1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/notifier.h> 25 #include <linux/rbtree.h> 26 #include <linux/radix-tree.h> 27 #include <linux/rcupdate.h> 28 #include <linux/pfn.h> 29 #include <linux/kmemleak.h> 30 #include <linux/atomic.h> 31 #include <linux/compiler.h> 32 #include <linux/llist.h> 33 #include <linux/bitops.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/tlbflush.h> 37 #include <asm/shmparam.h> 38 39 #include "internal.h" 40 41 struct vfree_deferred { 42 struct llist_head list; 43 struct work_struct wq; 44 }; 45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 46 47 static void __vunmap(const void *, int); 48 49 static void free_work(struct work_struct *w) 50 { 51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 52 struct llist_node *t, *llnode; 53 54 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 55 __vunmap((void *)llnode, 1); 56 } 57 58 /*** Page table manipulation functions ***/ 59 60 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 61 { 62 pte_t *pte; 63 64 pte = pte_offset_kernel(pmd, addr); 65 do { 66 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 67 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 68 } while (pte++, addr += PAGE_SIZE, addr != end); 69 } 70 71 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 72 { 73 pmd_t *pmd; 74 unsigned long next; 75 76 pmd = pmd_offset(pud, addr); 77 do { 78 next = pmd_addr_end(addr, end); 79 if (pmd_clear_huge(pmd)) 80 continue; 81 if (pmd_none_or_clear_bad(pmd)) 82 continue; 83 vunmap_pte_range(pmd, addr, next); 84 } while (pmd++, addr = next, addr != end); 85 } 86 87 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 88 { 89 pud_t *pud; 90 unsigned long next; 91 92 pud = pud_offset(p4d, addr); 93 do { 94 next = pud_addr_end(addr, end); 95 if (pud_clear_huge(pud)) 96 continue; 97 if (pud_none_or_clear_bad(pud)) 98 continue; 99 vunmap_pmd_range(pud, addr, next); 100 } while (pud++, addr = next, addr != end); 101 } 102 103 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 104 { 105 p4d_t *p4d; 106 unsigned long next; 107 108 p4d = p4d_offset(pgd, addr); 109 do { 110 next = p4d_addr_end(addr, end); 111 if (p4d_clear_huge(p4d)) 112 continue; 113 if (p4d_none_or_clear_bad(p4d)) 114 continue; 115 vunmap_pud_range(p4d, addr, next); 116 } while (p4d++, addr = next, addr != end); 117 } 118 119 static void vunmap_page_range(unsigned long addr, unsigned long end) 120 { 121 pgd_t *pgd; 122 unsigned long next; 123 124 BUG_ON(addr >= end); 125 pgd = pgd_offset_k(addr); 126 do { 127 next = pgd_addr_end(addr, end); 128 if (pgd_none_or_clear_bad(pgd)) 129 continue; 130 vunmap_p4d_range(pgd, addr, next); 131 } while (pgd++, addr = next, addr != end); 132 } 133 134 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 135 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 136 { 137 pte_t *pte; 138 139 /* 140 * nr is a running index into the array which helps higher level 141 * callers keep track of where we're up to. 142 */ 143 144 pte = pte_alloc_kernel(pmd, addr); 145 if (!pte) 146 return -ENOMEM; 147 do { 148 struct page *page = pages[*nr]; 149 150 if (WARN_ON(!pte_none(*pte))) 151 return -EBUSY; 152 if (WARN_ON(!page)) 153 return -ENOMEM; 154 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 155 (*nr)++; 156 } while (pte++, addr += PAGE_SIZE, addr != end); 157 return 0; 158 } 159 160 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 161 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc(&init_mm, pud, addr); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 172 return -ENOMEM; 173 } while (pmd++, addr = next, addr != end); 174 return 0; 175 } 176 177 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 178 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 179 { 180 pud_t *pud; 181 unsigned long next; 182 183 pud = pud_alloc(&init_mm, p4d, addr); 184 if (!pud) 185 return -ENOMEM; 186 do { 187 next = pud_addr_end(addr, end); 188 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 189 return -ENOMEM; 190 } while (pud++, addr = next, addr != end); 191 return 0; 192 } 193 194 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 195 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 196 { 197 p4d_t *p4d; 198 unsigned long next; 199 200 p4d = p4d_alloc(&init_mm, pgd, addr); 201 if (!p4d) 202 return -ENOMEM; 203 do { 204 next = p4d_addr_end(addr, end); 205 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 206 return -ENOMEM; 207 } while (p4d++, addr = next, addr != end); 208 return 0; 209 } 210 211 /* 212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 213 * will have pfns corresponding to the "pages" array. 214 * 215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 216 */ 217 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 218 pgprot_t prot, struct page **pages) 219 { 220 pgd_t *pgd; 221 unsigned long next; 222 unsigned long addr = start; 223 int err = 0; 224 int nr = 0; 225 226 BUG_ON(addr >= end); 227 pgd = pgd_offset_k(addr); 228 do { 229 next = pgd_addr_end(addr, end); 230 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 231 if (err) 232 return err; 233 } while (pgd++, addr = next, addr != end); 234 235 return nr; 236 } 237 238 static int vmap_page_range(unsigned long start, unsigned long end, 239 pgprot_t prot, struct page **pages) 240 { 241 int ret; 242 243 ret = vmap_page_range_noflush(start, end, prot, pages); 244 flush_cache_vmap(start, end); 245 return ret; 246 } 247 248 int is_vmalloc_or_module_addr(const void *x) 249 { 250 /* 251 * ARM, x86-64 and sparc64 put modules in a special place, 252 * and fall back on vmalloc() if that fails. Others 253 * just put it in the vmalloc space. 254 */ 255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 256 unsigned long addr = (unsigned long)x; 257 if (addr >= MODULES_VADDR && addr < MODULES_END) 258 return 1; 259 #endif 260 return is_vmalloc_addr(x); 261 } 262 263 /* 264 * Walk a vmap address to the struct page it maps. 265 */ 266 struct page *vmalloc_to_page(const void *vmalloc_addr) 267 { 268 unsigned long addr = (unsigned long) vmalloc_addr; 269 struct page *page = NULL; 270 pgd_t *pgd = pgd_offset_k(addr); 271 p4d_t *p4d; 272 pud_t *pud; 273 pmd_t *pmd; 274 pte_t *ptep, pte; 275 276 /* 277 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 278 * architectures that do not vmalloc module space 279 */ 280 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 281 282 if (pgd_none(*pgd)) 283 return NULL; 284 p4d = p4d_offset(pgd, addr); 285 if (p4d_none(*p4d)) 286 return NULL; 287 pud = pud_offset(p4d, addr); 288 289 /* 290 * Don't dereference bad PUD or PMD (below) entries. This will also 291 * identify huge mappings, which we may encounter on architectures 292 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 293 * identified as vmalloc addresses by is_vmalloc_addr(), but are 294 * not [unambiguously] associated with a struct page, so there is 295 * no correct value to return for them. 296 */ 297 WARN_ON_ONCE(pud_bad(*pud)); 298 if (pud_none(*pud) || pud_bad(*pud)) 299 return NULL; 300 pmd = pmd_offset(pud, addr); 301 WARN_ON_ONCE(pmd_bad(*pmd)); 302 if (pmd_none(*pmd) || pmd_bad(*pmd)) 303 return NULL; 304 305 ptep = pte_offset_map(pmd, addr); 306 pte = *ptep; 307 if (pte_present(pte)) 308 page = pte_page(pte); 309 pte_unmap(ptep); 310 return page; 311 } 312 EXPORT_SYMBOL(vmalloc_to_page); 313 314 /* 315 * Map a vmalloc()-space virtual address to the physical page frame number. 316 */ 317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 318 { 319 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 320 } 321 EXPORT_SYMBOL(vmalloc_to_pfn); 322 323 324 /*** Global kva allocator ***/ 325 326 #define VM_LAZY_FREE 0x02 327 #define VM_VM_AREA 0x04 328 329 static DEFINE_SPINLOCK(vmap_area_lock); 330 /* Export for kexec only */ 331 LIST_HEAD(vmap_area_list); 332 static LLIST_HEAD(vmap_purge_list); 333 static struct rb_root vmap_area_root = RB_ROOT; 334 335 /* The vmap cache globals are protected by vmap_area_lock */ 336 static struct rb_node *free_vmap_cache; 337 static unsigned long cached_hole_size; 338 static unsigned long cached_vstart; 339 static unsigned long cached_align; 340 341 static unsigned long vmap_area_pcpu_hole; 342 343 static struct vmap_area *__find_vmap_area(unsigned long addr) 344 { 345 struct rb_node *n = vmap_area_root.rb_node; 346 347 while (n) { 348 struct vmap_area *va; 349 350 va = rb_entry(n, struct vmap_area, rb_node); 351 if (addr < va->va_start) 352 n = n->rb_left; 353 else if (addr >= va->va_end) 354 n = n->rb_right; 355 else 356 return va; 357 } 358 359 return NULL; 360 } 361 362 static void __insert_vmap_area(struct vmap_area *va) 363 { 364 struct rb_node **p = &vmap_area_root.rb_node; 365 struct rb_node *parent = NULL; 366 struct rb_node *tmp; 367 368 while (*p) { 369 struct vmap_area *tmp_va; 370 371 parent = *p; 372 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 373 if (va->va_start < tmp_va->va_end) 374 p = &(*p)->rb_left; 375 else if (va->va_end > tmp_va->va_start) 376 p = &(*p)->rb_right; 377 else 378 BUG(); 379 } 380 381 rb_link_node(&va->rb_node, parent, p); 382 rb_insert_color(&va->rb_node, &vmap_area_root); 383 384 /* address-sort this list */ 385 tmp = rb_prev(&va->rb_node); 386 if (tmp) { 387 struct vmap_area *prev; 388 prev = rb_entry(tmp, struct vmap_area, rb_node); 389 list_add_rcu(&va->list, &prev->list); 390 } else 391 list_add_rcu(&va->list, &vmap_area_list); 392 } 393 394 static void purge_vmap_area_lazy(void); 395 396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 397 398 /* 399 * Allocate a region of KVA of the specified size and alignment, within the 400 * vstart and vend. 401 */ 402 static struct vmap_area *alloc_vmap_area(unsigned long size, 403 unsigned long align, 404 unsigned long vstart, unsigned long vend, 405 int node, gfp_t gfp_mask) 406 { 407 struct vmap_area *va; 408 struct rb_node *n; 409 unsigned long addr; 410 int purged = 0; 411 struct vmap_area *first; 412 413 BUG_ON(!size); 414 BUG_ON(offset_in_page(size)); 415 BUG_ON(!is_power_of_2(align)); 416 417 might_sleep(); 418 419 va = kmalloc_node(sizeof(struct vmap_area), 420 gfp_mask & GFP_RECLAIM_MASK, node); 421 if (unlikely(!va)) 422 return ERR_PTR(-ENOMEM); 423 424 /* 425 * Only scan the relevant parts containing pointers to other objects 426 * to avoid false negatives. 427 */ 428 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 429 430 retry: 431 spin_lock(&vmap_area_lock); 432 /* 433 * Invalidate cache if we have more permissive parameters. 434 * cached_hole_size notes the largest hole noticed _below_ 435 * the vmap_area cached in free_vmap_cache: if size fits 436 * into that hole, we want to scan from vstart to reuse 437 * the hole instead of allocating above free_vmap_cache. 438 * Note that __free_vmap_area may update free_vmap_cache 439 * without updating cached_hole_size or cached_align. 440 */ 441 if (!free_vmap_cache || 442 size < cached_hole_size || 443 vstart < cached_vstart || 444 align < cached_align) { 445 nocache: 446 cached_hole_size = 0; 447 free_vmap_cache = NULL; 448 } 449 /* record if we encounter less permissive parameters */ 450 cached_vstart = vstart; 451 cached_align = align; 452 453 /* find starting point for our search */ 454 if (free_vmap_cache) { 455 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 456 addr = ALIGN(first->va_end, align); 457 if (addr < vstart) 458 goto nocache; 459 if (addr + size < addr) 460 goto overflow; 461 462 } else { 463 addr = ALIGN(vstart, align); 464 if (addr + size < addr) 465 goto overflow; 466 467 n = vmap_area_root.rb_node; 468 first = NULL; 469 470 while (n) { 471 struct vmap_area *tmp; 472 tmp = rb_entry(n, struct vmap_area, rb_node); 473 if (tmp->va_end >= addr) { 474 first = tmp; 475 if (tmp->va_start <= addr) 476 break; 477 n = n->rb_left; 478 } else 479 n = n->rb_right; 480 } 481 482 if (!first) 483 goto found; 484 } 485 486 /* from the starting point, walk areas until a suitable hole is found */ 487 while (addr + size > first->va_start && addr + size <= vend) { 488 if (addr + cached_hole_size < first->va_start) 489 cached_hole_size = first->va_start - addr; 490 addr = ALIGN(first->va_end, align); 491 if (addr + size < addr) 492 goto overflow; 493 494 if (list_is_last(&first->list, &vmap_area_list)) 495 goto found; 496 497 first = list_next_entry(first, list); 498 } 499 500 found: 501 if (addr + size > vend) 502 goto overflow; 503 504 va->va_start = addr; 505 va->va_end = addr + size; 506 va->flags = 0; 507 __insert_vmap_area(va); 508 free_vmap_cache = &va->rb_node; 509 spin_unlock(&vmap_area_lock); 510 511 BUG_ON(!IS_ALIGNED(va->va_start, align)); 512 BUG_ON(va->va_start < vstart); 513 BUG_ON(va->va_end > vend); 514 515 return va; 516 517 overflow: 518 spin_unlock(&vmap_area_lock); 519 if (!purged) { 520 purge_vmap_area_lazy(); 521 purged = 1; 522 goto retry; 523 } 524 525 if (gfpflags_allow_blocking(gfp_mask)) { 526 unsigned long freed = 0; 527 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 528 if (freed > 0) { 529 purged = 0; 530 goto retry; 531 } 532 } 533 534 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 535 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 536 size); 537 kfree(va); 538 return ERR_PTR(-EBUSY); 539 } 540 541 int register_vmap_purge_notifier(struct notifier_block *nb) 542 { 543 return blocking_notifier_chain_register(&vmap_notify_list, nb); 544 } 545 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 546 547 int unregister_vmap_purge_notifier(struct notifier_block *nb) 548 { 549 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 550 } 551 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 552 553 static void __free_vmap_area(struct vmap_area *va) 554 { 555 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 556 557 if (free_vmap_cache) { 558 if (va->va_end < cached_vstart) { 559 free_vmap_cache = NULL; 560 } else { 561 struct vmap_area *cache; 562 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 563 if (va->va_start <= cache->va_start) { 564 free_vmap_cache = rb_prev(&va->rb_node); 565 /* 566 * We don't try to update cached_hole_size or 567 * cached_align, but it won't go very wrong. 568 */ 569 } 570 } 571 } 572 rb_erase(&va->rb_node, &vmap_area_root); 573 RB_CLEAR_NODE(&va->rb_node); 574 list_del_rcu(&va->list); 575 576 /* 577 * Track the highest possible candidate for pcpu area 578 * allocation. Areas outside of vmalloc area can be returned 579 * here too, consider only end addresses which fall inside 580 * vmalloc area proper. 581 */ 582 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 583 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 584 585 kfree_rcu(va, rcu_head); 586 } 587 588 /* 589 * Free a region of KVA allocated by alloc_vmap_area 590 */ 591 static void free_vmap_area(struct vmap_area *va) 592 { 593 spin_lock(&vmap_area_lock); 594 __free_vmap_area(va); 595 spin_unlock(&vmap_area_lock); 596 } 597 598 /* 599 * Clear the pagetable entries of a given vmap_area 600 */ 601 static void unmap_vmap_area(struct vmap_area *va) 602 { 603 vunmap_page_range(va->va_start, va->va_end); 604 } 605 606 /* 607 * lazy_max_pages is the maximum amount of virtual address space we gather up 608 * before attempting to purge with a TLB flush. 609 * 610 * There is a tradeoff here: a larger number will cover more kernel page tables 611 * and take slightly longer to purge, but it will linearly reduce the number of 612 * global TLB flushes that must be performed. It would seem natural to scale 613 * this number up linearly with the number of CPUs (because vmapping activity 614 * could also scale linearly with the number of CPUs), however it is likely 615 * that in practice, workloads might be constrained in other ways that mean 616 * vmap activity will not scale linearly with CPUs. Also, I want to be 617 * conservative and not introduce a big latency on huge systems, so go with 618 * a less aggressive log scale. It will still be an improvement over the old 619 * code, and it will be simple to change the scale factor if we find that it 620 * becomes a problem on bigger systems. 621 */ 622 static unsigned long lazy_max_pages(void) 623 { 624 unsigned int log; 625 626 log = fls(num_online_cpus()); 627 628 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 629 } 630 631 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 632 633 /* 634 * Serialize vmap purging. There is no actual criticial section protected 635 * by this look, but we want to avoid concurrent calls for performance 636 * reasons and to make the pcpu_get_vm_areas more deterministic. 637 */ 638 static DEFINE_MUTEX(vmap_purge_lock); 639 640 /* for per-CPU blocks */ 641 static void purge_fragmented_blocks_allcpus(void); 642 643 /* 644 * called before a call to iounmap() if the caller wants vm_area_struct's 645 * immediately freed. 646 */ 647 void set_iounmap_nonlazy(void) 648 { 649 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 650 } 651 652 /* 653 * Purges all lazily-freed vmap areas. 654 */ 655 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 656 { 657 struct llist_node *valist; 658 struct vmap_area *va; 659 struct vmap_area *n_va; 660 bool do_free = false; 661 662 lockdep_assert_held(&vmap_purge_lock); 663 664 valist = llist_del_all(&vmap_purge_list); 665 llist_for_each_entry(va, valist, purge_list) { 666 if (va->va_start < start) 667 start = va->va_start; 668 if (va->va_end > end) 669 end = va->va_end; 670 do_free = true; 671 } 672 673 if (!do_free) 674 return false; 675 676 flush_tlb_kernel_range(start, end); 677 678 spin_lock(&vmap_area_lock); 679 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 680 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 681 682 __free_vmap_area(va); 683 atomic_sub(nr, &vmap_lazy_nr); 684 cond_resched_lock(&vmap_area_lock); 685 } 686 spin_unlock(&vmap_area_lock); 687 return true; 688 } 689 690 /* 691 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 692 * is already purging. 693 */ 694 static void try_purge_vmap_area_lazy(void) 695 { 696 if (mutex_trylock(&vmap_purge_lock)) { 697 __purge_vmap_area_lazy(ULONG_MAX, 0); 698 mutex_unlock(&vmap_purge_lock); 699 } 700 } 701 702 /* 703 * Kick off a purge of the outstanding lazy areas. 704 */ 705 static void purge_vmap_area_lazy(void) 706 { 707 mutex_lock(&vmap_purge_lock); 708 purge_fragmented_blocks_allcpus(); 709 __purge_vmap_area_lazy(ULONG_MAX, 0); 710 mutex_unlock(&vmap_purge_lock); 711 } 712 713 /* 714 * Free a vmap area, caller ensuring that the area has been unmapped 715 * and flush_cache_vunmap had been called for the correct range 716 * previously. 717 */ 718 static void free_vmap_area_noflush(struct vmap_area *va) 719 { 720 int nr_lazy; 721 722 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, 723 &vmap_lazy_nr); 724 725 /* After this point, we may free va at any time */ 726 llist_add(&va->purge_list, &vmap_purge_list); 727 728 if (unlikely(nr_lazy > lazy_max_pages())) 729 try_purge_vmap_area_lazy(); 730 } 731 732 /* 733 * Free and unmap a vmap area 734 */ 735 static void free_unmap_vmap_area(struct vmap_area *va) 736 { 737 flush_cache_vunmap(va->va_start, va->va_end); 738 unmap_vmap_area(va); 739 if (debug_pagealloc_enabled()) 740 flush_tlb_kernel_range(va->va_start, va->va_end); 741 742 free_vmap_area_noflush(va); 743 } 744 745 static struct vmap_area *find_vmap_area(unsigned long addr) 746 { 747 struct vmap_area *va; 748 749 spin_lock(&vmap_area_lock); 750 va = __find_vmap_area(addr); 751 spin_unlock(&vmap_area_lock); 752 753 return va; 754 } 755 756 /*** Per cpu kva allocator ***/ 757 758 /* 759 * vmap space is limited especially on 32 bit architectures. Ensure there is 760 * room for at least 16 percpu vmap blocks per CPU. 761 */ 762 /* 763 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 764 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 765 * instead (we just need a rough idea) 766 */ 767 #if BITS_PER_LONG == 32 768 #define VMALLOC_SPACE (128UL*1024*1024) 769 #else 770 #define VMALLOC_SPACE (128UL*1024*1024*1024) 771 #endif 772 773 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 774 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 775 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 776 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 777 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 778 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 779 #define VMAP_BBMAP_BITS \ 780 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 781 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 782 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 783 784 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 785 786 static bool vmap_initialized __read_mostly = false; 787 788 struct vmap_block_queue { 789 spinlock_t lock; 790 struct list_head free; 791 }; 792 793 struct vmap_block { 794 spinlock_t lock; 795 struct vmap_area *va; 796 unsigned long free, dirty; 797 unsigned long dirty_min, dirty_max; /*< dirty range */ 798 struct list_head free_list; 799 struct rcu_head rcu_head; 800 struct list_head purge; 801 }; 802 803 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 804 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 805 806 /* 807 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 808 * in the free path. Could get rid of this if we change the API to return a 809 * "cookie" from alloc, to be passed to free. But no big deal yet. 810 */ 811 static DEFINE_SPINLOCK(vmap_block_tree_lock); 812 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 813 814 /* 815 * We should probably have a fallback mechanism to allocate virtual memory 816 * out of partially filled vmap blocks. However vmap block sizing should be 817 * fairly reasonable according to the vmalloc size, so it shouldn't be a 818 * big problem. 819 */ 820 821 static unsigned long addr_to_vb_idx(unsigned long addr) 822 { 823 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 824 addr /= VMAP_BLOCK_SIZE; 825 return addr; 826 } 827 828 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 829 { 830 unsigned long addr; 831 832 addr = va_start + (pages_off << PAGE_SHIFT); 833 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 834 return (void *)addr; 835 } 836 837 /** 838 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 839 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 840 * @order: how many 2^order pages should be occupied in newly allocated block 841 * @gfp_mask: flags for the page level allocator 842 * 843 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) 844 */ 845 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 846 { 847 struct vmap_block_queue *vbq; 848 struct vmap_block *vb; 849 struct vmap_area *va; 850 unsigned long vb_idx; 851 int node, err; 852 void *vaddr; 853 854 node = numa_node_id(); 855 856 vb = kmalloc_node(sizeof(struct vmap_block), 857 gfp_mask & GFP_RECLAIM_MASK, node); 858 if (unlikely(!vb)) 859 return ERR_PTR(-ENOMEM); 860 861 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 862 VMALLOC_START, VMALLOC_END, 863 node, gfp_mask); 864 if (IS_ERR(va)) { 865 kfree(vb); 866 return ERR_CAST(va); 867 } 868 869 err = radix_tree_preload(gfp_mask); 870 if (unlikely(err)) { 871 kfree(vb); 872 free_vmap_area(va); 873 return ERR_PTR(err); 874 } 875 876 vaddr = vmap_block_vaddr(va->va_start, 0); 877 spin_lock_init(&vb->lock); 878 vb->va = va; 879 /* At least something should be left free */ 880 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 881 vb->free = VMAP_BBMAP_BITS - (1UL << order); 882 vb->dirty = 0; 883 vb->dirty_min = VMAP_BBMAP_BITS; 884 vb->dirty_max = 0; 885 INIT_LIST_HEAD(&vb->free_list); 886 887 vb_idx = addr_to_vb_idx(va->va_start); 888 spin_lock(&vmap_block_tree_lock); 889 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 890 spin_unlock(&vmap_block_tree_lock); 891 BUG_ON(err); 892 radix_tree_preload_end(); 893 894 vbq = &get_cpu_var(vmap_block_queue); 895 spin_lock(&vbq->lock); 896 list_add_tail_rcu(&vb->free_list, &vbq->free); 897 spin_unlock(&vbq->lock); 898 put_cpu_var(vmap_block_queue); 899 900 return vaddr; 901 } 902 903 static void free_vmap_block(struct vmap_block *vb) 904 { 905 struct vmap_block *tmp; 906 unsigned long vb_idx; 907 908 vb_idx = addr_to_vb_idx(vb->va->va_start); 909 spin_lock(&vmap_block_tree_lock); 910 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 911 spin_unlock(&vmap_block_tree_lock); 912 BUG_ON(tmp != vb); 913 914 free_vmap_area_noflush(vb->va); 915 kfree_rcu(vb, rcu_head); 916 } 917 918 static void purge_fragmented_blocks(int cpu) 919 { 920 LIST_HEAD(purge); 921 struct vmap_block *vb; 922 struct vmap_block *n_vb; 923 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 924 925 rcu_read_lock(); 926 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 927 928 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 929 continue; 930 931 spin_lock(&vb->lock); 932 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 933 vb->free = 0; /* prevent further allocs after releasing lock */ 934 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 935 vb->dirty_min = 0; 936 vb->dirty_max = VMAP_BBMAP_BITS; 937 spin_lock(&vbq->lock); 938 list_del_rcu(&vb->free_list); 939 spin_unlock(&vbq->lock); 940 spin_unlock(&vb->lock); 941 list_add_tail(&vb->purge, &purge); 942 } else 943 spin_unlock(&vb->lock); 944 } 945 rcu_read_unlock(); 946 947 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 948 list_del(&vb->purge); 949 free_vmap_block(vb); 950 } 951 } 952 953 static void purge_fragmented_blocks_allcpus(void) 954 { 955 int cpu; 956 957 for_each_possible_cpu(cpu) 958 purge_fragmented_blocks(cpu); 959 } 960 961 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 962 { 963 struct vmap_block_queue *vbq; 964 struct vmap_block *vb; 965 void *vaddr = NULL; 966 unsigned int order; 967 968 BUG_ON(offset_in_page(size)); 969 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 970 if (WARN_ON(size == 0)) { 971 /* 972 * Allocating 0 bytes isn't what caller wants since 973 * get_order(0) returns funny result. Just warn and terminate 974 * early. 975 */ 976 return NULL; 977 } 978 order = get_order(size); 979 980 rcu_read_lock(); 981 vbq = &get_cpu_var(vmap_block_queue); 982 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 983 unsigned long pages_off; 984 985 spin_lock(&vb->lock); 986 if (vb->free < (1UL << order)) { 987 spin_unlock(&vb->lock); 988 continue; 989 } 990 991 pages_off = VMAP_BBMAP_BITS - vb->free; 992 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 993 vb->free -= 1UL << order; 994 if (vb->free == 0) { 995 spin_lock(&vbq->lock); 996 list_del_rcu(&vb->free_list); 997 spin_unlock(&vbq->lock); 998 } 999 1000 spin_unlock(&vb->lock); 1001 break; 1002 } 1003 1004 put_cpu_var(vmap_block_queue); 1005 rcu_read_unlock(); 1006 1007 /* Allocate new block if nothing was found */ 1008 if (!vaddr) 1009 vaddr = new_vmap_block(order, gfp_mask); 1010 1011 return vaddr; 1012 } 1013 1014 static void vb_free(const void *addr, unsigned long size) 1015 { 1016 unsigned long offset; 1017 unsigned long vb_idx; 1018 unsigned int order; 1019 struct vmap_block *vb; 1020 1021 BUG_ON(offset_in_page(size)); 1022 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1023 1024 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1025 1026 order = get_order(size); 1027 1028 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1029 offset >>= PAGE_SHIFT; 1030 1031 vb_idx = addr_to_vb_idx((unsigned long)addr); 1032 rcu_read_lock(); 1033 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1034 rcu_read_unlock(); 1035 BUG_ON(!vb); 1036 1037 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1038 1039 if (debug_pagealloc_enabled()) 1040 flush_tlb_kernel_range((unsigned long)addr, 1041 (unsigned long)addr + size); 1042 1043 spin_lock(&vb->lock); 1044 1045 /* Expand dirty range */ 1046 vb->dirty_min = min(vb->dirty_min, offset); 1047 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1048 1049 vb->dirty += 1UL << order; 1050 if (vb->dirty == VMAP_BBMAP_BITS) { 1051 BUG_ON(vb->free); 1052 spin_unlock(&vb->lock); 1053 free_vmap_block(vb); 1054 } else 1055 spin_unlock(&vb->lock); 1056 } 1057 1058 /** 1059 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1060 * 1061 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1062 * to amortize TLB flushing overheads. What this means is that any page you 1063 * have now, may, in a former life, have been mapped into kernel virtual 1064 * address by the vmap layer and so there might be some CPUs with TLB entries 1065 * still referencing that page (additional to the regular 1:1 kernel mapping). 1066 * 1067 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1068 * be sure that none of the pages we have control over will have any aliases 1069 * from the vmap layer. 1070 */ 1071 void vm_unmap_aliases(void) 1072 { 1073 unsigned long start = ULONG_MAX, end = 0; 1074 int cpu; 1075 int flush = 0; 1076 1077 if (unlikely(!vmap_initialized)) 1078 return; 1079 1080 might_sleep(); 1081 1082 for_each_possible_cpu(cpu) { 1083 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1084 struct vmap_block *vb; 1085 1086 rcu_read_lock(); 1087 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1088 spin_lock(&vb->lock); 1089 if (vb->dirty) { 1090 unsigned long va_start = vb->va->va_start; 1091 unsigned long s, e; 1092 1093 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1094 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1095 1096 start = min(s, start); 1097 end = max(e, end); 1098 1099 flush = 1; 1100 } 1101 spin_unlock(&vb->lock); 1102 } 1103 rcu_read_unlock(); 1104 } 1105 1106 mutex_lock(&vmap_purge_lock); 1107 purge_fragmented_blocks_allcpus(); 1108 if (!__purge_vmap_area_lazy(start, end) && flush) 1109 flush_tlb_kernel_range(start, end); 1110 mutex_unlock(&vmap_purge_lock); 1111 } 1112 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1113 1114 /** 1115 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1116 * @mem: the pointer returned by vm_map_ram 1117 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1118 */ 1119 void vm_unmap_ram(const void *mem, unsigned int count) 1120 { 1121 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1122 unsigned long addr = (unsigned long)mem; 1123 struct vmap_area *va; 1124 1125 might_sleep(); 1126 BUG_ON(!addr); 1127 BUG_ON(addr < VMALLOC_START); 1128 BUG_ON(addr > VMALLOC_END); 1129 BUG_ON(!PAGE_ALIGNED(addr)); 1130 1131 if (likely(count <= VMAP_MAX_ALLOC)) { 1132 debug_check_no_locks_freed(mem, size); 1133 vb_free(mem, size); 1134 return; 1135 } 1136 1137 va = find_vmap_area(addr); 1138 BUG_ON(!va); 1139 debug_check_no_locks_freed((void *)va->va_start, 1140 (va->va_end - va->va_start)); 1141 free_unmap_vmap_area(va); 1142 } 1143 EXPORT_SYMBOL(vm_unmap_ram); 1144 1145 /** 1146 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1147 * @pages: an array of pointers to the pages to be mapped 1148 * @count: number of pages 1149 * @node: prefer to allocate data structures on this node 1150 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1151 * 1152 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1153 * faster than vmap so it's good. But if you mix long-life and short-life 1154 * objects with vm_map_ram(), it could consume lots of address space through 1155 * fragmentation (especially on a 32bit machine). You could see failures in 1156 * the end. Please use this function for short-lived objects. 1157 * 1158 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1159 */ 1160 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1161 { 1162 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1163 unsigned long addr; 1164 void *mem; 1165 1166 if (likely(count <= VMAP_MAX_ALLOC)) { 1167 mem = vb_alloc(size, GFP_KERNEL); 1168 if (IS_ERR(mem)) 1169 return NULL; 1170 addr = (unsigned long)mem; 1171 } else { 1172 struct vmap_area *va; 1173 va = alloc_vmap_area(size, PAGE_SIZE, 1174 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1175 if (IS_ERR(va)) 1176 return NULL; 1177 1178 addr = va->va_start; 1179 mem = (void *)addr; 1180 } 1181 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1182 vm_unmap_ram(mem, count); 1183 return NULL; 1184 } 1185 return mem; 1186 } 1187 EXPORT_SYMBOL(vm_map_ram); 1188 1189 static struct vm_struct *vmlist __initdata; 1190 /** 1191 * vm_area_add_early - add vmap area early during boot 1192 * @vm: vm_struct to add 1193 * 1194 * This function is used to add fixed kernel vm area to vmlist before 1195 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1196 * should contain proper values and the other fields should be zero. 1197 * 1198 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1199 */ 1200 void __init vm_area_add_early(struct vm_struct *vm) 1201 { 1202 struct vm_struct *tmp, **p; 1203 1204 BUG_ON(vmap_initialized); 1205 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1206 if (tmp->addr >= vm->addr) { 1207 BUG_ON(tmp->addr < vm->addr + vm->size); 1208 break; 1209 } else 1210 BUG_ON(tmp->addr + tmp->size > vm->addr); 1211 } 1212 vm->next = *p; 1213 *p = vm; 1214 } 1215 1216 /** 1217 * vm_area_register_early - register vmap area early during boot 1218 * @vm: vm_struct to register 1219 * @align: requested alignment 1220 * 1221 * This function is used to register kernel vm area before 1222 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1223 * proper values on entry and other fields should be zero. On return, 1224 * vm->addr contains the allocated address. 1225 * 1226 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1227 */ 1228 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1229 { 1230 static size_t vm_init_off __initdata; 1231 unsigned long addr; 1232 1233 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1234 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1235 1236 vm->addr = (void *)addr; 1237 1238 vm_area_add_early(vm); 1239 } 1240 1241 void __init vmalloc_init(void) 1242 { 1243 struct vmap_area *va; 1244 struct vm_struct *tmp; 1245 int i; 1246 1247 for_each_possible_cpu(i) { 1248 struct vmap_block_queue *vbq; 1249 struct vfree_deferred *p; 1250 1251 vbq = &per_cpu(vmap_block_queue, i); 1252 spin_lock_init(&vbq->lock); 1253 INIT_LIST_HEAD(&vbq->free); 1254 p = &per_cpu(vfree_deferred, i); 1255 init_llist_head(&p->list); 1256 INIT_WORK(&p->wq, free_work); 1257 } 1258 1259 /* Import existing vmlist entries. */ 1260 for (tmp = vmlist; tmp; tmp = tmp->next) { 1261 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1262 va->flags = VM_VM_AREA; 1263 va->va_start = (unsigned long)tmp->addr; 1264 va->va_end = va->va_start + tmp->size; 1265 va->vm = tmp; 1266 __insert_vmap_area(va); 1267 } 1268 1269 vmap_area_pcpu_hole = VMALLOC_END; 1270 1271 vmap_initialized = true; 1272 } 1273 1274 /** 1275 * map_kernel_range_noflush - map kernel VM area with the specified pages 1276 * @addr: start of the VM area to map 1277 * @size: size of the VM area to map 1278 * @prot: page protection flags to use 1279 * @pages: pages to map 1280 * 1281 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1282 * specify should have been allocated using get_vm_area() and its 1283 * friends. 1284 * 1285 * NOTE: 1286 * This function does NOT do any cache flushing. The caller is 1287 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1288 * before calling this function. 1289 * 1290 * RETURNS: 1291 * The number of pages mapped on success, -errno on failure. 1292 */ 1293 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1294 pgprot_t prot, struct page **pages) 1295 { 1296 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1297 } 1298 1299 /** 1300 * unmap_kernel_range_noflush - unmap kernel VM area 1301 * @addr: start of the VM area to unmap 1302 * @size: size of the VM area to unmap 1303 * 1304 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1305 * specify should have been allocated using get_vm_area() and its 1306 * friends. 1307 * 1308 * NOTE: 1309 * This function does NOT do any cache flushing. The caller is 1310 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1311 * before calling this function and flush_tlb_kernel_range() after. 1312 */ 1313 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1314 { 1315 vunmap_page_range(addr, addr + size); 1316 } 1317 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1318 1319 /** 1320 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1321 * @addr: start of the VM area to unmap 1322 * @size: size of the VM area to unmap 1323 * 1324 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1325 * the unmapping and tlb after. 1326 */ 1327 void unmap_kernel_range(unsigned long addr, unsigned long size) 1328 { 1329 unsigned long end = addr + size; 1330 1331 flush_cache_vunmap(addr, end); 1332 vunmap_page_range(addr, end); 1333 flush_tlb_kernel_range(addr, end); 1334 } 1335 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1336 1337 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1338 { 1339 unsigned long addr = (unsigned long)area->addr; 1340 unsigned long end = addr + get_vm_area_size(area); 1341 int err; 1342 1343 err = vmap_page_range(addr, end, prot, pages); 1344 1345 return err > 0 ? 0 : err; 1346 } 1347 EXPORT_SYMBOL_GPL(map_vm_area); 1348 1349 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1350 unsigned long flags, const void *caller) 1351 { 1352 spin_lock(&vmap_area_lock); 1353 vm->flags = flags; 1354 vm->addr = (void *)va->va_start; 1355 vm->size = va->va_end - va->va_start; 1356 vm->caller = caller; 1357 va->vm = vm; 1358 va->flags |= VM_VM_AREA; 1359 spin_unlock(&vmap_area_lock); 1360 } 1361 1362 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1363 { 1364 /* 1365 * Before removing VM_UNINITIALIZED, 1366 * we should make sure that vm has proper values. 1367 * Pair with smp_rmb() in show_numa_info(). 1368 */ 1369 smp_wmb(); 1370 vm->flags &= ~VM_UNINITIALIZED; 1371 } 1372 1373 static struct vm_struct *__get_vm_area_node(unsigned long size, 1374 unsigned long align, unsigned long flags, unsigned long start, 1375 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1376 { 1377 struct vmap_area *va; 1378 struct vm_struct *area; 1379 1380 BUG_ON(in_interrupt()); 1381 size = PAGE_ALIGN(size); 1382 if (unlikely(!size)) 1383 return NULL; 1384 1385 if (flags & VM_IOREMAP) 1386 align = 1ul << clamp_t(int, get_count_order_long(size), 1387 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1388 1389 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1390 if (unlikely(!area)) 1391 return NULL; 1392 1393 if (!(flags & VM_NO_GUARD)) 1394 size += PAGE_SIZE; 1395 1396 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1397 if (IS_ERR(va)) { 1398 kfree(area); 1399 return NULL; 1400 } 1401 1402 setup_vmalloc_vm(area, va, flags, caller); 1403 1404 return area; 1405 } 1406 1407 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1408 unsigned long start, unsigned long end) 1409 { 1410 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1411 GFP_KERNEL, __builtin_return_address(0)); 1412 } 1413 EXPORT_SYMBOL_GPL(__get_vm_area); 1414 1415 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1416 unsigned long start, unsigned long end, 1417 const void *caller) 1418 { 1419 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1420 GFP_KERNEL, caller); 1421 } 1422 1423 /** 1424 * get_vm_area - reserve a contiguous kernel virtual area 1425 * @size: size of the area 1426 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1427 * 1428 * Search an area of @size in the kernel virtual mapping area, 1429 * and reserved it for out purposes. Returns the area descriptor 1430 * on success or %NULL on failure. 1431 */ 1432 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1433 { 1434 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1435 NUMA_NO_NODE, GFP_KERNEL, 1436 __builtin_return_address(0)); 1437 } 1438 1439 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1440 const void *caller) 1441 { 1442 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1443 NUMA_NO_NODE, GFP_KERNEL, caller); 1444 } 1445 1446 /** 1447 * find_vm_area - find a continuous kernel virtual area 1448 * @addr: base address 1449 * 1450 * Search for the kernel VM area starting at @addr, and return it. 1451 * It is up to the caller to do all required locking to keep the returned 1452 * pointer valid. 1453 */ 1454 struct vm_struct *find_vm_area(const void *addr) 1455 { 1456 struct vmap_area *va; 1457 1458 va = find_vmap_area((unsigned long)addr); 1459 if (va && va->flags & VM_VM_AREA) 1460 return va->vm; 1461 1462 return NULL; 1463 } 1464 1465 /** 1466 * remove_vm_area - find and remove a continuous kernel virtual area 1467 * @addr: base address 1468 * 1469 * Search for the kernel VM area starting at @addr, and remove it. 1470 * This function returns the found VM area, but using it is NOT safe 1471 * on SMP machines, except for its size or flags. 1472 */ 1473 struct vm_struct *remove_vm_area(const void *addr) 1474 { 1475 struct vmap_area *va; 1476 1477 might_sleep(); 1478 1479 va = find_vmap_area((unsigned long)addr); 1480 if (va && va->flags & VM_VM_AREA) { 1481 struct vm_struct *vm = va->vm; 1482 1483 spin_lock(&vmap_area_lock); 1484 va->vm = NULL; 1485 va->flags &= ~VM_VM_AREA; 1486 va->flags |= VM_LAZY_FREE; 1487 spin_unlock(&vmap_area_lock); 1488 1489 kasan_free_shadow(vm); 1490 free_unmap_vmap_area(va); 1491 1492 return vm; 1493 } 1494 return NULL; 1495 } 1496 1497 static void __vunmap(const void *addr, int deallocate_pages) 1498 { 1499 struct vm_struct *area; 1500 1501 if (!addr) 1502 return; 1503 1504 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1505 addr)) 1506 return; 1507 1508 area = find_vmap_area((unsigned long)addr)->vm; 1509 if (unlikely(!area)) { 1510 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1511 addr); 1512 return; 1513 } 1514 1515 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 1516 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 1517 1518 remove_vm_area(addr); 1519 if (deallocate_pages) { 1520 int i; 1521 1522 for (i = 0; i < area->nr_pages; i++) { 1523 struct page *page = area->pages[i]; 1524 1525 BUG_ON(!page); 1526 __free_pages(page, 0); 1527 } 1528 1529 kvfree(area->pages); 1530 } 1531 1532 kfree(area); 1533 return; 1534 } 1535 1536 static inline void __vfree_deferred(const void *addr) 1537 { 1538 /* 1539 * Use raw_cpu_ptr() because this can be called from preemptible 1540 * context. Preemption is absolutely fine here, because the llist_add() 1541 * implementation is lockless, so it works even if we are adding to 1542 * nother cpu's list. schedule_work() should be fine with this too. 1543 */ 1544 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 1545 1546 if (llist_add((struct llist_node *)addr, &p->list)) 1547 schedule_work(&p->wq); 1548 } 1549 1550 /** 1551 * vfree_atomic - release memory allocated by vmalloc() 1552 * @addr: memory base address 1553 * 1554 * This one is just like vfree() but can be called in any atomic context 1555 * except NMIs. 1556 */ 1557 void vfree_atomic(const void *addr) 1558 { 1559 BUG_ON(in_nmi()); 1560 1561 kmemleak_free(addr); 1562 1563 if (!addr) 1564 return; 1565 __vfree_deferred(addr); 1566 } 1567 1568 /** 1569 * vfree - release memory allocated by vmalloc() 1570 * @addr: memory base address 1571 * 1572 * Free the virtually continuous memory area starting at @addr, as 1573 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1574 * NULL, no operation is performed. 1575 * 1576 * Must not be called in NMI context (strictly speaking, only if we don't 1577 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1578 * conventions for vfree() arch-depenedent would be a really bad idea) 1579 * 1580 * May sleep if called *not* from interrupt context. 1581 * 1582 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 1583 */ 1584 void vfree(const void *addr) 1585 { 1586 BUG_ON(in_nmi()); 1587 1588 kmemleak_free(addr); 1589 1590 might_sleep_if(!in_interrupt()); 1591 1592 if (!addr) 1593 return; 1594 if (unlikely(in_interrupt())) 1595 __vfree_deferred(addr); 1596 else 1597 __vunmap(addr, 1); 1598 } 1599 EXPORT_SYMBOL(vfree); 1600 1601 /** 1602 * vunmap - release virtual mapping obtained by vmap() 1603 * @addr: memory base address 1604 * 1605 * Free the virtually contiguous memory area starting at @addr, 1606 * which was created from the page array passed to vmap(). 1607 * 1608 * Must not be called in interrupt context. 1609 */ 1610 void vunmap(const void *addr) 1611 { 1612 BUG_ON(in_interrupt()); 1613 might_sleep(); 1614 if (addr) 1615 __vunmap(addr, 0); 1616 } 1617 EXPORT_SYMBOL(vunmap); 1618 1619 /** 1620 * vmap - map an array of pages into virtually contiguous space 1621 * @pages: array of page pointers 1622 * @count: number of pages to map 1623 * @flags: vm_area->flags 1624 * @prot: page protection for the mapping 1625 * 1626 * Maps @count pages from @pages into contiguous kernel virtual 1627 * space. 1628 */ 1629 void *vmap(struct page **pages, unsigned int count, 1630 unsigned long flags, pgprot_t prot) 1631 { 1632 struct vm_struct *area; 1633 unsigned long size; /* In bytes */ 1634 1635 might_sleep(); 1636 1637 if (count > totalram_pages) 1638 return NULL; 1639 1640 size = (unsigned long)count << PAGE_SHIFT; 1641 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 1642 if (!area) 1643 return NULL; 1644 1645 if (map_vm_area(area, prot, pages)) { 1646 vunmap(area->addr); 1647 return NULL; 1648 } 1649 1650 return area->addr; 1651 } 1652 EXPORT_SYMBOL(vmap); 1653 1654 static void *__vmalloc_node(unsigned long size, unsigned long align, 1655 gfp_t gfp_mask, pgprot_t prot, 1656 int node, const void *caller); 1657 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1658 pgprot_t prot, int node) 1659 { 1660 struct page **pages; 1661 unsigned int nr_pages, array_size, i; 1662 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1663 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1664 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 1665 0 : 1666 __GFP_HIGHMEM; 1667 1668 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1669 array_size = (nr_pages * sizeof(struct page *)); 1670 1671 area->nr_pages = nr_pages; 1672 /* Please note that the recursion is strictly bounded. */ 1673 if (array_size > PAGE_SIZE) { 1674 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 1675 PAGE_KERNEL, node, area->caller); 1676 } else { 1677 pages = kmalloc_node(array_size, nested_gfp, node); 1678 } 1679 area->pages = pages; 1680 if (!area->pages) { 1681 remove_vm_area(area->addr); 1682 kfree(area); 1683 return NULL; 1684 } 1685 1686 for (i = 0; i < area->nr_pages; i++) { 1687 struct page *page; 1688 1689 if (node == NUMA_NO_NODE) 1690 page = alloc_page(alloc_mask|highmem_mask); 1691 else 1692 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 1693 1694 if (unlikely(!page)) { 1695 /* Successfully allocated i pages, free them in __vunmap() */ 1696 area->nr_pages = i; 1697 goto fail; 1698 } 1699 area->pages[i] = page; 1700 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 1701 cond_resched(); 1702 } 1703 1704 if (map_vm_area(area, prot, pages)) 1705 goto fail; 1706 return area->addr; 1707 1708 fail: 1709 warn_alloc(gfp_mask, NULL, 1710 "vmalloc: allocation failure, allocated %ld of %ld bytes", 1711 (area->nr_pages*PAGE_SIZE), area->size); 1712 vfree(area->addr); 1713 return NULL; 1714 } 1715 1716 /** 1717 * __vmalloc_node_range - allocate virtually contiguous memory 1718 * @size: allocation size 1719 * @align: desired alignment 1720 * @start: vm area range start 1721 * @end: vm area range end 1722 * @gfp_mask: flags for the page level allocator 1723 * @prot: protection mask for the allocated pages 1724 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1725 * @node: node to use for allocation or NUMA_NO_NODE 1726 * @caller: caller's return address 1727 * 1728 * Allocate enough pages to cover @size from the page level 1729 * allocator with @gfp_mask flags. Map them into contiguous 1730 * kernel virtual space, using a pagetable protection of @prot. 1731 */ 1732 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1733 unsigned long start, unsigned long end, gfp_t gfp_mask, 1734 pgprot_t prot, unsigned long vm_flags, int node, 1735 const void *caller) 1736 { 1737 struct vm_struct *area; 1738 void *addr; 1739 unsigned long real_size = size; 1740 1741 size = PAGE_ALIGN(size); 1742 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1743 goto fail; 1744 1745 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1746 vm_flags, start, end, node, gfp_mask, caller); 1747 if (!area) 1748 goto fail; 1749 1750 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1751 if (!addr) 1752 return NULL; 1753 1754 /* 1755 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1756 * flag. It means that vm_struct is not fully initialized. 1757 * Now, it is fully initialized, so remove this flag here. 1758 */ 1759 clear_vm_uninitialized_flag(area); 1760 1761 kmemleak_vmalloc(area, size, gfp_mask); 1762 1763 return addr; 1764 1765 fail: 1766 warn_alloc(gfp_mask, NULL, 1767 "vmalloc: allocation failure: %lu bytes", real_size); 1768 return NULL; 1769 } 1770 1771 /** 1772 * __vmalloc_node - allocate virtually contiguous memory 1773 * @size: allocation size 1774 * @align: desired alignment 1775 * @gfp_mask: flags for the page level allocator 1776 * @prot: protection mask for the allocated pages 1777 * @node: node to use for allocation or NUMA_NO_NODE 1778 * @caller: caller's return address 1779 * 1780 * Allocate enough pages to cover @size from the page level 1781 * allocator with @gfp_mask flags. Map them into contiguous 1782 * kernel virtual space, using a pagetable protection of @prot. 1783 * 1784 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 1785 * and __GFP_NOFAIL are not supported 1786 * 1787 * Any use of gfp flags outside of GFP_KERNEL should be consulted 1788 * with mm people. 1789 * 1790 */ 1791 static void *__vmalloc_node(unsigned long size, unsigned long align, 1792 gfp_t gfp_mask, pgprot_t prot, 1793 int node, const void *caller) 1794 { 1795 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1796 gfp_mask, prot, 0, node, caller); 1797 } 1798 1799 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1800 { 1801 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1802 __builtin_return_address(0)); 1803 } 1804 EXPORT_SYMBOL(__vmalloc); 1805 1806 static inline void *__vmalloc_node_flags(unsigned long size, 1807 int node, gfp_t flags) 1808 { 1809 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1810 node, __builtin_return_address(0)); 1811 } 1812 1813 1814 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 1815 void *caller) 1816 { 1817 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 1818 } 1819 1820 /** 1821 * vmalloc - allocate virtually contiguous memory 1822 * @size: allocation size 1823 * Allocate enough pages to cover @size from the page level 1824 * allocator and map them into contiguous kernel virtual space. 1825 * 1826 * For tight control over page level allocator and protection flags 1827 * use __vmalloc() instead. 1828 */ 1829 void *vmalloc(unsigned long size) 1830 { 1831 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1832 GFP_KERNEL); 1833 } 1834 EXPORT_SYMBOL(vmalloc); 1835 1836 /** 1837 * vzalloc - allocate virtually contiguous memory with zero fill 1838 * @size: allocation size 1839 * Allocate enough pages to cover @size from the page level 1840 * allocator and map them into contiguous kernel virtual space. 1841 * The memory allocated is set to zero. 1842 * 1843 * For tight control over page level allocator and protection flags 1844 * use __vmalloc() instead. 1845 */ 1846 void *vzalloc(unsigned long size) 1847 { 1848 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1849 GFP_KERNEL | __GFP_ZERO); 1850 } 1851 EXPORT_SYMBOL(vzalloc); 1852 1853 /** 1854 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1855 * @size: allocation size 1856 * 1857 * The resulting memory area is zeroed so it can be mapped to userspace 1858 * without leaking data. 1859 */ 1860 void *vmalloc_user(unsigned long size) 1861 { 1862 struct vm_struct *area; 1863 void *ret; 1864 1865 ret = __vmalloc_node(size, SHMLBA, 1866 GFP_KERNEL | __GFP_ZERO, 1867 PAGE_KERNEL, NUMA_NO_NODE, 1868 __builtin_return_address(0)); 1869 if (ret) { 1870 area = find_vm_area(ret); 1871 area->flags |= VM_USERMAP; 1872 } 1873 return ret; 1874 } 1875 EXPORT_SYMBOL(vmalloc_user); 1876 1877 /** 1878 * vmalloc_node - allocate memory on a specific node 1879 * @size: allocation size 1880 * @node: numa node 1881 * 1882 * Allocate enough pages to cover @size from the page level 1883 * allocator and map them into contiguous kernel virtual space. 1884 * 1885 * For tight control over page level allocator and protection flags 1886 * use __vmalloc() instead. 1887 */ 1888 void *vmalloc_node(unsigned long size, int node) 1889 { 1890 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 1891 node, __builtin_return_address(0)); 1892 } 1893 EXPORT_SYMBOL(vmalloc_node); 1894 1895 /** 1896 * vzalloc_node - allocate memory on a specific node with zero fill 1897 * @size: allocation size 1898 * @node: numa node 1899 * 1900 * Allocate enough pages to cover @size from the page level 1901 * allocator and map them into contiguous kernel virtual space. 1902 * The memory allocated is set to zero. 1903 * 1904 * For tight control over page level allocator and protection flags 1905 * use __vmalloc_node() instead. 1906 */ 1907 void *vzalloc_node(unsigned long size, int node) 1908 { 1909 return __vmalloc_node_flags(size, node, 1910 GFP_KERNEL | __GFP_ZERO); 1911 } 1912 EXPORT_SYMBOL(vzalloc_node); 1913 1914 /** 1915 * vmalloc_exec - allocate virtually contiguous, executable memory 1916 * @size: allocation size 1917 * 1918 * Kernel-internal function to allocate enough pages to cover @size 1919 * the page level allocator and map them into contiguous and 1920 * executable kernel virtual space. 1921 * 1922 * For tight control over page level allocator and protection flags 1923 * use __vmalloc() instead. 1924 */ 1925 1926 void *vmalloc_exec(unsigned long size) 1927 { 1928 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC, 1929 NUMA_NO_NODE, __builtin_return_address(0)); 1930 } 1931 1932 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1933 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 1934 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1935 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 1936 #else 1937 /* 1938 * 64b systems should always have either DMA or DMA32 zones. For others 1939 * GFP_DMA32 should do the right thing and use the normal zone. 1940 */ 1941 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1942 #endif 1943 1944 /** 1945 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1946 * @size: allocation size 1947 * 1948 * Allocate enough 32bit PA addressable pages to cover @size from the 1949 * page level allocator and map them into contiguous kernel virtual space. 1950 */ 1951 void *vmalloc_32(unsigned long size) 1952 { 1953 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1954 NUMA_NO_NODE, __builtin_return_address(0)); 1955 } 1956 EXPORT_SYMBOL(vmalloc_32); 1957 1958 /** 1959 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1960 * @size: allocation size 1961 * 1962 * The resulting memory area is 32bit addressable and zeroed so it can be 1963 * mapped to userspace without leaking data. 1964 */ 1965 void *vmalloc_32_user(unsigned long size) 1966 { 1967 struct vm_struct *area; 1968 void *ret; 1969 1970 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1971 NUMA_NO_NODE, __builtin_return_address(0)); 1972 if (ret) { 1973 area = find_vm_area(ret); 1974 area->flags |= VM_USERMAP; 1975 } 1976 return ret; 1977 } 1978 EXPORT_SYMBOL(vmalloc_32_user); 1979 1980 /* 1981 * small helper routine , copy contents to buf from addr. 1982 * If the page is not present, fill zero. 1983 */ 1984 1985 static int aligned_vread(char *buf, char *addr, unsigned long count) 1986 { 1987 struct page *p; 1988 int copied = 0; 1989 1990 while (count) { 1991 unsigned long offset, length; 1992 1993 offset = offset_in_page(addr); 1994 length = PAGE_SIZE - offset; 1995 if (length > count) 1996 length = count; 1997 p = vmalloc_to_page(addr); 1998 /* 1999 * To do safe access to this _mapped_ area, we need 2000 * lock. But adding lock here means that we need to add 2001 * overhead of vmalloc()/vfree() calles for this _debug_ 2002 * interface, rarely used. Instead of that, we'll use 2003 * kmap() and get small overhead in this access function. 2004 */ 2005 if (p) { 2006 /* 2007 * we can expect USER0 is not used (see vread/vwrite's 2008 * function description) 2009 */ 2010 void *map = kmap_atomic(p); 2011 memcpy(buf, map + offset, length); 2012 kunmap_atomic(map); 2013 } else 2014 memset(buf, 0, length); 2015 2016 addr += length; 2017 buf += length; 2018 copied += length; 2019 count -= length; 2020 } 2021 return copied; 2022 } 2023 2024 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2025 { 2026 struct page *p; 2027 int copied = 0; 2028 2029 while (count) { 2030 unsigned long offset, length; 2031 2032 offset = offset_in_page(addr); 2033 length = PAGE_SIZE - offset; 2034 if (length > count) 2035 length = count; 2036 p = vmalloc_to_page(addr); 2037 /* 2038 * To do safe access to this _mapped_ area, we need 2039 * lock. But adding lock here means that we need to add 2040 * overhead of vmalloc()/vfree() calles for this _debug_ 2041 * interface, rarely used. Instead of that, we'll use 2042 * kmap() and get small overhead in this access function. 2043 */ 2044 if (p) { 2045 /* 2046 * we can expect USER0 is not used (see vread/vwrite's 2047 * function description) 2048 */ 2049 void *map = kmap_atomic(p); 2050 memcpy(map + offset, buf, length); 2051 kunmap_atomic(map); 2052 } 2053 addr += length; 2054 buf += length; 2055 copied += length; 2056 count -= length; 2057 } 2058 return copied; 2059 } 2060 2061 /** 2062 * vread() - read vmalloc area in a safe way. 2063 * @buf: buffer for reading data 2064 * @addr: vm address. 2065 * @count: number of bytes to be read. 2066 * 2067 * Returns # of bytes which addr and buf should be increased. 2068 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 2069 * includes any intersect with alive vmalloc area. 2070 * 2071 * This function checks that addr is a valid vmalloc'ed area, and 2072 * copy data from that area to a given buffer. If the given memory range 2073 * of [addr...addr+count) includes some valid address, data is copied to 2074 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2075 * IOREMAP area is treated as memory hole and no copy is done. 2076 * 2077 * If [addr...addr+count) doesn't includes any intersects with alive 2078 * vm_struct area, returns 0. @buf should be kernel's buffer. 2079 * 2080 * Note: In usual ops, vread() is never necessary because the caller 2081 * should know vmalloc() area is valid and can use memcpy(). 2082 * This is for routines which have to access vmalloc area without 2083 * any informaion, as /dev/kmem. 2084 * 2085 */ 2086 2087 long vread(char *buf, char *addr, unsigned long count) 2088 { 2089 struct vmap_area *va; 2090 struct vm_struct *vm; 2091 char *vaddr, *buf_start = buf; 2092 unsigned long buflen = count; 2093 unsigned long n; 2094 2095 /* Don't allow overflow */ 2096 if ((unsigned long) addr + count < count) 2097 count = -(unsigned long) addr; 2098 2099 spin_lock(&vmap_area_lock); 2100 list_for_each_entry(va, &vmap_area_list, list) { 2101 if (!count) 2102 break; 2103 2104 if (!(va->flags & VM_VM_AREA)) 2105 continue; 2106 2107 vm = va->vm; 2108 vaddr = (char *) vm->addr; 2109 if (addr >= vaddr + get_vm_area_size(vm)) 2110 continue; 2111 while (addr < vaddr) { 2112 if (count == 0) 2113 goto finished; 2114 *buf = '\0'; 2115 buf++; 2116 addr++; 2117 count--; 2118 } 2119 n = vaddr + get_vm_area_size(vm) - addr; 2120 if (n > count) 2121 n = count; 2122 if (!(vm->flags & VM_IOREMAP)) 2123 aligned_vread(buf, addr, n); 2124 else /* IOREMAP area is treated as memory hole */ 2125 memset(buf, 0, n); 2126 buf += n; 2127 addr += n; 2128 count -= n; 2129 } 2130 finished: 2131 spin_unlock(&vmap_area_lock); 2132 2133 if (buf == buf_start) 2134 return 0; 2135 /* zero-fill memory holes */ 2136 if (buf != buf_start + buflen) 2137 memset(buf, 0, buflen - (buf - buf_start)); 2138 2139 return buflen; 2140 } 2141 2142 /** 2143 * vwrite() - write vmalloc area in a safe way. 2144 * @buf: buffer for source data 2145 * @addr: vm address. 2146 * @count: number of bytes to be read. 2147 * 2148 * Returns # of bytes which addr and buf should be incresed. 2149 * (same number to @count). 2150 * If [addr...addr+count) doesn't includes any intersect with valid 2151 * vmalloc area, returns 0. 2152 * 2153 * This function checks that addr is a valid vmalloc'ed area, and 2154 * copy data from a buffer to the given addr. If specified range of 2155 * [addr...addr+count) includes some valid address, data is copied from 2156 * proper area of @buf. If there are memory holes, no copy to hole. 2157 * IOREMAP area is treated as memory hole and no copy is done. 2158 * 2159 * If [addr...addr+count) doesn't includes any intersects with alive 2160 * vm_struct area, returns 0. @buf should be kernel's buffer. 2161 * 2162 * Note: In usual ops, vwrite() is never necessary because the caller 2163 * should know vmalloc() area is valid and can use memcpy(). 2164 * This is for routines which have to access vmalloc area without 2165 * any informaion, as /dev/kmem. 2166 */ 2167 2168 long vwrite(char *buf, char *addr, unsigned long count) 2169 { 2170 struct vmap_area *va; 2171 struct vm_struct *vm; 2172 char *vaddr; 2173 unsigned long n, buflen; 2174 int copied = 0; 2175 2176 /* Don't allow overflow */ 2177 if ((unsigned long) addr + count < count) 2178 count = -(unsigned long) addr; 2179 buflen = count; 2180 2181 spin_lock(&vmap_area_lock); 2182 list_for_each_entry(va, &vmap_area_list, list) { 2183 if (!count) 2184 break; 2185 2186 if (!(va->flags & VM_VM_AREA)) 2187 continue; 2188 2189 vm = va->vm; 2190 vaddr = (char *) vm->addr; 2191 if (addr >= vaddr + get_vm_area_size(vm)) 2192 continue; 2193 while (addr < vaddr) { 2194 if (count == 0) 2195 goto finished; 2196 buf++; 2197 addr++; 2198 count--; 2199 } 2200 n = vaddr + get_vm_area_size(vm) - addr; 2201 if (n > count) 2202 n = count; 2203 if (!(vm->flags & VM_IOREMAP)) { 2204 aligned_vwrite(buf, addr, n); 2205 copied++; 2206 } 2207 buf += n; 2208 addr += n; 2209 count -= n; 2210 } 2211 finished: 2212 spin_unlock(&vmap_area_lock); 2213 if (!copied) 2214 return 0; 2215 return buflen; 2216 } 2217 2218 /** 2219 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2220 * @vma: vma to cover 2221 * @uaddr: target user address to start at 2222 * @kaddr: virtual address of vmalloc kernel memory 2223 * @size: size of map area 2224 * 2225 * Returns: 0 for success, -Exxx on failure 2226 * 2227 * This function checks that @kaddr is a valid vmalloc'ed area, 2228 * and that it is big enough to cover the range starting at 2229 * @uaddr in @vma. Will return failure if that criteria isn't 2230 * met. 2231 * 2232 * Similar to remap_pfn_range() (see mm/memory.c) 2233 */ 2234 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2235 void *kaddr, unsigned long size) 2236 { 2237 struct vm_struct *area; 2238 2239 size = PAGE_ALIGN(size); 2240 2241 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2242 return -EINVAL; 2243 2244 area = find_vm_area(kaddr); 2245 if (!area) 2246 return -EINVAL; 2247 2248 if (!(area->flags & VM_USERMAP)) 2249 return -EINVAL; 2250 2251 if (kaddr + size > area->addr + area->size) 2252 return -EINVAL; 2253 2254 do { 2255 struct page *page = vmalloc_to_page(kaddr); 2256 int ret; 2257 2258 ret = vm_insert_page(vma, uaddr, page); 2259 if (ret) 2260 return ret; 2261 2262 uaddr += PAGE_SIZE; 2263 kaddr += PAGE_SIZE; 2264 size -= PAGE_SIZE; 2265 } while (size > 0); 2266 2267 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2268 2269 return 0; 2270 } 2271 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2272 2273 /** 2274 * remap_vmalloc_range - map vmalloc pages to userspace 2275 * @vma: vma to cover (map full range of vma) 2276 * @addr: vmalloc memory 2277 * @pgoff: number of pages into addr before first page to map 2278 * 2279 * Returns: 0 for success, -Exxx on failure 2280 * 2281 * This function checks that addr is a valid vmalloc'ed area, and 2282 * that it is big enough to cover the vma. Will return failure if 2283 * that criteria isn't met. 2284 * 2285 * Similar to remap_pfn_range() (see mm/memory.c) 2286 */ 2287 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2288 unsigned long pgoff) 2289 { 2290 return remap_vmalloc_range_partial(vma, vma->vm_start, 2291 addr + (pgoff << PAGE_SHIFT), 2292 vma->vm_end - vma->vm_start); 2293 } 2294 EXPORT_SYMBOL(remap_vmalloc_range); 2295 2296 /* 2297 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2298 * have one. 2299 */ 2300 void __weak vmalloc_sync_all(void) 2301 { 2302 } 2303 2304 2305 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2306 { 2307 pte_t ***p = data; 2308 2309 if (p) { 2310 *(*p) = pte; 2311 (*p)++; 2312 } 2313 return 0; 2314 } 2315 2316 /** 2317 * alloc_vm_area - allocate a range of kernel address space 2318 * @size: size of the area 2319 * @ptes: returns the PTEs for the address space 2320 * 2321 * Returns: NULL on failure, vm_struct on success 2322 * 2323 * This function reserves a range of kernel address space, and 2324 * allocates pagetables to map that range. No actual mappings 2325 * are created. 2326 * 2327 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2328 * allocated for the VM area are returned. 2329 */ 2330 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2331 { 2332 struct vm_struct *area; 2333 2334 area = get_vm_area_caller(size, VM_IOREMAP, 2335 __builtin_return_address(0)); 2336 if (area == NULL) 2337 return NULL; 2338 2339 /* 2340 * This ensures that page tables are constructed for this region 2341 * of kernel virtual address space and mapped into init_mm. 2342 */ 2343 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2344 size, f, ptes ? &ptes : NULL)) { 2345 free_vm_area(area); 2346 return NULL; 2347 } 2348 2349 return area; 2350 } 2351 EXPORT_SYMBOL_GPL(alloc_vm_area); 2352 2353 void free_vm_area(struct vm_struct *area) 2354 { 2355 struct vm_struct *ret; 2356 ret = remove_vm_area(area->addr); 2357 BUG_ON(ret != area); 2358 kfree(area); 2359 } 2360 EXPORT_SYMBOL_GPL(free_vm_area); 2361 2362 #ifdef CONFIG_SMP 2363 static struct vmap_area *node_to_va(struct rb_node *n) 2364 { 2365 return rb_entry_safe(n, struct vmap_area, rb_node); 2366 } 2367 2368 /** 2369 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2370 * @end: target address 2371 * @pnext: out arg for the next vmap_area 2372 * @pprev: out arg for the previous vmap_area 2373 * 2374 * Returns: %true if either or both of next and prev are found, 2375 * %false if no vmap_area exists 2376 * 2377 * Find vmap_areas end addresses of which enclose @end. ie. if not 2378 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2379 */ 2380 static bool pvm_find_next_prev(unsigned long end, 2381 struct vmap_area **pnext, 2382 struct vmap_area **pprev) 2383 { 2384 struct rb_node *n = vmap_area_root.rb_node; 2385 struct vmap_area *va = NULL; 2386 2387 while (n) { 2388 va = rb_entry(n, struct vmap_area, rb_node); 2389 if (end < va->va_end) 2390 n = n->rb_left; 2391 else if (end > va->va_end) 2392 n = n->rb_right; 2393 else 2394 break; 2395 } 2396 2397 if (!va) 2398 return false; 2399 2400 if (va->va_end > end) { 2401 *pnext = va; 2402 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2403 } else { 2404 *pprev = va; 2405 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2406 } 2407 return true; 2408 } 2409 2410 /** 2411 * pvm_determine_end - find the highest aligned address between two vmap_areas 2412 * @pnext: in/out arg for the next vmap_area 2413 * @pprev: in/out arg for the previous vmap_area 2414 * @align: alignment 2415 * 2416 * Returns: determined end address 2417 * 2418 * Find the highest aligned address between *@pnext and *@pprev below 2419 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2420 * down address is between the end addresses of the two vmap_areas. 2421 * 2422 * Please note that the address returned by this function may fall 2423 * inside *@pnext vmap_area. The caller is responsible for checking 2424 * that. 2425 */ 2426 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2427 struct vmap_area **pprev, 2428 unsigned long align) 2429 { 2430 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2431 unsigned long addr; 2432 2433 if (*pnext) 2434 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2435 else 2436 addr = vmalloc_end; 2437 2438 while (*pprev && (*pprev)->va_end > addr) { 2439 *pnext = *pprev; 2440 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2441 } 2442 2443 return addr; 2444 } 2445 2446 /** 2447 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2448 * @offsets: array containing offset of each area 2449 * @sizes: array containing size of each area 2450 * @nr_vms: the number of areas to allocate 2451 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2452 * 2453 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2454 * vm_structs on success, %NULL on failure 2455 * 2456 * Percpu allocator wants to use congruent vm areas so that it can 2457 * maintain the offsets among percpu areas. This function allocates 2458 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2459 * be scattered pretty far, distance between two areas easily going up 2460 * to gigabytes. To avoid interacting with regular vmallocs, these 2461 * areas are allocated from top. 2462 * 2463 * Despite its complicated look, this allocator is rather simple. It 2464 * does everything top-down and scans areas from the end looking for 2465 * matching slot. While scanning, if any of the areas overlaps with 2466 * existing vmap_area, the base address is pulled down to fit the 2467 * area. Scanning is repeated till all the areas fit and then all 2468 * necessary data structures are inserted and the result is returned. 2469 */ 2470 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2471 const size_t *sizes, int nr_vms, 2472 size_t align) 2473 { 2474 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2475 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2476 struct vmap_area **vas, *prev, *next; 2477 struct vm_struct **vms; 2478 int area, area2, last_area, term_area; 2479 unsigned long base, start, end, last_end; 2480 bool purged = false; 2481 2482 /* verify parameters and allocate data structures */ 2483 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2484 for (last_area = 0, area = 0; area < nr_vms; area++) { 2485 start = offsets[area]; 2486 end = start + sizes[area]; 2487 2488 /* is everything aligned properly? */ 2489 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2490 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2491 2492 /* detect the area with the highest address */ 2493 if (start > offsets[last_area]) 2494 last_area = area; 2495 2496 for (area2 = area + 1; area2 < nr_vms; area2++) { 2497 unsigned long start2 = offsets[area2]; 2498 unsigned long end2 = start2 + sizes[area2]; 2499 2500 BUG_ON(start2 < end && start < end2); 2501 } 2502 } 2503 last_end = offsets[last_area] + sizes[last_area]; 2504 2505 if (vmalloc_end - vmalloc_start < last_end) { 2506 WARN_ON(true); 2507 return NULL; 2508 } 2509 2510 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2511 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2512 if (!vas || !vms) 2513 goto err_free2; 2514 2515 for (area = 0; area < nr_vms; area++) { 2516 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2517 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2518 if (!vas[area] || !vms[area]) 2519 goto err_free; 2520 } 2521 retry: 2522 spin_lock(&vmap_area_lock); 2523 2524 /* start scanning - we scan from the top, begin with the last area */ 2525 area = term_area = last_area; 2526 start = offsets[area]; 2527 end = start + sizes[area]; 2528 2529 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2530 base = vmalloc_end - last_end; 2531 goto found; 2532 } 2533 base = pvm_determine_end(&next, &prev, align) - end; 2534 2535 while (true) { 2536 BUG_ON(next && next->va_end <= base + end); 2537 BUG_ON(prev && prev->va_end > base + end); 2538 2539 /* 2540 * base might have underflowed, add last_end before 2541 * comparing. 2542 */ 2543 if (base + last_end < vmalloc_start + last_end) { 2544 spin_unlock(&vmap_area_lock); 2545 if (!purged) { 2546 purge_vmap_area_lazy(); 2547 purged = true; 2548 goto retry; 2549 } 2550 goto err_free; 2551 } 2552 2553 /* 2554 * If next overlaps, move base downwards so that it's 2555 * right below next and then recheck. 2556 */ 2557 if (next && next->va_start < base + end) { 2558 base = pvm_determine_end(&next, &prev, align) - end; 2559 term_area = area; 2560 continue; 2561 } 2562 2563 /* 2564 * If prev overlaps, shift down next and prev and move 2565 * base so that it's right below new next and then 2566 * recheck. 2567 */ 2568 if (prev && prev->va_end > base + start) { 2569 next = prev; 2570 prev = node_to_va(rb_prev(&next->rb_node)); 2571 base = pvm_determine_end(&next, &prev, align) - end; 2572 term_area = area; 2573 continue; 2574 } 2575 2576 /* 2577 * This area fits, move on to the previous one. If 2578 * the previous one is the terminal one, we're done. 2579 */ 2580 area = (area + nr_vms - 1) % nr_vms; 2581 if (area == term_area) 2582 break; 2583 start = offsets[area]; 2584 end = start + sizes[area]; 2585 pvm_find_next_prev(base + end, &next, &prev); 2586 } 2587 found: 2588 /* we've found a fitting base, insert all va's */ 2589 for (area = 0; area < nr_vms; area++) { 2590 struct vmap_area *va = vas[area]; 2591 2592 va->va_start = base + offsets[area]; 2593 va->va_end = va->va_start + sizes[area]; 2594 __insert_vmap_area(va); 2595 } 2596 2597 vmap_area_pcpu_hole = base + offsets[last_area]; 2598 2599 spin_unlock(&vmap_area_lock); 2600 2601 /* insert all vm's */ 2602 for (area = 0; area < nr_vms; area++) 2603 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2604 pcpu_get_vm_areas); 2605 2606 kfree(vas); 2607 return vms; 2608 2609 err_free: 2610 for (area = 0; area < nr_vms; area++) { 2611 kfree(vas[area]); 2612 kfree(vms[area]); 2613 } 2614 err_free2: 2615 kfree(vas); 2616 kfree(vms); 2617 return NULL; 2618 } 2619 2620 /** 2621 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2622 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2623 * @nr_vms: the number of allocated areas 2624 * 2625 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2626 */ 2627 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2628 { 2629 int i; 2630 2631 for (i = 0; i < nr_vms; i++) 2632 free_vm_area(vms[i]); 2633 kfree(vms); 2634 } 2635 #endif /* CONFIG_SMP */ 2636 2637 #ifdef CONFIG_PROC_FS 2638 static void *s_start(struct seq_file *m, loff_t *pos) 2639 __acquires(&vmap_area_lock) 2640 { 2641 spin_lock(&vmap_area_lock); 2642 return seq_list_start(&vmap_area_list, *pos); 2643 } 2644 2645 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2646 { 2647 return seq_list_next(p, &vmap_area_list, pos); 2648 } 2649 2650 static void s_stop(struct seq_file *m, void *p) 2651 __releases(&vmap_area_lock) 2652 { 2653 spin_unlock(&vmap_area_lock); 2654 } 2655 2656 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2657 { 2658 if (IS_ENABLED(CONFIG_NUMA)) { 2659 unsigned int nr, *counters = m->private; 2660 2661 if (!counters) 2662 return; 2663 2664 if (v->flags & VM_UNINITIALIZED) 2665 return; 2666 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2667 smp_rmb(); 2668 2669 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2670 2671 for (nr = 0; nr < v->nr_pages; nr++) 2672 counters[page_to_nid(v->pages[nr])]++; 2673 2674 for_each_node_state(nr, N_HIGH_MEMORY) 2675 if (counters[nr]) 2676 seq_printf(m, " N%u=%u", nr, counters[nr]); 2677 } 2678 } 2679 2680 static int s_show(struct seq_file *m, void *p) 2681 { 2682 struct vmap_area *va; 2683 struct vm_struct *v; 2684 2685 va = list_entry(p, struct vmap_area, list); 2686 2687 /* 2688 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2689 * behalf of vmap area is being tear down or vm_map_ram allocation. 2690 */ 2691 if (!(va->flags & VM_VM_AREA)) { 2692 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 2693 (void *)va->va_start, (void *)va->va_end, 2694 va->va_end - va->va_start, 2695 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 2696 2697 return 0; 2698 } 2699 2700 v = va->vm; 2701 2702 seq_printf(m, "0x%pK-0x%pK %7ld", 2703 v->addr, v->addr + v->size, v->size); 2704 2705 if (v->caller) 2706 seq_printf(m, " %pS", v->caller); 2707 2708 if (v->nr_pages) 2709 seq_printf(m, " pages=%d", v->nr_pages); 2710 2711 if (v->phys_addr) 2712 seq_printf(m, " phys=%pa", &v->phys_addr); 2713 2714 if (v->flags & VM_IOREMAP) 2715 seq_puts(m, " ioremap"); 2716 2717 if (v->flags & VM_ALLOC) 2718 seq_puts(m, " vmalloc"); 2719 2720 if (v->flags & VM_MAP) 2721 seq_puts(m, " vmap"); 2722 2723 if (v->flags & VM_USERMAP) 2724 seq_puts(m, " user"); 2725 2726 if (is_vmalloc_addr(v->pages)) 2727 seq_puts(m, " vpages"); 2728 2729 show_numa_info(m, v); 2730 seq_putc(m, '\n'); 2731 return 0; 2732 } 2733 2734 static const struct seq_operations vmalloc_op = { 2735 .start = s_start, 2736 .next = s_next, 2737 .stop = s_stop, 2738 .show = s_show, 2739 }; 2740 2741 static int __init proc_vmalloc_init(void) 2742 { 2743 if (IS_ENABLED(CONFIG_NUMA)) 2744 proc_create_seq_private("vmallocinfo", 0400, NULL, 2745 &vmalloc_op, 2746 nr_node_ids * sizeof(unsigned int), NULL); 2747 else 2748 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 2749 return 0; 2750 } 2751 module_init(proc_vmalloc_init); 2752 2753 #endif 2754 2755