xref: /openbmc/linux/mm/vmalloc.c (revision 6d99a79c)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *t, *llnode;
53 
54 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
55 		__vunmap((void *)llnode, 1);
56 }
57 
58 /*** Page table manipulation functions ***/
59 
60 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
61 {
62 	pte_t *pte;
63 
64 	pte = pte_offset_kernel(pmd, addr);
65 	do {
66 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
67 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
68 	} while (pte++, addr += PAGE_SIZE, addr != end);
69 }
70 
71 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
72 {
73 	pmd_t *pmd;
74 	unsigned long next;
75 
76 	pmd = pmd_offset(pud, addr);
77 	do {
78 		next = pmd_addr_end(addr, end);
79 		if (pmd_clear_huge(pmd))
80 			continue;
81 		if (pmd_none_or_clear_bad(pmd))
82 			continue;
83 		vunmap_pte_range(pmd, addr, next);
84 	} while (pmd++, addr = next, addr != end);
85 }
86 
87 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
88 {
89 	pud_t *pud;
90 	unsigned long next;
91 
92 	pud = pud_offset(p4d, addr);
93 	do {
94 		next = pud_addr_end(addr, end);
95 		if (pud_clear_huge(pud))
96 			continue;
97 		if (pud_none_or_clear_bad(pud))
98 			continue;
99 		vunmap_pmd_range(pud, addr, next);
100 	} while (pud++, addr = next, addr != end);
101 }
102 
103 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
104 {
105 	p4d_t *p4d;
106 	unsigned long next;
107 
108 	p4d = p4d_offset(pgd, addr);
109 	do {
110 		next = p4d_addr_end(addr, end);
111 		if (p4d_clear_huge(p4d))
112 			continue;
113 		if (p4d_none_or_clear_bad(p4d))
114 			continue;
115 		vunmap_pud_range(p4d, addr, next);
116 	} while (p4d++, addr = next, addr != end);
117 }
118 
119 static void vunmap_page_range(unsigned long addr, unsigned long end)
120 {
121 	pgd_t *pgd;
122 	unsigned long next;
123 
124 	BUG_ON(addr >= end);
125 	pgd = pgd_offset_k(addr);
126 	do {
127 		next = pgd_addr_end(addr, end);
128 		if (pgd_none_or_clear_bad(pgd))
129 			continue;
130 		vunmap_p4d_range(pgd, addr, next);
131 	} while (pgd++, addr = next, addr != end);
132 }
133 
134 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
135 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 {
137 	pte_t *pte;
138 
139 	/*
140 	 * nr is a running index into the array which helps higher level
141 	 * callers keep track of where we're up to.
142 	 */
143 
144 	pte = pte_alloc_kernel(pmd, addr);
145 	if (!pte)
146 		return -ENOMEM;
147 	do {
148 		struct page *page = pages[*nr];
149 
150 		if (WARN_ON(!pte_none(*pte)))
151 			return -EBUSY;
152 		if (WARN_ON(!page))
153 			return -ENOMEM;
154 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
155 		(*nr)++;
156 	} while (pte++, addr += PAGE_SIZE, addr != end);
157 	return 0;
158 }
159 
160 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
161 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc(&init_mm, pud, addr);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
172 			return -ENOMEM;
173 	} while (pmd++, addr = next, addr != end);
174 	return 0;
175 }
176 
177 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
178 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
179 {
180 	pud_t *pud;
181 	unsigned long next;
182 
183 	pud = pud_alloc(&init_mm, p4d, addr);
184 	if (!pud)
185 		return -ENOMEM;
186 	do {
187 		next = pud_addr_end(addr, end);
188 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
189 			return -ENOMEM;
190 	} while (pud++, addr = next, addr != end);
191 	return 0;
192 }
193 
194 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
195 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
196 {
197 	p4d_t *p4d;
198 	unsigned long next;
199 
200 	p4d = p4d_alloc(&init_mm, pgd, addr);
201 	if (!p4d)
202 		return -ENOMEM;
203 	do {
204 		next = p4d_addr_end(addr, end);
205 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
206 			return -ENOMEM;
207 	} while (p4d++, addr = next, addr != end);
208 	return 0;
209 }
210 
211 /*
212  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
213  * will have pfns corresponding to the "pages" array.
214  *
215  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
216  */
217 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
218 				   pgprot_t prot, struct page **pages)
219 {
220 	pgd_t *pgd;
221 	unsigned long next;
222 	unsigned long addr = start;
223 	int err = 0;
224 	int nr = 0;
225 
226 	BUG_ON(addr >= end);
227 	pgd = pgd_offset_k(addr);
228 	do {
229 		next = pgd_addr_end(addr, end);
230 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
231 		if (err)
232 			return err;
233 	} while (pgd++, addr = next, addr != end);
234 
235 	return nr;
236 }
237 
238 static int vmap_page_range(unsigned long start, unsigned long end,
239 			   pgprot_t prot, struct page **pages)
240 {
241 	int ret;
242 
243 	ret = vmap_page_range_noflush(start, end, prot, pages);
244 	flush_cache_vmap(start, end);
245 	return ret;
246 }
247 
248 int is_vmalloc_or_module_addr(const void *x)
249 {
250 	/*
251 	 * ARM, x86-64 and sparc64 put modules in a special place,
252 	 * and fall back on vmalloc() if that fails. Others
253 	 * just put it in the vmalloc space.
254 	 */
255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
256 	unsigned long addr = (unsigned long)x;
257 	if (addr >= MODULES_VADDR && addr < MODULES_END)
258 		return 1;
259 #endif
260 	return is_vmalloc_addr(x);
261 }
262 
263 /*
264  * Walk a vmap address to the struct page it maps.
265  */
266 struct page *vmalloc_to_page(const void *vmalloc_addr)
267 {
268 	unsigned long addr = (unsigned long) vmalloc_addr;
269 	struct page *page = NULL;
270 	pgd_t *pgd = pgd_offset_k(addr);
271 	p4d_t *p4d;
272 	pud_t *pud;
273 	pmd_t *pmd;
274 	pte_t *ptep, pte;
275 
276 	/*
277 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
278 	 * architectures that do not vmalloc module space
279 	 */
280 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
281 
282 	if (pgd_none(*pgd))
283 		return NULL;
284 	p4d = p4d_offset(pgd, addr);
285 	if (p4d_none(*p4d))
286 		return NULL;
287 	pud = pud_offset(p4d, addr);
288 
289 	/*
290 	 * Don't dereference bad PUD or PMD (below) entries. This will also
291 	 * identify huge mappings, which we may encounter on architectures
292 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
293 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
294 	 * not [unambiguously] associated with a struct page, so there is
295 	 * no correct value to return for them.
296 	 */
297 	WARN_ON_ONCE(pud_bad(*pud));
298 	if (pud_none(*pud) || pud_bad(*pud))
299 		return NULL;
300 	pmd = pmd_offset(pud, addr);
301 	WARN_ON_ONCE(pmd_bad(*pmd));
302 	if (pmd_none(*pmd) || pmd_bad(*pmd))
303 		return NULL;
304 
305 	ptep = pte_offset_map(pmd, addr);
306 	pte = *ptep;
307 	if (pte_present(pte))
308 		page = pte_page(pte);
309 	pte_unmap(ptep);
310 	return page;
311 }
312 EXPORT_SYMBOL(vmalloc_to_page);
313 
314 /*
315  * Map a vmalloc()-space virtual address to the physical page frame number.
316  */
317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
318 {
319 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
320 }
321 EXPORT_SYMBOL(vmalloc_to_pfn);
322 
323 
324 /*** Global kva allocator ***/
325 
326 #define VM_LAZY_FREE	0x02
327 #define VM_VM_AREA	0x04
328 
329 static DEFINE_SPINLOCK(vmap_area_lock);
330 /* Export for kexec only */
331 LIST_HEAD(vmap_area_list);
332 static LLIST_HEAD(vmap_purge_list);
333 static struct rb_root vmap_area_root = RB_ROOT;
334 
335 /* The vmap cache globals are protected by vmap_area_lock */
336 static struct rb_node *free_vmap_cache;
337 static unsigned long cached_hole_size;
338 static unsigned long cached_vstart;
339 static unsigned long cached_align;
340 
341 static unsigned long vmap_area_pcpu_hole;
342 
343 static struct vmap_area *__find_vmap_area(unsigned long addr)
344 {
345 	struct rb_node *n = vmap_area_root.rb_node;
346 
347 	while (n) {
348 		struct vmap_area *va;
349 
350 		va = rb_entry(n, struct vmap_area, rb_node);
351 		if (addr < va->va_start)
352 			n = n->rb_left;
353 		else if (addr >= va->va_end)
354 			n = n->rb_right;
355 		else
356 			return va;
357 	}
358 
359 	return NULL;
360 }
361 
362 static void __insert_vmap_area(struct vmap_area *va)
363 {
364 	struct rb_node **p = &vmap_area_root.rb_node;
365 	struct rb_node *parent = NULL;
366 	struct rb_node *tmp;
367 
368 	while (*p) {
369 		struct vmap_area *tmp_va;
370 
371 		parent = *p;
372 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
373 		if (va->va_start < tmp_va->va_end)
374 			p = &(*p)->rb_left;
375 		else if (va->va_end > tmp_va->va_start)
376 			p = &(*p)->rb_right;
377 		else
378 			BUG();
379 	}
380 
381 	rb_link_node(&va->rb_node, parent, p);
382 	rb_insert_color(&va->rb_node, &vmap_area_root);
383 
384 	/* address-sort this list */
385 	tmp = rb_prev(&va->rb_node);
386 	if (tmp) {
387 		struct vmap_area *prev;
388 		prev = rb_entry(tmp, struct vmap_area, rb_node);
389 		list_add_rcu(&va->list, &prev->list);
390 	} else
391 		list_add_rcu(&va->list, &vmap_area_list);
392 }
393 
394 static void purge_vmap_area_lazy(void);
395 
396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
397 
398 /*
399  * Allocate a region of KVA of the specified size and alignment, within the
400  * vstart and vend.
401  */
402 static struct vmap_area *alloc_vmap_area(unsigned long size,
403 				unsigned long align,
404 				unsigned long vstart, unsigned long vend,
405 				int node, gfp_t gfp_mask)
406 {
407 	struct vmap_area *va;
408 	struct rb_node *n;
409 	unsigned long addr;
410 	int purged = 0;
411 	struct vmap_area *first;
412 
413 	BUG_ON(!size);
414 	BUG_ON(offset_in_page(size));
415 	BUG_ON(!is_power_of_2(align));
416 
417 	might_sleep();
418 
419 	va = kmalloc_node(sizeof(struct vmap_area),
420 			gfp_mask & GFP_RECLAIM_MASK, node);
421 	if (unlikely(!va))
422 		return ERR_PTR(-ENOMEM);
423 
424 	/*
425 	 * Only scan the relevant parts containing pointers to other objects
426 	 * to avoid false negatives.
427 	 */
428 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
429 
430 retry:
431 	spin_lock(&vmap_area_lock);
432 	/*
433 	 * Invalidate cache if we have more permissive parameters.
434 	 * cached_hole_size notes the largest hole noticed _below_
435 	 * the vmap_area cached in free_vmap_cache: if size fits
436 	 * into that hole, we want to scan from vstart to reuse
437 	 * the hole instead of allocating above free_vmap_cache.
438 	 * Note that __free_vmap_area may update free_vmap_cache
439 	 * without updating cached_hole_size or cached_align.
440 	 */
441 	if (!free_vmap_cache ||
442 			size < cached_hole_size ||
443 			vstart < cached_vstart ||
444 			align < cached_align) {
445 nocache:
446 		cached_hole_size = 0;
447 		free_vmap_cache = NULL;
448 	}
449 	/* record if we encounter less permissive parameters */
450 	cached_vstart = vstart;
451 	cached_align = align;
452 
453 	/* find starting point for our search */
454 	if (free_vmap_cache) {
455 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
456 		addr = ALIGN(first->va_end, align);
457 		if (addr < vstart)
458 			goto nocache;
459 		if (addr + size < addr)
460 			goto overflow;
461 
462 	} else {
463 		addr = ALIGN(vstart, align);
464 		if (addr + size < addr)
465 			goto overflow;
466 
467 		n = vmap_area_root.rb_node;
468 		first = NULL;
469 
470 		while (n) {
471 			struct vmap_area *tmp;
472 			tmp = rb_entry(n, struct vmap_area, rb_node);
473 			if (tmp->va_end >= addr) {
474 				first = tmp;
475 				if (tmp->va_start <= addr)
476 					break;
477 				n = n->rb_left;
478 			} else
479 				n = n->rb_right;
480 		}
481 
482 		if (!first)
483 			goto found;
484 	}
485 
486 	/* from the starting point, walk areas until a suitable hole is found */
487 	while (addr + size > first->va_start && addr + size <= vend) {
488 		if (addr + cached_hole_size < first->va_start)
489 			cached_hole_size = first->va_start - addr;
490 		addr = ALIGN(first->va_end, align);
491 		if (addr + size < addr)
492 			goto overflow;
493 
494 		if (list_is_last(&first->list, &vmap_area_list))
495 			goto found;
496 
497 		first = list_next_entry(first, list);
498 	}
499 
500 found:
501 	if (addr + size > vend)
502 		goto overflow;
503 
504 	va->va_start = addr;
505 	va->va_end = addr + size;
506 	va->flags = 0;
507 	__insert_vmap_area(va);
508 	free_vmap_cache = &va->rb_node;
509 	spin_unlock(&vmap_area_lock);
510 
511 	BUG_ON(!IS_ALIGNED(va->va_start, align));
512 	BUG_ON(va->va_start < vstart);
513 	BUG_ON(va->va_end > vend);
514 
515 	return va;
516 
517 overflow:
518 	spin_unlock(&vmap_area_lock);
519 	if (!purged) {
520 		purge_vmap_area_lazy();
521 		purged = 1;
522 		goto retry;
523 	}
524 
525 	if (gfpflags_allow_blocking(gfp_mask)) {
526 		unsigned long freed = 0;
527 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
528 		if (freed > 0) {
529 			purged = 0;
530 			goto retry;
531 		}
532 	}
533 
534 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
535 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
536 			size);
537 	kfree(va);
538 	return ERR_PTR(-EBUSY);
539 }
540 
541 int register_vmap_purge_notifier(struct notifier_block *nb)
542 {
543 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
544 }
545 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
546 
547 int unregister_vmap_purge_notifier(struct notifier_block *nb)
548 {
549 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
550 }
551 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
552 
553 static void __free_vmap_area(struct vmap_area *va)
554 {
555 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
556 
557 	if (free_vmap_cache) {
558 		if (va->va_end < cached_vstart) {
559 			free_vmap_cache = NULL;
560 		} else {
561 			struct vmap_area *cache;
562 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
563 			if (va->va_start <= cache->va_start) {
564 				free_vmap_cache = rb_prev(&va->rb_node);
565 				/*
566 				 * We don't try to update cached_hole_size or
567 				 * cached_align, but it won't go very wrong.
568 				 */
569 			}
570 		}
571 	}
572 	rb_erase(&va->rb_node, &vmap_area_root);
573 	RB_CLEAR_NODE(&va->rb_node);
574 	list_del_rcu(&va->list);
575 
576 	/*
577 	 * Track the highest possible candidate for pcpu area
578 	 * allocation.  Areas outside of vmalloc area can be returned
579 	 * here too, consider only end addresses which fall inside
580 	 * vmalloc area proper.
581 	 */
582 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
583 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
584 
585 	kfree_rcu(va, rcu_head);
586 }
587 
588 /*
589  * Free a region of KVA allocated by alloc_vmap_area
590  */
591 static void free_vmap_area(struct vmap_area *va)
592 {
593 	spin_lock(&vmap_area_lock);
594 	__free_vmap_area(va);
595 	spin_unlock(&vmap_area_lock);
596 }
597 
598 /*
599  * Clear the pagetable entries of a given vmap_area
600  */
601 static void unmap_vmap_area(struct vmap_area *va)
602 {
603 	vunmap_page_range(va->va_start, va->va_end);
604 }
605 
606 /*
607  * lazy_max_pages is the maximum amount of virtual address space we gather up
608  * before attempting to purge with a TLB flush.
609  *
610  * There is a tradeoff here: a larger number will cover more kernel page tables
611  * and take slightly longer to purge, but it will linearly reduce the number of
612  * global TLB flushes that must be performed. It would seem natural to scale
613  * this number up linearly with the number of CPUs (because vmapping activity
614  * could also scale linearly with the number of CPUs), however it is likely
615  * that in practice, workloads might be constrained in other ways that mean
616  * vmap activity will not scale linearly with CPUs. Also, I want to be
617  * conservative and not introduce a big latency on huge systems, so go with
618  * a less aggressive log scale. It will still be an improvement over the old
619  * code, and it will be simple to change the scale factor if we find that it
620  * becomes a problem on bigger systems.
621  */
622 static unsigned long lazy_max_pages(void)
623 {
624 	unsigned int log;
625 
626 	log = fls(num_online_cpus());
627 
628 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
629 }
630 
631 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
632 
633 /*
634  * Serialize vmap purging.  There is no actual criticial section protected
635  * by this look, but we want to avoid concurrent calls for performance
636  * reasons and to make the pcpu_get_vm_areas more deterministic.
637  */
638 static DEFINE_MUTEX(vmap_purge_lock);
639 
640 /* for per-CPU blocks */
641 static void purge_fragmented_blocks_allcpus(void);
642 
643 /*
644  * called before a call to iounmap() if the caller wants vm_area_struct's
645  * immediately freed.
646  */
647 void set_iounmap_nonlazy(void)
648 {
649 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
650 }
651 
652 /*
653  * Purges all lazily-freed vmap areas.
654  */
655 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
656 {
657 	struct llist_node *valist;
658 	struct vmap_area *va;
659 	struct vmap_area *n_va;
660 	bool do_free = false;
661 
662 	lockdep_assert_held(&vmap_purge_lock);
663 
664 	valist = llist_del_all(&vmap_purge_list);
665 	llist_for_each_entry(va, valist, purge_list) {
666 		if (va->va_start < start)
667 			start = va->va_start;
668 		if (va->va_end > end)
669 			end = va->va_end;
670 		do_free = true;
671 	}
672 
673 	if (!do_free)
674 		return false;
675 
676 	flush_tlb_kernel_range(start, end);
677 
678 	spin_lock(&vmap_area_lock);
679 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
680 		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
681 
682 		__free_vmap_area(va);
683 		atomic_sub(nr, &vmap_lazy_nr);
684 		cond_resched_lock(&vmap_area_lock);
685 	}
686 	spin_unlock(&vmap_area_lock);
687 	return true;
688 }
689 
690 /*
691  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
692  * is already purging.
693  */
694 static void try_purge_vmap_area_lazy(void)
695 {
696 	if (mutex_trylock(&vmap_purge_lock)) {
697 		__purge_vmap_area_lazy(ULONG_MAX, 0);
698 		mutex_unlock(&vmap_purge_lock);
699 	}
700 }
701 
702 /*
703  * Kick off a purge of the outstanding lazy areas.
704  */
705 static void purge_vmap_area_lazy(void)
706 {
707 	mutex_lock(&vmap_purge_lock);
708 	purge_fragmented_blocks_allcpus();
709 	__purge_vmap_area_lazy(ULONG_MAX, 0);
710 	mutex_unlock(&vmap_purge_lock);
711 }
712 
713 /*
714  * Free a vmap area, caller ensuring that the area has been unmapped
715  * and flush_cache_vunmap had been called for the correct range
716  * previously.
717  */
718 static void free_vmap_area_noflush(struct vmap_area *va)
719 {
720 	int nr_lazy;
721 
722 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
723 				    &vmap_lazy_nr);
724 
725 	/* After this point, we may free va at any time */
726 	llist_add(&va->purge_list, &vmap_purge_list);
727 
728 	if (unlikely(nr_lazy > lazy_max_pages()))
729 		try_purge_vmap_area_lazy();
730 }
731 
732 /*
733  * Free and unmap a vmap area
734  */
735 static void free_unmap_vmap_area(struct vmap_area *va)
736 {
737 	flush_cache_vunmap(va->va_start, va->va_end);
738 	unmap_vmap_area(va);
739 	if (debug_pagealloc_enabled())
740 		flush_tlb_kernel_range(va->va_start, va->va_end);
741 
742 	free_vmap_area_noflush(va);
743 }
744 
745 static struct vmap_area *find_vmap_area(unsigned long addr)
746 {
747 	struct vmap_area *va;
748 
749 	spin_lock(&vmap_area_lock);
750 	va = __find_vmap_area(addr);
751 	spin_unlock(&vmap_area_lock);
752 
753 	return va;
754 }
755 
756 /*** Per cpu kva allocator ***/
757 
758 /*
759  * vmap space is limited especially on 32 bit architectures. Ensure there is
760  * room for at least 16 percpu vmap blocks per CPU.
761  */
762 /*
763  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
764  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
765  * instead (we just need a rough idea)
766  */
767 #if BITS_PER_LONG == 32
768 #define VMALLOC_SPACE		(128UL*1024*1024)
769 #else
770 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
771 #endif
772 
773 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
774 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
775 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
776 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
777 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
778 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
779 #define VMAP_BBMAP_BITS		\
780 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
781 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
782 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
783 
784 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
785 
786 static bool vmap_initialized __read_mostly = false;
787 
788 struct vmap_block_queue {
789 	spinlock_t lock;
790 	struct list_head free;
791 };
792 
793 struct vmap_block {
794 	spinlock_t lock;
795 	struct vmap_area *va;
796 	unsigned long free, dirty;
797 	unsigned long dirty_min, dirty_max; /*< dirty range */
798 	struct list_head free_list;
799 	struct rcu_head rcu_head;
800 	struct list_head purge;
801 };
802 
803 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
804 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
805 
806 /*
807  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
808  * in the free path. Could get rid of this if we change the API to return a
809  * "cookie" from alloc, to be passed to free. But no big deal yet.
810  */
811 static DEFINE_SPINLOCK(vmap_block_tree_lock);
812 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
813 
814 /*
815  * We should probably have a fallback mechanism to allocate virtual memory
816  * out of partially filled vmap blocks. However vmap block sizing should be
817  * fairly reasonable according to the vmalloc size, so it shouldn't be a
818  * big problem.
819  */
820 
821 static unsigned long addr_to_vb_idx(unsigned long addr)
822 {
823 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
824 	addr /= VMAP_BLOCK_SIZE;
825 	return addr;
826 }
827 
828 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
829 {
830 	unsigned long addr;
831 
832 	addr = va_start + (pages_off << PAGE_SHIFT);
833 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
834 	return (void *)addr;
835 }
836 
837 /**
838  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
839  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
840  * @order:    how many 2^order pages should be occupied in newly allocated block
841  * @gfp_mask: flags for the page level allocator
842  *
843  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
844  */
845 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
846 {
847 	struct vmap_block_queue *vbq;
848 	struct vmap_block *vb;
849 	struct vmap_area *va;
850 	unsigned long vb_idx;
851 	int node, err;
852 	void *vaddr;
853 
854 	node = numa_node_id();
855 
856 	vb = kmalloc_node(sizeof(struct vmap_block),
857 			gfp_mask & GFP_RECLAIM_MASK, node);
858 	if (unlikely(!vb))
859 		return ERR_PTR(-ENOMEM);
860 
861 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
862 					VMALLOC_START, VMALLOC_END,
863 					node, gfp_mask);
864 	if (IS_ERR(va)) {
865 		kfree(vb);
866 		return ERR_CAST(va);
867 	}
868 
869 	err = radix_tree_preload(gfp_mask);
870 	if (unlikely(err)) {
871 		kfree(vb);
872 		free_vmap_area(va);
873 		return ERR_PTR(err);
874 	}
875 
876 	vaddr = vmap_block_vaddr(va->va_start, 0);
877 	spin_lock_init(&vb->lock);
878 	vb->va = va;
879 	/* At least something should be left free */
880 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
881 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
882 	vb->dirty = 0;
883 	vb->dirty_min = VMAP_BBMAP_BITS;
884 	vb->dirty_max = 0;
885 	INIT_LIST_HEAD(&vb->free_list);
886 
887 	vb_idx = addr_to_vb_idx(va->va_start);
888 	spin_lock(&vmap_block_tree_lock);
889 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
890 	spin_unlock(&vmap_block_tree_lock);
891 	BUG_ON(err);
892 	radix_tree_preload_end();
893 
894 	vbq = &get_cpu_var(vmap_block_queue);
895 	spin_lock(&vbq->lock);
896 	list_add_tail_rcu(&vb->free_list, &vbq->free);
897 	spin_unlock(&vbq->lock);
898 	put_cpu_var(vmap_block_queue);
899 
900 	return vaddr;
901 }
902 
903 static void free_vmap_block(struct vmap_block *vb)
904 {
905 	struct vmap_block *tmp;
906 	unsigned long vb_idx;
907 
908 	vb_idx = addr_to_vb_idx(vb->va->va_start);
909 	spin_lock(&vmap_block_tree_lock);
910 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
911 	spin_unlock(&vmap_block_tree_lock);
912 	BUG_ON(tmp != vb);
913 
914 	free_vmap_area_noflush(vb->va);
915 	kfree_rcu(vb, rcu_head);
916 }
917 
918 static void purge_fragmented_blocks(int cpu)
919 {
920 	LIST_HEAD(purge);
921 	struct vmap_block *vb;
922 	struct vmap_block *n_vb;
923 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
924 
925 	rcu_read_lock();
926 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
927 
928 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
929 			continue;
930 
931 		spin_lock(&vb->lock);
932 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
933 			vb->free = 0; /* prevent further allocs after releasing lock */
934 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
935 			vb->dirty_min = 0;
936 			vb->dirty_max = VMAP_BBMAP_BITS;
937 			spin_lock(&vbq->lock);
938 			list_del_rcu(&vb->free_list);
939 			spin_unlock(&vbq->lock);
940 			spin_unlock(&vb->lock);
941 			list_add_tail(&vb->purge, &purge);
942 		} else
943 			spin_unlock(&vb->lock);
944 	}
945 	rcu_read_unlock();
946 
947 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
948 		list_del(&vb->purge);
949 		free_vmap_block(vb);
950 	}
951 }
952 
953 static void purge_fragmented_blocks_allcpus(void)
954 {
955 	int cpu;
956 
957 	for_each_possible_cpu(cpu)
958 		purge_fragmented_blocks(cpu);
959 }
960 
961 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
962 {
963 	struct vmap_block_queue *vbq;
964 	struct vmap_block *vb;
965 	void *vaddr = NULL;
966 	unsigned int order;
967 
968 	BUG_ON(offset_in_page(size));
969 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
970 	if (WARN_ON(size == 0)) {
971 		/*
972 		 * Allocating 0 bytes isn't what caller wants since
973 		 * get_order(0) returns funny result. Just warn and terminate
974 		 * early.
975 		 */
976 		return NULL;
977 	}
978 	order = get_order(size);
979 
980 	rcu_read_lock();
981 	vbq = &get_cpu_var(vmap_block_queue);
982 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
983 		unsigned long pages_off;
984 
985 		spin_lock(&vb->lock);
986 		if (vb->free < (1UL << order)) {
987 			spin_unlock(&vb->lock);
988 			continue;
989 		}
990 
991 		pages_off = VMAP_BBMAP_BITS - vb->free;
992 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
993 		vb->free -= 1UL << order;
994 		if (vb->free == 0) {
995 			spin_lock(&vbq->lock);
996 			list_del_rcu(&vb->free_list);
997 			spin_unlock(&vbq->lock);
998 		}
999 
1000 		spin_unlock(&vb->lock);
1001 		break;
1002 	}
1003 
1004 	put_cpu_var(vmap_block_queue);
1005 	rcu_read_unlock();
1006 
1007 	/* Allocate new block if nothing was found */
1008 	if (!vaddr)
1009 		vaddr = new_vmap_block(order, gfp_mask);
1010 
1011 	return vaddr;
1012 }
1013 
1014 static void vb_free(const void *addr, unsigned long size)
1015 {
1016 	unsigned long offset;
1017 	unsigned long vb_idx;
1018 	unsigned int order;
1019 	struct vmap_block *vb;
1020 
1021 	BUG_ON(offset_in_page(size));
1022 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1023 
1024 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1025 
1026 	order = get_order(size);
1027 
1028 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1029 	offset >>= PAGE_SHIFT;
1030 
1031 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1032 	rcu_read_lock();
1033 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1034 	rcu_read_unlock();
1035 	BUG_ON(!vb);
1036 
1037 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1038 
1039 	if (debug_pagealloc_enabled())
1040 		flush_tlb_kernel_range((unsigned long)addr,
1041 					(unsigned long)addr + size);
1042 
1043 	spin_lock(&vb->lock);
1044 
1045 	/* Expand dirty range */
1046 	vb->dirty_min = min(vb->dirty_min, offset);
1047 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1048 
1049 	vb->dirty += 1UL << order;
1050 	if (vb->dirty == VMAP_BBMAP_BITS) {
1051 		BUG_ON(vb->free);
1052 		spin_unlock(&vb->lock);
1053 		free_vmap_block(vb);
1054 	} else
1055 		spin_unlock(&vb->lock);
1056 }
1057 
1058 /**
1059  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1060  *
1061  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1062  * to amortize TLB flushing overheads. What this means is that any page you
1063  * have now, may, in a former life, have been mapped into kernel virtual
1064  * address by the vmap layer and so there might be some CPUs with TLB entries
1065  * still referencing that page (additional to the regular 1:1 kernel mapping).
1066  *
1067  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1068  * be sure that none of the pages we have control over will have any aliases
1069  * from the vmap layer.
1070  */
1071 void vm_unmap_aliases(void)
1072 {
1073 	unsigned long start = ULONG_MAX, end = 0;
1074 	int cpu;
1075 	int flush = 0;
1076 
1077 	if (unlikely(!vmap_initialized))
1078 		return;
1079 
1080 	might_sleep();
1081 
1082 	for_each_possible_cpu(cpu) {
1083 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1084 		struct vmap_block *vb;
1085 
1086 		rcu_read_lock();
1087 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1088 			spin_lock(&vb->lock);
1089 			if (vb->dirty) {
1090 				unsigned long va_start = vb->va->va_start;
1091 				unsigned long s, e;
1092 
1093 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1094 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1095 
1096 				start = min(s, start);
1097 				end   = max(e, end);
1098 
1099 				flush = 1;
1100 			}
1101 			spin_unlock(&vb->lock);
1102 		}
1103 		rcu_read_unlock();
1104 	}
1105 
1106 	mutex_lock(&vmap_purge_lock);
1107 	purge_fragmented_blocks_allcpus();
1108 	if (!__purge_vmap_area_lazy(start, end) && flush)
1109 		flush_tlb_kernel_range(start, end);
1110 	mutex_unlock(&vmap_purge_lock);
1111 }
1112 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1113 
1114 /**
1115  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1116  * @mem: the pointer returned by vm_map_ram
1117  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1118  */
1119 void vm_unmap_ram(const void *mem, unsigned int count)
1120 {
1121 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1122 	unsigned long addr = (unsigned long)mem;
1123 	struct vmap_area *va;
1124 
1125 	might_sleep();
1126 	BUG_ON(!addr);
1127 	BUG_ON(addr < VMALLOC_START);
1128 	BUG_ON(addr > VMALLOC_END);
1129 	BUG_ON(!PAGE_ALIGNED(addr));
1130 
1131 	if (likely(count <= VMAP_MAX_ALLOC)) {
1132 		debug_check_no_locks_freed(mem, size);
1133 		vb_free(mem, size);
1134 		return;
1135 	}
1136 
1137 	va = find_vmap_area(addr);
1138 	BUG_ON(!va);
1139 	debug_check_no_locks_freed((void *)va->va_start,
1140 				    (va->va_end - va->va_start));
1141 	free_unmap_vmap_area(va);
1142 }
1143 EXPORT_SYMBOL(vm_unmap_ram);
1144 
1145 /**
1146  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1147  * @pages: an array of pointers to the pages to be mapped
1148  * @count: number of pages
1149  * @node: prefer to allocate data structures on this node
1150  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1151  *
1152  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1153  * faster than vmap so it's good.  But if you mix long-life and short-life
1154  * objects with vm_map_ram(), it could consume lots of address space through
1155  * fragmentation (especially on a 32bit machine).  You could see failures in
1156  * the end.  Please use this function for short-lived objects.
1157  *
1158  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1159  */
1160 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1161 {
1162 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1163 	unsigned long addr;
1164 	void *mem;
1165 
1166 	if (likely(count <= VMAP_MAX_ALLOC)) {
1167 		mem = vb_alloc(size, GFP_KERNEL);
1168 		if (IS_ERR(mem))
1169 			return NULL;
1170 		addr = (unsigned long)mem;
1171 	} else {
1172 		struct vmap_area *va;
1173 		va = alloc_vmap_area(size, PAGE_SIZE,
1174 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1175 		if (IS_ERR(va))
1176 			return NULL;
1177 
1178 		addr = va->va_start;
1179 		mem = (void *)addr;
1180 	}
1181 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1182 		vm_unmap_ram(mem, count);
1183 		return NULL;
1184 	}
1185 	return mem;
1186 }
1187 EXPORT_SYMBOL(vm_map_ram);
1188 
1189 static struct vm_struct *vmlist __initdata;
1190 /**
1191  * vm_area_add_early - add vmap area early during boot
1192  * @vm: vm_struct to add
1193  *
1194  * This function is used to add fixed kernel vm area to vmlist before
1195  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1196  * should contain proper values and the other fields should be zero.
1197  *
1198  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1199  */
1200 void __init vm_area_add_early(struct vm_struct *vm)
1201 {
1202 	struct vm_struct *tmp, **p;
1203 
1204 	BUG_ON(vmap_initialized);
1205 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1206 		if (tmp->addr >= vm->addr) {
1207 			BUG_ON(tmp->addr < vm->addr + vm->size);
1208 			break;
1209 		} else
1210 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1211 	}
1212 	vm->next = *p;
1213 	*p = vm;
1214 }
1215 
1216 /**
1217  * vm_area_register_early - register vmap area early during boot
1218  * @vm: vm_struct to register
1219  * @align: requested alignment
1220  *
1221  * This function is used to register kernel vm area before
1222  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1223  * proper values on entry and other fields should be zero.  On return,
1224  * vm->addr contains the allocated address.
1225  *
1226  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1227  */
1228 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1229 {
1230 	static size_t vm_init_off __initdata;
1231 	unsigned long addr;
1232 
1233 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1234 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1235 
1236 	vm->addr = (void *)addr;
1237 
1238 	vm_area_add_early(vm);
1239 }
1240 
1241 void __init vmalloc_init(void)
1242 {
1243 	struct vmap_area *va;
1244 	struct vm_struct *tmp;
1245 	int i;
1246 
1247 	for_each_possible_cpu(i) {
1248 		struct vmap_block_queue *vbq;
1249 		struct vfree_deferred *p;
1250 
1251 		vbq = &per_cpu(vmap_block_queue, i);
1252 		spin_lock_init(&vbq->lock);
1253 		INIT_LIST_HEAD(&vbq->free);
1254 		p = &per_cpu(vfree_deferred, i);
1255 		init_llist_head(&p->list);
1256 		INIT_WORK(&p->wq, free_work);
1257 	}
1258 
1259 	/* Import existing vmlist entries. */
1260 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1261 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1262 		va->flags = VM_VM_AREA;
1263 		va->va_start = (unsigned long)tmp->addr;
1264 		va->va_end = va->va_start + tmp->size;
1265 		va->vm = tmp;
1266 		__insert_vmap_area(va);
1267 	}
1268 
1269 	vmap_area_pcpu_hole = VMALLOC_END;
1270 
1271 	vmap_initialized = true;
1272 }
1273 
1274 /**
1275  * map_kernel_range_noflush - map kernel VM area with the specified pages
1276  * @addr: start of the VM area to map
1277  * @size: size of the VM area to map
1278  * @prot: page protection flags to use
1279  * @pages: pages to map
1280  *
1281  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1282  * specify should have been allocated using get_vm_area() and its
1283  * friends.
1284  *
1285  * NOTE:
1286  * This function does NOT do any cache flushing.  The caller is
1287  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1288  * before calling this function.
1289  *
1290  * RETURNS:
1291  * The number of pages mapped on success, -errno on failure.
1292  */
1293 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1294 			     pgprot_t prot, struct page **pages)
1295 {
1296 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1297 }
1298 
1299 /**
1300  * unmap_kernel_range_noflush - unmap kernel VM area
1301  * @addr: start of the VM area to unmap
1302  * @size: size of the VM area to unmap
1303  *
1304  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1305  * specify should have been allocated using get_vm_area() and its
1306  * friends.
1307  *
1308  * NOTE:
1309  * This function does NOT do any cache flushing.  The caller is
1310  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1311  * before calling this function and flush_tlb_kernel_range() after.
1312  */
1313 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1314 {
1315 	vunmap_page_range(addr, addr + size);
1316 }
1317 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1318 
1319 /**
1320  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1321  * @addr: start of the VM area to unmap
1322  * @size: size of the VM area to unmap
1323  *
1324  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1325  * the unmapping and tlb after.
1326  */
1327 void unmap_kernel_range(unsigned long addr, unsigned long size)
1328 {
1329 	unsigned long end = addr + size;
1330 
1331 	flush_cache_vunmap(addr, end);
1332 	vunmap_page_range(addr, end);
1333 	flush_tlb_kernel_range(addr, end);
1334 }
1335 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1336 
1337 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1338 {
1339 	unsigned long addr = (unsigned long)area->addr;
1340 	unsigned long end = addr + get_vm_area_size(area);
1341 	int err;
1342 
1343 	err = vmap_page_range(addr, end, prot, pages);
1344 
1345 	return err > 0 ? 0 : err;
1346 }
1347 EXPORT_SYMBOL_GPL(map_vm_area);
1348 
1349 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1350 			      unsigned long flags, const void *caller)
1351 {
1352 	spin_lock(&vmap_area_lock);
1353 	vm->flags = flags;
1354 	vm->addr = (void *)va->va_start;
1355 	vm->size = va->va_end - va->va_start;
1356 	vm->caller = caller;
1357 	va->vm = vm;
1358 	va->flags |= VM_VM_AREA;
1359 	spin_unlock(&vmap_area_lock);
1360 }
1361 
1362 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1363 {
1364 	/*
1365 	 * Before removing VM_UNINITIALIZED,
1366 	 * we should make sure that vm has proper values.
1367 	 * Pair with smp_rmb() in show_numa_info().
1368 	 */
1369 	smp_wmb();
1370 	vm->flags &= ~VM_UNINITIALIZED;
1371 }
1372 
1373 static struct vm_struct *__get_vm_area_node(unsigned long size,
1374 		unsigned long align, unsigned long flags, unsigned long start,
1375 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1376 {
1377 	struct vmap_area *va;
1378 	struct vm_struct *area;
1379 
1380 	BUG_ON(in_interrupt());
1381 	size = PAGE_ALIGN(size);
1382 	if (unlikely(!size))
1383 		return NULL;
1384 
1385 	if (flags & VM_IOREMAP)
1386 		align = 1ul << clamp_t(int, get_count_order_long(size),
1387 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1388 
1389 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1390 	if (unlikely(!area))
1391 		return NULL;
1392 
1393 	if (!(flags & VM_NO_GUARD))
1394 		size += PAGE_SIZE;
1395 
1396 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1397 	if (IS_ERR(va)) {
1398 		kfree(area);
1399 		return NULL;
1400 	}
1401 
1402 	setup_vmalloc_vm(area, va, flags, caller);
1403 
1404 	return area;
1405 }
1406 
1407 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1408 				unsigned long start, unsigned long end)
1409 {
1410 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1411 				  GFP_KERNEL, __builtin_return_address(0));
1412 }
1413 EXPORT_SYMBOL_GPL(__get_vm_area);
1414 
1415 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1416 				       unsigned long start, unsigned long end,
1417 				       const void *caller)
1418 {
1419 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1420 				  GFP_KERNEL, caller);
1421 }
1422 
1423 /**
1424  *	get_vm_area  -  reserve a contiguous kernel virtual area
1425  *	@size:		size of the area
1426  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1427  *
1428  *	Search an area of @size in the kernel virtual mapping area,
1429  *	and reserved it for out purposes.  Returns the area descriptor
1430  *	on success or %NULL on failure.
1431  */
1432 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1433 {
1434 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1435 				  NUMA_NO_NODE, GFP_KERNEL,
1436 				  __builtin_return_address(0));
1437 }
1438 
1439 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1440 				const void *caller)
1441 {
1442 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1443 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1444 }
1445 
1446 /**
1447  *	find_vm_area  -  find a continuous kernel virtual area
1448  *	@addr:		base address
1449  *
1450  *	Search for the kernel VM area starting at @addr, and return it.
1451  *	It is up to the caller to do all required locking to keep the returned
1452  *	pointer valid.
1453  */
1454 struct vm_struct *find_vm_area(const void *addr)
1455 {
1456 	struct vmap_area *va;
1457 
1458 	va = find_vmap_area((unsigned long)addr);
1459 	if (va && va->flags & VM_VM_AREA)
1460 		return va->vm;
1461 
1462 	return NULL;
1463 }
1464 
1465 /**
1466  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1467  *	@addr:		base address
1468  *
1469  *	Search for the kernel VM area starting at @addr, and remove it.
1470  *	This function returns the found VM area, but using it is NOT safe
1471  *	on SMP machines, except for its size or flags.
1472  */
1473 struct vm_struct *remove_vm_area(const void *addr)
1474 {
1475 	struct vmap_area *va;
1476 
1477 	might_sleep();
1478 
1479 	va = find_vmap_area((unsigned long)addr);
1480 	if (va && va->flags & VM_VM_AREA) {
1481 		struct vm_struct *vm = va->vm;
1482 
1483 		spin_lock(&vmap_area_lock);
1484 		va->vm = NULL;
1485 		va->flags &= ~VM_VM_AREA;
1486 		va->flags |= VM_LAZY_FREE;
1487 		spin_unlock(&vmap_area_lock);
1488 
1489 		kasan_free_shadow(vm);
1490 		free_unmap_vmap_area(va);
1491 
1492 		return vm;
1493 	}
1494 	return NULL;
1495 }
1496 
1497 static void __vunmap(const void *addr, int deallocate_pages)
1498 {
1499 	struct vm_struct *area;
1500 
1501 	if (!addr)
1502 		return;
1503 
1504 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1505 			addr))
1506 		return;
1507 
1508 	area = find_vmap_area((unsigned long)addr)->vm;
1509 	if (unlikely(!area)) {
1510 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1511 				addr);
1512 		return;
1513 	}
1514 
1515 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
1516 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
1517 
1518 	remove_vm_area(addr);
1519 	if (deallocate_pages) {
1520 		int i;
1521 
1522 		for (i = 0; i < area->nr_pages; i++) {
1523 			struct page *page = area->pages[i];
1524 
1525 			BUG_ON(!page);
1526 			__free_pages(page, 0);
1527 		}
1528 
1529 		kvfree(area->pages);
1530 	}
1531 
1532 	kfree(area);
1533 	return;
1534 }
1535 
1536 static inline void __vfree_deferred(const void *addr)
1537 {
1538 	/*
1539 	 * Use raw_cpu_ptr() because this can be called from preemptible
1540 	 * context. Preemption is absolutely fine here, because the llist_add()
1541 	 * implementation is lockless, so it works even if we are adding to
1542 	 * nother cpu's list.  schedule_work() should be fine with this too.
1543 	 */
1544 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1545 
1546 	if (llist_add((struct llist_node *)addr, &p->list))
1547 		schedule_work(&p->wq);
1548 }
1549 
1550 /**
1551  *	vfree_atomic  -  release memory allocated by vmalloc()
1552  *	@addr:		memory base address
1553  *
1554  *	This one is just like vfree() but can be called in any atomic context
1555  *	except NMIs.
1556  */
1557 void vfree_atomic(const void *addr)
1558 {
1559 	BUG_ON(in_nmi());
1560 
1561 	kmemleak_free(addr);
1562 
1563 	if (!addr)
1564 		return;
1565 	__vfree_deferred(addr);
1566 }
1567 
1568 /**
1569  *	vfree  -  release memory allocated by vmalloc()
1570  *	@addr:		memory base address
1571  *
1572  *	Free the virtually continuous memory area starting at @addr, as
1573  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1574  *	NULL, no operation is performed.
1575  *
1576  *	Must not be called in NMI context (strictly speaking, only if we don't
1577  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1578  *	conventions for vfree() arch-depenedent would be a really bad idea)
1579  *
1580  *	May sleep if called *not* from interrupt context.
1581  *
1582  *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1583  */
1584 void vfree(const void *addr)
1585 {
1586 	BUG_ON(in_nmi());
1587 
1588 	kmemleak_free(addr);
1589 
1590 	might_sleep_if(!in_interrupt());
1591 
1592 	if (!addr)
1593 		return;
1594 	if (unlikely(in_interrupt()))
1595 		__vfree_deferred(addr);
1596 	else
1597 		__vunmap(addr, 1);
1598 }
1599 EXPORT_SYMBOL(vfree);
1600 
1601 /**
1602  *	vunmap  -  release virtual mapping obtained by vmap()
1603  *	@addr:		memory base address
1604  *
1605  *	Free the virtually contiguous memory area starting at @addr,
1606  *	which was created from the page array passed to vmap().
1607  *
1608  *	Must not be called in interrupt context.
1609  */
1610 void vunmap(const void *addr)
1611 {
1612 	BUG_ON(in_interrupt());
1613 	might_sleep();
1614 	if (addr)
1615 		__vunmap(addr, 0);
1616 }
1617 EXPORT_SYMBOL(vunmap);
1618 
1619 /**
1620  *	vmap  -  map an array of pages into virtually contiguous space
1621  *	@pages:		array of page pointers
1622  *	@count:		number of pages to map
1623  *	@flags:		vm_area->flags
1624  *	@prot:		page protection for the mapping
1625  *
1626  *	Maps @count pages from @pages into contiguous kernel virtual
1627  *	space.
1628  */
1629 void *vmap(struct page **pages, unsigned int count,
1630 		unsigned long flags, pgprot_t prot)
1631 {
1632 	struct vm_struct *area;
1633 	unsigned long size;		/* In bytes */
1634 
1635 	might_sleep();
1636 
1637 	if (count > totalram_pages)
1638 		return NULL;
1639 
1640 	size = (unsigned long)count << PAGE_SHIFT;
1641 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1642 	if (!area)
1643 		return NULL;
1644 
1645 	if (map_vm_area(area, prot, pages)) {
1646 		vunmap(area->addr);
1647 		return NULL;
1648 	}
1649 
1650 	return area->addr;
1651 }
1652 EXPORT_SYMBOL(vmap);
1653 
1654 static void *__vmalloc_node(unsigned long size, unsigned long align,
1655 			    gfp_t gfp_mask, pgprot_t prot,
1656 			    int node, const void *caller);
1657 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1658 				 pgprot_t prot, int node)
1659 {
1660 	struct page **pages;
1661 	unsigned int nr_pages, array_size, i;
1662 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1663 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1664 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1665 					0 :
1666 					__GFP_HIGHMEM;
1667 
1668 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1669 	array_size = (nr_pages * sizeof(struct page *));
1670 
1671 	area->nr_pages = nr_pages;
1672 	/* Please note that the recursion is strictly bounded. */
1673 	if (array_size > PAGE_SIZE) {
1674 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1675 				PAGE_KERNEL, node, area->caller);
1676 	} else {
1677 		pages = kmalloc_node(array_size, nested_gfp, node);
1678 	}
1679 	area->pages = pages;
1680 	if (!area->pages) {
1681 		remove_vm_area(area->addr);
1682 		kfree(area);
1683 		return NULL;
1684 	}
1685 
1686 	for (i = 0; i < area->nr_pages; i++) {
1687 		struct page *page;
1688 
1689 		if (node == NUMA_NO_NODE)
1690 			page = alloc_page(alloc_mask|highmem_mask);
1691 		else
1692 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1693 
1694 		if (unlikely(!page)) {
1695 			/* Successfully allocated i pages, free them in __vunmap() */
1696 			area->nr_pages = i;
1697 			goto fail;
1698 		}
1699 		area->pages[i] = page;
1700 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1701 			cond_resched();
1702 	}
1703 
1704 	if (map_vm_area(area, prot, pages))
1705 		goto fail;
1706 	return area->addr;
1707 
1708 fail:
1709 	warn_alloc(gfp_mask, NULL,
1710 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1711 			  (area->nr_pages*PAGE_SIZE), area->size);
1712 	vfree(area->addr);
1713 	return NULL;
1714 }
1715 
1716 /**
1717  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1718  *	@size:		allocation size
1719  *	@align:		desired alignment
1720  *	@start:		vm area range start
1721  *	@end:		vm area range end
1722  *	@gfp_mask:	flags for the page level allocator
1723  *	@prot:		protection mask for the allocated pages
1724  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1725  *	@node:		node to use for allocation or NUMA_NO_NODE
1726  *	@caller:	caller's return address
1727  *
1728  *	Allocate enough pages to cover @size from the page level
1729  *	allocator with @gfp_mask flags.  Map them into contiguous
1730  *	kernel virtual space, using a pagetable protection of @prot.
1731  */
1732 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1733 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1734 			pgprot_t prot, unsigned long vm_flags, int node,
1735 			const void *caller)
1736 {
1737 	struct vm_struct *area;
1738 	void *addr;
1739 	unsigned long real_size = size;
1740 
1741 	size = PAGE_ALIGN(size);
1742 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1743 		goto fail;
1744 
1745 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1746 				vm_flags, start, end, node, gfp_mask, caller);
1747 	if (!area)
1748 		goto fail;
1749 
1750 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1751 	if (!addr)
1752 		return NULL;
1753 
1754 	/*
1755 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1756 	 * flag. It means that vm_struct is not fully initialized.
1757 	 * Now, it is fully initialized, so remove this flag here.
1758 	 */
1759 	clear_vm_uninitialized_flag(area);
1760 
1761 	kmemleak_vmalloc(area, size, gfp_mask);
1762 
1763 	return addr;
1764 
1765 fail:
1766 	warn_alloc(gfp_mask, NULL,
1767 			  "vmalloc: allocation failure: %lu bytes", real_size);
1768 	return NULL;
1769 }
1770 
1771 /**
1772  *	__vmalloc_node  -  allocate virtually contiguous memory
1773  *	@size:		allocation size
1774  *	@align:		desired alignment
1775  *	@gfp_mask:	flags for the page level allocator
1776  *	@prot:		protection mask for the allocated pages
1777  *	@node:		node to use for allocation or NUMA_NO_NODE
1778  *	@caller:	caller's return address
1779  *
1780  *	Allocate enough pages to cover @size from the page level
1781  *	allocator with @gfp_mask flags.  Map them into contiguous
1782  *	kernel virtual space, using a pagetable protection of @prot.
1783  *
1784  *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1785  *	and __GFP_NOFAIL are not supported
1786  *
1787  *	Any use of gfp flags outside of GFP_KERNEL should be consulted
1788  *	with mm people.
1789  *
1790  */
1791 static void *__vmalloc_node(unsigned long size, unsigned long align,
1792 			    gfp_t gfp_mask, pgprot_t prot,
1793 			    int node, const void *caller)
1794 {
1795 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1796 				gfp_mask, prot, 0, node, caller);
1797 }
1798 
1799 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1800 {
1801 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1802 				__builtin_return_address(0));
1803 }
1804 EXPORT_SYMBOL(__vmalloc);
1805 
1806 static inline void *__vmalloc_node_flags(unsigned long size,
1807 					int node, gfp_t flags)
1808 {
1809 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1810 					node, __builtin_return_address(0));
1811 }
1812 
1813 
1814 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1815 				  void *caller)
1816 {
1817 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1818 }
1819 
1820 /**
1821  *	vmalloc  -  allocate virtually contiguous memory
1822  *	@size:		allocation size
1823  *	Allocate enough pages to cover @size from the page level
1824  *	allocator and map them into contiguous kernel virtual space.
1825  *
1826  *	For tight control over page level allocator and protection flags
1827  *	use __vmalloc() instead.
1828  */
1829 void *vmalloc(unsigned long size)
1830 {
1831 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1832 				    GFP_KERNEL);
1833 }
1834 EXPORT_SYMBOL(vmalloc);
1835 
1836 /**
1837  *	vzalloc - allocate virtually contiguous memory with zero fill
1838  *	@size:	allocation size
1839  *	Allocate enough pages to cover @size from the page level
1840  *	allocator and map them into contiguous kernel virtual space.
1841  *	The memory allocated is set to zero.
1842  *
1843  *	For tight control over page level allocator and protection flags
1844  *	use __vmalloc() instead.
1845  */
1846 void *vzalloc(unsigned long size)
1847 {
1848 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1849 				GFP_KERNEL | __GFP_ZERO);
1850 }
1851 EXPORT_SYMBOL(vzalloc);
1852 
1853 /**
1854  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1855  * @size: allocation size
1856  *
1857  * The resulting memory area is zeroed so it can be mapped to userspace
1858  * without leaking data.
1859  */
1860 void *vmalloc_user(unsigned long size)
1861 {
1862 	struct vm_struct *area;
1863 	void *ret;
1864 
1865 	ret = __vmalloc_node(size, SHMLBA,
1866 			     GFP_KERNEL | __GFP_ZERO,
1867 			     PAGE_KERNEL, NUMA_NO_NODE,
1868 			     __builtin_return_address(0));
1869 	if (ret) {
1870 		area = find_vm_area(ret);
1871 		area->flags |= VM_USERMAP;
1872 	}
1873 	return ret;
1874 }
1875 EXPORT_SYMBOL(vmalloc_user);
1876 
1877 /**
1878  *	vmalloc_node  -  allocate memory on a specific node
1879  *	@size:		allocation size
1880  *	@node:		numa node
1881  *
1882  *	Allocate enough pages to cover @size from the page level
1883  *	allocator and map them into contiguous kernel virtual space.
1884  *
1885  *	For tight control over page level allocator and protection flags
1886  *	use __vmalloc() instead.
1887  */
1888 void *vmalloc_node(unsigned long size, int node)
1889 {
1890 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1891 					node, __builtin_return_address(0));
1892 }
1893 EXPORT_SYMBOL(vmalloc_node);
1894 
1895 /**
1896  * vzalloc_node - allocate memory on a specific node with zero fill
1897  * @size:	allocation size
1898  * @node:	numa node
1899  *
1900  * Allocate enough pages to cover @size from the page level
1901  * allocator and map them into contiguous kernel virtual space.
1902  * The memory allocated is set to zero.
1903  *
1904  * For tight control over page level allocator and protection flags
1905  * use __vmalloc_node() instead.
1906  */
1907 void *vzalloc_node(unsigned long size, int node)
1908 {
1909 	return __vmalloc_node_flags(size, node,
1910 			 GFP_KERNEL | __GFP_ZERO);
1911 }
1912 EXPORT_SYMBOL(vzalloc_node);
1913 
1914 /**
1915  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1916  *	@size:		allocation size
1917  *
1918  *	Kernel-internal function to allocate enough pages to cover @size
1919  *	the page level allocator and map them into contiguous and
1920  *	executable kernel virtual space.
1921  *
1922  *	For tight control over page level allocator and protection flags
1923  *	use __vmalloc() instead.
1924  */
1925 
1926 void *vmalloc_exec(unsigned long size)
1927 {
1928 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1929 			      NUMA_NO_NODE, __builtin_return_address(0));
1930 }
1931 
1932 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1933 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1934 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1935 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1936 #else
1937 /*
1938  * 64b systems should always have either DMA or DMA32 zones. For others
1939  * GFP_DMA32 should do the right thing and use the normal zone.
1940  */
1941 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1942 #endif
1943 
1944 /**
1945  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1946  *	@size:		allocation size
1947  *
1948  *	Allocate enough 32bit PA addressable pages to cover @size from the
1949  *	page level allocator and map them into contiguous kernel virtual space.
1950  */
1951 void *vmalloc_32(unsigned long size)
1952 {
1953 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1954 			      NUMA_NO_NODE, __builtin_return_address(0));
1955 }
1956 EXPORT_SYMBOL(vmalloc_32);
1957 
1958 /**
1959  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1960  *	@size:		allocation size
1961  *
1962  * The resulting memory area is 32bit addressable and zeroed so it can be
1963  * mapped to userspace without leaking data.
1964  */
1965 void *vmalloc_32_user(unsigned long size)
1966 {
1967 	struct vm_struct *area;
1968 	void *ret;
1969 
1970 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1971 			     NUMA_NO_NODE, __builtin_return_address(0));
1972 	if (ret) {
1973 		area = find_vm_area(ret);
1974 		area->flags |= VM_USERMAP;
1975 	}
1976 	return ret;
1977 }
1978 EXPORT_SYMBOL(vmalloc_32_user);
1979 
1980 /*
1981  * small helper routine , copy contents to buf from addr.
1982  * If the page is not present, fill zero.
1983  */
1984 
1985 static int aligned_vread(char *buf, char *addr, unsigned long count)
1986 {
1987 	struct page *p;
1988 	int copied = 0;
1989 
1990 	while (count) {
1991 		unsigned long offset, length;
1992 
1993 		offset = offset_in_page(addr);
1994 		length = PAGE_SIZE - offset;
1995 		if (length > count)
1996 			length = count;
1997 		p = vmalloc_to_page(addr);
1998 		/*
1999 		 * To do safe access to this _mapped_ area, we need
2000 		 * lock. But adding lock here means that we need to add
2001 		 * overhead of vmalloc()/vfree() calles for this _debug_
2002 		 * interface, rarely used. Instead of that, we'll use
2003 		 * kmap() and get small overhead in this access function.
2004 		 */
2005 		if (p) {
2006 			/*
2007 			 * we can expect USER0 is not used (see vread/vwrite's
2008 			 * function description)
2009 			 */
2010 			void *map = kmap_atomic(p);
2011 			memcpy(buf, map + offset, length);
2012 			kunmap_atomic(map);
2013 		} else
2014 			memset(buf, 0, length);
2015 
2016 		addr += length;
2017 		buf += length;
2018 		copied += length;
2019 		count -= length;
2020 	}
2021 	return copied;
2022 }
2023 
2024 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2025 {
2026 	struct page *p;
2027 	int copied = 0;
2028 
2029 	while (count) {
2030 		unsigned long offset, length;
2031 
2032 		offset = offset_in_page(addr);
2033 		length = PAGE_SIZE - offset;
2034 		if (length > count)
2035 			length = count;
2036 		p = vmalloc_to_page(addr);
2037 		/*
2038 		 * To do safe access to this _mapped_ area, we need
2039 		 * lock. But adding lock here means that we need to add
2040 		 * overhead of vmalloc()/vfree() calles for this _debug_
2041 		 * interface, rarely used. Instead of that, we'll use
2042 		 * kmap() and get small overhead in this access function.
2043 		 */
2044 		if (p) {
2045 			/*
2046 			 * we can expect USER0 is not used (see vread/vwrite's
2047 			 * function description)
2048 			 */
2049 			void *map = kmap_atomic(p);
2050 			memcpy(map + offset, buf, length);
2051 			kunmap_atomic(map);
2052 		}
2053 		addr += length;
2054 		buf += length;
2055 		copied += length;
2056 		count -= length;
2057 	}
2058 	return copied;
2059 }
2060 
2061 /**
2062  *	vread() -  read vmalloc area in a safe way.
2063  *	@buf:		buffer for reading data
2064  *	@addr:		vm address.
2065  *	@count:		number of bytes to be read.
2066  *
2067  *	Returns # of bytes which addr and buf should be increased.
2068  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2069  *	includes any intersect with alive vmalloc area.
2070  *
2071  *	This function checks that addr is a valid vmalloc'ed area, and
2072  *	copy data from that area to a given buffer. If the given memory range
2073  *	of [addr...addr+count) includes some valid address, data is copied to
2074  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2075  *	IOREMAP area is treated as memory hole and no copy is done.
2076  *
2077  *	If [addr...addr+count) doesn't includes any intersects with alive
2078  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2079  *
2080  *	Note: In usual ops, vread() is never necessary because the caller
2081  *	should know vmalloc() area is valid and can use memcpy().
2082  *	This is for routines which have to access vmalloc area without
2083  *	any informaion, as /dev/kmem.
2084  *
2085  */
2086 
2087 long vread(char *buf, char *addr, unsigned long count)
2088 {
2089 	struct vmap_area *va;
2090 	struct vm_struct *vm;
2091 	char *vaddr, *buf_start = buf;
2092 	unsigned long buflen = count;
2093 	unsigned long n;
2094 
2095 	/* Don't allow overflow */
2096 	if ((unsigned long) addr + count < count)
2097 		count = -(unsigned long) addr;
2098 
2099 	spin_lock(&vmap_area_lock);
2100 	list_for_each_entry(va, &vmap_area_list, list) {
2101 		if (!count)
2102 			break;
2103 
2104 		if (!(va->flags & VM_VM_AREA))
2105 			continue;
2106 
2107 		vm = va->vm;
2108 		vaddr = (char *) vm->addr;
2109 		if (addr >= vaddr + get_vm_area_size(vm))
2110 			continue;
2111 		while (addr < vaddr) {
2112 			if (count == 0)
2113 				goto finished;
2114 			*buf = '\0';
2115 			buf++;
2116 			addr++;
2117 			count--;
2118 		}
2119 		n = vaddr + get_vm_area_size(vm) - addr;
2120 		if (n > count)
2121 			n = count;
2122 		if (!(vm->flags & VM_IOREMAP))
2123 			aligned_vread(buf, addr, n);
2124 		else /* IOREMAP area is treated as memory hole */
2125 			memset(buf, 0, n);
2126 		buf += n;
2127 		addr += n;
2128 		count -= n;
2129 	}
2130 finished:
2131 	spin_unlock(&vmap_area_lock);
2132 
2133 	if (buf == buf_start)
2134 		return 0;
2135 	/* zero-fill memory holes */
2136 	if (buf != buf_start + buflen)
2137 		memset(buf, 0, buflen - (buf - buf_start));
2138 
2139 	return buflen;
2140 }
2141 
2142 /**
2143  *	vwrite() -  write vmalloc area in a safe way.
2144  *	@buf:		buffer for source data
2145  *	@addr:		vm address.
2146  *	@count:		number of bytes to be read.
2147  *
2148  *	Returns # of bytes which addr and buf should be incresed.
2149  *	(same number to @count).
2150  *	If [addr...addr+count) doesn't includes any intersect with valid
2151  *	vmalloc area, returns 0.
2152  *
2153  *	This function checks that addr is a valid vmalloc'ed area, and
2154  *	copy data from a buffer to the given addr. If specified range of
2155  *	[addr...addr+count) includes some valid address, data is copied from
2156  *	proper area of @buf. If there are memory holes, no copy to hole.
2157  *	IOREMAP area is treated as memory hole and no copy is done.
2158  *
2159  *	If [addr...addr+count) doesn't includes any intersects with alive
2160  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2161  *
2162  *	Note: In usual ops, vwrite() is never necessary because the caller
2163  *	should know vmalloc() area is valid and can use memcpy().
2164  *	This is for routines which have to access vmalloc area without
2165  *	any informaion, as /dev/kmem.
2166  */
2167 
2168 long vwrite(char *buf, char *addr, unsigned long count)
2169 {
2170 	struct vmap_area *va;
2171 	struct vm_struct *vm;
2172 	char *vaddr;
2173 	unsigned long n, buflen;
2174 	int copied = 0;
2175 
2176 	/* Don't allow overflow */
2177 	if ((unsigned long) addr + count < count)
2178 		count = -(unsigned long) addr;
2179 	buflen = count;
2180 
2181 	spin_lock(&vmap_area_lock);
2182 	list_for_each_entry(va, &vmap_area_list, list) {
2183 		if (!count)
2184 			break;
2185 
2186 		if (!(va->flags & VM_VM_AREA))
2187 			continue;
2188 
2189 		vm = va->vm;
2190 		vaddr = (char *) vm->addr;
2191 		if (addr >= vaddr + get_vm_area_size(vm))
2192 			continue;
2193 		while (addr < vaddr) {
2194 			if (count == 0)
2195 				goto finished;
2196 			buf++;
2197 			addr++;
2198 			count--;
2199 		}
2200 		n = vaddr + get_vm_area_size(vm) - addr;
2201 		if (n > count)
2202 			n = count;
2203 		if (!(vm->flags & VM_IOREMAP)) {
2204 			aligned_vwrite(buf, addr, n);
2205 			copied++;
2206 		}
2207 		buf += n;
2208 		addr += n;
2209 		count -= n;
2210 	}
2211 finished:
2212 	spin_unlock(&vmap_area_lock);
2213 	if (!copied)
2214 		return 0;
2215 	return buflen;
2216 }
2217 
2218 /**
2219  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2220  *	@vma:		vma to cover
2221  *	@uaddr:		target user address to start at
2222  *	@kaddr:		virtual address of vmalloc kernel memory
2223  *	@size:		size of map area
2224  *
2225  *	Returns:	0 for success, -Exxx on failure
2226  *
2227  *	This function checks that @kaddr is a valid vmalloc'ed area,
2228  *	and that it is big enough to cover the range starting at
2229  *	@uaddr in @vma. Will return failure if that criteria isn't
2230  *	met.
2231  *
2232  *	Similar to remap_pfn_range() (see mm/memory.c)
2233  */
2234 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2235 				void *kaddr, unsigned long size)
2236 {
2237 	struct vm_struct *area;
2238 
2239 	size = PAGE_ALIGN(size);
2240 
2241 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2242 		return -EINVAL;
2243 
2244 	area = find_vm_area(kaddr);
2245 	if (!area)
2246 		return -EINVAL;
2247 
2248 	if (!(area->flags & VM_USERMAP))
2249 		return -EINVAL;
2250 
2251 	if (kaddr + size > area->addr + area->size)
2252 		return -EINVAL;
2253 
2254 	do {
2255 		struct page *page = vmalloc_to_page(kaddr);
2256 		int ret;
2257 
2258 		ret = vm_insert_page(vma, uaddr, page);
2259 		if (ret)
2260 			return ret;
2261 
2262 		uaddr += PAGE_SIZE;
2263 		kaddr += PAGE_SIZE;
2264 		size -= PAGE_SIZE;
2265 	} while (size > 0);
2266 
2267 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2268 
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2272 
2273 /**
2274  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2275  *	@vma:		vma to cover (map full range of vma)
2276  *	@addr:		vmalloc memory
2277  *	@pgoff:		number of pages into addr before first page to map
2278  *
2279  *	Returns:	0 for success, -Exxx on failure
2280  *
2281  *	This function checks that addr is a valid vmalloc'ed area, and
2282  *	that it is big enough to cover the vma. Will return failure if
2283  *	that criteria isn't met.
2284  *
2285  *	Similar to remap_pfn_range() (see mm/memory.c)
2286  */
2287 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2288 						unsigned long pgoff)
2289 {
2290 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2291 					   addr + (pgoff << PAGE_SHIFT),
2292 					   vma->vm_end - vma->vm_start);
2293 }
2294 EXPORT_SYMBOL(remap_vmalloc_range);
2295 
2296 /*
2297  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2298  * have one.
2299  */
2300 void __weak vmalloc_sync_all(void)
2301 {
2302 }
2303 
2304 
2305 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2306 {
2307 	pte_t ***p = data;
2308 
2309 	if (p) {
2310 		*(*p) = pte;
2311 		(*p)++;
2312 	}
2313 	return 0;
2314 }
2315 
2316 /**
2317  *	alloc_vm_area - allocate a range of kernel address space
2318  *	@size:		size of the area
2319  *	@ptes:		returns the PTEs for the address space
2320  *
2321  *	Returns:	NULL on failure, vm_struct on success
2322  *
2323  *	This function reserves a range of kernel address space, and
2324  *	allocates pagetables to map that range.  No actual mappings
2325  *	are created.
2326  *
2327  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2328  *	allocated for the VM area are returned.
2329  */
2330 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2331 {
2332 	struct vm_struct *area;
2333 
2334 	area = get_vm_area_caller(size, VM_IOREMAP,
2335 				__builtin_return_address(0));
2336 	if (area == NULL)
2337 		return NULL;
2338 
2339 	/*
2340 	 * This ensures that page tables are constructed for this region
2341 	 * of kernel virtual address space and mapped into init_mm.
2342 	 */
2343 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2344 				size, f, ptes ? &ptes : NULL)) {
2345 		free_vm_area(area);
2346 		return NULL;
2347 	}
2348 
2349 	return area;
2350 }
2351 EXPORT_SYMBOL_GPL(alloc_vm_area);
2352 
2353 void free_vm_area(struct vm_struct *area)
2354 {
2355 	struct vm_struct *ret;
2356 	ret = remove_vm_area(area->addr);
2357 	BUG_ON(ret != area);
2358 	kfree(area);
2359 }
2360 EXPORT_SYMBOL_GPL(free_vm_area);
2361 
2362 #ifdef CONFIG_SMP
2363 static struct vmap_area *node_to_va(struct rb_node *n)
2364 {
2365 	return rb_entry_safe(n, struct vmap_area, rb_node);
2366 }
2367 
2368 /**
2369  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2370  * @end: target address
2371  * @pnext: out arg for the next vmap_area
2372  * @pprev: out arg for the previous vmap_area
2373  *
2374  * Returns: %true if either or both of next and prev are found,
2375  *	    %false if no vmap_area exists
2376  *
2377  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2378  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2379  */
2380 static bool pvm_find_next_prev(unsigned long end,
2381 			       struct vmap_area **pnext,
2382 			       struct vmap_area **pprev)
2383 {
2384 	struct rb_node *n = vmap_area_root.rb_node;
2385 	struct vmap_area *va = NULL;
2386 
2387 	while (n) {
2388 		va = rb_entry(n, struct vmap_area, rb_node);
2389 		if (end < va->va_end)
2390 			n = n->rb_left;
2391 		else if (end > va->va_end)
2392 			n = n->rb_right;
2393 		else
2394 			break;
2395 	}
2396 
2397 	if (!va)
2398 		return false;
2399 
2400 	if (va->va_end > end) {
2401 		*pnext = va;
2402 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2403 	} else {
2404 		*pprev = va;
2405 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2406 	}
2407 	return true;
2408 }
2409 
2410 /**
2411  * pvm_determine_end - find the highest aligned address between two vmap_areas
2412  * @pnext: in/out arg for the next vmap_area
2413  * @pprev: in/out arg for the previous vmap_area
2414  * @align: alignment
2415  *
2416  * Returns: determined end address
2417  *
2418  * Find the highest aligned address between *@pnext and *@pprev below
2419  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2420  * down address is between the end addresses of the two vmap_areas.
2421  *
2422  * Please note that the address returned by this function may fall
2423  * inside *@pnext vmap_area.  The caller is responsible for checking
2424  * that.
2425  */
2426 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2427 				       struct vmap_area **pprev,
2428 				       unsigned long align)
2429 {
2430 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2431 	unsigned long addr;
2432 
2433 	if (*pnext)
2434 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2435 	else
2436 		addr = vmalloc_end;
2437 
2438 	while (*pprev && (*pprev)->va_end > addr) {
2439 		*pnext = *pprev;
2440 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2441 	}
2442 
2443 	return addr;
2444 }
2445 
2446 /**
2447  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2448  * @offsets: array containing offset of each area
2449  * @sizes: array containing size of each area
2450  * @nr_vms: the number of areas to allocate
2451  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2452  *
2453  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2454  *	    vm_structs on success, %NULL on failure
2455  *
2456  * Percpu allocator wants to use congruent vm areas so that it can
2457  * maintain the offsets among percpu areas.  This function allocates
2458  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2459  * be scattered pretty far, distance between two areas easily going up
2460  * to gigabytes.  To avoid interacting with regular vmallocs, these
2461  * areas are allocated from top.
2462  *
2463  * Despite its complicated look, this allocator is rather simple.  It
2464  * does everything top-down and scans areas from the end looking for
2465  * matching slot.  While scanning, if any of the areas overlaps with
2466  * existing vmap_area, the base address is pulled down to fit the
2467  * area.  Scanning is repeated till all the areas fit and then all
2468  * necessary data structures are inserted and the result is returned.
2469  */
2470 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2471 				     const size_t *sizes, int nr_vms,
2472 				     size_t align)
2473 {
2474 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2475 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2476 	struct vmap_area **vas, *prev, *next;
2477 	struct vm_struct **vms;
2478 	int area, area2, last_area, term_area;
2479 	unsigned long base, start, end, last_end;
2480 	bool purged = false;
2481 
2482 	/* verify parameters and allocate data structures */
2483 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2484 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2485 		start = offsets[area];
2486 		end = start + sizes[area];
2487 
2488 		/* is everything aligned properly? */
2489 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2490 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2491 
2492 		/* detect the area with the highest address */
2493 		if (start > offsets[last_area])
2494 			last_area = area;
2495 
2496 		for (area2 = area + 1; area2 < nr_vms; area2++) {
2497 			unsigned long start2 = offsets[area2];
2498 			unsigned long end2 = start2 + sizes[area2];
2499 
2500 			BUG_ON(start2 < end && start < end2);
2501 		}
2502 	}
2503 	last_end = offsets[last_area] + sizes[last_area];
2504 
2505 	if (vmalloc_end - vmalloc_start < last_end) {
2506 		WARN_ON(true);
2507 		return NULL;
2508 	}
2509 
2510 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2511 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2512 	if (!vas || !vms)
2513 		goto err_free2;
2514 
2515 	for (area = 0; area < nr_vms; area++) {
2516 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2517 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2518 		if (!vas[area] || !vms[area])
2519 			goto err_free;
2520 	}
2521 retry:
2522 	spin_lock(&vmap_area_lock);
2523 
2524 	/* start scanning - we scan from the top, begin with the last area */
2525 	area = term_area = last_area;
2526 	start = offsets[area];
2527 	end = start + sizes[area];
2528 
2529 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2530 		base = vmalloc_end - last_end;
2531 		goto found;
2532 	}
2533 	base = pvm_determine_end(&next, &prev, align) - end;
2534 
2535 	while (true) {
2536 		BUG_ON(next && next->va_end <= base + end);
2537 		BUG_ON(prev && prev->va_end > base + end);
2538 
2539 		/*
2540 		 * base might have underflowed, add last_end before
2541 		 * comparing.
2542 		 */
2543 		if (base + last_end < vmalloc_start + last_end) {
2544 			spin_unlock(&vmap_area_lock);
2545 			if (!purged) {
2546 				purge_vmap_area_lazy();
2547 				purged = true;
2548 				goto retry;
2549 			}
2550 			goto err_free;
2551 		}
2552 
2553 		/*
2554 		 * If next overlaps, move base downwards so that it's
2555 		 * right below next and then recheck.
2556 		 */
2557 		if (next && next->va_start < base + end) {
2558 			base = pvm_determine_end(&next, &prev, align) - end;
2559 			term_area = area;
2560 			continue;
2561 		}
2562 
2563 		/*
2564 		 * If prev overlaps, shift down next and prev and move
2565 		 * base so that it's right below new next and then
2566 		 * recheck.
2567 		 */
2568 		if (prev && prev->va_end > base + start)  {
2569 			next = prev;
2570 			prev = node_to_va(rb_prev(&next->rb_node));
2571 			base = pvm_determine_end(&next, &prev, align) - end;
2572 			term_area = area;
2573 			continue;
2574 		}
2575 
2576 		/*
2577 		 * This area fits, move on to the previous one.  If
2578 		 * the previous one is the terminal one, we're done.
2579 		 */
2580 		area = (area + nr_vms - 1) % nr_vms;
2581 		if (area == term_area)
2582 			break;
2583 		start = offsets[area];
2584 		end = start + sizes[area];
2585 		pvm_find_next_prev(base + end, &next, &prev);
2586 	}
2587 found:
2588 	/* we've found a fitting base, insert all va's */
2589 	for (area = 0; area < nr_vms; area++) {
2590 		struct vmap_area *va = vas[area];
2591 
2592 		va->va_start = base + offsets[area];
2593 		va->va_end = va->va_start + sizes[area];
2594 		__insert_vmap_area(va);
2595 	}
2596 
2597 	vmap_area_pcpu_hole = base + offsets[last_area];
2598 
2599 	spin_unlock(&vmap_area_lock);
2600 
2601 	/* insert all vm's */
2602 	for (area = 0; area < nr_vms; area++)
2603 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2604 				 pcpu_get_vm_areas);
2605 
2606 	kfree(vas);
2607 	return vms;
2608 
2609 err_free:
2610 	for (area = 0; area < nr_vms; area++) {
2611 		kfree(vas[area]);
2612 		kfree(vms[area]);
2613 	}
2614 err_free2:
2615 	kfree(vas);
2616 	kfree(vms);
2617 	return NULL;
2618 }
2619 
2620 /**
2621  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2622  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2623  * @nr_vms: the number of allocated areas
2624  *
2625  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2626  */
2627 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2628 {
2629 	int i;
2630 
2631 	for (i = 0; i < nr_vms; i++)
2632 		free_vm_area(vms[i]);
2633 	kfree(vms);
2634 }
2635 #endif	/* CONFIG_SMP */
2636 
2637 #ifdef CONFIG_PROC_FS
2638 static void *s_start(struct seq_file *m, loff_t *pos)
2639 	__acquires(&vmap_area_lock)
2640 {
2641 	spin_lock(&vmap_area_lock);
2642 	return seq_list_start(&vmap_area_list, *pos);
2643 }
2644 
2645 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2646 {
2647 	return seq_list_next(p, &vmap_area_list, pos);
2648 }
2649 
2650 static void s_stop(struct seq_file *m, void *p)
2651 	__releases(&vmap_area_lock)
2652 {
2653 	spin_unlock(&vmap_area_lock);
2654 }
2655 
2656 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2657 {
2658 	if (IS_ENABLED(CONFIG_NUMA)) {
2659 		unsigned int nr, *counters = m->private;
2660 
2661 		if (!counters)
2662 			return;
2663 
2664 		if (v->flags & VM_UNINITIALIZED)
2665 			return;
2666 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2667 		smp_rmb();
2668 
2669 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2670 
2671 		for (nr = 0; nr < v->nr_pages; nr++)
2672 			counters[page_to_nid(v->pages[nr])]++;
2673 
2674 		for_each_node_state(nr, N_HIGH_MEMORY)
2675 			if (counters[nr])
2676 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2677 	}
2678 }
2679 
2680 static int s_show(struct seq_file *m, void *p)
2681 {
2682 	struct vmap_area *va;
2683 	struct vm_struct *v;
2684 
2685 	va = list_entry(p, struct vmap_area, list);
2686 
2687 	/*
2688 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2689 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2690 	 */
2691 	if (!(va->flags & VM_VM_AREA)) {
2692 		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2693 			(void *)va->va_start, (void *)va->va_end,
2694 			va->va_end - va->va_start,
2695 			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2696 
2697 		return 0;
2698 	}
2699 
2700 	v = va->vm;
2701 
2702 	seq_printf(m, "0x%pK-0x%pK %7ld",
2703 		v->addr, v->addr + v->size, v->size);
2704 
2705 	if (v->caller)
2706 		seq_printf(m, " %pS", v->caller);
2707 
2708 	if (v->nr_pages)
2709 		seq_printf(m, " pages=%d", v->nr_pages);
2710 
2711 	if (v->phys_addr)
2712 		seq_printf(m, " phys=%pa", &v->phys_addr);
2713 
2714 	if (v->flags & VM_IOREMAP)
2715 		seq_puts(m, " ioremap");
2716 
2717 	if (v->flags & VM_ALLOC)
2718 		seq_puts(m, " vmalloc");
2719 
2720 	if (v->flags & VM_MAP)
2721 		seq_puts(m, " vmap");
2722 
2723 	if (v->flags & VM_USERMAP)
2724 		seq_puts(m, " user");
2725 
2726 	if (is_vmalloc_addr(v->pages))
2727 		seq_puts(m, " vpages");
2728 
2729 	show_numa_info(m, v);
2730 	seq_putc(m, '\n');
2731 	return 0;
2732 }
2733 
2734 static const struct seq_operations vmalloc_op = {
2735 	.start = s_start,
2736 	.next = s_next,
2737 	.stop = s_stop,
2738 	.show = s_show,
2739 };
2740 
2741 static int __init proc_vmalloc_init(void)
2742 {
2743 	if (IS_ENABLED(CONFIG_NUMA))
2744 		proc_create_seq_private("vmallocinfo", 0400, NULL,
2745 				&vmalloc_op,
2746 				nr_node_ids * sizeof(unsigned int), NULL);
2747 	else
2748 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
2749 	return 0;
2750 }
2751 module_init(proc_vmalloc_init);
2752 
2753 #endif
2754 
2755