1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 #include <linux/pgtable.h> 40 #include <linux/uaccess.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #include "internal.h" 47 #include "pgalloc-track.h" 48 49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 51 52 static int __init set_nohugeiomap(char *str) 53 { 54 ioremap_max_page_shift = PAGE_SHIFT; 55 return 0; 56 } 57 early_param("nohugeiomap", set_nohugeiomap); 58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 60 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 61 62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 63 static bool __ro_after_init vmap_allow_huge = true; 64 65 static int __init set_nohugevmalloc(char *str) 66 { 67 vmap_allow_huge = false; 68 return 0; 69 } 70 early_param("nohugevmalloc", set_nohugevmalloc); 71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 72 static const bool vmap_allow_huge = false; 73 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 74 75 bool is_vmalloc_addr(const void *x) 76 { 77 unsigned long addr = (unsigned long)x; 78 79 return addr >= VMALLOC_START && addr < VMALLOC_END; 80 } 81 EXPORT_SYMBOL(is_vmalloc_addr); 82 83 struct vfree_deferred { 84 struct llist_head list; 85 struct work_struct wq; 86 }; 87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 88 89 static void __vunmap(const void *, int); 90 91 static void free_work(struct work_struct *w) 92 { 93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 94 struct llist_node *t, *llnode; 95 96 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 97 __vunmap((void *)llnode, 1); 98 } 99 100 /*** Page table manipulation functions ***/ 101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 102 phys_addr_t phys_addr, pgprot_t prot, 103 unsigned int max_page_shift, pgtbl_mod_mask *mask) 104 { 105 pte_t *pte; 106 u64 pfn; 107 unsigned long size = PAGE_SIZE; 108 109 pfn = phys_addr >> PAGE_SHIFT; 110 pte = pte_alloc_kernel_track(pmd, addr, mask); 111 if (!pte) 112 return -ENOMEM; 113 do { 114 BUG_ON(!pte_none(*pte)); 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = pte_mkhuge(entry); 122 entry = arch_make_huge_pte(entry, ilog2(size), 0); 123 set_huge_pte_at(&init_mm, addr, pte, entry); 124 pfn += PFN_DOWN(size); 125 continue; 126 } 127 #endif 128 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 129 pfn++; 130 } while (pte += PFN_DOWN(size), addr += size, addr != end); 131 *mask |= PGTBL_PTE_MODIFIED; 132 return 0; 133 } 134 135 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 136 phys_addr_t phys_addr, pgprot_t prot, 137 unsigned int max_page_shift) 138 { 139 if (max_page_shift < PMD_SHIFT) 140 return 0; 141 142 if (!arch_vmap_pmd_supported(prot)) 143 return 0; 144 145 if ((end - addr) != PMD_SIZE) 146 return 0; 147 148 if (!IS_ALIGNED(addr, PMD_SIZE)) 149 return 0; 150 151 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 152 return 0; 153 154 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 155 return 0; 156 157 return pmd_set_huge(pmd, phys_addr, prot); 158 } 159 160 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 161 phys_addr_t phys_addr, pgprot_t prot, 162 unsigned int max_page_shift, pgtbl_mod_mask *mask) 163 { 164 pmd_t *pmd; 165 unsigned long next; 166 167 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 168 if (!pmd) 169 return -ENOMEM; 170 do { 171 next = pmd_addr_end(addr, end); 172 173 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 174 max_page_shift)) { 175 *mask |= PGTBL_PMD_MODIFIED; 176 continue; 177 } 178 179 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 180 return -ENOMEM; 181 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 182 return 0; 183 } 184 185 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 186 phys_addr_t phys_addr, pgprot_t prot, 187 unsigned int max_page_shift) 188 { 189 if (max_page_shift < PUD_SHIFT) 190 return 0; 191 192 if (!arch_vmap_pud_supported(prot)) 193 return 0; 194 195 if ((end - addr) != PUD_SIZE) 196 return 0; 197 198 if (!IS_ALIGNED(addr, PUD_SIZE)) 199 return 0; 200 201 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 202 return 0; 203 204 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 205 return 0; 206 207 return pud_set_huge(pud, phys_addr, prot); 208 } 209 210 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 211 phys_addr_t phys_addr, pgprot_t prot, 212 unsigned int max_page_shift, pgtbl_mod_mask *mask) 213 { 214 pud_t *pud; 215 unsigned long next; 216 217 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 218 if (!pud) 219 return -ENOMEM; 220 do { 221 next = pud_addr_end(addr, end); 222 223 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 224 max_page_shift)) { 225 *mask |= PGTBL_PUD_MODIFIED; 226 continue; 227 } 228 229 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 230 max_page_shift, mask)) 231 return -ENOMEM; 232 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 233 return 0; 234 } 235 236 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 237 phys_addr_t phys_addr, pgprot_t prot, 238 unsigned int max_page_shift) 239 { 240 if (max_page_shift < P4D_SHIFT) 241 return 0; 242 243 if (!arch_vmap_p4d_supported(prot)) 244 return 0; 245 246 if ((end - addr) != P4D_SIZE) 247 return 0; 248 249 if (!IS_ALIGNED(addr, P4D_SIZE)) 250 return 0; 251 252 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 253 return 0; 254 255 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 256 return 0; 257 258 return p4d_set_huge(p4d, phys_addr, prot); 259 } 260 261 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 262 phys_addr_t phys_addr, pgprot_t prot, 263 unsigned int max_page_shift, pgtbl_mod_mask *mask) 264 { 265 p4d_t *p4d; 266 unsigned long next; 267 268 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 269 if (!p4d) 270 return -ENOMEM; 271 do { 272 next = p4d_addr_end(addr, end); 273 274 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 275 max_page_shift)) { 276 *mask |= PGTBL_P4D_MODIFIED; 277 continue; 278 } 279 280 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 281 max_page_shift, mask)) 282 return -ENOMEM; 283 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 284 return 0; 285 } 286 287 static int vmap_range_noflush(unsigned long addr, unsigned long end, 288 phys_addr_t phys_addr, pgprot_t prot, 289 unsigned int max_page_shift) 290 { 291 pgd_t *pgd; 292 unsigned long start; 293 unsigned long next; 294 int err; 295 pgtbl_mod_mask mask = 0; 296 297 might_sleep(); 298 BUG_ON(addr >= end); 299 300 start = addr; 301 pgd = pgd_offset_k(addr); 302 do { 303 next = pgd_addr_end(addr, end); 304 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 305 max_page_shift, &mask); 306 if (err) 307 break; 308 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 309 310 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 311 arch_sync_kernel_mappings(start, end); 312 313 return err; 314 } 315 316 int ioremap_page_range(unsigned long addr, unsigned long end, 317 phys_addr_t phys_addr, pgprot_t prot) 318 { 319 int err; 320 321 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 322 ioremap_max_page_shift); 323 flush_cache_vmap(addr, end); 324 return err; 325 } 326 327 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 328 pgtbl_mod_mask *mask) 329 { 330 pte_t *pte; 331 332 pte = pte_offset_kernel(pmd, addr); 333 do { 334 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 335 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 336 } while (pte++, addr += PAGE_SIZE, addr != end); 337 *mask |= PGTBL_PTE_MODIFIED; 338 } 339 340 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 341 pgtbl_mod_mask *mask) 342 { 343 pmd_t *pmd; 344 unsigned long next; 345 int cleared; 346 347 pmd = pmd_offset(pud, addr); 348 do { 349 next = pmd_addr_end(addr, end); 350 351 cleared = pmd_clear_huge(pmd); 352 if (cleared || pmd_bad(*pmd)) 353 *mask |= PGTBL_PMD_MODIFIED; 354 355 if (cleared) 356 continue; 357 if (pmd_none_or_clear_bad(pmd)) 358 continue; 359 vunmap_pte_range(pmd, addr, next, mask); 360 361 cond_resched(); 362 } while (pmd++, addr = next, addr != end); 363 } 364 365 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 366 pgtbl_mod_mask *mask) 367 { 368 pud_t *pud; 369 unsigned long next; 370 int cleared; 371 372 pud = pud_offset(p4d, addr); 373 do { 374 next = pud_addr_end(addr, end); 375 376 cleared = pud_clear_huge(pud); 377 if (cleared || pud_bad(*pud)) 378 *mask |= PGTBL_PUD_MODIFIED; 379 380 if (cleared) 381 continue; 382 if (pud_none_or_clear_bad(pud)) 383 continue; 384 vunmap_pmd_range(pud, addr, next, mask); 385 } while (pud++, addr = next, addr != end); 386 } 387 388 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 389 pgtbl_mod_mask *mask) 390 { 391 p4d_t *p4d; 392 unsigned long next; 393 int cleared; 394 395 p4d = p4d_offset(pgd, addr); 396 do { 397 next = p4d_addr_end(addr, end); 398 399 cleared = p4d_clear_huge(p4d); 400 if (cleared || p4d_bad(*p4d)) 401 *mask |= PGTBL_P4D_MODIFIED; 402 403 if (cleared) 404 continue; 405 if (p4d_none_or_clear_bad(p4d)) 406 continue; 407 vunmap_pud_range(p4d, addr, next, mask); 408 } while (p4d++, addr = next, addr != end); 409 } 410 411 /* 412 * vunmap_range_noflush is similar to vunmap_range, but does not 413 * flush caches or TLBs. 414 * 415 * The caller is responsible for calling flush_cache_vmap() before calling 416 * this function, and flush_tlb_kernel_range after it has returned 417 * successfully (and before the addresses are expected to cause a page fault 418 * or be re-mapped for something else, if TLB flushes are being delayed or 419 * coalesced). 420 * 421 * This is an internal function only. Do not use outside mm/. 422 */ 423 void vunmap_range_noflush(unsigned long start, unsigned long end) 424 { 425 unsigned long next; 426 pgd_t *pgd; 427 unsigned long addr = start; 428 pgtbl_mod_mask mask = 0; 429 430 BUG_ON(addr >= end); 431 pgd = pgd_offset_k(addr); 432 do { 433 next = pgd_addr_end(addr, end); 434 if (pgd_bad(*pgd)) 435 mask |= PGTBL_PGD_MODIFIED; 436 if (pgd_none_or_clear_bad(pgd)) 437 continue; 438 vunmap_p4d_range(pgd, addr, next, &mask); 439 } while (pgd++, addr = next, addr != end); 440 441 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 442 arch_sync_kernel_mappings(start, end); 443 } 444 445 /** 446 * vunmap_range - unmap kernel virtual addresses 447 * @addr: start of the VM area to unmap 448 * @end: end of the VM area to unmap (non-inclusive) 449 * 450 * Clears any present PTEs in the virtual address range, flushes TLBs and 451 * caches. Any subsequent access to the address before it has been re-mapped 452 * is a kernel bug. 453 */ 454 void vunmap_range(unsigned long addr, unsigned long end) 455 { 456 flush_cache_vunmap(addr, end); 457 vunmap_range_noflush(addr, end); 458 flush_tlb_kernel_range(addr, end); 459 } 460 461 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 462 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 463 pgtbl_mod_mask *mask) 464 { 465 pte_t *pte; 466 467 /* 468 * nr is a running index into the array which helps higher level 469 * callers keep track of where we're up to. 470 */ 471 472 pte = pte_alloc_kernel_track(pmd, addr, mask); 473 if (!pte) 474 return -ENOMEM; 475 do { 476 struct page *page = pages[*nr]; 477 478 if (WARN_ON(!pte_none(*pte))) 479 return -EBUSY; 480 if (WARN_ON(!page)) 481 return -ENOMEM; 482 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 483 (*nr)++; 484 } while (pte++, addr += PAGE_SIZE, addr != end); 485 *mask |= PGTBL_PTE_MODIFIED; 486 return 0; 487 } 488 489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 490 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 491 pgtbl_mod_mask *mask) 492 { 493 pmd_t *pmd; 494 unsigned long next; 495 496 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 497 if (!pmd) 498 return -ENOMEM; 499 do { 500 next = pmd_addr_end(addr, end); 501 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 502 return -ENOMEM; 503 } while (pmd++, addr = next, addr != end); 504 return 0; 505 } 506 507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 508 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 509 pgtbl_mod_mask *mask) 510 { 511 pud_t *pud; 512 unsigned long next; 513 514 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 515 if (!pud) 516 return -ENOMEM; 517 do { 518 next = pud_addr_end(addr, end); 519 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 520 return -ENOMEM; 521 } while (pud++, addr = next, addr != end); 522 return 0; 523 } 524 525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 526 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 527 pgtbl_mod_mask *mask) 528 { 529 p4d_t *p4d; 530 unsigned long next; 531 532 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 533 if (!p4d) 534 return -ENOMEM; 535 do { 536 next = p4d_addr_end(addr, end); 537 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 538 return -ENOMEM; 539 } while (p4d++, addr = next, addr != end); 540 return 0; 541 } 542 543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 544 pgprot_t prot, struct page **pages) 545 { 546 unsigned long start = addr; 547 pgd_t *pgd; 548 unsigned long next; 549 int err = 0; 550 int nr = 0; 551 pgtbl_mod_mask mask = 0; 552 553 BUG_ON(addr >= end); 554 pgd = pgd_offset_k(addr); 555 do { 556 next = pgd_addr_end(addr, end); 557 if (pgd_bad(*pgd)) 558 mask |= PGTBL_PGD_MODIFIED; 559 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 560 if (err) 561 return err; 562 } while (pgd++, addr = next, addr != end); 563 564 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 565 arch_sync_kernel_mappings(start, end); 566 567 return 0; 568 } 569 570 /* 571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 572 * flush caches. 573 * 574 * The caller is responsible for calling flush_cache_vmap() after this 575 * function returns successfully and before the addresses are accessed. 576 * 577 * This is an internal function only. Do not use outside mm/. 578 */ 579 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 580 pgprot_t prot, struct page **pages, unsigned int page_shift) 581 { 582 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 583 584 WARN_ON(page_shift < PAGE_SHIFT); 585 586 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 587 page_shift == PAGE_SHIFT) 588 return vmap_small_pages_range_noflush(addr, end, prot, pages); 589 590 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 591 int err; 592 593 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 594 __pa(page_address(pages[i])), prot, 595 page_shift); 596 if (err) 597 return err; 598 599 addr += 1UL << page_shift; 600 } 601 602 return 0; 603 } 604 605 /** 606 * vmap_pages_range - map pages to a kernel virtual address 607 * @addr: start of the VM area to map 608 * @end: end of the VM area to map (non-inclusive) 609 * @prot: page protection flags to use 610 * @pages: pages to map (always PAGE_SIZE pages) 611 * @page_shift: maximum shift that the pages may be mapped with, @pages must 612 * be aligned and contiguous up to at least this shift. 613 * 614 * RETURNS: 615 * 0 on success, -errno on failure. 616 */ 617 static int vmap_pages_range(unsigned long addr, unsigned long end, 618 pgprot_t prot, struct page **pages, unsigned int page_shift) 619 { 620 int err; 621 622 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 623 flush_cache_vmap(addr, end); 624 return err; 625 } 626 627 int is_vmalloc_or_module_addr(const void *x) 628 { 629 /* 630 * ARM, x86-64 and sparc64 put modules in a special place, 631 * and fall back on vmalloc() if that fails. Others 632 * just put it in the vmalloc space. 633 */ 634 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 635 unsigned long addr = (unsigned long)x; 636 if (addr >= MODULES_VADDR && addr < MODULES_END) 637 return 1; 638 #endif 639 return is_vmalloc_addr(x); 640 } 641 642 /* 643 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 644 * return the tail page that corresponds to the base page address, which 645 * matches small vmap mappings. 646 */ 647 struct page *vmalloc_to_page(const void *vmalloc_addr) 648 { 649 unsigned long addr = (unsigned long) vmalloc_addr; 650 struct page *page = NULL; 651 pgd_t *pgd = pgd_offset_k(addr); 652 p4d_t *p4d; 653 pud_t *pud; 654 pmd_t *pmd; 655 pte_t *ptep, pte; 656 657 /* 658 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 659 * architectures that do not vmalloc module space 660 */ 661 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 662 663 if (pgd_none(*pgd)) 664 return NULL; 665 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 666 return NULL; /* XXX: no allowance for huge pgd */ 667 if (WARN_ON_ONCE(pgd_bad(*pgd))) 668 return NULL; 669 670 p4d = p4d_offset(pgd, addr); 671 if (p4d_none(*p4d)) 672 return NULL; 673 if (p4d_leaf(*p4d)) 674 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 675 if (WARN_ON_ONCE(p4d_bad(*p4d))) 676 return NULL; 677 678 pud = pud_offset(p4d, addr); 679 if (pud_none(*pud)) 680 return NULL; 681 if (pud_leaf(*pud)) 682 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 683 if (WARN_ON_ONCE(pud_bad(*pud))) 684 return NULL; 685 686 pmd = pmd_offset(pud, addr); 687 if (pmd_none(*pmd)) 688 return NULL; 689 if (pmd_leaf(*pmd)) 690 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 691 if (WARN_ON_ONCE(pmd_bad(*pmd))) 692 return NULL; 693 694 ptep = pte_offset_map(pmd, addr); 695 pte = *ptep; 696 if (pte_present(pte)) 697 page = pte_page(pte); 698 pte_unmap(ptep); 699 700 return page; 701 } 702 EXPORT_SYMBOL(vmalloc_to_page); 703 704 /* 705 * Map a vmalloc()-space virtual address to the physical page frame number. 706 */ 707 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 708 { 709 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 710 } 711 EXPORT_SYMBOL(vmalloc_to_pfn); 712 713 714 /*** Global kva allocator ***/ 715 716 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 717 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 718 719 720 static DEFINE_SPINLOCK(vmap_area_lock); 721 static DEFINE_SPINLOCK(free_vmap_area_lock); 722 /* Export for kexec only */ 723 LIST_HEAD(vmap_area_list); 724 static struct rb_root vmap_area_root = RB_ROOT; 725 static bool vmap_initialized __read_mostly; 726 727 static struct rb_root purge_vmap_area_root = RB_ROOT; 728 static LIST_HEAD(purge_vmap_area_list); 729 static DEFINE_SPINLOCK(purge_vmap_area_lock); 730 731 /* 732 * This kmem_cache is used for vmap_area objects. Instead of 733 * allocating from slab we reuse an object from this cache to 734 * make things faster. Especially in "no edge" splitting of 735 * free block. 736 */ 737 static struct kmem_cache *vmap_area_cachep; 738 739 /* 740 * This linked list is used in pair with free_vmap_area_root. 741 * It gives O(1) access to prev/next to perform fast coalescing. 742 */ 743 static LIST_HEAD(free_vmap_area_list); 744 745 /* 746 * This augment red-black tree represents the free vmap space. 747 * All vmap_area objects in this tree are sorted by va->va_start 748 * address. It is used for allocation and merging when a vmap 749 * object is released. 750 * 751 * Each vmap_area node contains a maximum available free block 752 * of its sub-tree, right or left. Therefore it is possible to 753 * find a lowest match of free area. 754 */ 755 static struct rb_root free_vmap_area_root = RB_ROOT; 756 757 /* 758 * Preload a CPU with one object for "no edge" split case. The 759 * aim is to get rid of allocations from the atomic context, thus 760 * to use more permissive allocation masks. 761 */ 762 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 763 764 static __always_inline unsigned long 765 va_size(struct vmap_area *va) 766 { 767 return (va->va_end - va->va_start); 768 } 769 770 static __always_inline unsigned long 771 get_subtree_max_size(struct rb_node *node) 772 { 773 struct vmap_area *va; 774 775 va = rb_entry_safe(node, struct vmap_area, rb_node); 776 return va ? va->subtree_max_size : 0; 777 } 778 779 /* 780 * Gets called when remove the node and rotate. 781 */ 782 static __always_inline unsigned long 783 compute_subtree_max_size(struct vmap_area *va) 784 { 785 return max3(va_size(va), 786 get_subtree_max_size(va->rb_node.rb_left), 787 get_subtree_max_size(va->rb_node.rb_right)); 788 } 789 790 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 791 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 792 793 static void purge_vmap_area_lazy(void); 794 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 795 static unsigned long lazy_max_pages(void); 796 797 static atomic_long_t nr_vmalloc_pages; 798 799 unsigned long vmalloc_nr_pages(void) 800 { 801 return atomic_long_read(&nr_vmalloc_pages); 802 } 803 804 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 805 { 806 struct vmap_area *va = NULL; 807 struct rb_node *n = vmap_area_root.rb_node; 808 809 while (n) { 810 struct vmap_area *tmp; 811 812 tmp = rb_entry(n, struct vmap_area, rb_node); 813 if (tmp->va_end > addr) { 814 va = tmp; 815 if (tmp->va_start <= addr) 816 break; 817 818 n = n->rb_left; 819 } else 820 n = n->rb_right; 821 } 822 823 return va; 824 } 825 826 static struct vmap_area *__find_vmap_area(unsigned long addr) 827 { 828 struct rb_node *n = vmap_area_root.rb_node; 829 830 while (n) { 831 struct vmap_area *va; 832 833 va = rb_entry(n, struct vmap_area, rb_node); 834 if (addr < va->va_start) 835 n = n->rb_left; 836 else if (addr >= va->va_end) 837 n = n->rb_right; 838 else 839 return va; 840 } 841 842 return NULL; 843 } 844 845 /* 846 * This function returns back addresses of parent node 847 * and its left or right link for further processing. 848 * 849 * Otherwise NULL is returned. In that case all further 850 * steps regarding inserting of conflicting overlap range 851 * have to be declined and actually considered as a bug. 852 */ 853 static __always_inline struct rb_node ** 854 find_va_links(struct vmap_area *va, 855 struct rb_root *root, struct rb_node *from, 856 struct rb_node **parent) 857 { 858 struct vmap_area *tmp_va; 859 struct rb_node **link; 860 861 if (root) { 862 link = &root->rb_node; 863 if (unlikely(!*link)) { 864 *parent = NULL; 865 return link; 866 } 867 } else { 868 link = &from; 869 } 870 871 /* 872 * Go to the bottom of the tree. When we hit the last point 873 * we end up with parent rb_node and correct direction, i name 874 * it link, where the new va->rb_node will be attached to. 875 */ 876 do { 877 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 878 879 /* 880 * During the traversal we also do some sanity check. 881 * Trigger the BUG() if there are sides(left/right) 882 * or full overlaps. 883 */ 884 if (va->va_start < tmp_va->va_end && 885 va->va_end <= tmp_va->va_start) 886 link = &(*link)->rb_left; 887 else if (va->va_end > tmp_va->va_start && 888 va->va_start >= tmp_va->va_end) 889 link = &(*link)->rb_right; 890 else { 891 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 892 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 893 894 return NULL; 895 } 896 } while (*link); 897 898 *parent = &tmp_va->rb_node; 899 return link; 900 } 901 902 static __always_inline struct list_head * 903 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 904 { 905 struct list_head *list; 906 907 if (unlikely(!parent)) 908 /* 909 * The red-black tree where we try to find VA neighbors 910 * before merging or inserting is empty, i.e. it means 911 * there is no free vmap space. Normally it does not 912 * happen but we handle this case anyway. 913 */ 914 return NULL; 915 916 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 917 return (&parent->rb_right == link ? list->next : list); 918 } 919 920 static __always_inline void 921 link_va(struct vmap_area *va, struct rb_root *root, 922 struct rb_node *parent, struct rb_node **link, struct list_head *head) 923 { 924 /* 925 * VA is still not in the list, but we can 926 * identify its future previous list_head node. 927 */ 928 if (likely(parent)) { 929 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 930 if (&parent->rb_right != link) 931 head = head->prev; 932 } 933 934 /* Insert to the rb-tree */ 935 rb_link_node(&va->rb_node, parent, link); 936 if (root == &free_vmap_area_root) { 937 /* 938 * Some explanation here. Just perform simple insertion 939 * to the tree. We do not set va->subtree_max_size to 940 * its current size before calling rb_insert_augmented(). 941 * It is because of we populate the tree from the bottom 942 * to parent levels when the node _is_ in the tree. 943 * 944 * Therefore we set subtree_max_size to zero after insertion, 945 * to let __augment_tree_propagate_from() puts everything to 946 * the correct order later on. 947 */ 948 rb_insert_augmented(&va->rb_node, 949 root, &free_vmap_area_rb_augment_cb); 950 va->subtree_max_size = 0; 951 } else { 952 rb_insert_color(&va->rb_node, root); 953 } 954 955 /* Address-sort this list */ 956 list_add(&va->list, head); 957 } 958 959 static __always_inline void 960 unlink_va(struct vmap_area *va, struct rb_root *root) 961 { 962 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 963 return; 964 965 if (root == &free_vmap_area_root) 966 rb_erase_augmented(&va->rb_node, 967 root, &free_vmap_area_rb_augment_cb); 968 else 969 rb_erase(&va->rb_node, root); 970 971 list_del(&va->list); 972 RB_CLEAR_NODE(&va->rb_node); 973 } 974 975 #if DEBUG_AUGMENT_PROPAGATE_CHECK 976 static void 977 augment_tree_propagate_check(void) 978 { 979 struct vmap_area *va; 980 unsigned long computed_size; 981 982 list_for_each_entry(va, &free_vmap_area_list, list) { 983 computed_size = compute_subtree_max_size(va); 984 if (computed_size != va->subtree_max_size) 985 pr_emerg("tree is corrupted: %lu, %lu\n", 986 va_size(va), va->subtree_max_size); 987 } 988 } 989 #endif 990 991 /* 992 * This function populates subtree_max_size from bottom to upper 993 * levels starting from VA point. The propagation must be done 994 * when VA size is modified by changing its va_start/va_end. Or 995 * in case of newly inserting of VA to the tree. 996 * 997 * It means that __augment_tree_propagate_from() must be called: 998 * - After VA has been inserted to the tree(free path); 999 * - After VA has been shrunk(allocation path); 1000 * - After VA has been increased(merging path). 1001 * 1002 * Please note that, it does not mean that upper parent nodes 1003 * and their subtree_max_size are recalculated all the time up 1004 * to the root node. 1005 * 1006 * 4--8 1007 * /\ 1008 * / \ 1009 * / \ 1010 * 2--2 8--8 1011 * 1012 * For example if we modify the node 4, shrinking it to 2, then 1013 * no any modification is required. If we shrink the node 2 to 1 1014 * its subtree_max_size is updated only, and set to 1. If we shrink 1015 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1016 * node becomes 4--6. 1017 */ 1018 static __always_inline void 1019 augment_tree_propagate_from(struct vmap_area *va) 1020 { 1021 /* 1022 * Populate the tree from bottom towards the root until 1023 * the calculated maximum available size of checked node 1024 * is equal to its current one. 1025 */ 1026 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1027 1028 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1029 augment_tree_propagate_check(); 1030 #endif 1031 } 1032 1033 static void 1034 insert_vmap_area(struct vmap_area *va, 1035 struct rb_root *root, struct list_head *head) 1036 { 1037 struct rb_node **link; 1038 struct rb_node *parent; 1039 1040 link = find_va_links(va, root, NULL, &parent); 1041 if (link) 1042 link_va(va, root, parent, link, head); 1043 } 1044 1045 static void 1046 insert_vmap_area_augment(struct vmap_area *va, 1047 struct rb_node *from, struct rb_root *root, 1048 struct list_head *head) 1049 { 1050 struct rb_node **link; 1051 struct rb_node *parent; 1052 1053 if (from) 1054 link = find_va_links(va, NULL, from, &parent); 1055 else 1056 link = find_va_links(va, root, NULL, &parent); 1057 1058 if (link) { 1059 link_va(va, root, parent, link, head); 1060 augment_tree_propagate_from(va); 1061 } 1062 } 1063 1064 /* 1065 * Merge de-allocated chunk of VA memory with previous 1066 * and next free blocks. If coalesce is not done a new 1067 * free area is inserted. If VA has been merged, it is 1068 * freed. 1069 * 1070 * Please note, it can return NULL in case of overlap 1071 * ranges, followed by WARN() report. Despite it is a 1072 * buggy behaviour, a system can be alive and keep 1073 * ongoing. 1074 */ 1075 static __always_inline struct vmap_area * 1076 merge_or_add_vmap_area(struct vmap_area *va, 1077 struct rb_root *root, struct list_head *head) 1078 { 1079 struct vmap_area *sibling; 1080 struct list_head *next; 1081 struct rb_node **link; 1082 struct rb_node *parent; 1083 bool merged = false; 1084 1085 /* 1086 * Find a place in the tree where VA potentially will be 1087 * inserted, unless it is merged with its sibling/siblings. 1088 */ 1089 link = find_va_links(va, root, NULL, &parent); 1090 if (!link) 1091 return NULL; 1092 1093 /* 1094 * Get next node of VA to check if merging can be done. 1095 */ 1096 next = get_va_next_sibling(parent, link); 1097 if (unlikely(next == NULL)) 1098 goto insert; 1099 1100 /* 1101 * start end 1102 * | | 1103 * |<------VA------>|<-----Next----->| 1104 * | | 1105 * start end 1106 */ 1107 if (next != head) { 1108 sibling = list_entry(next, struct vmap_area, list); 1109 if (sibling->va_start == va->va_end) { 1110 sibling->va_start = va->va_start; 1111 1112 /* Free vmap_area object. */ 1113 kmem_cache_free(vmap_area_cachep, va); 1114 1115 /* Point to the new merged area. */ 1116 va = sibling; 1117 merged = true; 1118 } 1119 } 1120 1121 /* 1122 * start end 1123 * | | 1124 * |<-----Prev----->|<------VA------>| 1125 * | | 1126 * start end 1127 */ 1128 if (next->prev != head) { 1129 sibling = list_entry(next->prev, struct vmap_area, list); 1130 if (sibling->va_end == va->va_start) { 1131 /* 1132 * If both neighbors are coalesced, it is important 1133 * to unlink the "next" node first, followed by merging 1134 * with "previous" one. Otherwise the tree might not be 1135 * fully populated if a sibling's augmented value is 1136 * "normalized" because of rotation operations. 1137 */ 1138 if (merged) 1139 unlink_va(va, root); 1140 1141 sibling->va_end = va->va_end; 1142 1143 /* Free vmap_area object. */ 1144 kmem_cache_free(vmap_area_cachep, va); 1145 1146 /* Point to the new merged area. */ 1147 va = sibling; 1148 merged = true; 1149 } 1150 } 1151 1152 insert: 1153 if (!merged) 1154 link_va(va, root, parent, link, head); 1155 1156 return va; 1157 } 1158 1159 static __always_inline struct vmap_area * 1160 merge_or_add_vmap_area_augment(struct vmap_area *va, 1161 struct rb_root *root, struct list_head *head) 1162 { 1163 va = merge_or_add_vmap_area(va, root, head); 1164 if (va) 1165 augment_tree_propagate_from(va); 1166 1167 return va; 1168 } 1169 1170 static __always_inline bool 1171 is_within_this_va(struct vmap_area *va, unsigned long size, 1172 unsigned long align, unsigned long vstart) 1173 { 1174 unsigned long nva_start_addr; 1175 1176 if (va->va_start > vstart) 1177 nva_start_addr = ALIGN(va->va_start, align); 1178 else 1179 nva_start_addr = ALIGN(vstart, align); 1180 1181 /* Can be overflowed due to big size or alignment. */ 1182 if (nva_start_addr + size < nva_start_addr || 1183 nva_start_addr < vstart) 1184 return false; 1185 1186 return (nva_start_addr + size <= va->va_end); 1187 } 1188 1189 /* 1190 * Find the first free block(lowest start address) in the tree, 1191 * that will accomplish the request corresponding to passing 1192 * parameters. 1193 */ 1194 static __always_inline struct vmap_area * 1195 find_vmap_lowest_match(unsigned long size, 1196 unsigned long align, unsigned long vstart) 1197 { 1198 struct vmap_area *va; 1199 struct rb_node *node; 1200 1201 /* Start from the root. */ 1202 node = free_vmap_area_root.rb_node; 1203 1204 while (node) { 1205 va = rb_entry(node, struct vmap_area, rb_node); 1206 1207 if (get_subtree_max_size(node->rb_left) >= size && 1208 vstart < va->va_start) { 1209 node = node->rb_left; 1210 } else { 1211 if (is_within_this_va(va, size, align, vstart)) 1212 return va; 1213 1214 /* 1215 * Does not make sense to go deeper towards the right 1216 * sub-tree if it does not have a free block that is 1217 * equal or bigger to the requested search size. 1218 */ 1219 if (get_subtree_max_size(node->rb_right) >= size) { 1220 node = node->rb_right; 1221 continue; 1222 } 1223 1224 /* 1225 * OK. We roll back and find the first right sub-tree, 1226 * that will satisfy the search criteria. It can happen 1227 * due to "vstart" restriction or an alignment overhead 1228 * that is bigger then PAGE_SIZE. 1229 */ 1230 while ((node = rb_parent(node))) { 1231 va = rb_entry(node, struct vmap_area, rb_node); 1232 if (is_within_this_va(va, size, align, vstart)) 1233 return va; 1234 1235 if (get_subtree_max_size(node->rb_right) >= size && 1236 vstart <= va->va_start) { 1237 /* 1238 * Shift the vstart forward. Please note, we update it with 1239 * parent's start address adding "1" because we do not want 1240 * to enter same sub-tree after it has already been checked 1241 * and no suitable free block found there. 1242 */ 1243 vstart = va->va_start + 1; 1244 node = node->rb_right; 1245 break; 1246 } 1247 } 1248 } 1249 } 1250 1251 return NULL; 1252 } 1253 1254 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1255 #include <linux/random.h> 1256 1257 static struct vmap_area * 1258 find_vmap_lowest_linear_match(unsigned long size, 1259 unsigned long align, unsigned long vstart) 1260 { 1261 struct vmap_area *va; 1262 1263 list_for_each_entry(va, &free_vmap_area_list, list) { 1264 if (!is_within_this_va(va, size, align, vstart)) 1265 continue; 1266 1267 return va; 1268 } 1269 1270 return NULL; 1271 } 1272 1273 static void 1274 find_vmap_lowest_match_check(unsigned long size, unsigned long align) 1275 { 1276 struct vmap_area *va_1, *va_2; 1277 unsigned long vstart; 1278 unsigned int rnd; 1279 1280 get_random_bytes(&rnd, sizeof(rnd)); 1281 vstart = VMALLOC_START + rnd; 1282 1283 va_1 = find_vmap_lowest_match(size, align, vstart); 1284 va_2 = find_vmap_lowest_linear_match(size, align, vstart); 1285 1286 if (va_1 != va_2) 1287 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1288 va_1, va_2, vstart); 1289 } 1290 #endif 1291 1292 enum fit_type { 1293 NOTHING_FIT = 0, 1294 FL_FIT_TYPE = 1, /* full fit */ 1295 LE_FIT_TYPE = 2, /* left edge fit */ 1296 RE_FIT_TYPE = 3, /* right edge fit */ 1297 NE_FIT_TYPE = 4 /* no edge fit */ 1298 }; 1299 1300 static __always_inline enum fit_type 1301 classify_va_fit_type(struct vmap_area *va, 1302 unsigned long nva_start_addr, unsigned long size) 1303 { 1304 enum fit_type type; 1305 1306 /* Check if it is within VA. */ 1307 if (nva_start_addr < va->va_start || 1308 nva_start_addr + size > va->va_end) 1309 return NOTHING_FIT; 1310 1311 /* Now classify. */ 1312 if (va->va_start == nva_start_addr) { 1313 if (va->va_end == nva_start_addr + size) 1314 type = FL_FIT_TYPE; 1315 else 1316 type = LE_FIT_TYPE; 1317 } else if (va->va_end == nva_start_addr + size) { 1318 type = RE_FIT_TYPE; 1319 } else { 1320 type = NE_FIT_TYPE; 1321 } 1322 1323 return type; 1324 } 1325 1326 static __always_inline int 1327 adjust_va_to_fit_type(struct vmap_area *va, 1328 unsigned long nva_start_addr, unsigned long size, 1329 enum fit_type type) 1330 { 1331 struct vmap_area *lva = NULL; 1332 1333 if (type == FL_FIT_TYPE) { 1334 /* 1335 * No need to split VA, it fully fits. 1336 * 1337 * | | 1338 * V NVA V 1339 * |---------------| 1340 */ 1341 unlink_va(va, &free_vmap_area_root); 1342 kmem_cache_free(vmap_area_cachep, va); 1343 } else if (type == LE_FIT_TYPE) { 1344 /* 1345 * Split left edge of fit VA. 1346 * 1347 * | | 1348 * V NVA V R 1349 * |-------|-------| 1350 */ 1351 va->va_start += size; 1352 } else if (type == RE_FIT_TYPE) { 1353 /* 1354 * Split right edge of fit VA. 1355 * 1356 * | | 1357 * L V NVA V 1358 * |-------|-------| 1359 */ 1360 va->va_end = nva_start_addr; 1361 } else if (type == NE_FIT_TYPE) { 1362 /* 1363 * Split no edge of fit VA. 1364 * 1365 * | | 1366 * L V NVA V R 1367 * |---|-------|---| 1368 */ 1369 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1370 if (unlikely(!lva)) { 1371 /* 1372 * For percpu allocator we do not do any pre-allocation 1373 * and leave it as it is. The reason is it most likely 1374 * never ends up with NE_FIT_TYPE splitting. In case of 1375 * percpu allocations offsets and sizes are aligned to 1376 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1377 * are its main fitting cases. 1378 * 1379 * There are a few exceptions though, as an example it is 1380 * a first allocation (early boot up) when we have "one" 1381 * big free space that has to be split. 1382 * 1383 * Also we can hit this path in case of regular "vmap" 1384 * allocations, if "this" current CPU was not preloaded. 1385 * See the comment in alloc_vmap_area() why. If so, then 1386 * GFP_NOWAIT is used instead to get an extra object for 1387 * split purpose. That is rare and most time does not 1388 * occur. 1389 * 1390 * What happens if an allocation gets failed. Basically, 1391 * an "overflow" path is triggered to purge lazily freed 1392 * areas to free some memory, then, the "retry" path is 1393 * triggered to repeat one more time. See more details 1394 * in alloc_vmap_area() function. 1395 */ 1396 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1397 if (!lva) 1398 return -1; 1399 } 1400 1401 /* 1402 * Build the remainder. 1403 */ 1404 lva->va_start = va->va_start; 1405 lva->va_end = nva_start_addr; 1406 1407 /* 1408 * Shrink this VA to remaining size. 1409 */ 1410 va->va_start = nva_start_addr + size; 1411 } else { 1412 return -1; 1413 } 1414 1415 if (type != FL_FIT_TYPE) { 1416 augment_tree_propagate_from(va); 1417 1418 if (lva) /* type == NE_FIT_TYPE */ 1419 insert_vmap_area_augment(lva, &va->rb_node, 1420 &free_vmap_area_root, &free_vmap_area_list); 1421 } 1422 1423 return 0; 1424 } 1425 1426 /* 1427 * Returns a start address of the newly allocated area, if success. 1428 * Otherwise a vend is returned that indicates failure. 1429 */ 1430 static __always_inline unsigned long 1431 __alloc_vmap_area(unsigned long size, unsigned long align, 1432 unsigned long vstart, unsigned long vend) 1433 { 1434 unsigned long nva_start_addr; 1435 struct vmap_area *va; 1436 enum fit_type type; 1437 int ret; 1438 1439 va = find_vmap_lowest_match(size, align, vstart); 1440 if (unlikely(!va)) 1441 return vend; 1442 1443 if (va->va_start > vstart) 1444 nva_start_addr = ALIGN(va->va_start, align); 1445 else 1446 nva_start_addr = ALIGN(vstart, align); 1447 1448 /* Check the "vend" restriction. */ 1449 if (nva_start_addr + size > vend) 1450 return vend; 1451 1452 /* Classify what we have found. */ 1453 type = classify_va_fit_type(va, nva_start_addr, size); 1454 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1455 return vend; 1456 1457 /* Update the free vmap_area. */ 1458 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1459 if (ret) 1460 return vend; 1461 1462 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1463 find_vmap_lowest_match_check(size, align); 1464 #endif 1465 1466 return nva_start_addr; 1467 } 1468 1469 /* 1470 * Free a region of KVA allocated by alloc_vmap_area 1471 */ 1472 static void free_vmap_area(struct vmap_area *va) 1473 { 1474 /* 1475 * Remove from the busy tree/list. 1476 */ 1477 spin_lock(&vmap_area_lock); 1478 unlink_va(va, &vmap_area_root); 1479 spin_unlock(&vmap_area_lock); 1480 1481 /* 1482 * Insert/Merge it back to the free tree/list. 1483 */ 1484 spin_lock(&free_vmap_area_lock); 1485 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1486 spin_unlock(&free_vmap_area_lock); 1487 } 1488 1489 static inline void 1490 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1491 { 1492 struct vmap_area *va = NULL; 1493 1494 /* 1495 * Preload this CPU with one extra vmap_area object. It is used 1496 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1497 * a CPU that does an allocation is preloaded. 1498 * 1499 * We do it in non-atomic context, thus it allows us to use more 1500 * permissive allocation masks to be more stable under low memory 1501 * condition and high memory pressure. 1502 */ 1503 if (!this_cpu_read(ne_fit_preload_node)) 1504 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1505 1506 spin_lock(lock); 1507 1508 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1509 kmem_cache_free(vmap_area_cachep, va); 1510 } 1511 1512 /* 1513 * Allocate a region of KVA of the specified size and alignment, within the 1514 * vstart and vend. 1515 */ 1516 static struct vmap_area *alloc_vmap_area(unsigned long size, 1517 unsigned long align, 1518 unsigned long vstart, unsigned long vend, 1519 int node, gfp_t gfp_mask) 1520 { 1521 struct vmap_area *va; 1522 unsigned long freed; 1523 unsigned long addr; 1524 int purged = 0; 1525 int ret; 1526 1527 BUG_ON(!size); 1528 BUG_ON(offset_in_page(size)); 1529 BUG_ON(!is_power_of_2(align)); 1530 1531 if (unlikely(!vmap_initialized)) 1532 return ERR_PTR(-EBUSY); 1533 1534 might_sleep(); 1535 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1536 1537 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1538 if (unlikely(!va)) 1539 return ERR_PTR(-ENOMEM); 1540 1541 /* 1542 * Only scan the relevant parts containing pointers to other objects 1543 * to avoid false negatives. 1544 */ 1545 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1546 1547 retry: 1548 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1549 addr = __alloc_vmap_area(size, align, vstart, vend); 1550 spin_unlock(&free_vmap_area_lock); 1551 1552 /* 1553 * If an allocation fails, the "vend" address is 1554 * returned. Therefore trigger the overflow path. 1555 */ 1556 if (unlikely(addr == vend)) 1557 goto overflow; 1558 1559 va->va_start = addr; 1560 va->va_end = addr + size; 1561 va->vm = NULL; 1562 1563 spin_lock(&vmap_area_lock); 1564 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1565 spin_unlock(&vmap_area_lock); 1566 1567 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1568 BUG_ON(va->va_start < vstart); 1569 BUG_ON(va->va_end > vend); 1570 1571 ret = kasan_populate_vmalloc(addr, size); 1572 if (ret) { 1573 free_vmap_area(va); 1574 return ERR_PTR(ret); 1575 } 1576 1577 return va; 1578 1579 overflow: 1580 if (!purged) { 1581 purge_vmap_area_lazy(); 1582 purged = 1; 1583 goto retry; 1584 } 1585 1586 freed = 0; 1587 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1588 1589 if (freed > 0) { 1590 purged = 0; 1591 goto retry; 1592 } 1593 1594 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1595 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1596 size); 1597 1598 kmem_cache_free(vmap_area_cachep, va); 1599 return ERR_PTR(-EBUSY); 1600 } 1601 1602 int register_vmap_purge_notifier(struct notifier_block *nb) 1603 { 1604 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1605 } 1606 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1607 1608 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1609 { 1610 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1611 } 1612 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1613 1614 /* 1615 * lazy_max_pages is the maximum amount of virtual address space we gather up 1616 * before attempting to purge with a TLB flush. 1617 * 1618 * There is a tradeoff here: a larger number will cover more kernel page tables 1619 * and take slightly longer to purge, but it will linearly reduce the number of 1620 * global TLB flushes that must be performed. It would seem natural to scale 1621 * this number up linearly with the number of CPUs (because vmapping activity 1622 * could also scale linearly with the number of CPUs), however it is likely 1623 * that in practice, workloads might be constrained in other ways that mean 1624 * vmap activity will not scale linearly with CPUs. Also, I want to be 1625 * conservative and not introduce a big latency on huge systems, so go with 1626 * a less aggressive log scale. It will still be an improvement over the old 1627 * code, and it will be simple to change the scale factor if we find that it 1628 * becomes a problem on bigger systems. 1629 */ 1630 static unsigned long lazy_max_pages(void) 1631 { 1632 unsigned int log; 1633 1634 log = fls(num_online_cpus()); 1635 1636 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1637 } 1638 1639 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1640 1641 /* 1642 * Serialize vmap purging. There is no actual critical section protected 1643 * by this look, but we want to avoid concurrent calls for performance 1644 * reasons and to make the pcpu_get_vm_areas more deterministic. 1645 */ 1646 static DEFINE_MUTEX(vmap_purge_lock); 1647 1648 /* for per-CPU blocks */ 1649 static void purge_fragmented_blocks_allcpus(void); 1650 1651 #ifdef CONFIG_X86_64 1652 /* 1653 * called before a call to iounmap() if the caller wants vm_area_struct's 1654 * immediately freed. 1655 */ 1656 void set_iounmap_nonlazy(void) 1657 { 1658 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1659 } 1660 #endif /* CONFIG_X86_64 */ 1661 1662 /* 1663 * Purges all lazily-freed vmap areas. 1664 */ 1665 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1666 { 1667 unsigned long resched_threshold; 1668 struct list_head local_pure_list; 1669 struct vmap_area *va, *n_va; 1670 1671 lockdep_assert_held(&vmap_purge_lock); 1672 1673 spin_lock(&purge_vmap_area_lock); 1674 purge_vmap_area_root = RB_ROOT; 1675 list_replace_init(&purge_vmap_area_list, &local_pure_list); 1676 spin_unlock(&purge_vmap_area_lock); 1677 1678 if (unlikely(list_empty(&local_pure_list))) 1679 return false; 1680 1681 start = min(start, 1682 list_first_entry(&local_pure_list, 1683 struct vmap_area, list)->va_start); 1684 1685 end = max(end, 1686 list_last_entry(&local_pure_list, 1687 struct vmap_area, list)->va_end); 1688 1689 flush_tlb_kernel_range(start, end); 1690 resched_threshold = lazy_max_pages() << 1; 1691 1692 spin_lock(&free_vmap_area_lock); 1693 list_for_each_entry_safe(va, n_va, &local_pure_list, list) { 1694 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1695 unsigned long orig_start = va->va_start; 1696 unsigned long orig_end = va->va_end; 1697 1698 /* 1699 * Finally insert or merge lazily-freed area. It is 1700 * detached and there is no need to "unlink" it from 1701 * anything. 1702 */ 1703 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1704 &free_vmap_area_list); 1705 1706 if (!va) 1707 continue; 1708 1709 if (is_vmalloc_or_module_addr((void *)orig_start)) 1710 kasan_release_vmalloc(orig_start, orig_end, 1711 va->va_start, va->va_end); 1712 1713 atomic_long_sub(nr, &vmap_lazy_nr); 1714 1715 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1716 cond_resched_lock(&free_vmap_area_lock); 1717 } 1718 spin_unlock(&free_vmap_area_lock); 1719 return true; 1720 } 1721 1722 /* 1723 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1724 * is already purging. 1725 */ 1726 static void try_purge_vmap_area_lazy(void) 1727 { 1728 if (mutex_trylock(&vmap_purge_lock)) { 1729 __purge_vmap_area_lazy(ULONG_MAX, 0); 1730 mutex_unlock(&vmap_purge_lock); 1731 } 1732 } 1733 1734 /* 1735 * Kick off a purge of the outstanding lazy areas. 1736 */ 1737 static void purge_vmap_area_lazy(void) 1738 { 1739 mutex_lock(&vmap_purge_lock); 1740 purge_fragmented_blocks_allcpus(); 1741 __purge_vmap_area_lazy(ULONG_MAX, 0); 1742 mutex_unlock(&vmap_purge_lock); 1743 } 1744 1745 /* 1746 * Free a vmap area, caller ensuring that the area has been unmapped 1747 * and flush_cache_vunmap had been called for the correct range 1748 * previously. 1749 */ 1750 static void free_vmap_area_noflush(struct vmap_area *va) 1751 { 1752 unsigned long nr_lazy; 1753 1754 spin_lock(&vmap_area_lock); 1755 unlink_va(va, &vmap_area_root); 1756 spin_unlock(&vmap_area_lock); 1757 1758 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1759 PAGE_SHIFT, &vmap_lazy_nr); 1760 1761 /* 1762 * Merge or place it to the purge tree/list. 1763 */ 1764 spin_lock(&purge_vmap_area_lock); 1765 merge_or_add_vmap_area(va, 1766 &purge_vmap_area_root, &purge_vmap_area_list); 1767 spin_unlock(&purge_vmap_area_lock); 1768 1769 /* After this point, we may free va at any time */ 1770 if (unlikely(nr_lazy > lazy_max_pages())) 1771 try_purge_vmap_area_lazy(); 1772 } 1773 1774 /* 1775 * Free and unmap a vmap area 1776 */ 1777 static void free_unmap_vmap_area(struct vmap_area *va) 1778 { 1779 flush_cache_vunmap(va->va_start, va->va_end); 1780 vunmap_range_noflush(va->va_start, va->va_end); 1781 if (debug_pagealloc_enabled_static()) 1782 flush_tlb_kernel_range(va->va_start, va->va_end); 1783 1784 free_vmap_area_noflush(va); 1785 } 1786 1787 static struct vmap_area *find_vmap_area(unsigned long addr) 1788 { 1789 struct vmap_area *va; 1790 1791 spin_lock(&vmap_area_lock); 1792 va = __find_vmap_area(addr); 1793 spin_unlock(&vmap_area_lock); 1794 1795 return va; 1796 } 1797 1798 /*** Per cpu kva allocator ***/ 1799 1800 /* 1801 * vmap space is limited especially on 32 bit architectures. Ensure there is 1802 * room for at least 16 percpu vmap blocks per CPU. 1803 */ 1804 /* 1805 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1806 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1807 * instead (we just need a rough idea) 1808 */ 1809 #if BITS_PER_LONG == 32 1810 #define VMALLOC_SPACE (128UL*1024*1024) 1811 #else 1812 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1813 #endif 1814 1815 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1816 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1817 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1818 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1819 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1820 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1821 #define VMAP_BBMAP_BITS \ 1822 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1823 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1824 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1825 1826 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1827 1828 struct vmap_block_queue { 1829 spinlock_t lock; 1830 struct list_head free; 1831 }; 1832 1833 struct vmap_block { 1834 spinlock_t lock; 1835 struct vmap_area *va; 1836 unsigned long free, dirty; 1837 unsigned long dirty_min, dirty_max; /*< dirty range */ 1838 struct list_head free_list; 1839 struct rcu_head rcu_head; 1840 struct list_head purge; 1841 }; 1842 1843 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1844 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1845 1846 /* 1847 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1848 * in the free path. Could get rid of this if we change the API to return a 1849 * "cookie" from alloc, to be passed to free. But no big deal yet. 1850 */ 1851 static DEFINE_XARRAY(vmap_blocks); 1852 1853 /* 1854 * We should probably have a fallback mechanism to allocate virtual memory 1855 * out of partially filled vmap blocks. However vmap block sizing should be 1856 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1857 * big problem. 1858 */ 1859 1860 static unsigned long addr_to_vb_idx(unsigned long addr) 1861 { 1862 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1863 addr /= VMAP_BLOCK_SIZE; 1864 return addr; 1865 } 1866 1867 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1868 { 1869 unsigned long addr; 1870 1871 addr = va_start + (pages_off << PAGE_SHIFT); 1872 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1873 return (void *)addr; 1874 } 1875 1876 /** 1877 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1878 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1879 * @order: how many 2^order pages should be occupied in newly allocated block 1880 * @gfp_mask: flags for the page level allocator 1881 * 1882 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1883 */ 1884 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1885 { 1886 struct vmap_block_queue *vbq; 1887 struct vmap_block *vb; 1888 struct vmap_area *va; 1889 unsigned long vb_idx; 1890 int node, err; 1891 void *vaddr; 1892 1893 node = numa_node_id(); 1894 1895 vb = kmalloc_node(sizeof(struct vmap_block), 1896 gfp_mask & GFP_RECLAIM_MASK, node); 1897 if (unlikely(!vb)) 1898 return ERR_PTR(-ENOMEM); 1899 1900 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1901 VMALLOC_START, VMALLOC_END, 1902 node, gfp_mask); 1903 if (IS_ERR(va)) { 1904 kfree(vb); 1905 return ERR_CAST(va); 1906 } 1907 1908 vaddr = vmap_block_vaddr(va->va_start, 0); 1909 spin_lock_init(&vb->lock); 1910 vb->va = va; 1911 /* At least something should be left free */ 1912 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1913 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1914 vb->dirty = 0; 1915 vb->dirty_min = VMAP_BBMAP_BITS; 1916 vb->dirty_max = 0; 1917 INIT_LIST_HEAD(&vb->free_list); 1918 1919 vb_idx = addr_to_vb_idx(va->va_start); 1920 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1921 if (err) { 1922 kfree(vb); 1923 free_vmap_area(va); 1924 return ERR_PTR(err); 1925 } 1926 1927 vbq = &get_cpu_var(vmap_block_queue); 1928 spin_lock(&vbq->lock); 1929 list_add_tail_rcu(&vb->free_list, &vbq->free); 1930 spin_unlock(&vbq->lock); 1931 put_cpu_var(vmap_block_queue); 1932 1933 return vaddr; 1934 } 1935 1936 static void free_vmap_block(struct vmap_block *vb) 1937 { 1938 struct vmap_block *tmp; 1939 1940 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 1941 BUG_ON(tmp != vb); 1942 1943 free_vmap_area_noflush(vb->va); 1944 kfree_rcu(vb, rcu_head); 1945 } 1946 1947 static void purge_fragmented_blocks(int cpu) 1948 { 1949 LIST_HEAD(purge); 1950 struct vmap_block *vb; 1951 struct vmap_block *n_vb; 1952 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1953 1954 rcu_read_lock(); 1955 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1956 1957 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1958 continue; 1959 1960 spin_lock(&vb->lock); 1961 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1962 vb->free = 0; /* prevent further allocs after releasing lock */ 1963 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1964 vb->dirty_min = 0; 1965 vb->dirty_max = VMAP_BBMAP_BITS; 1966 spin_lock(&vbq->lock); 1967 list_del_rcu(&vb->free_list); 1968 spin_unlock(&vbq->lock); 1969 spin_unlock(&vb->lock); 1970 list_add_tail(&vb->purge, &purge); 1971 } else 1972 spin_unlock(&vb->lock); 1973 } 1974 rcu_read_unlock(); 1975 1976 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1977 list_del(&vb->purge); 1978 free_vmap_block(vb); 1979 } 1980 } 1981 1982 static void purge_fragmented_blocks_allcpus(void) 1983 { 1984 int cpu; 1985 1986 for_each_possible_cpu(cpu) 1987 purge_fragmented_blocks(cpu); 1988 } 1989 1990 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1991 { 1992 struct vmap_block_queue *vbq; 1993 struct vmap_block *vb; 1994 void *vaddr = NULL; 1995 unsigned int order; 1996 1997 BUG_ON(offset_in_page(size)); 1998 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1999 if (WARN_ON(size == 0)) { 2000 /* 2001 * Allocating 0 bytes isn't what caller wants since 2002 * get_order(0) returns funny result. Just warn and terminate 2003 * early. 2004 */ 2005 return NULL; 2006 } 2007 order = get_order(size); 2008 2009 rcu_read_lock(); 2010 vbq = &get_cpu_var(vmap_block_queue); 2011 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2012 unsigned long pages_off; 2013 2014 spin_lock(&vb->lock); 2015 if (vb->free < (1UL << order)) { 2016 spin_unlock(&vb->lock); 2017 continue; 2018 } 2019 2020 pages_off = VMAP_BBMAP_BITS - vb->free; 2021 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2022 vb->free -= 1UL << order; 2023 if (vb->free == 0) { 2024 spin_lock(&vbq->lock); 2025 list_del_rcu(&vb->free_list); 2026 spin_unlock(&vbq->lock); 2027 } 2028 2029 spin_unlock(&vb->lock); 2030 break; 2031 } 2032 2033 put_cpu_var(vmap_block_queue); 2034 rcu_read_unlock(); 2035 2036 /* Allocate new block if nothing was found */ 2037 if (!vaddr) 2038 vaddr = new_vmap_block(order, gfp_mask); 2039 2040 return vaddr; 2041 } 2042 2043 static void vb_free(unsigned long addr, unsigned long size) 2044 { 2045 unsigned long offset; 2046 unsigned int order; 2047 struct vmap_block *vb; 2048 2049 BUG_ON(offset_in_page(size)); 2050 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2051 2052 flush_cache_vunmap(addr, addr + size); 2053 2054 order = get_order(size); 2055 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2056 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2057 2058 vunmap_range_noflush(addr, addr + size); 2059 2060 if (debug_pagealloc_enabled_static()) 2061 flush_tlb_kernel_range(addr, addr + size); 2062 2063 spin_lock(&vb->lock); 2064 2065 /* Expand dirty range */ 2066 vb->dirty_min = min(vb->dirty_min, offset); 2067 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2068 2069 vb->dirty += 1UL << order; 2070 if (vb->dirty == VMAP_BBMAP_BITS) { 2071 BUG_ON(vb->free); 2072 spin_unlock(&vb->lock); 2073 free_vmap_block(vb); 2074 } else 2075 spin_unlock(&vb->lock); 2076 } 2077 2078 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2079 { 2080 int cpu; 2081 2082 if (unlikely(!vmap_initialized)) 2083 return; 2084 2085 might_sleep(); 2086 2087 for_each_possible_cpu(cpu) { 2088 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2089 struct vmap_block *vb; 2090 2091 rcu_read_lock(); 2092 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2093 spin_lock(&vb->lock); 2094 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2095 unsigned long va_start = vb->va->va_start; 2096 unsigned long s, e; 2097 2098 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2099 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2100 2101 start = min(s, start); 2102 end = max(e, end); 2103 2104 flush = 1; 2105 } 2106 spin_unlock(&vb->lock); 2107 } 2108 rcu_read_unlock(); 2109 } 2110 2111 mutex_lock(&vmap_purge_lock); 2112 purge_fragmented_blocks_allcpus(); 2113 if (!__purge_vmap_area_lazy(start, end) && flush) 2114 flush_tlb_kernel_range(start, end); 2115 mutex_unlock(&vmap_purge_lock); 2116 } 2117 2118 /** 2119 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2120 * 2121 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2122 * to amortize TLB flushing overheads. What this means is that any page you 2123 * have now, may, in a former life, have been mapped into kernel virtual 2124 * address by the vmap layer and so there might be some CPUs with TLB entries 2125 * still referencing that page (additional to the regular 1:1 kernel mapping). 2126 * 2127 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2128 * be sure that none of the pages we have control over will have any aliases 2129 * from the vmap layer. 2130 */ 2131 void vm_unmap_aliases(void) 2132 { 2133 unsigned long start = ULONG_MAX, end = 0; 2134 int flush = 0; 2135 2136 _vm_unmap_aliases(start, end, flush); 2137 } 2138 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2139 2140 /** 2141 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2142 * @mem: the pointer returned by vm_map_ram 2143 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2144 */ 2145 void vm_unmap_ram(const void *mem, unsigned int count) 2146 { 2147 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2148 unsigned long addr = (unsigned long)mem; 2149 struct vmap_area *va; 2150 2151 might_sleep(); 2152 BUG_ON(!addr); 2153 BUG_ON(addr < VMALLOC_START); 2154 BUG_ON(addr > VMALLOC_END); 2155 BUG_ON(!PAGE_ALIGNED(addr)); 2156 2157 kasan_poison_vmalloc(mem, size); 2158 2159 if (likely(count <= VMAP_MAX_ALLOC)) { 2160 debug_check_no_locks_freed(mem, size); 2161 vb_free(addr, size); 2162 return; 2163 } 2164 2165 va = find_vmap_area(addr); 2166 BUG_ON(!va); 2167 debug_check_no_locks_freed((void *)va->va_start, 2168 (va->va_end - va->va_start)); 2169 free_unmap_vmap_area(va); 2170 } 2171 EXPORT_SYMBOL(vm_unmap_ram); 2172 2173 /** 2174 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2175 * @pages: an array of pointers to the pages to be mapped 2176 * @count: number of pages 2177 * @node: prefer to allocate data structures on this node 2178 * 2179 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2180 * faster than vmap so it's good. But if you mix long-life and short-life 2181 * objects with vm_map_ram(), it could consume lots of address space through 2182 * fragmentation (especially on a 32bit machine). You could see failures in 2183 * the end. Please use this function for short-lived objects. 2184 * 2185 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2186 */ 2187 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2188 { 2189 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2190 unsigned long addr; 2191 void *mem; 2192 2193 if (likely(count <= VMAP_MAX_ALLOC)) { 2194 mem = vb_alloc(size, GFP_KERNEL); 2195 if (IS_ERR(mem)) 2196 return NULL; 2197 addr = (unsigned long)mem; 2198 } else { 2199 struct vmap_area *va; 2200 va = alloc_vmap_area(size, PAGE_SIZE, 2201 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2202 if (IS_ERR(va)) 2203 return NULL; 2204 2205 addr = va->va_start; 2206 mem = (void *)addr; 2207 } 2208 2209 kasan_unpoison_vmalloc(mem, size); 2210 2211 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2212 pages, PAGE_SHIFT) < 0) { 2213 vm_unmap_ram(mem, count); 2214 return NULL; 2215 } 2216 2217 return mem; 2218 } 2219 EXPORT_SYMBOL(vm_map_ram); 2220 2221 static struct vm_struct *vmlist __initdata; 2222 2223 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2224 { 2225 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2226 return vm->page_order; 2227 #else 2228 return 0; 2229 #endif 2230 } 2231 2232 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2233 { 2234 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2235 vm->page_order = order; 2236 #else 2237 BUG_ON(order != 0); 2238 #endif 2239 } 2240 2241 /** 2242 * vm_area_add_early - add vmap area early during boot 2243 * @vm: vm_struct to add 2244 * 2245 * This function is used to add fixed kernel vm area to vmlist before 2246 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2247 * should contain proper values and the other fields should be zero. 2248 * 2249 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2250 */ 2251 void __init vm_area_add_early(struct vm_struct *vm) 2252 { 2253 struct vm_struct *tmp, **p; 2254 2255 BUG_ON(vmap_initialized); 2256 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2257 if (tmp->addr >= vm->addr) { 2258 BUG_ON(tmp->addr < vm->addr + vm->size); 2259 break; 2260 } else 2261 BUG_ON(tmp->addr + tmp->size > vm->addr); 2262 } 2263 vm->next = *p; 2264 *p = vm; 2265 } 2266 2267 /** 2268 * vm_area_register_early - register vmap area early during boot 2269 * @vm: vm_struct to register 2270 * @align: requested alignment 2271 * 2272 * This function is used to register kernel vm area before 2273 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2274 * proper values on entry and other fields should be zero. On return, 2275 * vm->addr contains the allocated address. 2276 * 2277 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2278 */ 2279 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2280 { 2281 unsigned long addr = ALIGN(VMALLOC_START, align); 2282 struct vm_struct *cur, **p; 2283 2284 BUG_ON(vmap_initialized); 2285 2286 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2287 if ((unsigned long)cur->addr - addr >= vm->size) 2288 break; 2289 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2290 } 2291 2292 BUG_ON(addr > VMALLOC_END - vm->size); 2293 vm->addr = (void *)addr; 2294 vm->next = *p; 2295 *p = vm; 2296 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2297 } 2298 2299 static void vmap_init_free_space(void) 2300 { 2301 unsigned long vmap_start = 1; 2302 const unsigned long vmap_end = ULONG_MAX; 2303 struct vmap_area *busy, *free; 2304 2305 /* 2306 * B F B B B F 2307 * -|-----|.....|-----|-----|-----|.....|- 2308 * | The KVA space | 2309 * |<--------------------------------->| 2310 */ 2311 list_for_each_entry(busy, &vmap_area_list, list) { 2312 if (busy->va_start - vmap_start > 0) { 2313 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2314 if (!WARN_ON_ONCE(!free)) { 2315 free->va_start = vmap_start; 2316 free->va_end = busy->va_start; 2317 2318 insert_vmap_area_augment(free, NULL, 2319 &free_vmap_area_root, 2320 &free_vmap_area_list); 2321 } 2322 } 2323 2324 vmap_start = busy->va_end; 2325 } 2326 2327 if (vmap_end - vmap_start > 0) { 2328 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2329 if (!WARN_ON_ONCE(!free)) { 2330 free->va_start = vmap_start; 2331 free->va_end = vmap_end; 2332 2333 insert_vmap_area_augment(free, NULL, 2334 &free_vmap_area_root, 2335 &free_vmap_area_list); 2336 } 2337 } 2338 } 2339 2340 void __init vmalloc_init(void) 2341 { 2342 struct vmap_area *va; 2343 struct vm_struct *tmp; 2344 int i; 2345 2346 /* 2347 * Create the cache for vmap_area objects. 2348 */ 2349 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2350 2351 for_each_possible_cpu(i) { 2352 struct vmap_block_queue *vbq; 2353 struct vfree_deferred *p; 2354 2355 vbq = &per_cpu(vmap_block_queue, i); 2356 spin_lock_init(&vbq->lock); 2357 INIT_LIST_HEAD(&vbq->free); 2358 p = &per_cpu(vfree_deferred, i); 2359 init_llist_head(&p->list); 2360 INIT_WORK(&p->wq, free_work); 2361 } 2362 2363 /* Import existing vmlist entries. */ 2364 for (tmp = vmlist; tmp; tmp = tmp->next) { 2365 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2366 if (WARN_ON_ONCE(!va)) 2367 continue; 2368 2369 va->va_start = (unsigned long)tmp->addr; 2370 va->va_end = va->va_start + tmp->size; 2371 va->vm = tmp; 2372 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2373 } 2374 2375 /* 2376 * Now we can initialize a free vmap space. 2377 */ 2378 vmap_init_free_space(); 2379 vmap_initialized = true; 2380 } 2381 2382 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2383 struct vmap_area *va, unsigned long flags, const void *caller) 2384 { 2385 vm->flags = flags; 2386 vm->addr = (void *)va->va_start; 2387 vm->size = va->va_end - va->va_start; 2388 vm->caller = caller; 2389 va->vm = vm; 2390 } 2391 2392 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2393 unsigned long flags, const void *caller) 2394 { 2395 spin_lock(&vmap_area_lock); 2396 setup_vmalloc_vm_locked(vm, va, flags, caller); 2397 spin_unlock(&vmap_area_lock); 2398 } 2399 2400 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2401 { 2402 /* 2403 * Before removing VM_UNINITIALIZED, 2404 * we should make sure that vm has proper values. 2405 * Pair with smp_rmb() in show_numa_info(). 2406 */ 2407 smp_wmb(); 2408 vm->flags &= ~VM_UNINITIALIZED; 2409 } 2410 2411 static struct vm_struct *__get_vm_area_node(unsigned long size, 2412 unsigned long align, unsigned long shift, unsigned long flags, 2413 unsigned long start, unsigned long end, int node, 2414 gfp_t gfp_mask, const void *caller) 2415 { 2416 struct vmap_area *va; 2417 struct vm_struct *area; 2418 unsigned long requested_size = size; 2419 2420 BUG_ON(in_interrupt()); 2421 size = ALIGN(size, 1ul << shift); 2422 if (unlikely(!size)) 2423 return NULL; 2424 2425 if (flags & VM_IOREMAP) 2426 align = 1ul << clamp_t(int, get_count_order_long(size), 2427 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2428 2429 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2430 if (unlikely(!area)) 2431 return NULL; 2432 2433 if (!(flags & VM_NO_GUARD)) 2434 size += PAGE_SIZE; 2435 2436 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2437 if (IS_ERR(va)) { 2438 kfree(area); 2439 return NULL; 2440 } 2441 2442 kasan_unpoison_vmalloc((void *)va->va_start, requested_size); 2443 2444 setup_vmalloc_vm(area, va, flags, caller); 2445 2446 return area; 2447 } 2448 2449 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2450 unsigned long start, unsigned long end, 2451 const void *caller) 2452 { 2453 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2454 NUMA_NO_NODE, GFP_KERNEL, caller); 2455 } 2456 2457 /** 2458 * get_vm_area - reserve a contiguous kernel virtual area 2459 * @size: size of the area 2460 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2461 * 2462 * Search an area of @size in the kernel virtual mapping area, 2463 * and reserved it for out purposes. Returns the area descriptor 2464 * on success or %NULL on failure. 2465 * 2466 * Return: the area descriptor on success or %NULL on failure. 2467 */ 2468 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2469 { 2470 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2471 VMALLOC_START, VMALLOC_END, 2472 NUMA_NO_NODE, GFP_KERNEL, 2473 __builtin_return_address(0)); 2474 } 2475 2476 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2477 const void *caller) 2478 { 2479 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2480 VMALLOC_START, VMALLOC_END, 2481 NUMA_NO_NODE, GFP_KERNEL, caller); 2482 } 2483 2484 /** 2485 * find_vm_area - find a continuous kernel virtual area 2486 * @addr: base address 2487 * 2488 * Search for the kernel VM area starting at @addr, and return it. 2489 * It is up to the caller to do all required locking to keep the returned 2490 * pointer valid. 2491 * 2492 * Return: the area descriptor on success or %NULL on failure. 2493 */ 2494 struct vm_struct *find_vm_area(const void *addr) 2495 { 2496 struct vmap_area *va; 2497 2498 va = find_vmap_area((unsigned long)addr); 2499 if (!va) 2500 return NULL; 2501 2502 return va->vm; 2503 } 2504 2505 /** 2506 * remove_vm_area - find and remove a continuous kernel virtual area 2507 * @addr: base address 2508 * 2509 * Search for the kernel VM area starting at @addr, and remove it. 2510 * This function returns the found VM area, but using it is NOT safe 2511 * on SMP machines, except for its size or flags. 2512 * 2513 * Return: the area descriptor on success or %NULL on failure. 2514 */ 2515 struct vm_struct *remove_vm_area(const void *addr) 2516 { 2517 struct vmap_area *va; 2518 2519 might_sleep(); 2520 2521 spin_lock(&vmap_area_lock); 2522 va = __find_vmap_area((unsigned long)addr); 2523 if (va && va->vm) { 2524 struct vm_struct *vm = va->vm; 2525 2526 va->vm = NULL; 2527 spin_unlock(&vmap_area_lock); 2528 2529 kasan_free_shadow(vm); 2530 free_unmap_vmap_area(va); 2531 2532 return vm; 2533 } 2534 2535 spin_unlock(&vmap_area_lock); 2536 return NULL; 2537 } 2538 2539 static inline void set_area_direct_map(const struct vm_struct *area, 2540 int (*set_direct_map)(struct page *page)) 2541 { 2542 int i; 2543 2544 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2545 for (i = 0; i < area->nr_pages; i++) 2546 if (page_address(area->pages[i])) 2547 set_direct_map(area->pages[i]); 2548 } 2549 2550 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2551 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2552 { 2553 unsigned long start = ULONG_MAX, end = 0; 2554 unsigned int page_order = vm_area_page_order(area); 2555 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2556 int flush_dmap = 0; 2557 int i; 2558 2559 remove_vm_area(area->addr); 2560 2561 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2562 if (!flush_reset) 2563 return; 2564 2565 /* 2566 * If not deallocating pages, just do the flush of the VM area and 2567 * return. 2568 */ 2569 if (!deallocate_pages) { 2570 vm_unmap_aliases(); 2571 return; 2572 } 2573 2574 /* 2575 * If execution gets here, flush the vm mapping and reset the direct 2576 * map. Find the start and end range of the direct mappings to make sure 2577 * the vm_unmap_aliases() flush includes the direct map. 2578 */ 2579 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2580 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2581 if (addr) { 2582 unsigned long page_size; 2583 2584 page_size = PAGE_SIZE << page_order; 2585 start = min(addr, start); 2586 end = max(addr + page_size, end); 2587 flush_dmap = 1; 2588 } 2589 } 2590 2591 /* 2592 * Set direct map to something invalid so that it won't be cached if 2593 * there are any accesses after the TLB flush, then flush the TLB and 2594 * reset the direct map permissions to the default. 2595 */ 2596 set_area_direct_map(area, set_direct_map_invalid_noflush); 2597 _vm_unmap_aliases(start, end, flush_dmap); 2598 set_area_direct_map(area, set_direct_map_default_noflush); 2599 } 2600 2601 static void __vunmap(const void *addr, int deallocate_pages) 2602 { 2603 struct vm_struct *area; 2604 2605 if (!addr) 2606 return; 2607 2608 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2609 addr)) 2610 return; 2611 2612 area = find_vm_area(addr); 2613 if (unlikely(!area)) { 2614 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2615 addr); 2616 return; 2617 } 2618 2619 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2620 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2621 2622 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2623 2624 vm_remove_mappings(area, deallocate_pages); 2625 2626 if (deallocate_pages) { 2627 unsigned int page_order = vm_area_page_order(area); 2628 int i, step = 1U << page_order; 2629 2630 for (i = 0; i < area->nr_pages; i += step) { 2631 struct page *page = area->pages[i]; 2632 2633 BUG_ON(!page); 2634 mod_memcg_page_state(page, MEMCG_VMALLOC, -step); 2635 __free_pages(page, page_order); 2636 cond_resched(); 2637 } 2638 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2639 2640 kvfree(area->pages); 2641 } 2642 2643 kfree(area); 2644 } 2645 2646 static inline void __vfree_deferred(const void *addr) 2647 { 2648 /* 2649 * Use raw_cpu_ptr() because this can be called from preemptible 2650 * context. Preemption is absolutely fine here, because the llist_add() 2651 * implementation is lockless, so it works even if we are adding to 2652 * another cpu's list. schedule_work() should be fine with this too. 2653 */ 2654 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2655 2656 if (llist_add((struct llist_node *)addr, &p->list)) 2657 schedule_work(&p->wq); 2658 } 2659 2660 /** 2661 * vfree_atomic - release memory allocated by vmalloc() 2662 * @addr: memory base address 2663 * 2664 * This one is just like vfree() but can be called in any atomic context 2665 * except NMIs. 2666 */ 2667 void vfree_atomic(const void *addr) 2668 { 2669 BUG_ON(in_nmi()); 2670 2671 kmemleak_free(addr); 2672 2673 if (!addr) 2674 return; 2675 __vfree_deferred(addr); 2676 } 2677 2678 static void __vfree(const void *addr) 2679 { 2680 if (unlikely(in_interrupt())) 2681 __vfree_deferred(addr); 2682 else 2683 __vunmap(addr, 1); 2684 } 2685 2686 /** 2687 * vfree - Release memory allocated by vmalloc() 2688 * @addr: Memory base address 2689 * 2690 * Free the virtually continuous memory area starting at @addr, as obtained 2691 * from one of the vmalloc() family of APIs. This will usually also free the 2692 * physical memory underlying the virtual allocation, but that memory is 2693 * reference counted, so it will not be freed until the last user goes away. 2694 * 2695 * If @addr is NULL, no operation is performed. 2696 * 2697 * Context: 2698 * May sleep if called *not* from interrupt context. 2699 * Must not be called in NMI context (strictly speaking, it could be 2700 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2701 * conventions for vfree() arch-dependent would be a really bad idea). 2702 */ 2703 void vfree(const void *addr) 2704 { 2705 BUG_ON(in_nmi()); 2706 2707 kmemleak_free(addr); 2708 2709 might_sleep_if(!in_interrupt()); 2710 2711 if (!addr) 2712 return; 2713 2714 __vfree(addr); 2715 } 2716 EXPORT_SYMBOL(vfree); 2717 2718 /** 2719 * vunmap - release virtual mapping obtained by vmap() 2720 * @addr: memory base address 2721 * 2722 * Free the virtually contiguous memory area starting at @addr, 2723 * which was created from the page array passed to vmap(). 2724 * 2725 * Must not be called in interrupt context. 2726 */ 2727 void vunmap(const void *addr) 2728 { 2729 BUG_ON(in_interrupt()); 2730 might_sleep(); 2731 if (addr) 2732 __vunmap(addr, 0); 2733 } 2734 EXPORT_SYMBOL(vunmap); 2735 2736 /** 2737 * vmap - map an array of pages into virtually contiguous space 2738 * @pages: array of page pointers 2739 * @count: number of pages to map 2740 * @flags: vm_area->flags 2741 * @prot: page protection for the mapping 2742 * 2743 * Maps @count pages from @pages into contiguous kernel virtual space. 2744 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2745 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2746 * are transferred from the caller to vmap(), and will be freed / dropped when 2747 * vfree() is called on the return value. 2748 * 2749 * Return: the address of the area or %NULL on failure 2750 */ 2751 void *vmap(struct page **pages, unsigned int count, 2752 unsigned long flags, pgprot_t prot) 2753 { 2754 struct vm_struct *area; 2755 unsigned long addr; 2756 unsigned long size; /* In bytes */ 2757 2758 might_sleep(); 2759 2760 /* 2761 * Your top guard is someone else's bottom guard. Not having a top 2762 * guard compromises someone else's mappings too. 2763 */ 2764 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2765 flags &= ~VM_NO_GUARD; 2766 2767 if (count > totalram_pages()) 2768 return NULL; 2769 2770 size = (unsigned long)count << PAGE_SHIFT; 2771 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2772 if (!area) 2773 return NULL; 2774 2775 addr = (unsigned long)area->addr; 2776 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2777 pages, PAGE_SHIFT) < 0) { 2778 vunmap(area->addr); 2779 return NULL; 2780 } 2781 2782 if (flags & VM_MAP_PUT_PAGES) { 2783 area->pages = pages; 2784 area->nr_pages = count; 2785 } 2786 return area->addr; 2787 } 2788 EXPORT_SYMBOL(vmap); 2789 2790 #ifdef CONFIG_VMAP_PFN 2791 struct vmap_pfn_data { 2792 unsigned long *pfns; 2793 pgprot_t prot; 2794 unsigned int idx; 2795 }; 2796 2797 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2798 { 2799 struct vmap_pfn_data *data = private; 2800 2801 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2802 return -EINVAL; 2803 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2804 return 0; 2805 } 2806 2807 /** 2808 * vmap_pfn - map an array of PFNs into virtually contiguous space 2809 * @pfns: array of PFNs 2810 * @count: number of pages to map 2811 * @prot: page protection for the mapping 2812 * 2813 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2814 * the start address of the mapping. 2815 */ 2816 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2817 { 2818 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2819 struct vm_struct *area; 2820 2821 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2822 __builtin_return_address(0)); 2823 if (!area) 2824 return NULL; 2825 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2826 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2827 free_vm_area(area); 2828 return NULL; 2829 } 2830 return area->addr; 2831 } 2832 EXPORT_SYMBOL_GPL(vmap_pfn); 2833 #endif /* CONFIG_VMAP_PFN */ 2834 2835 static inline unsigned int 2836 vm_area_alloc_pages(gfp_t gfp, int nid, 2837 unsigned int order, unsigned int nr_pages, struct page **pages) 2838 { 2839 unsigned int nr_allocated = 0; 2840 struct page *page; 2841 int i; 2842 2843 /* 2844 * For order-0 pages we make use of bulk allocator, if 2845 * the page array is partly or not at all populated due 2846 * to fails, fallback to a single page allocator that is 2847 * more permissive. 2848 */ 2849 if (!order) { 2850 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2851 2852 while (nr_allocated < nr_pages) { 2853 unsigned int nr, nr_pages_request; 2854 2855 /* 2856 * A maximum allowed request is hard-coded and is 100 2857 * pages per call. That is done in order to prevent a 2858 * long preemption off scenario in the bulk-allocator 2859 * so the range is [1:100]. 2860 */ 2861 nr_pages_request = min(100U, nr_pages - nr_allocated); 2862 2863 /* memory allocation should consider mempolicy, we can't 2864 * wrongly use nearest node when nid == NUMA_NO_NODE, 2865 * otherwise memory may be allocated in only one node, 2866 * but mempolcy want to alloc memory by interleaving. 2867 */ 2868 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2869 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2870 nr_pages_request, 2871 pages + nr_allocated); 2872 2873 else 2874 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2875 nr_pages_request, 2876 pages + nr_allocated); 2877 2878 nr_allocated += nr; 2879 cond_resched(); 2880 2881 /* 2882 * If zero or pages were obtained partly, 2883 * fallback to a single page allocator. 2884 */ 2885 if (nr != nr_pages_request) 2886 break; 2887 } 2888 } else 2889 /* 2890 * Compound pages required for remap_vmalloc_page if 2891 * high-order pages. 2892 */ 2893 gfp |= __GFP_COMP; 2894 2895 /* High-order pages or fallback path if "bulk" fails. */ 2896 2897 while (nr_allocated < nr_pages) { 2898 if (fatal_signal_pending(current)) 2899 break; 2900 2901 if (nid == NUMA_NO_NODE) 2902 page = alloc_pages(gfp, order); 2903 else 2904 page = alloc_pages_node(nid, gfp, order); 2905 if (unlikely(!page)) 2906 break; 2907 2908 /* 2909 * Careful, we allocate and map page-order pages, but 2910 * tracking is done per PAGE_SIZE page so as to keep the 2911 * vm_struct APIs independent of the physical/mapped size. 2912 */ 2913 for (i = 0; i < (1U << order); i++) 2914 pages[nr_allocated + i] = page + i; 2915 2916 cond_resched(); 2917 nr_allocated += 1U << order; 2918 } 2919 2920 return nr_allocated; 2921 } 2922 2923 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2924 pgprot_t prot, unsigned int page_shift, 2925 int node) 2926 { 2927 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2928 const gfp_t orig_gfp_mask = gfp_mask; 2929 bool nofail = gfp_mask & __GFP_NOFAIL; 2930 unsigned long addr = (unsigned long)area->addr; 2931 unsigned long size = get_vm_area_size(area); 2932 unsigned long array_size; 2933 unsigned int nr_small_pages = size >> PAGE_SHIFT; 2934 unsigned int page_order; 2935 unsigned int flags; 2936 int ret; 2937 2938 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 2939 gfp_mask |= __GFP_NOWARN; 2940 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 2941 gfp_mask |= __GFP_HIGHMEM; 2942 2943 /* Please note that the recursion is strictly bounded. */ 2944 if (array_size > PAGE_SIZE) { 2945 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 2946 area->caller); 2947 } else { 2948 area->pages = kmalloc_node(array_size, nested_gfp, node); 2949 } 2950 2951 if (!area->pages) { 2952 warn_alloc(orig_gfp_mask, NULL, 2953 "vmalloc error: size %lu, failed to allocated page array size %lu", 2954 nr_small_pages * PAGE_SIZE, array_size); 2955 free_vm_area(area); 2956 return NULL; 2957 } 2958 2959 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 2960 page_order = vm_area_page_order(area); 2961 2962 area->nr_pages = vm_area_alloc_pages(gfp_mask, node, 2963 page_order, nr_small_pages, area->pages); 2964 2965 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2966 if (gfp_mask & __GFP_ACCOUNT) { 2967 int i, step = 1U << page_order; 2968 2969 for (i = 0; i < area->nr_pages; i += step) 2970 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 2971 step); 2972 } 2973 2974 /* 2975 * If not enough pages were obtained to accomplish an 2976 * allocation request, free them via __vfree() if any. 2977 */ 2978 if (area->nr_pages != nr_small_pages) { 2979 warn_alloc(orig_gfp_mask, NULL, 2980 "vmalloc error: size %lu, page order %u, failed to allocate pages", 2981 area->nr_pages * PAGE_SIZE, page_order); 2982 goto fail; 2983 } 2984 2985 /* 2986 * page tables allocations ignore external gfp mask, enforce it 2987 * by the scope API 2988 */ 2989 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 2990 flags = memalloc_nofs_save(); 2991 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 2992 flags = memalloc_noio_save(); 2993 2994 do { 2995 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 2996 page_shift); 2997 if (nofail && (ret < 0)) 2998 schedule_timeout_uninterruptible(1); 2999 } while (nofail && (ret < 0)); 3000 3001 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3002 memalloc_nofs_restore(flags); 3003 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3004 memalloc_noio_restore(flags); 3005 3006 if (ret < 0) { 3007 warn_alloc(orig_gfp_mask, NULL, 3008 "vmalloc error: size %lu, failed to map pages", 3009 area->nr_pages * PAGE_SIZE); 3010 goto fail; 3011 } 3012 3013 return area->addr; 3014 3015 fail: 3016 __vfree(area->addr); 3017 return NULL; 3018 } 3019 3020 /** 3021 * __vmalloc_node_range - allocate virtually contiguous memory 3022 * @size: allocation size 3023 * @align: desired alignment 3024 * @start: vm area range start 3025 * @end: vm area range end 3026 * @gfp_mask: flags for the page level allocator 3027 * @prot: protection mask for the allocated pages 3028 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3029 * @node: node to use for allocation or NUMA_NO_NODE 3030 * @caller: caller's return address 3031 * 3032 * Allocate enough pages to cover @size from the page level 3033 * allocator with @gfp_mask flags. Please note that the full set of gfp 3034 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3035 * supported. 3036 * Zone modifiers are not supported. From the reclaim modifiers 3037 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3038 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3039 * __GFP_RETRY_MAYFAIL are not supported). 3040 * 3041 * __GFP_NOWARN can be used to suppress failures messages. 3042 * 3043 * Map them into contiguous kernel virtual space, using a pagetable 3044 * protection of @prot. 3045 * 3046 * Return: the address of the area or %NULL on failure 3047 */ 3048 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3049 unsigned long start, unsigned long end, gfp_t gfp_mask, 3050 pgprot_t prot, unsigned long vm_flags, int node, 3051 const void *caller) 3052 { 3053 struct vm_struct *area; 3054 void *addr; 3055 unsigned long real_size = size; 3056 unsigned long real_align = align; 3057 unsigned int shift = PAGE_SHIFT; 3058 3059 if (WARN_ON_ONCE(!size)) 3060 return NULL; 3061 3062 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3063 warn_alloc(gfp_mask, NULL, 3064 "vmalloc error: size %lu, exceeds total pages", 3065 real_size); 3066 return NULL; 3067 } 3068 3069 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) { 3070 unsigned long size_per_node; 3071 3072 /* 3073 * Try huge pages. Only try for PAGE_KERNEL allocations, 3074 * others like modules don't yet expect huge pages in 3075 * their allocations due to apply_to_page_range not 3076 * supporting them. 3077 */ 3078 3079 size_per_node = size; 3080 if (node == NUMA_NO_NODE) 3081 size_per_node /= num_online_nodes(); 3082 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3083 shift = PMD_SHIFT; 3084 else 3085 shift = arch_vmap_pte_supported_shift(size_per_node); 3086 3087 align = max(real_align, 1UL << shift); 3088 size = ALIGN(real_size, 1UL << shift); 3089 } 3090 3091 again: 3092 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3093 VM_UNINITIALIZED | vm_flags, start, end, node, 3094 gfp_mask, caller); 3095 if (!area) { 3096 bool nofail = gfp_mask & __GFP_NOFAIL; 3097 warn_alloc(gfp_mask, NULL, 3098 "vmalloc error: size %lu, vm_struct allocation failed%s", 3099 real_size, (nofail) ? ". Retrying." : ""); 3100 if (nofail) { 3101 schedule_timeout_uninterruptible(1); 3102 goto again; 3103 } 3104 goto fail; 3105 } 3106 3107 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3108 if (!addr) 3109 goto fail; 3110 3111 /* 3112 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3113 * flag. It means that vm_struct is not fully initialized. 3114 * Now, it is fully initialized, so remove this flag here. 3115 */ 3116 clear_vm_uninitialized_flag(area); 3117 3118 size = PAGE_ALIGN(size); 3119 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3120 kmemleak_vmalloc(area, size, gfp_mask); 3121 3122 return addr; 3123 3124 fail: 3125 if (shift > PAGE_SHIFT) { 3126 shift = PAGE_SHIFT; 3127 align = real_align; 3128 size = real_size; 3129 goto again; 3130 } 3131 3132 return NULL; 3133 } 3134 3135 /** 3136 * __vmalloc_node - allocate virtually contiguous memory 3137 * @size: allocation size 3138 * @align: desired alignment 3139 * @gfp_mask: flags for the page level allocator 3140 * @node: node to use for allocation or NUMA_NO_NODE 3141 * @caller: caller's return address 3142 * 3143 * Allocate enough pages to cover @size from the page level allocator with 3144 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3145 * 3146 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3147 * and __GFP_NOFAIL are not supported 3148 * 3149 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3150 * with mm people. 3151 * 3152 * Return: pointer to the allocated memory or %NULL on error 3153 */ 3154 void *__vmalloc_node(unsigned long size, unsigned long align, 3155 gfp_t gfp_mask, int node, const void *caller) 3156 { 3157 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3158 gfp_mask, PAGE_KERNEL, 0, node, caller); 3159 } 3160 /* 3161 * This is only for performance analysis of vmalloc and stress purpose. 3162 * It is required by vmalloc test module, therefore do not use it other 3163 * than that. 3164 */ 3165 #ifdef CONFIG_TEST_VMALLOC_MODULE 3166 EXPORT_SYMBOL_GPL(__vmalloc_node); 3167 #endif 3168 3169 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3170 { 3171 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3172 __builtin_return_address(0)); 3173 } 3174 EXPORT_SYMBOL(__vmalloc); 3175 3176 /** 3177 * vmalloc - allocate virtually contiguous memory 3178 * @size: allocation size 3179 * 3180 * Allocate enough pages to cover @size from the page level 3181 * allocator and map them into contiguous kernel virtual space. 3182 * 3183 * For tight control over page level allocator and protection flags 3184 * use __vmalloc() instead. 3185 * 3186 * Return: pointer to the allocated memory or %NULL on error 3187 */ 3188 void *vmalloc(unsigned long size) 3189 { 3190 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3191 __builtin_return_address(0)); 3192 } 3193 EXPORT_SYMBOL(vmalloc); 3194 3195 /** 3196 * vmalloc_no_huge - allocate virtually contiguous memory using small pages 3197 * @size: allocation size 3198 * 3199 * Allocate enough non-huge pages to cover @size from the page level 3200 * allocator and map them into contiguous kernel virtual space. 3201 * 3202 * Return: pointer to the allocated memory or %NULL on error 3203 */ 3204 void *vmalloc_no_huge(unsigned long size) 3205 { 3206 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3207 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP, 3208 NUMA_NO_NODE, __builtin_return_address(0)); 3209 } 3210 EXPORT_SYMBOL(vmalloc_no_huge); 3211 3212 /** 3213 * vzalloc - allocate virtually contiguous memory with zero fill 3214 * @size: allocation size 3215 * 3216 * Allocate enough pages to cover @size from the page level 3217 * allocator and map them into contiguous kernel virtual space. 3218 * The memory allocated is set to zero. 3219 * 3220 * For tight control over page level allocator and protection flags 3221 * use __vmalloc() instead. 3222 * 3223 * Return: pointer to the allocated memory or %NULL on error 3224 */ 3225 void *vzalloc(unsigned long size) 3226 { 3227 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3228 __builtin_return_address(0)); 3229 } 3230 EXPORT_SYMBOL(vzalloc); 3231 3232 /** 3233 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3234 * @size: allocation size 3235 * 3236 * The resulting memory area is zeroed so it can be mapped to userspace 3237 * without leaking data. 3238 * 3239 * Return: pointer to the allocated memory or %NULL on error 3240 */ 3241 void *vmalloc_user(unsigned long size) 3242 { 3243 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3244 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3245 VM_USERMAP, NUMA_NO_NODE, 3246 __builtin_return_address(0)); 3247 } 3248 EXPORT_SYMBOL(vmalloc_user); 3249 3250 /** 3251 * vmalloc_node - allocate memory on a specific node 3252 * @size: allocation size 3253 * @node: numa node 3254 * 3255 * Allocate enough pages to cover @size from the page level 3256 * allocator and map them into contiguous kernel virtual space. 3257 * 3258 * For tight control over page level allocator and protection flags 3259 * use __vmalloc() instead. 3260 * 3261 * Return: pointer to the allocated memory or %NULL on error 3262 */ 3263 void *vmalloc_node(unsigned long size, int node) 3264 { 3265 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3266 __builtin_return_address(0)); 3267 } 3268 EXPORT_SYMBOL(vmalloc_node); 3269 3270 /** 3271 * vzalloc_node - allocate memory on a specific node with zero fill 3272 * @size: allocation size 3273 * @node: numa node 3274 * 3275 * Allocate enough pages to cover @size from the page level 3276 * allocator and map them into contiguous kernel virtual space. 3277 * The memory allocated is set to zero. 3278 * 3279 * Return: pointer to the allocated memory or %NULL on error 3280 */ 3281 void *vzalloc_node(unsigned long size, int node) 3282 { 3283 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3284 __builtin_return_address(0)); 3285 } 3286 EXPORT_SYMBOL(vzalloc_node); 3287 3288 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3289 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3290 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3291 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3292 #else 3293 /* 3294 * 64b systems should always have either DMA or DMA32 zones. For others 3295 * GFP_DMA32 should do the right thing and use the normal zone. 3296 */ 3297 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3298 #endif 3299 3300 /** 3301 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3302 * @size: allocation size 3303 * 3304 * Allocate enough 32bit PA addressable pages to cover @size from the 3305 * page level allocator and map them into contiguous kernel virtual space. 3306 * 3307 * Return: pointer to the allocated memory or %NULL on error 3308 */ 3309 void *vmalloc_32(unsigned long size) 3310 { 3311 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3312 __builtin_return_address(0)); 3313 } 3314 EXPORT_SYMBOL(vmalloc_32); 3315 3316 /** 3317 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3318 * @size: allocation size 3319 * 3320 * The resulting memory area is 32bit addressable and zeroed so it can be 3321 * mapped to userspace without leaking data. 3322 * 3323 * Return: pointer to the allocated memory or %NULL on error 3324 */ 3325 void *vmalloc_32_user(unsigned long size) 3326 { 3327 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3328 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3329 VM_USERMAP, NUMA_NO_NODE, 3330 __builtin_return_address(0)); 3331 } 3332 EXPORT_SYMBOL(vmalloc_32_user); 3333 3334 /* 3335 * small helper routine , copy contents to buf from addr. 3336 * If the page is not present, fill zero. 3337 */ 3338 3339 static int aligned_vread(char *buf, char *addr, unsigned long count) 3340 { 3341 struct page *p; 3342 int copied = 0; 3343 3344 while (count) { 3345 unsigned long offset, length; 3346 3347 offset = offset_in_page(addr); 3348 length = PAGE_SIZE - offset; 3349 if (length > count) 3350 length = count; 3351 p = vmalloc_to_page(addr); 3352 /* 3353 * To do safe access to this _mapped_ area, we need 3354 * lock. But adding lock here means that we need to add 3355 * overhead of vmalloc()/vfree() calls for this _debug_ 3356 * interface, rarely used. Instead of that, we'll use 3357 * kmap() and get small overhead in this access function. 3358 */ 3359 if (p) { 3360 /* We can expect USER0 is not used -- see vread() */ 3361 void *map = kmap_atomic(p); 3362 memcpy(buf, map + offset, length); 3363 kunmap_atomic(map); 3364 } else 3365 memset(buf, 0, length); 3366 3367 addr += length; 3368 buf += length; 3369 copied += length; 3370 count -= length; 3371 } 3372 return copied; 3373 } 3374 3375 /** 3376 * vread() - read vmalloc area in a safe way. 3377 * @buf: buffer for reading data 3378 * @addr: vm address. 3379 * @count: number of bytes to be read. 3380 * 3381 * This function checks that addr is a valid vmalloc'ed area, and 3382 * copy data from that area to a given buffer. If the given memory range 3383 * of [addr...addr+count) includes some valid address, data is copied to 3384 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3385 * IOREMAP area is treated as memory hole and no copy is done. 3386 * 3387 * If [addr...addr+count) doesn't includes any intersects with alive 3388 * vm_struct area, returns 0. @buf should be kernel's buffer. 3389 * 3390 * Note: In usual ops, vread() is never necessary because the caller 3391 * should know vmalloc() area is valid and can use memcpy(). 3392 * This is for routines which have to access vmalloc area without 3393 * any information, as /proc/kcore. 3394 * 3395 * Return: number of bytes for which addr and buf should be increased 3396 * (same number as @count) or %0 if [addr...addr+count) doesn't 3397 * include any intersection with valid vmalloc area 3398 */ 3399 long vread(char *buf, char *addr, unsigned long count) 3400 { 3401 struct vmap_area *va; 3402 struct vm_struct *vm; 3403 char *vaddr, *buf_start = buf; 3404 unsigned long buflen = count; 3405 unsigned long n; 3406 3407 /* Don't allow overflow */ 3408 if ((unsigned long) addr + count < count) 3409 count = -(unsigned long) addr; 3410 3411 spin_lock(&vmap_area_lock); 3412 va = find_vmap_area_exceed_addr((unsigned long)addr); 3413 if (!va) 3414 goto finished; 3415 3416 /* no intersects with alive vmap_area */ 3417 if ((unsigned long)addr + count <= va->va_start) 3418 goto finished; 3419 3420 list_for_each_entry_from(va, &vmap_area_list, list) { 3421 if (!count) 3422 break; 3423 3424 if (!va->vm) 3425 continue; 3426 3427 vm = va->vm; 3428 vaddr = (char *) vm->addr; 3429 if (addr >= vaddr + get_vm_area_size(vm)) 3430 continue; 3431 while (addr < vaddr) { 3432 if (count == 0) 3433 goto finished; 3434 *buf = '\0'; 3435 buf++; 3436 addr++; 3437 count--; 3438 } 3439 n = vaddr + get_vm_area_size(vm) - addr; 3440 if (n > count) 3441 n = count; 3442 if (!(vm->flags & VM_IOREMAP)) 3443 aligned_vread(buf, addr, n); 3444 else /* IOREMAP area is treated as memory hole */ 3445 memset(buf, 0, n); 3446 buf += n; 3447 addr += n; 3448 count -= n; 3449 } 3450 finished: 3451 spin_unlock(&vmap_area_lock); 3452 3453 if (buf == buf_start) 3454 return 0; 3455 /* zero-fill memory holes */ 3456 if (buf != buf_start + buflen) 3457 memset(buf, 0, buflen - (buf - buf_start)); 3458 3459 return buflen; 3460 } 3461 3462 /** 3463 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3464 * @vma: vma to cover 3465 * @uaddr: target user address to start at 3466 * @kaddr: virtual address of vmalloc kernel memory 3467 * @pgoff: offset from @kaddr to start at 3468 * @size: size of map area 3469 * 3470 * Returns: 0 for success, -Exxx on failure 3471 * 3472 * This function checks that @kaddr is a valid vmalloc'ed area, 3473 * and that it is big enough to cover the range starting at 3474 * @uaddr in @vma. Will return failure if that criteria isn't 3475 * met. 3476 * 3477 * Similar to remap_pfn_range() (see mm/memory.c) 3478 */ 3479 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3480 void *kaddr, unsigned long pgoff, 3481 unsigned long size) 3482 { 3483 struct vm_struct *area; 3484 unsigned long off; 3485 unsigned long end_index; 3486 3487 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3488 return -EINVAL; 3489 3490 size = PAGE_ALIGN(size); 3491 3492 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3493 return -EINVAL; 3494 3495 area = find_vm_area(kaddr); 3496 if (!area) 3497 return -EINVAL; 3498 3499 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3500 return -EINVAL; 3501 3502 if (check_add_overflow(size, off, &end_index) || 3503 end_index > get_vm_area_size(area)) 3504 return -EINVAL; 3505 kaddr += off; 3506 3507 do { 3508 struct page *page = vmalloc_to_page(kaddr); 3509 int ret; 3510 3511 ret = vm_insert_page(vma, uaddr, page); 3512 if (ret) 3513 return ret; 3514 3515 uaddr += PAGE_SIZE; 3516 kaddr += PAGE_SIZE; 3517 size -= PAGE_SIZE; 3518 } while (size > 0); 3519 3520 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3521 3522 return 0; 3523 } 3524 3525 /** 3526 * remap_vmalloc_range - map vmalloc pages to userspace 3527 * @vma: vma to cover (map full range of vma) 3528 * @addr: vmalloc memory 3529 * @pgoff: number of pages into addr before first page to map 3530 * 3531 * Returns: 0 for success, -Exxx on failure 3532 * 3533 * This function checks that addr is a valid vmalloc'ed area, and 3534 * that it is big enough to cover the vma. Will return failure if 3535 * that criteria isn't met. 3536 * 3537 * Similar to remap_pfn_range() (see mm/memory.c) 3538 */ 3539 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3540 unsigned long pgoff) 3541 { 3542 return remap_vmalloc_range_partial(vma, vma->vm_start, 3543 addr, pgoff, 3544 vma->vm_end - vma->vm_start); 3545 } 3546 EXPORT_SYMBOL(remap_vmalloc_range); 3547 3548 void free_vm_area(struct vm_struct *area) 3549 { 3550 struct vm_struct *ret; 3551 ret = remove_vm_area(area->addr); 3552 BUG_ON(ret != area); 3553 kfree(area); 3554 } 3555 EXPORT_SYMBOL_GPL(free_vm_area); 3556 3557 #ifdef CONFIG_SMP 3558 static struct vmap_area *node_to_va(struct rb_node *n) 3559 { 3560 return rb_entry_safe(n, struct vmap_area, rb_node); 3561 } 3562 3563 /** 3564 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3565 * @addr: target address 3566 * 3567 * Returns: vmap_area if it is found. If there is no such area 3568 * the first highest(reverse order) vmap_area is returned 3569 * i.e. va->va_start < addr && va->va_end < addr or NULL 3570 * if there are no any areas before @addr. 3571 */ 3572 static struct vmap_area * 3573 pvm_find_va_enclose_addr(unsigned long addr) 3574 { 3575 struct vmap_area *va, *tmp; 3576 struct rb_node *n; 3577 3578 n = free_vmap_area_root.rb_node; 3579 va = NULL; 3580 3581 while (n) { 3582 tmp = rb_entry(n, struct vmap_area, rb_node); 3583 if (tmp->va_start <= addr) { 3584 va = tmp; 3585 if (tmp->va_end >= addr) 3586 break; 3587 3588 n = n->rb_right; 3589 } else { 3590 n = n->rb_left; 3591 } 3592 } 3593 3594 return va; 3595 } 3596 3597 /** 3598 * pvm_determine_end_from_reverse - find the highest aligned address 3599 * of free block below VMALLOC_END 3600 * @va: 3601 * in - the VA we start the search(reverse order); 3602 * out - the VA with the highest aligned end address. 3603 * @align: alignment for required highest address 3604 * 3605 * Returns: determined end address within vmap_area 3606 */ 3607 static unsigned long 3608 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3609 { 3610 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3611 unsigned long addr; 3612 3613 if (likely(*va)) { 3614 list_for_each_entry_from_reverse((*va), 3615 &free_vmap_area_list, list) { 3616 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3617 if ((*va)->va_start < addr) 3618 return addr; 3619 } 3620 } 3621 3622 return 0; 3623 } 3624 3625 /** 3626 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3627 * @offsets: array containing offset of each area 3628 * @sizes: array containing size of each area 3629 * @nr_vms: the number of areas to allocate 3630 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3631 * 3632 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3633 * vm_structs on success, %NULL on failure 3634 * 3635 * Percpu allocator wants to use congruent vm areas so that it can 3636 * maintain the offsets among percpu areas. This function allocates 3637 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3638 * be scattered pretty far, distance between two areas easily going up 3639 * to gigabytes. To avoid interacting with regular vmallocs, these 3640 * areas are allocated from top. 3641 * 3642 * Despite its complicated look, this allocator is rather simple. It 3643 * does everything top-down and scans free blocks from the end looking 3644 * for matching base. While scanning, if any of the areas do not fit the 3645 * base address is pulled down to fit the area. Scanning is repeated till 3646 * all the areas fit and then all necessary data structures are inserted 3647 * and the result is returned. 3648 */ 3649 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3650 const size_t *sizes, int nr_vms, 3651 size_t align) 3652 { 3653 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3654 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3655 struct vmap_area **vas, *va; 3656 struct vm_struct **vms; 3657 int area, area2, last_area, term_area; 3658 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3659 bool purged = false; 3660 enum fit_type type; 3661 3662 /* verify parameters and allocate data structures */ 3663 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3664 for (last_area = 0, area = 0; area < nr_vms; area++) { 3665 start = offsets[area]; 3666 end = start + sizes[area]; 3667 3668 /* is everything aligned properly? */ 3669 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3670 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3671 3672 /* detect the area with the highest address */ 3673 if (start > offsets[last_area]) 3674 last_area = area; 3675 3676 for (area2 = area + 1; area2 < nr_vms; area2++) { 3677 unsigned long start2 = offsets[area2]; 3678 unsigned long end2 = start2 + sizes[area2]; 3679 3680 BUG_ON(start2 < end && start < end2); 3681 } 3682 } 3683 last_end = offsets[last_area] + sizes[last_area]; 3684 3685 if (vmalloc_end - vmalloc_start < last_end) { 3686 WARN_ON(true); 3687 return NULL; 3688 } 3689 3690 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3691 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3692 if (!vas || !vms) 3693 goto err_free2; 3694 3695 for (area = 0; area < nr_vms; area++) { 3696 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3697 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3698 if (!vas[area] || !vms[area]) 3699 goto err_free; 3700 } 3701 retry: 3702 spin_lock(&free_vmap_area_lock); 3703 3704 /* start scanning - we scan from the top, begin with the last area */ 3705 area = term_area = last_area; 3706 start = offsets[area]; 3707 end = start + sizes[area]; 3708 3709 va = pvm_find_va_enclose_addr(vmalloc_end); 3710 base = pvm_determine_end_from_reverse(&va, align) - end; 3711 3712 while (true) { 3713 /* 3714 * base might have underflowed, add last_end before 3715 * comparing. 3716 */ 3717 if (base + last_end < vmalloc_start + last_end) 3718 goto overflow; 3719 3720 /* 3721 * Fitting base has not been found. 3722 */ 3723 if (va == NULL) 3724 goto overflow; 3725 3726 /* 3727 * If required width exceeds current VA block, move 3728 * base downwards and then recheck. 3729 */ 3730 if (base + end > va->va_end) { 3731 base = pvm_determine_end_from_reverse(&va, align) - end; 3732 term_area = area; 3733 continue; 3734 } 3735 3736 /* 3737 * If this VA does not fit, move base downwards and recheck. 3738 */ 3739 if (base + start < va->va_start) { 3740 va = node_to_va(rb_prev(&va->rb_node)); 3741 base = pvm_determine_end_from_reverse(&va, align) - end; 3742 term_area = area; 3743 continue; 3744 } 3745 3746 /* 3747 * This area fits, move on to the previous one. If 3748 * the previous one is the terminal one, we're done. 3749 */ 3750 area = (area + nr_vms - 1) % nr_vms; 3751 if (area == term_area) 3752 break; 3753 3754 start = offsets[area]; 3755 end = start + sizes[area]; 3756 va = pvm_find_va_enclose_addr(base + end); 3757 } 3758 3759 /* we've found a fitting base, insert all va's */ 3760 for (area = 0; area < nr_vms; area++) { 3761 int ret; 3762 3763 start = base + offsets[area]; 3764 size = sizes[area]; 3765 3766 va = pvm_find_va_enclose_addr(start); 3767 if (WARN_ON_ONCE(va == NULL)) 3768 /* It is a BUG(), but trigger recovery instead. */ 3769 goto recovery; 3770 3771 type = classify_va_fit_type(va, start, size); 3772 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3773 /* It is a BUG(), but trigger recovery instead. */ 3774 goto recovery; 3775 3776 ret = adjust_va_to_fit_type(va, start, size, type); 3777 if (unlikely(ret)) 3778 goto recovery; 3779 3780 /* Allocated area. */ 3781 va = vas[area]; 3782 va->va_start = start; 3783 va->va_end = start + size; 3784 } 3785 3786 spin_unlock(&free_vmap_area_lock); 3787 3788 /* populate the kasan shadow space */ 3789 for (area = 0; area < nr_vms; area++) { 3790 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3791 goto err_free_shadow; 3792 3793 kasan_unpoison_vmalloc((void *)vas[area]->va_start, 3794 sizes[area]); 3795 } 3796 3797 /* insert all vm's */ 3798 spin_lock(&vmap_area_lock); 3799 for (area = 0; area < nr_vms; area++) { 3800 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3801 3802 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3803 pcpu_get_vm_areas); 3804 } 3805 spin_unlock(&vmap_area_lock); 3806 3807 kfree(vas); 3808 return vms; 3809 3810 recovery: 3811 /* 3812 * Remove previously allocated areas. There is no 3813 * need in removing these areas from the busy tree, 3814 * because they are inserted only on the final step 3815 * and when pcpu_get_vm_areas() is success. 3816 */ 3817 while (area--) { 3818 orig_start = vas[area]->va_start; 3819 orig_end = vas[area]->va_end; 3820 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3821 &free_vmap_area_list); 3822 if (va) 3823 kasan_release_vmalloc(orig_start, orig_end, 3824 va->va_start, va->va_end); 3825 vas[area] = NULL; 3826 } 3827 3828 overflow: 3829 spin_unlock(&free_vmap_area_lock); 3830 if (!purged) { 3831 purge_vmap_area_lazy(); 3832 purged = true; 3833 3834 /* Before "retry", check if we recover. */ 3835 for (area = 0; area < nr_vms; area++) { 3836 if (vas[area]) 3837 continue; 3838 3839 vas[area] = kmem_cache_zalloc( 3840 vmap_area_cachep, GFP_KERNEL); 3841 if (!vas[area]) 3842 goto err_free; 3843 } 3844 3845 goto retry; 3846 } 3847 3848 err_free: 3849 for (area = 0; area < nr_vms; area++) { 3850 if (vas[area]) 3851 kmem_cache_free(vmap_area_cachep, vas[area]); 3852 3853 kfree(vms[area]); 3854 } 3855 err_free2: 3856 kfree(vas); 3857 kfree(vms); 3858 return NULL; 3859 3860 err_free_shadow: 3861 spin_lock(&free_vmap_area_lock); 3862 /* 3863 * We release all the vmalloc shadows, even the ones for regions that 3864 * hadn't been successfully added. This relies on kasan_release_vmalloc 3865 * being able to tolerate this case. 3866 */ 3867 for (area = 0; area < nr_vms; area++) { 3868 orig_start = vas[area]->va_start; 3869 orig_end = vas[area]->va_end; 3870 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3871 &free_vmap_area_list); 3872 if (va) 3873 kasan_release_vmalloc(orig_start, orig_end, 3874 va->va_start, va->va_end); 3875 vas[area] = NULL; 3876 kfree(vms[area]); 3877 } 3878 spin_unlock(&free_vmap_area_lock); 3879 kfree(vas); 3880 kfree(vms); 3881 return NULL; 3882 } 3883 3884 /** 3885 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3886 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3887 * @nr_vms: the number of allocated areas 3888 * 3889 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3890 */ 3891 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3892 { 3893 int i; 3894 3895 for (i = 0; i < nr_vms; i++) 3896 free_vm_area(vms[i]); 3897 kfree(vms); 3898 } 3899 #endif /* CONFIG_SMP */ 3900 3901 #ifdef CONFIG_PRINTK 3902 bool vmalloc_dump_obj(void *object) 3903 { 3904 struct vm_struct *vm; 3905 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 3906 3907 vm = find_vm_area(objp); 3908 if (!vm) 3909 return false; 3910 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 3911 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 3912 return true; 3913 } 3914 #endif 3915 3916 #ifdef CONFIG_PROC_FS 3917 static void *s_start(struct seq_file *m, loff_t *pos) 3918 __acquires(&vmap_purge_lock) 3919 __acquires(&vmap_area_lock) 3920 { 3921 mutex_lock(&vmap_purge_lock); 3922 spin_lock(&vmap_area_lock); 3923 3924 return seq_list_start(&vmap_area_list, *pos); 3925 } 3926 3927 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3928 { 3929 return seq_list_next(p, &vmap_area_list, pos); 3930 } 3931 3932 static void s_stop(struct seq_file *m, void *p) 3933 __releases(&vmap_area_lock) 3934 __releases(&vmap_purge_lock) 3935 { 3936 spin_unlock(&vmap_area_lock); 3937 mutex_unlock(&vmap_purge_lock); 3938 } 3939 3940 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3941 { 3942 if (IS_ENABLED(CONFIG_NUMA)) { 3943 unsigned int nr, *counters = m->private; 3944 unsigned int step = 1U << vm_area_page_order(v); 3945 3946 if (!counters) 3947 return; 3948 3949 if (v->flags & VM_UNINITIALIZED) 3950 return; 3951 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3952 smp_rmb(); 3953 3954 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3955 3956 for (nr = 0; nr < v->nr_pages; nr += step) 3957 counters[page_to_nid(v->pages[nr])] += step; 3958 for_each_node_state(nr, N_HIGH_MEMORY) 3959 if (counters[nr]) 3960 seq_printf(m, " N%u=%u", nr, counters[nr]); 3961 } 3962 } 3963 3964 static void show_purge_info(struct seq_file *m) 3965 { 3966 struct vmap_area *va; 3967 3968 spin_lock(&purge_vmap_area_lock); 3969 list_for_each_entry(va, &purge_vmap_area_list, list) { 3970 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 3971 (void *)va->va_start, (void *)va->va_end, 3972 va->va_end - va->va_start); 3973 } 3974 spin_unlock(&purge_vmap_area_lock); 3975 } 3976 3977 static int s_show(struct seq_file *m, void *p) 3978 { 3979 struct vmap_area *va; 3980 struct vm_struct *v; 3981 3982 va = list_entry(p, struct vmap_area, list); 3983 3984 /* 3985 * s_show can encounter race with remove_vm_area, !vm on behalf 3986 * of vmap area is being tear down or vm_map_ram allocation. 3987 */ 3988 if (!va->vm) { 3989 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 3990 (void *)va->va_start, (void *)va->va_end, 3991 va->va_end - va->va_start); 3992 3993 goto final; 3994 } 3995 3996 v = va->vm; 3997 3998 seq_printf(m, "0x%pK-0x%pK %7ld", 3999 v->addr, v->addr + v->size, v->size); 4000 4001 if (v->caller) 4002 seq_printf(m, " %pS", v->caller); 4003 4004 if (v->nr_pages) 4005 seq_printf(m, " pages=%d", v->nr_pages); 4006 4007 if (v->phys_addr) 4008 seq_printf(m, " phys=%pa", &v->phys_addr); 4009 4010 if (v->flags & VM_IOREMAP) 4011 seq_puts(m, " ioremap"); 4012 4013 if (v->flags & VM_ALLOC) 4014 seq_puts(m, " vmalloc"); 4015 4016 if (v->flags & VM_MAP) 4017 seq_puts(m, " vmap"); 4018 4019 if (v->flags & VM_USERMAP) 4020 seq_puts(m, " user"); 4021 4022 if (v->flags & VM_DMA_COHERENT) 4023 seq_puts(m, " dma-coherent"); 4024 4025 if (is_vmalloc_addr(v->pages)) 4026 seq_puts(m, " vpages"); 4027 4028 show_numa_info(m, v); 4029 seq_putc(m, '\n'); 4030 4031 /* 4032 * As a final step, dump "unpurged" areas. 4033 */ 4034 final: 4035 if (list_is_last(&va->list, &vmap_area_list)) 4036 show_purge_info(m); 4037 4038 return 0; 4039 } 4040 4041 static const struct seq_operations vmalloc_op = { 4042 .start = s_start, 4043 .next = s_next, 4044 .stop = s_stop, 4045 .show = s_show, 4046 }; 4047 4048 static int __init proc_vmalloc_init(void) 4049 { 4050 if (IS_ENABLED(CONFIG_NUMA)) 4051 proc_create_seq_private("vmallocinfo", 0400, NULL, 4052 &vmalloc_op, 4053 nr_node_ids * sizeof(unsigned int), NULL); 4054 else 4055 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4056 return 0; 4057 } 4058 module_init(proc_vmalloc_init); 4059 4060 #endif 4061