Allocate enough pages to cover @size from the page level 1949 * allocator and map them into contiguous kernel virtual space. 1950 * The memory allocated is set to zero. 1951 * 1952 * For tight control over page level allocator and protection flags 1953 * use __vmalloc() instead. 1954 * 1955 * Return: pointer to the allocated memory or %NULL on error 1956 */ 1957 void *vzalloc(unsigned long size) 1958 { 1959 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1960 GFP_KERNEL | __GFP_ZERO); 1961 } 1962 EXPORT_SYMBOL(vzalloc); 1963 1964 /** 1965 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1966 * @size: allocation size 1967 * 1968 * The resulting memory area is zeroed so it can be mapped to userspace 1969 * without leaking data. 1970 * 1971 * Return: pointer to the allocated memory or %NULL on error 1972 */ 1973 void *vmalloc_user(unsigned long size) 1974 { 1975 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 1976 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 1977 VM_USERMAP, NUMA_NO_NODE, 1978 __builtin_return_address(0)); 1979 } 1980 EXPORT_SYMBOL(vmalloc_user); 1981 1982 /** 1983 * vmalloc_node - allocate memory on a specific node 1984 * @size: allocation size 1985 * @node: numa node 1986 * 1987 * Allocate enough pages to cover @size from the page level 1988 * allocator and map them into contiguous kernel virtual space. 1989 * 1990 * For tight control over page level allocator and protection flags 1991 * use __vmalloc() instead. 1992 * 1993 * Return: pointer to the allocated memory or %NULL on error 1994 */ 1995 void *vmalloc_node(unsigned long size, int node) 1996 { 1997 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 1998 node, __builtin_return_address(0)); 1999 } 2000 EXPORT_SYMBOL(vmalloc_node); 2001 2002 /** 2003 * vzalloc_node - allocate memory on a specific node with zero fill 2004 * @size: allocation size 2005 * @node: numa node 2006 * 2007 * Allocate enough pages to cover @size from the page level 2008 * allocator and map them into contiguous kernel virtual space. 2009 * The memory allocated is set to zero. 2010 * 2011 * For tight control over page level allocator and protection flags 2012 * use __vmalloc_node() instead. 2013 * 2014 * Return: pointer to the allocated memory or %NULL on error 2015 */ 2016 void *vzalloc_node(unsigned long size, int node) 2017 { 2018 return __vmalloc_node_flags(size, node, 2019 GFP_KERNEL | __GFP_ZERO); 2020 } 2021 EXPORT_SYMBOL(vzalloc_node); 2022 2023 /** 2024 * vmalloc_exec - allocate virtually contiguous, executable memory 2025 * @size: allocation size 2026 * 2027 * Kernel-internal function to allocate enough pages to cover @size 2028 * the page level allocator and map them into contiguous and 2029 * executable kernel virtual space. 2030 * 2031 * For tight control over page level allocator and protection flags 2032 * use __vmalloc() instead. 2033 * 2034 * Return: pointer to the allocated memory or %NULL on error 2035 */ 2036 void *vmalloc_exec(unsigned long size) 2037 { 2038 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2039 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2040 NUMA_NO_NODE, __builtin_return_address(0)); 2041 } 2042 2043 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2044 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2045 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2046 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2047 #else 2048 /* 2049 * 64b systems should always have either DMA or DMA32 zones. For others 2050 * GFP_DMA32 should do the right thing and use the normal zone. 2051 */ 2052 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2053 #endif 2054 2055 /** 2056 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2057 * @size: allocation size 2058 * 2059 * Allocate enough 32bit PA addressable pages to cover @size from the 2060 * page level allocator and map them into contiguous kernel virtual space. 2061 * 2062 * Return: pointer to the allocated memory or %NULL on error 2063 */ 2064 void *vmalloc_32(unsigned long size) 2065 { 2066 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 2067 NUMA_NO_NODE, __builtin_return_address(0)); 2068 } 2069 EXPORT_SYMBOL(vmalloc_32); 2070 2071 /** 2072 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2073 * @size: allocation size 2074 * 2075 * The resulting memory area is 32bit addressable and zeroed so it can be 2076 * mapped to userspace without leaking data. 2077 * 2078 * Return: pointer to the allocated memory or %NULL on error 2079 */ 2080 void *vmalloc_32_user(unsigned long size) 2081 { 2082 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2083 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2084 VM_USERMAP, NUMA_NO_NODE, 2085 __builtin_return_address(0)); 2086 } 2087 EXPORT_SYMBOL(vmalloc_32_user); 2088 2089 /* 2090 * small helper routine , copy contents to buf from addr. 2091 * If the page is not present, fill zero. 2092 */ 2093 2094 static int aligned_vread(char *buf, char *addr, unsigned long count) 2095 { 2096 struct page *p; 2097 int copied = 0; 2098 2099 while (count) { 2100 unsigned long offset, length; 2101 2102 offset = offset_in_page(addr); 2103 length = PAGE_SIZE - offset; 2104 if (length > count) 2105 length = count; 2106 p = vmalloc_to_page(addr); 2107 /* 2108 * To do safe access to this _mapped_ area, we need 2109 * lock. But adding lock here means that we need to add 2110 * overhead of vmalloc()/vfree() calles for this _debug_ 2111 * interface, rarely used. Instead of that, we'll use 2112 * kmap() and get small overhead in this access function. 2113 */ 2114 if (p) { 2115 /* 2116 * we can expect USER0 is not used (see vread/vwrite's 2117 * function description) 2118 */ 2119 void *map = kmap_atomic(p); 2120 memcpy(buf, map + offset, length); 2121 kunmap_atomic(map); 2122 } else 2123 memset(buf, 0, length); 2124 2125 addr += length; 2126 buf += length; 2127 copied += length; 2128 count -= length; 2129 } 2130 return copied; 2131 } 2132 2133 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2134 { 2135 struct page *p; 2136 int copied = 0; 2137 2138 while (count) { 2139 unsigned long offset, length; 2140 2141 offset = offset_in_page(addr); 2142 length = PAGE_SIZE - offset; 2143 if (length > count) 2144 length = count; 2145 p = vmalloc_to_page(addr); 2146 /* 2147 * To do safe access to this _mapped_ area, we need 2148 * lock. But adding lock here means that we need to add 2149 * overhead of vmalloc()/vfree() calles for this _debug_ 2150 * interface, rarely used. Instead of that, we'll use 2151 * kmap() and get small overhead in this access function. 2152 */ 2153 if (p) { 2154 /* 2155 * we can expect USER0 is not used (see vread/vwrite's 2156 * function description) 2157 */ 2158 void *map = kmap_atomic(p); 2159 memcpy(map + offset, buf, length); 2160 kunmap_atomic(map); 2161 } 2162 addr += length; 2163 buf += length; 2164 copied += length; 2165 count -= length; 2166 } 2167 return copied; 2168 } 2169 2170 /** 2171 * vread() - read vmalloc area in a safe way. 2172 * @buf: buffer for reading data 2173 * @addr: vm address. 2174 * @count: number of bytes to be read. 2175 * 2176 * This function checks that addr is a valid vmalloc'ed area, and 2177 * copy data from that area to a given buffer. If the given memory range 2178 * of [addr...addr+count) includes some valid address, data is copied to 2179 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2180 * IOREMAP area is treated as memory hole and no copy is done. 2181 * 2182 * If [addr...addr+count) doesn't includes any intersects with alive 2183 * vm_struct area, returns 0. @buf should be kernel's buffer. 2184 * 2185 * Note: In usual ops, vread() is never necessary because the caller 2186 * should know vmalloc() area is valid and can use memcpy(). 2187 * This is for routines which have to access vmalloc area without 2188 * any informaion, as /dev/kmem. 2189 * 2190 * Return: number of bytes for which addr and buf should be increased 2191 * (same number as @count) or %0 if [addr...addr+count) doesn't 2192 * include any intersection with valid vmalloc area 2193 */ 2194 long vread(char *buf, char *addr, unsigned long count) 2195 { 2196 struct vmap_area *va; 2197 struct vm_struct *vm; 2198 char *vaddr, *buf_start = buf; 2199 unsigned long buflen = count; 2200 unsigned long n; 2201 2202 /* Don't allow overflow */ 2203 if ((unsigned long) addr + count < count) 2204 count = -(unsigned long) addr; 2205 2206 spin_lock(&vmap_area_lock); 2207 list_for_each_entry(va, &vmap_area_list, list) { 2208 if (!count) 2209 break; 2210 2211 if (!(va->flags & VM_VM_AREA)) 2212 continue; 2213 2214 vm = va->vm; 2215 vaddr = (char *) vm->addr; 2216 if (addr >= vaddr + get_vm_area_size(vm)) 2217 continue; 2218 while (addr < vaddr) { 2219 if (count == 0) 2220 goto finished; 2221 *buf = '\0'; 2222 buf++; 2223 addr++; 2224 count--; 2225 } 2226 n = vaddr + get_vm_area_size(vm) - addr; 2227 if (n > count) 2228 n = count; 2229 if (!(vm->flags & VM_IOREMAP)) 2230 aligned_vread(buf, addr, n); 2231 else /* IOREMAP area is treated as memory hole */ 2232 memset(buf, 0, n); 2233 buf += n; 2234 addr += n; 2235 count -= n; 2236 } 2237 finished: 2238 spin_unlock(&vmap_area_lock); 2239 2240 if (buf == buf_start) 2241 return 0; 2242 /* zero-fill memory holes */ 2243 if (buf != buf_start + buflen) 2244 memset(buf, 0, buflen - (buf - buf_start)); 2245 2246 return buflen; 2247 } 2248 2249 /** 2250 * vwrite() - write vmalloc area in a safe way. 2251 * @buf: buffer for source data 2252 * @addr: vm address. 2253 * @count: number of bytes to be read. 2254 * 2255 * This function checks that addr is a valid vmalloc'ed area, and 2256 * copy data from a buffer to the given addr. If specified range of 2257 * [addr...addr+count) includes some valid address, data is copied from 2258 * proper area of @buf. If there are memory holes, no copy to hole. 2259 * IOREMAP area is treated as memory hole and no copy is done. 2260 * 2261 * If [addr...addr+count) doesn't includes any intersects with alive 2262 * vm_struct area, returns 0. @buf should be kernel's buffer. 2263 * 2264 * Note: In usual ops, vwrite() is never necessary because the caller 2265 * should know vmalloc() area is valid and can use memcpy(). 2266 * This is for routines which have to access vmalloc area without 2267 * any informaion, as /dev/kmem. 2268 * 2269 * Return: number of bytes for which addr and buf should be 2270 * increased (same number as @count) or %0 if [addr...addr+count) 2271 * doesn't include any intersection with valid vmalloc area 2272 */ 2273 long vwrite(char *buf, char *addr, unsigned long count) 2274 { 2275 struct vmap_area *va; 2276 struct vm_struct *vm; 2277 char *vaddr; 2278 unsigned long n, buflen; 2279 int copied = 0; 2280 2281 /* Don't allow overflow */ 2282 if ((unsigned long) addr + count < count) 2283 count = -(unsigned long) addr; 2284 buflen = count; 2285 2286 spin_lock(&vmap_area_lock); 2287 list_for_each_entry(va, &vmap_area_list, list) { 2288 if (!count) 2289 break; 2290 2291 if (!(va->flags & VM_VM_AREA)) 2292 continue; 2293 2294 vm = va->vm; 2295 vaddr = (char *) vm->addr; 2296 if (addr >= vaddr + get_vm_area_size(vm)) 2297 continue; 2298 while (addr < vaddr) { 2299 if (count == 0) 2300 goto finished; 2301 buf++; 2302 addr++; 2303 count--; 2304 } 2305 n = vaddr + get_vm_area_size(vm) - addr; 2306 if (n > count) 2307 n = count; 2308 if (!(vm->flags & VM_IOREMAP)) { 2309 aligned_vwrite(buf, addr, n); 2310 copied++; 2311 } 2312 buf += n; 2313 addr += n; 2314 count -= n; 2315 } 2316 finished: 2317 spin_unlock(&vmap_area_lock); 2318 if (!copied) 2319 return 0; 2320 return buflen; 2321 } 2322 2323 /** 2324 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2325 * @vma: vma to cover 2326 * @uaddr: target user address to start at 2327 * @kaddr: virtual address of vmalloc kernel memory 2328 * @size: size of map area 2329 * 2330 * Returns: 0 for success, -Exxx on failure 2331 * 2332 * This function checks that @kaddr is a valid vmalloc'ed area, 2333 * and that it is big enough to cover the range starting at 2334 * @uaddr in @vma. Will return failure if that criteria isn't 2335 * met. 2336 * 2337 * Similar to remap_pfn_range() (see mm/memory.c) 2338 */ 2339 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2340 void *kaddr, unsigned long size) 2341 { 2342 struct vm_struct *area; 2343 2344 size = PAGE_ALIGN(size); 2345 2346 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2347 return -EINVAL; 2348 2349 area = find_vm_area(kaddr); 2350 if (!area) 2351 return -EINVAL; 2352 2353 if (!(area->flags & VM_USERMAP)) 2354 return -EINVAL; 2355 2356 if (kaddr + size > area->addr + get_vm_area_size(area)) 2357 return -EINVAL; 2358 2359 do { 2360 struct page *page = vmalloc_to_page(kaddr); 2361 int ret; 2362 2363 ret = vm_insert_page(vma, uaddr, page); 2364 if (ret) 2365 return ret; 2366 2367 uaddr += PAGE_SIZE; 2368 kaddr += PAGE_SIZE; 2369 size -= PAGE_SIZE; 2370 } while (size > 0); 2371 2372 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2373 2374 return 0; 2375 } 2376 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2377 2378 /** 2379 * remap_vmalloc_range - map vmalloc pages to userspace 2380 * @vma: vma to cover (map full range of vma) 2381 * @addr: vmalloc memory 2382 * @pgoff: number of pages into addr before first page to map 2383 * 2384 * Returns: 0 for success, -Exxx on failure 2385 * 2386 * This function checks that addr is a valid vmalloc'ed area, and 2387 * that it is big enough to cover the vma. Will return failure if 2388 * that criteria isn't met. 2389 * 2390 * Similar to remap_pfn_range() (see mm/memory.c) 2391 */ 2392 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2393 unsigned long pgoff) 2394 { 2395 return remap_vmalloc_range_partial(vma, vma->vm_start, 2396 addr + (pgoff << PAGE_SHIFT), 2397 vma->vm_end - vma->vm_start); 2398 } 2399 EXPORT_SYMBOL(remap_vmalloc_range); 2400 2401 /* 2402 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2403 * have one. 2404 */ 2405 void __weak vmalloc_sync_all(void) 2406 { 2407 } 2408 2409 2410 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2411 { 2412 pte_t ***p = data; 2413 2414 if (p) { 2415 *(*p) = pte; 2416 (*p)++; 2417 } 2418 return 0; 2419 } 2420 2421 /** 2422 * alloc_vm_area - allocate a range of kernel address space 2423 * @size: size of the area 2424 * @ptes: returns the PTEs for the address space 2425 * 2426 * Returns: NULL on failure, vm_struct on success 2427 * 2428 * This function reserves a range of kernel address space, and 2429 * allocates pagetables to map that range. No actual mappings 2430 * are created. 2431 * 2432 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2433 * allocated for the VM area are returned. 2434 */ 2435 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2436 { 2437 struct vm_struct *area; 2438 2439 area = get_vm_area_caller(size, VM_IOREMAP, 2440 __builtin_return_address(0)); 2441 if (area == NULL) 2442 return NULL; 2443 2444 /* 2445 * This ensures that page tables are constructed for this region 2446 * of kernel virtual address space and mapped into init_mm. 2447 */ 2448 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2449 size, f, ptes ? &ptes : NULL)) { 2450 free_vm_area(area); 2451 return NULL; 2452 } 2453 2454 return area; 2455 } 2456 EXPORT_SYMBOL_GPL(alloc_vm_area); 2457 2458 void free_vm_area(struct vm_struct *area) 2459 { 2460 struct vm_struct *ret; 2461 ret = remove_vm_area(area->addr); 2462 BUG_ON(ret != area); 2463 kfree(area); 2464 } 2465 EXPORT_SYMBOL_GPL(free_vm_area); 2466 2467 #ifdef CONFIG_SMP 2468 static struct vmap_area *node_to_va(struct rb_node *n) 2469 { 2470 return rb_entry_safe(n, struct vmap_area, rb_node); 2471 } 2472 2473 /** 2474 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2475 * @end: target address 2476 * @pnext: out arg for the next vmap_area 2477 * @pprev: out arg for the previous vmap_area 2478 * 2479 * Returns: %true if either or both of next and prev are found, 2480 * %false if no vmap_area exists 2481 * 2482 * Find vmap_areas end addresses of which enclose @end. ie. if not 2483 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2484 */ 2485 static bool pvm_find_next_prev(unsigned long end, 2486 struct vmap_area **pnext, 2487 struct vmap_area **pprev) 2488 { 2489 struct rb_node *n = vmap_area_root.rb_node; 2490 struct vmap_area *va = NULL; 2491 2492 while (n) { 2493 va = rb_entry(n, struct vmap_area, rb_node); 2494 if (end < va->va_end) 2495 n = n->rb_left; 2496 else if (end > va->va_end) 2497 n = n->rb_right; 2498 else 2499 break; 2500 } 2501 2502 if (!va) 2503 return false; 2504 2505 if (va->va_end > end) { 2506 *pnext = va; 2507 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2508 } else { 2509 *pprev = va; 2510 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2511 } 2512 return true; 2513 } 2514 2515 /** 2516 * pvm_determine_end - find the highest aligned address between two vmap_areas 2517 * @pnext: in/out arg for the next vmap_area 2518 * @pprev: in/out arg for the previous vmap_area 2519 * @align: alignment 2520 * 2521 * Returns: determined end address 2522 * 2523 * Find the highest aligned address between *@pnext and *@pprev below 2524 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2525 * down address is between the end addresses of the two vmap_areas. 2526 * 2527 * Please note that the address returned by this function may fall 2528 * inside *@pnext vmap_area. The caller is responsible for checking 2529 * that. 2530 */ 2531 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2532 struct vmap_area **pprev, 2533 unsigned long align) 2534 { 2535 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2536 unsigned long addr; 2537 2538 if (*pnext) 2539 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2540 else 2541 addr = vmalloc_end; 2542 2543 while (*pprev && (*pprev)->va_end > addr) { 2544 *pnext = *pprev; 2545 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2546 } 2547 2548 return addr; 2549 } 2550 2551 /** 2552 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2553 * @offsets: array containing offset of each area 2554 * @sizes: array containing size of each area 2555 * @nr_vms: the number of areas to allocate 2556 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2557 * 2558 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2559 * vm_structs on success, %NULL on failure 2560 * 2561 * Percpu allocator wants to use congruent vm areas so that it can 2562 * maintain the offsets among percpu areas. This function allocates 2563 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2564 * be scattered pretty far, distance between two areas easily going up 2565 * to gigabytes. To avoid interacting with regular vmallocs, these 2566 * areas are allocated from top. 2567 * 2568 * Despite its complicated look, this allocator is rather simple. It 2569 * does everything top-down and scans areas from the end looking for 2570 * matching slot. While scanning, if any of the areas overlaps with 2571 * existing vmap_area, the base address is pulled down to fit the 2572 * area. Scanning is repeated till all the areas fit and then all 2573 * necessary data structures are inserted and the result is returned. 2574 */ 2575 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2576 const size_t *sizes, int nr_vms, 2577 size_t align) 2578 { 2579 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2580 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2581 struct vmap_area **vas, *prev, *next; 2582 struct vm_struct **vms; 2583 int area, area2, last_area, term_area; 2584 unsigned long base, start, end, last_end; 2585 bool purged = false; 2586 2587 /* verify parameters and allocate data structures */ 2588 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2589 for (last_area = 0, area = 0; area < nr_vms; area++) { 2590 start = offsets[area]; 2591 end = start + sizes[area]; 2592 2593 /* is everything aligned properly? */ 2594 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2595 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2596 2597 /* detect the area with the highest address */ 2598 if (start > offsets[last_area]) 2599 last_area = area; 2600 2601 for (area2 = area + 1; area2 < nr_vms; area2++) { 2602 unsigned long start2 = offsets[area2]; 2603 unsigned long end2 = start2 + sizes[area2]; 2604 2605 BUG_ON(start2 < end && start < end2); 2606 } 2607 } 2608 last_end = offsets[last_area] + sizes[last_area]; 2609 2610 if (vmalloc_end - vmalloc_start < last_end) { 2611 WARN_ON(true); 2612 return NULL; 2613 } 2614 2615 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2616 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2617 if (!vas || !vms) 2618 goto err_free2; 2619 2620 for (area = 0; area < nr_vms; area++) { 2621 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2622 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2623 if (!vas[area] || !vms[area]) 2624 goto err_free; 2625 } 2626 retry: 2627 spin_lock(&vmap_area_lock); 2628 2629 /* start scanning - we scan from the top, begin with the last area */ 2630 area = term_area = last_area; 2631 start = offsets[area]; 2632 end = start + sizes[area]; 2633 2634 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2635 base = vmalloc_end - last_end; 2636 goto found; 2637 } 2638 base = pvm_determine_end(&next, &prev, align) - end; 2639 2640 while (true) { 2641 BUG_ON(next && next->va_end <= base + end); 2642 BUG_ON(prev && prev->va_end > base + end); 2643 2644 /* 2645 * base might have underflowed, add last_end before 2646 * comparing. 2647 */ 2648 if (base + last_end < vmalloc_start + last_end) { 2649 spin_unlock(&vmap_area_lock); 2650 if (!purged) { 2651 purge_vmap_area_lazy(); 2652 purged = true; 2653 goto retry; 2654 } 2655 goto err_free; 2656 } 2657 2658 /* 2659 * If next overlaps, move base downwards so that it's 2660 * right below next and then recheck. 2661 */ 2662 if (next && next->va_start < base + end) { 2663 base = pvm_determine_end(&next, &prev, align) - end; 2664 term_area = area; 2665 continue; 2666 } 2667 2668 /* 2669 * If prev overlaps, shift down next and prev and move 2670 * base so that it's right below new next and then 2671 * recheck. 2672 */ 2673 if (prev && prev->va_end > base + start) { 2674 next = prev; 2675 prev = node_to_va(rb_prev(&next->rb_node)); 2676 base = pvm_determine_end(&next, &prev, align) - end; 2677 term_area = area; 2678 continue; 2679 } 2680 2681 /* 2682 * This area fits, move on to the previous one. If 2683 * the previous one is the terminal one, we're done. 2684 */ 2685 area = (area + nr_vms - 1) % nr_vms; 2686 if (area == term_area) 2687 break; 2688 start = offsets[area]; 2689 end = start + sizes[area]; 2690 pvm_find_next_prev(base + end, &next, &prev); 2691 } 2692 found: 2693 /* we've found a fitting base, insert all va's */ 2694 for (area = 0; area < nr_vms; area++) { 2695 struct vmap_area *va = vas[area]; 2696 2697 va->va_start = base + offsets[area]; 2698 va->va_end = va->va_start + sizes[area]; 2699 __insert_vmap_area(va); 2700 } 2701 2702 vmap_area_pcpu_hole = base + offsets[last_area]; 2703 2704 spin_unlock(&vmap_area_lock); 2705 2706 /* insert all vm's */ 2707 for (area = 0; area < nr_vms; area++) 2708 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2709 pcpu_get_vm_areas); 2710 2711 kfree(vas); 2712 return vms; 2713 2714 err_free: 2715 for (area = 0; area < nr_vms; area++) { 2716 kfree(vas[area]); 2717 kfree(vms[area]); 2718 } 2719 err_free2: 2720 kfree(vas); 2721 kfree(vms); 2722 return NULL; 2723 } 2724 2725 /** 2726 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2727 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2728 * @nr_vms: the number of allocated areas 2729 * 2730 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2731 */ 2732 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2733 { 2734 int i; 2735 2736 for (i = 0; i < nr_vms; i++) 2737 free_vm_area(vms[i]); 2738 kfree(vms); 2739 } 2740 #endif /* CONFIG_SMP */ 2741 2742 #ifdef CONFIG_PROC_FS 2743 static void *s_start(struct seq_file *m, loff_t *pos) 2744 __acquires(&vmap_area_lock) 2745 { 2746 spin_lock(&vmap_area_lock); 2747 return seq_list_start(&vmap_area_list, *pos); 2748 } 2749 2750 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2751 { 2752 return seq_list_next(p, &vmap_area_list, pos); 2753 } 2754 2755 static void s_stop(struct seq_file *m, void *p) 2756 __releases(&vmap_area_lock) 2757 { 2758 spin_unlock(&vmap_area_lock); 2759 } 2760 2761 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2762 { 2763 if (IS_ENABLED(CONFIG_NUMA)) { 2764 unsigned int nr, *counters = m->private; 2765 2766 if (!counters) 2767 return; 2768 2769 if (v->flags & VM_UNINITIALIZED) 2770 return; 2771 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2772 smp_rmb(); 2773 2774 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2775 2776 for (nr = 0; nr < v->nr_pages; nr++) 2777 counters[page_to_nid(v->pages[nr])]++; 2778 2779 for_each_node_state(nr, N_HIGH_MEMORY) 2780 if (counters[nr]) 2781 seq_printf(m, " N%u=%u", nr, counters[nr]); 2782 } 2783 } 2784 2785 static int s_show(struct seq_file *m, void *p) 2786 { 2787 struct vmap_area *va; 2788 struct vm_struct *v; 2789 2790 va = list_entry(p, struct vmap_area, list); 2791 2792 /* 2793 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2794 * behalf of vmap area is being tear down or vm_map_ram allocation. 2795 */ 2796 if (!(va->flags & VM_VM_AREA)) { 2797 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 2798 (void *)va->va_start, (void *)va->va_end, 2799 va->va_end - va->va_start, 2800 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 2801 2802 return 0; 2803 } 2804 2805 v = va->vm; 2806 2807 seq_printf(m, "0x%pK-0x%pK %7ld", 2808 v->addr, v->addr + v->size, v->size); 2809 2810 if (v->caller) 2811 seq_printf(m, " %pS", v->caller); 2812 2813 if (v->nr_pages) 2814 seq_printf(m, " pages=%d", v->nr_pages); 2815 2816 if (v->phys_addr) 2817 seq_printf(m, " phys=%pa", &v->phys_addr); 2818 2819 if (v->flags & VM_IOREMAP) 2820 seq_puts(m, " ioremap"); 2821 2822 if (v->flags & VM_ALLOC) 2823 seq_puts(m, " vmalloc"); 2824 2825 if (v->flags & VM_MAP) 2826 seq_puts(m, " vmap"); 2827 2828 if (v->flags & VM_USERMAP) 2829 seq_puts(m, " user"); 2830 2831 if (is_vmalloc_addr(v->pages)) 2832 seq_puts(m, " vpages"); 2833 2834 show_numa_info(m, v); 2835 seq_putc(m, '\n'); 2836 return 0; 2837 } 2838 2839 static const struct seq_operations vmalloc_op = { 2840 .start = s_start, 2841 .next = s_next, 2842 .stop = s_stop, 2843 .show = s_show, 2844 }; 2845 2846 static int __init proc_vmalloc_init(void) 2847 { 2848 if (IS_ENABLED(CONFIG_NUMA)) 2849 proc_create_seq_private("vmallocinfo", 0400, NULL, 2850 &vmalloc_op, 2851 nr_node_ids * sizeof(unsigned int), NULL); 2852 else 2853 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 2854 return 0; 2855 } 2856 module_init(proc_vmalloc_init); 2857 2858 #endif 2859