1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 #include <linux/pgtable.h> 40 #include <linux/uaccess.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #include "internal.h" 47 #include "pgalloc-track.h" 48 49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 51 52 static int __init set_nohugeiomap(char *str) 53 { 54 ioremap_max_page_shift = PAGE_SHIFT; 55 return 0; 56 } 57 early_param("nohugeiomap", set_nohugeiomap); 58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 60 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 61 62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 63 static bool __ro_after_init vmap_allow_huge = true; 64 65 static int __init set_nohugevmalloc(char *str) 66 { 67 vmap_allow_huge = false; 68 return 0; 69 } 70 early_param("nohugevmalloc", set_nohugevmalloc); 71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 72 static const bool vmap_allow_huge = false; 73 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 74 75 bool is_vmalloc_addr(const void *x) 76 { 77 unsigned long addr = (unsigned long)kasan_reset_tag(x); 78 79 return addr >= VMALLOC_START && addr < VMALLOC_END; 80 } 81 EXPORT_SYMBOL(is_vmalloc_addr); 82 83 struct vfree_deferred { 84 struct llist_head list; 85 struct work_struct wq; 86 }; 87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 88 89 static void __vunmap(const void *, int); 90 91 static void free_work(struct work_struct *w) 92 { 93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 94 struct llist_node *t, *llnode; 95 96 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 97 __vunmap((void *)llnode, 1); 98 } 99 100 /*** Page table manipulation functions ***/ 101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 102 phys_addr_t phys_addr, pgprot_t prot, 103 unsigned int max_page_shift, pgtbl_mod_mask *mask) 104 { 105 pte_t *pte; 106 u64 pfn; 107 unsigned long size = PAGE_SIZE; 108 109 pfn = phys_addr >> PAGE_SHIFT; 110 pte = pte_alloc_kernel_track(pmd, addr, mask); 111 if (!pte) 112 return -ENOMEM; 113 do { 114 BUG_ON(!pte_none(*pte)); 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int ioremap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 return err; 324 } 325 326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 327 pgtbl_mod_mask *mask) 328 { 329 pte_t *pte; 330 331 pte = pte_offset_kernel(pmd, addr); 332 do { 333 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 334 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 335 } while (pte++, addr += PAGE_SIZE, addr != end); 336 *mask |= PGTBL_PTE_MODIFIED; 337 } 338 339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 340 pgtbl_mod_mask *mask) 341 { 342 pmd_t *pmd; 343 unsigned long next; 344 int cleared; 345 346 pmd = pmd_offset(pud, addr); 347 do { 348 next = pmd_addr_end(addr, end); 349 350 cleared = pmd_clear_huge(pmd); 351 if (cleared || pmd_bad(*pmd)) 352 *mask |= PGTBL_PMD_MODIFIED; 353 354 if (cleared) 355 continue; 356 if (pmd_none_or_clear_bad(pmd)) 357 continue; 358 vunmap_pte_range(pmd, addr, next, mask); 359 360 cond_resched(); 361 } while (pmd++, addr = next, addr != end); 362 } 363 364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 365 pgtbl_mod_mask *mask) 366 { 367 pud_t *pud; 368 unsigned long next; 369 int cleared; 370 371 pud = pud_offset(p4d, addr); 372 do { 373 next = pud_addr_end(addr, end); 374 375 cleared = pud_clear_huge(pud); 376 if (cleared || pud_bad(*pud)) 377 *mask |= PGTBL_PUD_MODIFIED; 378 379 if (cleared) 380 continue; 381 if (pud_none_or_clear_bad(pud)) 382 continue; 383 vunmap_pmd_range(pud, addr, next, mask); 384 } while (pud++, addr = next, addr != end); 385 } 386 387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 388 pgtbl_mod_mask *mask) 389 { 390 p4d_t *p4d; 391 unsigned long next; 392 393 p4d = p4d_offset(pgd, addr); 394 do { 395 next = p4d_addr_end(addr, end); 396 397 p4d_clear_huge(p4d); 398 if (p4d_bad(*p4d)) 399 *mask |= PGTBL_P4D_MODIFIED; 400 401 if (p4d_none_or_clear_bad(p4d)) 402 continue; 403 vunmap_pud_range(p4d, addr, next, mask); 404 } while (p4d++, addr = next, addr != end); 405 } 406 407 /* 408 * vunmap_range_noflush is similar to vunmap_range, but does not 409 * flush caches or TLBs. 410 * 411 * The caller is responsible for calling flush_cache_vmap() before calling 412 * this function, and flush_tlb_kernel_range after it has returned 413 * successfully (and before the addresses are expected to cause a page fault 414 * or be re-mapped for something else, if TLB flushes are being delayed or 415 * coalesced). 416 * 417 * This is an internal function only. Do not use outside mm/. 418 */ 419 void vunmap_range_noflush(unsigned long start, unsigned long end) 420 { 421 unsigned long next; 422 pgd_t *pgd; 423 unsigned long addr = start; 424 pgtbl_mod_mask mask = 0; 425 426 BUG_ON(addr >= end); 427 pgd = pgd_offset_k(addr); 428 do { 429 next = pgd_addr_end(addr, end); 430 if (pgd_bad(*pgd)) 431 mask |= PGTBL_PGD_MODIFIED; 432 if (pgd_none_or_clear_bad(pgd)) 433 continue; 434 vunmap_p4d_range(pgd, addr, next, &mask); 435 } while (pgd++, addr = next, addr != end); 436 437 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 438 arch_sync_kernel_mappings(start, end); 439 } 440 441 /** 442 * vunmap_range - unmap kernel virtual addresses 443 * @addr: start of the VM area to unmap 444 * @end: end of the VM area to unmap (non-inclusive) 445 * 446 * Clears any present PTEs in the virtual address range, flushes TLBs and 447 * caches. Any subsequent access to the address before it has been re-mapped 448 * is a kernel bug. 449 */ 450 void vunmap_range(unsigned long addr, unsigned long end) 451 { 452 flush_cache_vunmap(addr, end); 453 vunmap_range_noflush(addr, end); 454 flush_tlb_kernel_range(addr, end); 455 } 456 457 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 458 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 459 pgtbl_mod_mask *mask) 460 { 461 pte_t *pte; 462 463 /* 464 * nr is a running index into the array which helps higher level 465 * callers keep track of where we're up to. 466 */ 467 468 pte = pte_alloc_kernel_track(pmd, addr, mask); 469 if (!pte) 470 return -ENOMEM; 471 do { 472 struct page *page = pages[*nr]; 473 474 if (WARN_ON(!pte_none(*pte))) 475 return -EBUSY; 476 if (WARN_ON(!page)) 477 return -ENOMEM; 478 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 479 return -EINVAL; 480 481 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 482 (*nr)++; 483 } while (pte++, addr += PAGE_SIZE, addr != end); 484 *mask |= PGTBL_PTE_MODIFIED; 485 return 0; 486 } 487 488 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 489 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 490 pgtbl_mod_mask *mask) 491 { 492 pmd_t *pmd; 493 unsigned long next; 494 495 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 496 if (!pmd) 497 return -ENOMEM; 498 do { 499 next = pmd_addr_end(addr, end); 500 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 501 return -ENOMEM; 502 } while (pmd++, addr = next, addr != end); 503 return 0; 504 } 505 506 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 507 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 508 pgtbl_mod_mask *mask) 509 { 510 pud_t *pud; 511 unsigned long next; 512 513 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 514 if (!pud) 515 return -ENOMEM; 516 do { 517 next = pud_addr_end(addr, end); 518 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 519 return -ENOMEM; 520 } while (pud++, addr = next, addr != end); 521 return 0; 522 } 523 524 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 525 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 526 pgtbl_mod_mask *mask) 527 { 528 p4d_t *p4d; 529 unsigned long next; 530 531 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 532 if (!p4d) 533 return -ENOMEM; 534 do { 535 next = p4d_addr_end(addr, end); 536 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 537 return -ENOMEM; 538 } while (p4d++, addr = next, addr != end); 539 return 0; 540 } 541 542 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 543 pgprot_t prot, struct page **pages) 544 { 545 unsigned long start = addr; 546 pgd_t *pgd; 547 unsigned long next; 548 int err = 0; 549 int nr = 0; 550 pgtbl_mod_mask mask = 0; 551 552 BUG_ON(addr >= end); 553 pgd = pgd_offset_k(addr); 554 do { 555 next = pgd_addr_end(addr, end); 556 if (pgd_bad(*pgd)) 557 mask |= PGTBL_PGD_MODIFIED; 558 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 559 if (err) 560 return err; 561 } while (pgd++, addr = next, addr != end); 562 563 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 564 arch_sync_kernel_mappings(start, end); 565 566 return 0; 567 } 568 569 /* 570 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 571 * flush caches. 572 * 573 * The caller is responsible for calling flush_cache_vmap() after this 574 * function returns successfully and before the addresses are accessed. 575 * 576 * This is an internal function only. Do not use outside mm/. 577 */ 578 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 579 pgprot_t prot, struct page **pages, unsigned int page_shift) 580 { 581 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 582 583 WARN_ON(page_shift < PAGE_SHIFT); 584 585 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 586 page_shift == PAGE_SHIFT) 587 return vmap_small_pages_range_noflush(addr, end, prot, pages); 588 589 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 590 int err; 591 592 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 593 __pa(page_address(pages[i])), prot, 594 page_shift); 595 if (err) 596 return err; 597 598 addr += 1UL << page_shift; 599 } 600 601 return 0; 602 } 603 604 /** 605 * vmap_pages_range - map pages to a kernel virtual address 606 * @addr: start of the VM area to map 607 * @end: end of the VM area to map (non-inclusive) 608 * @prot: page protection flags to use 609 * @pages: pages to map (always PAGE_SIZE pages) 610 * @page_shift: maximum shift that the pages may be mapped with, @pages must 611 * be aligned and contiguous up to at least this shift. 612 * 613 * RETURNS: 614 * 0 on success, -errno on failure. 615 */ 616 static int vmap_pages_range(unsigned long addr, unsigned long end, 617 pgprot_t prot, struct page **pages, unsigned int page_shift) 618 { 619 int err; 620 621 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 622 flush_cache_vmap(addr, end); 623 return err; 624 } 625 626 int is_vmalloc_or_module_addr(const void *x) 627 { 628 /* 629 * ARM, x86-64 and sparc64 put modules in a special place, 630 * and fall back on vmalloc() if that fails. Others 631 * just put it in the vmalloc space. 632 */ 633 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 634 unsigned long addr = (unsigned long)kasan_reset_tag(x); 635 if (addr >= MODULES_VADDR && addr < MODULES_END) 636 return 1; 637 #endif 638 return is_vmalloc_addr(x); 639 } 640 641 /* 642 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 643 * return the tail page that corresponds to the base page address, which 644 * matches small vmap mappings. 645 */ 646 struct page *vmalloc_to_page(const void *vmalloc_addr) 647 { 648 unsigned long addr = (unsigned long) vmalloc_addr; 649 struct page *page = NULL; 650 pgd_t *pgd = pgd_offset_k(addr); 651 p4d_t *p4d; 652 pud_t *pud; 653 pmd_t *pmd; 654 pte_t *ptep, pte; 655 656 /* 657 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 658 * architectures that do not vmalloc module space 659 */ 660 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 661 662 if (pgd_none(*pgd)) 663 return NULL; 664 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 665 return NULL; /* XXX: no allowance for huge pgd */ 666 if (WARN_ON_ONCE(pgd_bad(*pgd))) 667 return NULL; 668 669 p4d = p4d_offset(pgd, addr); 670 if (p4d_none(*p4d)) 671 return NULL; 672 if (p4d_leaf(*p4d)) 673 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 674 if (WARN_ON_ONCE(p4d_bad(*p4d))) 675 return NULL; 676 677 pud = pud_offset(p4d, addr); 678 if (pud_none(*pud)) 679 return NULL; 680 if (pud_leaf(*pud)) 681 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 682 if (WARN_ON_ONCE(pud_bad(*pud))) 683 return NULL; 684 685 pmd = pmd_offset(pud, addr); 686 if (pmd_none(*pmd)) 687 return NULL; 688 if (pmd_leaf(*pmd)) 689 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 690 if (WARN_ON_ONCE(pmd_bad(*pmd))) 691 return NULL; 692 693 ptep = pte_offset_map(pmd, addr); 694 pte = *ptep; 695 if (pte_present(pte)) 696 page = pte_page(pte); 697 pte_unmap(ptep); 698 699 return page; 700 } 701 EXPORT_SYMBOL(vmalloc_to_page); 702 703 /* 704 * Map a vmalloc()-space virtual address to the physical page frame number. 705 */ 706 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 707 { 708 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 709 } 710 EXPORT_SYMBOL(vmalloc_to_pfn); 711 712 713 /*** Global kva allocator ***/ 714 715 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 716 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 717 718 719 static DEFINE_SPINLOCK(vmap_area_lock); 720 static DEFINE_SPINLOCK(free_vmap_area_lock); 721 /* Export for kexec only */ 722 LIST_HEAD(vmap_area_list); 723 static struct rb_root vmap_area_root = RB_ROOT; 724 static bool vmap_initialized __read_mostly; 725 726 static struct rb_root purge_vmap_area_root = RB_ROOT; 727 static LIST_HEAD(purge_vmap_area_list); 728 static DEFINE_SPINLOCK(purge_vmap_area_lock); 729 730 /* 731 * This kmem_cache is used for vmap_area objects. Instead of 732 * allocating from slab we reuse an object from this cache to 733 * make things faster. Especially in "no edge" splitting of 734 * free block. 735 */ 736 static struct kmem_cache *vmap_area_cachep; 737 738 /* 739 * This linked list is used in pair with free_vmap_area_root. 740 * It gives O(1) access to prev/next to perform fast coalescing. 741 */ 742 static LIST_HEAD(free_vmap_area_list); 743 744 /* 745 * This augment red-black tree represents the free vmap space. 746 * All vmap_area objects in this tree are sorted by va->va_start 747 * address. It is used for allocation and merging when a vmap 748 * object is released. 749 * 750 * Each vmap_area node contains a maximum available free block 751 * of its sub-tree, right or left. Therefore it is possible to 752 * find a lowest match of free area. 753 */ 754 static struct rb_root free_vmap_area_root = RB_ROOT; 755 756 /* 757 * Preload a CPU with one object for "no edge" split case. The 758 * aim is to get rid of allocations from the atomic context, thus 759 * to use more permissive allocation masks. 760 */ 761 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 762 763 static __always_inline unsigned long 764 va_size(struct vmap_area *va) 765 { 766 return (va->va_end - va->va_start); 767 } 768 769 static __always_inline unsigned long 770 get_subtree_max_size(struct rb_node *node) 771 { 772 struct vmap_area *va; 773 774 va = rb_entry_safe(node, struct vmap_area, rb_node); 775 return va ? va->subtree_max_size : 0; 776 } 777 778 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 779 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 780 781 static void purge_vmap_area_lazy(void); 782 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 783 static void drain_vmap_area_work(struct work_struct *work); 784 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 785 786 static atomic_long_t nr_vmalloc_pages; 787 788 unsigned long vmalloc_nr_pages(void) 789 { 790 return atomic_long_read(&nr_vmalloc_pages); 791 } 792 793 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 794 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 795 { 796 struct vmap_area *va = NULL; 797 struct rb_node *n = vmap_area_root.rb_node; 798 799 addr = (unsigned long)kasan_reset_tag((void *)addr); 800 801 while (n) { 802 struct vmap_area *tmp; 803 804 tmp = rb_entry(n, struct vmap_area, rb_node); 805 if (tmp->va_end > addr) { 806 va = tmp; 807 if (tmp->va_start <= addr) 808 break; 809 810 n = n->rb_left; 811 } else 812 n = n->rb_right; 813 } 814 815 return va; 816 } 817 818 static struct vmap_area *__find_vmap_area(unsigned long addr) 819 { 820 struct rb_node *n = vmap_area_root.rb_node; 821 822 addr = (unsigned long)kasan_reset_tag((void *)addr); 823 824 while (n) { 825 struct vmap_area *va; 826 827 va = rb_entry(n, struct vmap_area, rb_node); 828 if (addr < va->va_start) 829 n = n->rb_left; 830 else if (addr >= va->va_end) 831 n = n->rb_right; 832 else 833 return va; 834 } 835 836 return NULL; 837 } 838 839 /* 840 * This function returns back addresses of parent node 841 * and its left or right link for further processing. 842 * 843 * Otherwise NULL is returned. In that case all further 844 * steps regarding inserting of conflicting overlap range 845 * have to be declined and actually considered as a bug. 846 */ 847 static __always_inline struct rb_node ** 848 find_va_links(struct vmap_area *va, 849 struct rb_root *root, struct rb_node *from, 850 struct rb_node **parent) 851 { 852 struct vmap_area *tmp_va; 853 struct rb_node **link; 854 855 if (root) { 856 link = &root->rb_node; 857 if (unlikely(!*link)) { 858 *parent = NULL; 859 return link; 860 } 861 } else { 862 link = &from; 863 } 864 865 /* 866 * Go to the bottom of the tree. When we hit the last point 867 * we end up with parent rb_node and correct direction, i name 868 * it link, where the new va->rb_node will be attached to. 869 */ 870 do { 871 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 872 873 /* 874 * During the traversal we also do some sanity check. 875 * Trigger the BUG() if there are sides(left/right) 876 * or full overlaps. 877 */ 878 if (va->va_end <= tmp_va->va_start) 879 link = &(*link)->rb_left; 880 else if (va->va_start >= tmp_va->va_end) 881 link = &(*link)->rb_right; 882 else { 883 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 884 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 885 886 return NULL; 887 } 888 } while (*link); 889 890 *parent = &tmp_va->rb_node; 891 return link; 892 } 893 894 static __always_inline struct list_head * 895 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 896 { 897 struct list_head *list; 898 899 if (unlikely(!parent)) 900 /* 901 * The red-black tree where we try to find VA neighbors 902 * before merging or inserting is empty, i.e. it means 903 * there is no free vmap space. Normally it does not 904 * happen but we handle this case anyway. 905 */ 906 return NULL; 907 908 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 909 return (&parent->rb_right == link ? list->next : list); 910 } 911 912 static __always_inline void 913 link_va(struct vmap_area *va, struct rb_root *root, 914 struct rb_node *parent, struct rb_node **link, struct list_head *head) 915 { 916 /* 917 * VA is still not in the list, but we can 918 * identify its future previous list_head node. 919 */ 920 if (likely(parent)) { 921 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 922 if (&parent->rb_right != link) 923 head = head->prev; 924 } 925 926 /* Insert to the rb-tree */ 927 rb_link_node(&va->rb_node, parent, link); 928 if (root == &free_vmap_area_root) { 929 /* 930 * Some explanation here. Just perform simple insertion 931 * to the tree. We do not set va->subtree_max_size to 932 * its current size before calling rb_insert_augmented(). 933 * It is because we populate the tree from the bottom 934 * to parent levels when the node _is_ in the tree. 935 * 936 * Therefore we set subtree_max_size to zero after insertion, 937 * to let __augment_tree_propagate_from() puts everything to 938 * the correct order later on. 939 */ 940 rb_insert_augmented(&va->rb_node, 941 root, &free_vmap_area_rb_augment_cb); 942 va->subtree_max_size = 0; 943 } else { 944 rb_insert_color(&va->rb_node, root); 945 } 946 947 /* Address-sort this list */ 948 list_add(&va->list, head); 949 } 950 951 static __always_inline void 952 unlink_va(struct vmap_area *va, struct rb_root *root) 953 { 954 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 955 return; 956 957 if (root == &free_vmap_area_root) 958 rb_erase_augmented(&va->rb_node, 959 root, &free_vmap_area_rb_augment_cb); 960 else 961 rb_erase(&va->rb_node, root); 962 963 list_del(&va->list); 964 RB_CLEAR_NODE(&va->rb_node); 965 } 966 967 #if DEBUG_AUGMENT_PROPAGATE_CHECK 968 /* 969 * Gets called when remove the node and rotate. 970 */ 971 static __always_inline unsigned long 972 compute_subtree_max_size(struct vmap_area *va) 973 { 974 return max3(va_size(va), 975 get_subtree_max_size(va->rb_node.rb_left), 976 get_subtree_max_size(va->rb_node.rb_right)); 977 } 978 979 static void 980 augment_tree_propagate_check(void) 981 { 982 struct vmap_area *va; 983 unsigned long computed_size; 984 985 list_for_each_entry(va, &free_vmap_area_list, list) { 986 computed_size = compute_subtree_max_size(va); 987 if (computed_size != va->subtree_max_size) 988 pr_emerg("tree is corrupted: %lu, %lu\n", 989 va_size(va), va->subtree_max_size); 990 } 991 } 992 #endif 993 994 /* 995 * This function populates subtree_max_size from bottom to upper 996 * levels starting from VA point. The propagation must be done 997 * when VA size is modified by changing its va_start/va_end. Or 998 * in case of newly inserting of VA to the tree. 999 * 1000 * It means that __augment_tree_propagate_from() must be called: 1001 * - After VA has been inserted to the tree(free path); 1002 * - After VA has been shrunk(allocation path); 1003 * - After VA has been increased(merging path). 1004 * 1005 * Please note that, it does not mean that upper parent nodes 1006 * and their subtree_max_size are recalculated all the time up 1007 * to the root node. 1008 * 1009 * 4--8 1010 * /\ 1011 * / \ 1012 * / \ 1013 * 2--2 8--8 1014 * 1015 * For example if we modify the node 4, shrinking it to 2, then 1016 * no any modification is required. If we shrink the node 2 to 1 1017 * its subtree_max_size is updated only, and set to 1. If we shrink 1018 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1019 * node becomes 4--6. 1020 */ 1021 static __always_inline void 1022 augment_tree_propagate_from(struct vmap_area *va) 1023 { 1024 /* 1025 * Populate the tree from bottom towards the root until 1026 * the calculated maximum available size of checked node 1027 * is equal to its current one. 1028 */ 1029 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1030 1031 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1032 augment_tree_propagate_check(); 1033 #endif 1034 } 1035 1036 static void 1037 insert_vmap_area(struct vmap_area *va, 1038 struct rb_root *root, struct list_head *head) 1039 { 1040 struct rb_node **link; 1041 struct rb_node *parent; 1042 1043 link = find_va_links(va, root, NULL, &parent); 1044 if (link) 1045 link_va(va, root, parent, link, head); 1046 } 1047 1048 static void 1049 insert_vmap_area_augment(struct vmap_area *va, 1050 struct rb_node *from, struct rb_root *root, 1051 struct list_head *head) 1052 { 1053 struct rb_node **link; 1054 struct rb_node *parent; 1055 1056 if (from) 1057 link = find_va_links(va, NULL, from, &parent); 1058 else 1059 link = find_va_links(va, root, NULL, &parent); 1060 1061 if (link) { 1062 link_va(va, root, parent, link, head); 1063 augment_tree_propagate_from(va); 1064 } 1065 } 1066 1067 /* 1068 * Merge de-allocated chunk of VA memory with previous 1069 * and next free blocks. If coalesce is not done a new 1070 * free area is inserted. If VA has been merged, it is 1071 * freed. 1072 * 1073 * Please note, it can return NULL in case of overlap 1074 * ranges, followed by WARN() report. Despite it is a 1075 * buggy behaviour, a system can be alive and keep 1076 * ongoing. 1077 */ 1078 static __always_inline struct vmap_area * 1079 merge_or_add_vmap_area(struct vmap_area *va, 1080 struct rb_root *root, struct list_head *head) 1081 { 1082 struct vmap_area *sibling; 1083 struct list_head *next; 1084 struct rb_node **link; 1085 struct rb_node *parent; 1086 bool merged = false; 1087 1088 /* 1089 * Find a place in the tree where VA potentially will be 1090 * inserted, unless it is merged with its sibling/siblings. 1091 */ 1092 link = find_va_links(va, root, NULL, &parent); 1093 if (!link) 1094 return NULL; 1095 1096 /* 1097 * Get next node of VA to check if merging can be done. 1098 */ 1099 next = get_va_next_sibling(parent, link); 1100 if (unlikely(next == NULL)) 1101 goto insert; 1102 1103 /* 1104 * start end 1105 * | | 1106 * |<------VA------>|<-----Next----->| 1107 * | | 1108 * start end 1109 */ 1110 if (next != head) { 1111 sibling = list_entry(next, struct vmap_area, list); 1112 if (sibling->va_start == va->va_end) { 1113 sibling->va_start = va->va_start; 1114 1115 /* Free vmap_area object. */ 1116 kmem_cache_free(vmap_area_cachep, va); 1117 1118 /* Point to the new merged area. */ 1119 va = sibling; 1120 merged = true; 1121 } 1122 } 1123 1124 /* 1125 * start end 1126 * | | 1127 * |<-----Prev----->|<------VA------>| 1128 * | | 1129 * start end 1130 */ 1131 if (next->prev != head) { 1132 sibling = list_entry(next->prev, struct vmap_area, list); 1133 if (sibling->va_end == va->va_start) { 1134 /* 1135 * If both neighbors are coalesced, it is important 1136 * to unlink the "next" node first, followed by merging 1137 * with "previous" one. Otherwise the tree might not be 1138 * fully populated if a sibling's augmented value is 1139 * "normalized" because of rotation operations. 1140 */ 1141 if (merged) 1142 unlink_va(va, root); 1143 1144 sibling->va_end = va->va_end; 1145 1146 /* Free vmap_area object. */ 1147 kmem_cache_free(vmap_area_cachep, va); 1148 1149 /* Point to the new merged area. */ 1150 va = sibling; 1151 merged = true; 1152 } 1153 } 1154 1155 insert: 1156 if (!merged) 1157 link_va(va, root, parent, link, head); 1158 1159 return va; 1160 } 1161 1162 static __always_inline struct vmap_area * 1163 merge_or_add_vmap_area_augment(struct vmap_area *va, 1164 struct rb_root *root, struct list_head *head) 1165 { 1166 va = merge_or_add_vmap_area(va, root, head); 1167 if (va) 1168 augment_tree_propagate_from(va); 1169 1170 return va; 1171 } 1172 1173 static __always_inline bool 1174 is_within_this_va(struct vmap_area *va, unsigned long size, 1175 unsigned long align, unsigned long vstart) 1176 { 1177 unsigned long nva_start_addr; 1178 1179 if (va->va_start > vstart) 1180 nva_start_addr = ALIGN(va->va_start, align); 1181 else 1182 nva_start_addr = ALIGN(vstart, align); 1183 1184 /* Can be overflowed due to big size or alignment. */ 1185 if (nva_start_addr + size < nva_start_addr || 1186 nva_start_addr < vstart) 1187 return false; 1188 1189 return (nva_start_addr + size <= va->va_end); 1190 } 1191 1192 /* 1193 * Find the first free block(lowest start address) in the tree, 1194 * that will accomplish the request corresponding to passing 1195 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1196 * a search length is adjusted to account for worst case alignment 1197 * overhead. 1198 */ 1199 static __always_inline struct vmap_area * 1200 find_vmap_lowest_match(unsigned long size, unsigned long align, 1201 unsigned long vstart, bool adjust_search_size) 1202 { 1203 struct vmap_area *va; 1204 struct rb_node *node; 1205 unsigned long length; 1206 1207 /* Start from the root. */ 1208 node = free_vmap_area_root.rb_node; 1209 1210 /* Adjust the search size for alignment overhead. */ 1211 length = adjust_search_size ? size + align - 1 : size; 1212 1213 while (node) { 1214 va = rb_entry(node, struct vmap_area, rb_node); 1215 1216 if (get_subtree_max_size(node->rb_left) >= length && 1217 vstart < va->va_start) { 1218 node = node->rb_left; 1219 } else { 1220 if (is_within_this_va(va, size, align, vstart)) 1221 return va; 1222 1223 /* 1224 * Does not make sense to go deeper towards the right 1225 * sub-tree if it does not have a free block that is 1226 * equal or bigger to the requested search length. 1227 */ 1228 if (get_subtree_max_size(node->rb_right) >= length) { 1229 node = node->rb_right; 1230 continue; 1231 } 1232 1233 /* 1234 * OK. We roll back and find the first right sub-tree, 1235 * that will satisfy the search criteria. It can happen 1236 * due to "vstart" restriction or an alignment overhead 1237 * that is bigger then PAGE_SIZE. 1238 */ 1239 while ((node = rb_parent(node))) { 1240 va = rb_entry(node, struct vmap_area, rb_node); 1241 if (is_within_this_va(va, size, align, vstart)) 1242 return va; 1243 1244 if (get_subtree_max_size(node->rb_right) >= length && 1245 vstart <= va->va_start) { 1246 /* 1247 * Shift the vstart forward. Please note, we update it with 1248 * parent's start address adding "1" because we do not want 1249 * to enter same sub-tree after it has already been checked 1250 * and no suitable free block found there. 1251 */ 1252 vstart = va->va_start + 1; 1253 node = node->rb_right; 1254 break; 1255 } 1256 } 1257 } 1258 } 1259 1260 return NULL; 1261 } 1262 1263 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1264 #include <linux/random.h> 1265 1266 static struct vmap_area * 1267 find_vmap_lowest_linear_match(unsigned long size, 1268 unsigned long align, unsigned long vstart) 1269 { 1270 struct vmap_area *va; 1271 1272 list_for_each_entry(va, &free_vmap_area_list, list) { 1273 if (!is_within_this_va(va, size, align, vstart)) 1274 continue; 1275 1276 return va; 1277 } 1278 1279 return NULL; 1280 } 1281 1282 static void 1283 find_vmap_lowest_match_check(unsigned long size, unsigned long align) 1284 { 1285 struct vmap_area *va_1, *va_2; 1286 unsigned long vstart; 1287 unsigned int rnd; 1288 1289 get_random_bytes(&rnd, sizeof(rnd)); 1290 vstart = VMALLOC_START + rnd; 1291 1292 va_1 = find_vmap_lowest_match(size, align, vstart, false); 1293 va_2 = find_vmap_lowest_linear_match(size, align, vstart); 1294 1295 if (va_1 != va_2) 1296 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1297 va_1, va_2, vstart); 1298 } 1299 #endif 1300 1301 enum fit_type { 1302 NOTHING_FIT = 0, 1303 FL_FIT_TYPE = 1, /* full fit */ 1304 LE_FIT_TYPE = 2, /* left edge fit */ 1305 RE_FIT_TYPE = 3, /* right edge fit */ 1306 NE_FIT_TYPE = 4 /* no edge fit */ 1307 }; 1308 1309 static __always_inline enum fit_type 1310 classify_va_fit_type(struct vmap_area *va, 1311 unsigned long nva_start_addr, unsigned long size) 1312 { 1313 enum fit_type type; 1314 1315 /* Check if it is within VA. */ 1316 if (nva_start_addr < va->va_start || 1317 nva_start_addr + size > va->va_end) 1318 return NOTHING_FIT; 1319 1320 /* Now classify. */ 1321 if (va->va_start == nva_start_addr) { 1322 if (va->va_end == nva_start_addr + size) 1323 type = FL_FIT_TYPE; 1324 else 1325 type = LE_FIT_TYPE; 1326 } else if (va->va_end == nva_start_addr + size) { 1327 type = RE_FIT_TYPE; 1328 } else { 1329 type = NE_FIT_TYPE; 1330 } 1331 1332 return type; 1333 } 1334 1335 static __always_inline int 1336 adjust_va_to_fit_type(struct vmap_area *va, 1337 unsigned long nva_start_addr, unsigned long size) 1338 { 1339 struct vmap_area *lva = NULL; 1340 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1341 1342 if (type == FL_FIT_TYPE) { 1343 /* 1344 * No need to split VA, it fully fits. 1345 * 1346 * | | 1347 * V NVA V 1348 * |---------------| 1349 */ 1350 unlink_va(va, &free_vmap_area_root); 1351 kmem_cache_free(vmap_area_cachep, va); 1352 } else if (type == LE_FIT_TYPE) { 1353 /* 1354 * Split left edge of fit VA. 1355 * 1356 * | | 1357 * V NVA V R 1358 * |-------|-------| 1359 */ 1360 va->va_start += size; 1361 } else if (type == RE_FIT_TYPE) { 1362 /* 1363 * Split right edge of fit VA. 1364 * 1365 * | | 1366 * L V NVA V 1367 * |-------|-------| 1368 */ 1369 va->va_end = nva_start_addr; 1370 } else if (type == NE_FIT_TYPE) { 1371 /* 1372 * Split no edge of fit VA. 1373 * 1374 * | | 1375 * L V NVA V R 1376 * |---|-------|---| 1377 */ 1378 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1379 if (unlikely(!lva)) { 1380 /* 1381 * For percpu allocator we do not do any pre-allocation 1382 * and leave it as it is. The reason is it most likely 1383 * never ends up with NE_FIT_TYPE splitting. In case of 1384 * percpu allocations offsets and sizes are aligned to 1385 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1386 * are its main fitting cases. 1387 * 1388 * There are a few exceptions though, as an example it is 1389 * a first allocation (early boot up) when we have "one" 1390 * big free space that has to be split. 1391 * 1392 * Also we can hit this path in case of regular "vmap" 1393 * allocations, if "this" current CPU was not preloaded. 1394 * See the comment in alloc_vmap_area() why. If so, then 1395 * GFP_NOWAIT is used instead to get an extra object for 1396 * split purpose. That is rare and most time does not 1397 * occur. 1398 * 1399 * What happens if an allocation gets failed. Basically, 1400 * an "overflow" path is triggered to purge lazily freed 1401 * areas to free some memory, then, the "retry" path is 1402 * triggered to repeat one more time. See more details 1403 * in alloc_vmap_area() function. 1404 */ 1405 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1406 if (!lva) 1407 return -1; 1408 } 1409 1410 /* 1411 * Build the remainder. 1412 */ 1413 lva->va_start = va->va_start; 1414 lva->va_end = nva_start_addr; 1415 1416 /* 1417 * Shrink this VA to remaining size. 1418 */ 1419 va->va_start = nva_start_addr + size; 1420 } else { 1421 return -1; 1422 } 1423 1424 if (type != FL_FIT_TYPE) { 1425 augment_tree_propagate_from(va); 1426 1427 if (lva) /* type == NE_FIT_TYPE */ 1428 insert_vmap_area_augment(lva, &va->rb_node, 1429 &free_vmap_area_root, &free_vmap_area_list); 1430 } 1431 1432 return 0; 1433 } 1434 1435 /* 1436 * Returns a start address of the newly allocated area, if success. 1437 * Otherwise a vend is returned that indicates failure. 1438 */ 1439 static __always_inline unsigned long 1440 __alloc_vmap_area(unsigned long size, unsigned long align, 1441 unsigned long vstart, unsigned long vend) 1442 { 1443 bool adjust_search_size = true; 1444 unsigned long nva_start_addr; 1445 struct vmap_area *va; 1446 int ret; 1447 1448 /* 1449 * Do not adjust when: 1450 * a) align <= PAGE_SIZE, because it does not make any sense. 1451 * All blocks(their start addresses) are at least PAGE_SIZE 1452 * aligned anyway; 1453 * b) a short range where a requested size corresponds to exactly 1454 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1455 * With adjusted search length an allocation would not succeed. 1456 */ 1457 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1458 adjust_search_size = false; 1459 1460 va = find_vmap_lowest_match(size, align, vstart, adjust_search_size); 1461 if (unlikely(!va)) 1462 return vend; 1463 1464 if (va->va_start > vstart) 1465 nva_start_addr = ALIGN(va->va_start, align); 1466 else 1467 nva_start_addr = ALIGN(vstart, align); 1468 1469 /* Check the "vend" restriction. */ 1470 if (nva_start_addr + size > vend) 1471 return vend; 1472 1473 /* Update the free vmap_area. */ 1474 ret = adjust_va_to_fit_type(va, nva_start_addr, size); 1475 if (WARN_ON_ONCE(ret)) 1476 return vend; 1477 1478 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1479 find_vmap_lowest_match_check(size, align); 1480 #endif 1481 1482 return nva_start_addr; 1483 } 1484 1485 /* 1486 * Free a region of KVA allocated by alloc_vmap_area 1487 */ 1488 static void free_vmap_area(struct vmap_area *va) 1489 { 1490 /* 1491 * Remove from the busy tree/list. 1492 */ 1493 spin_lock(&vmap_area_lock); 1494 unlink_va(va, &vmap_area_root); 1495 spin_unlock(&vmap_area_lock); 1496 1497 /* 1498 * Insert/Merge it back to the free tree/list. 1499 */ 1500 spin_lock(&free_vmap_area_lock); 1501 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1502 spin_unlock(&free_vmap_area_lock); 1503 } 1504 1505 static inline void 1506 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1507 { 1508 struct vmap_area *va = NULL; 1509 1510 /* 1511 * Preload this CPU with one extra vmap_area object. It is used 1512 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1513 * a CPU that does an allocation is preloaded. 1514 * 1515 * We do it in non-atomic context, thus it allows us to use more 1516 * permissive allocation masks to be more stable under low memory 1517 * condition and high memory pressure. 1518 */ 1519 if (!this_cpu_read(ne_fit_preload_node)) 1520 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1521 1522 spin_lock(lock); 1523 1524 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1525 kmem_cache_free(vmap_area_cachep, va); 1526 } 1527 1528 /* 1529 * Allocate a region of KVA of the specified size and alignment, within the 1530 * vstart and vend. 1531 */ 1532 static struct vmap_area *alloc_vmap_area(unsigned long size, 1533 unsigned long align, 1534 unsigned long vstart, unsigned long vend, 1535 int node, gfp_t gfp_mask) 1536 { 1537 struct vmap_area *va; 1538 unsigned long freed; 1539 unsigned long addr; 1540 int purged = 0; 1541 int ret; 1542 1543 BUG_ON(!size); 1544 BUG_ON(offset_in_page(size)); 1545 BUG_ON(!is_power_of_2(align)); 1546 1547 if (unlikely(!vmap_initialized)) 1548 return ERR_PTR(-EBUSY); 1549 1550 might_sleep(); 1551 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1552 1553 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1554 if (unlikely(!va)) 1555 return ERR_PTR(-ENOMEM); 1556 1557 /* 1558 * Only scan the relevant parts containing pointers to other objects 1559 * to avoid false negatives. 1560 */ 1561 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1562 1563 retry: 1564 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1565 addr = __alloc_vmap_area(size, align, vstart, vend); 1566 spin_unlock(&free_vmap_area_lock); 1567 1568 /* 1569 * If an allocation fails, the "vend" address is 1570 * returned. Therefore trigger the overflow path. 1571 */ 1572 if (unlikely(addr == vend)) 1573 goto overflow; 1574 1575 va->va_start = addr; 1576 va->va_end = addr + size; 1577 va->vm = NULL; 1578 1579 spin_lock(&vmap_area_lock); 1580 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1581 spin_unlock(&vmap_area_lock); 1582 1583 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1584 BUG_ON(va->va_start < vstart); 1585 BUG_ON(va->va_end > vend); 1586 1587 ret = kasan_populate_vmalloc(addr, size); 1588 if (ret) { 1589 free_vmap_area(va); 1590 return ERR_PTR(ret); 1591 } 1592 1593 return va; 1594 1595 overflow: 1596 if (!purged) { 1597 purge_vmap_area_lazy(); 1598 purged = 1; 1599 goto retry; 1600 } 1601 1602 freed = 0; 1603 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1604 1605 if (freed > 0) { 1606 purged = 0; 1607 goto retry; 1608 } 1609 1610 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1611 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1612 size); 1613 1614 kmem_cache_free(vmap_area_cachep, va); 1615 return ERR_PTR(-EBUSY); 1616 } 1617 1618 int register_vmap_purge_notifier(struct notifier_block *nb) 1619 { 1620 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1621 } 1622 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1623 1624 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1625 { 1626 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1627 } 1628 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1629 1630 /* 1631 * lazy_max_pages is the maximum amount of virtual address space we gather up 1632 * before attempting to purge with a TLB flush. 1633 * 1634 * There is a tradeoff here: a larger number will cover more kernel page tables 1635 * and take slightly longer to purge, but it will linearly reduce the number of 1636 * global TLB flushes that must be performed. It would seem natural to scale 1637 * this number up linearly with the number of CPUs (because vmapping activity 1638 * could also scale linearly with the number of CPUs), however it is likely 1639 * that in practice, workloads might be constrained in other ways that mean 1640 * vmap activity will not scale linearly with CPUs. Also, I want to be 1641 * conservative and not introduce a big latency on huge systems, so go with 1642 * a less aggressive log scale. It will still be an improvement over the old 1643 * code, and it will be simple to change the scale factor if we find that it 1644 * becomes a problem on bigger systems. 1645 */ 1646 static unsigned long lazy_max_pages(void) 1647 { 1648 unsigned int log; 1649 1650 log = fls(num_online_cpus()); 1651 1652 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1653 } 1654 1655 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1656 1657 /* 1658 * Serialize vmap purging. There is no actual critical section protected 1659 * by this lock, but we want to avoid concurrent calls for performance 1660 * reasons and to make the pcpu_get_vm_areas more deterministic. 1661 */ 1662 static DEFINE_MUTEX(vmap_purge_lock); 1663 1664 /* for per-CPU blocks */ 1665 static void purge_fragmented_blocks_allcpus(void); 1666 1667 /* 1668 * Purges all lazily-freed vmap areas. 1669 */ 1670 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1671 { 1672 unsigned long resched_threshold; 1673 struct list_head local_purge_list; 1674 struct vmap_area *va, *n_va; 1675 1676 lockdep_assert_held(&vmap_purge_lock); 1677 1678 spin_lock(&purge_vmap_area_lock); 1679 purge_vmap_area_root = RB_ROOT; 1680 list_replace_init(&purge_vmap_area_list, &local_purge_list); 1681 spin_unlock(&purge_vmap_area_lock); 1682 1683 if (unlikely(list_empty(&local_purge_list))) 1684 return false; 1685 1686 start = min(start, 1687 list_first_entry(&local_purge_list, 1688 struct vmap_area, list)->va_start); 1689 1690 end = max(end, 1691 list_last_entry(&local_purge_list, 1692 struct vmap_area, list)->va_end); 1693 1694 flush_tlb_kernel_range(start, end); 1695 resched_threshold = lazy_max_pages() << 1; 1696 1697 spin_lock(&free_vmap_area_lock); 1698 list_for_each_entry_safe(va, n_va, &local_purge_list, list) { 1699 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1700 unsigned long orig_start = va->va_start; 1701 unsigned long orig_end = va->va_end; 1702 1703 /* 1704 * Finally insert or merge lazily-freed area. It is 1705 * detached and there is no need to "unlink" it from 1706 * anything. 1707 */ 1708 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1709 &free_vmap_area_list); 1710 1711 if (!va) 1712 continue; 1713 1714 if (is_vmalloc_or_module_addr((void *)orig_start)) 1715 kasan_release_vmalloc(orig_start, orig_end, 1716 va->va_start, va->va_end); 1717 1718 atomic_long_sub(nr, &vmap_lazy_nr); 1719 1720 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1721 cond_resched_lock(&free_vmap_area_lock); 1722 } 1723 spin_unlock(&free_vmap_area_lock); 1724 return true; 1725 } 1726 1727 /* 1728 * Kick off a purge of the outstanding lazy areas. 1729 */ 1730 static void purge_vmap_area_lazy(void) 1731 { 1732 mutex_lock(&vmap_purge_lock); 1733 purge_fragmented_blocks_allcpus(); 1734 __purge_vmap_area_lazy(ULONG_MAX, 0); 1735 mutex_unlock(&vmap_purge_lock); 1736 } 1737 1738 static void drain_vmap_area_work(struct work_struct *work) 1739 { 1740 unsigned long nr_lazy; 1741 1742 do { 1743 mutex_lock(&vmap_purge_lock); 1744 __purge_vmap_area_lazy(ULONG_MAX, 0); 1745 mutex_unlock(&vmap_purge_lock); 1746 1747 /* Recheck if further work is required. */ 1748 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1749 } while (nr_lazy > lazy_max_pages()); 1750 } 1751 1752 /* 1753 * Free a vmap area, caller ensuring that the area has been unmapped 1754 * and flush_cache_vunmap had been called for the correct range 1755 * previously. 1756 */ 1757 static void free_vmap_area_noflush(struct vmap_area *va) 1758 { 1759 unsigned long nr_lazy; 1760 1761 spin_lock(&vmap_area_lock); 1762 unlink_va(va, &vmap_area_root); 1763 spin_unlock(&vmap_area_lock); 1764 1765 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1766 PAGE_SHIFT, &vmap_lazy_nr); 1767 1768 /* 1769 * Merge or place it to the purge tree/list. 1770 */ 1771 spin_lock(&purge_vmap_area_lock); 1772 merge_or_add_vmap_area(va, 1773 &purge_vmap_area_root, &purge_vmap_area_list); 1774 spin_unlock(&purge_vmap_area_lock); 1775 1776 /* After this point, we may free va at any time */ 1777 if (unlikely(nr_lazy > lazy_max_pages())) 1778 schedule_work(&drain_vmap_work); 1779 } 1780 1781 /* 1782 * Free and unmap a vmap area 1783 */ 1784 static void free_unmap_vmap_area(struct vmap_area *va) 1785 { 1786 flush_cache_vunmap(va->va_start, va->va_end); 1787 vunmap_range_noflush(va->va_start, va->va_end); 1788 if (debug_pagealloc_enabled_static()) 1789 flush_tlb_kernel_range(va->va_start, va->va_end); 1790 1791 free_vmap_area_noflush(va); 1792 } 1793 1794 struct vmap_area *find_vmap_area(unsigned long addr) 1795 { 1796 struct vmap_area *va; 1797 1798 spin_lock(&vmap_area_lock); 1799 va = __find_vmap_area(addr); 1800 spin_unlock(&vmap_area_lock); 1801 1802 return va; 1803 } 1804 1805 /*** Per cpu kva allocator ***/ 1806 1807 /* 1808 * vmap space is limited especially on 32 bit architectures. Ensure there is 1809 * room for at least 16 percpu vmap blocks per CPU. 1810 */ 1811 /* 1812 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1813 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1814 * instead (we just need a rough idea) 1815 */ 1816 #if BITS_PER_LONG == 32 1817 #define VMALLOC_SPACE (128UL*1024*1024) 1818 #else 1819 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1820 #endif 1821 1822 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1823 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1824 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1825 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1826 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1827 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1828 #define VMAP_BBMAP_BITS \ 1829 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1830 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1831 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1832 1833 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1834 1835 struct vmap_block_queue { 1836 spinlock_t lock; 1837 struct list_head free; 1838 }; 1839 1840 struct vmap_block { 1841 spinlock_t lock; 1842 struct vmap_area *va; 1843 unsigned long free, dirty; 1844 unsigned long dirty_min, dirty_max; /*< dirty range */ 1845 struct list_head free_list; 1846 struct rcu_head rcu_head; 1847 struct list_head purge; 1848 }; 1849 1850 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1851 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1852 1853 /* 1854 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1855 * in the free path. Could get rid of this if we change the API to return a 1856 * "cookie" from alloc, to be passed to free. But no big deal yet. 1857 */ 1858 static DEFINE_XARRAY(vmap_blocks); 1859 1860 /* 1861 * We should probably have a fallback mechanism to allocate virtual memory 1862 * out of partially filled vmap blocks. However vmap block sizing should be 1863 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1864 * big problem. 1865 */ 1866 1867 static unsigned long addr_to_vb_idx(unsigned long addr) 1868 { 1869 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1870 addr /= VMAP_BLOCK_SIZE; 1871 return addr; 1872 } 1873 1874 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1875 { 1876 unsigned long addr; 1877 1878 addr = va_start + (pages_off << PAGE_SHIFT); 1879 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1880 return (void *)addr; 1881 } 1882 1883 /** 1884 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1885 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1886 * @order: how many 2^order pages should be occupied in newly allocated block 1887 * @gfp_mask: flags for the page level allocator 1888 * 1889 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1890 */ 1891 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1892 { 1893 struct vmap_block_queue *vbq; 1894 struct vmap_block *vb; 1895 struct vmap_area *va; 1896 unsigned long vb_idx; 1897 int node, err; 1898 void *vaddr; 1899 1900 node = numa_node_id(); 1901 1902 vb = kmalloc_node(sizeof(struct vmap_block), 1903 gfp_mask & GFP_RECLAIM_MASK, node); 1904 if (unlikely(!vb)) 1905 return ERR_PTR(-ENOMEM); 1906 1907 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1908 VMALLOC_START, VMALLOC_END, 1909 node, gfp_mask); 1910 if (IS_ERR(va)) { 1911 kfree(vb); 1912 return ERR_CAST(va); 1913 } 1914 1915 vaddr = vmap_block_vaddr(va->va_start, 0); 1916 spin_lock_init(&vb->lock); 1917 vb->va = va; 1918 /* At least something should be left free */ 1919 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1920 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1921 vb->dirty = 0; 1922 vb->dirty_min = VMAP_BBMAP_BITS; 1923 vb->dirty_max = 0; 1924 INIT_LIST_HEAD(&vb->free_list); 1925 1926 vb_idx = addr_to_vb_idx(va->va_start); 1927 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1928 if (err) { 1929 kfree(vb); 1930 free_vmap_area(va); 1931 return ERR_PTR(err); 1932 } 1933 1934 vbq = raw_cpu_ptr(&vmap_block_queue); 1935 spin_lock(&vbq->lock); 1936 list_add_tail_rcu(&vb->free_list, &vbq->free); 1937 spin_unlock(&vbq->lock); 1938 1939 return vaddr; 1940 } 1941 1942 static void free_vmap_block(struct vmap_block *vb) 1943 { 1944 struct vmap_block *tmp; 1945 1946 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 1947 BUG_ON(tmp != vb); 1948 1949 free_vmap_area_noflush(vb->va); 1950 kfree_rcu(vb, rcu_head); 1951 } 1952 1953 static void purge_fragmented_blocks(int cpu) 1954 { 1955 LIST_HEAD(purge); 1956 struct vmap_block *vb; 1957 struct vmap_block *n_vb; 1958 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1959 1960 rcu_read_lock(); 1961 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1962 1963 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1964 continue; 1965 1966 spin_lock(&vb->lock); 1967 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1968 vb->free = 0; /* prevent further allocs after releasing lock */ 1969 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1970 vb->dirty_min = 0; 1971 vb->dirty_max = VMAP_BBMAP_BITS; 1972 spin_lock(&vbq->lock); 1973 list_del_rcu(&vb->free_list); 1974 spin_unlock(&vbq->lock); 1975 spin_unlock(&vb->lock); 1976 list_add_tail(&vb->purge, &purge); 1977 } else 1978 spin_unlock(&vb->lock); 1979 } 1980 rcu_read_unlock(); 1981 1982 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1983 list_del(&vb->purge); 1984 free_vmap_block(vb); 1985 } 1986 } 1987 1988 static void purge_fragmented_blocks_allcpus(void) 1989 { 1990 int cpu; 1991 1992 for_each_possible_cpu(cpu) 1993 purge_fragmented_blocks(cpu); 1994 } 1995 1996 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1997 { 1998 struct vmap_block_queue *vbq; 1999 struct vmap_block *vb; 2000 void *vaddr = NULL; 2001 unsigned int order; 2002 2003 BUG_ON(offset_in_page(size)); 2004 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2005 if (WARN_ON(size == 0)) { 2006 /* 2007 * Allocating 0 bytes isn't what caller wants since 2008 * get_order(0) returns funny result. Just warn and terminate 2009 * early. 2010 */ 2011 return NULL; 2012 } 2013 order = get_order(size); 2014 2015 rcu_read_lock(); 2016 vbq = raw_cpu_ptr(&vmap_block_queue); 2017 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2018 unsigned long pages_off; 2019 2020 spin_lock(&vb->lock); 2021 if (vb->free < (1UL << order)) { 2022 spin_unlock(&vb->lock); 2023 continue; 2024 } 2025 2026 pages_off = VMAP_BBMAP_BITS - vb->free; 2027 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2028 vb->free -= 1UL << order; 2029 if (vb->free == 0) { 2030 spin_lock(&vbq->lock); 2031 list_del_rcu(&vb->free_list); 2032 spin_unlock(&vbq->lock); 2033 } 2034 2035 spin_unlock(&vb->lock); 2036 break; 2037 } 2038 2039 rcu_read_unlock(); 2040 2041 /* Allocate new block if nothing was found */ 2042 if (!vaddr) 2043 vaddr = new_vmap_block(order, gfp_mask); 2044 2045 return vaddr; 2046 } 2047 2048 static void vb_free(unsigned long addr, unsigned long size) 2049 { 2050 unsigned long offset; 2051 unsigned int order; 2052 struct vmap_block *vb; 2053 2054 BUG_ON(offset_in_page(size)); 2055 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2056 2057 flush_cache_vunmap(addr, addr + size); 2058 2059 order = get_order(size); 2060 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2061 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2062 2063 vunmap_range_noflush(addr, addr + size); 2064 2065 if (debug_pagealloc_enabled_static()) 2066 flush_tlb_kernel_range(addr, addr + size); 2067 2068 spin_lock(&vb->lock); 2069 2070 /* Expand dirty range */ 2071 vb->dirty_min = min(vb->dirty_min, offset); 2072 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2073 2074 vb->dirty += 1UL << order; 2075 if (vb->dirty == VMAP_BBMAP_BITS) { 2076 BUG_ON(vb->free); 2077 spin_unlock(&vb->lock); 2078 free_vmap_block(vb); 2079 } else 2080 spin_unlock(&vb->lock); 2081 } 2082 2083 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2084 { 2085 int cpu; 2086 2087 if (unlikely(!vmap_initialized)) 2088 return; 2089 2090 might_sleep(); 2091 2092 for_each_possible_cpu(cpu) { 2093 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2094 struct vmap_block *vb; 2095 2096 rcu_read_lock(); 2097 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2098 spin_lock(&vb->lock); 2099 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2100 unsigned long va_start = vb->va->va_start; 2101 unsigned long s, e; 2102 2103 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2104 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2105 2106 start = min(s, start); 2107 end = max(e, end); 2108 2109 flush = 1; 2110 } 2111 spin_unlock(&vb->lock); 2112 } 2113 rcu_read_unlock(); 2114 } 2115 2116 mutex_lock(&vmap_purge_lock); 2117 purge_fragmented_blocks_allcpus(); 2118 if (!__purge_vmap_area_lazy(start, end) && flush) 2119 flush_tlb_kernel_range(start, end); 2120 mutex_unlock(&vmap_purge_lock); 2121 } 2122 2123 /** 2124 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2125 * 2126 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2127 * to amortize TLB flushing overheads. What this means is that any page you 2128 * have now, may, in a former life, have been mapped into kernel virtual 2129 * address by the vmap layer and so there might be some CPUs with TLB entries 2130 * still referencing that page (additional to the regular 1:1 kernel mapping). 2131 * 2132 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2133 * be sure that none of the pages we have control over will have any aliases 2134 * from the vmap layer. 2135 */ 2136 void vm_unmap_aliases(void) 2137 { 2138 unsigned long start = ULONG_MAX, end = 0; 2139 int flush = 0; 2140 2141 _vm_unmap_aliases(start, end, flush); 2142 } 2143 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2144 2145 /** 2146 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2147 * @mem: the pointer returned by vm_map_ram 2148 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2149 */ 2150 void vm_unmap_ram(const void *mem, unsigned int count) 2151 { 2152 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2153 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2154 struct vmap_area *va; 2155 2156 might_sleep(); 2157 BUG_ON(!addr); 2158 BUG_ON(addr < VMALLOC_START); 2159 BUG_ON(addr > VMALLOC_END); 2160 BUG_ON(!PAGE_ALIGNED(addr)); 2161 2162 kasan_poison_vmalloc(mem, size); 2163 2164 if (likely(count <= VMAP_MAX_ALLOC)) { 2165 debug_check_no_locks_freed(mem, size); 2166 vb_free(addr, size); 2167 return; 2168 } 2169 2170 va = find_vmap_area(addr); 2171 BUG_ON(!va); 2172 debug_check_no_locks_freed((void *)va->va_start, 2173 (va->va_end - va->va_start)); 2174 free_unmap_vmap_area(va); 2175 } 2176 EXPORT_SYMBOL(vm_unmap_ram); 2177 2178 /** 2179 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2180 * @pages: an array of pointers to the pages to be mapped 2181 * @count: number of pages 2182 * @node: prefer to allocate data structures on this node 2183 * 2184 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2185 * faster than vmap so it's good. But if you mix long-life and short-life 2186 * objects with vm_map_ram(), it could consume lots of address space through 2187 * fragmentation (especially on a 32bit machine). You could see failures in 2188 * the end. Please use this function for short-lived objects. 2189 * 2190 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2191 */ 2192 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2193 { 2194 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2195 unsigned long addr; 2196 void *mem; 2197 2198 if (likely(count <= VMAP_MAX_ALLOC)) { 2199 mem = vb_alloc(size, GFP_KERNEL); 2200 if (IS_ERR(mem)) 2201 return NULL; 2202 addr = (unsigned long)mem; 2203 } else { 2204 struct vmap_area *va; 2205 va = alloc_vmap_area(size, PAGE_SIZE, 2206 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2207 if (IS_ERR(va)) 2208 return NULL; 2209 2210 addr = va->va_start; 2211 mem = (void *)addr; 2212 } 2213 2214 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2215 pages, PAGE_SHIFT) < 0) { 2216 vm_unmap_ram(mem, count); 2217 return NULL; 2218 } 2219 2220 /* 2221 * Mark the pages as accessible, now that they are mapped. 2222 * With hardware tag-based KASAN, marking is skipped for 2223 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2224 */ 2225 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2226 2227 return mem; 2228 } 2229 EXPORT_SYMBOL(vm_map_ram); 2230 2231 static struct vm_struct *vmlist __initdata; 2232 2233 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2234 { 2235 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2236 return vm->page_order; 2237 #else 2238 return 0; 2239 #endif 2240 } 2241 2242 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2243 { 2244 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2245 vm->page_order = order; 2246 #else 2247 BUG_ON(order != 0); 2248 #endif 2249 } 2250 2251 /** 2252 * vm_area_add_early - add vmap area early during boot 2253 * @vm: vm_struct to add 2254 * 2255 * This function is used to add fixed kernel vm area to vmlist before 2256 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2257 * should contain proper values and the other fields should be zero. 2258 * 2259 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2260 */ 2261 void __init vm_area_add_early(struct vm_struct *vm) 2262 { 2263 struct vm_struct *tmp, **p; 2264 2265 BUG_ON(vmap_initialized); 2266 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2267 if (tmp->addr >= vm->addr) { 2268 BUG_ON(tmp->addr < vm->addr + vm->size); 2269 break; 2270 } else 2271 BUG_ON(tmp->addr + tmp->size > vm->addr); 2272 } 2273 vm->next = *p; 2274 *p = vm; 2275 } 2276 2277 /** 2278 * vm_area_register_early - register vmap area early during boot 2279 * @vm: vm_struct to register 2280 * @align: requested alignment 2281 * 2282 * This function is used to register kernel vm area before 2283 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2284 * proper values on entry and other fields should be zero. On return, 2285 * vm->addr contains the allocated address. 2286 * 2287 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2288 */ 2289 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2290 { 2291 unsigned long addr = ALIGN(VMALLOC_START, align); 2292 struct vm_struct *cur, **p; 2293 2294 BUG_ON(vmap_initialized); 2295 2296 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2297 if ((unsigned long)cur->addr - addr >= vm->size) 2298 break; 2299 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2300 } 2301 2302 BUG_ON(addr > VMALLOC_END - vm->size); 2303 vm->addr = (void *)addr; 2304 vm->next = *p; 2305 *p = vm; 2306 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2307 } 2308 2309 static void vmap_init_free_space(void) 2310 { 2311 unsigned long vmap_start = 1; 2312 const unsigned long vmap_end = ULONG_MAX; 2313 struct vmap_area *busy, *free; 2314 2315 /* 2316 * B F B B B F 2317 * -|-----|.....|-----|-----|-----|.....|- 2318 * | The KVA space | 2319 * |<--------------------------------->| 2320 */ 2321 list_for_each_entry(busy, &vmap_area_list, list) { 2322 if (busy->va_start - vmap_start > 0) { 2323 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2324 if (!WARN_ON_ONCE(!free)) { 2325 free->va_start = vmap_start; 2326 free->va_end = busy->va_start; 2327 2328 insert_vmap_area_augment(free, NULL, 2329 &free_vmap_area_root, 2330 &free_vmap_area_list); 2331 } 2332 } 2333 2334 vmap_start = busy->va_end; 2335 } 2336 2337 if (vmap_end - vmap_start > 0) { 2338 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2339 if (!WARN_ON_ONCE(!free)) { 2340 free->va_start = vmap_start; 2341 free->va_end = vmap_end; 2342 2343 insert_vmap_area_augment(free, NULL, 2344 &free_vmap_area_root, 2345 &free_vmap_area_list); 2346 } 2347 } 2348 } 2349 2350 void __init vmalloc_init(void) 2351 { 2352 struct vmap_area *va; 2353 struct vm_struct *tmp; 2354 int i; 2355 2356 /* 2357 * Create the cache for vmap_area objects. 2358 */ 2359 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2360 2361 for_each_possible_cpu(i) { 2362 struct vmap_block_queue *vbq; 2363 struct vfree_deferred *p; 2364 2365 vbq = &per_cpu(vmap_block_queue, i); 2366 spin_lock_init(&vbq->lock); 2367 INIT_LIST_HEAD(&vbq->free); 2368 p = &per_cpu(vfree_deferred, i); 2369 init_llist_head(&p->list); 2370 INIT_WORK(&p->wq, free_work); 2371 } 2372 2373 /* Import existing vmlist entries. */ 2374 for (tmp = vmlist; tmp; tmp = tmp->next) { 2375 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2376 if (WARN_ON_ONCE(!va)) 2377 continue; 2378 2379 va->va_start = (unsigned long)tmp->addr; 2380 va->va_end = va->va_start + tmp->size; 2381 va->vm = tmp; 2382 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2383 } 2384 2385 /* 2386 * Now we can initialize a free vmap space. 2387 */ 2388 vmap_init_free_space(); 2389 vmap_initialized = true; 2390 } 2391 2392 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2393 struct vmap_area *va, unsigned long flags, const void *caller) 2394 { 2395 vm->flags = flags; 2396 vm->addr = (void *)va->va_start; 2397 vm->size = va->va_end - va->va_start; 2398 vm->caller = caller; 2399 va->vm = vm; 2400 } 2401 2402 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2403 unsigned long flags, const void *caller) 2404 { 2405 spin_lock(&vmap_area_lock); 2406 setup_vmalloc_vm_locked(vm, va, flags, caller); 2407 spin_unlock(&vmap_area_lock); 2408 } 2409 2410 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2411 { 2412 /* 2413 * Before removing VM_UNINITIALIZED, 2414 * we should make sure that vm has proper values. 2415 * Pair with smp_rmb() in show_numa_info(). 2416 */ 2417 smp_wmb(); 2418 vm->flags &= ~VM_UNINITIALIZED; 2419 } 2420 2421 static struct vm_struct *__get_vm_area_node(unsigned long size, 2422 unsigned long align, unsigned long shift, unsigned long flags, 2423 unsigned long start, unsigned long end, int node, 2424 gfp_t gfp_mask, const void *caller) 2425 { 2426 struct vmap_area *va; 2427 struct vm_struct *area; 2428 unsigned long requested_size = size; 2429 2430 BUG_ON(in_interrupt()); 2431 size = ALIGN(size, 1ul << shift); 2432 if (unlikely(!size)) 2433 return NULL; 2434 2435 if (flags & VM_IOREMAP) 2436 align = 1ul << clamp_t(int, get_count_order_long(size), 2437 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2438 2439 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2440 if (unlikely(!area)) 2441 return NULL; 2442 2443 if (!(flags & VM_NO_GUARD)) 2444 size += PAGE_SIZE; 2445 2446 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2447 if (IS_ERR(va)) { 2448 kfree(area); 2449 return NULL; 2450 } 2451 2452 setup_vmalloc_vm(area, va, flags, caller); 2453 2454 /* 2455 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2456 * best-effort approach, as they can be mapped outside of vmalloc code. 2457 * For VM_ALLOC mappings, the pages are marked as accessible after 2458 * getting mapped in __vmalloc_node_range(). 2459 * With hardware tag-based KASAN, marking is skipped for 2460 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2461 */ 2462 if (!(flags & VM_ALLOC)) 2463 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2464 KASAN_VMALLOC_PROT_NORMAL); 2465 2466 return area; 2467 } 2468 2469 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2470 unsigned long start, unsigned long end, 2471 const void *caller) 2472 { 2473 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2474 NUMA_NO_NODE, GFP_KERNEL, caller); 2475 } 2476 2477 /** 2478 * get_vm_area - reserve a contiguous kernel virtual area 2479 * @size: size of the area 2480 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2481 * 2482 * Search an area of @size in the kernel virtual mapping area, 2483 * and reserved it for out purposes. Returns the area descriptor 2484 * on success or %NULL on failure. 2485 * 2486 * Return: the area descriptor on success or %NULL on failure. 2487 */ 2488 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2489 { 2490 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2491 VMALLOC_START, VMALLOC_END, 2492 NUMA_NO_NODE, GFP_KERNEL, 2493 __builtin_return_address(0)); 2494 } 2495 2496 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2497 const void *caller) 2498 { 2499 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2500 VMALLOC_START, VMALLOC_END, 2501 NUMA_NO_NODE, GFP_KERNEL, caller); 2502 } 2503 2504 /** 2505 * find_vm_area - find a continuous kernel virtual area 2506 * @addr: base address 2507 * 2508 * Search for the kernel VM area starting at @addr, and return it. 2509 * It is up to the caller to do all required locking to keep the returned 2510 * pointer valid. 2511 * 2512 * Return: the area descriptor on success or %NULL on failure. 2513 */ 2514 struct vm_struct *find_vm_area(const void *addr) 2515 { 2516 struct vmap_area *va; 2517 2518 va = find_vmap_area((unsigned long)addr); 2519 if (!va) 2520 return NULL; 2521 2522 return va->vm; 2523 } 2524 2525 /** 2526 * remove_vm_area - find and remove a continuous kernel virtual area 2527 * @addr: base address 2528 * 2529 * Search for the kernel VM area starting at @addr, and remove it. 2530 * This function returns the found VM area, but using it is NOT safe 2531 * on SMP machines, except for its size or flags. 2532 * 2533 * Return: the area descriptor on success or %NULL on failure. 2534 */ 2535 struct vm_struct *remove_vm_area(const void *addr) 2536 { 2537 struct vmap_area *va; 2538 2539 might_sleep(); 2540 2541 spin_lock(&vmap_area_lock); 2542 va = __find_vmap_area((unsigned long)addr); 2543 if (va && va->vm) { 2544 struct vm_struct *vm = va->vm; 2545 2546 va->vm = NULL; 2547 spin_unlock(&vmap_area_lock); 2548 2549 kasan_free_module_shadow(vm); 2550 free_unmap_vmap_area(va); 2551 2552 return vm; 2553 } 2554 2555 spin_unlock(&vmap_area_lock); 2556 return NULL; 2557 } 2558 2559 static inline void set_area_direct_map(const struct vm_struct *area, 2560 int (*set_direct_map)(struct page *page)) 2561 { 2562 int i; 2563 2564 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2565 for (i = 0; i < area->nr_pages; i++) 2566 if (page_address(area->pages[i])) 2567 set_direct_map(area->pages[i]); 2568 } 2569 2570 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2571 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2572 { 2573 unsigned long start = ULONG_MAX, end = 0; 2574 unsigned int page_order = vm_area_page_order(area); 2575 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2576 int flush_dmap = 0; 2577 int i; 2578 2579 remove_vm_area(area->addr); 2580 2581 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2582 if (!flush_reset) 2583 return; 2584 2585 /* 2586 * If not deallocating pages, just do the flush of the VM area and 2587 * return. 2588 */ 2589 if (!deallocate_pages) { 2590 vm_unmap_aliases(); 2591 return; 2592 } 2593 2594 /* 2595 * If execution gets here, flush the vm mapping and reset the direct 2596 * map. Find the start and end range of the direct mappings to make sure 2597 * the vm_unmap_aliases() flush includes the direct map. 2598 */ 2599 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2600 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2601 if (addr) { 2602 unsigned long page_size; 2603 2604 page_size = PAGE_SIZE << page_order; 2605 start = min(addr, start); 2606 end = max(addr + page_size, end); 2607 flush_dmap = 1; 2608 } 2609 } 2610 2611 /* 2612 * Set direct map to something invalid so that it won't be cached if 2613 * there are any accesses after the TLB flush, then flush the TLB and 2614 * reset the direct map permissions to the default. 2615 */ 2616 set_area_direct_map(area, set_direct_map_invalid_noflush); 2617 _vm_unmap_aliases(start, end, flush_dmap); 2618 set_area_direct_map(area, set_direct_map_default_noflush); 2619 } 2620 2621 static void __vunmap(const void *addr, int deallocate_pages) 2622 { 2623 struct vm_struct *area; 2624 2625 if (!addr) 2626 return; 2627 2628 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2629 addr)) 2630 return; 2631 2632 area = find_vm_area(addr); 2633 if (unlikely(!area)) { 2634 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2635 addr); 2636 return; 2637 } 2638 2639 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2640 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2641 2642 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2643 2644 vm_remove_mappings(area, deallocate_pages); 2645 2646 if (deallocate_pages) { 2647 int i; 2648 2649 for (i = 0; i < area->nr_pages; i++) { 2650 struct page *page = area->pages[i]; 2651 2652 BUG_ON(!page); 2653 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 2654 /* 2655 * High-order allocs for huge vmallocs are split, so 2656 * can be freed as an array of order-0 allocations 2657 */ 2658 __free_pages(page, 0); 2659 cond_resched(); 2660 } 2661 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2662 2663 kvfree(area->pages); 2664 } 2665 2666 kfree(area); 2667 } 2668 2669 static inline void __vfree_deferred(const void *addr) 2670 { 2671 /* 2672 * Use raw_cpu_ptr() because this can be called from preemptible 2673 * context. Preemption is absolutely fine here, because the llist_add() 2674 * implementation is lockless, so it works even if we are adding to 2675 * another cpu's list. schedule_work() should be fine with this too. 2676 */ 2677 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2678 2679 if (llist_add((struct llist_node *)addr, &p->list)) 2680 schedule_work(&p->wq); 2681 } 2682 2683 /** 2684 * vfree_atomic - release memory allocated by vmalloc() 2685 * @addr: memory base address 2686 * 2687 * This one is just like vfree() but can be called in any atomic context 2688 * except NMIs. 2689 */ 2690 void vfree_atomic(const void *addr) 2691 { 2692 BUG_ON(in_nmi()); 2693 2694 kmemleak_free(addr); 2695 2696 if (!addr) 2697 return; 2698 __vfree_deferred(addr); 2699 } 2700 2701 static void __vfree(const void *addr) 2702 { 2703 if (unlikely(in_interrupt())) 2704 __vfree_deferred(addr); 2705 else 2706 __vunmap(addr, 1); 2707 } 2708 2709 /** 2710 * vfree - Release memory allocated by vmalloc() 2711 * @addr: Memory base address 2712 * 2713 * Free the virtually continuous memory area starting at @addr, as obtained 2714 * from one of the vmalloc() family of APIs. This will usually also free the 2715 * physical memory underlying the virtual allocation, but that memory is 2716 * reference counted, so it will not be freed until the last user goes away. 2717 * 2718 * If @addr is NULL, no operation is performed. 2719 * 2720 * Context: 2721 * May sleep if called *not* from interrupt context. 2722 * Must not be called in NMI context (strictly speaking, it could be 2723 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2724 * conventions for vfree() arch-dependent would be a really bad idea). 2725 */ 2726 void vfree(const void *addr) 2727 { 2728 BUG_ON(in_nmi()); 2729 2730 kmemleak_free(addr); 2731 2732 might_sleep_if(!in_interrupt()); 2733 2734 if (!addr) 2735 return; 2736 2737 __vfree(addr); 2738 } 2739 EXPORT_SYMBOL(vfree); 2740 2741 /** 2742 * vunmap - release virtual mapping obtained by vmap() 2743 * @addr: memory base address 2744 * 2745 * Free the virtually contiguous memory area starting at @addr, 2746 * which was created from the page array passed to vmap(). 2747 * 2748 * Must not be called in interrupt context. 2749 */ 2750 void vunmap(const void *addr) 2751 { 2752 BUG_ON(in_interrupt()); 2753 might_sleep(); 2754 if (addr) 2755 __vunmap(addr, 0); 2756 } 2757 EXPORT_SYMBOL(vunmap); 2758 2759 /** 2760 * vmap - map an array of pages into virtually contiguous space 2761 * @pages: array of page pointers 2762 * @count: number of pages to map 2763 * @flags: vm_area->flags 2764 * @prot: page protection for the mapping 2765 * 2766 * Maps @count pages from @pages into contiguous kernel virtual space. 2767 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2768 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2769 * are transferred from the caller to vmap(), and will be freed / dropped when 2770 * vfree() is called on the return value. 2771 * 2772 * Return: the address of the area or %NULL on failure 2773 */ 2774 void *vmap(struct page **pages, unsigned int count, 2775 unsigned long flags, pgprot_t prot) 2776 { 2777 struct vm_struct *area; 2778 unsigned long addr; 2779 unsigned long size; /* In bytes */ 2780 2781 might_sleep(); 2782 2783 /* 2784 * Your top guard is someone else's bottom guard. Not having a top 2785 * guard compromises someone else's mappings too. 2786 */ 2787 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2788 flags &= ~VM_NO_GUARD; 2789 2790 if (count > totalram_pages()) 2791 return NULL; 2792 2793 size = (unsigned long)count << PAGE_SHIFT; 2794 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2795 if (!area) 2796 return NULL; 2797 2798 addr = (unsigned long)area->addr; 2799 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2800 pages, PAGE_SHIFT) < 0) { 2801 vunmap(area->addr); 2802 return NULL; 2803 } 2804 2805 if (flags & VM_MAP_PUT_PAGES) { 2806 area->pages = pages; 2807 area->nr_pages = count; 2808 } 2809 return area->addr; 2810 } 2811 EXPORT_SYMBOL(vmap); 2812 2813 #ifdef CONFIG_VMAP_PFN 2814 struct vmap_pfn_data { 2815 unsigned long *pfns; 2816 pgprot_t prot; 2817 unsigned int idx; 2818 }; 2819 2820 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2821 { 2822 struct vmap_pfn_data *data = private; 2823 2824 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2825 return -EINVAL; 2826 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2827 return 0; 2828 } 2829 2830 /** 2831 * vmap_pfn - map an array of PFNs into virtually contiguous space 2832 * @pfns: array of PFNs 2833 * @count: number of pages to map 2834 * @prot: page protection for the mapping 2835 * 2836 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2837 * the start address of the mapping. 2838 */ 2839 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2840 { 2841 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2842 struct vm_struct *area; 2843 2844 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2845 __builtin_return_address(0)); 2846 if (!area) 2847 return NULL; 2848 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2849 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2850 free_vm_area(area); 2851 return NULL; 2852 } 2853 return area->addr; 2854 } 2855 EXPORT_SYMBOL_GPL(vmap_pfn); 2856 #endif /* CONFIG_VMAP_PFN */ 2857 2858 static inline unsigned int 2859 vm_area_alloc_pages(gfp_t gfp, int nid, 2860 unsigned int order, unsigned int nr_pages, struct page **pages) 2861 { 2862 unsigned int nr_allocated = 0; 2863 struct page *page; 2864 int i; 2865 2866 /* 2867 * For order-0 pages we make use of bulk allocator, if 2868 * the page array is partly or not at all populated due 2869 * to fails, fallback to a single page allocator that is 2870 * more permissive. 2871 */ 2872 if (!order) { 2873 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2874 2875 while (nr_allocated < nr_pages) { 2876 unsigned int nr, nr_pages_request; 2877 2878 /* 2879 * A maximum allowed request is hard-coded and is 100 2880 * pages per call. That is done in order to prevent a 2881 * long preemption off scenario in the bulk-allocator 2882 * so the range is [1:100]. 2883 */ 2884 nr_pages_request = min(100U, nr_pages - nr_allocated); 2885 2886 /* memory allocation should consider mempolicy, we can't 2887 * wrongly use nearest node when nid == NUMA_NO_NODE, 2888 * otherwise memory may be allocated in only one node, 2889 * but mempolicy wants to alloc memory by interleaving. 2890 */ 2891 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2892 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2893 nr_pages_request, 2894 pages + nr_allocated); 2895 2896 else 2897 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2898 nr_pages_request, 2899 pages + nr_allocated); 2900 2901 nr_allocated += nr; 2902 cond_resched(); 2903 2904 /* 2905 * If zero or pages were obtained partly, 2906 * fallback to a single page allocator. 2907 */ 2908 if (nr != nr_pages_request) 2909 break; 2910 } 2911 } 2912 2913 /* High-order pages or fallback path if "bulk" fails. */ 2914 2915 while (nr_allocated < nr_pages) { 2916 if (fatal_signal_pending(current)) 2917 break; 2918 2919 if (nid == NUMA_NO_NODE) 2920 page = alloc_pages(gfp, order); 2921 else 2922 page = alloc_pages_node(nid, gfp, order); 2923 if (unlikely(!page)) 2924 break; 2925 /* 2926 * Higher order allocations must be able to be treated as 2927 * indepdenent small pages by callers (as they can with 2928 * small-page vmallocs). Some drivers do their own refcounting 2929 * on vmalloc_to_page() pages, some use page->mapping, 2930 * page->lru, etc. 2931 */ 2932 if (order) 2933 split_page(page, order); 2934 2935 /* 2936 * Careful, we allocate and map page-order pages, but 2937 * tracking is done per PAGE_SIZE page so as to keep the 2938 * vm_struct APIs independent of the physical/mapped size. 2939 */ 2940 for (i = 0; i < (1U << order); i++) 2941 pages[nr_allocated + i] = page + i; 2942 2943 cond_resched(); 2944 nr_allocated += 1U << order; 2945 } 2946 2947 return nr_allocated; 2948 } 2949 2950 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2951 pgprot_t prot, unsigned int page_shift, 2952 int node) 2953 { 2954 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2955 bool nofail = gfp_mask & __GFP_NOFAIL; 2956 unsigned long addr = (unsigned long)area->addr; 2957 unsigned long size = get_vm_area_size(area); 2958 unsigned long array_size; 2959 unsigned int nr_small_pages = size >> PAGE_SHIFT; 2960 unsigned int page_order; 2961 unsigned int flags; 2962 int ret; 2963 2964 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 2965 gfp_mask |= __GFP_NOWARN; 2966 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 2967 gfp_mask |= __GFP_HIGHMEM; 2968 2969 /* Please note that the recursion is strictly bounded. */ 2970 if (array_size > PAGE_SIZE) { 2971 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 2972 area->caller); 2973 } else { 2974 area->pages = kmalloc_node(array_size, nested_gfp, node); 2975 } 2976 2977 if (!area->pages) { 2978 warn_alloc(gfp_mask, NULL, 2979 "vmalloc error: size %lu, failed to allocated page array size %lu", 2980 nr_small_pages * PAGE_SIZE, array_size); 2981 free_vm_area(area); 2982 return NULL; 2983 } 2984 2985 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 2986 page_order = vm_area_page_order(area); 2987 2988 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 2989 node, page_order, nr_small_pages, area->pages); 2990 2991 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2992 if (gfp_mask & __GFP_ACCOUNT) { 2993 int i; 2994 2995 for (i = 0; i < area->nr_pages; i++) 2996 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 2997 } 2998 2999 /* 3000 * If not enough pages were obtained to accomplish an 3001 * allocation request, free them via __vfree() if any. 3002 */ 3003 if (area->nr_pages != nr_small_pages) { 3004 warn_alloc(gfp_mask, NULL, 3005 "vmalloc error: size %lu, page order %u, failed to allocate pages", 3006 area->nr_pages * PAGE_SIZE, page_order); 3007 goto fail; 3008 } 3009 3010 /* 3011 * page tables allocations ignore external gfp mask, enforce it 3012 * by the scope API 3013 */ 3014 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3015 flags = memalloc_nofs_save(); 3016 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3017 flags = memalloc_noio_save(); 3018 3019 do { 3020 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3021 page_shift); 3022 if (nofail && (ret < 0)) 3023 schedule_timeout_uninterruptible(1); 3024 } while (nofail && (ret < 0)); 3025 3026 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3027 memalloc_nofs_restore(flags); 3028 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3029 memalloc_noio_restore(flags); 3030 3031 if (ret < 0) { 3032 warn_alloc(gfp_mask, NULL, 3033 "vmalloc error: size %lu, failed to map pages", 3034 area->nr_pages * PAGE_SIZE); 3035 goto fail; 3036 } 3037 3038 return area->addr; 3039 3040 fail: 3041 __vfree(area->addr); 3042 return NULL; 3043 } 3044 3045 /** 3046 * __vmalloc_node_range - allocate virtually contiguous memory 3047 * @size: allocation size 3048 * @align: desired alignment 3049 * @start: vm area range start 3050 * @end: vm area range end 3051 * @gfp_mask: flags for the page level allocator 3052 * @prot: protection mask for the allocated pages 3053 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3054 * @node: node to use for allocation or NUMA_NO_NODE 3055 * @caller: caller's return address 3056 * 3057 * Allocate enough pages to cover @size from the page level 3058 * allocator with @gfp_mask flags. Please note that the full set of gfp 3059 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3060 * supported. 3061 * Zone modifiers are not supported. From the reclaim modifiers 3062 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3063 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3064 * __GFP_RETRY_MAYFAIL are not supported). 3065 * 3066 * __GFP_NOWARN can be used to suppress failures messages. 3067 * 3068 * Map them into contiguous kernel virtual space, using a pagetable 3069 * protection of @prot. 3070 * 3071 * Return: the address of the area or %NULL on failure 3072 */ 3073 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3074 unsigned long start, unsigned long end, gfp_t gfp_mask, 3075 pgprot_t prot, unsigned long vm_flags, int node, 3076 const void *caller) 3077 { 3078 struct vm_struct *area; 3079 void *ret; 3080 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3081 unsigned long real_size = size; 3082 unsigned long real_align = align; 3083 unsigned int shift = PAGE_SHIFT; 3084 3085 if (WARN_ON_ONCE(!size)) 3086 return NULL; 3087 3088 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3089 warn_alloc(gfp_mask, NULL, 3090 "vmalloc error: size %lu, exceeds total pages", 3091 real_size); 3092 return NULL; 3093 } 3094 3095 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3096 unsigned long size_per_node; 3097 3098 /* 3099 * Try huge pages. Only try for PAGE_KERNEL allocations, 3100 * others like modules don't yet expect huge pages in 3101 * their allocations due to apply_to_page_range not 3102 * supporting them. 3103 */ 3104 3105 size_per_node = size; 3106 if (node == NUMA_NO_NODE) 3107 size_per_node /= num_online_nodes(); 3108 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3109 shift = PMD_SHIFT; 3110 else 3111 shift = arch_vmap_pte_supported_shift(size_per_node); 3112 3113 align = max(real_align, 1UL << shift); 3114 size = ALIGN(real_size, 1UL << shift); 3115 } 3116 3117 again: 3118 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3119 VM_UNINITIALIZED | vm_flags, start, end, node, 3120 gfp_mask, caller); 3121 if (!area) { 3122 bool nofail = gfp_mask & __GFP_NOFAIL; 3123 warn_alloc(gfp_mask, NULL, 3124 "vmalloc error: size %lu, vm_struct allocation failed%s", 3125 real_size, (nofail) ? ". Retrying." : ""); 3126 if (nofail) { 3127 schedule_timeout_uninterruptible(1); 3128 goto again; 3129 } 3130 goto fail; 3131 } 3132 3133 /* 3134 * Prepare arguments for __vmalloc_area_node() and 3135 * kasan_unpoison_vmalloc(). 3136 */ 3137 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3138 if (kasan_hw_tags_enabled()) { 3139 /* 3140 * Modify protection bits to allow tagging. 3141 * This must be done before mapping. 3142 */ 3143 prot = arch_vmap_pgprot_tagged(prot); 3144 3145 /* 3146 * Skip page_alloc poisoning and zeroing for physical 3147 * pages backing VM_ALLOC mapping. Memory is instead 3148 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3149 */ 3150 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; 3151 } 3152 3153 /* Take note that the mapping is PAGE_KERNEL. */ 3154 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3155 } 3156 3157 /* Allocate physical pages and map them into vmalloc space. */ 3158 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3159 if (!ret) 3160 goto fail; 3161 3162 /* 3163 * Mark the pages as accessible, now that they are mapped. 3164 * The condition for setting KASAN_VMALLOC_INIT should complement the 3165 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3166 * to make sure that memory is initialized under the same conditions. 3167 * Tag-based KASAN modes only assign tags to normal non-executable 3168 * allocations, see __kasan_unpoison_vmalloc(). 3169 */ 3170 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3171 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3172 (gfp_mask & __GFP_SKIP_ZERO)) 3173 kasan_flags |= KASAN_VMALLOC_INIT; 3174 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3175 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3176 3177 /* 3178 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3179 * flag. It means that vm_struct is not fully initialized. 3180 * Now, it is fully initialized, so remove this flag here. 3181 */ 3182 clear_vm_uninitialized_flag(area); 3183 3184 size = PAGE_ALIGN(size); 3185 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3186 kmemleak_vmalloc(area, size, gfp_mask); 3187 3188 return area->addr; 3189 3190 fail: 3191 if (shift > PAGE_SHIFT) { 3192 shift = PAGE_SHIFT; 3193 align = real_align; 3194 size = real_size; 3195 goto again; 3196 } 3197 3198 return NULL; 3199 } 3200 3201 /** 3202 * __vmalloc_node - allocate virtually contiguous memory 3203 * @size: allocation size 3204 * @align: desired alignment 3205 * @gfp_mask: flags for the page level allocator 3206 * @node: node to use for allocation or NUMA_NO_NODE 3207 * @caller: caller's return address 3208 * 3209 * Allocate enough pages to cover @size from the page level allocator with 3210 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3211 * 3212 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3213 * and __GFP_NOFAIL are not supported 3214 * 3215 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3216 * with mm people. 3217 * 3218 * Return: pointer to the allocated memory or %NULL on error 3219 */ 3220 void *__vmalloc_node(unsigned long size, unsigned long align, 3221 gfp_t gfp_mask, int node, const void *caller) 3222 { 3223 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3224 gfp_mask, PAGE_KERNEL, 0, node, caller); 3225 } 3226 /* 3227 * This is only for performance analysis of vmalloc and stress purpose. 3228 * It is required by vmalloc test module, therefore do not use it other 3229 * than that. 3230 */ 3231 #ifdef CONFIG_TEST_VMALLOC_MODULE 3232 EXPORT_SYMBOL_GPL(__vmalloc_node); 3233 #endif 3234 3235 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3236 { 3237 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3238 __builtin_return_address(0)); 3239 } 3240 EXPORT_SYMBOL(__vmalloc); 3241 3242 /** 3243 * vmalloc - allocate virtually contiguous memory 3244 * @size: allocation size 3245 * 3246 * Allocate enough pages to cover @size from the page level 3247 * allocator and map them into contiguous kernel virtual space. 3248 * 3249 * For tight control over page level allocator and protection flags 3250 * use __vmalloc() instead. 3251 * 3252 * Return: pointer to the allocated memory or %NULL on error 3253 */ 3254 void *vmalloc(unsigned long size) 3255 { 3256 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3257 __builtin_return_address(0)); 3258 } 3259 EXPORT_SYMBOL(vmalloc); 3260 3261 /** 3262 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3263 * @size: allocation size 3264 * @gfp_mask: flags for the page level allocator 3265 * 3266 * Allocate enough pages to cover @size from the page level 3267 * allocator and map them into contiguous kernel virtual space. 3268 * If @size is greater than or equal to PMD_SIZE, allow using 3269 * huge pages for the memory 3270 * 3271 * Return: pointer to the allocated memory or %NULL on error 3272 */ 3273 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3274 { 3275 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3276 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3277 NUMA_NO_NODE, __builtin_return_address(0)); 3278 } 3279 EXPORT_SYMBOL_GPL(vmalloc_huge); 3280 3281 /** 3282 * vzalloc - allocate virtually contiguous memory with zero fill 3283 * @size: allocation size 3284 * 3285 * Allocate enough pages to cover @size from the page level 3286 * allocator and map them into contiguous kernel virtual space. 3287 * The memory allocated is set to zero. 3288 * 3289 * For tight control over page level allocator and protection flags 3290 * use __vmalloc() instead. 3291 * 3292 * Return: pointer to the allocated memory or %NULL on error 3293 */ 3294 void *vzalloc(unsigned long size) 3295 { 3296 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3297 __builtin_return_address(0)); 3298 } 3299 EXPORT_SYMBOL(vzalloc); 3300 3301 /** 3302 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3303 * @size: allocation size 3304 * 3305 * The resulting memory area is zeroed so it can be mapped to userspace 3306 * without leaking data. 3307 * 3308 * Return: pointer to the allocated memory or %NULL on error 3309 */ 3310 void *vmalloc_user(unsigned long size) 3311 { 3312 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3313 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3314 VM_USERMAP, NUMA_NO_NODE, 3315 __builtin_return_address(0)); 3316 } 3317 EXPORT_SYMBOL(vmalloc_user); 3318 3319 /** 3320 * vmalloc_node - allocate memory on a specific node 3321 * @size: allocation size 3322 * @node: numa node 3323 * 3324 * Allocate enough pages to cover @size from the page level 3325 * allocator and map them into contiguous kernel virtual space. 3326 * 3327 * For tight control over page level allocator and protection flags 3328 * use __vmalloc() instead. 3329 * 3330 * Return: pointer to the allocated memory or %NULL on error 3331 */ 3332 void *vmalloc_node(unsigned long size, int node) 3333 { 3334 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3335 __builtin_return_address(0)); 3336 } 3337 EXPORT_SYMBOL(vmalloc_node); 3338 3339 /** 3340 * vzalloc_node - allocate memory on a specific node with zero fill 3341 * @size: allocation size 3342 * @node: numa node 3343 * 3344 * Allocate enough pages to cover @size from the page level 3345 * allocator and map them into contiguous kernel virtual space. 3346 * The memory allocated is set to zero. 3347 * 3348 * Return: pointer to the allocated memory or %NULL on error 3349 */ 3350 void *vzalloc_node(unsigned long size, int node) 3351 { 3352 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3353 __builtin_return_address(0)); 3354 } 3355 EXPORT_SYMBOL(vzalloc_node); 3356 3357 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3358 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3359 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3360 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3361 #else 3362 /* 3363 * 64b systems should always have either DMA or DMA32 zones. For others 3364 * GFP_DMA32 should do the right thing and use the normal zone. 3365 */ 3366 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3367 #endif 3368 3369 /** 3370 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3371 * @size: allocation size 3372 * 3373 * Allocate enough 32bit PA addressable pages to cover @size from the 3374 * page level allocator and map them into contiguous kernel virtual space. 3375 * 3376 * Return: pointer to the allocated memory or %NULL on error 3377 */ 3378 void *vmalloc_32(unsigned long size) 3379 { 3380 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3381 __builtin_return_address(0)); 3382 } 3383 EXPORT_SYMBOL(vmalloc_32); 3384 3385 /** 3386 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3387 * @size: allocation size 3388 * 3389 * The resulting memory area is 32bit addressable and zeroed so it can be 3390 * mapped to userspace without leaking data. 3391 * 3392 * Return: pointer to the allocated memory or %NULL on error 3393 */ 3394 void *vmalloc_32_user(unsigned long size) 3395 { 3396 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3397 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3398 VM_USERMAP, NUMA_NO_NODE, 3399 __builtin_return_address(0)); 3400 } 3401 EXPORT_SYMBOL(vmalloc_32_user); 3402 3403 /* 3404 * small helper routine , copy contents to buf from addr. 3405 * If the page is not present, fill zero. 3406 */ 3407 3408 static int aligned_vread(char *buf, char *addr, unsigned long count) 3409 { 3410 struct page *p; 3411 int copied = 0; 3412 3413 while (count) { 3414 unsigned long offset, length; 3415 3416 offset = offset_in_page(addr); 3417 length = PAGE_SIZE - offset; 3418 if (length > count) 3419 length = count; 3420 p = vmalloc_to_page(addr); 3421 /* 3422 * To do safe access to this _mapped_ area, we need 3423 * lock. But adding lock here means that we need to add 3424 * overhead of vmalloc()/vfree() calls for this _debug_ 3425 * interface, rarely used. Instead of that, we'll use 3426 * kmap() and get small overhead in this access function. 3427 */ 3428 if (p) { 3429 /* We can expect USER0 is not used -- see vread() */ 3430 void *map = kmap_atomic(p); 3431 memcpy(buf, map + offset, length); 3432 kunmap_atomic(map); 3433 } else 3434 memset(buf, 0, length); 3435 3436 addr += length; 3437 buf += length; 3438 copied += length; 3439 count -= length; 3440 } 3441 return copied; 3442 } 3443 3444 /** 3445 * vread() - read vmalloc area in a safe way. 3446 * @buf: buffer for reading data 3447 * @addr: vm address. 3448 * @count: number of bytes to be read. 3449 * 3450 * This function checks that addr is a valid vmalloc'ed area, and 3451 * copy data from that area to a given buffer. If the given memory range 3452 * of [addr...addr+count) includes some valid address, data is copied to 3453 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3454 * IOREMAP area is treated as memory hole and no copy is done. 3455 * 3456 * If [addr...addr+count) doesn't includes any intersects with alive 3457 * vm_struct area, returns 0. @buf should be kernel's buffer. 3458 * 3459 * Note: In usual ops, vread() is never necessary because the caller 3460 * should know vmalloc() area is valid and can use memcpy(). 3461 * This is for routines which have to access vmalloc area without 3462 * any information, as /proc/kcore. 3463 * 3464 * Return: number of bytes for which addr and buf should be increased 3465 * (same number as @count) or %0 if [addr...addr+count) doesn't 3466 * include any intersection with valid vmalloc area 3467 */ 3468 long vread(char *buf, char *addr, unsigned long count) 3469 { 3470 struct vmap_area *va; 3471 struct vm_struct *vm; 3472 char *vaddr, *buf_start = buf; 3473 unsigned long buflen = count; 3474 unsigned long n; 3475 3476 addr = kasan_reset_tag(addr); 3477 3478 /* Don't allow overflow */ 3479 if ((unsigned long) addr + count < count) 3480 count = -(unsigned long) addr; 3481 3482 spin_lock(&vmap_area_lock); 3483 va = find_vmap_area_exceed_addr((unsigned long)addr); 3484 if (!va) 3485 goto finished; 3486 3487 /* no intersects with alive vmap_area */ 3488 if ((unsigned long)addr + count <= va->va_start) 3489 goto finished; 3490 3491 list_for_each_entry_from(va, &vmap_area_list, list) { 3492 if (!count) 3493 break; 3494 3495 if (!va->vm) 3496 continue; 3497 3498 vm = va->vm; 3499 vaddr = (char *) vm->addr; 3500 if (addr >= vaddr + get_vm_area_size(vm)) 3501 continue; 3502 while (addr < vaddr) { 3503 if (count == 0) 3504 goto finished; 3505 *buf = '\0'; 3506 buf++; 3507 addr++; 3508 count--; 3509 } 3510 n = vaddr + get_vm_area_size(vm) - addr; 3511 if (n > count) 3512 n = count; 3513 if (!(vm->flags & VM_IOREMAP)) 3514 aligned_vread(buf, addr, n); 3515 else /* IOREMAP area is treated as memory hole */ 3516 memset(buf, 0, n); 3517 buf += n; 3518 addr += n; 3519 count -= n; 3520 } 3521 finished: 3522 spin_unlock(&vmap_area_lock); 3523 3524 if (buf == buf_start) 3525 return 0; 3526 /* zero-fill memory holes */ 3527 if (buf != buf_start + buflen) 3528 memset(buf, 0, buflen - (buf - buf_start)); 3529 3530 return buflen; 3531 } 3532 3533 /** 3534 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3535 * @vma: vma to cover 3536 * @uaddr: target user address to start at 3537 * @kaddr: virtual address of vmalloc kernel memory 3538 * @pgoff: offset from @kaddr to start at 3539 * @size: size of map area 3540 * 3541 * Returns: 0 for success, -Exxx on failure 3542 * 3543 * This function checks that @kaddr is a valid vmalloc'ed area, 3544 * and that it is big enough to cover the range starting at 3545 * @uaddr in @vma. Will return failure if that criteria isn't 3546 * met. 3547 * 3548 * Similar to remap_pfn_range() (see mm/memory.c) 3549 */ 3550 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3551 void *kaddr, unsigned long pgoff, 3552 unsigned long size) 3553 { 3554 struct vm_struct *area; 3555 unsigned long off; 3556 unsigned long end_index; 3557 3558 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3559 return -EINVAL; 3560 3561 size = PAGE_ALIGN(size); 3562 3563 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3564 return -EINVAL; 3565 3566 area = find_vm_area(kaddr); 3567 if (!area) 3568 return -EINVAL; 3569 3570 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3571 return -EINVAL; 3572 3573 if (check_add_overflow(size, off, &end_index) || 3574 end_index > get_vm_area_size(area)) 3575 return -EINVAL; 3576 kaddr += off; 3577 3578 do { 3579 struct page *page = vmalloc_to_page(kaddr); 3580 int ret; 3581 3582 ret = vm_insert_page(vma, uaddr, page); 3583 if (ret) 3584 return ret; 3585 3586 uaddr += PAGE_SIZE; 3587 kaddr += PAGE_SIZE; 3588 size -= PAGE_SIZE; 3589 } while (size > 0); 3590 3591 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3592 3593 return 0; 3594 } 3595 3596 /** 3597 * remap_vmalloc_range - map vmalloc pages to userspace 3598 * @vma: vma to cover (map full range of vma) 3599 * @addr: vmalloc memory 3600 * @pgoff: number of pages into addr before first page to map 3601 * 3602 * Returns: 0 for success, -Exxx on failure 3603 * 3604 * This function checks that addr is a valid vmalloc'ed area, and 3605 * that it is big enough to cover the vma. Will return failure if 3606 * that criteria isn't met. 3607 * 3608 * Similar to remap_pfn_range() (see mm/memory.c) 3609 */ 3610 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3611 unsigned long pgoff) 3612 { 3613 return remap_vmalloc_range_partial(vma, vma->vm_start, 3614 addr, pgoff, 3615 vma->vm_end - vma->vm_start); 3616 } 3617 EXPORT_SYMBOL(remap_vmalloc_range); 3618 3619 void free_vm_area(struct vm_struct *area) 3620 { 3621 struct vm_struct *ret; 3622 ret = remove_vm_area(area->addr); 3623 BUG_ON(ret != area); 3624 kfree(area); 3625 } 3626 EXPORT_SYMBOL_GPL(free_vm_area); 3627 3628 #ifdef CONFIG_SMP 3629 static struct vmap_area *node_to_va(struct rb_node *n) 3630 { 3631 return rb_entry_safe(n, struct vmap_area, rb_node); 3632 } 3633 3634 /** 3635 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3636 * @addr: target address 3637 * 3638 * Returns: vmap_area if it is found. If there is no such area 3639 * the first highest(reverse order) vmap_area is returned 3640 * i.e. va->va_start < addr && va->va_end < addr or NULL 3641 * if there are no any areas before @addr. 3642 */ 3643 static struct vmap_area * 3644 pvm_find_va_enclose_addr(unsigned long addr) 3645 { 3646 struct vmap_area *va, *tmp; 3647 struct rb_node *n; 3648 3649 n = free_vmap_area_root.rb_node; 3650 va = NULL; 3651 3652 while (n) { 3653 tmp = rb_entry(n, struct vmap_area, rb_node); 3654 if (tmp->va_start <= addr) { 3655 va = tmp; 3656 if (tmp->va_end >= addr) 3657 break; 3658 3659 n = n->rb_right; 3660 } else { 3661 n = n->rb_left; 3662 } 3663 } 3664 3665 return va; 3666 } 3667 3668 /** 3669 * pvm_determine_end_from_reverse - find the highest aligned address 3670 * of free block below VMALLOC_END 3671 * @va: 3672 * in - the VA we start the search(reverse order); 3673 * out - the VA with the highest aligned end address. 3674 * @align: alignment for required highest address 3675 * 3676 * Returns: determined end address within vmap_area 3677 */ 3678 static unsigned long 3679 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3680 { 3681 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3682 unsigned long addr; 3683 3684 if (likely(*va)) { 3685 list_for_each_entry_from_reverse((*va), 3686 &free_vmap_area_list, list) { 3687 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3688 if ((*va)->va_start < addr) 3689 return addr; 3690 } 3691 } 3692 3693 return 0; 3694 } 3695 3696 /** 3697 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3698 * @offsets: array containing offset of each area 3699 * @sizes: array containing size of each area 3700 * @nr_vms: the number of areas to allocate 3701 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3702 * 3703 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3704 * vm_structs on success, %NULL on failure 3705 * 3706 * Percpu allocator wants to use congruent vm areas so that it can 3707 * maintain the offsets among percpu areas. This function allocates 3708 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3709 * be scattered pretty far, distance between two areas easily going up 3710 * to gigabytes. To avoid interacting with regular vmallocs, these 3711 * areas are allocated from top. 3712 * 3713 * Despite its complicated look, this allocator is rather simple. It 3714 * does everything top-down and scans free blocks from the end looking 3715 * for matching base. While scanning, if any of the areas do not fit the 3716 * base address is pulled down to fit the area. Scanning is repeated till 3717 * all the areas fit and then all necessary data structures are inserted 3718 * and the result is returned. 3719 */ 3720 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3721 const size_t *sizes, int nr_vms, 3722 size_t align) 3723 { 3724 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3725 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3726 struct vmap_area **vas, *va; 3727 struct vm_struct **vms; 3728 int area, area2, last_area, term_area; 3729 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3730 bool purged = false; 3731 3732 /* verify parameters and allocate data structures */ 3733 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3734 for (last_area = 0, area = 0; area < nr_vms; area++) { 3735 start = offsets[area]; 3736 end = start + sizes[area]; 3737 3738 /* is everything aligned properly? */ 3739 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3740 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3741 3742 /* detect the area with the highest address */ 3743 if (start > offsets[last_area]) 3744 last_area = area; 3745 3746 for (area2 = area + 1; area2 < nr_vms; area2++) { 3747 unsigned long start2 = offsets[area2]; 3748 unsigned long end2 = start2 + sizes[area2]; 3749 3750 BUG_ON(start2 < end && start < end2); 3751 } 3752 } 3753 last_end = offsets[last_area] + sizes[last_area]; 3754 3755 if (vmalloc_end - vmalloc_start < last_end) { 3756 WARN_ON(true); 3757 return NULL; 3758 } 3759 3760 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3761 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3762 if (!vas || !vms) 3763 goto err_free2; 3764 3765 for (area = 0; area < nr_vms; area++) { 3766 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3767 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3768 if (!vas[area] || !vms[area]) 3769 goto err_free; 3770 } 3771 retry: 3772 spin_lock(&free_vmap_area_lock); 3773 3774 /* start scanning - we scan from the top, begin with the last area */ 3775 area = term_area = last_area; 3776 start = offsets[area]; 3777 end = start + sizes[area]; 3778 3779 va = pvm_find_va_enclose_addr(vmalloc_end); 3780 base = pvm_determine_end_from_reverse(&va, align) - end; 3781 3782 while (true) { 3783 /* 3784 * base might have underflowed, add last_end before 3785 * comparing. 3786 */ 3787 if (base + last_end < vmalloc_start + last_end) 3788 goto overflow; 3789 3790 /* 3791 * Fitting base has not been found. 3792 */ 3793 if (va == NULL) 3794 goto overflow; 3795 3796 /* 3797 * If required width exceeds current VA block, move 3798 * base downwards and then recheck. 3799 */ 3800 if (base + end > va->va_end) { 3801 base = pvm_determine_end_from_reverse(&va, align) - end; 3802 term_area = area; 3803 continue; 3804 } 3805 3806 /* 3807 * If this VA does not fit, move base downwards and recheck. 3808 */ 3809 if (base + start < va->va_start) { 3810 va = node_to_va(rb_prev(&va->rb_node)); 3811 base = pvm_determine_end_from_reverse(&va, align) - end; 3812 term_area = area; 3813 continue; 3814 } 3815 3816 /* 3817 * This area fits, move on to the previous one. If 3818 * the previous one is the terminal one, we're done. 3819 */ 3820 area = (area + nr_vms - 1) % nr_vms; 3821 if (area == term_area) 3822 break; 3823 3824 start = offsets[area]; 3825 end = start + sizes[area]; 3826 va = pvm_find_va_enclose_addr(base + end); 3827 } 3828 3829 /* we've found a fitting base, insert all va's */ 3830 for (area = 0; area < nr_vms; area++) { 3831 int ret; 3832 3833 start = base + offsets[area]; 3834 size = sizes[area]; 3835 3836 va = pvm_find_va_enclose_addr(start); 3837 if (WARN_ON_ONCE(va == NULL)) 3838 /* It is a BUG(), but trigger recovery instead. */ 3839 goto recovery; 3840 3841 ret = adjust_va_to_fit_type(va, start, size); 3842 if (WARN_ON_ONCE(unlikely(ret))) 3843 /* It is a BUG(), but trigger recovery instead. */ 3844 goto recovery; 3845 3846 /* Allocated area. */ 3847 va = vas[area]; 3848 va->va_start = start; 3849 va->va_end = start + size; 3850 } 3851 3852 spin_unlock(&free_vmap_area_lock); 3853 3854 /* populate the kasan shadow space */ 3855 for (area = 0; area < nr_vms; area++) { 3856 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3857 goto err_free_shadow; 3858 } 3859 3860 /* insert all vm's */ 3861 spin_lock(&vmap_area_lock); 3862 for (area = 0; area < nr_vms; area++) { 3863 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3864 3865 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3866 pcpu_get_vm_areas); 3867 } 3868 spin_unlock(&vmap_area_lock); 3869 3870 /* 3871 * Mark allocated areas as accessible. Do it now as a best-effort 3872 * approach, as they can be mapped outside of vmalloc code. 3873 * With hardware tag-based KASAN, marking is skipped for 3874 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3875 */ 3876 for (area = 0; area < nr_vms; area++) 3877 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 3878 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 3879 3880 kfree(vas); 3881 return vms; 3882 3883 recovery: 3884 /* 3885 * Remove previously allocated areas. There is no 3886 * need in removing these areas from the busy tree, 3887 * because they are inserted only on the final step 3888 * and when pcpu_get_vm_areas() is success. 3889 */ 3890 while (area--) { 3891 orig_start = vas[area]->va_start; 3892 orig_end = vas[area]->va_end; 3893 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3894 &free_vmap_area_list); 3895 if (va) 3896 kasan_release_vmalloc(orig_start, orig_end, 3897 va->va_start, va->va_end); 3898 vas[area] = NULL; 3899 } 3900 3901 overflow: 3902 spin_unlock(&free_vmap_area_lock); 3903 if (!purged) { 3904 purge_vmap_area_lazy(); 3905 purged = true; 3906 3907 /* Before "retry", check if we recover. */ 3908 for (area = 0; area < nr_vms; area++) { 3909 if (vas[area]) 3910 continue; 3911 3912 vas[area] = kmem_cache_zalloc( 3913 vmap_area_cachep, GFP_KERNEL); 3914 if (!vas[area]) 3915 goto err_free; 3916 } 3917 3918 goto retry; 3919 } 3920 3921 err_free: 3922 for (area = 0; area < nr_vms; area++) { 3923 if (vas[area]) 3924 kmem_cache_free(vmap_area_cachep, vas[area]); 3925 3926 kfree(vms[area]); 3927 } 3928 err_free2: 3929 kfree(vas); 3930 kfree(vms); 3931 return NULL; 3932 3933 err_free_shadow: 3934 spin_lock(&free_vmap_area_lock); 3935 /* 3936 * We release all the vmalloc shadows, even the ones for regions that 3937 * hadn't been successfully added. This relies on kasan_release_vmalloc 3938 * being able to tolerate this case. 3939 */ 3940 for (area = 0; area < nr_vms; area++) { 3941 orig_start = vas[area]->va_start; 3942 orig_end = vas[area]->va_end; 3943 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3944 &free_vmap_area_list); 3945 if (va) 3946 kasan_release_vmalloc(orig_start, orig_end, 3947 va->va_start, va->va_end); 3948 vas[area] = NULL; 3949 kfree(vms[area]); 3950 } 3951 spin_unlock(&free_vmap_area_lock); 3952 kfree(vas); 3953 kfree(vms); 3954 return NULL; 3955 } 3956 3957 /** 3958 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3959 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3960 * @nr_vms: the number of allocated areas 3961 * 3962 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3963 */ 3964 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3965 { 3966 int i; 3967 3968 for (i = 0; i < nr_vms; i++) 3969 free_vm_area(vms[i]); 3970 kfree(vms); 3971 } 3972 #endif /* CONFIG_SMP */ 3973 3974 #ifdef CONFIG_PRINTK 3975 bool vmalloc_dump_obj(void *object) 3976 { 3977 struct vm_struct *vm; 3978 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 3979 3980 vm = find_vm_area(objp); 3981 if (!vm) 3982 return false; 3983 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 3984 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 3985 return true; 3986 } 3987 #endif 3988 3989 #ifdef CONFIG_PROC_FS 3990 static void *s_start(struct seq_file *m, loff_t *pos) 3991 __acquires(&vmap_purge_lock) 3992 __acquires(&vmap_area_lock) 3993 { 3994 mutex_lock(&vmap_purge_lock); 3995 spin_lock(&vmap_area_lock); 3996 3997 return seq_list_start(&vmap_area_list, *pos); 3998 } 3999 4000 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4001 { 4002 return seq_list_next(p, &vmap_area_list, pos); 4003 } 4004 4005 static void s_stop(struct seq_file *m, void *p) 4006 __releases(&vmap_area_lock) 4007 __releases(&vmap_purge_lock) 4008 { 4009 spin_unlock(&vmap_area_lock); 4010 mutex_unlock(&vmap_purge_lock); 4011 } 4012 4013 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4014 { 4015 if (IS_ENABLED(CONFIG_NUMA)) { 4016 unsigned int nr, *counters = m->private; 4017 unsigned int step = 1U << vm_area_page_order(v); 4018 4019 if (!counters) 4020 return; 4021 4022 if (v->flags & VM_UNINITIALIZED) 4023 return; 4024 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4025 smp_rmb(); 4026 4027 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4028 4029 for (nr = 0; nr < v->nr_pages; nr += step) 4030 counters[page_to_nid(v->pages[nr])] += step; 4031 for_each_node_state(nr, N_HIGH_MEMORY) 4032 if (counters[nr]) 4033 seq_printf(m, " N%u=%u", nr, counters[nr]); 4034 } 4035 } 4036 4037 static void show_purge_info(struct seq_file *m) 4038 { 4039 struct vmap_area *va; 4040 4041 spin_lock(&purge_vmap_area_lock); 4042 list_for_each_entry(va, &purge_vmap_area_list, list) { 4043 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4044 (void *)va->va_start, (void *)va->va_end, 4045 va->va_end - va->va_start); 4046 } 4047 spin_unlock(&purge_vmap_area_lock); 4048 } 4049 4050 static int s_show(struct seq_file *m, void *p) 4051 { 4052 struct vmap_area *va; 4053 struct vm_struct *v; 4054 4055 va = list_entry(p, struct vmap_area, list); 4056 4057 /* 4058 * s_show can encounter race with remove_vm_area, !vm on behalf 4059 * of vmap area is being tear down or vm_map_ram allocation. 4060 */ 4061 if (!va->vm) { 4062 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4063 (void *)va->va_start, (void *)va->va_end, 4064 va->va_end - va->va_start); 4065 4066 goto final; 4067 } 4068 4069 v = va->vm; 4070 4071 seq_printf(m, "0x%pK-0x%pK %7ld", 4072 v->addr, v->addr + v->size, v->size); 4073 4074 if (v->caller) 4075 seq_printf(m, " %pS", v->caller); 4076 4077 if (v->nr_pages) 4078 seq_printf(m, " pages=%d", v->nr_pages); 4079 4080 if (v->phys_addr) 4081 seq_printf(m, " phys=%pa", &v->phys_addr); 4082 4083 if (v->flags & VM_IOREMAP) 4084 seq_puts(m, " ioremap"); 4085 4086 if (v->flags & VM_ALLOC) 4087 seq_puts(m, " vmalloc"); 4088 4089 if (v->flags & VM_MAP) 4090 seq_puts(m, " vmap"); 4091 4092 if (v->flags & VM_USERMAP) 4093 seq_puts(m, " user"); 4094 4095 if (v->flags & VM_DMA_COHERENT) 4096 seq_puts(m, " dma-coherent"); 4097 4098 if (is_vmalloc_addr(v->pages)) 4099 seq_puts(m, " vpages"); 4100 4101 show_numa_info(m, v); 4102 seq_putc(m, '\n'); 4103 4104 /* 4105 * As a final step, dump "unpurged" areas. 4106 */ 4107 final: 4108 if (list_is_last(&va->list, &vmap_area_list)) 4109 show_purge_info(m); 4110 4111 return 0; 4112 } 4113 4114 static const struct seq_operations vmalloc_op = { 4115 .start = s_start, 4116 .next = s_next, 4117 .stop = s_stop, 4118 .show = s_show, 4119 }; 4120 4121 static int __init proc_vmalloc_init(void) 4122 { 4123 if (IS_ENABLED(CONFIG_NUMA)) 4124 proc_create_seq_private("vmallocinfo", 0400, NULL, 4125 &vmalloc_op, 4126 nr_node_ids * sizeof(unsigned int), NULL); 4127 else 4128 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4129 return 0; 4130 } 4131 module_init(proc_vmalloc_init); 4132 4133 #endif 4134