xref: /openbmc/linux/mm/vmalloc.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlbflush.h>
35 #include <asm/shmparam.h>
36 
37 struct vfree_deferred {
38 	struct llist_head list;
39 	struct work_struct wq;
40 };
41 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
42 
43 static void __vunmap(const void *, int);
44 
45 static void free_work(struct work_struct *w)
46 {
47 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
48 	struct llist_node *llnode = llist_del_all(&p->list);
49 	while (llnode) {
50 		void *p = llnode;
51 		llnode = llist_next(llnode);
52 		__vunmap(p, 1);
53 	}
54 }
55 
56 /*** Page table manipulation functions ***/
57 
58 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
59 {
60 	pte_t *pte;
61 
62 	pte = pte_offset_kernel(pmd, addr);
63 	do {
64 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
65 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
66 	} while (pte++, addr += PAGE_SIZE, addr != end);
67 }
68 
69 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
70 {
71 	pmd_t *pmd;
72 	unsigned long next;
73 
74 	pmd = pmd_offset(pud, addr);
75 	do {
76 		next = pmd_addr_end(addr, end);
77 		if (pmd_none_or_clear_bad(pmd))
78 			continue;
79 		vunmap_pte_range(pmd, addr, next);
80 	} while (pmd++, addr = next, addr != end);
81 }
82 
83 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
84 {
85 	pud_t *pud;
86 	unsigned long next;
87 
88 	pud = pud_offset(pgd, addr);
89 	do {
90 		next = pud_addr_end(addr, end);
91 		if (pud_none_or_clear_bad(pud))
92 			continue;
93 		vunmap_pmd_range(pud, addr, next);
94 	} while (pud++, addr = next, addr != end);
95 }
96 
97 static void vunmap_page_range(unsigned long addr, unsigned long end)
98 {
99 	pgd_t *pgd;
100 	unsigned long next;
101 
102 	BUG_ON(addr >= end);
103 	pgd = pgd_offset_k(addr);
104 	do {
105 		next = pgd_addr_end(addr, end);
106 		if (pgd_none_or_clear_bad(pgd))
107 			continue;
108 		vunmap_pud_range(pgd, addr, next);
109 	} while (pgd++, addr = next, addr != end);
110 }
111 
112 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
113 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
114 {
115 	pte_t *pte;
116 
117 	/*
118 	 * nr is a running index into the array which helps higher level
119 	 * callers keep track of where we're up to.
120 	 */
121 
122 	pte = pte_alloc_kernel(pmd, addr);
123 	if (!pte)
124 		return -ENOMEM;
125 	do {
126 		struct page *page = pages[*nr];
127 
128 		if (WARN_ON(!pte_none(*pte)))
129 			return -EBUSY;
130 		if (WARN_ON(!page))
131 			return -ENOMEM;
132 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
133 		(*nr)++;
134 	} while (pte++, addr += PAGE_SIZE, addr != end);
135 	return 0;
136 }
137 
138 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
139 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
140 {
141 	pmd_t *pmd;
142 	unsigned long next;
143 
144 	pmd = pmd_alloc(&init_mm, pud, addr);
145 	if (!pmd)
146 		return -ENOMEM;
147 	do {
148 		next = pmd_addr_end(addr, end);
149 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
150 			return -ENOMEM;
151 	} while (pmd++, addr = next, addr != end);
152 	return 0;
153 }
154 
155 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
156 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
157 {
158 	pud_t *pud;
159 	unsigned long next;
160 
161 	pud = pud_alloc(&init_mm, pgd, addr);
162 	if (!pud)
163 		return -ENOMEM;
164 	do {
165 		next = pud_addr_end(addr, end);
166 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
167 			return -ENOMEM;
168 	} while (pud++, addr = next, addr != end);
169 	return 0;
170 }
171 
172 /*
173  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
174  * will have pfns corresponding to the "pages" array.
175  *
176  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
177  */
178 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
179 				   pgprot_t prot, struct page **pages)
180 {
181 	pgd_t *pgd;
182 	unsigned long next;
183 	unsigned long addr = start;
184 	int err = 0;
185 	int nr = 0;
186 
187 	BUG_ON(addr >= end);
188 	pgd = pgd_offset_k(addr);
189 	do {
190 		next = pgd_addr_end(addr, end);
191 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
192 		if (err)
193 			return err;
194 	} while (pgd++, addr = next, addr != end);
195 
196 	return nr;
197 }
198 
199 static int vmap_page_range(unsigned long start, unsigned long end,
200 			   pgprot_t prot, struct page **pages)
201 {
202 	int ret;
203 
204 	ret = vmap_page_range_noflush(start, end, prot, pages);
205 	flush_cache_vmap(start, end);
206 	return ret;
207 }
208 
209 int is_vmalloc_or_module_addr(const void *x)
210 {
211 	/*
212 	 * ARM, x86-64 and sparc64 put modules in a special place,
213 	 * and fall back on vmalloc() if that fails. Others
214 	 * just put it in the vmalloc space.
215 	 */
216 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
217 	unsigned long addr = (unsigned long)x;
218 	if (addr >= MODULES_VADDR && addr < MODULES_END)
219 		return 1;
220 #endif
221 	return is_vmalloc_addr(x);
222 }
223 
224 /*
225  * Walk a vmap address to the struct page it maps.
226  */
227 struct page *vmalloc_to_page(const void *vmalloc_addr)
228 {
229 	unsigned long addr = (unsigned long) vmalloc_addr;
230 	struct page *page = NULL;
231 	pgd_t *pgd = pgd_offset_k(addr);
232 
233 	/*
234 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
235 	 * architectures that do not vmalloc module space
236 	 */
237 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
238 
239 	if (!pgd_none(*pgd)) {
240 		pud_t *pud = pud_offset(pgd, addr);
241 		if (!pud_none(*pud)) {
242 			pmd_t *pmd = pmd_offset(pud, addr);
243 			if (!pmd_none(*pmd)) {
244 				pte_t *ptep, pte;
245 
246 				ptep = pte_offset_map(pmd, addr);
247 				pte = *ptep;
248 				if (pte_present(pte))
249 					page = pte_page(pte);
250 				pte_unmap(ptep);
251 			}
252 		}
253 	}
254 	return page;
255 }
256 EXPORT_SYMBOL(vmalloc_to_page);
257 
258 /*
259  * Map a vmalloc()-space virtual address to the physical page frame number.
260  */
261 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
262 {
263 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
264 }
265 EXPORT_SYMBOL(vmalloc_to_pfn);
266 
267 
268 /*** Global kva allocator ***/
269 
270 #define VM_LAZY_FREE	0x01
271 #define VM_LAZY_FREEING	0x02
272 #define VM_VM_AREA	0x04
273 
274 static DEFINE_SPINLOCK(vmap_area_lock);
275 /* Export for kexec only */
276 LIST_HEAD(vmap_area_list);
277 static struct rb_root vmap_area_root = RB_ROOT;
278 
279 /* The vmap cache globals are protected by vmap_area_lock */
280 static struct rb_node *free_vmap_cache;
281 static unsigned long cached_hole_size;
282 static unsigned long cached_vstart;
283 static unsigned long cached_align;
284 
285 static unsigned long vmap_area_pcpu_hole;
286 
287 static struct vmap_area *__find_vmap_area(unsigned long addr)
288 {
289 	struct rb_node *n = vmap_area_root.rb_node;
290 
291 	while (n) {
292 		struct vmap_area *va;
293 
294 		va = rb_entry(n, struct vmap_area, rb_node);
295 		if (addr < va->va_start)
296 			n = n->rb_left;
297 		else if (addr >= va->va_end)
298 			n = n->rb_right;
299 		else
300 			return va;
301 	}
302 
303 	return NULL;
304 }
305 
306 static void __insert_vmap_area(struct vmap_area *va)
307 {
308 	struct rb_node **p = &vmap_area_root.rb_node;
309 	struct rb_node *parent = NULL;
310 	struct rb_node *tmp;
311 
312 	while (*p) {
313 		struct vmap_area *tmp_va;
314 
315 		parent = *p;
316 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
317 		if (va->va_start < tmp_va->va_end)
318 			p = &(*p)->rb_left;
319 		else if (va->va_end > tmp_va->va_start)
320 			p = &(*p)->rb_right;
321 		else
322 			BUG();
323 	}
324 
325 	rb_link_node(&va->rb_node, parent, p);
326 	rb_insert_color(&va->rb_node, &vmap_area_root);
327 
328 	/* address-sort this list */
329 	tmp = rb_prev(&va->rb_node);
330 	if (tmp) {
331 		struct vmap_area *prev;
332 		prev = rb_entry(tmp, struct vmap_area, rb_node);
333 		list_add_rcu(&va->list, &prev->list);
334 	} else
335 		list_add_rcu(&va->list, &vmap_area_list);
336 }
337 
338 static void purge_vmap_area_lazy(void);
339 
340 /*
341  * Allocate a region of KVA of the specified size and alignment, within the
342  * vstart and vend.
343  */
344 static struct vmap_area *alloc_vmap_area(unsigned long size,
345 				unsigned long align,
346 				unsigned long vstart, unsigned long vend,
347 				int node, gfp_t gfp_mask)
348 {
349 	struct vmap_area *va;
350 	struct rb_node *n;
351 	unsigned long addr;
352 	int purged = 0;
353 	struct vmap_area *first;
354 
355 	BUG_ON(!size);
356 	BUG_ON(size & ~PAGE_MASK);
357 	BUG_ON(!is_power_of_2(align));
358 
359 	va = kmalloc_node(sizeof(struct vmap_area),
360 			gfp_mask & GFP_RECLAIM_MASK, node);
361 	if (unlikely(!va))
362 		return ERR_PTR(-ENOMEM);
363 
364 	/*
365 	 * Only scan the relevant parts containing pointers to other objects
366 	 * to avoid false negatives.
367 	 */
368 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
369 
370 retry:
371 	spin_lock(&vmap_area_lock);
372 	/*
373 	 * Invalidate cache if we have more permissive parameters.
374 	 * cached_hole_size notes the largest hole noticed _below_
375 	 * the vmap_area cached in free_vmap_cache: if size fits
376 	 * into that hole, we want to scan from vstart to reuse
377 	 * the hole instead of allocating above free_vmap_cache.
378 	 * Note that __free_vmap_area may update free_vmap_cache
379 	 * without updating cached_hole_size or cached_align.
380 	 */
381 	if (!free_vmap_cache ||
382 			size < cached_hole_size ||
383 			vstart < cached_vstart ||
384 			align < cached_align) {
385 nocache:
386 		cached_hole_size = 0;
387 		free_vmap_cache = NULL;
388 	}
389 	/* record if we encounter less permissive parameters */
390 	cached_vstart = vstart;
391 	cached_align = align;
392 
393 	/* find starting point for our search */
394 	if (free_vmap_cache) {
395 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
396 		addr = ALIGN(first->va_end, align);
397 		if (addr < vstart)
398 			goto nocache;
399 		if (addr + size < addr)
400 			goto overflow;
401 
402 	} else {
403 		addr = ALIGN(vstart, align);
404 		if (addr + size < addr)
405 			goto overflow;
406 
407 		n = vmap_area_root.rb_node;
408 		first = NULL;
409 
410 		while (n) {
411 			struct vmap_area *tmp;
412 			tmp = rb_entry(n, struct vmap_area, rb_node);
413 			if (tmp->va_end >= addr) {
414 				first = tmp;
415 				if (tmp->va_start <= addr)
416 					break;
417 				n = n->rb_left;
418 			} else
419 				n = n->rb_right;
420 		}
421 
422 		if (!first)
423 			goto found;
424 	}
425 
426 	/* from the starting point, walk areas until a suitable hole is found */
427 	while (addr + size > first->va_start && addr + size <= vend) {
428 		if (addr + cached_hole_size < first->va_start)
429 			cached_hole_size = first->va_start - addr;
430 		addr = ALIGN(first->va_end, align);
431 		if (addr + size < addr)
432 			goto overflow;
433 
434 		if (list_is_last(&first->list, &vmap_area_list))
435 			goto found;
436 
437 		first = list_entry(first->list.next,
438 				struct vmap_area, list);
439 	}
440 
441 found:
442 	if (addr + size > vend)
443 		goto overflow;
444 
445 	va->va_start = addr;
446 	va->va_end = addr + size;
447 	va->flags = 0;
448 	__insert_vmap_area(va);
449 	free_vmap_cache = &va->rb_node;
450 	spin_unlock(&vmap_area_lock);
451 
452 	BUG_ON(va->va_start & (align-1));
453 	BUG_ON(va->va_start < vstart);
454 	BUG_ON(va->va_end > vend);
455 
456 	return va;
457 
458 overflow:
459 	spin_unlock(&vmap_area_lock);
460 	if (!purged) {
461 		purge_vmap_area_lazy();
462 		purged = 1;
463 		goto retry;
464 	}
465 	if (printk_ratelimit())
466 		printk(KERN_WARNING
467 			"vmap allocation for size %lu failed: "
468 			"use vmalloc=<size> to increase size.\n", size);
469 	kfree(va);
470 	return ERR_PTR(-EBUSY);
471 }
472 
473 static void __free_vmap_area(struct vmap_area *va)
474 {
475 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
476 
477 	if (free_vmap_cache) {
478 		if (va->va_end < cached_vstart) {
479 			free_vmap_cache = NULL;
480 		} else {
481 			struct vmap_area *cache;
482 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
483 			if (va->va_start <= cache->va_start) {
484 				free_vmap_cache = rb_prev(&va->rb_node);
485 				/*
486 				 * We don't try to update cached_hole_size or
487 				 * cached_align, but it won't go very wrong.
488 				 */
489 			}
490 		}
491 	}
492 	rb_erase(&va->rb_node, &vmap_area_root);
493 	RB_CLEAR_NODE(&va->rb_node);
494 	list_del_rcu(&va->list);
495 
496 	/*
497 	 * Track the highest possible candidate for pcpu area
498 	 * allocation.  Areas outside of vmalloc area can be returned
499 	 * here too, consider only end addresses which fall inside
500 	 * vmalloc area proper.
501 	 */
502 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
503 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
504 
505 	kfree_rcu(va, rcu_head);
506 }
507 
508 /*
509  * Free a region of KVA allocated by alloc_vmap_area
510  */
511 static void free_vmap_area(struct vmap_area *va)
512 {
513 	spin_lock(&vmap_area_lock);
514 	__free_vmap_area(va);
515 	spin_unlock(&vmap_area_lock);
516 }
517 
518 /*
519  * Clear the pagetable entries of a given vmap_area
520  */
521 static void unmap_vmap_area(struct vmap_area *va)
522 {
523 	vunmap_page_range(va->va_start, va->va_end);
524 }
525 
526 static void vmap_debug_free_range(unsigned long start, unsigned long end)
527 {
528 	/*
529 	 * Unmap page tables and force a TLB flush immediately if
530 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
531 	 * bugs similarly to those in linear kernel virtual address
532 	 * space after a page has been freed.
533 	 *
534 	 * All the lazy freeing logic is still retained, in order to
535 	 * minimise intrusiveness of this debugging feature.
536 	 *
537 	 * This is going to be *slow* (linear kernel virtual address
538 	 * debugging doesn't do a broadcast TLB flush so it is a lot
539 	 * faster).
540 	 */
541 #ifdef CONFIG_DEBUG_PAGEALLOC
542 	vunmap_page_range(start, end);
543 	flush_tlb_kernel_range(start, end);
544 #endif
545 }
546 
547 /*
548  * lazy_max_pages is the maximum amount of virtual address space we gather up
549  * before attempting to purge with a TLB flush.
550  *
551  * There is a tradeoff here: a larger number will cover more kernel page tables
552  * and take slightly longer to purge, but it will linearly reduce the number of
553  * global TLB flushes that must be performed. It would seem natural to scale
554  * this number up linearly with the number of CPUs (because vmapping activity
555  * could also scale linearly with the number of CPUs), however it is likely
556  * that in practice, workloads might be constrained in other ways that mean
557  * vmap activity will not scale linearly with CPUs. Also, I want to be
558  * conservative and not introduce a big latency on huge systems, so go with
559  * a less aggressive log scale. It will still be an improvement over the old
560  * code, and it will be simple to change the scale factor if we find that it
561  * becomes a problem on bigger systems.
562  */
563 static unsigned long lazy_max_pages(void)
564 {
565 	unsigned int log;
566 
567 	log = fls(num_online_cpus());
568 
569 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
570 }
571 
572 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
573 
574 /* for per-CPU blocks */
575 static void purge_fragmented_blocks_allcpus(void);
576 
577 /*
578  * called before a call to iounmap() if the caller wants vm_area_struct's
579  * immediately freed.
580  */
581 void set_iounmap_nonlazy(void)
582 {
583 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
584 }
585 
586 /*
587  * Purges all lazily-freed vmap areas.
588  *
589  * If sync is 0 then don't purge if there is already a purge in progress.
590  * If force_flush is 1, then flush kernel TLBs between *start and *end even
591  * if we found no lazy vmap areas to unmap (callers can use this to optimise
592  * their own TLB flushing).
593  * Returns with *start = min(*start, lowest purged address)
594  *              *end = max(*end, highest purged address)
595  */
596 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
597 					int sync, int force_flush)
598 {
599 	static DEFINE_SPINLOCK(purge_lock);
600 	LIST_HEAD(valist);
601 	struct vmap_area *va;
602 	struct vmap_area *n_va;
603 	int nr = 0;
604 
605 	/*
606 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
607 	 * should not expect such behaviour. This just simplifies locking for
608 	 * the case that isn't actually used at the moment anyway.
609 	 */
610 	if (!sync && !force_flush) {
611 		if (!spin_trylock(&purge_lock))
612 			return;
613 	} else
614 		spin_lock(&purge_lock);
615 
616 	if (sync)
617 		purge_fragmented_blocks_allcpus();
618 
619 	rcu_read_lock();
620 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
621 		if (va->flags & VM_LAZY_FREE) {
622 			if (va->va_start < *start)
623 				*start = va->va_start;
624 			if (va->va_end > *end)
625 				*end = va->va_end;
626 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
627 			list_add_tail(&va->purge_list, &valist);
628 			va->flags |= VM_LAZY_FREEING;
629 			va->flags &= ~VM_LAZY_FREE;
630 		}
631 	}
632 	rcu_read_unlock();
633 
634 	if (nr)
635 		atomic_sub(nr, &vmap_lazy_nr);
636 
637 	if (nr || force_flush)
638 		flush_tlb_kernel_range(*start, *end);
639 
640 	if (nr) {
641 		spin_lock(&vmap_area_lock);
642 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
643 			__free_vmap_area(va);
644 		spin_unlock(&vmap_area_lock);
645 	}
646 	spin_unlock(&purge_lock);
647 }
648 
649 /*
650  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
651  * is already purging.
652  */
653 static void try_purge_vmap_area_lazy(void)
654 {
655 	unsigned long start = ULONG_MAX, end = 0;
656 
657 	__purge_vmap_area_lazy(&start, &end, 0, 0);
658 }
659 
660 /*
661  * Kick off a purge of the outstanding lazy areas.
662  */
663 static void purge_vmap_area_lazy(void)
664 {
665 	unsigned long start = ULONG_MAX, end = 0;
666 
667 	__purge_vmap_area_lazy(&start, &end, 1, 0);
668 }
669 
670 /*
671  * Free a vmap area, caller ensuring that the area has been unmapped
672  * and flush_cache_vunmap had been called for the correct range
673  * previously.
674  */
675 static void free_vmap_area_noflush(struct vmap_area *va)
676 {
677 	va->flags |= VM_LAZY_FREE;
678 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
679 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
680 		try_purge_vmap_area_lazy();
681 }
682 
683 /*
684  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
685  * called for the correct range previously.
686  */
687 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
688 {
689 	unmap_vmap_area(va);
690 	free_vmap_area_noflush(va);
691 }
692 
693 /*
694  * Free and unmap a vmap area
695  */
696 static void free_unmap_vmap_area(struct vmap_area *va)
697 {
698 	flush_cache_vunmap(va->va_start, va->va_end);
699 	free_unmap_vmap_area_noflush(va);
700 }
701 
702 static struct vmap_area *find_vmap_area(unsigned long addr)
703 {
704 	struct vmap_area *va;
705 
706 	spin_lock(&vmap_area_lock);
707 	va = __find_vmap_area(addr);
708 	spin_unlock(&vmap_area_lock);
709 
710 	return va;
711 }
712 
713 static void free_unmap_vmap_area_addr(unsigned long addr)
714 {
715 	struct vmap_area *va;
716 
717 	va = find_vmap_area(addr);
718 	BUG_ON(!va);
719 	free_unmap_vmap_area(va);
720 }
721 
722 
723 /*** Per cpu kva allocator ***/
724 
725 /*
726  * vmap space is limited especially on 32 bit architectures. Ensure there is
727  * room for at least 16 percpu vmap blocks per CPU.
728  */
729 /*
730  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
731  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
732  * instead (we just need a rough idea)
733  */
734 #if BITS_PER_LONG == 32
735 #define VMALLOC_SPACE		(128UL*1024*1024)
736 #else
737 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
738 #endif
739 
740 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
741 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
742 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
743 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
744 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
745 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
746 #define VMAP_BBMAP_BITS		\
747 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
748 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
749 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
750 
751 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
752 
753 static bool vmap_initialized __read_mostly = false;
754 
755 struct vmap_block_queue {
756 	spinlock_t lock;
757 	struct list_head free;
758 };
759 
760 struct vmap_block {
761 	spinlock_t lock;
762 	struct vmap_area *va;
763 	unsigned long free, dirty;
764 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
765 	struct list_head free_list;
766 	struct rcu_head rcu_head;
767 	struct list_head purge;
768 };
769 
770 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
771 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
772 
773 /*
774  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
775  * in the free path. Could get rid of this if we change the API to return a
776  * "cookie" from alloc, to be passed to free. But no big deal yet.
777  */
778 static DEFINE_SPINLOCK(vmap_block_tree_lock);
779 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
780 
781 /*
782  * We should probably have a fallback mechanism to allocate virtual memory
783  * out of partially filled vmap blocks. However vmap block sizing should be
784  * fairly reasonable according to the vmalloc size, so it shouldn't be a
785  * big problem.
786  */
787 
788 static unsigned long addr_to_vb_idx(unsigned long addr)
789 {
790 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
791 	addr /= VMAP_BLOCK_SIZE;
792 	return addr;
793 }
794 
795 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
796 {
797 	struct vmap_block_queue *vbq;
798 	struct vmap_block *vb;
799 	struct vmap_area *va;
800 	unsigned long vb_idx;
801 	int node, err;
802 
803 	node = numa_node_id();
804 
805 	vb = kmalloc_node(sizeof(struct vmap_block),
806 			gfp_mask & GFP_RECLAIM_MASK, node);
807 	if (unlikely(!vb))
808 		return ERR_PTR(-ENOMEM);
809 
810 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
811 					VMALLOC_START, VMALLOC_END,
812 					node, gfp_mask);
813 	if (IS_ERR(va)) {
814 		kfree(vb);
815 		return ERR_CAST(va);
816 	}
817 
818 	err = radix_tree_preload(gfp_mask);
819 	if (unlikely(err)) {
820 		kfree(vb);
821 		free_vmap_area(va);
822 		return ERR_PTR(err);
823 	}
824 
825 	spin_lock_init(&vb->lock);
826 	vb->va = va;
827 	vb->free = VMAP_BBMAP_BITS;
828 	vb->dirty = 0;
829 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
830 	INIT_LIST_HEAD(&vb->free_list);
831 
832 	vb_idx = addr_to_vb_idx(va->va_start);
833 	spin_lock(&vmap_block_tree_lock);
834 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
835 	spin_unlock(&vmap_block_tree_lock);
836 	BUG_ON(err);
837 	radix_tree_preload_end();
838 
839 	vbq = &get_cpu_var(vmap_block_queue);
840 	spin_lock(&vbq->lock);
841 	list_add_rcu(&vb->free_list, &vbq->free);
842 	spin_unlock(&vbq->lock);
843 	put_cpu_var(vmap_block_queue);
844 
845 	return vb;
846 }
847 
848 static void free_vmap_block(struct vmap_block *vb)
849 {
850 	struct vmap_block *tmp;
851 	unsigned long vb_idx;
852 
853 	vb_idx = addr_to_vb_idx(vb->va->va_start);
854 	spin_lock(&vmap_block_tree_lock);
855 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
856 	spin_unlock(&vmap_block_tree_lock);
857 	BUG_ON(tmp != vb);
858 
859 	free_vmap_area_noflush(vb->va);
860 	kfree_rcu(vb, rcu_head);
861 }
862 
863 static void purge_fragmented_blocks(int cpu)
864 {
865 	LIST_HEAD(purge);
866 	struct vmap_block *vb;
867 	struct vmap_block *n_vb;
868 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
869 
870 	rcu_read_lock();
871 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
872 
873 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
874 			continue;
875 
876 		spin_lock(&vb->lock);
877 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
878 			vb->free = 0; /* prevent further allocs after releasing lock */
879 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
880 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
881 			spin_lock(&vbq->lock);
882 			list_del_rcu(&vb->free_list);
883 			spin_unlock(&vbq->lock);
884 			spin_unlock(&vb->lock);
885 			list_add_tail(&vb->purge, &purge);
886 		} else
887 			spin_unlock(&vb->lock);
888 	}
889 	rcu_read_unlock();
890 
891 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
892 		list_del(&vb->purge);
893 		free_vmap_block(vb);
894 	}
895 }
896 
897 static void purge_fragmented_blocks_allcpus(void)
898 {
899 	int cpu;
900 
901 	for_each_possible_cpu(cpu)
902 		purge_fragmented_blocks(cpu);
903 }
904 
905 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
906 {
907 	struct vmap_block_queue *vbq;
908 	struct vmap_block *vb;
909 	unsigned long addr = 0;
910 	unsigned int order;
911 
912 	BUG_ON(size & ~PAGE_MASK);
913 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
914 	if (WARN_ON(size == 0)) {
915 		/*
916 		 * Allocating 0 bytes isn't what caller wants since
917 		 * get_order(0) returns funny result. Just warn and terminate
918 		 * early.
919 		 */
920 		return NULL;
921 	}
922 	order = get_order(size);
923 
924 again:
925 	rcu_read_lock();
926 	vbq = &get_cpu_var(vmap_block_queue);
927 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
928 		int i;
929 
930 		spin_lock(&vb->lock);
931 		if (vb->free < 1UL << order)
932 			goto next;
933 
934 		i = VMAP_BBMAP_BITS - vb->free;
935 		addr = vb->va->va_start + (i << PAGE_SHIFT);
936 		BUG_ON(addr_to_vb_idx(addr) !=
937 				addr_to_vb_idx(vb->va->va_start));
938 		vb->free -= 1UL << order;
939 		if (vb->free == 0) {
940 			spin_lock(&vbq->lock);
941 			list_del_rcu(&vb->free_list);
942 			spin_unlock(&vbq->lock);
943 		}
944 		spin_unlock(&vb->lock);
945 		break;
946 next:
947 		spin_unlock(&vb->lock);
948 	}
949 
950 	put_cpu_var(vmap_block_queue);
951 	rcu_read_unlock();
952 
953 	if (!addr) {
954 		vb = new_vmap_block(gfp_mask);
955 		if (IS_ERR(vb))
956 			return vb;
957 		goto again;
958 	}
959 
960 	return (void *)addr;
961 }
962 
963 static void vb_free(const void *addr, unsigned long size)
964 {
965 	unsigned long offset;
966 	unsigned long vb_idx;
967 	unsigned int order;
968 	struct vmap_block *vb;
969 
970 	BUG_ON(size & ~PAGE_MASK);
971 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
972 
973 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
974 
975 	order = get_order(size);
976 
977 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
978 
979 	vb_idx = addr_to_vb_idx((unsigned long)addr);
980 	rcu_read_lock();
981 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
982 	rcu_read_unlock();
983 	BUG_ON(!vb);
984 
985 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
986 
987 	spin_lock(&vb->lock);
988 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
989 
990 	vb->dirty += 1UL << order;
991 	if (vb->dirty == VMAP_BBMAP_BITS) {
992 		BUG_ON(vb->free);
993 		spin_unlock(&vb->lock);
994 		free_vmap_block(vb);
995 	} else
996 		spin_unlock(&vb->lock);
997 }
998 
999 /**
1000  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1001  *
1002  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1003  * to amortize TLB flushing overheads. What this means is that any page you
1004  * have now, may, in a former life, have been mapped into kernel virtual
1005  * address by the vmap layer and so there might be some CPUs with TLB entries
1006  * still referencing that page (additional to the regular 1:1 kernel mapping).
1007  *
1008  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1009  * be sure that none of the pages we have control over will have any aliases
1010  * from the vmap layer.
1011  */
1012 void vm_unmap_aliases(void)
1013 {
1014 	unsigned long start = ULONG_MAX, end = 0;
1015 	int cpu;
1016 	int flush = 0;
1017 
1018 	if (unlikely(!vmap_initialized))
1019 		return;
1020 
1021 	for_each_possible_cpu(cpu) {
1022 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1023 		struct vmap_block *vb;
1024 
1025 		rcu_read_lock();
1026 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1027 			int i, j;
1028 
1029 			spin_lock(&vb->lock);
1030 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1031 			if (i < VMAP_BBMAP_BITS) {
1032 				unsigned long s, e;
1033 
1034 				j = find_last_bit(vb->dirty_map,
1035 							VMAP_BBMAP_BITS);
1036 				j = j + 1; /* need exclusive index */
1037 
1038 				s = vb->va->va_start + (i << PAGE_SHIFT);
1039 				e = vb->va->va_start + (j << PAGE_SHIFT);
1040 				flush = 1;
1041 
1042 				if (s < start)
1043 					start = s;
1044 				if (e > end)
1045 					end = e;
1046 			}
1047 			spin_unlock(&vb->lock);
1048 		}
1049 		rcu_read_unlock();
1050 	}
1051 
1052 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1053 }
1054 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1055 
1056 /**
1057  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1058  * @mem: the pointer returned by vm_map_ram
1059  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1060  */
1061 void vm_unmap_ram(const void *mem, unsigned int count)
1062 {
1063 	unsigned long size = count << PAGE_SHIFT;
1064 	unsigned long addr = (unsigned long)mem;
1065 
1066 	BUG_ON(!addr);
1067 	BUG_ON(addr < VMALLOC_START);
1068 	BUG_ON(addr > VMALLOC_END);
1069 	BUG_ON(addr & (PAGE_SIZE-1));
1070 
1071 	debug_check_no_locks_freed(mem, size);
1072 	vmap_debug_free_range(addr, addr+size);
1073 
1074 	if (likely(count <= VMAP_MAX_ALLOC))
1075 		vb_free(mem, size);
1076 	else
1077 		free_unmap_vmap_area_addr(addr);
1078 }
1079 EXPORT_SYMBOL(vm_unmap_ram);
1080 
1081 /**
1082  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1083  * @pages: an array of pointers to the pages to be mapped
1084  * @count: number of pages
1085  * @node: prefer to allocate data structures on this node
1086  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1087  *
1088  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1089  * faster than vmap so it's good.  But if you mix long-life and short-life
1090  * objects with vm_map_ram(), it could consume lots of address space through
1091  * fragmentation (especially on a 32bit machine).  You could see failures in
1092  * the end.  Please use this function for short-lived objects.
1093  *
1094  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1095  */
1096 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1097 {
1098 	unsigned long size = count << PAGE_SHIFT;
1099 	unsigned long addr;
1100 	void *mem;
1101 
1102 	if (likely(count <= VMAP_MAX_ALLOC)) {
1103 		mem = vb_alloc(size, GFP_KERNEL);
1104 		if (IS_ERR(mem))
1105 			return NULL;
1106 		addr = (unsigned long)mem;
1107 	} else {
1108 		struct vmap_area *va;
1109 		va = alloc_vmap_area(size, PAGE_SIZE,
1110 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1111 		if (IS_ERR(va))
1112 			return NULL;
1113 
1114 		addr = va->va_start;
1115 		mem = (void *)addr;
1116 	}
1117 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1118 		vm_unmap_ram(mem, count);
1119 		return NULL;
1120 	}
1121 	return mem;
1122 }
1123 EXPORT_SYMBOL(vm_map_ram);
1124 
1125 static struct vm_struct *vmlist __initdata;
1126 /**
1127  * vm_area_add_early - add vmap area early during boot
1128  * @vm: vm_struct to add
1129  *
1130  * This function is used to add fixed kernel vm area to vmlist before
1131  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1132  * should contain proper values and the other fields should be zero.
1133  *
1134  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1135  */
1136 void __init vm_area_add_early(struct vm_struct *vm)
1137 {
1138 	struct vm_struct *tmp, **p;
1139 
1140 	BUG_ON(vmap_initialized);
1141 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1142 		if (tmp->addr >= vm->addr) {
1143 			BUG_ON(tmp->addr < vm->addr + vm->size);
1144 			break;
1145 		} else
1146 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1147 	}
1148 	vm->next = *p;
1149 	*p = vm;
1150 }
1151 
1152 /**
1153  * vm_area_register_early - register vmap area early during boot
1154  * @vm: vm_struct to register
1155  * @align: requested alignment
1156  *
1157  * This function is used to register kernel vm area before
1158  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1159  * proper values on entry and other fields should be zero.  On return,
1160  * vm->addr contains the allocated address.
1161  *
1162  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1163  */
1164 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1165 {
1166 	static size_t vm_init_off __initdata;
1167 	unsigned long addr;
1168 
1169 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1170 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1171 
1172 	vm->addr = (void *)addr;
1173 
1174 	vm_area_add_early(vm);
1175 }
1176 
1177 void __init vmalloc_init(void)
1178 {
1179 	struct vmap_area *va;
1180 	struct vm_struct *tmp;
1181 	int i;
1182 
1183 	for_each_possible_cpu(i) {
1184 		struct vmap_block_queue *vbq;
1185 		struct vfree_deferred *p;
1186 
1187 		vbq = &per_cpu(vmap_block_queue, i);
1188 		spin_lock_init(&vbq->lock);
1189 		INIT_LIST_HEAD(&vbq->free);
1190 		p = &per_cpu(vfree_deferred, i);
1191 		init_llist_head(&p->list);
1192 		INIT_WORK(&p->wq, free_work);
1193 	}
1194 
1195 	/* Import existing vmlist entries. */
1196 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1197 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1198 		va->flags = VM_VM_AREA;
1199 		va->va_start = (unsigned long)tmp->addr;
1200 		va->va_end = va->va_start + tmp->size;
1201 		va->vm = tmp;
1202 		__insert_vmap_area(va);
1203 	}
1204 
1205 	vmap_area_pcpu_hole = VMALLOC_END;
1206 
1207 	vmap_initialized = true;
1208 }
1209 
1210 /**
1211  * map_kernel_range_noflush - map kernel VM area with the specified pages
1212  * @addr: start of the VM area to map
1213  * @size: size of the VM area to map
1214  * @prot: page protection flags to use
1215  * @pages: pages to map
1216  *
1217  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1218  * specify should have been allocated using get_vm_area() and its
1219  * friends.
1220  *
1221  * NOTE:
1222  * This function does NOT do any cache flushing.  The caller is
1223  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1224  * before calling this function.
1225  *
1226  * RETURNS:
1227  * The number of pages mapped on success, -errno on failure.
1228  */
1229 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1230 			     pgprot_t prot, struct page **pages)
1231 {
1232 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1233 }
1234 
1235 /**
1236  * unmap_kernel_range_noflush - unmap kernel VM area
1237  * @addr: start of the VM area to unmap
1238  * @size: size of the VM area to unmap
1239  *
1240  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1241  * specify should have been allocated using get_vm_area() and its
1242  * friends.
1243  *
1244  * NOTE:
1245  * This function does NOT do any cache flushing.  The caller is
1246  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1247  * before calling this function and flush_tlb_kernel_range() after.
1248  */
1249 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1250 {
1251 	vunmap_page_range(addr, addr + size);
1252 }
1253 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1254 
1255 /**
1256  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1257  * @addr: start of the VM area to unmap
1258  * @size: size of the VM area to unmap
1259  *
1260  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1261  * the unmapping and tlb after.
1262  */
1263 void unmap_kernel_range(unsigned long addr, unsigned long size)
1264 {
1265 	unsigned long end = addr + size;
1266 
1267 	flush_cache_vunmap(addr, end);
1268 	vunmap_page_range(addr, end);
1269 	flush_tlb_kernel_range(addr, end);
1270 }
1271 
1272 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1273 {
1274 	unsigned long addr = (unsigned long)area->addr;
1275 	unsigned long end = addr + get_vm_area_size(area);
1276 	int err;
1277 
1278 	err = vmap_page_range(addr, end, prot, *pages);
1279 	if (err > 0) {
1280 		*pages += err;
1281 		err = 0;
1282 	}
1283 
1284 	return err;
1285 }
1286 EXPORT_SYMBOL_GPL(map_vm_area);
1287 
1288 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1289 			      unsigned long flags, const void *caller)
1290 {
1291 	spin_lock(&vmap_area_lock);
1292 	vm->flags = flags;
1293 	vm->addr = (void *)va->va_start;
1294 	vm->size = va->va_end - va->va_start;
1295 	vm->caller = caller;
1296 	va->vm = vm;
1297 	va->flags |= VM_VM_AREA;
1298 	spin_unlock(&vmap_area_lock);
1299 }
1300 
1301 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1302 {
1303 	/*
1304 	 * Before removing VM_UNINITIALIZED,
1305 	 * we should make sure that vm has proper values.
1306 	 * Pair with smp_rmb() in show_numa_info().
1307 	 */
1308 	smp_wmb();
1309 	vm->flags &= ~VM_UNINITIALIZED;
1310 }
1311 
1312 static struct vm_struct *__get_vm_area_node(unsigned long size,
1313 		unsigned long align, unsigned long flags, unsigned long start,
1314 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1315 {
1316 	struct vmap_area *va;
1317 	struct vm_struct *area;
1318 
1319 	BUG_ON(in_interrupt());
1320 	if (flags & VM_IOREMAP)
1321 		align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1322 
1323 	size = PAGE_ALIGN(size);
1324 	if (unlikely(!size))
1325 		return NULL;
1326 
1327 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1328 	if (unlikely(!area))
1329 		return NULL;
1330 
1331 	/*
1332 	 * We always allocate a guard page.
1333 	 */
1334 	size += PAGE_SIZE;
1335 
1336 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1337 	if (IS_ERR(va)) {
1338 		kfree(area);
1339 		return NULL;
1340 	}
1341 
1342 	setup_vmalloc_vm(area, va, flags, caller);
1343 
1344 	return area;
1345 }
1346 
1347 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1348 				unsigned long start, unsigned long end)
1349 {
1350 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1351 				  GFP_KERNEL, __builtin_return_address(0));
1352 }
1353 EXPORT_SYMBOL_GPL(__get_vm_area);
1354 
1355 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1356 				       unsigned long start, unsigned long end,
1357 				       const void *caller)
1358 {
1359 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1360 				  GFP_KERNEL, caller);
1361 }
1362 
1363 /**
1364  *	get_vm_area  -  reserve a contiguous kernel virtual area
1365  *	@size:		size of the area
1366  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1367  *
1368  *	Search an area of @size in the kernel virtual mapping area,
1369  *	and reserved it for out purposes.  Returns the area descriptor
1370  *	on success or %NULL on failure.
1371  */
1372 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1373 {
1374 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1375 				  NUMA_NO_NODE, GFP_KERNEL,
1376 				  __builtin_return_address(0));
1377 }
1378 
1379 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1380 				const void *caller)
1381 {
1382 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1383 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1384 }
1385 
1386 /**
1387  *	find_vm_area  -  find a continuous kernel virtual area
1388  *	@addr:		base address
1389  *
1390  *	Search for the kernel VM area starting at @addr, and return it.
1391  *	It is up to the caller to do all required locking to keep the returned
1392  *	pointer valid.
1393  */
1394 struct vm_struct *find_vm_area(const void *addr)
1395 {
1396 	struct vmap_area *va;
1397 
1398 	va = find_vmap_area((unsigned long)addr);
1399 	if (va && va->flags & VM_VM_AREA)
1400 		return va->vm;
1401 
1402 	return NULL;
1403 }
1404 
1405 /**
1406  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1407  *	@addr:		base address
1408  *
1409  *	Search for the kernel VM area starting at @addr, and remove it.
1410  *	This function returns the found VM area, but using it is NOT safe
1411  *	on SMP machines, except for its size or flags.
1412  */
1413 struct vm_struct *remove_vm_area(const void *addr)
1414 {
1415 	struct vmap_area *va;
1416 
1417 	va = find_vmap_area((unsigned long)addr);
1418 	if (va && va->flags & VM_VM_AREA) {
1419 		struct vm_struct *vm = va->vm;
1420 
1421 		spin_lock(&vmap_area_lock);
1422 		va->vm = NULL;
1423 		va->flags &= ~VM_VM_AREA;
1424 		spin_unlock(&vmap_area_lock);
1425 
1426 		vmap_debug_free_range(va->va_start, va->va_end);
1427 		free_unmap_vmap_area(va);
1428 		vm->size -= PAGE_SIZE;
1429 
1430 		return vm;
1431 	}
1432 	return NULL;
1433 }
1434 
1435 static void __vunmap(const void *addr, int deallocate_pages)
1436 {
1437 	struct vm_struct *area;
1438 
1439 	if (!addr)
1440 		return;
1441 
1442 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1443 			addr))
1444 		return;
1445 
1446 	area = remove_vm_area(addr);
1447 	if (unlikely(!area)) {
1448 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1449 				addr);
1450 		return;
1451 	}
1452 
1453 	debug_check_no_locks_freed(addr, area->size);
1454 	debug_check_no_obj_freed(addr, area->size);
1455 
1456 	if (deallocate_pages) {
1457 		int i;
1458 
1459 		for (i = 0; i < area->nr_pages; i++) {
1460 			struct page *page = area->pages[i];
1461 
1462 			BUG_ON(!page);
1463 			__free_page(page);
1464 		}
1465 
1466 		if (area->flags & VM_VPAGES)
1467 			vfree(area->pages);
1468 		else
1469 			kfree(area->pages);
1470 	}
1471 
1472 	kfree(area);
1473 	return;
1474 }
1475 
1476 /**
1477  *	vfree  -  release memory allocated by vmalloc()
1478  *	@addr:		memory base address
1479  *
1480  *	Free the virtually continuous memory area starting at @addr, as
1481  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1482  *	NULL, no operation is performed.
1483  *
1484  *	Must not be called in NMI context (strictly speaking, only if we don't
1485  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1486  *	conventions for vfree() arch-depenedent would be a really bad idea)
1487  *
1488  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1489  */
1490 void vfree(const void *addr)
1491 {
1492 	BUG_ON(in_nmi());
1493 
1494 	kmemleak_free(addr);
1495 
1496 	if (!addr)
1497 		return;
1498 	if (unlikely(in_interrupt())) {
1499 		struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1500 		if (llist_add((struct llist_node *)addr, &p->list))
1501 			schedule_work(&p->wq);
1502 	} else
1503 		__vunmap(addr, 1);
1504 }
1505 EXPORT_SYMBOL(vfree);
1506 
1507 /**
1508  *	vunmap  -  release virtual mapping obtained by vmap()
1509  *	@addr:		memory base address
1510  *
1511  *	Free the virtually contiguous memory area starting at @addr,
1512  *	which was created from the page array passed to vmap().
1513  *
1514  *	Must not be called in interrupt context.
1515  */
1516 void vunmap(const void *addr)
1517 {
1518 	BUG_ON(in_interrupt());
1519 	might_sleep();
1520 	if (addr)
1521 		__vunmap(addr, 0);
1522 }
1523 EXPORT_SYMBOL(vunmap);
1524 
1525 /**
1526  *	vmap  -  map an array of pages into virtually contiguous space
1527  *	@pages:		array of page pointers
1528  *	@count:		number of pages to map
1529  *	@flags:		vm_area->flags
1530  *	@prot:		page protection for the mapping
1531  *
1532  *	Maps @count pages from @pages into contiguous kernel virtual
1533  *	space.
1534  */
1535 void *vmap(struct page **pages, unsigned int count,
1536 		unsigned long flags, pgprot_t prot)
1537 {
1538 	struct vm_struct *area;
1539 
1540 	might_sleep();
1541 
1542 	if (count > totalram_pages)
1543 		return NULL;
1544 
1545 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1546 					__builtin_return_address(0));
1547 	if (!area)
1548 		return NULL;
1549 
1550 	if (map_vm_area(area, prot, &pages)) {
1551 		vunmap(area->addr);
1552 		return NULL;
1553 	}
1554 
1555 	return area->addr;
1556 }
1557 EXPORT_SYMBOL(vmap);
1558 
1559 static void *__vmalloc_node(unsigned long size, unsigned long align,
1560 			    gfp_t gfp_mask, pgprot_t prot,
1561 			    int node, const void *caller);
1562 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1563 				 pgprot_t prot, int node)
1564 {
1565 	const int order = 0;
1566 	struct page **pages;
1567 	unsigned int nr_pages, array_size, i;
1568 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1569 
1570 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1571 	array_size = (nr_pages * sizeof(struct page *));
1572 
1573 	area->nr_pages = nr_pages;
1574 	/* Please note that the recursion is strictly bounded. */
1575 	if (array_size > PAGE_SIZE) {
1576 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1577 				PAGE_KERNEL, node, area->caller);
1578 		area->flags |= VM_VPAGES;
1579 	} else {
1580 		pages = kmalloc_node(array_size, nested_gfp, node);
1581 	}
1582 	area->pages = pages;
1583 	if (!area->pages) {
1584 		remove_vm_area(area->addr);
1585 		kfree(area);
1586 		return NULL;
1587 	}
1588 
1589 	for (i = 0; i < area->nr_pages; i++) {
1590 		struct page *page;
1591 		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1592 
1593 		if (node == NUMA_NO_NODE)
1594 			page = alloc_page(tmp_mask);
1595 		else
1596 			page = alloc_pages_node(node, tmp_mask, order);
1597 
1598 		if (unlikely(!page)) {
1599 			/* Successfully allocated i pages, free them in __vunmap() */
1600 			area->nr_pages = i;
1601 			goto fail;
1602 		}
1603 		area->pages[i] = page;
1604 	}
1605 
1606 	if (map_vm_area(area, prot, &pages))
1607 		goto fail;
1608 	return area->addr;
1609 
1610 fail:
1611 	warn_alloc_failed(gfp_mask, order,
1612 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1613 			  (area->nr_pages*PAGE_SIZE), area->size);
1614 	vfree(area->addr);
1615 	return NULL;
1616 }
1617 
1618 /**
1619  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1620  *	@size:		allocation size
1621  *	@align:		desired alignment
1622  *	@start:		vm area range start
1623  *	@end:		vm area range end
1624  *	@gfp_mask:	flags for the page level allocator
1625  *	@prot:		protection mask for the allocated pages
1626  *	@node:		node to use for allocation or NUMA_NO_NODE
1627  *	@caller:	caller's return address
1628  *
1629  *	Allocate enough pages to cover @size from the page level
1630  *	allocator with @gfp_mask flags.  Map them into contiguous
1631  *	kernel virtual space, using a pagetable protection of @prot.
1632  */
1633 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1634 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1635 			pgprot_t prot, int node, const void *caller)
1636 {
1637 	struct vm_struct *area;
1638 	void *addr;
1639 	unsigned long real_size = size;
1640 
1641 	size = PAGE_ALIGN(size);
1642 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1643 		goto fail;
1644 
1645 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
1646 				  start, end, node, gfp_mask, caller);
1647 	if (!area)
1648 		goto fail;
1649 
1650 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1651 	if (!addr)
1652 		return NULL;
1653 
1654 	/*
1655 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1656 	 * flag. It means that vm_struct is not fully initialized.
1657 	 * Now, it is fully initialized, so remove this flag here.
1658 	 */
1659 	clear_vm_uninitialized_flag(area);
1660 
1661 	/*
1662 	 * A ref_count = 2 is needed because vm_struct allocated in
1663 	 * __get_vm_area_node() contains a reference to the virtual address of
1664 	 * the vmalloc'ed block.
1665 	 */
1666 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1667 
1668 	return addr;
1669 
1670 fail:
1671 	warn_alloc_failed(gfp_mask, 0,
1672 			  "vmalloc: allocation failure: %lu bytes\n",
1673 			  real_size);
1674 	return NULL;
1675 }
1676 
1677 /**
1678  *	__vmalloc_node  -  allocate virtually contiguous memory
1679  *	@size:		allocation size
1680  *	@align:		desired alignment
1681  *	@gfp_mask:	flags for the page level allocator
1682  *	@prot:		protection mask for the allocated pages
1683  *	@node:		node to use for allocation or NUMA_NO_NODE
1684  *	@caller:	caller's return address
1685  *
1686  *	Allocate enough pages to cover @size from the page level
1687  *	allocator with @gfp_mask flags.  Map them into contiguous
1688  *	kernel virtual space, using a pagetable protection of @prot.
1689  */
1690 static void *__vmalloc_node(unsigned long size, unsigned long align,
1691 			    gfp_t gfp_mask, pgprot_t prot,
1692 			    int node, const void *caller)
1693 {
1694 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1695 				gfp_mask, prot, node, caller);
1696 }
1697 
1698 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1699 {
1700 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1701 				__builtin_return_address(0));
1702 }
1703 EXPORT_SYMBOL(__vmalloc);
1704 
1705 static inline void *__vmalloc_node_flags(unsigned long size,
1706 					int node, gfp_t flags)
1707 {
1708 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1709 					node, __builtin_return_address(0));
1710 }
1711 
1712 /**
1713  *	vmalloc  -  allocate virtually contiguous memory
1714  *	@size:		allocation size
1715  *	Allocate enough pages to cover @size from the page level
1716  *	allocator and map them into contiguous kernel virtual space.
1717  *
1718  *	For tight control over page level allocator and protection flags
1719  *	use __vmalloc() instead.
1720  */
1721 void *vmalloc(unsigned long size)
1722 {
1723 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1724 				    GFP_KERNEL | __GFP_HIGHMEM);
1725 }
1726 EXPORT_SYMBOL(vmalloc);
1727 
1728 /**
1729  *	vzalloc - allocate virtually contiguous memory with zero fill
1730  *	@size:	allocation size
1731  *	Allocate enough pages to cover @size from the page level
1732  *	allocator and map them into contiguous kernel virtual space.
1733  *	The memory allocated is set to zero.
1734  *
1735  *	For tight control over page level allocator and protection flags
1736  *	use __vmalloc() instead.
1737  */
1738 void *vzalloc(unsigned long size)
1739 {
1740 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1741 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1742 }
1743 EXPORT_SYMBOL(vzalloc);
1744 
1745 /**
1746  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1747  * @size: allocation size
1748  *
1749  * The resulting memory area is zeroed so it can be mapped to userspace
1750  * without leaking data.
1751  */
1752 void *vmalloc_user(unsigned long size)
1753 {
1754 	struct vm_struct *area;
1755 	void *ret;
1756 
1757 	ret = __vmalloc_node(size, SHMLBA,
1758 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1759 			     PAGE_KERNEL, NUMA_NO_NODE,
1760 			     __builtin_return_address(0));
1761 	if (ret) {
1762 		area = find_vm_area(ret);
1763 		area->flags |= VM_USERMAP;
1764 	}
1765 	return ret;
1766 }
1767 EXPORT_SYMBOL(vmalloc_user);
1768 
1769 /**
1770  *	vmalloc_node  -  allocate memory on a specific node
1771  *	@size:		allocation size
1772  *	@node:		numa node
1773  *
1774  *	Allocate enough pages to cover @size from the page level
1775  *	allocator and map them into contiguous kernel virtual space.
1776  *
1777  *	For tight control over page level allocator and protection flags
1778  *	use __vmalloc() instead.
1779  */
1780 void *vmalloc_node(unsigned long size, int node)
1781 {
1782 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1783 					node, __builtin_return_address(0));
1784 }
1785 EXPORT_SYMBOL(vmalloc_node);
1786 
1787 /**
1788  * vzalloc_node - allocate memory on a specific node with zero fill
1789  * @size:	allocation size
1790  * @node:	numa node
1791  *
1792  * Allocate enough pages to cover @size from the page level
1793  * allocator and map them into contiguous kernel virtual space.
1794  * The memory allocated is set to zero.
1795  *
1796  * For tight control over page level allocator and protection flags
1797  * use __vmalloc_node() instead.
1798  */
1799 void *vzalloc_node(unsigned long size, int node)
1800 {
1801 	return __vmalloc_node_flags(size, node,
1802 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1803 }
1804 EXPORT_SYMBOL(vzalloc_node);
1805 
1806 #ifndef PAGE_KERNEL_EXEC
1807 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1808 #endif
1809 
1810 /**
1811  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1812  *	@size:		allocation size
1813  *
1814  *	Kernel-internal function to allocate enough pages to cover @size
1815  *	the page level allocator and map them into contiguous and
1816  *	executable kernel virtual space.
1817  *
1818  *	For tight control over page level allocator and protection flags
1819  *	use __vmalloc() instead.
1820  */
1821 
1822 void *vmalloc_exec(unsigned long size)
1823 {
1824 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1825 			      NUMA_NO_NODE, __builtin_return_address(0));
1826 }
1827 
1828 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1829 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1830 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1831 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1832 #else
1833 #define GFP_VMALLOC32 GFP_KERNEL
1834 #endif
1835 
1836 /**
1837  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1838  *	@size:		allocation size
1839  *
1840  *	Allocate enough 32bit PA addressable pages to cover @size from the
1841  *	page level allocator and map them into contiguous kernel virtual space.
1842  */
1843 void *vmalloc_32(unsigned long size)
1844 {
1845 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1846 			      NUMA_NO_NODE, __builtin_return_address(0));
1847 }
1848 EXPORT_SYMBOL(vmalloc_32);
1849 
1850 /**
1851  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1852  *	@size:		allocation size
1853  *
1854  * The resulting memory area is 32bit addressable and zeroed so it can be
1855  * mapped to userspace without leaking data.
1856  */
1857 void *vmalloc_32_user(unsigned long size)
1858 {
1859 	struct vm_struct *area;
1860 	void *ret;
1861 
1862 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1863 			     NUMA_NO_NODE, __builtin_return_address(0));
1864 	if (ret) {
1865 		area = find_vm_area(ret);
1866 		area->flags |= VM_USERMAP;
1867 	}
1868 	return ret;
1869 }
1870 EXPORT_SYMBOL(vmalloc_32_user);
1871 
1872 /*
1873  * small helper routine , copy contents to buf from addr.
1874  * If the page is not present, fill zero.
1875  */
1876 
1877 static int aligned_vread(char *buf, char *addr, unsigned long count)
1878 {
1879 	struct page *p;
1880 	int copied = 0;
1881 
1882 	while (count) {
1883 		unsigned long offset, length;
1884 
1885 		offset = (unsigned long)addr & ~PAGE_MASK;
1886 		length = PAGE_SIZE - offset;
1887 		if (length > count)
1888 			length = count;
1889 		p = vmalloc_to_page(addr);
1890 		/*
1891 		 * To do safe access to this _mapped_ area, we need
1892 		 * lock. But adding lock here means that we need to add
1893 		 * overhead of vmalloc()/vfree() calles for this _debug_
1894 		 * interface, rarely used. Instead of that, we'll use
1895 		 * kmap() and get small overhead in this access function.
1896 		 */
1897 		if (p) {
1898 			/*
1899 			 * we can expect USER0 is not used (see vread/vwrite's
1900 			 * function description)
1901 			 */
1902 			void *map = kmap_atomic(p);
1903 			memcpy(buf, map + offset, length);
1904 			kunmap_atomic(map);
1905 		} else
1906 			memset(buf, 0, length);
1907 
1908 		addr += length;
1909 		buf += length;
1910 		copied += length;
1911 		count -= length;
1912 	}
1913 	return copied;
1914 }
1915 
1916 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1917 {
1918 	struct page *p;
1919 	int copied = 0;
1920 
1921 	while (count) {
1922 		unsigned long offset, length;
1923 
1924 		offset = (unsigned long)addr & ~PAGE_MASK;
1925 		length = PAGE_SIZE - offset;
1926 		if (length > count)
1927 			length = count;
1928 		p = vmalloc_to_page(addr);
1929 		/*
1930 		 * To do safe access to this _mapped_ area, we need
1931 		 * lock. But adding lock here means that we need to add
1932 		 * overhead of vmalloc()/vfree() calles for this _debug_
1933 		 * interface, rarely used. Instead of that, we'll use
1934 		 * kmap() and get small overhead in this access function.
1935 		 */
1936 		if (p) {
1937 			/*
1938 			 * we can expect USER0 is not used (see vread/vwrite's
1939 			 * function description)
1940 			 */
1941 			void *map = kmap_atomic(p);
1942 			memcpy(map + offset, buf, length);
1943 			kunmap_atomic(map);
1944 		}
1945 		addr += length;
1946 		buf += length;
1947 		copied += length;
1948 		count -= length;
1949 	}
1950 	return copied;
1951 }
1952 
1953 /**
1954  *	vread() -  read vmalloc area in a safe way.
1955  *	@buf:		buffer for reading data
1956  *	@addr:		vm address.
1957  *	@count:		number of bytes to be read.
1958  *
1959  *	Returns # of bytes which addr and buf should be increased.
1960  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1961  *	includes any intersect with alive vmalloc area.
1962  *
1963  *	This function checks that addr is a valid vmalloc'ed area, and
1964  *	copy data from that area to a given buffer. If the given memory range
1965  *	of [addr...addr+count) includes some valid address, data is copied to
1966  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1967  *	IOREMAP area is treated as memory hole and no copy is done.
1968  *
1969  *	If [addr...addr+count) doesn't includes any intersects with alive
1970  *	vm_struct area, returns 0. @buf should be kernel's buffer.
1971  *
1972  *	Note: In usual ops, vread() is never necessary because the caller
1973  *	should know vmalloc() area is valid and can use memcpy().
1974  *	This is for routines which have to access vmalloc area without
1975  *	any informaion, as /dev/kmem.
1976  *
1977  */
1978 
1979 long vread(char *buf, char *addr, unsigned long count)
1980 {
1981 	struct vmap_area *va;
1982 	struct vm_struct *vm;
1983 	char *vaddr, *buf_start = buf;
1984 	unsigned long buflen = count;
1985 	unsigned long n;
1986 
1987 	/* Don't allow overflow */
1988 	if ((unsigned long) addr + count < count)
1989 		count = -(unsigned long) addr;
1990 
1991 	spin_lock(&vmap_area_lock);
1992 	list_for_each_entry(va, &vmap_area_list, list) {
1993 		if (!count)
1994 			break;
1995 
1996 		if (!(va->flags & VM_VM_AREA))
1997 			continue;
1998 
1999 		vm = va->vm;
2000 		vaddr = (char *) vm->addr;
2001 		if (addr >= vaddr + get_vm_area_size(vm))
2002 			continue;
2003 		while (addr < vaddr) {
2004 			if (count == 0)
2005 				goto finished;
2006 			*buf = '\0';
2007 			buf++;
2008 			addr++;
2009 			count--;
2010 		}
2011 		n = vaddr + get_vm_area_size(vm) - addr;
2012 		if (n > count)
2013 			n = count;
2014 		if (!(vm->flags & VM_IOREMAP))
2015 			aligned_vread(buf, addr, n);
2016 		else /* IOREMAP area is treated as memory hole */
2017 			memset(buf, 0, n);
2018 		buf += n;
2019 		addr += n;
2020 		count -= n;
2021 	}
2022 finished:
2023 	spin_unlock(&vmap_area_lock);
2024 
2025 	if (buf == buf_start)
2026 		return 0;
2027 	/* zero-fill memory holes */
2028 	if (buf != buf_start + buflen)
2029 		memset(buf, 0, buflen - (buf - buf_start));
2030 
2031 	return buflen;
2032 }
2033 
2034 /**
2035  *	vwrite() -  write vmalloc area in a safe way.
2036  *	@buf:		buffer for source data
2037  *	@addr:		vm address.
2038  *	@count:		number of bytes to be read.
2039  *
2040  *	Returns # of bytes which addr and buf should be incresed.
2041  *	(same number to @count).
2042  *	If [addr...addr+count) doesn't includes any intersect with valid
2043  *	vmalloc area, returns 0.
2044  *
2045  *	This function checks that addr is a valid vmalloc'ed area, and
2046  *	copy data from a buffer to the given addr. If specified range of
2047  *	[addr...addr+count) includes some valid address, data is copied from
2048  *	proper area of @buf. If there are memory holes, no copy to hole.
2049  *	IOREMAP area is treated as memory hole and no copy is done.
2050  *
2051  *	If [addr...addr+count) doesn't includes any intersects with alive
2052  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2053  *
2054  *	Note: In usual ops, vwrite() is never necessary because the caller
2055  *	should know vmalloc() area is valid and can use memcpy().
2056  *	This is for routines which have to access vmalloc area without
2057  *	any informaion, as /dev/kmem.
2058  */
2059 
2060 long vwrite(char *buf, char *addr, unsigned long count)
2061 {
2062 	struct vmap_area *va;
2063 	struct vm_struct *vm;
2064 	char *vaddr;
2065 	unsigned long n, buflen;
2066 	int copied = 0;
2067 
2068 	/* Don't allow overflow */
2069 	if ((unsigned long) addr + count < count)
2070 		count = -(unsigned long) addr;
2071 	buflen = count;
2072 
2073 	spin_lock(&vmap_area_lock);
2074 	list_for_each_entry(va, &vmap_area_list, list) {
2075 		if (!count)
2076 			break;
2077 
2078 		if (!(va->flags & VM_VM_AREA))
2079 			continue;
2080 
2081 		vm = va->vm;
2082 		vaddr = (char *) vm->addr;
2083 		if (addr >= vaddr + get_vm_area_size(vm))
2084 			continue;
2085 		while (addr < vaddr) {
2086 			if (count == 0)
2087 				goto finished;
2088 			buf++;
2089 			addr++;
2090 			count--;
2091 		}
2092 		n = vaddr + get_vm_area_size(vm) - addr;
2093 		if (n > count)
2094 			n = count;
2095 		if (!(vm->flags & VM_IOREMAP)) {
2096 			aligned_vwrite(buf, addr, n);
2097 			copied++;
2098 		}
2099 		buf += n;
2100 		addr += n;
2101 		count -= n;
2102 	}
2103 finished:
2104 	spin_unlock(&vmap_area_lock);
2105 	if (!copied)
2106 		return 0;
2107 	return buflen;
2108 }
2109 
2110 /**
2111  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2112  *	@vma:		vma to cover
2113  *	@uaddr:		target user address to start at
2114  *	@kaddr:		virtual address of vmalloc kernel memory
2115  *	@size:		size of map area
2116  *
2117  *	Returns:	0 for success, -Exxx on failure
2118  *
2119  *	This function checks that @kaddr is a valid vmalloc'ed area,
2120  *	and that it is big enough to cover the range starting at
2121  *	@uaddr in @vma. Will return failure if that criteria isn't
2122  *	met.
2123  *
2124  *	Similar to remap_pfn_range() (see mm/memory.c)
2125  */
2126 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2127 				void *kaddr, unsigned long size)
2128 {
2129 	struct vm_struct *area;
2130 
2131 	size = PAGE_ALIGN(size);
2132 
2133 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2134 		return -EINVAL;
2135 
2136 	area = find_vm_area(kaddr);
2137 	if (!area)
2138 		return -EINVAL;
2139 
2140 	if (!(area->flags & VM_USERMAP))
2141 		return -EINVAL;
2142 
2143 	if (kaddr + size > area->addr + area->size)
2144 		return -EINVAL;
2145 
2146 	do {
2147 		struct page *page = vmalloc_to_page(kaddr);
2148 		int ret;
2149 
2150 		ret = vm_insert_page(vma, uaddr, page);
2151 		if (ret)
2152 			return ret;
2153 
2154 		uaddr += PAGE_SIZE;
2155 		kaddr += PAGE_SIZE;
2156 		size -= PAGE_SIZE;
2157 	} while (size > 0);
2158 
2159 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2160 
2161 	return 0;
2162 }
2163 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2164 
2165 /**
2166  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2167  *	@vma:		vma to cover (map full range of vma)
2168  *	@addr:		vmalloc memory
2169  *	@pgoff:		number of pages into addr before first page to map
2170  *
2171  *	Returns:	0 for success, -Exxx on failure
2172  *
2173  *	This function checks that addr is a valid vmalloc'ed area, and
2174  *	that it is big enough to cover the vma. Will return failure if
2175  *	that criteria isn't met.
2176  *
2177  *	Similar to remap_pfn_range() (see mm/memory.c)
2178  */
2179 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2180 						unsigned long pgoff)
2181 {
2182 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2183 					   addr + (pgoff << PAGE_SHIFT),
2184 					   vma->vm_end - vma->vm_start);
2185 }
2186 EXPORT_SYMBOL(remap_vmalloc_range);
2187 
2188 /*
2189  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2190  * have one.
2191  */
2192 void __weak vmalloc_sync_all(void)
2193 {
2194 }
2195 
2196 
2197 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2198 {
2199 	pte_t ***p = data;
2200 
2201 	if (p) {
2202 		*(*p) = pte;
2203 		(*p)++;
2204 	}
2205 	return 0;
2206 }
2207 
2208 /**
2209  *	alloc_vm_area - allocate a range of kernel address space
2210  *	@size:		size of the area
2211  *	@ptes:		returns the PTEs for the address space
2212  *
2213  *	Returns:	NULL on failure, vm_struct on success
2214  *
2215  *	This function reserves a range of kernel address space, and
2216  *	allocates pagetables to map that range.  No actual mappings
2217  *	are created.
2218  *
2219  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2220  *	allocated for the VM area are returned.
2221  */
2222 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2223 {
2224 	struct vm_struct *area;
2225 
2226 	area = get_vm_area_caller(size, VM_IOREMAP,
2227 				__builtin_return_address(0));
2228 	if (area == NULL)
2229 		return NULL;
2230 
2231 	/*
2232 	 * This ensures that page tables are constructed for this region
2233 	 * of kernel virtual address space and mapped into init_mm.
2234 	 */
2235 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2236 				size, f, ptes ? &ptes : NULL)) {
2237 		free_vm_area(area);
2238 		return NULL;
2239 	}
2240 
2241 	return area;
2242 }
2243 EXPORT_SYMBOL_GPL(alloc_vm_area);
2244 
2245 void free_vm_area(struct vm_struct *area)
2246 {
2247 	struct vm_struct *ret;
2248 	ret = remove_vm_area(area->addr);
2249 	BUG_ON(ret != area);
2250 	kfree(area);
2251 }
2252 EXPORT_SYMBOL_GPL(free_vm_area);
2253 
2254 #ifdef CONFIG_SMP
2255 static struct vmap_area *node_to_va(struct rb_node *n)
2256 {
2257 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2258 }
2259 
2260 /**
2261  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2262  * @end: target address
2263  * @pnext: out arg for the next vmap_area
2264  * @pprev: out arg for the previous vmap_area
2265  *
2266  * Returns: %true if either or both of next and prev are found,
2267  *	    %false if no vmap_area exists
2268  *
2269  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2270  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2271  */
2272 static bool pvm_find_next_prev(unsigned long end,
2273 			       struct vmap_area **pnext,
2274 			       struct vmap_area **pprev)
2275 {
2276 	struct rb_node *n = vmap_area_root.rb_node;
2277 	struct vmap_area *va = NULL;
2278 
2279 	while (n) {
2280 		va = rb_entry(n, struct vmap_area, rb_node);
2281 		if (end < va->va_end)
2282 			n = n->rb_left;
2283 		else if (end > va->va_end)
2284 			n = n->rb_right;
2285 		else
2286 			break;
2287 	}
2288 
2289 	if (!va)
2290 		return false;
2291 
2292 	if (va->va_end > end) {
2293 		*pnext = va;
2294 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2295 	} else {
2296 		*pprev = va;
2297 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2298 	}
2299 	return true;
2300 }
2301 
2302 /**
2303  * pvm_determine_end - find the highest aligned address between two vmap_areas
2304  * @pnext: in/out arg for the next vmap_area
2305  * @pprev: in/out arg for the previous vmap_area
2306  * @align: alignment
2307  *
2308  * Returns: determined end address
2309  *
2310  * Find the highest aligned address between *@pnext and *@pprev below
2311  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2312  * down address is between the end addresses of the two vmap_areas.
2313  *
2314  * Please note that the address returned by this function may fall
2315  * inside *@pnext vmap_area.  The caller is responsible for checking
2316  * that.
2317  */
2318 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2319 				       struct vmap_area **pprev,
2320 				       unsigned long align)
2321 {
2322 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2323 	unsigned long addr;
2324 
2325 	if (*pnext)
2326 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2327 	else
2328 		addr = vmalloc_end;
2329 
2330 	while (*pprev && (*pprev)->va_end > addr) {
2331 		*pnext = *pprev;
2332 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2333 	}
2334 
2335 	return addr;
2336 }
2337 
2338 /**
2339  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2340  * @offsets: array containing offset of each area
2341  * @sizes: array containing size of each area
2342  * @nr_vms: the number of areas to allocate
2343  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2344  *
2345  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2346  *	    vm_structs on success, %NULL on failure
2347  *
2348  * Percpu allocator wants to use congruent vm areas so that it can
2349  * maintain the offsets among percpu areas.  This function allocates
2350  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2351  * be scattered pretty far, distance between two areas easily going up
2352  * to gigabytes.  To avoid interacting with regular vmallocs, these
2353  * areas are allocated from top.
2354  *
2355  * Despite its complicated look, this allocator is rather simple.  It
2356  * does everything top-down and scans areas from the end looking for
2357  * matching slot.  While scanning, if any of the areas overlaps with
2358  * existing vmap_area, the base address is pulled down to fit the
2359  * area.  Scanning is repeated till all the areas fit and then all
2360  * necessary data structres are inserted and the result is returned.
2361  */
2362 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2363 				     const size_t *sizes, int nr_vms,
2364 				     size_t align)
2365 {
2366 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2367 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2368 	struct vmap_area **vas, *prev, *next;
2369 	struct vm_struct **vms;
2370 	int area, area2, last_area, term_area;
2371 	unsigned long base, start, end, last_end;
2372 	bool purged = false;
2373 
2374 	/* verify parameters and allocate data structures */
2375 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2376 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2377 		start = offsets[area];
2378 		end = start + sizes[area];
2379 
2380 		/* is everything aligned properly? */
2381 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2382 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2383 
2384 		/* detect the area with the highest address */
2385 		if (start > offsets[last_area])
2386 			last_area = area;
2387 
2388 		for (area2 = 0; area2 < nr_vms; area2++) {
2389 			unsigned long start2 = offsets[area2];
2390 			unsigned long end2 = start2 + sizes[area2];
2391 
2392 			if (area2 == area)
2393 				continue;
2394 
2395 			BUG_ON(start2 >= start && start2 < end);
2396 			BUG_ON(end2 <= end && end2 > start);
2397 		}
2398 	}
2399 	last_end = offsets[last_area] + sizes[last_area];
2400 
2401 	if (vmalloc_end - vmalloc_start < last_end) {
2402 		WARN_ON(true);
2403 		return NULL;
2404 	}
2405 
2406 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2407 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2408 	if (!vas || !vms)
2409 		goto err_free2;
2410 
2411 	for (area = 0; area < nr_vms; area++) {
2412 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2413 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2414 		if (!vas[area] || !vms[area])
2415 			goto err_free;
2416 	}
2417 retry:
2418 	spin_lock(&vmap_area_lock);
2419 
2420 	/* start scanning - we scan from the top, begin with the last area */
2421 	area = term_area = last_area;
2422 	start = offsets[area];
2423 	end = start + sizes[area];
2424 
2425 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2426 		base = vmalloc_end - last_end;
2427 		goto found;
2428 	}
2429 	base = pvm_determine_end(&next, &prev, align) - end;
2430 
2431 	while (true) {
2432 		BUG_ON(next && next->va_end <= base + end);
2433 		BUG_ON(prev && prev->va_end > base + end);
2434 
2435 		/*
2436 		 * base might have underflowed, add last_end before
2437 		 * comparing.
2438 		 */
2439 		if (base + last_end < vmalloc_start + last_end) {
2440 			spin_unlock(&vmap_area_lock);
2441 			if (!purged) {
2442 				purge_vmap_area_lazy();
2443 				purged = true;
2444 				goto retry;
2445 			}
2446 			goto err_free;
2447 		}
2448 
2449 		/*
2450 		 * If next overlaps, move base downwards so that it's
2451 		 * right below next and then recheck.
2452 		 */
2453 		if (next && next->va_start < base + end) {
2454 			base = pvm_determine_end(&next, &prev, align) - end;
2455 			term_area = area;
2456 			continue;
2457 		}
2458 
2459 		/*
2460 		 * If prev overlaps, shift down next and prev and move
2461 		 * base so that it's right below new next and then
2462 		 * recheck.
2463 		 */
2464 		if (prev && prev->va_end > base + start)  {
2465 			next = prev;
2466 			prev = node_to_va(rb_prev(&next->rb_node));
2467 			base = pvm_determine_end(&next, &prev, align) - end;
2468 			term_area = area;
2469 			continue;
2470 		}
2471 
2472 		/*
2473 		 * This area fits, move on to the previous one.  If
2474 		 * the previous one is the terminal one, we're done.
2475 		 */
2476 		area = (area + nr_vms - 1) % nr_vms;
2477 		if (area == term_area)
2478 			break;
2479 		start = offsets[area];
2480 		end = start + sizes[area];
2481 		pvm_find_next_prev(base + end, &next, &prev);
2482 	}
2483 found:
2484 	/* we've found a fitting base, insert all va's */
2485 	for (area = 0; area < nr_vms; area++) {
2486 		struct vmap_area *va = vas[area];
2487 
2488 		va->va_start = base + offsets[area];
2489 		va->va_end = va->va_start + sizes[area];
2490 		__insert_vmap_area(va);
2491 	}
2492 
2493 	vmap_area_pcpu_hole = base + offsets[last_area];
2494 
2495 	spin_unlock(&vmap_area_lock);
2496 
2497 	/* insert all vm's */
2498 	for (area = 0; area < nr_vms; area++)
2499 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2500 				 pcpu_get_vm_areas);
2501 
2502 	kfree(vas);
2503 	return vms;
2504 
2505 err_free:
2506 	for (area = 0; area < nr_vms; area++) {
2507 		kfree(vas[area]);
2508 		kfree(vms[area]);
2509 	}
2510 err_free2:
2511 	kfree(vas);
2512 	kfree(vms);
2513 	return NULL;
2514 }
2515 
2516 /**
2517  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2518  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2519  * @nr_vms: the number of allocated areas
2520  *
2521  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2522  */
2523 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2524 {
2525 	int i;
2526 
2527 	for (i = 0; i < nr_vms; i++)
2528 		free_vm_area(vms[i]);
2529 	kfree(vms);
2530 }
2531 #endif	/* CONFIG_SMP */
2532 
2533 #ifdef CONFIG_PROC_FS
2534 static void *s_start(struct seq_file *m, loff_t *pos)
2535 	__acquires(&vmap_area_lock)
2536 {
2537 	loff_t n = *pos;
2538 	struct vmap_area *va;
2539 
2540 	spin_lock(&vmap_area_lock);
2541 	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2542 	while (n > 0 && &va->list != &vmap_area_list) {
2543 		n--;
2544 		va = list_entry(va->list.next, typeof(*va), list);
2545 	}
2546 	if (!n && &va->list != &vmap_area_list)
2547 		return va;
2548 
2549 	return NULL;
2550 
2551 }
2552 
2553 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2554 {
2555 	struct vmap_area *va = p, *next;
2556 
2557 	++*pos;
2558 	next = list_entry(va->list.next, typeof(*va), list);
2559 	if (&next->list != &vmap_area_list)
2560 		return next;
2561 
2562 	return NULL;
2563 }
2564 
2565 static void s_stop(struct seq_file *m, void *p)
2566 	__releases(&vmap_area_lock)
2567 {
2568 	spin_unlock(&vmap_area_lock);
2569 }
2570 
2571 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2572 {
2573 	if (IS_ENABLED(CONFIG_NUMA)) {
2574 		unsigned int nr, *counters = m->private;
2575 
2576 		if (!counters)
2577 			return;
2578 
2579 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2580 		smp_rmb();
2581 		if (v->flags & VM_UNINITIALIZED)
2582 			return;
2583 
2584 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2585 
2586 		for (nr = 0; nr < v->nr_pages; nr++)
2587 			counters[page_to_nid(v->pages[nr])]++;
2588 
2589 		for_each_node_state(nr, N_HIGH_MEMORY)
2590 			if (counters[nr])
2591 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2592 	}
2593 }
2594 
2595 static int s_show(struct seq_file *m, void *p)
2596 {
2597 	struct vmap_area *va = p;
2598 	struct vm_struct *v;
2599 
2600 	/*
2601 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2602 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2603 	 */
2604 	if (!(va->flags & VM_VM_AREA))
2605 		return 0;
2606 
2607 	v = va->vm;
2608 
2609 	seq_printf(m, "0x%pK-0x%pK %7ld",
2610 		v->addr, v->addr + v->size, v->size);
2611 
2612 	if (v->caller)
2613 		seq_printf(m, " %pS", v->caller);
2614 
2615 	if (v->nr_pages)
2616 		seq_printf(m, " pages=%d", v->nr_pages);
2617 
2618 	if (v->phys_addr)
2619 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2620 
2621 	if (v->flags & VM_IOREMAP)
2622 		seq_printf(m, " ioremap");
2623 
2624 	if (v->flags & VM_ALLOC)
2625 		seq_printf(m, " vmalloc");
2626 
2627 	if (v->flags & VM_MAP)
2628 		seq_printf(m, " vmap");
2629 
2630 	if (v->flags & VM_USERMAP)
2631 		seq_printf(m, " user");
2632 
2633 	if (v->flags & VM_VPAGES)
2634 		seq_printf(m, " vpages");
2635 
2636 	show_numa_info(m, v);
2637 	seq_putc(m, '\n');
2638 	return 0;
2639 }
2640 
2641 static const struct seq_operations vmalloc_op = {
2642 	.start = s_start,
2643 	.next = s_next,
2644 	.stop = s_stop,
2645 	.show = s_show,
2646 };
2647 
2648 static int vmalloc_open(struct inode *inode, struct file *file)
2649 {
2650 	unsigned int *ptr = NULL;
2651 	int ret;
2652 
2653 	if (IS_ENABLED(CONFIG_NUMA)) {
2654 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2655 		if (ptr == NULL)
2656 			return -ENOMEM;
2657 	}
2658 	ret = seq_open(file, &vmalloc_op);
2659 	if (!ret) {
2660 		struct seq_file *m = file->private_data;
2661 		m->private = ptr;
2662 	} else
2663 		kfree(ptr);
2664 	return ret;
2665 }
2666 
2667 static const struct file_operations proc_vmalloc_operations = {
2668 	.open		= vmalloc_open,
2669 	.read		= seq_read,
2670 	.llseek		= seq_lseek,
2671 	.release	= seq_release_private,
2672 };
2673 
2674 static int __init proc_vmalloc_init(void)
2675 {
2676 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2677 	return 0;
2678 }
2679 module_init(proc_vmalloc_init);
2680 
2681 void get_vmalloc_info(struct vmalloc_info *vmi)
2682 {
2683 	struct vmap_area *va;
2684 	unsigned long free_area_size;
2685 	unsigned long prev_end;
2686 
2687 	vmi->used = 0;
2688 	vmi->largest_chunk = 0;
2689 
2690 	prev_end = VMALLOC_START;
2691 
2692 	spin_lock(&vmap_area_lock);
2693 
2694 	if (list_empty(&vmap_area_list)) {
2695 		vmi->largest_chunk = VMALLOC_TOTAL;
2696 		goto out;
2697 	}
2698 
2699 	list_for_each_entry(va, &vmap_area_list, list) {
2700 		unsigned long addr = va->va_start;
2701 
2702 		/*
2703 		 * Some archs keep another range for modules in vmalloc space
2704 		 */
2705 		if (addr < VMALLOC_START)
2706 			continue;
2707 		if (addr >= VMALLOC_END)
2708 			break;
2709 
2710 		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2711 			continue;
2712 
2713 		vmi->used += (va->va_end - va->va_start);
2714 
2715 		free_area_size = addr - prev_end;
2716 		if (vmi->largest_chunk < free_area_size)
2717 			vmi->largest_chunk = free_area_size;
2718 
2719 		prev_end = va->va_end;
2720 	}
2721 
2722 	if (VMALLOC_END - prev_end > vmi->largest_chunk)
2723 		vmi->largest_chunk = VMALLOC_END - prev_end;
2724 
2725 out:
2726 	spin_unlock(&vmap_area_lock);
2727 }
2728 #endif
2729 
2730