1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/radix-tree.h> 28 #include <linux/rcupdate.h> 29 #include <linux/pfn.h> 30 #include <linux/kmemleak.h> 31 #include <linux/atomic.h> 32 #include <linux/compiler.h> 33 #include <linux/llist.h> 34 #include <linux/bitops.h> 35 #include <linux/rbtree_augmented.h> 36 37 #include <linux/uaccess.h> 38 #include <asm/tlbflush.h> 39 #include <asm/shmparam.h> 40 41 #include "internal.h" 42 43 struct vfree_deferred { 44 struct llist_head list; 45 struct work_struct wq; 46 }; 47 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 48 49 static void __vunmap(const void *, int); 50 51 static void free_work(struct work_struct *w) 52 { 53 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 54 struct llist_node *t, *llnode; 55 56 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 57 __vunmap((void *)llnode, 1); 58 } 59 60 /*** Page table manipulation functions ***/ 61 62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 63 { 64 pte_t *pte; 65 66 pte = pte_offset_kernel(pmd, addr); 67 do { 68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 69 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 70 } while (pte++, addr += PAGE_SIZE, addr != end); 71 } 72 73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 74 { 75 pmd_t *pmd; 76 unsigned long next; 77 78 pmd = pmd_offset(pud, addr); 79 do { 80 next = pmd_addr_end(addr, end); 81 if (pmd_clear_huge(pmd)) 82 continue; 83 if (pmd_none_or_clear_bad(pmd)) 84 continue; 85 vunmap_pte_range(pmd, addr, next); 86 } while (pmd++, addr = next, addr != end); 87 } 88 89 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 90 { 91 pud_t *pud; 92 unsigned long next; 93 94 pud = pud_offset(p4d, addr); 95 do { 96 next = pud_addr_end(addr, end); 97 if (pud_clear_huge(pud)) 98 continue; 99 if (pud_none_or_clear_bad(pud)) 100 continue; 101 vunmap_pmd_range(pud, addr, next); 102 } while (pud++, addr = next, addr != end); 103 } 104 105 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 106 { 107 p4d_t *p4d; 108 unsigned long next; 109 110 p4d = p4d_offset(pgd, addr); 111 do { 112 next = p4d_addr_end(addr, end); 113 if (p4d_clear_huge(p4d)) 114 continue; 115 if (p4d_none_or_clear_bad(p4d)) 116 continue; 117 vunmap_pud_range(p4d, addr, next); 118 } while (p4d++, addr = next, addr != end); 119 } 120 121 static void vunmap_page_range(unsigned long addr, unsigned long end) 122 { 123 pgd_t *pgd; 124 unsigned long next; 125 126 BUG_ON(addr >= end); 127 pgd = pgd_offset_k(addr); 128 do { 129 next = pgd_addr_end(addr, end); 130 if (pgd_none_or_clear_bad(pgd)) 131 continue; 132 vunmap_p4d_range(pgd, addr, next); 133 } while (pgd++, addr = next, addr != end); 134 } 135 136 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 137 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 138 { 139 pte_t *pte; 140 141 /* 142 * nr is a running index into the array which helps higher level 143 * callers keep track of where we're up to. 144 */ 145 146 pte = pte_alloc_kernel(pmd, addr); 147 if (!pte) 148 return -ENOMEM; 149 do { 150 struct page *page = pages[*nr]; 151 152 if (WARN_ON(!pte_none(*pte))) 153 return -EBUSY; 154 if (WARN_ON(!page)) 155 return -ENOMEM; 156 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 157 (*nr)++; 158 } while (pte++, addr += PAGE_SIZE, addr != end); 159 return 0; 160 } 161 162 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 163 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 164 { 165 pmd_t *pmd; 166 unsigned long next; 167 168 pmd = pmd_alloc(&init_mm, pud, addr); 169 if (!pmd) 170 return -ENOMEM; 171 do { 172 next = pmd_addr_end(addr, end); 173 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 174 return -ENOMEM; 175 } while (pmd++, addr = next, addr != end); 176 return 0; 177 } 178 179 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 180 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 181 { 182 pud_t *pud; 183 unsigned long next; 184 185 pud = pud_alloc(&init_mm, p4d, addr); 186 if (!pud) 187 return -ENOMEM; 188 do { 189 next = pud_addr_end(addr, end); 190 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 191 return -ENOMEM; 192 } while (pud++, addr = next, addr != end); 193 return 0; 194 } 195 196 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 197 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 198 { 199 p4d_t *p4d; 200 unsigned long next; 201 202 p4d = p4d_alloc(&init_mm, pgd, addr); 203 if (!p4d) 204 return -ENOMEM; 205 do { 206 next = p4d_addr_end(addr, end); 207 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 208 return -ENOMEM; 209 } while (p4d++, addr = next, addr != end); 210 return 0; 211 } 212 213 /* 214 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 215 * will have pfns corresponding to the "pages" array. 216 * 217 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 218 */ 219 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 220 pgprot_t prot, struct page **pages) 221 { 222 pgd_t *pgd; 223 unsigned long next; 224 unsigned long addr = start; 225 int err = 0; 226 int nr = 0; 227 228 BUG_ON(addr >= end); 229 pgd = pgd_offset_k(addr); 230 do { 231 next = pgd_addr_end(addr, end); 232 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 233 if (err) 234 return err; 235 } while (pgd++, addr = next, addr != end); 236 237 return nr; 238 } 239 240 static int vmap_page_range(unsigned long start, unsigned long end, 241 pgprot_t prot, struct page **pages) 242 { 243 int ret; 244 245 ret = vmap_page_range_noflush(start, end, prot, pages); 246 flush_cache_vmap(start, end); 247 return ret; 248 } 249 250 int is_vmalloc_or_module_addr(const void *x) 251 { 252 /* 253 * ARM, x86-64 and sparc64 put modules in a special place, 254 * and fall back on vmalloc() if that fails. Others 255 * just put it in the vmalloc space. 256 */ 257 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 258 unsigned long addr = (unsigned long)x; 259 if (addr >= MODULES_VADDR && addr < MODULES_END) 260 return 1; 261 #endif 262 return is_vmalloc_addr(x); 263 } 264 265 /* 266 * Walk a vmap address to the struct page it maps. 267 */ 268 struct page *vmalloc_to_page(const void *vmalloc_addr) 269 { 270 unsigned long addr = (unsigned long) vmalloc_addr; 271 struct page *page = NULL; 272 pgd_t *pgd = pgd_offset_k(addr); 273 p4d_t *p4d; 274 pud_t *pud; 275 pmd_t *pmd; 276 pte_t *ptep, pte; 277 278 /* 279 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 280 * architectures that do not vmalloc module space 281 */ 282 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 283 284 if (pgd_none(*pgd)) 285 return NULL; 286 p4d = p4d_offset(pgd, addr); 287 if (p4d_none(*p4d)) 288 return NULL; 289 pud = pud_offset(p4d, addr); 290 291 /* 292 * Don't dereference bad PUD or PMD (below) entries. This will also 293 * identify huge mappings, which we may encounter on architectures 294 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 295 * identified as vmalloc addresses by is_vmalloc_addr(), but are 296 * not [unambiguously] associated with a struct page, so there is 297 * no correct value to return for them. 298 */ 299 WARN_ON_ONCE(pud_bad(*pud)); 300 if (pud_none(*pud) || pud_bad(*pud)) 301 return NULL; 302 pmd = pmd_offset(pud, addr); 303 WARN_ON_ONCE(pmd_bad(*pmd)); 304 if (pmd_none(*pmd) || pmd_bad(*pmd)) 305 return NULL; 306 307 ptep = pte_offset_map(pmd, addr); 308 pte = *ptep; 309 if (pte_present(pte)) 310 page = pte_page(pte); 311 pte_unmap(ptep); 312 return page; 313 } 314 EXPORT_SYMBOL(vmalloc_to_page); 315 316 /* 317 * Map a vmalloc()-space virtual address to the physical page frame number. 318 */ 319 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 320 { 321 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 322 } 323 EXPORT_SYMBOL(vmalloc_to_pfn); 324 325 326 /*** Global kva allocator ***/ 327 328 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 329 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 330 331 #define VM_LAZY_FREE 0x02 332 #define VM_VM_AREA 0x04 333 334 static DEFINE_SPINLOCK(vmap_area_lock); 335 /* Export for kexec only */ 336 LIST_HEAD(vmap_area_list); 337 static LLIST_HEAD(vmap_purge_list); 338 static struct rb_root vmap_area_root = RB_ROOT; 339 static bool vmap_initialized __read_mostly; 340 341 /* 342 * This kmem_cache is used for vmap_area objects. Instead of 343 * allocating from slab we reuse an object from this cache to 344 * make things faster. Especially in "no edge" splitting of 345 * free block. 346 */ 347 static struct kmem_cache *vmap_area_cachep; 348 349 /* 350 * This linked list is used in pair with free_vmap_area_root. 351 * It gives O(1) access to prev/next to perform fast coalescing. 352 */ 353 static LIST_HEAD(free_vmap_area_list); 354 355 /* 356 * This augment red-black tree represents the free vmap space. 357 * All vmap_area objects in this tree are sorted by va->va_start 358 * address. It is used for allocation and merging when a vmap 359 * object is released. 360 * 361 * Each vmap_area node contains a maximum available free block 362 * of its sub-tree, right or left. Therefore it is possible to 363 * find a lowest match of free area. 364 */ 365 static struct rb_root free_vmap_area_root = RB_ROOT; 366 367 static __always_inline unsigned long 368 va_size(struct vmap_area *va) 369 { 370 return (va->va_end - va->va_start); 371 } 372 373 static __always_inline unsigned long 374 get_subtree_max_size(struct rb_node *node) 375 { 376 struct vmap_area *va; 377 378 va = rb_entry_safe(node, struct vmap_area, rb_node); 379 return va ? va->subtree_max_size : 0; 380 } 381 382 /* 383 * Gets called when remove the node and rotate. 384 */ 385 static __always_inline unsigned long 386 compute_subtree_max_size(struct vmap_area *va) 387 { 388 return max3(va_size(va), 389 get_subtree_max_size(va->rb_node.rb_left), 390 get_subtree_max_size(va->rb_node.rb_right)); 391 } 392 393 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb, 394 struct vmap_area, rb_node, unsigned long, subtree_max_size, 395 compute_subtree_max_size) 396 397 static void purge_vmap_area_lazy(void); 398 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 399 static unsigned long lazy_max_pages(void); 400 401 static struct vmap_area *__find_vmap_area(unsigned long addr) 402 { 403 struct rb_node *n = vmap_area_root.rb_node; 404 405 while (n) { 406 struct vmap_area *va; 407 408 va = rb_entry(n, struct vmap_area, rb_node); 409 if (addr < va->va_start) 410 n = n->rb_left; 411 else if (addr >= va->va_end) 412 n = n->rb_right; 413 else 414 return va; 415 } 416 417 return NULL; 418 } 419 420 /* 421 * This function returns back addresses of parent node 422 * and its left or right link for further processing. 423 */ 424 static __always_inline struct rb_node ** 425 find_va_links(struct vmap_area *va, 426 struct rb_root *root, struct rb_node *from, 427 struct rb_node **parent) 428 { 429 struct vmap_area *tmp_va; 430 struct rb_node **link; 431 432 if (root) { 433 link = &root->rb_node; 434 if (unlikely(!*link)) { 435 *parent = NULL; 436 return link; 437 } 438 } else { 439 link = &from; 440 } 441 442 /* 443 * Go to the bottom of the tree. When we hit the last point 444 * we end up with parent rb_node and correct direction, i name 445 * it link, where the new va->rb_node will be attached to. 446 */ 447 do { 448 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 449 450 /* 451 * During the traversal we also do some sanity check. 452 * Trigger the BUG() if there are sides(left/right) 453 * or full overlaps. 454 */ 455 if (va->va_start < tmp_va->va_end && 456 va->va_end <= tmp_va->va_start) 457 link = &(*link)->rb_left; 458 else if (va->va_end > tmp_va->va_start && 459 va->va_start >= tmp_va->va_end) 460 link = &(*link)->rb_right; 461 else 462 BUG(); 463 } while (*link); 464 465 *parent = &tmp_va->rb_node; 466 return link; 467 } 468 469 static __always_inline struct list_head * 470 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 471 { 472 struct list_head *list; 473 474 if (unlikely(!parent)) 475 /* 476 * The red-black tree where we try to find VA neighbors 477 * before merging or inserting is empty, i.e. it means 478 * there is no free vmap space. Normally it does not 479 * happen but we handle this case anyway. 480 */ 481 return NULL; 482 483 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 484 return (&parent->rb_right == link ? list->next : list); 485 } 486 487 static __always_inline void 488 link_va(struct vmap_area *va, struct rb_root *root, 489 struct rb_node *parent, struct rb_node **link, struct list_head *head) 490 { 491 /* 492 * VA is still not in the list, but we can 493 * identify its future previous list_head node. 494 */ 495 if (likely(parent)) { 496 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 497 if (&parent->rb_right != link) 498 head = head->prev; 499 } 500 501 /* Insert to the rb-tree */ 502 rb_link_node(&va->rb_node, parent, link); 503 if (root == &free_vmap_area_root) { 504 /* 505 * Some explanation here. Just perform simple insertion 506 * to the tree. We do not set va->subtree_max_size to 507 * its current size before calling rb_insert_augmented(). 508 * It is because of we populate the tree from the bottom 509 * to parent levels when the node _is_ in the tree. 510 * 511 * Therefore we set subtree_max_size to zero after insertion, 512 * to let __augment_tree_propagate_from() puts everything to 513 * the correct order later on. 514 */ 515 rb_insert_augmented(&va->rb_node, 516 root, &free_vmap_area_rb_augment_cb); 517 va->subtree_max_size = 0; 518 } else { 519 rb_insert_color(&va->rb_node, root); 520 } 521 522 /* Address-sort this list */ 523 list_add(&va->list, head); 524 } 525 526 static __always_inline void 527 unlink_va(struct vmap_area *va, struct rb_root *root) 528 { 529 /* 530 * During merging a VA node can be empty, therefore 531 * not linked with the tree nor list. Just check it. 532 */ 533 if (!RB_EMPTY_NODE(&va->rb_node)) { 534 if (root == &free_vmap_area_root) 535 rb_erase_augmented(&va->rb_node, 536 root, &free_vmap_area_rb_augment_cb); 537 else 538 rb_erase(&va->rb_node, root); 539 540 list_del(&va->list); 541 RB_CLEAR_NODE(&va->rb_node); 542 } 543 } 544 545 #if DEBUG_AUGMENT_PROPAGATE_CHECK 546 static void 547 augment_tree_propagate_check(struct rb_node *n) 548 { 549 struct vmap_area *va; 550 struct rb_node *node; 551 unsigned long size; 552 bool found = false; 553 554 if (n == NULL) 555 return; 556 557 va = rb_entry(n, struct vmap_area, rb_node); 558 size = va->subtree_max_size; 559 node = n; 560 561 while (node) { 562 va = rb_entry(node, struct vmap_area, rb_node); 563 564 if (get_subtree_max_size(node->rb_left) == size) { 565 node = node->rb_left; 566 } else { 567 if (va_size(va) == size) { 568 found = true; 569 break; 570 } 571 572 node = node->rb_right; 573 } 574 } 575 576 if (!found) { 577 va = rb_entry(n, struct vmap_area, rb_node); 578 pr_emerg("tree is corrupted: %lu, %lu\n", 579 va_size(va), va->subtree_max_size); 580 } 581 582 augment_tree_propagate_check(n->rb_left); 583 augment_tree_propagate_check(n->rb_right); 584 } 585 #endif 586 587 /* 588 * This function populates subtree_max_size from bottom to upper 589 * levels starting from VA point. The propagation must be done 590 * when VA size is modified by changing its va_start/va_end. Or 591 * in case of newly inserting of VA to the tree. 592 * 593 * It means that __augment_tree_propagate_from() must be called: 594 * - After VA has been inserted to the tree(free path); 595 * - After VA has been shrunk(allocation path); 596 * - After VA has been increased(merging path). 597 * 598 * Please note that, it does not mean that upper parent nodes 599 * and their subtree_max_size are recalculated all the time up 600 * to the root node. 601 * 602 * 4--8 603 * /\ 604 * / \ 605 * / \ 606 * 2--2 8--8 607 * 608 * For example if we modify the node 4, shrinking it to 2, then 609 * no any modification is required. If we shrink the node 2 to 1 610 * its subtree_max_size is updated only, and set to 1. If we shrink 611 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 612 * node becomes 4--6. 613 */ 614 static __always_inline void 615 augment_tree_propagate_from(struct vmap_area *va) 616 { 617 struct rb_node *node = &va->rb_node; 618 unsigned long new_va_sub_max_size; 619 620 while (node) { 621 va = rb_entry(node, struct vmap_area, rb_node); 622 new_va_sub_max_size = compute_subtree_max_size(va); 623 624 /* 625 * If the newly calculated maximum available size of the 626 * subtree is equal to the current one, then it means that 627 * the tree is propagated correctly. So we have to stop at 628 * this point to save cycles. 629 */ 630 if (va->subtree_max_size == new_va_sub_max_size) 631 break; 632 633 va->subtree_max_size = new_va_sub_max_size; 634 node = rb_parent(&va->rb_node); 635 } 636 637 #if DEBUG_AUGMENT_PROPAGATE_CHECK 638 augment_tree_propagate_check(free_vmap_area_root.rb_node); 639 #endif 640 } 641 642 static void 643 insert_vmap_area(struct vmap_area *va, 644 struct rb_root *root, struct list_head *head) 645 { 646 struct rb_node **link; 647 struct rb_node *parent; 648 649 link = find_va_links(va, root, NULL, &parent); 650 link_va(va, root, parent, link, head); 651 } 652 653 static void 654 insert_vmap_area_augment(struct vmap_area *va, 655 struct rb_node *from, struct rb_root *root, 656 struct list_head *head) 657 { 658 struct rb_node **link; 659 struct rb_node *parent; 660 661 if (from) 662 link = find_va_links(va, NULL, from, &parent); 663 else 664 link = find_va_links(va, root, NULL, &parent); 665 666 link_va(va, root, parent, link, head); 667 augment_tree_propagate_from(va); 668 } 669 670 /* 671 * Merge de-allocated chunk of VA memory with previous 672 * and next free blocks. If coalesce is not done a new 673 * free area is inserted. If VA has been merged, it is 674 * freed. 675 */ 676 static __always_inline void 677 merge_or_add_vmap_area(struct vmap_area *va, 678 struct rb_root *root, struct list_head *head) 679 { 680 struct vmap_area *sibling; 681 struct list_head *next; 682 struct rb_node **link; 683 struct rb_node *parent; 684 bool merged = false; 685 686 /* 687 * Find a place in the tree where VA potentially will be 688 * inserted, unless it is merged with its sibling/siblings. 689 */ 690 link = find_va_links(va, root, NULL, &parent); 691 692 /* 693 * Get next node of VA to check if merging can be done. 694 */ 695 next = get_va_next_sibling(parent, link); 696 if (unlikely(next == NULL)) 697 goto insert; 698 699 /* 700 * start end 701 * | | 702 * |<------VA------>|<-----Next----->| 703 * | | 704 * start end 705 */ 706 if (next != head) { 707 sibling = list_entry(next, struct vmap_area, list); 708 if (sibling->va_start == va->va_end) { 709 sibling->va_start = va->va_start; 710 711 /* Check and update the tree if needed. */ 712 augment_tree_propagate_from(sibling); 713 714 /* Remove this VA, it has been merged. */ 715 unlink_va(va, root); 716 717 /* Free vmap_area object. */ 718 kmem_cache_free(vmap_area_cachep, va); 719 720 /* Point to the new merged area. */ 721 va = sibling; 722 merged = true; 723 } 724 } 725 726 /* 727 * start end 728 * | | 729 * |<-----Prev----->|<------VA------>| 730 * | | 731 * start end 732 */ 733 if (next->prev != head) { 734 sibling = list_entry(next->prev, struct vmap_area, list); 735 if (sibling->va_end == va->va_start) { 736 sibling->va_end = va->va_end; 737 738 /* Check and update the tree if needed. */ 739 augment_tree_propagate_from(sibling); 740 741 /* Remove this VA, it has been merged. */ 742 unlink_va(va, root); 743 744 /* Free vmap_area object. */ 745 kmem_cache_free(vmap_area_cachep, va); 746 747 return; 748 } 749 } 750 751 insert: 752 if (!merged) { 753 link_va(va, root, parent, link, head); 754 augment_tree_propagate_from(va); 755 } 756 } 757 758 static __always_inline bool 759 is_within_this_va(struct vmap_area *va, unsigned long size, 760 unsigned long align, unsigned long vstart) 761 { 762 unsigned long nva_start_addr; 763 764 if (va->va_start > vstart) 765 nva_start_addr = ALIGN(va->va_start, align); 766 else 767 nva_start_addr = ALIGN(vstart, align); 768 769 /* Can be overflowed due to big size or alignment. */ 770 if (nva_start_addr + size < nva_start_addr || 771 nva_start_addr < vstart) 772 return false; 773 774 return (nva_start_addr + size <= va->va_end); 775 } 776 777 /* 778 * Find the first free block(lowest start address) in the tree, 779 * that will accomplish the request corresponding to passing 780 * parameters. 781 */ 782 static __always_inline struct vmap_area * 783 find_vmap_lowest_match(unsigned long size, 784 unsigned long align, unsigned long vstart) 785 { 786 struct vmap_area *va; 787 struct rb_node *node; 788 unsigned long length; 789 790 /* Start from the root. */ 791 node = free_vmap_area_root.rb_node; 792 793 /* Adjust the search size for alignment overhead. */ 794 length = size + align - 1; 795 796 while (node) { 797 va = rb_entry(node, struct vmap_area, rb_node); 798 799 if (get_subtree_max_size(node->rb_left) >= length && 800 vstart < va->va_start) { 801 node = node->rb_left; 802 } else { 803 if (is_within_this_va(va, size, align, vstart)) 804 return va; 805 806 /* 807 * Does not make sense to go deeper towards the right 808 * sub-tree if it does not have a free block that is 809 * equal or bigger to the requested search length. 810 */ 811 if (get_subtree_max_size(node->rb_right) >= length) { 812 node = node->rb_right; 813 continue; 814 } 815 816 /* 817 * OK. We roll back and find the fist right sub-tree, 818 * that will satisfy the search criteria. It can happen 819 * only once due to "vstart" restriction. 820 */ 821 while ((node = rb_parent(node))) { 822 va = rb_entry(node, struct vmap_area, rb_node); 823 if (is_within_this_va(va, size, align, vstart)) 824 return va; 825 826 if (get_subtree_max_size(node->rb_right) >= length && 827 vstart <= va->va_start) { 828 node = node->rb_right; 829 break; 830 } 831 } 832 } 833 } 834 835 return NULL; 836 } 837 838 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 839 #include <linux/random.h> 840 841 static struct vmap_area * 842 find_vmap_lowest_linear_match(unsigned long size, 843 unsigned long align, unsigned long vstart) 844 { 845 struct vmap_area *va; 846 847 list_for_each_entry(va, &free_vmap_area_list, list) { 848 if (!is_within_this_va(va, size, align, vstart)) 849 continue; 850 851 return va; 852 } 853 854 return NULL; 855 } 856 857 static void 858 find_vmap_lowest_match_check(unsigned long size) 859 { 860 struct vmap_area *va_1, *va_2; 861 unsigned long vstart; 862 unsigned int rnd; 863 864 get_random_bytes(&rnd, sizeof(rnd)); 865 vstart = VMALLOC_START + rnd; 866 867 va_1 = find_vmap_lowest_match(size, 1, vstart); 868 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 869 870 if (va_1 != va_2) 871 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 872 va_1, va_2, vstart); 873 } 874 #endif 875 876 enum fit_type { 877 NOTHING_FIT = 0, 878 FL_FIT_TYPE = 1, /* full fit */ 879 LE_FIT_TYPE = 2, /* left edge fit */ 880 RE_FIT_TYPE = 3, /* right edge fit */ 881 NE_FIT_TYPE = 4 /* no edge fit */ 882 }; 883 884 static __always_inline enum fit_type 885 classify_va_fit_type(struct vmap_area *va, 886 unsigned long nva_start_addr, unsigned long size) 887 { 888 enum fit_type type; 889 890 /* Check if it is within VA. */ 891 if (nva_start_addr < va->va_start || 892 nva_start_addr + size > va->va_end) 893 return NOTHING_FIT; 894 895 /* Now classify. */ 896 if (va->va_start == nva_start_addr) { 897 if (va->va_end == nva_start_addr + size) 898 type = FL_FIT_TYPE; 899 else 900 type = LE_FIT_TYPE; 901 } else if (va->va_end == nva_start_addr + size) { 902 type = RE_FIT_TYPE; 903 } else { 904 type = NE_FIT_TYPE; 905 } 906 907 return type; 908 } 909 910 static __always_inline int 911 adjust_va_to_fit_type(struct vmap_area *va, 912 unsigned long nva_start_addr, unsigned long size, 913 enum fit_type type) 914 { 915 struct vmap_area *lva; 916 917 if (type == FL_FIT_TYPE) { 918 /* 919 * No need to split VA, it fully fits. 920 * 921 * | | 922 * V NVA V 923 * |---------------| 924 */ 925 unlink_va(va, &free_vmap_area_root); 926 kmem_cache_free(vmap_area_cachep, va); 927 } else if (type == LE_FIT_TYPE) { 928 /* 929 * Split left edge of fit VA. 930 * 931 * | | 932 * V NVA V R 933 * |-------|-------| 934 */ 935 va->va_start += size; 936 } else if (type == RE_FIT_TYPE) { 937 /* 938 * Split right edge of fit VA. 939 * 940 * | | 941 * L V NVA V 942 * |-------|-------| 943 */ 944 va->va_end = nva_start_addr; 945 } else if (type == NE_FIT_TYPE) { 946 /* 947 * Split no edge of fit VA. 948 * 949 * | | 950 * L V NVA V R 951 * |---|-------|---| 952 */ 953 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 954 if (unlikely(!lva)) 955 return -1; 956 957 /* 958 * Build the remainder. 959 */ 960 lva->va_start = va->va_start; 961 lva->va_end = nva_start_addr; 962 963 /* 964 * Shrink this VA to remaining size. 965 */ 966 va->va_start = nva_start_addr + size; 967 } else { 968 return -1; 969 } 970 971 if (type != FL_FIT_TYPE) { 972 augment_tree_propagate_from(va); 973 974 if (type == NE_FIT_TYPE) 975 insert_vmap_area_augment(lva, &va->rb_node, 976 &free_vmap_area_root, &free_vmap_area_list); 977 } 978 979 return 0; 980 } 981 982 /* 983 * Returns a start address of the newly allocated area, if success. 984 * Otherwise a vend is returned that indicates failure. 985 */ 986 static __always_inline unsigned long 987 __alloc_vmap_area(unsigned long size, unsigned long align, 988 unsigned long vstart, unsigned long vend, int node) 989 { 990 unsigned long nva_start_addr; 991 struct vmap_area *va; 992 enum fit_type type; 993 int ret; 994 995 va = find_vmap_lowest_match(size, align, vstart); 996 if (unlikely(!va)) 997 return vend; 998 999 if (va->va_start > vstart) 1000 nva_start_addr = ALIGN(va->va_start, align); 1001 else 1002 nva_start_addr = ALIGN(vstart, align); 1003 1004 /* Check the "vend" restriction. */ 1005 if (nva_start_addr + size > vend) 1006 return vend; 1007 1008 /* Classify what we have found. */ 1009 type = classify_va_fit_type(va, nva_start_addr, size); 1010 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1011 return vend; 1012 1013 /* Update the free vmap_area. */ 1014 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1015 if (ret) 1016 return vend; 1017 1018 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1019 find_vmap_lowest_match_check(size); 1020 #endif 1021 1022 return nva_start_addr; 1023 } 1024 1025 /* 1026 * Allocate a region of KVA of the specified size and alignment, within the 1027 * vstart and vend. 1028 */ 1029 static struct vmap_area *alloc_vmap_area(unsigned long size, 1030 unsigned long align, 1031 unsigned long vstart, unsigned long vend, 1032 int node, gfp_t gfp_mask) 1033 { 1034 struct vmap_area *va; 1035 unsigned long addr; 1036 int purged = 0; 1037 1038 BUG_ON(!size); 1039 BUG_ON(offset_in_page(size)); 1040 BUG_ON(!is_power_of_2(align)); 1041 1042 if (unlikely(!vmap_initialized)) 1043 return ERR_PTR(-EBUSY); 1044 1045 might_sleep(); 1046 1047 va = kmem_cache_alloc_node(vmap_area_cachep, 1048 gfp_mask & GFP_RECLAIM_MASK, node); 1049 if (unlikely(!va)) 1050 return ERR_PTR(-ENOMEM); 1051 1052 /* 1053 * Only scan the relevant parts containing pointers to other objects 1054 * to avoid false negatives. 1055 */ 1056 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 1057 1058 retry: 1059 spin_lock(&vmap_area_lock); 1060 1061 /* 1062 * If an allocation fails, the "vend" address is 1063 * returned. Therefore trigger the overflow path. 1064 */ 1065 addr = __alloc_vmap_area(size, align, vstart, vend, node); 1066 if (unlikely(addr == vend)) 1067 goto overflow; 1068 1069 va->va_start = addr; 1070 va->va_end = addr + size; 1071 va->flags = 0; 1072 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1073 1074 spin_unlock(&vmap_area_lock); 1075 1076 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1077 BUG_ON(va->va_start < vstart); 1078 BUG_ON(va->va_end > vend); 1079 1080 return va; 1081 1082 overflow: 1083 spin_unlock(&vmap_area_lock); 1084 if (!purged) { 1085 purge_vmap_area_lazy(); 1086 purged = 1; 1087 goto retry; 1088 } 1089 1090 if (gfpflags_allow_blocking(gfp_mask)) { 1091 unsigned long freed = 0; 1092 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1093 if (freed > 0) { 1094 purged = 0; 1095 goto retry; 1096 } 1097 } 1098 1099 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1100 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1101 size); 1102 1103 kmem_cache_free(vmap_area_cachep, va); 1104 return ERR_PTR(-EBUSY); 1105 } 1106 1107 int register_vmap_purge_notifier(struct notifier_block *nb) 1108 { 1109 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1110 } 1111 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1112 1113 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1114 { 1115 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1116 } 1117 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1118 1119 static void __free_vmap_area(struct vmap_area *va) 1120 { 1121 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 1122 1123 /* 1124 * Remove from the busy tree/list. 1125 */ 1126 unlink_va(va, &vmap_area_root); 1127 1128 /* 1129 * Merge VA with its neighbors, otherwise just add it. 1130 */ 1131 merge_or_add_vmap_area(va, 1132 &free_vmap_area_root, &free_vmap_area_list); 1133 } 1134 1135 /* 1136 * Free a region of KVA allocated by alloc_vmap_area 1137 */ 1138 static void free_vmap_area(struct vmap_area *va) 1139 { 1140 spin_lock(&vmap_area_lock); 1141 __free_vmap_area(va); 1142 spin_unlock(&vmap_area_lock); 1143 } 1144 1145 /* 1146 * Clear the pagetable entries of a given vmap_area 1147 */ 1148 static void unmap_vmap_area(struct vmap_area *va) 1149 { 1150 vunmap_page_range(va->va_start, va->va_end); 1151 } 1152 1153 /* 1154 * lazy_max_pages is the maximum amount of virtual address space we gather up 1155 * before attempting to purge with a TLB flush. 1156 * 1157 * There is a tradeoff here: a larger number will cover more kernel page tables 1158 * and take slightly longer to purge, but it will linearly reduce the number of 1159 * global TLB flushes that must be performed. It would seem natural to scale 1160 * this number up linearly with the number of CPUs (because vmapping activity 1161 * could also scale linearly with the number of CPUs), however it is likely 1162 * that in practice, workloads might be constrained in other ways that mean 1163 * vmap activity will not scale linearly with CPUs. Also, I want to be 1164 * conservative and not introduce a big latency on huge systems, so go with 1165 * a less aggressive log scale. It will still be an improvement over the old 1166 * code, and it will be simple to change the scale factor if we find that it 1167 * becomes a problem on bigger systems. 1168 */ 1169 static unsigned long lazy_max_pages(void) 1170 { 1171 unsigned int log; 1172 1173 log = fls(num_online_cpus()); 1174 1175 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1176 } 1177 1178 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1179 1180 /* 1181 * Serialize vmap purging. There is no actual criticial section protected 1182 * by this look, but we want to avoid concurrent calls for performance 1183 * reasons and to make the pcpu_get_vm_areas more deterministic. 1184 */ 1185 static DEFINE_MUTEX(vmap_purge_lock); 1186 1187 /* for per-CPU blocks */ 1188 static void purge_fragmented_blocks_allcpus(void); 1189 1190 /* 1191 * called before a call to iounmap() if the caller wants vm_area_struct's 1192 * immediately freed. 1193 */ 1194 void set_iounmap_nonlazy(void) 1195 { 1196 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1197 } 1198 1199 /* 1200 * Purges all lazily-freed vmap areas. 1201 */ 1202 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1203 { 1204 unsigned long resched_threshold; 1205 struct llist_node *valist; 1206 struct vmap_area *va; 1207 struct vmap_area *n_va; 1208 1209 lockdep_assert_held(&vmap_purge_lock); 1210 1211 valist = llist_del_all(&vmap_purge_list); 1212 if (unlikely(valist == NULL)) 1213 return false; 1214 1215 /* 1216 * TODO: to calculate a flush range without looping. 1217 * The list can be up to lazy_max_pages() elements. 1218 */ 1219 llist_for_each_entry(va, valist, purge_list) { 1220 if (va->va_start < start) 1221 start = va->va_start; 1222 if (va->va_end > end) 1223 end = va->va_end; 1224 } 1225 1226 flush_tlb_kernel_range(start, end); 1227 resched_threshold = lazy_max_pages() << 1; 1228 1229 spin_lock(&vmap_area_lock); 1230 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 1231 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1232 1233 __free_vmap_area(va); 1234 atomic_long_sub(nr, &vmap_lazy_nr); 1235 1236 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1237 cond_resched_lock(&vmap_area_lock); 1238 } 1239 spin_unlock(&vmap_area_lock); 1240 return true; 1241 } 1242 1243 /* 1244 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1245 * is already purging. 1246 */ 1247 static void try_purge_vmap_area_lazy(void) 1248 { 1249 if (mutex_trylock(&vmap_purge_lock)) { 1250 __purge_vmap_area_lazy(ULONG_MAX, 0); 1251 mutex_unlock(&vmap_purge_lock); 1252 } 1253 } 1254 1255 /* 1256 * Kick off a purge of the outstanding lazy areas. 1257 */ 1258 static void purge_vmap_area_lazy(void) 1259 { 1260 mutex_lock(&vmap_purge_lock); 1261 purge_fragmented_blocks_allcpus(); 1262 __purge_vmap_area_lazy(ULONG_MAX, 0); 1263 mutex_unlock(&vmap_purge_lock); 1264 } 1265 1266 /* 1267 * Free a vmap area, caller ensuring that the area has been unmapped 1268 * and flush_cache_vunmap had been called for the correct range 1269 * previously. 1270 */ 1271 static void free_vmap_area_noflush(struct vmap_area *va) 1272 { 1273 unsigned long nr_lazy; 1274 1275 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1276 PAGE_SHIFT, &vmap_lazy_nr); 1277 1278 /* After this point, we may free va at any time */ 1279 llist_add(&va->purge_list, &vmap_purge_list); 1280 1281 if (unlikely(nr_lazy > lazy_max_pages())) 1282 try_purge_vmap_area_lazy(); 1283 } 1284 1285 /* 1286 * Free and unmap a vmap area 1287 */ 1288 static void free_unmap_vmap_area(struct vmap_area *va) 1289 { 1290 flush_cache_vunmap(va->va_start, va->va_end); 1291 unmap_vmap_area(va); 1292 if (debug_pagealloc_enabled()) 1293 flush_tlb_kernel_range(va->va_start, va->va_end); 1294 1295 free_vmap_area_noflush(va); 1296 } 1297 1298 static struct vmap_area *find_vmap_area(unsigned long addr) 1299 { 1300 struct vmap_area *va; 1301 1302 spin_lock(&vmap_area_lock); 1303 va = __find_vmap_area(addr); 1304 spin_unlock(&vmap_area_lock); 1305 1306 return va; 1307 } 1308 1309 /*** Per cpu kva allocator ***/ 1310 1311 /* 1312 * vmap space is limited especially on 32 bit architectures. Ensure there is 1313 * room for at least 16 percpu vmap blocks per CPU. 1314 */ 1315 /* 1316 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1317 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1318 * instead (we just need a rough idea) 1319 */ 1320 #if BITS_PER_LONG == 32 1321 #define VMALLOC_SPACE (128UL*1024*1024) 1322 #else 1323 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1324 #endif 1325 1326 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1327 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1328 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1329 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1330 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1331 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1332 #define VMAP_BBMAP_BITS \ 1333 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1334 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1335 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1336 1337 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1338 1339 struct vmap_block_queue { 1340 spinlock_t lock; 1341 struct list_head free; 1342 }; 1343 1344 struct vmap_block { 1345 spinlock_t lock; 1346 struct vmap_area *va; 1347 unsigned long free, dirty; 1348 unsigned long dirty_min, dirty_max; /*< dirty range */ 1349 struct list_head free_list; 1350 struct rcu_head rcu_head; 1351 struct list_head purge; 1352 }; 1353 1354 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1355 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1356 1357 /* 1358 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 1359 * in the free path. Could get rid of this if we change the API to return a 1360 * "cookie" from alloc, to be passed to free. But no big deal yet. 1361 */ 1362 static DEFINE_SPINLOCK(vmap_block_tree_lock); 1363 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 1364 1365 /* 1366 * We should probably have a fallback mechanism to allocate virtual memory 1367 * out of partially filled vmap blocks. However vmap block sizing should be 1368 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1369 * big problem. 1370 */ 1371 1372 static unsigned long addr_to_vb_idx(unsigned long addr) 1373 { 1374 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1375 addr /= VMAP_BLOCK_SIZE; 1376 return addr; 1377 } 1378 1379 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1380 { 1381 unsigned long addr; 1382 1383 addr = va_start + (pages_off << PAGE_SHIFT); 1384 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1385 return (void *)addr; 1386 } 1387 1388 /** 1389 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1390 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1391 * @order: how many 2^order pages should be occupied in newly allocated block 1392 * @gfp_mask: flags for the page level allocator 1393 * 1394 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1395 */ 1396 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1397 { 1398 struct vmap_block_queue *vbq; 1399 struct vmap_block *vb; 1400 struct vmap_area *va; 1401 unsigned long vb_idx; 1402 int node, err; 1403 void *vaddr; 1404 1405 node = numa_node_id(); 1406 1407 vb = kmalloc_node(sizeof(struct vmap_block), 1408 gfp_mask & GFP_RECLAIM_MASK, node); 1409 if (unlikely(!vb)) 1410 return ERR_PTR(-ENOMEM); 1411 1412 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1413 VMALLOC_START, VMALLOC_END, 1414 node, gfp_mask); 1415 if (IS_ERR(va)) { 1416 kfree(vb); 1417 return ERR_CAST(va); 1418 } 1419 1420 err = radix_tree_preload(gfp_mask); 1421 if (unlikely(err)) { 1422 kfree(vb); 1423 free_vmap_area(va); 1424 return ERR_PTR(err); 1425 } 1426 1427 vaddr = vmap_block_vaddr(va->va_start, 0); 1428 spin_lock_init(&vb->lock); 1429 vb->va = va; 1430 /* At least something should be left free */ 1431 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1432 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1433 vb->dirty = 0; 1434 vb->dirty_min = VMAP_BBMAP_BITS; 1435 vb->dirty_max = 0; 1436 INIT_LIST_HEAD(&vb->free_list); 1437 1438 vb_idx = addr_to_vb_idx(va->va_start); 1439 spin_lock(&vmap_block_tree_lock); 1440 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 1441 spin_unlock(&vmap_block_tree_lock); 1442 BUG_ON(err); 1443 radix_tree_preload_end(); 1444 1445 vbq = &get_cpu_var(vmap_block_queue); 1446 spin_lock(&vbq->lock); 1447 list_add_tail_rcu(&vb->free_list, &vbq->free); 1448 spin_unlock(&vbq->lock); 1449 put_cpu_var(vmap_block_queue); 1450 1451 return vaddr; 1452 } 1453 1454 static void free_vmap_block(struct vmap_block *vb) 1455 { 1456 struct vmap_block *tmp; 1457 unsigned long vb_idx; 1458 1459 vb_idx = addr_to_vb_idx(vb->va->va_start); 1460 spin_lock(&vmap_block_tree_lock); 1461 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 1462 spin_unlock(&vmap_block_tree_lock); 1463 BUG_ON(tmp != vb); 1464 1465 free_vmap_area_noflush(vb->va); 1466 kfree_rcu(vb, rcu_head); 1467 } 1468 1469 static void purge_fragmented_blocks(int cpu) 1470 { 1471 LIST_HEAD(purge); 1472 struct vmap_block *vb; 1473 struct vmap_block *n_vb; 1474 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1475 1476 rcu_read_lock(); 1477 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1478 1479 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1480 continue; 1481 1482 spin_lock(&vb->lock); 1483 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1484 vb->free = 0; /* prevent further allocs after releasing lock */ 1485 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1486 vb->dirty_min = 0; 1487 vb->dirty_max = VMAP_BBMAP_BITS; 1488 spin_lock(&vbq->lock); 1489 list_del_rcu(&vb->free_list); 1490 spin_unlock(&vbq->lock); 1491 spin_unlock(&vb->lock); 1492 list_add_tail(&vb->purge, &purge); 1493 } else 1494 spin_unlock(&vb->lock); 1495 } 1496 rcu_read_unlock(); 1497 1498 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1499 list_del(&vb->purge); 1500 free_vmap_block(vb); 1501 } 1502 } 1503 1504 static void purge_fragmented_blocks_allcpus(void) 1505 { 1506 int cpu; 1507 1508 for_each_possible_cpu(cpu) 1509 purge_fragmented_blocks(cpu); 1510 } 1511 1512 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1513 { 1514 struct vmap_block_queue *vbq; 1515 struct vmap_block *vb; 1516 void *vaddr = NULL; 1517 unsigned int order; 1518 1519 BUG_ON(offset_in_page(size)); 1520 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1521 if (WARN_ON(size == 0)) { 1522 /* 1523 * Allocating 0 bytes isn't what caller wants since 1524 * get_order(0) returns funny result. Just warn and terminate 1525 * early. 1526 */ 1527 return NULL; 1528 } 1529 order = get_order(size); 1530 1531 rcu_read_lock(); 1532 vbq = &get_cpu_var(vmap_block_queue); 1533 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1534 unsigned long pages_off; 1535 1536 spin_lock(&vb->lock); 1537 if (vb->free < (1UL << order)) { 1538 spin_unlock(&vb->lock); 1539 continue; 1540 } 1541 1542 pages_off = VMAP_BBMAP_BITS - vb->free; 1543 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1544 vb->free -= 1UL << order; 1545 if (vb->free == 0) { 1546 spin_lock(&vbq->lock); 1547 list_del_rcu(&vb->free_list); 1548 spin_unlock(&vbq->lock); 1549 } 1550 1551 spin_unlock(&vb->lock); 1552 break; 1553 } 1554 1555 put_cpu_var(vmap_block_queue); 1556 rcu_read_unlock(); 1557 1558 /* Allocate new block if nothing was found */ 1559 if (!vaddr) 1560 vaddr = new_vmap_block(order, gfp_mask); 1561 1562 return vaddr; 1563 } 1564 1565 static void vb_free(const void *addr, unsigned long size) 1566 { 1567 unsigned long offset; 1568 unsigned long vb_idx; 1569 unsigned int order; 1570 struct vmap_block *vb; 1571 1572 BUG_ON(offset_in_page(size)); 1573 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1574 1575 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1576 1577 order = get_order(size); 1578 1579 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1580 offset >>= PAGE_SHIFT; 1581 1582 vb_idx = addr_to_vb_idx((unsigned long)addr); 1583 rcu_read_lock(); 1584 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1585 rcu_read_unlock(); 1586 BUG_ON(!vb); 1587 1588 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1589 1590 if (debug_pagealloc_enabled()) 1591 flush_tlb_kernel_range((unsigned long)addr, 1592 (unsigned long)addr + size); 1593 1594 spin_lock(&vb->lock); 1595 1596 /* Expand dirty range */ 1597 vb->dirty_min = min(vb->dirty_min, offset); 1598 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1599 1600 vb->dirty += 1UL << order; 1601 if (vb->dirty == VMAP_BBMAP_BITS) { 1602 BUG_ON(vb->free); 1603 spin_unlock(&vb->lock); 1604 free_vmap_block(vb); 1605 } else 1606 spin_unlock(&vb->lock); 1607 } 1608 1609 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1610 { 1611 int cpu; 1612 1613 if (unlikely(!vmap_initialized)) 1614 return; 1615 1616 might_sleep(); 1617 1618 for_each_possible_cpu(cpu) { 1619 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1620 struct vmap_block *vb; 1621 1622 rcu_read_lock(); 1623 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1624 spin_lock(&vb->lock); 1625 if (vb->dirty) { 1626 unsigned long va_start = vb->va->va_start; 1627 unsigned long s, e; 1628 1629 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1630 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1631 1632 start = min(s, start); 1633 end = max(e, end); 1634 1635 flush = 1; 1636 } 1637 spin_unlock(&vb->lock); 1638 } 1639 rcu_read_unlock(); 1640 } 1641 1642 mutex_lock(&vmap_purge_lock); 1643 purge_fragmented_blocks_allcpus(); 1644 if (!__purge_vmap_area_lazy(start, end) && flush) 1645 flush_tlb_kernel_range(start, end); 1646 mutex_unlock(&vmap_purge_lock); 1647 } 1648 1649 /** 1650 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1651 * 1652 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1653 * to amortize TLB flushing overheads. What this means is that any page you 1654 * have now, may, in a former life, have been mapped into kernel virtual 1655 * address by the vmap layer and so there might be some CPUs with TLB entries 1656 * still referencing that page (additional to the regular 1:1 kernel mapping). 1657 * 1658 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1659 * be sure that none of the pages we have control over will have any aliases 1660 * from the vmap layer. 1661 */ 1662 void vm_unmap_aliases(void) 1663 { 1664 unsigned long start = ULONG_MAX, end = 0; 1665 int flush = 0; 1666 1667 _vm_unmap_aliases(start, end, flush); 1668 } 1669 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1670 1671 /** 1672 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1673 * @mem: the pointer returned by vm_map_ram 1674 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1675 */ 1676 void vm_unmap_ram(const void *mem, unsigned int count) 1677 { 1678 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1679 unsigned long addr = (unsigned long)mem; 1680 struct vmap_area *va; 1681 1682 might_sleep(); 1683 BUG_ON(!addr); 1684 BUG_ON(addr < VMALLOC_START); 1685 BUG_ON(addr > VMALLOC_END); 1686 BUG_ON(!PAGE_ALIGNED(addr)); 1687 1688 if (likely(count <= VMAP_MAX_ALLOC)) { 1689 debug_check_no_locks_freed(mem, size); 1690 vb_free(mem, size); 1691 return; 1692 } 1693 1694 va = find_vmap_area(addr); 1695 BUG_ON(!va); 1696 debug_check_no_locks_freed((void *)va->va_start, 1697 (va->va_end - va->va_start)); 1698 free_unmap_vmap_area(va); 1699 } 1700 EXPORT_SYMBOL(vm_unmap_ram); 1701 1702 /** 1703 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1704 * @pages: an array of pointers to the pages to be mapped 1705 * @count: number of pages 1706 * @node: prefer to allocate data structures on this node 1707 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1708 * 1709 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1710 * faster than vmap so it's good. But if you mix long-life and short-life 1711 * objects with vm_map_ram(), it could consume lots of address space through 1712 * fragmentation (especially on a 32bit machine). You could see failures in 1713 * the end. Please use this function for short-lived objects. 1714 * 1715 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1716 */ 1717 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1718 { 1719 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1720 unsigned long addr; 1721 void *mem; 1722 1723 if (likely(count <= VMAP_MAX_ALLOC)) { 1724 mem = vb_alloc(size, GFP_KERNEL); 1725 if (IS_ERR(mem)) 1726 return NULL; 1727 addr = (unsigned long)mem; 1728 } else { 1729 struct vmap_area *va; 1730 va = alloc_vmap_area(size, PAGE_SIZE, 1731 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1732 if (IS_ERR(va)) 1733 return NULL; 1734 1735 addr = va->va_start; 1736 mem = (void *)addr; 1737 } 1738 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1739 vm_unmap_ram(mem, count); 1740 return NULL; 1741 } 1742 return mem; 1743 } 1744 EXPORT_SYMBOL(vm_map_ram); 1745 1746 static struct vm_struct *vmlist __initdata; 1747 1748 /** 1749 * vm_area_add_early - add vmap area early during boot 1750 * @vm: vm_struct to add 1751 * 1752 * This function is used to add fixed kernel vm area to vmlist before 1753 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1754 * should contain proper values and the other fields should be zero. 1755 * 1756 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1757 */ 1758 void __init vm_area_add_early(struct vm_struct *vm) 1759 { 1760 struct vm_struct *tmp, **p; 1761 1762 BUG_ON(vmap_initialized); 1763 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1764 if (tmp->addr >= vm->addr) { 1765 BUG_ON(tmp->addr < vm->addr + vm->size); 1766 break; 1767 } else 1768 BUG_ON(tmp->addr + tmp->size > vm->addr); 1769 } 1770 vm->next = *p; 1771 *p = vm; 1772 } 1773 1774 /** 1775 * vm_area_register_early - register vmap area early during boot 1776 * @vm: vm_struct to register 1777 * @align: requested alignment 1778 * 1779 * This function is used to register kernel vm area before 1780 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1781 * proper values on entry and other fields should be zero. On return, 1782 * vm->addr contains the allocated address. 1783 * 1784 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1785 */ 1786 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1787 { 1788 static size_t vm_init_off __initdata; 1789 unsigned long addr; 1790 1791 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1792 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1793 1794 vm->addr = (void *)addr; 1795 1796 vm_area_add_early(vm); 1797 } 1798 1799 static void vmap_init_free_space(void) 1800 { 1801 unsigned long vmap_start = 1; 1802 const unsigned long vmap_end = ULONG_MAX; 1803 struct vmap_area *busy, *free; 1804 1805 /* 1806 * B F B B B F 1807 * -|-----|.....|-----|-----|-----|.....|- 1808 * | The KVA space | 1809 * |<--------------------------------->| 1810 */ 1811 list_for_each_entry(busy, &vmap_area_list, list) { 1812 if (busy->va_start - vmap_start > 0) { 1813 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1814 if (!WARN_ON_ONCE(!free)) { 1815 free->va_start = vmap_start; 1816 free->va_end = busy->va_start; 1817 1818 insert_vmap_area_augment(free, NULL, 1819 &free_vmap_area_root, 1820 &free_vmap_area_list); 1821 } 1822 } 1823 1824 vmap_start = busy->va_end; 1825 } 1826 1827 if (vmap_end - vmap_start > 0) { 1828 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1829 if (!WARN_ON_ONCE(!free)) { 1830 free->va_start = vmap_start; 1831 free->va_end = vmap_end; 1832 1833 insert_vmap_area_augment(free, NULL, 1834 &free_vmap_area_root, 1835 &free_vmap_area_list); 1836 } 1837 } 1838 } 1839 1840 void __init vmalloc_init(void) 1841 { 1842 struct vmap_area *va; 1843 struct vm_struct *tmp; 1844 int i; 1845 1846 /* 1847 * Create the cache for vmap_area objects. 1848 */ 1849 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 1850 1851 for_each_possible_cpu(i) { 1852 struct vmap_block_queue *vbq; 1853 struct vfree_deferred *p; 1854 1855 vbq = &per_cpu(vmap_block_queue, i); 1856 spin_lock_init(&vbq->lock); 1857 INIT_LIST_HEAD(&vbq->free); 1858 p = &per_cpu(vfree_deferred, i); 1859 init_llist_head(&p->list); 1860 INIT_WORK(&p->wq, free_work); 1861 } 1862 1863 /* Import existing vmlist entries. */ 1864 for (tmp = vmlist; tmp; tmp = tmp->next) { 1865 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1866 if (WARN_ON_ONCE(!va)) 1867 continue; 1868 1869 va->flags = VM_VM_AREA; 1870 va->va_start = (unsigned long)tmp->addr; 1871 va->va_end = va->va_start + tmp->size; 1872 va->vm = tmp; 1873 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1874 } 1875 1876 /* 1877 * Now we can initialize a free vmap space. 1878 */ 1879 vmap_init_free_space(); 1880 vmap_initialized = true; 1881 } 1882 1883 /** 1884 * map_kernel_range_noflush - map kernel VM area with the specified pages 1885 * @addr: start of the VM area to map 1886 * @size: size of the VM area to map 1887 * @prot: page protection flags to use 1888 * @pages: pages to map 1889 * 1890 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1891 * specify should have been allocated using get_vm_area() and its 1892 * friends. 1893 * 1894 * NOTE: 1895 * This function does NOT do any cache flushing. The caller is 1896 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1897 * before calling this function. 1898 * 1899 * RETURNS: 1900 * The number of pages mapped on success, -errno on failure. 1901 */ 1902 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1903 pgprot_t prot, struct page **pages) 1904 { 1905 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1906 } 1907 1908 /** 1909 * unmap_kernel_range_noflush - unmap kernel VM area 1910 * @addr: start of the VM area to unmap 1911 * @size: size of the VM area to unmap 1912 * 1913 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1914 * specify should have been allocated using get_vm_area() and its 1915 * friends. 1916 * 1917 * NOTE: 1918 * This function does NOT do any cache flushing. The caller is 1919 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1920 * before calling this function and flush_tlb_kernel_range() after. 1921 */ 1922 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1923 { 1924 vunmap_page_range(addr, addr + size); 1925 } 1926 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1927 1928 /** 1929 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1930 * @addr: start of the VM area to unmap 1931 * @size: size of the VM area to unmap 1932 * 1933 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1934 * the unmapping and tlb after. 1935 */ 1936 void unmap_kernel_range(unsigned long addr, unsigned long size) 1937 { 1938 unsigned long end = addr + size; 1939 1940 flush_cache_vunmap(addr, end); 1941 vunmap_page_range(addr, end); 1942 flush_tlb_kernel_range(addr, end); 1943 } 1944 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1945 1946 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1947 { 1948 unsigned long addr = (unsigned long)area->addr; 1949 unsigned long end = addr + get_vm_area_size(area); 1950 int err; 1951 1952 err = vmap_page_range(addr, end, prot, pages); 1953 1954 return err > 0 ? 0 : err; 1955 } 1956 EXPORT_SYMBOL_GPL(map_vm_area); 1957 1958 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1959 unsigned long flags, const void *caller) 1960 { 1961 spin_lock(&vmap_area_lock); 1962 vm->flags = flags; 1963 vm->addr = (void *)va->va_start; 1964 vm->size = va->va_end - va->va_start; 1965 vm->caller = caller; 1966 va->vm = vm; 1967 va->flags |= VM_VM_AREA; 1968 spin_unlock(&vmap_area_lock); 1969 } 1970 1971 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1972 { 1973 /* 1974 * Before removing VM_UNINITIALIZED, 1975 * we should make sure that vm has proper values. 1976 * Pair with smp_rmb() in show_numa_info(). 1977 */ 1978 smp_wmb(); 1979 vm->flags &= ~VM_UNINITIALIZED; 1980 } 1981 1982 static struct vm_struct *__get_vm_area_node(unsigned long size, 1983 unsigned long align, unsigned long flags, unsigned long start, 1984 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1985 { 1986 struct vmap_area *va; 1987 struct vm_struct *area; 1988 1989 BUG_ON(in_interrupt()); 1990 size = PAGE_ALIGN(size); 1991 if (unlikely(!size)) 1992 return NULL; 1993 1994 if (flags & VM_IOREMAP) 1995 align = 1ul << clamp_t(int, get_count_order_long(size), 1996 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1997 1998 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1999 if (unlikely(!area)) 2000 return NULL; 2001 2002 if (!(flags & VM_NO_GUARD)) 2003 size += PAGE_SIZE; 2004 2005 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2006 if (IS_ERR(va)) { 2007 kfree(area); 2008 return NULL; 2009 } 2010 2011 setup_vmalloc_vm(area, va, flags, caller); 2012 2013 return area; 2014 } 2015 2016 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 2017 unsigned long start, unsigned long end) 2018 { 2019 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2020 GFP_KERNEL, __builtin_return_address(0)); 2021 } 2022 EXPORT_SYMBOL_GPL(__get_vm_area); 2023 2024 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2025 unsigned long start, unsigned long end, 2026 const void *caller) 2027 { 2028 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2029 GFP_KERNEL, caller); 2030 } 2031 2032 /** 2033 * get_vm_area - reserve a contiguous kernel virtual area 2034 * @size: size of the area 2035 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2036 * 2037 * Search an area of @size in the kernel virtual mapping area, 2038 * and reserved it for out purposes. Returns the area descriptor 2039 * on success or %NULL on failure. 2040 * 2041 * Return: the area descriptor on success or %NULL on failure. 2042 */ 2043 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2044 { 2045 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2046 NUMA_NO_NODE, GFP_KERNEL, 2047 __builtin_return_address(0)); 2048 } 2049 2050 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2051 const void *caller) 2052 { 2053 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2054 NUMA_NO_NODE, GFP_KERNEL, caller); 2055 } 2056 2057 /** 2058 * find_vm_area - find a continuous kernel virtual area 2059 * @addr: base address 2060 * 2061 * Search for the kernel VM area starting at @addr, and return it. 2062 * It is up to the caller to do all required locking to keep the returned 2063 * pointer valid. 2064 * 2065 * Return: pointer to the found area or %NULL on faulure 2066 */ 2067 struct vm_struct *find_vm_area(const void *addr) 2068 { 2069 struct vmap_area *va; 2070 2071 va = find_vmap_area((unsigned long)addr); 2072 if (va && va->flags & VM_VM_AREA) 2073 return va->vm; 2074 2075 return NULL; 2076 } 2077 2078 /** 2079 * remove_vm_area - find and remove a continuous kernel virtual area 2080 * @addr: base address 2081 * 2082 * Search for the kernel VM area starting at @addr, and remove it. 2083 * This function returns the found VM area, but using it is NOT safe 2084 * on SMP machines, except for its size or flags. 2085 * 2086 * Return: pointer to the found area or %NULL on faulure 2087 */ 2088 struct vm_struct *remove_vm_area(const void *addr) 2089 { 2090 struct vmap_area *va; 2091 2092 might_sleep(); 2093 2094 va = find_vmap_area((unsigned long)addr); 2095 if (va && va->flags & VM_VM_AREA) { 2096 struct vm_struct *vm = va->vm; 2097 2098 spin_lock(&vmap_area_lock); 2099 va->vm = NULL; 2100 va->flags &= ~VM_VM_AREA; 2101 va->flags |= VM_LAZY_FREE; 2102 spin_unlock(&vmap_area_lock); 2103 2104 kasan_free_shadow(vm); 2105 free_unmap_vmap_area(va); 2106 2107 return vm; 2108 } 2109 return NULL; 2110 } 2111 2112 static inline void set_area_direct_map(const struct vm_struct *area, 2113 int (*set_direct_map)(struct page *page)) 2114 { 2115 int i; 2116 2117 for (i = 0; i < area->nr_pages; i++) 2118 if (page_address(area->pages[i])) 2119 set_direct_map(area->pages[i]); 2120 } 2121 2122 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2123 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2124 { 2125 unsigned long addr = (unsigned long)area->addr; 2126 unsigned long start = ULONG_MAX, end = 0; 2127 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2128 int i; 2129 2130 /* 2131 * The below block can be removed when all architectures that have 2132 * direct map permissions also have set_direct_map_() implementations. 2133 * This is concerned with resetting the direct map any an vm alias with 2134 * execute permissions, without leaving a RW+X window. 2135 */ 2136 if (flush_reset && !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 2137 set_memory_nx(addr, area->nr_pages); 2138 set_memory_rw(addr, area->nr_pages); 2139 } 2140 2141 remove_vm_area(area->addr); 2142 2143 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2144 if (!flush_reset) 2145 return; 2146 2147 /* 2148 * If not deallocating pages, just do the flush of the VM area and 2149 * return. 2150 */ 2151 if (!deallocate_pages) { 2152 vm_unmap_aliases(); 2153 return; 2154 } 2155 2156 /* 2157 * If execution gets here, flush the vm mapping and reset the direct 2158 * map. Find the start and end range of the direct mappings to make sure 2159 * the vm_unmap_aliases() flush includes the direct map. 2160 */ 2161 for (i = 0; i < area->nr_pages; i++) { 2162 if (page_address(area->pages[i])) { 2163 start = min(addr, start); 2164 end = max(addr, end); 2165 } 2166 } 2167 2168 /* 2169 * Set direct map to something invalid so that it won't be cached if 2170 * there are any accesses after the TLB flush, then flush the TLB and 2171 * reset the direct map permissions to the default. 2172 */ 2173 set_area_direct_map(area, set_direct_map_invalid_noflush); 2174 _vm_unmap_aliases(start, end, 1); 2175 set_area_direct_map(area, set_direct_map_default_noflush); 2176 } 2177 2178 static void __vunmap(const void *addr, int deallocate_pages) 2179 { 2180 struct vm_struct *area; 2181 2182 if (!addr) 2183 return; 2184 2185 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2186 addr)) 2187 return; 2188 2189 area = find_vm_area(addr); 2190 if (unlikely(!area)) { 2191 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2192 addr); 2193 return; 2194 } 2195 2196 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2197 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2198 2199 vm_remove_mappings(area, deallocate_pages); 2200 2201 if (deallocate_pages) { 2202 int i; 2203 2204 for (i = 0; i < area->nr_pages; i++) { 2205 struct page *page = area->pages[i]; 2206 2207 BUG_ON(!page); 2208 __free_pages(page, 0); 2209 } 2210 2211 kvfree(area->pages); 2212 } 2213 2214 kfree(area); 2215 return; 2216 } 2217 2218 static inline void __vfree_deferred(const void *addr) 2219 { 2220 /* 2221 * Use raw_cpu_ptr() because this can be called from preemptible 2222 * context. Preemption is absolutely fine here, because the llist_add() 2223 * implementation is lockless, so it works even if we are adding to 2224 * nother cpu's list. schedule_work() should be fine with this too. 2225 */ 2226 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2227 2228 if (llist_add((struct llist_node *)addr, &p->list)) 2229 schedule_work(&p->wq); 2230 } 2231 2232 /** 2233 * vfree_atomic - release memory allocated by vmalloc() 2234 * @addr: memory base address 2235 * 2236 * This one is just like vfree() but can be called in any atomic context 2237 * except NMIs. 2238 */ 2239 void vfree_atomic(const void *addr) 2240 { 2241 BUG_ON(in_nmi()); 2242 2243 kmemleak_free(addr); 2244 2245 if (!addr) 2246 return; 2247 __vfree_deferred(addr); 2248 } 2249 2250 static void __vfree(const void *addr) 2251 { 2252 if (unlikely(in_interrupt())) 2253 __vfree_deferred(addr); 2254 else 2255 __vunmap(addr, 1); 2256 } 2257 2258 /** 2259 * vfree - release memory allocated by vmalloc() 2260 * @addr: memory base address 2261 * 2262 * Free the virtually continuous memory area starting at @addr, as 2263 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 2264 * NULL, no operation is performed. 2265 * 2266 * Must not be called in NMI context (strictly speaking, only if we don't 2267 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2268 * conventions for vfree() arch-depenedent would be a really bad idea) 2269 * 2270 * May sleep if called *not* from interrupt context. 2271 * 2272 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 2273 */ 2274 void vfree(const void *addr) 2275 { 2276 BUG_ON(in_nmi()); 2277 2278 kmemleak_free(addr); 2279 2280 might_sleep_if(!in_interrupt()); 2281 2282 if (!addr) 2283 return; 2284 2285 __vfree(addr); 2286 } 2287 EXPORT_SYMBOL(vfree); 2288 2289 /** 2290 * vunmap - release virtual mapping obtained by vmap() 2291 * @addr: memory base address 2292 * 2293 * Free the virtually contiguous memory area starting at @addr, 2294 * which was created from the page array passed to vmap(). 2295 * 2296 * Must not be called in interrupt context. 2297 */ 2298 void vunmap(const void *addr) 2299 { 2300 BUG_ON(in_interrupt()); 2301 might_sleep(); 2302 if (addr) 2303 __vunmap(addr, 0); 2304 } 2305 EXPORT_SYMBOL(vunmap); 2306 2307 /** 2308 * vmap - map an array of pages into virtually contiguous space 2309 * @pages: array of page pointers 2310 * @count: number of pages to map 2311 * @flags: vm_area->flags 2312 * @prot: page protection for the mapping 2313 * 2314 * Maps @count pages from @pages into contiguous kernel virtual 2315 * space. 2316 * 2317 * Return: the address of the area or %NULL on failure 2318 */ 2319 void *vmap(struct page **pages, unsigned int count, 2320 unsigned long flags, pgprot_t prot) 2321 { 2322 struct vm_struct *area; 2323 unsigned long size; /* In bytes */ 2324 2325 might_sleep(); 2326 2327 if (count > totalram_pages()) 2328 return NULL; 2329 2330 size = (unsigned long)count << PAGE_SHIFT; 2331 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2332 if (!area) 2333 return NULL; 2334 2335 if (map_vm_area(area, prot, pages)) { 2336 vunmap(area->addr); 2337 return NULL; 2338 } 2339 2340 return area->addr; 2341 } 2342 EXPORT_SYMBOL(vmap); 2343 2344 static void *__vmalloc_node(unsigned long size, unsigned long align, 2345 gfp_t gfp_mask, pgprot_t prot, 2346 int node, const void *caller); 2347 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2348 pgprot_t prot, int node) 2349 { 2350 struct page **pages; 2351 unsigned int nr_pages, array_size, i; 2352 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2353 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 2354 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 2355 0 : 2356 __GFP_HIGHMEM; 2357 2358 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 2359 array_size = (nr_pages * sizeof(struct page *)); 2360 2361 area->nr_pages = nr_pages; 2362 /* Please note that the recursion is strictly bounded. */ 2363 if (array_size > PAGE_SIZE) { 2364 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 2365 PAGE_KERNEL, node, area->caller); 2366 } else { 2367 pages = kmalloc_node(array_size, nested_gfp, node); 2368 } 2369 area->pages = pages; 2370 if (!area->pages) { 2371 remove_vm_area(area->addr); 2372 kfree(area); 2373 return NULL; 2374 } 2375 2376 for (i = 0; i < area->nr_pages; i++) { 2377 struct page *page; 2378 2379 if (node == NUMA_NO_NODE) 2380 page = alloc_page(alloc_mask|highmem_mask); 2381 else 2382 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 2383 2384 if (unlikely(!page)) { 2385 /* Successfully allocated i pages, free them in __vunmap() */ 2386 area->nr_pages = i; 2387 goto fail; 2388 } 2389 area->pages[i] = page; 2390 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 2391 cond_resched(); 2392 } 2393 2394 if (map_vm_area(area, prot, pages)) 2395 goto fail; 2396 return area->addr; 2397 2398 fail: 2399 warn_alloc(gfp_mask, NULL, 2400 "vmalloc: allocation failure, allocated %ld of %ld bytes", 2401 (area->nr_pages*PAGE_SIZE), area->size); 2402 __vfree(area->addr); 2403 return NULL; 2404 } 2405 2406 /** 2407 * __vmalloc_node_range - allocate virtually contiguous memory 2408 * @size: allocation size 2409 * @align: desired alignment 2410 * @start: vm area range start 2411 * @end: vm area range end 2412 * @gfp_mask: flags for the page level allocator 2413 * @prot: protection mask for the allocated pages 2414 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2415 * @node: node to use for allocation or NUMA_NO_NODE 2416 * @caller: caller's return address 2417 * 2418 * Allocate enough pages to cover @size from the page level 2419 * allocator with @gfp_mask flags. Map them into contiguous 2420 * kernel virtual space, using a pagetable protection of @prot. 2421 * 2422 * Return: the address of the area or %NULL on failure 2423 */ 2424 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2425 unsigned long start, unsigned long end, gfp_t gfp_mask, 2426 pgprot_t prot, unsigned long vm_flags, int node, 2427 const void *caller) 2428 { 2429 struct vm_struct *area; 2430 void *addr; 2431 unsigned long real_size = size; 2432 2433 size = PAGE_ALIGN(size); 2434 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 2435 goto fail; 2436 2437 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 2438 vm_flags, start, end, node, gfp_mask, caller); 2439 if (!area) 2440 goto fail; 2441 2442 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 2443 if (!addr) 2444 return NULL; 2445 2446 /* 2447 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2448 * flag. It means that vm_struct is not fully initialized. 2449 * Now, it is fully initialized, so remove this flag here. 2450 */ 2451 clear_vm_uninitialized_flag(area); 2452 2453 kmemleak_vmalloc(area, size, gfp_mask); 2454 2455 return addr; 2456 2457 fail: 2458 warn_alloc(gfp_mask, NULL, 2459 "vmalloc: allocation failure: %lu bytes", real_size); 2460 return NULL; 2461 } 2462 2463 /* 2464 * This is only for performance analysis of vmalloc and stress purpose. 2465 * It is required by vmalloc test module, therefore do not use it other 2466 * than that. 2467 */ 2468 #ifdef CONFIG_TEST_VMALLOC_MODULE 2469 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 2470 #endif 2471 2472 /** 2473 * __vmalloc_node - allocate virtually contiguous memory 2474 * @size: allocation size 2475 * @align: desired alignment 2476 * @gfp_mask: flags for the page level allocator 2477 * @prot: protection mask for the allocated pages 2478 * @node: node to use for allocation or NUMA_NO_NODE 2479 * @caller: caller's return address 2480 * 2481 * Allocate enough pages to cover @size from the page level 2482 * allocator with @gfp_mask flags. Map them into contiguous 2483 * kernel virtual space, using a pagetable protection of @prot. 2484 * 2485 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 2486 * and __GFP_NOFAIL are not supported 2487 * 2488 * Any use of gfp flags outside of GFP_KERNEL should be consulted 2489 * with mm people. 2490 * 2491 * Return: pointer to the allocated memory or %NULL on error 2492 */ 2493 static void *__vmalloc_node(unsigned long size, unsigned long align, 2494 gfp_t gfp_mask, pgprot_t prot, 2495 int node, const void *caller) 2496 { 2497 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 2498 gfp_mask, prot, 0, node, caller); 2499 } 2500 2501 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 2502 { 2503 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 2504 __builtin_return_address(0)); 2505 } 2506 EXPORT_SYMBOL(__vmalloc); 2507 2508 static inline void *__vmalloc_node_flags(unsigned long size, 2509 int node, gfp_t flags) 2510 { 2511 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 2512 node, __builtin_return_address(0)); 2513 } 2514 2515 2516 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 2517 void *caller) 2518 { 2519 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 2520 } 2521 2522 /** 2523 * vmalloc - allocate virtually contiguous memory 2524 * @size: allocation size 2525 * 2526 * Allocate enough pages to cover @size from the page level 2527 * allocator and map them into contiguous kernel virtual space. 2528 * 2529 * For tight control over page level allocator and protection flags 2530 * use __vmalloc() instead. 2531 * 2532 * Return: pointer to the allocated memory or %NULL on error 2533 */ 2534 void *vmalloc(unsigned long size) 2535 { 2536 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2537 GFP_KERNEL); 2538 } 2539 EXPORT_SYMBOL(vmalloc); 2540 2541 /** 2542 * vzalloc - allocate virtually contiguous memory with zero fill 2543 * @size: allocation size 2544 * 2545 * Allocate enough pages to cover @size from the page level 2546 * allocator and map them into contiguous kernel virtual space. 2547 * The memory allocated is set to zero. 2548 * 2549 * For tight control over page level allocator and protection flags 2550 * use __vmalloc() instead. 2551 * 2552 * Return: pointer to the allocated memory or %NULL on error 2553 */ 2554 void *vzalloc(unsigned long size) 2555 { 2556 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2557 GFP_KERNEL | __GFP_ZERO); 2558 } 2559 EXPORT_SYMBOL(vzalloc); 2560 2561 /** 2562 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 2563 * @size: allocation size 2564 * 2565 * The resulting memory area is zeroed so it can be mapped to userspace 2566 * without leaking data. 2567 * 2568 * Return: pointer to the allocated memory or %NULL on error 2569 */ 2570 void *vmalloc_user(unsigned long size) 2571 { 2572 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2573 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 2574 VM_USERMAP, NUMA_NO_NODE, 2575 __builtin_return_address(0)); 2576 } 2577 EXPORT_SYMBOL(vmalloc_user); 2578 2579 /** 2580 * vmalloc_node - allocate memory on a specific node 2581 * @size: allocation size 2582 * @node: numa node 2583 * 2584 * Allocate enough pages to cover @size from the page level 2585 * allocator and map them into contiguous kernel virtual space. 2586 * 2587 * For tight control over page level allocator and protection flags 2588 * use __vmalloc() instead. 2589 * 2590 * Return: pointer to the allocated memory or %NULL on error 2591 */ 2592 void *vmalloc_node(unsigned long size, int node) 2593 { 2594 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 2595 node, __builtin_return_address(0)); 2596 } 2597 EXPORT_SYMBOL(vmalloc_node); 2598 2599 /** 2600 * vzalloc_node - allocate memory on a specific node with zero fill 2601 * @size: allocation size 2602 * @node: numa node 2603 * 2604 * Allocate enough pages to cover @size from the page level 2605 * allocator and map them into contiguous kernel virtual space. 2606 * The memory allocated is set to zero. 2607 * 2608 * For tight control over page level allocator and protection flags 2609 * use __vmalloc_node() instead. 2610 * 2611 * Return: pointer to the allocated memory or %NULL on error 2612 */ 2613 void *vzalloc_node(unsigned long size, int node) 2614 { 2615 return __vmalloc_node_flags(size, node, 2616 GFP_KERNEL | __GFP_ZERO); 2617 } 2618 EXPORT_SYMBOL(vzalloc_node); 2619 2620 /** 2621 * vmalloc_exec - allocate virtually contiguous, executable memory 2622 * @size: allocation size 2623 * 2624 * Kernel-internal function to allocate enough pages to cover @size 2625 * the page level allocator and map them into contiguous and 2626 * executable kernel virtual space. 2627 * 2628 * For tight control over page level allocator and protection flags 2629 * use __vmalloc() instead. 2630 * 2631 * Return: pointer to the allocated memory or %NULL on error 2632 */ 2633 void *vmalloc_exec(unsigned long size) 2634 { 2635 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2636 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2637 NUMA_NO_NODE, __builtin_return_address(0)); 2638 } 2639 2640 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2641 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2642 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2643 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2644 #else 2645 /* 2646 * 64b systems should always have either DMA or DMA32 zones. For others 2647 * GFP_DMA32 should do the right thing and use the normal zone. 2648 */ 2649 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2650 #endif 2651 2652 /** 2653 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2654 * @size: allocation size 2655 * 2656 * Allocate enough 32bit PA addressable pages to cover @size from the 2657 * page level allocator and map them into contiguous kernel virtual space. 2658 * 2659 * Return: pointer to the allocated memory or %NULL on error 2660 */ 2661 void *vmalloc_32(unsigned long size) 2662 { 2663 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 2664 NUMA_NO_NODE, __builtin_return_address(0)); 2665 } 2666 EXPORT_SYMBOL(vmalloc_32); 2667 2668 /** 2669 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2670 * @size: allocation size 2671 * 2672 * The resulting memory area is 32bit addressable and zeroed so it can be 2673 * mapped to userspace without leaking data. 2674 * 2675 * Return: pointer to the allocated memory or %NULL on error 2676 */ 2677 void *vmalloc_32_user(unsigned long size) 2678 { 2679 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2680 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2681 VM_USERMAP, NUMA_NO_NODE, 2682 __builtin_return_address(0)); 2683 } 2684 EXPORT_SYMBOL(vmalloc_32_user); 2685 2686 /* 2687 * small helper routine , copy contents to buf from addr. 2688 * If the page is not present, fill zero. 2689 */ 2690 2691 static int aligned_vread(char *buf, char *addr, unsigned long count) 2692 { 2693 struct page *p; 2694 int copied = 0; 2695 2696 while (count) { 2697 unsigned long offset, length; 2698 2699 offset = offset_in_page(addr); 2700 length = PAGE_SIZE - offset; 2701 if (length > count) 2702 length = count; 2703 p = vmalloc_to_page(addr); 2704 /* 2705 * To do safe access to this _mapped_ area, we need 2706 * lock. But adding lock here means that we need to add 2707 * overhead of vmalloc()/vfree() calles for this _debug_ 2708 * interface, rarely used. Instead of that, we'll use 2709 * kmap() and get small overhead in this access function. 2710 */ 2711 if (p) { 2712 /* 2713 * we can expect USER0 is not used (see vread/vwrite's 2714 * function description) 2715 */ 2716 void *map = kmap_atomic(p); 2717 memcpy(buf, map + offset, length); 2718 kunmap_atomic(map); 2719 } else 2720 memset(buf, 0, length); 2721 2722 addr += length; 2723 buf += length; 2724 copied += length; 2725 count -= length; 2726 } 2727 return copied; 2728 } 2729 2730 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2731 { 2732 struct page *p; 2733 int copied = 0; 2734 2735 while (count) { 2736 unsigned long offset, length; 2737 2738 offset = offset_in_page(addr); 2739 length = PAGE_SIZE - offset; 2740 if (length > count) 2741 length = count; 2742 p = vmalloc_to_page(addr); 2743 /* 2744 * To do safe access to this _mapped_ area, we need 2745 * lock. But adding lock here means that we need to add 2746 * overhead of vmalloc()/vfree() calles for this _debug_ 2747 * interface, rarely used. Instead of that, we'll use 2748 * kmap() and get small overhead in this access function. 2749 */ 2750 if (p) { 2751 /* 2752 * we can expect USER0 is not used (see vread/vwrite's 2753 * function description) 2754 */ 2755 void *map = kmap_atomic(p); 2756 memcpy(map + offset, buf, length); 2757 kunmap_atomic(map); 2758 } 2759 addr += length; 2760 buf += length; 2761 copied += length; 2762 count -= length; 2763 } 2764 return copied; 2765 } 2766 2767 /** 2768 * vread() - read vmalloc area in a safe way. 2769 * @buf: buffer for reading data 2770 * @addr: vm address. 2771 * @count: number of bytes to be read. 2772 * 2773 * This function checks that addr is a valid vmalloc'ed area, and 2774 * copy data from that area to a given buffer. If the given memory range 2775 * of [addr...addr+count) includes some valid address, data is copied to 2776 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2777 * IOREMAP area is treated as memory hole and no copy is done. 2778 * 2779 * If [addr...addr+count) doesn't includes any intersects with alive 2780 * vm_struct area, returns 0. @buf should be kernel's buffer. 2781 * 2782 * Note: In usual ops, vread() is never necessary because the caller 2783 * should know vmalloc() area is valid and can use memcpy(). 2784 * This is for routines which have to access vmalloc area without 2785 * any informaion, as /dev/kmem. 2786 * 2787 * Return: number of bytes for which addr and buf should be increased 2788 * (same number as @count) or %0 if [addr...addr+count) doesn't 2789 * include any intersection with valid vmalloc area 2790 */ 2791 long vread(char *buf, char *addr, unsigned long count) 2792 { 2793 struct vmap_area *va; 2794 struct vm_struct *vm; 2795 char *vaddr, *buf_start = buf; 2796 unsigned long buflen = count; 2797 unsigned long n; 2798 2799 /* Don't allow overflow */ 2800 if ((unsigned long) addr + count < count) 2801 count = -(unsigned long) addr; 2802 2803 spin_lock(&vmap_area_lock); 2804 list_for_each_entry(va, &vmap_area_list, list) { 2805 if (!count) 2806 break; 2807 2808 if (!(va->flags & VM_VM_AREA)) 2809 continue; 2810 2811 vm = va->vm; 2812 vaddr = (char *) vm->addr; 2813 if (addr >= vaddr + get_vm_area_size(vm)) 2814 continue; 2815 while (addr < vaddr) { 2816 if (count == 0) 2817 goto finished; 2818 *buf = '\0'; 2819 buf++; 2820 addr++; 2821 count--; 2822 } 2823 n = vaddr + get_vm_area_size(vm) - addr; 2824 if (n > count) 2825 n = count; 2826 if (!(vm->flags & VM_IOREMAP)) 2827 aligned_vread(buf, addr, n); 2828 else /* IOREMAP area is treated as memory hole */ 2829 memset(buf, 0, n); 2830 buf += n; 2831 addr += n; 2832 count -= n; 2833 } 2834 finished: 2835 spin_unlock(&vmap_area_lock); 2836 2837 if (buf == buf_start) 2838 return 0; 2839 /* zero-fill memory holes */ 2840 if (buf != buf_start + buflen) 2841 memset(buf, 0, buflen - (buf - buf_start)); 2842 2843 return buflen; 2844 } 2845 2846 /** 2847 * vwrite() - write vmalloc area in a safe way. 2848 * @buf: buffer for source data 2849 * @addr: vm address. 2850 * @count: number of bytes to be read. 2851 * 2852 * This function checks that addr is a valid vmalloc'ed area, and 2853 * copy data from a buffer to the given addr. If specified range of 2854 * [addr...addr+count) includes some valid address, data is copied from 2855 * proper area of @buf. If there are memory holes, no copy to hole. 2856 * IOREMAP area is treated as memory hole and no copy is done. 2857 * 2858 * If [addr...addr+count) doesn't includes any intersects with alive 2859 * vm_struct area, returns 0. @buf should be kernel's buffer. 2860 * 2861 * Note: In usual ops, vwrite() is never necessary because the caller 2862 * should know vmalloc() area is valid and can use memcpy(). 2863 * This is for routines which have to access vmalloc area without 2864 * any informaion, as /dev/kmem. 2865 * 2866 * Return: number of bytes for which addr and buf should be 2867 * increased (same number as @count) or %0 if [addr...addr+count) 2868 * doesn't include any intersection with valid vmalloc area 2869 */ 2870 long vwrite(char *buf, char *addr, unsigned long count) 2871 { 2872 struct vmap_area *va; 2873 struct vm_struct *vm; 2874 char *vaddr; 2875 unsigned long n, buflen; 2876 int copied = 0; 2877 2878 /* Don't allow overflow */ 2879 if ((unsigned long) addr + count < count) 2880 count = -(unsigned long) addr; 2881 buflen = count; 2882 2883 spin_lock(&vmap_area_lock); 2884 list_for_each_entry(va, &vmap_area_list, list) { 2885 if (!count) 2886 break; 2887 2888 if (!(va->flags & VM_VM_AREA)) 2889 continue; 2890 2891 vm = va->vm; 2892 vaddr = (char *) vm->addr; 2893 if (addr >= vaddr + get_vm_area_size(vm)) 2894 continue; 2895 while (addr < vaddr) { 2896 if (count == 0) 2897 goto finished; 2898 buf++; 2899 addr++; 2900 count--; 2901 } 2902 n = vaddr + get_vm_area_size(vm) - addr; 2903 if (n > count) 2904 n = count; 2905 if (!(vm->flags & VM_IOREMAP)) { 2906 aligned_vwrite(buf, addr, n); 2907 copied++; 2908 } 2909 buf += n; 2910 addr += n; 2911 count -= n; 2912 } 2913 finished: 2914 spin_unlock(&vmap_area_lock); 2915 if (!copied) 2916 return 0; 2917 return buflen; 2918 } 2919 2920 /** 2921 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2922 * @vma: vma to cover 2923 * @uaddr: target user address to start at 2924 * @kaddr: virtual address of vmalloc kernel memory 2925 * @size: size of map area 2926 * 2927 * Returns: 0 for success, -Exxx on failure 2928 * 2929 * This function checks that @kaddr is a valid vmalloc'ed area, 2930 * and that it is big enough to cover the range starting at 2931 * @uaddr in @vma. Will return failure if that criteria isn't 2932 * met. 2933 * 2934 * Similar to remap_pfn_range() (see mm/memory.c) 2935 */ 2936 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2937 void *kaddr, unsigned long size) 2938 { 2939 struct vm_struct *area; 2940 2941 size = PAGE_ALIGN(size); 2942 2943 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2944 return -EINVAL; 2945 2946 area = find_vm_area(kaddr); 2947 if (!area) 2948 return -EINVAL; 2949 2950 if (!(area->flags & VM_USERMAP)) 2951 return -EINVAL; 2952 2953 if (kaddr + size > area->addr + get_vm_area_size(area)) 2954 return -EINVAL; 2955 2956 do { 2957 struct page *page = vmalloc_to_page(kaddr); 2958 int ret; 2959 2960 ret = vm_insert_page(vma, uaddr, page); 2961 if (ret) 2962 return ret; 2963 2964 uaddr += PAGE_SIZE; 2965 kaddr += PAGE_SIZE; 2966 size -= PAGE_SIZE; 2967 } while (size > 0); 2968 2969 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2970 2971 return 0; 2972 } 2973 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2974 2975 /** 2976 * remap_vmalloc_range - map vmalloc pages to userspace 2977 * @vma: vma to cover (map full range of vma) 2978 * @addr: vmalloc memory 2979 * @pgoff: number of pages into addr before first page to map 2980 * 2981 * Returns: 0 for success, -Exxx on failure 2982 * 2983 * This function checks that addr is a valid vmalloc'ed area, and 2984 * that it is big enough to cover the vma. Will return failure if 2985 * that criteria isn't met. 2986 * 2987 * Similar to remap_pfn_range() (see mm/memory.c) 2988 */ 2989 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2990 unsigned long pgoff) 2991 { 2992 return remap_vmalloc_range_partial(vma, vma->vm_start, 2993 addr + (pgoff << PAGE_SHIFT), 2994 vma->vm_end - vma->vm_start); 2995 } 2996 EXPORT_SYMBOL(remap_vmalloc_range); 2997 2998 /* 2999 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 3000 * have one. 3001 */ 3002 void __weak vmalloc_sync_all(void) 3003 { 3004 } 3005 3006 3007 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 3008 { 3009 pte_t ***p = data; 3010 3011 if (p) { 3012 *(*p) = pte; 3013 (*p)++; 3014 } 3015 return 0; 3016 } 3017 3018 /** 3019 * alloc_vm_area - allocate a range of kernel address space 3020 * @size: size of the area 3021 * @ptes: returns the PTEs for the address space 3022 * 3023 * Returns: NULL on failure, vm_struct on success 3024 * 3025 * This function reserves a range of kernel address space, and 3026 * allocates pagetables to map that range. No actual mappings 3027 * are created. 3028 * 3029 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 3030 * allocated for the VM area are returned. 3031 */ 3032 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 3033 { 3034 struct vm_struct *area; 3035 3036 area = get_vm_area_caller(size, VM_IOREMAP, 3037 __builtin_return_address(0)); 3038 if (area == NULL) 3039 return NULL; 3040 3041 /* 3042 * This ensures that page tables are constructed for this region 3043 * of kernel virtual address space and mapped into init_mm. 3044 */ 3045 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3046 size, f, ptes ? &ptes : NULL)) { 3047 free_vm_area(area); 3048 return NULL; 3049 } 3050 3051 return area; 3052 } 3053 EXPORT_SYMBOL_GPL(alloc_vm_area); 3054 3055 void free_vm_area(struct vm_struct *area) 3056 { 3057 struct vm_struct *ret; 3058 ret = remove_vm_area(area->addr); 3059 BUG_ON(ret != area); 3060 kfree(area); 3061 } 3062 EXPORT_SYMBOL_GPL(free_vm_area); 3063 3064 #ifdef CONFIG_SMP 3065 static struct vmap_area *node_to_va(struct rb_node *n) 3066 { 3067 return rb_entry_safe(n, struct vmap_area, rb_node); 3068 } 3069 3070 /** 3071 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3072 * @addr: target address 3073 * 3074 * Returns: vmap_area if it is found. If there is no such area 3075 * the first highest(reverse order) vmap_area is returned 3076 * i.e. va->va_start < addr && va->va_end < addr or NULL 3077 * if there are no any areas before @addr. 3078 */ 3079 static struct vmap_area * 3080 pvm_find_va_enclose_addr(unsigned long addr) 3081 { 3082 struct vmap_area *va, *tmp; 3083 struct rb_node *n; 3084 3085 n = free_vmap_area_root.rb_node; 3086 va = NULL; 3087 3088 while (n) { 3089 tmp = rb_entry(n, struct vmap_area, rb_node); 3090 if (tmp->va_start <= addr) { 3091 va = tmp; 3092 if (tmp->va_end >= addr) 3093 break; 3094 3095 n = n->rb_right; 3096 } else { 3097 n = n->rb_left; 3098 } 3099 } 3100 3101 return va; 3102 } 3103 3104 /** 3105 * pvm_determine_end_from_reverse - find the highest aligned address 3106 * of free block below VMALLOC_END 3107 * @va: 3108 * in - the VA we start the search(reverse order); 3109 * out - the VA with the highest aligned end address. 3110 * 3111 * Returns: determined end address within vmap_area 3112 */ 3113 static unsigned long 3114 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3115 { 3116 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3117 unsigned long addr; 3118 3119 if (likely(*va)) { 3120 list_for_each_entry_from_reverse((*va), 3121 &free_vmap_area_list, list) { 3122 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3123 if ((*va)->va_start < addr) 3124 return addr; 3125 } 3126 } 3127 3128 return 0; 3129 } 3130 3131 /** 3132 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3133 * @offsets: array containing offset of each area 3134 * @sizes: array containing size of each area 3135 * @nr_vms: the number of areas to allocate 3136 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3137 * 3138 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3139 * vm_structs on success, %NULL on failure 3140 * 3141 * Percpu allocator wants to use congruent vm areas so that it can 3142 * maintain the offsets among percpu areas. This function allocates 3143 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3144 * be scattered pretty far, distance between two areas easily going up 3145 * to gigabytes. To avoid interacting with regular vmallocs, these 3146 * areas are allocated from top. 3147 * 3148 * Despite its complicated look, this allocator is rather simple. It 3149 * does everything top-down and scans free blocks from the end looking 3150 * for matching base. While scanning, if any of the areas do not fit the 3151 * base address is pulled down to fit the area. Scanning is repeated till 3152 * all the areas fit and then all necessary data structures are inserted 3153 * and the result is returned. 3154 */ 3155 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3156 const size_t *sizes, int nr_vms, 3157 size_t align) 3158 { 3159 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3160 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3161 struct vmap_area **vas, *va; 3162 struct vm_struct **vms; 3163 int area, area2, last_area, term_area; 3164 unsigned long base, start, size, end, last_end; 3165 bool purged = false; 3166 enum fit_type type; 3167 3168 /* verify parameters and allocate data structures */ 3169 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3170 for (last_area = 0, area = 0; area < nr_vms; area++) { 3171 start = offsets[area]; 3172 end = start + sizes[area]; 3173 3174 /* is everything aligned properly? */ 3175 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3176 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3177 3178 /* detect the area with the highest address */ 3179 if (start > offsets[last_area]) 3180 last_area = area; 3181 3182 for (area2 = area + 1; area2 < nr_vms; area2++) { 3183 unsigned long start2 = offsets[area2]; 3184 unsigned long end2 = start2 + sizes[area2]; 3185 3186 BUG_ON(start2 < end && start < end2); 3187 } 3188 } 3189 last_end = offsets[last_area] + sizes[last_area]; 3190 3191 if (vmalloc_end - vmalloc_start < last_end) { 3192 WARN_ON(true); 3193 return NULL; 3194 } 3195 3196 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3197 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3198 if (!vas || !vms) 3199 goto err_free2; 3200 3201 for (area = 0; area < nr_vms; area++) { 3202 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3203 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3204 if (!vas[area] || !vms[area]) 3205 goto err_free; 3206 } 3207 retry: 3208 spin_lock(&vmap_area_lock); 3209 3210 /* start scanning - we scan from the top, begin with the last area */ 3211 area = term_area = last_area; 3212 start = offsets[area]; 3213 end = start + sizes[area]; 3214 3215 va = pvm_find_va_enclose_addr(vmalloc_end); 3216 base = pvm_determine_end_from_reverse(&va, align) - end; 3217 3218 while (true) { 3219 /* 3220 * base might have underflowed, add last_end before 3221 * comparing. 3222 */ 3223 if (base + last_end < vmalloc_start + last_end) 3224 goto overflow; 3225 3226 /* 3227 * Fitting base has not been found. 3228 */ 3229 if (va == NULL) 3230 goto overflow; 3231 3232 /* 3233 * If this VA does not fit, move base downwards and recheck. 3234 */ 3235 if (base + start < va->va_start || base + end > va->va_end) { 3236 va = node_to_va(rb_prev(&va->rb_node)); 3237 base = pvm_determine_end_from_reverse(&va, align) - end; 3238 term_area = area; 3239 continue; 3240 } 3241 3242 /* 3243 * This area fits, move on to the previous one. If 3244 * the previous one is the terminal one, we're done. 3245 */ 3246 area = (area + nr_vms - 1) % nr_vms; 3247 if (area == term_area) 3248 break; 3249 3250 start = offsets[area]; 3251 end = start + sizes[area]; 3252 va = pvm_find_va_enclose_addr(base + end); 3253 } 3254 3255 /* we've found a fitting base, insert all va's */ 3256 for (area = 0; area < nr_vms; area++) { 3257 int ret; 3258 3259 start = base + offsets[area]; 3260 size = sizes[area]; 3261 3262 va = pvm_find_va_enclose_addr(start); 3263 if (WARN_ON_ONCE(va == NULL)) 3264 /* It is a BUG(), but trigger recovery instead. */ 3265 goto recovery; 3266 3267 type = classify_va_fit_type(va, start, size); 3268 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3269 /* It is a BUG(), but trigger recovery instead. */ 3270 goto recovery; 3271 3272 ret = adjust_va_to_fit_type(va, start, size, type); 3273 if (unlikely(ret)) 3274 goto recovery; 3275 3276 /* Allocated area. */ 3277 va = vas[area]; 3278 va->va_start = start; 3279 va->va_end = start + size; 3280 3281 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 3282 } 3283 3284 spin_unlock(&vmap_area_lock); 3285 3286 /* insert all vm's */ 3287 for (area = 0; area < nr_vms; area++) 3288 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 3289 pcpu_get_vm_areas); 3290 3291 kfree(vas); 3292 return vms; 3293 3294 recovery: 3295 /* Remove previously inserted areas. */ 3296 while (area--) { 3297 __free_vmap_area(vas[area]); 3298 vas[area] = NULL; 3299 } 3300 3301 overflow: 3302 spin_unlock(&vmap_area_lock); 3303 if (!purged) { 3304 purge_vmap_area_lazy(); 3305 purged = true; 3306 3307 /* Before "retry", check if we recover. */ 3308 for (area = 0; area < nr_vms; area++) { 3309 if (vas[area]) 3310 continue; 3311 3312 vas[area] = kmem_cache_zalloc( 3313 vmap_area_cachep, GFP_KERNEL); 3314 if (!vas[area]) 3315 goto err_free; 3316 } 3317 3318 goto retry; 3319 } 3320 3321 err_free: 3322 for (area = 0; area < nr_vms; area++) { 3323 if (vas[area]) 3324 kmem_cache_free(vmap_area_cachep, vas[area]); 3325 3326 kfree(vms[area]); 3327 } 3328 err_free2: 3329 kfree(vas); 3330 kfree(vms); 3331 return NULL; 3332 } 3333 3334 /** 3335 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3336 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3337 * @nr_vms: the number of allocated areas 3338 * 3339 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3340 */ 3341 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3342 { 3343 int i; 3344 3345 for (i = 0; i < nr_vms; i++) 3346 free_vm_area(vms[i]); 3347 kfree(vms); 3348 } 3349 #endif /* CONFIG_SMP */ 3350 3351 #ifdef CONFIG_PROC_FS 3352 static void *s_start(struct seq_file *m, loff_t *pos) 3353 __acquires(&vmap_area_lock) 3354 { 3355 spin_lock(&vmap_area_lock); 3356 return seq_list_start(&vmap_area_list, *pos); 3357 } 3358 3359 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3360 { 3361 return seq_list_next(p, &vmap_area_list, pos); 3362 } 3363 3364 static void s_stop(struct seq_file *m, void *p) 3365 __releases(&vmap_area_lock) 3366 { 3367 spin_unlock(&vmap_area_lock); 3368 } 3369 3370 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3371 { 3372 if (IS_ENABLED(CONFIG_NUMA)) { 3373 unsigned int nr, *counters = m->private; 3374 3375 if (!counters) 3376 return; 3377 3378 if (v->flags & VM_UNINITIALIZED) 3379 return; 3380 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3381 smp_rmb(); 3382 3383 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3384 3385 for (nr = 0; nr < v->nr_pages; nr++) 3386 counters[page_to_nid(v->pages[nr])]++; 3387 3388 for_each_node_state(nr, N_HIGH_MEMORY) 3389 if (counters[nr]) 3390 seq_printf(m, " N%u=%u", nr, counters[nr]); 3391 } 3392 } 3393 3394 static int s_show(struct seq_file *m, void *p) 3395 { 3396 struct vmap_area *va; 3397 struct vm_struct *v; 3398 3399 va = list_entry(p, struct vmap_area, list); 3400 3401 /* 3402 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 3403 * behalf of vmap area is being tear down or vm_map_ram allocation. 3404 */ 3405 if (!(va->flags & VM_VM_AREA)) { 3406 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 3407 (void *)va->va_start, (void *)va->va_end, 3408 va->va_end - va->va_start, 3409 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 3410 3411 return 0; 3412 } 3413 3414 v = va->vm; 3415 3416 seq_printf(m, "0x%pK-0x%pK %7ld", 3417 v->addr, v->addr + v->size, v->size); 3418 3419 if (v->caller) 3420 seq_printf(m, " %pS", v->caller); 3421 3422 if (v->nr_pages) 3423 seq_printf(m, " pages=%d", v->nr_pages); 3424 3425 if (v->phys_addr) 3426 seq_printf(m, " phys=%pa", &v->phys_addr); 3427 3428 if (v->flags & VM_IOREMAP) 3429 seq_puts(m, " ioremap"); 3430 3431 if (v->flags & VM_ALLOC) 3432 seq_puts(m, " vmalloc"); 3433 3434 if (v->flags & VM_MAP) 3435 seq_puts(m, " vmap"); 3436 3437 if (v->flags & VM_USERMAP) 3438 seq_puts(m, " user"); 3439 3440 if (is_vmalloc_addr(v->pages)) 3441 seq_puts(m, " vpages"); 3442 3443 show_numa_info(m, v); 3444 seq_putc(m, '\n'); 3445 return 0; 3446 } 3447 3448 static const struct seq_operations vmalloc_op = { 3449 .start = s_start, 3450 .next = s_next, 3451 .stop = s_stop, 3452 .show = s_show, 3453 }; 3454 3455 static int __init proc_vmalloc_init(void) 3456 { 3457 if (IS_ENABLED(CONFIG_NUMA)) 3458 proc_create_seq_private("vmallocinfo", 0400, NULL, 3459 &vmalloc_op, 3460 nr_node_ids * sizeof(unsigned int), NULL); 3461 else 3462 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3463 return 0; 3464 } 3465 module_init(proc_vmalloc_init); 3466 3467 #endif 3468