xref: /openbmc/linux/mm/vmalloc.c (revision 6a613ac6)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 #include <linux/bitops.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/shmparam.h>
37 
38 #include "internal.h"
39 
40 struct vfree_deferred {
41 	struct llist_head list;
42 	struct work_struct wq;
43 };
44 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
45 
46 static void __vunmap(const void *, int);
47 
48 static void free_work(struct work_struct *w)
49 {
50 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
51 	struct llist_node *llnode = llist_del_all(&p->list);
52 	while (llnode) {
53 		void *p = llnode;
54 		llnode = llist_next(llnode);
55 		__vunmap(p, 1);
56 	}
57 }
58 
59 /*** Page table manipulation functions ***/
60 
61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62 {
63 	pte_t *pte;
64 
65 	pte = pte_offset_kernel(pmd, addr);
66 	do {
67 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 	} while (pte++, addr += PAGE_SIZE, addr != end);
70 }
71 
72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
73 {
74 	pmd_t *pmd;
75 	unsigned long next;
76 
77 	pmd = pmd_offset(pud, addr);
78 	do {
79 		next = pmd_addr_end(addr, end);
80 		if (pmd_clear_huge(pmd))
81 			continue;
82 		if (pmd_none_or_clear_bad(pmd))
83 			continue;
84 		vunmap_pte_range(pmd, addr, next);
85 	} while (pmd++, addr = next, addr != end);
86 }
87 
88 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
89 {
90 	pud_t *pud;
91 	unsigned long next;
92 
93 	pud = pud_offset(pgd, addr);
94 	do {
95 		next = pud_addr_end(addr, end);
96 		if (pud_clear_huge(pud))
97 			continue;
98 		if (pud_none_or_clear_bad(pud))
99 			continue;
100 		vunmap_pmd_range(pud, addr, next);
101 	} while (pud++, addr = next, addr != end);
102 }
103 
104 static void vunmap_page_range(unsigned long addr, unsigned long end)
105 {
106 	pgd_t *pgd;
107 	unsigned long next;
108 
109 	BUG_ON(addr >= end);
110 	pgd = pgd_offset_k(addr);
111 	do {
112 		next = pgd_addr_end(addr, end);
113 		if (pgd_none_or_clear_bad(pgd))
114 			continue;
115 		vunmap_pud_range(pgd, addr, next);
116 	} while (pgd++, addr = next, addr != end);
117 }
118 
119 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
120 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
121 {
122 	pte_t *pte;
123 
124 	/*
125 	 * nr is a running index into the array which helps higher level
126 	 * callers keep track of where we're up to.
127 	 */
128 
129 	pte = pte_alloc_kernel(pmd, addr);
130 	if (!pte)
131 		return -ENOMEM;
132 	do {
133 		struct page *page = pages[*nr];
134 
135 		if (WARN_ON(!pte_none(*pte)))
136 			return -EBUSY;
137 		if (WARN_ON(!page))
138 			return -ENOMEM;
139 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
140 		(*nr)++;
141 	} while (pte++, addr += PAGE_SIZE, addr != end);
142 	return 0;
143 }
144 
145 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
146 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
147 {
148 	pmd_t *pmd;
149 	unsigned long next;
150 
151 	pmd = pmd_alloc(&init_mm, pud, addr);
152 	if (!pmd)
153 		return -ENOMEM;
154 	do {
155 		next = pmd_addr_end(addr, end);
156 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
157 			return -ENOMEM;
158 	} while (pmd++, addr = next, addr != end);
159 	return 0;
160 }
161 
162 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
163 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 	pud_t *pud;
166 	unsigned long next;
167 
168 	pud = pud_alloc(&init_mm, pgd, addr);
169 	if (!pud)
170 		return -ENOMEM;
171 	do {
172 		next = pud_addr_end(addr, end);
173 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
174 			return -ENOMEM;
175 	} while (pud++, addr = next, addr != end);
176 	return 0;
177 }
178 
179 /*
180  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181  * will have pfns corresponding to the "pages" array.
182  *
183  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
184  */
185 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
186 				   pgprot_t prot, struct page **pages)
187 {
188 	pgd_t *pgd;
189 	unsigned long next;
190 	unsigned long addr = start;
191 	int err = 0;
192 	int nr = 0;
193 
194 	BUG_ON(addr >= end);
195 	pgd = pgd_offset_k(addr);
196 	do {
197 		next = pgd_addr_end(addr, end);
198 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
199 		if (err)
200 			return err;
201 	} while (pgd++, addr = next, addr != end);
202 
203 	return nr;
204 }
205 
206 static int vmap_page_range(unsigned long start, unsigned long end,
207 			   pgprot_t prot, struct page **pages)
208 {
209 	int ret;
210 
211 	ret = vmap_page_range_noflush(start, end, prot, pages);
212 	flush_cache_vmap(start, end);
213 	return ret;
214 }
215 
216 int is_vmalloc_or_module_addr(const void *x)
217 {
218 	/*
219 	 * ARM, x86-64 and sparc64 put modules in a special place,
220 	 * and fall back on vmalloc() if that fails. Others
221 	 * just put it in the vmalloc space.
222 	 */
223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 	unsigned long addr = (unsigned long)x;
225 	if (addr >= MODULES_VADDR && addr < MODULES_END)
226 		return 1;
227 #endif
228 	return is_vmalloc_addr(x);
229 }
230 
231 /*
232  * Walk a vmap address to the struct page it maps.
233  */
234 struct page *vmalloc_to_page(const void *vmalloc_addr)
235 {
236 	unsigned long addr = (unsigned long) vmalloc_addr;
237 	struct page *page = NULL;
238 	pgd_t *pgd = pgd_offset_k(addr);
239 
240 	/*
241 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 	 * architectures that do not vmalloc module space
243 	 */
244 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
245 
246 	if (!pgd_none(*pgd)) {
247 		pud_t *pud = pud_offset(pgd, addr);
248 		if (!pud_none(*pud)) {
249 			pmd_t *pmd = pmd_offset(pud, addr);
250 			if (!pmd_none(*pmd)) {
251 				pte_t *ptep, pte;
252 
253 				ptep = pte_offset_map(pmd, addr);
254 				pte = *ptep;
255 				if (pte_present(pte))
256 					page = pte_page(pte);
257 				pte_unmap(ptep);
258 			}
259 		}
260 	}
261 	return page;
262 }
263 EXPORT_SYMBOL(vmalloc_to_page);
264 
265 /*
266  * Map a vmalloc()-space virtual address to the physical page frame number.
267  */
268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
269 {
270 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
271 }
272 EXPORT_SYMBOL(vmalloc_to_pfn);
273 
274 
275 /*** Global kva allocator ***/
276 
277 #define VM_LAZY_FREE	0x01
278 #define VM_LAZY_FREEING	0x02
279 #define VM_VM_AREA	0x04
280 
281 static DEFINE_SPINLOCK(vmap_area_lock);
282 /* Export for kexec only */
283 LIST_HEAD(vmap_area_list);
284 static struct rb_root vmap_area_root = RB_ROOT;
285 
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node *free_vmap_cache;
288 static unsigned long cached_hole_size;
289 static unsigned long cached_vstart;
290 static unsigned long cached_align;
291 
292 static unsigned long vmap_area_pcpu_hole;
293 
294 static struct vmap_area *__find_vmap_area(unsigned long addr)
295 {
296 	struct rb_node *n = vmap_area_root.rb_node;
297 
298 	while (n) {
299 		struct vmap_area *va;
300 
301 		va = rb_entry(n, struct vmap_area, rb_node);
302 		if (addr < va->va_start)
303 			n = n->rb_left;
304 		else if (addr >= va->va_end)
305 			n = n->rb_right;
306 		else
307 			return va;
308 	}
309 
310 	return NULL;
311 }
312 
313 static void __insert_vmap_area(struct vmap_area *va)
314 {
315 	struct rb_node **p = &vmap_area_root.rb_node;
316 	struct rb_node *parent = NULL;
317 	struct rb_node *tmp;
318 
319 	while (*p) {
320 		struct vmap_area *tmp_va;
321 
322 		parent = *p;
323 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 		if (va->va_start < tmp_va->va_end)
325 			p = &(*p)->rb_left;
326 		else if (va->va_end > tmp_va->va_start)
327 			p = &(*p)->rb_right;
328 		else
329 			BUG();
330 	}
331 
332 	rb_link_node(&va->rb_node, parent, p);
333 	rb_insert_color(&va->rb_node, &vmap_area_root);
334 
335 	/* address-sort this list */
336 	tmp = rb_prev(&va->rb_node);
337 	if (tmp) {
338 		struct vmap_area *prev;
339 		prev = rb_entry(tmp, struct vmap_area, rb_node);
340 		list_add_rcu(&va->list, &prev->list);
341 	} else
342 		list_add_rcu(&va->list, &vmap_area_list);
343 }
344 
345 static void purge_vmap_area_lazy(void);
346 
347 /*
348  * Allocate a region of KVA of the specified size and alignment, within the
349  * vstart and vend.
350  */
351 static struct vmap_area *alloc_vmap_area(unsigned long size,
352 				unsigned long align,
353 				unsigned long vstart, unsigned long vend,
354 				int node, gfp_t gfp_mask)
355 {
356 	struct vmap_area *va;
357 	struct rb_node *n;
358 	unsigned long addr;
359 	int purged = 0;
360 	struct vmap_area *first;
361 
362 	BUG_ON(!size);
363 	BUG_ON(offset_in_page(size));
364 	BUG_ON(!is_power_of_2(align));
365 
366 	va = kmalloc_node(sizeof(struct vmap_area),
367 			gfp_mask & GFP_RECLAIM_MASK, node);
368 	if (unlikely(!va))
369 		return ERR_PTR(-ENOMEM);
370 
371 	/*
372 	 * Only scan the relevant parts containing pointers to other objects
373 	 * to avoid false negatives.
374 	 */
375 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
376 
377 retry:
378 	spin_lock(&vmap_area_lock);
379 	/*
380 	 * Invalidate cache if we have more permissive parameters.
381 	 * cached_hole_size notes the largest hole noticed _below_
382 	 * the vmap_area cached in free_vmap_cache: if size fits
383 	 * into that hole, we want to scan from vstart to reuse
384 	 * the hole instead of allocating above free_vmap_cache.
385 	 * Note that __free_vmap_area may update free_vmap_cache
386 	 * without updating cached_hole_size or cached_align.
387 	 */
388 	if (!free_vmap_cache ||
389 			size < cached_hole_size ||
390 			vstart < cached_vstart ||
391 			align < cached_align) {
392 nocache:
393 		cached_hole_size = 0;
394 		free_vmap_cache = NULL;
395 	}
396 	/* record if we encounter less permissive parameters */
397 	cached_vstart = vstart;
398 	cached_align = align;
399 
400 	/* find starting point for our search */
401 	if (free_vmap_cache) {
402 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
403 		addr = ALIGN(first->va_end, align);
404 		if (addr < vstart)
405 			goto nocache;
406 		if (addr + size < addr)
407 			goto overflow;
408 
409 	} else {
410 		addr = ALIGN(vstart, align);
411 		if (addr + size < addr)
412 			goto overflow;
413 
414 		n = vmap_area_root.rb_node;
415 		first = NULL;
416 
417 		while (n) {
418 			struct vmap_area *tmp;
419 			tmp = rb_entry(n, struct vmap_area, rb_node);
420 			if (tmp->va_end >= addr) {
421 				first = tmp;
422 				if (tmp->va_start <= addr)
423 					break;
424 				n = n->rb_left;
425 			} else
426 				n = n->rb_right;
427 		}
428 
429 		if (!first)
430 			goto found;
431 	}
432 
433 	/* from the starting point, walk areas until a suitable hole is found */
434 	while (addr + size > first->va_start && addr + size <= vend) {
435 		if (addr + cached_hole_size < first->va_start)
436 			cached_hole_size = first->va_start - addr;
437 		addr = ALIGN(first->va_end, align);
438 		if (addr + size < addr)
439 			goto overflow;
440 
441 		if (list_is_last(&first->list, &vmap_area_list))
442 			goto found;
443 
444 		first = list_entry(first->list.next,
445 				struct vmap_area, list);
446 	}
447 
448 found:
449 	if (addr + size > vend)
450 		goto overflow;
451 
452 	va->va_start = addr;
453 	va->va_end = addr + size;
454 	va->flags = 0;
455 	__insert_vmap_area(va);
456 	free_vmap_cache = &va->rb_node;
457 	spin_unlock(&vmap_area_lock);
458 
459 	BUG_ON(va->va_start & (align-1));
460 	BUG_ON(va->va_start < vstart);
461 	BUG_ON(va->va_end > vend);
462 
463 	return va;
464 
465 overflow:
466 	spin_unlock(&vmap_area_lock);
467 	if (!purged) {
468 		purge_vmap_area_lazy();
469 		purged = 1;
470 		goto retry;
471 	}
472 	if (printk_ratelimit())
473 		pr_warn("vmap allocation for size %lu failed: "
474 			"use vmalloc=<size> to increase size.\n", size);
475 	kfree(va);
476 	return ERR_PTR(-EBUSY);
477 }
478 
479 static void __free_vmap_area(struct vmap_area *va)
480 {
481 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
482 
483 	if (free_vmap_cache) {
484 		if (va->va_end < cached_vstart) {
485 			free_vmap_cache = NULL;
486 		} else {
487 			struct vmap_area *cache;
488 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
489 			if (va->va_start <= cache->va_start) {
490 				free_vmap_cache = rb_prev(&va->rb_node);
491 				/*
492 				 * We don't try to update cached_hole_size or
493 				 * cached_align, but it won't go very wrong.
494 				 */
495 			}
496 		}
497 	}
498 	rb_erase(&va->rb_node, &vmap_area_root);
499 	RB_CLEAR_NODE(&va->rb_node);
500 	list_del_rcu(&va->list);
501 
502 	/*
503 	 * Track the highest possible candidate for pcpu area
504 	 * allocation.  Areas outside of vmalloc area can be returned
505 	 * here too, consider only end addresses which fall inside
506 	 * vmalloc area proper.
507 	 */
508 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
509 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
510 
511 	kfree_rcu(va, rcu_head);
512 }
513 
514 /*
515  * Free a region of KVA allocated by alloc_vmap_area
516  */
517 static void free_vmap_area(struct vmap_area *va)
518 {
519 	spin_lock(&vmap_area_lock);
520 	__free_vmap_area(va);
521 	spin_unlock(&vmap_area_lock);
522 }
523 
524 /*
525  * Clear the pagetable entries of a given vmap_area
526  */
527 static void unmap_vmap_area(struct vmap_area *va)
528 {
529 	vunmap_page_range(va->va_start, va->va_end);
530 }
531 
532 static void vmap_debug_free_range(unsigned long start, unsigned long end)
533 {
534 	/*
535 	 * Unmap page tables and force a TLB flush immediately if
536 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
537 	 * bugs similarly to those in linear kernel virtual address
538 	 * space after a page has been freed.
539 	 *
540 	 * All the lazy freeing logic is still retained, in order to
541 	 * minimise intrusiveness of this debugging feature.
542 	 *
543 	 * This is going to be *slow* (linear kernel virtual address
544 	 * debugging doesn't do a broadcast TLB flush so it is a lot
545 	 * faster).
546 	 */
547 #ifdef CONFIG_DEBUG_PAGEALLOC
548 	vunmap_page_range(start, end);
549 	flush_tlb_kernel_range(start, end);
550 #endif
551 }
552 
553 /*
554  * lazy_max_pages is the maximum amount of virtual address space we gather up
555  * before attempting to purge with a TLB flush.
556  *
557  * There is a tradeoff here: a larger number will cover more kernel page tables
558  * and take slightly longer to purge, but it will linearly reduce the number of
559  * global TLB flushes that must be performed. It would seem natural to scale
560  * this number up linearly with the number of CPUs (because vmapping activity
561  * could also scale linearly with the number of CPUs), however it is likely
562  * that in practice, workloads might be constrained in other ways that mean
563  * vmap activity will not scale linearly with CPUs. Also, I want to be
564  * conservative and not introduce a big latency on huge systems, so go with
565  * a less aggressive log scale. It will still be an improvement over the old
566  * code, and it will be simple to change the scale factor if we find that it
567  * becomes a problem on bigger systems.
568  */
569 static unsigned long lazy_max_pages(void)
570 {
571 	unsigned int log;
572 
573 	log = fls(num_online_cpus());
574 
575 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
576 }
577 
578 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
579 
580 /* for per-CPU blocks */
581 static void purge_fragmented_blocks_allcpus(void);
582 
583 /*
584  * called before a call to iounmap() if the caller wants vm_area_struct's
585  * immediately freed.
586  */
587 void set_iounmap_nonlazy(void)
588 {
589 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
590 }
591 
592 /*
593  * Purges all lazily-freed vmap areas.
594  *
595  * If sync is 0 then don't purge if there is already a purge in progress.
596  * If force_flush is 1, then flush kernel TLBs between *start and *end even
597  * if we found no lazy vmap areas to unmap (callers can use this to optimise
598  * their own TLB flushing).
599  * Returns with *start = min(*start, lowest purged address)
600  *              *end = max(*end, highest purged address)
601  */
602 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
603 					int sync, int force_flush)
604 {
605 	static DEFINE_SPINLOCK(purge_lock);
606 	LIST_HEAD(valist);
607 	struct vmap_area *va;
608 	struct vmap_area *n_va;
609 	int nr = 0;
610 
611 	/*
612 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
613 	 * should not expect such behaviour. This just simplifies locking for
614 	 * the case that isn't actually used at the moment anyway.
615 	 */
616 	if (!sync && !force_flush) {
617 		if (!spin_trylock(&purge_lock))
618 			return;
619 	} else
620 		spin_lock(&purge_lock);
621 
622 	if (sync)
623 		purge_fragmented_blocks_allcpus();
624 
625 	rcu_read_lock();
626 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
627 		if (va->flags & VM_LAZY_FREE) {
628 			if (va->va_start < *start)
629 				*start = va->va_start;
630 			if (va->va_end > *end)
631 				*end = va->va_end;
632 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
633 			list_add_tail(&va->purge_list, &valist);
634 			va->flags |= VM_LAZY_FREEING;
635 			va->flags &= ~VM_LAZY_FREE;
636 		}
637 	}
638 	rcu_read_unlock();
639 
640 	if (nr)
641 		atomic_sub(nr, &vmap_lazy_nr);
642 
643 	if (nr || force_flush)
644 		flush_tlb_kernel_range(*start, *end);
645 
646 	if (nr) {
647 		spin_lock(&vmap_area_lock);
648 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
649 			__free_vmap_area(va);
650 		spin_unlock(&vmap_area_lock);
651 	}
652 	spin_unlock(&purge_lock);
653 }
654 
655 /*
656  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
657  * is already purging.
658  */
659 static void try_purge_vmap_area_lazy(void)
660 {
661 	unsigned long start = ULONG_MAX, end = 0;
662 
663 	__purge_vmap_area_lazy(&start, &end, 0, 0);
664 }
665 
666 /*
667  * Kick off a purge of the outstanding lazy areas.
668  */
669 static void purge_vmap_area_lazy(void)
670 {
671 	unsigned long start = ULONG_MAX, end = 0;
672 
673 	__purge_vmap_area_lazy(&start, &end, 1, 0);
674 }
675 
676 /*
677  * Free a vmap area, caller ensuring that the area has been unmapped
678  * and flush_cache_vunmap had been called for the correct range
679  * previously.
680  */
681 static void free_vmap_area_noflush(struct vmap_area *va)
682 {
683 	va->flags |= VM_LAZY_FREE;
684 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
685 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
686 		try_purge_vmap_area_lazy();
687 }
688 
689 /*
690  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
691  * called for the correct range previously.
692  */
693 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
694 {
695 	unmap_vmap_area(va);
696 	free_vmap_area_noflush(va);
697 }
698 
699 /*
700  * Free and unmap a vmap area
701  */
702 static void free_unmap_vmap_area(struct vmap_area *va)
703 {
704 	flush_cache_vunmap(va->va_start, va->va_end);
705 	free_unmap_vmap_area_noflush(va);
706 }
707 
708 static struct vmap_area *find_vmap_area(unsigned long addr)
709 {
710 	struct vmap_area *va;
711 
712 	spin_lock(&vmap_area_lock);
713 	va = __find_vmap_area(addr);
714 	spin_unlock(&vmap_area_lock);
715 
716 	return va;
717 }
718 
719 static void free_unmap_vmap_area_addr(unsigned long addr)
720 {
721 	struct vmap_area *va;
722 
723 	va = find_vmap_area(addr);
724 	BUG_ON(!va);
725 	free_unmap_vmap_area(va);
726 }
727 
728 
729 /*** Per cpu kva allocator ***/
730 
731 /*
732  * vmap space is limited especially on 32 bit architectures. Ensure there is
733  * room for at least 16 percpu vmap blocks per CPU.
734  */
735 /*
736  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
737  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
738  * instead (we just need a rough idea)
739  */
740 #if BITS_PER_LONG == 32
741 #define VMALLOC_SPACE		(128UL*1024*1024)
742 #else
743 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
744 #endif
745 
746 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
747 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
748 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
749 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
750 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
751 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
752 #define VMAP_BBMAP_BITS		\
753 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
754 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
755 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
756 
757 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
758 
759 static bool vmap_initialized __read_mostly = false;
760 
761 struct vmap_block_queue {
762 	spinlock_t lock;
763 	struct list_head free;
764 };
765 
766 struct vmap_block {
767 	spinlock_t lock;
768 	struct vmap_area *va;
769 	unsigned long free, dirty;
770 	unsigned long dirty_min, dirty_max; /*< dirty range */
771 	struct list_head free_list;
772 	struct rcu_head rcu_head;
773 	struct list_head purge;
774 };
775 
776 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
777 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
778 
779 /*
780  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
781  * in the free path. Could get rid of this if we change the API to return a
782  * "cookie" from alloc, to be passed to free. But no big deal yet.
783  */
784 static DEFINE_SPINLOCK(vmap_block_tree_lock);
785 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
786 
787 /*
788  * We should probably have a fallback mechanism to allocate virtual memory
789  * out of partially filled vmap blocks. However vmap block sizing should be
790  * fairly reasonable according to the vmalloc size, so it shouldn't be a
791  * big problem.
792  */
793 
794 static unsigned long addr_to_vb_idx(unsigned long addr)
795 {
796 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
797 	addr /= VMAP_BLOCK_SIZE;
798 	return addr;
799 }
800 
801 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
802 {
803 	unsigned long addr;
804 
805 	addr = va_start + (pages_off << PAGE_SHIFT);
806 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
807 	return (void *)addr;
808 }
809 
810 /**
811  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
812  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
813  * @order:    how many 2^order pages should be occupied in newly allocated block
814  * @gfp_mask: flags for the page level allocator
815  *
816  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
817  */
818 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
819 {
820 	struct vmap_block_queue *vbq;
821 	struct vmap_block *vb;
822 	struct vmap_area *va;
823 	unsigned long vb_idx;
824 	int node, err;
825 	void *vaddr;
826 
827 	node = numa_node_id();
828 
829 	vb = kmalloc_node(sizeof(struct vmap_block),
830 			gfp_mask & GFP_RECLAIM_MASK, node);
831 	if (unlikely(!vb))
832 		return ERR_PTR(-ENOMEM);
833 
834 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
835 					VMALLOC_START, VMALLOC_END,
836 					node, gfp_mask);
837 	if (IS_ERR(va)) {
838 		kfree(vb);
839 		return ERR_CAST(va);
840 	}
841 
842 	err = radix_tree_preload(gfp_mask);
843 	if (unlikely(err)) {
844 		kfree(vb);
845 		free_vmap_area(va);
846 		return ERR_PTR(err);
847 	}
848 
849 	vaddr = vmap_block_vaddr(va->va_start, 0);
850 	spin_lock_init(&vb->lock);
851 	vb->va = va;
852 	/* At least something should be left free */
853 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
854 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
855 	vb->dirty = 0;
856 	vb->dirty_min = VMAP_BBMAP_BITS;
857 	vb->dirty_max = 0;
858 	INIT_LIST_HEAD(&vb->free_list);
859 
860 	vb_idx = addr_to_vb_idx(va->va_start);
861 	spin_lock(&vmap_block_tree_lock);
862 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
863 	spin_unlock(&vmap_block_tree_lock);
864 	BUG_ON(err);
865 	radix_tree_preload_end();
866 
867 	vbq = &get_cpu_var(vmap_block_queue);
868 	spin_lock(&vbq->lock);
869 	list_add_tail_rcu(&vb->free_list, &vbq->free);
870 	spin_unlock(&vbq->lock);
871 	put_cpu_var(vmap_block_queue);
872 
873 	return vaddr;
874 }
875 
876 static void free_vmap_block(struct vmap_block *vb)
877 {
878 	struct vmap_block *tmp;
879 	unsigned long vb_idx;
880 
881 	vb_idx = addr_to_vb_idx(vb->va->va_start);
882 	spin_lock(&vmap_block_tree_lock);
883 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
884 	spin_unlock(&vmap_block_tree_lock);
885 	BUG_ON(tmp != vb);
886 
887 	free_vmap_area_noflush(vb->va);
888 	kfree_rcu(vb, rcu_head);
889 }
890 
891 static void purge_fragmented_blocks(int cpu)
892 {
893 	LIST_HEAD(purge);
894 	struct vmap_block *vb;
895 	struct vmap_block *n_vb;
896 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
897 
898 	rcu_read_lock();
899 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
900 
901 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
902 			continue;
903 
904 		spin_lock(&vb->lock);
905 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
906 			vb->free = 0; /* prevent further allocs after releasing lock */
907 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
908 			vb->dirty_min = 0;
909 			vb->dirty_max = VMAP_BBMAP_BITS;
910 			spin_lock(&vbq->lock);
911 			list_del_rcu(&vb->free_list);
912 			spin_unlock(&vbq->lock);
913 			spin_unlock(&vb->lock);
914 			list_add_tail(&vb->purge, &purge);
915 		} else
916 			spin_unlock(&vb->lock);
917 	}
918 	rcu_read_unlock();
919 
920 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
921 		list_del(&vb->purge);
922 		free_vmap_block(vb);
923 	}
924 }
925 
926 static void purge_fragmented_blocks_allcpus(void)
927 {
928 	int cpu;
929 
930 	for_each_possible_cpu(cpu)
931 		purge_fragmented_blocks(cpu);
932 }
933 
934 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
935 {
936 	struct vmap_block_queue *vbq;
937 	struct vmap_block *vb;
938 	void *vaddr = NULL;
939 	unsigned int order;
940 
941 	BUG_ON(offset_in_page(size));
942 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
943 	if (WARN_ON(size == 0)) {
944 		/*
945 		 * Allocating 0 bytes isn't what caller wants since
946 		 * get_order(0) returns funny result. Just warn and terminate
947 		 * early.
948 		 */
949 		return NULL;
950 	}
951 	order = get_order(size);
952 
953 	rcu_read_lock();
954 	vbq = &get_cpu_var(vmap_block_queue);
955 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
956 		unsigned long pages_off;
957 
958 		spin_lock(&vb->lock);
959 		if (vb->free < (1UL << order)) {
960 			spin_unlock(&vb->lock);
961 			continue;
962 		}
963 
964 		pages_off = VMAP_BBMAP_BITS - vb->free;
965 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
966 		vb->free -= 1UL << order;
967 		if (vb->free == 0) {
968 			spin_lock(&vbq->lock);
969 			list_del_rcu(&vb->free_list);
970 			spin_unlock(&vbq->lock);
971 		}
972 
973 		spin_unlock(&vb->lock);
974 		break;
975 	}
976 
977 	put_cpu_var(vmap_block_queue);
978 	rcu_read_unlock();
979 
980 	/* Allocate new block if nothing was found */
981 	if (!vaddr)
982 		vaddr = new_vmap_block(order, gfp_mask);
983 
984 	return vaddr;
985 }
986 
987 static void vb_free(const void *addr, unsigned long size)
988 {
989 	unsigned long offset;
990 	unsigned long vb_idx;
991 	unsigned int order;
992 	struct vmap_block *vb;
993 
994 	BUG_ON(offset_in_page(size));
995 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
996 
997 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
998 
999 	order = get_order(size);
1000 
1001 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1002 	offset >>= PAGE_SHIFT;
1003 
1004 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1005 	rcu_read_lock();
1006 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1007 	rcu_read_unlock();
1008 	BUG_ON(!vb);
1009 
1010 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1011 
1012 	spin_lock(&vb->lock);
1013 
1014 	/* Expand dirty range */
1015 	vb->dirty_min = min(vb->dirty_min, offset);
1016 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1017 
1018 	vb->dirty += 1UL << order;
1019 	if (vb->dirty == VMAP_BBMAP_BITS) {
1020 		BUG_ON(vb->free);
1021 		spin_unlock(&vb->lock);
1022 		free_vmap_block(vb);
1023 	} else
1024 		spin_unlock(&vb->lock);
1025 }
1026 
1027 /**
1028  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1029  *
1030  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1031  * to amortize TLB flushing overheads. What this means is that any page you
1032  * have now, may, in a former life, have been mapped into kernel virtual
1033  * address by the vmap layer and so there might be some CPUs with TLB entries
1034  * still referencing that page (additional to the regular 1:1 kernel mapping).
1035  *
1036  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1037  * be sure that none of the pages we have control over will have any aliases
1038  * from the vmap layer.
1039  */
1040 void vm_unmap_aliases(void)
1041 {
1042 	unsigned long start = ULONG_MAX, end = 0;
1043 	int cpu;
1044 	int flush = 0;
1045 
1046 	if (unlikely(!vmap_initialized))
1047 		return;
1048 
1049 	for_each_possible_cpu(cpu) {
1050 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1051 		struct vmap_block *vb;
1052 
1053 		rcu_read_lock();
1054 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1055 			spin_lock(&vb->lock);
1056 			if (vb->dirty) {
1057 				unsigned long va_start = vb->va->va_start;
1058 				unsigned long s, e;
1059 
1060 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1061 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1062 
1063 				start = min(s, start);
1064 				end   = max(e, end);
1065 
1066 				flush = 1;
1067 			}
1068 			spin_unlock(&vb->lock);
1069 		}
1070 		rcu_read_unlock();
1071 	}
1072 
1073 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1074 }
1075 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1076 
1077 /**
1078  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1079  * @mem: the pointer returned by vm_map_ram
1080  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1081  */
1082 void vm_unmap_ram(const void *mem, unsigned int count)
1083 {
1084 	unsigned long size = count << PAGE_SHIFT;
1085 	unsigned long addr = (unsigned long)mem;
1086 
1087 	BUG_ON(!addr);
1088 	BUG_ON(addr < VMALLOC_START);
1089 	BUG_ON(addr > VMALLOC_END);
1090 	BUG_ON(addr & (PAGE_SIZE-1));
1091 
1092 	debug_check_no_locks_freed(mem, size);
1093 	vmap_debug_free_range(addr, addr+size);
1094 
1095 	if (likely(count <= VMAP_MAX_ALLOC))
1096 		vb_free(mem, size);
1097 	else
1098 		free_unmap_vmap_area_addr(addr);
1099 }
1100 EXPORT_SYMBOL(vm_unmap_ram);
1101 
1102 /**
1103  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1104  * @pages: an array of pointers to the pages to be mapped
1105  * @count: number of pages
1106  * @node: prefer to allocate data structures on this node
1107  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1108  *
1109  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1110  * faster than vmap so it's good.  But if you mix long-life and short-life
1111  * objects with vm_map_ram(), it could consume lots of address space through
1112  * fragmentation (especially on a 32bit machine).  You could see failures in
1113  * the end.  Please use this function for short-lived objects.
1114  *
1115  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1116  */
1117 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1118 {
1119 	unsigned long size = count << PAGE_SHIFT;
1120 	unsigned long addr;
1121 	void *mem;
1122 
1123 	if (likely(count <= VMAP_MAX_ALLOC)) {
1124 		mem = vb_alloc(size, GFP_KERNEL);
1125 		if (IS_ERR(mem))
1126 			return NULL;
1127 		addr = (unsigned long)mem;
1128 	} else {
1129 		struct vmap_area *va;
1130 		va = alloc_vmap_area(size, PAGE_SIZE,
1131 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1132 		if (IS_ERR(va))
1133 			return NULL;
1134 
1135 		addr = va->va_start;
1136 		mem = (void *)addr;
1137 	}
1138 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1139 		vm_unmap_ram(mem, count);
1140 		return NULL;
1141 	}
1142 	return mem;
1143 }
1144 EXPORT_SYMBOL(vm_map_ram);
1145 
1146 static struct vm_struct *vmlist __initdata;
1147 /**
1148  * vm_area_add_early - add vmap area early during boot
1149  * @vm: vm_struct to add
1150  *
1151  * This function is used to add fixed kernel vm area to vmlist before
1152  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1153  * should contain proper values and the other fields should be zero.
1154  *
1155  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1156  */
1157 void __init vm_area_add_early(struct vm_struct *vm)
1158 {
1159 	struct vm_struct *tmp, **p;
1160 
1161 	BUG_ON(vmap_initialized);
1162 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1163 		if (tmp->addr >= vm->addr) {
1164 			BUG_ON(tmp->addr < vm->addr + vm->size);
1165 			break;
1166 		} else
1167 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1168 	}
1169 	vm->next = *p;
1170 	*p = vm;
1171 }
1172 
1173 /**
1174  * vm_area_register_early - register vmap area early during boot
1175  * @vm: vm_struct to register
1176  * @align: requested alignment
1177  *
1178  * This function is used to register kernel vm area before
1179  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1180  * proper values on entry and other fields should be zero.  On return,
1181  * vm->addr contains the allocated address.
1182  *
1183  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1184  */
1185 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1186 {
1187 	static size_t vm_init_off __initdata;
1188 	unsigned long addr;
1189 
1190 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1191 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1192 
1193 	vm->addr = (void *)addr;
1194 
1195 	vm_area_add_early(vm);
1196 }
1197 
1198 void __init vmalloc_init(void)
1199 {
1200 	struct vmap_area *va;
1201 	struct vm_struct *tmp;
1202 	int i;
1203 
1204 	for_each_possible_cpu(i) {
1205 		struct vmap_block_queue *vbq;
1206 		struct vfree_deferred *p;
1207 
1208 		vbq = &per_cpu(vmap_block_queue, i);
1209 		spin_lock_init(&vbq->lock);
1210 		INIT_LIST_HEAD(&vbq->free);
1211 		p = &per_cpu(vfree_deferred, i);
1212 		init_llist_head(&p->list);
1213 		INIT_WORK(&p->wq, free_work);
1214 	}
1215 
1216 	/* Import existing vmlist entries. */
1217 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1218 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1219 		va->flags = VM_VM_AREA;
1220 		va->va_start = (unsigned long)tmp->addr;
1221 		va->va_end = va->va_start + tmp->size;
1222 		va->vm = tmp;
1223 		__insert_vmap_area(va);
1224 	}
1225 
1226 	vmap_area_pcpu_hole = VMALLOC_END;
1227 
1228 	vmap_initialized = true;
1229 }
1230 
1231 /**
1232  * map_kernel_range_noflush - map kernel VM area with the specified pages
1233  * @addr: start of the VM area to map
1234  * @size: size of the VM area to map
1235  * @prot: page protection flags to use
1236  * @pages: pages to map
1237  *
1238  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1239  * specify should have been allocated using get_vm_area() and its
1240  * friends.
1241  *
1242  * NOTE:
1243  * This function does NOT do any cache flushing.  The caller is
1244  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1245  * before calling this function.
1246  *
1247  * RETURNS:
1248  * The number of pages mapped on success, -errno on failure.
1249  */
1250 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1251 			     pgprot_t prot, struct page **pages)
1252 {
1253 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1254 }
1255 
1256 /**
1257  * unmap_kernel_range_noflush - unmap kernel VM area
1258  * @addr: start of the VM area to unmap
1259  * @size: size of the VM area to unmap
1260  *
1261  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1262  * specify should have been allocated using get_vm_area() and its
1263  * friends.
1264  *
1265  * NOTE:
1266  * This function does NOT do any cache flushing.  The caller is
1267  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1268  * before calling this function and flush_tlb_kernel_range() after.
1269  */
1270 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1271 {
1272 	vunmap_page_range(addr, addr + size);
1273 }
1274 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1275 
1276 /**
1277  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1278  * @addr: start of the VM area to unmap
1279  * @size: size of the VM area to unmap
1280  *
1281  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1282  * the unmapping and tlb after.
1283  */
1284 void unmap_kernel_range(unsigned long addr, unsigned long size)
1285 {
1286 	unsigned long end = addr + size;
1287 
1288 	flush_cache_vunmap(addr, end);
1289 	vunmap_page_range(addr, end);
1290 	flush_tlb_kernel_range(addr, end);
1291 }
1292 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1293 
1294 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1295 {
1296 	unsigned long addr = (unsigned long)area->addr;
1297 	unsigned long end = addr + get_vm_area_size(area);
1298 	int err;
1299 
1300 	err = vmap_page_range(addr, end, prot, pages);
1301 
1302 	return err > 0 ? 0 : err;
1303 }
1304 EXPORT_SYMBOL_GPL(map_vm_area);
1305 
1306 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1307 			      unsigned long flags, const void *caller)
1308 {
1309 	spin_lock(&vmap_area_lock);
1310 	vm->flags = flags;
1311 	vm->addr = (void *)va->va_start;
1312 	vm->size = va->va_end - va->va_start;
1313 	vm->caller = caller;
1314 	va->vm = vm;
1315 	va->flags |= VM_VM_AREA;
1316 	spin_unlock(&vmap_area_lock);
1317 }
1318 
1319 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1320 {
1321 	/*
1322 	 * Before removing VM_UNINITIALIZED,
1323 	 * we should make sure that vm has proper values.
1324 	 * Pair with smp_rmb() in show_numa_info().
1325 	 */
1326 	smp_wmb();
1327 	vm->flags &= ~VM_UNINITIALIZED;
1328 }
1329 
1330 static struct vm_struct *__get_vm_area_node(unsigned long size,
1331 		unsigned long align, unsigned long flags, unsigned long start,
1332 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1333 {
1334 	struct vmap_area *va;
1335 	struct vm_struct *area;
1336 
1337 	BUG_ON(in_interrupt());
1338 	if (flags & VM_IOREMAP)
1339 		align = 1ul << clamp_t(int, fls_long(size),
1340 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1341 
1342 	size = PAGE_ALIGN(size);
1343 	if (unlikely(!size))
1344 		return NULL;
1345 
1346 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1347 	if (unlikely(!area))
1348 		return NULL;
1349 
1350 	if (!(flags & VM_NO_GUARD))
1351 		size += PAGE_SIZE;
1352 
1353 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1354 	if (IS_ERR(va)) {
1355 		kfree(area);
1356 		return NULL;
1357 	}
1358 
1359 	setup_vmalloc_vm(area, va, flags, caller);
1360 
1361 	return area;
1362 }
1363 
1364 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1365 				unsigned long start, unsigned long end)
1366 {
1367 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1368 				  GFP_KERNEL, __builtin_return_address(0));
1369 }
1370 EXPORT_SYMBOL_GPL(__get_vm_area);
1371 
1372 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1373 				       unsigned long start, unsigned long end,
1374 				       const void *caller)
1375 {
1376 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1377 				  GFP_KERNEL, caller);
1378 }
1379 
1380 /**
1381  *	get_vm_area  -  reserve a contiguous kernel virtual area
1382  *	@size:		size of the area
1383  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1384  *
1385  *	Search an area of @size in the kernel virtual mapping area,
1386  *	and reserved it for out purposes.  Returns the area descriptor
1387  *	on success or %NULL on failure.
1388  */
1389 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1390 {
1391 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1392 				  NUMA_NO_NODE, GFP_KERNEL,
1393 				  __builtin_return_address(0));
1394 }
1395 
1396 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1397 				const void *caller)
1398 {
1399 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1400 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1401 }
1402 
1403 /**
1404  *	find_vm_area  -  find a continuous kernel virtual area
1405  *	@addr:		base address
1406  *
1407  *	Search for the kernel VM area starting at @addr, and return it.
1408  *	It is up to the caller to do all required locking to keep the returned
1409  *	pointer valid.
1410  */
1411 struct vm_struct *find_vm_area(const void *addr)
1412 {
1413 	struct vmap_area *va;
1414 
1415 	va = find_vmap_area((unsigned long)addr);
1416 	if (va && va->flags & VM_VM_AREA)
1417 		return va->vm;
1418 
1419 	return NULL;
1420 }
1421 
1422 /**
1423  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1424  *	@addr:		base address
1425  *
1426  *	Search for the kernel VM area starting at @addr, and remove it.
1427  *	This function returns the found VM area, but using it is NOT safe
1428  *	on SMP machines, except for its size or flags.
1429  */
1430 struct vm_struct *remove_vm_area(const void *addr)
1431 {
1432 	struct vmap_area *va;
1433 
1434 	va = find_vmap_area((unsigned long)addr);
1435 	if (va && va->flags & VM_VM_AREA) {
1436 		struct vm_struct *vm = va->vm;
1437 
1438 		spin_lock(&vmap_area_lock);
1439 		va->vm = NULL;
1440 		va->flags &= ~VM_VM_AREA;
1441 		spin_unlock(&vmap_area_lock);
1442 
1443 		vmap_debug_free_range(va->va_start, va->va_end);
1444 		kasan_free_shadow(vm);
1445 		free_unmap_vmap_area(va);
1446 
1447 		return vm;
1448 	}
1449 	return NULL;
1450 }
1451 
1452 static void __vunmap(const void *addr, int deallocate_pages)
1453 {
1454 	struct vm_struct *area;
1455 
1456 	if (!addr)
1457 		return;
1458 
1459 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1460 			addr))
1461 		return;
1462 
1463 	area = remove_vm_area(addr);
1464 	if (unlikely(!area)) {
1465 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1466 				addr);
1467 		return;
1468 	}
1469 
1470 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1471 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1472 
1473 	if (deallocate_pages) {
1474 		int i;
1475 
1476 		for (i = 0; i < area->nr_pages; i++) {
1477 			struct page *page = area->pages[i];
1478 
1479 			BUG_ON(!page);
1480 			__free_page(page);
1481 		}
1482 
1483 		if (area->flags & VM_VPAGES)
1484 			vfree(area->pages);
1485 		else
1486 			kfree(area->pages);
1487 	}
1488 
1489 	kfree(area);
1490 	return;
1491 }
1492 
1493 /**
1494  *	vfree  -  release memory allocated by vmalloc()
1495  *	@addr:		memory base address
1496  *
1497  *	Free the virtually continuous memory area starting at @addr, as
1498  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1499  *	NULL, no operation is performed.
1500  *
1501  *	Must not be called in NMI context (strictly speaking, only if we don't
1502  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1503  *	conventions for vfree() arch-depenedent would be a really bad idea)
1504  *
1505  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1506  */
1507 void vfree(const void *addr)
1508 {
1509 	BUG_ON(in_nmi());
1510 
1511 	kmemleak_free(addr);
1512 
1513 	if (!addr)
1514 		return;
1515 	if (unlikely(in_interrupt())) {
1516 		struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1517 		if (llist_add((struct llist_node *)addr, &p->list))
1518 			schedule_work(&p->wq);
1519 	} else
1520 		__vunmap(addr, 1);
1521 }
1522 EXPORT_SYMBOL(vfree);
1523 
1524 /**
1525  *	vunmap  -  release virtual mapping obtained by vmap()
1526  *	@addr:		memory base address
1527  *
1528  *	Free the virtually contiguous memory area starting at @addr,
1529  *	which was created from the page array passed to vmap().
1530  *
1531  *	Must not be called in interrupt context.
1532  */
1533 void vunmap(const void *addr)
1534 {
1535 	BUG_ON(in_interrupt());
1536 	might_sleep();
1537 	if (addr)
1538 		__vunmap(addr, 0);
1539 }
1540 EXPORT_SYMBOL(vunmap);
1541 
1542 /**
1543  *	vmap  -  map an array of pages into virtually contiguous space
1544  *	@pages:		array of page pointers
1545  *	@count:		number of pages to map
1546  *	@flags:		vm_area->flags
1547  *	@prot:		page protection for the mapping
1548  *
1549  *	Maps @count pages from @pages into contiguous kernel virtual
1550  *	space.
1551  */
1552 void *vmap(struct page **pages, unsigned int count,
1553 		unsigned long flags, pgprot_t prot)
1554 {
1555 	struct vm_struct *area;
1556 
1557 	might_sleep();
1558 
1559 	if (count > totalram_pages)
1560 		return NULL;
1561 
1562 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1563 					__builtin_return_address(0));
1564 	if (!area)
1565 		return NULL;
1566 
1567 	if (map_vm_area(area, prot, pages)) {
1568 		vunmap(area->addr);
1569 		return NULL;
1570 	}
1571 
1572 	return area->addr;
1573 }
1574 EXPORT_SYMBOL(vmap);
1575 
1576 static void *__vmalloc_node(unsigned long size, unsigned long align,
1577 			    gfp_t gfp_mask, pgprot_t prot,
1578 			    int node, const void *caller);
1579 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1580 				 pgprot_t prot, int node)
1581 {
1582 	const int order = 0;
1583 	struct page **pages;
1584 	unsigned int nr_pages, array_size, i;
1585 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1586 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1587 
1588 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1589 	array_size = (nr_pages * sizeof(struct page *));
1590 
1591 	area->nr_pages = nr_pages;
1592 	/* Please note that the recursion is strictly bounded. */
1593 	if (array_size > PAGE_SIZE) {
1594 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1595 				PAGE_KERNEL, node, area->caller);
1596 		area->flags |= VM_VPAGES;
1597 	} else {
1598 		pages = kmalloc_node(array_size, nested_gfp, node);
1599 	}
1600 	area->pages = pages;
1601 	if (!area->pages) {
1602 		remove_vm_area(area->addr);
1603 		kfree(area);
1604 		return NULL;
1605 	}
1606 
1607 	for (i = 0; i < area->nr_pages; i++) {
1608 		struct page *page;
1609 
1610 		if (node == NUMA_NO_NODE)
1611 			page = alloc_page(alloc_mask);
1612 		else
1613 			page = alloc_pages_node(node, alloc_mask, order);
1614 
1615 		if (unlikely(!page)) {
1616 			/* Successfully allocated i pages, free them in __vunmap() */
1617 			area->nr_pages = i;
1618 			goto fail;
1619 		}
1620 		area->pages[i] = page;
1621 		if (gfpflags_allow_blocking(gfp_mask))
1622 			cond_resched();
1623 	}
1624 
1625 	if (map_vm_area(area, prot, pages))
1626 		goto fail;
1627 	return area->addr;
1628 
1629 fail:
1630 	warn_alloc_failed(gfp_mask, order,
1631 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1632 			  (area->nr_pages*PAGE_SIZE), area->size);
1633 	vfree(area->addr);
1634 	return NULL;
1635 }
1636 
1637 /**
1638  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1639  *	@size:		allocation size
1640  *	@align:		desired alignment
1641  *	@start:		vm area range start
1642  *	@end:		vm area range end
1643  *	@gfp_mask:	flags for the page level allocator
1644  *	@prot:		protection mask for the allocated pages
1645  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1646  *	@node:		node to use for allocation or NUMA_NO_NODE
1647  *	@caller:	caller's return address
1648  *
1649  *	Allocate enough pages to cover @size from the page level
1650  *	allocator with @gfp_mask flags.  Map them into contiguous
1651  *	kernel virtual space, using a pagetable protection of @prot.
1652  */
1653 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1654 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1655 			pgprot_t prot, unsigned long vm_flags, int node,
1656 			const void *caller)
1657 {
1658 	struct vm_struct *area;
1659 	void *addr;
1660 	unsigned long real_size = size;
1661 
1662 	size = PAGE_ALIGN(size);
1663 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1664 		goto fail;
1665 
1666 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1667 				vm_flags, start, end, node, gfp_mask, caller);
1668 	if (!area)
1669 		goto fail;
1670 
1671 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1672 	if (!addr)
1673 		return NULL;
1674 
1675 	/*
1676 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1677 	 * flag. It means that vm_struct is not fully initialized.
1678 	 * Now, it is fully initialized, so remove this flag here.
1679 	 */
1680 	clear_vm_uninitialized_flag(area);
1681 
1682 	/*
1683 	 * A ref_count = 2 is needed because vm_struct allocated in
1684 	 * __get_vm_area_node() contains a reference to the virtual address of
1685 	 * the vmalloc'ed block.
1686 	 */
1687 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1688 
1689 	return addr;
1690 
1691 fail:
1692 	warn_alloc_failed(gfp_mask, 0,
1693 			  "vmalloc: allocation failure: %lu bytes\n",
1694 			  real_size);
1695 	return NULL;
1696 }
1697 
1698 /**
1699  *	__vmalloc_node  -  allocate virtually contiguous memory
1700  *	@size:		allocation size
1701  *	@align:		desired alignment
1702  *	@gfp_mask:	flags for the page level allocator
1703  *	@prot:		protection mask for the allocated pages
1704  *	@node:		node to use for allocation or NUMA_NO_NODE
1705  *	@caller:	caller's return address
1706  *
1707  *	Allocate enough pages to cover @size from the page level
1708  *	allocator with @gfp_mask flags.  Map them into contiguous
1709  *	kernel virtual space, using a pagetable protection of @prot.
1710  */
1711 static void *__vmalloc_node(unsigned long size, unsigned long align,
1712 			    gfp_t gfp_mask, pgprot_t prot,
1713 			    int node, const void *caller)
1714 {
1715 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1716 				gfp_mask, prot, 0, node, caller);
1717 }
1718 
1719 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1720 {
1721 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1722 				__builtin_return_address(0));
1723 }
1724 EXPORT_SYMBOL(__vmalloc);
1725 
1726 static inline void *__vmalloc_node_flags(unsigned long size,
1727 					int node, gfp_t flags)
1728 {
1729 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1730 					node, __builtin_return_address(0));
1731 }
1732 
1733 /**
1734  *	vmalloc  -  allocate virtually contiguous memory
1735  *	@size:		allocation size
1736  *	Allocate enough pages to cover @size from the page level
1737  *	allocator and map them into contiguous kernel virtual space.
1738  *
1739  *	For tight control over page level allocator and protection flags
1740  *	use __vmalloc() instead.
1741  */
1742 void *vmalloc(unsigned long size)
1743 {
1744 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1745 				    GFP_KERNEL | __GFP_HIGHMEM);
1746 }
1747 EXPORT_SYMBOL(vmalloc);
1748 
1749 /**
1750  *	vzalloc - allocate virtually contiguous memory with zero fill
1751  *	@size:	allocation size
1752  *	Allocate enough pages to cover @size from the page level
1753  *	allocator and map them into contiguous kernel virtual space.
1754  *	The memory allocated is set to zero.
1755  *
1756  *	For tight control over page level allocator and protection flags
1757  *	use __vmalloc() instead.
1758  */
1759 void *vzalloc(unsigned long size)
1760 {
1761 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1762 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1763 }
1764 EXPORT_SYMBOL(vzalloc);
1765 
1766 /**
1767  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1768  * @size: allocation size
1769  *
1770  * The resulting memory area is zeroed so it can be mapped to userspace
1771  * without leaking data.
1772  */
1773 void *vmalloc_user(unsigned long size)
1774 {
1775 	struct vm_struct *area;
1776 	void *ret;
1777 
1778 	ret = __vmalloc_node(size, SHMLBA,
1779 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1780 			     PAGE_KERNEL, NUMA_NO_NODE,
1781 			     __builtin_return_address(0));
1782 	if (ret) {
1783 		area = find_vm_area(ret);
1784 		area->flags |= VM_USERMAP;
1785 	}
1786 	return ret;
1787 }
1788 EXPORT_SYMBOL(vmalloc_user);
1789 
1790 /**
1791  *	vmalloc_node  -  allocate memory on a specific node
1792  *	@size:		allocation size
1793  *	@node:		numa node
1794  *
1795  *	Allocate enough pages to cover @size from the page level
1796  *	allocator and map them into contiguous kernel virtual space.
1797  *
1798  *	For tight control over page level allocator and protection flags
1799  *	use __vmalloc() instead.
1800  */
1801 void *vmalloc_node(unsigned long size, int node)
1802 {
1803 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1804 					node, __builtin_return_address(0));
1805 }
1806 EXPORT_SYMBOL(vmalloc_node);
1807 
1808 /**
1809  * vzalloc_node - allocate memory on a specific node with zero fill
1810  * @size:	allocation size
1811  * @node:	numa node
1812  *
1813  * Allocate enough pages to cover @size from the page level
1814  * allocator and map them into contiguous kernel virtual space.
1815  * The memory allocated is set to zero.
1816  *
1817  * For tight control over page level allocator and protection flags
1818  * use __vmalloc_node() instead.
1819  */
1820 void *vzalloc_node(unsigned long size, int node)
1821 {
1822 	return __vmalloc_node_flags(size, node,
1823 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1824 }
1825 EXPORT_SYMBOL(vzalloc_node);
1826 
1827 #ifndef PAGE_KERNEL_EXEC
1828 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1829 #endif
1830 
1831 /**
1832  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1833  *	@size:		allocation size
1834  *
1835  *	Kernel-internal function to allocate enough pages to cover @size
1836  *	the page level allocator and map them into contiguous and
1837  *	executable kernel virtual space.
1838  *
1839  *	For tight control over page level allocator and protection flags
1840  *	use __vmalloc() instead.
1841  */
1842 
1843 void *vmalloc_exec(unsigned long size)
1844 {
1845 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1846 			      NUMA_NO_NODE, __builtin_return_address(0));
1847 }
1848 
1849 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1850 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1851 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1852 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1853 #else
1854 #define GFP_VMALLOC32 GFP_KERNEL
1855 #endif
1856 
1857 /**
1858  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1859  *	@size:		allocation size
1860  *
1861  *	Allocate enough 32bit PA addressable pages to cover @size from the
1862  *	page level allocator and map them into contiguous kernel virtual space.
1863  */
1864 void *vmalloc_32(unsigned long size)
1865 {
1866 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1867 			      NUMA_NO_NODE, __builtin_return_address(0));
1868 }
1869 EXPORT_SYMBOL(vmalloc_32);
1870 
1871 /**
1872  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1873  *	@size:		allocation size
1874  *
1875  * The resulting memory area is 32bit addressable and zeroed so it can be
1876  * mapped to userspace without leaking data.
1877  */
1878 void *vmalloc_32_user(unsigned long size)
1879 {
1880 	struct vm_struct *area;
1881 	void *ret;
1882 
1883 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1884 			     NUMA_NO_NODE, __builtin_return_address(0));
1885 	if (ret) {
1886 		area = find_vm_area(ret);
1887 		area->flags |= VM_USERMAP;
1888 	}
1889 	return ret;
1890 }
1891 EXPORT_SYMBOL(vmalloc_32_user);
1892 
1893 /*
1894  * small helper routine , copy contents to buf from addr.
1895  * If the page is not present, fill zero.
1896  */
1897 
1898 static int aligned_vread(char *buf, char *addr, unsigned long count)
1899 {
1900 	struct page *p;
1901 	int copied = 0;
1902 
1903 	while (count) {
1904 		unsigned long offset, length;
1905 
1906 		offset = offset_in_page(addr);
1907 		length = PAGE_SIZE - offset;
1908 		if (length > count)
1909 			length = count;
1910 		p = vmalloc_to_page(addr);
1911 		/*
1912 		 * To do safe access to this _mapped_ area, we need
1913 		 * lock. But adding lock here means that we need to add
1914 		 * overhead of vmalloc()/vfree() calles for this _debug_
1915 		 * interface, rarely used. Instead of that, we'll use
1916 		 * kmap() and get small overhead in this access function.
1917 		 */
1918 		if (p) {
1919 			/*
1920 			 * we can expect USER0 is not used (see vread/vwrite's
1921 			 * function description)
1922 			 */
1923 			void *map = kmap_atomic(p);
1924 			memcpy(buf, map + offset, length);
1925 			kunmap_atomic(map);
1926 		} else
1927 			memset(buf, 0, length);
1928 
1929 		addr += length;
1930 		buf += length;
1931 		copied += length;
1932 		count -= length;
1933 	}
1934 	return copied;
1935 }
1936 
1937 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1938 {
1939 	struct page *p;
1940 	int copied = 0;
1941 
1942 	while (count) {
1943 		unsigned long offset, length;
1944 
1945 		offset = offset_in_page(addr);
1946 		length = PAGE_SIZE - offset;
1947 		if (length > count)
1948 			length = count;
1949 		p = vmalloc_to_page(addr);
1950 		/*
1951 		 * To do safe access to this _mapped_ area, we need
1952 		 * lock. But adding lock here means that we need to add
1953 		 * overhead of vmalloc()/vfree() calles for this _debug_
1954 		 * interface, rarely used. Instead of that, we'll use
1955 		 * kmap() and get small overhead in this access function.
1956 		 */
1957 		if (p) {
1958 			/*
1959 			 * we can expect USER0 is not used (see vread/vwrite's
1960 			 * function description)
1961 			 */
1962 			void *map = kmap_atomic(p);
1963 			memcpy(map + offset, buf, length);
1964 			kunmap_atomic(map);
1965 		}
1966 		addr += length;
1967 		buf += length;
1968 		copied += length;
1969 		count -= length;
1970 	}
1971 	return copied;
1972 }
1973 
1974 /**
1975  *	vread() -  read vmalloc area in a safe way.
1976  *	@buf:		buffer for reading data
1977  *	@addr:		vm address.
1978  *	@count:		number of bytes to be read.
1979  *
1980  *	Returns # of bytes which addr and buf should be increased.
1981  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1982  *	includes any intersect with alive vmalloc area.
1983  *
1984  *	This function checks that addr is a valid vmalloc'ed area, and
1985  *	copy data from that area to a given buffer. If the given memory range
1986  *	of [addr...addr+count) includes some valid address, data is copied to
1987  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1988  *	IOREMAP area is treated as memory hole and no copy is done.
1989  *
1990  *	If [addr...addr+count) doesn't includes any intersects with alive
1991  *	vm_struct area, returns 0. @buf should be kernel's buffer.
1992  *
1993  *	Note: In usual ops, vread() is never necessary because the caller
1994  *	should know vmalloc() area is valid and can use memcpy().
1995  *	This is for routines which have to access vmalloc area without
1996  *	any informaion, as /dev/kmem.
1997  *
1998  */
1999 
2000 long vread(char *buf, char *addr, unsigned long count)
2001 {
2002 	struct vmap_area *va;
2003 	struct vm_struct *vm;
2004 	char *vaddr, *buf_start = buf;
2005 	unsigned long buflen = count;
2006 	unsigned long n;
2007 
2008 	/* Don't allow overflow */
2009 	if ((unsigned long) addr + count < count)
2010 		count = -(unsigned long) addr;
2011 
2012 	spin_lock(&vmap_area_lock);
2013 	list_for_each_entry(va, &vmap_area_list, list) {
2014 		if (!count)
2015 			break;
2016 
2017 		if (!(va->flags & VM_VM_AREA))
2018 			continue;
2019 
2020 		vm = va->vm;
2021 		vaddr = (char *) vm->addr;
2022 		if (addr >= vaddr + get_vm_area_size(vm))
2023 			continue;
2024 		while (addr < vaddr) {
2025 			if (count == 0)
2026 				goto finished;
2027 			*buf = '\0';
2028 			buf++;
2029 			addr++;
2030 			count--;
2031 		}
2032 		n = vaddr + get_vm_area_size(vm) - addr;
2033 		if (n > count)
2034 			n = count;
2035 		if (!(vm->flags & VM_IOREMAP))
2036 			aligned_vread(buf, addr, n);
2037 		else /* IOREMAP area is treated as memory hole */
2038 			memset(buf, 0, n);
2039 		buf += n;
2040 		addr += n;
2041 		count -= n;
2042 	}
2043 finished:
2044 	spin_unlock(&vmap_area_lock);
2045 
2046 	if (buf == buf_start)
2047 		return 0;
2048 	/* zero-fill memory holes */
2049 	if (buf != buf_start + buflen)
2050 		memset(buf, 0, buflen - (buf - buf_start));
2051 
2052 	return buflen;
2053 }
2054 
2055 /**
2056  *	vwrite() -  write vmalloc area in a safe way.
2057  *	@buf:		buffer for source data
2058  *	@addr:		vm address.
2059  *	@count:		number of bytes to be read.
2060  *
2061  *	Returns # of bytes which addr and buf should be incresed.
2062  *	(same number to @count).
2063  *	If [addr...addr+count) doesn't includes any intersect with valid
2064  *	vmalloc area, returns 0.
2065  *
2066  *	This function checks that addr is a valid vmalloc'ed area, and
2067  *	copy data from a buffer to the given addr. If specified range of
2068  *	[addr...addr+count) includes some valid address, data is copied from
2069  *	proper area of @buf. If there are memory holes, no copy to hole.
2070  *	IOREMAP area is treated as memory hole and no copy is done.
2071  *
2072  *	If [addr...addr+count) doesn't includes any intersects with alive
2073  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2074  *
2075  *	Note: In usual ops, vwrite() is never necessary because the caller
2076  *	should know vmalloc() area is valid and can use memcpy().
2077  *	This is for routines which have to access vmalloc area without
2078  *	any informaion, as /dev/kmem.
2079  */
2080 
2081 long vwrite(char *buf, char *addr, unsigned long count)
2082 {
2083 	struct vmap_area *va;
2084 	struct vm_struct *vm;
2085 	char *vaddr;
2086 	unsigned long n, buflen;
2087 	int copied = 0;
2088 
2089 	/* Don't allow overflow */
2090 	if ((unsigned long) addr + count < count)
2091 		count = -(unsigned long) addr;
2092 	buflen = count;
2093 
2094 	spin_lock(&vmap_area_lock);
2095 	list_for_each_entry(va, &vmap_area_list, list) {
2096 		if (!count)
2097 			break;
2098 
2099 		if (!(va->flags & VM_VM_AREA))
2100 			continue;
2101 
2102 		vm = va->vm;
2103 		vaddr = (char *) vm->addr;
2104 		if (addr >= vaddr + get_vm_area_size(vm))
2105 			continue;
2106 		while (addr < vaddr) {
2107 			if (count == 0)
2108 				goto finished;
2109 			buf++;
2110 			addr++;
2111 			count--;
2112 		}
2113 		n = vaddr + get_vm_area_size(vm) - addr;
2114 		if (n > count)
2115 			n = count;
2116 		if (!(vm->flags & VM_IOREMAP)) {
2117 			aligned_vwrite(buf, addr, n);
2118 			copied++;
2119 		}
2120 		buf += n;
2121 		addr += n;
2122 		count -= n;
2123 	}
2124 finished:
2125 	spin_unlock(&vmap_area_lock);
2126 	if (!copied)
2127 		return 0;
2128 	return buflen;
2129 }
2130 
2131 /**
2132  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2133  *	@vma:		vma to cover
2134  *	@uaddr:		target user address to start at
2135  *	@kaddr:		virtual address of vmalloc kernel memory
2136  *	@size:		size of map area
2137  *
2138  *	Returns:	0 for success, -Exxx on failure
2139  *
2140  *	This function checks that @kaddr is a valid vmalloc'ed area,
2141  *	and that it is big enough to cover the range starting at
2142  *	@uaddr in @vma. Will return failure if that criteria isn't
2143  *	met.
2144  *
2145  *	Similar to remap_pfn_range() (see mm/memory.c)
2146  */
2147 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2148 				void *kaddr, unsigned long size)
2149 {
2150 	struct vm_struct *area;
2151 
2152 	size = PAGE_ALIGN(size);
2153 
2154 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2155 		return -EINVAL;
2156 
2157 	area = find_vm_area(kaddr);
2158 	if (!area)
2159 		return -EINVAL;
2160 
2161 	if (!(area->flags & VM_USERMAP))
2162 		return -EINVAL;
2163 
2164 	if (kaddr + size > area->addr + area->size)
2165 		return -EINVAL;
2166 
2167 	do {
2168 		struct page *page = vmalloc_to_page(kaddr);
2169 		int ret;
2170 
2171 		ret = vm_insert_page(vma, uaddr, page);
2172 		if (ret)
2173 			return ret;
2174 
2175 		uaddr += PAGE_SIZE;
2176 		kaddr += PAGE_SIZE;
2177 		size -= PAGE_SIZE;
2178 	} while (size > 0);
2179 
2180 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2181 
2182 	return 0;
2183 }
2184 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2185 
2186 /**
2187  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2188  *	@vma:		vma to cover (map full range of vma)
2189  *	@addr:		vmalloc memory
2190  *	@pgoff:		number of pages into addr before first page to map
2191  *
2192  *	Returns:	0 for success, -Exxx on failure
2193  *
2194  *	This function checks that addr is a valid vmalloc'ed area, and
2195  *	that it is big enough to cover the vma. Will return failure if
2196  *	that criteria isn't met.
2197  *
2198  *	Similar to remap_pfn_range() (see mm/memory.c)
2199  */
2200 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2201 						unsigned long pgoff)
2202 {
2203 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2204 					   addr + (pgoff << PAGE_SHIFT),
2205 					   vma->vm_end - vma->vm_start);
2206 }
2207 EXPORT_SYMBOL(remap_vmalloc_range);
2208 
2209 /*
2210  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2211  * have one.
2212  */
2213 void __weak vmalloc_sync_all(void)
2214 {
2215 }
2216 
2217 
2218 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2219 {
2220 	pte_t ***p = data;
2221 
2222 	if (p) {
2223 		*(*p) = pte;
2224 		(*p)++;
2225 	}
2226 	return 0;
2227 }
2228 
2229 /**
2230  *	alloc_vm_area - allocate a range of kernel address space
2231  *	@size:		size of the area
2232  *	@ptes:		returns the PTEs for the address space
2233  *
2234  *	Returns:	NULL on failure, vm_struct on success
2235  *
2236  *	This function reserves a range of kernel address space, and
2237  *	allocates pagetables to map that range.  No actual mappings
2238  *	are created.
2239  *
2240  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2241  *	allocated for the VM area are returned.
2242  */
2243 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2244 {
2245 	struct vm_struct *area;
2246 
2247 	area = get_vm_area_caller(size, VM_IOREMAP,
2248 				__builtin_return_address(0));
2249 	if (area == NULL)
2250 		return NULL;
2251 
2252 	/*
2253 	 * This ensures that page tables are constructed for this region
2254 	 * of kernel virtual address space and mapped into init_mm.
2255 	 */
2256 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2257 				size, f, ptes ? &ptes : NULL)) {
2258 		free_vm_area(area);
2259 		return NULL;
2260 	}
2261 
2262 	return area;
2263 }
2264 EXPORT_SYMBOL_GPL(alloc_vm_area);
2265 
2266 void free_vm_area(struct vm_struct *area)
2267 {
2268 	struct vm_struct *ret;
2269 	ret = remove_vm_area(area->addr);
2270 	BUG_ON(ret != area);
2271 	kfree(area);
2272 }
2273 EXPORT_SYMBOL_GPL(free_vm_area);
2274 
2275 #ifdef CONFIG_SMP
2276 static struct vmap_area *node_to_va(struct rb_node *n)
2277 {
2278 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2279 }
2280 
2281 /**
2282  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2283  * @end: target address
2284  * @pnext: out arg for the next vmap_area
2285  * @pprev: out arg for the previous vmap_area
2286  *
2287  * Returns: %true if either or both of next and prev are found,
2288  *	    %false if no vmap_area exists
2289  *
2290  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2291  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2292  */
2293 static bool pvm_find_next_prev(unsigned long end,
2294 			       struct vmap_area **pnext,
2295 			       struct vmap_area **pprev)
2296 {
2297 	struct rb_node *n = vmap_area_root.rb_node;
2298 	struct vmap_area *va = NULL;
2299 
2300 	while (n) {
2301 		va = rb_entry(n, struct vmap_area, rb_node);
2302 		if (end < va->va_end)
2303 			n = n->rb_left;
2304 		else if (end > va->va_end)
2305 			n = n->rb_right;
2306 		else
2307 			break;
2308 	}
2309 
2310 	if (!va)
2311 		return false;
2312 
2313 	if (va->va_end > end) {
2314 		*pnext = va;
2315 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2316 	} else {
2317 		*pprev = va;
2318 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2319 	}
2320 	return true;
2321 }
2322 
2323 /**
2324  * pvm_determine_end - find the highest aligned address between two vmap_areas
2325  * @pnext: in/out arg for the next vmap_area
2326  * @pprev: in/out arg for the previous vmap_area
2327  * @align: alignment
2328  *
2329  * Returns: determined end address
2330  *
2331  * Find the highest aligned address between *@pnext and *@pprev below
2332  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2333  * down address is between the end addresses of the two vmap_areas.
2334  *
2335  * Please note that the address returned by this function may fall
2336  * inside *@pnext vmap_area.  The caller is responsible for checking
2337  * that.
2338  */
2339 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2340 				       struct vmap_area **pprev,
2341 				       unsigned long align)
2342 {
2343 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2344 	unsigned long addr;
2345 
2346 	if (*pnext)
2347 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2348 	else
2349 		addr = vmalloc_end;
2350 
2351 	while (*pprev && (*pprev)->va_end > addr) {
2352 		*pnext = *pprev;
2353 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2354 	}
2355 
2356 	return addr;
2357 }
2358 
2359 /**
2360  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2361  * @offsets: array containing offset of each area
2362  * @sizes: array containing size of each area
2363  * @nr_vms: the number of areas to allocate
2364  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2365  *
2366  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2367  *	    vm_structs on success, %NULL on failure
2368  *
2369  * Percpu allocator wants to use congruent vm areas so that it can
2370  * maintain the offsets among percpu areas.  This function allocates
2371  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2372  * be scattered pretty far, distance between two areas easily going up
2373  * to gigabytes.  To avoid interacting with regular vmallocs, these
2374  * areas are allocated from top.
2375  *
2376  * Despite its complicated look, this allocator is rather simple.  It
2377  * does everything top-down and scans areas from the end looking for
2378  * matching slot.  While scanning, if any of the areas overlaps with
2379  * existing vmap_area, the base address is pulled down to fit the
2380  * area.  Scanning is repeated till all the areas fit and then all
2381  * necessary data structres are inserted and the result is returned.
2382  */
2383 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2384 				     const size_t *sizes, int nr_vms,
2385 				     size_t align)
2386 {
2387 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2388 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2389 	struct vmap_area **vas, *prev, *next;
2390 	struct vm_struct **vms;
2391 	int area, area2, last_area, term_area;
2392 	unsigned long base, start, end, last_end;
2393 	bool purged = false;
2394 
2395 	/* verify parameters and allocate data structures */
2396 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2397 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2398 		start = offsets[area];
2399 		end = start + sizes[area];
2400 
2401 		/* is everything aligned properly? */
2402 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2403 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2404 
2405 		/* detect the area with the highest address */
2406 		if (start > offsets[last_area])
2407 			last_area = area;
2408 
2409 		for (area2 = 0; area2 < nr_vms; area2++) {
2410 			unsigned long start2 = offsets[area2];
2411 			unsigned long end2 = start2 + sizes[area2];
2412 
2413 			if (area2 == area)
2414 				continue;
2415 
2416 			BUG_ON(start2 >= start && start2 < end);
2417 			BUG_ON(end2 <= end && end2 > start);
2418 		}
2419 	}
2420 	last_end = offsets[last_area] + sizes[last_area];
2421 
2422 	if (vmalloc_end - vmalloc_start < last_end) {
2423 		WARN_ON(true);
2424 		return NULL;
2425 	}
2426 
2427 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2428 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2429 	if (!vas || !vms)
2430 		goto err_free2;
2431 
2432 	for (area = 0; area < nr_vms; area++) {
2433 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2434 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2435 		if (!vas[area] || !vms[area])
2436 			goto err_free;
2437 	}
2438 retry:
2439 	spin_lock(&vmap_area_lock);
2440 
2441 	/* start scanning - we scan from the top, begin with the last area */
2442 	area = term_area = last_area;
2443 	start = offsets[area];
2444 	end = start + sizes[area];
2445 
2446 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2447 		base = vmalloc_end - last_end;
2448 		goto found;
2449 	}
2450 	base = pvm_determine_end(&next, &prev, align) - end;
2451 
2452 	while (true) {
2453 		BUG_ON(next && next->va_end <= base + end);
2454 		BUG_ON(prev && prev->va_end > base + end);
2455 
2456 		/*
2457 		 * base might have underflowed, add last_end before
2458 		 * comparing.
2459 		 */
2460 		if (base + last_end < vmalloc_start + last_end) {
2461 			spin_unlock(&vmap_area_lock);
2462 			if (!purged) {
2463 				purge_vmap_area_lazy();
2464 				purged = true;
2465 				goto retry;
2466 			}
2467 			goto err_free;
2468 		}
2469 
2470 		/*
2471 		 * If next overlaps, move base downwards so that it's
2472 		 * right below next and then recheck.
2473 		 */
2474 		if (next && next->va_start < base + end) {
2475 			base = pvm_determine_end(&next, &prev, align) - end;
2476 			term_area = area;
2477 			continue;
2478 		}
2479 
2480 		/*
2481 		 * If prev overlaps, shift down next and prev and move
2482 		 * base so that it's right below new next and then
2483 		 * recheck.
2484 		 */
2485 		if (prev && prev->va_end > base + start)  {
2486 			next = prev;
2487 			prev = node_to_va(rb_prev(&next->rb_node));
2488 			base = pvm_determine_end(&next, &prev, align) - end;
2489 			term_area = area;
2490 			continue;
2491 		}
2492 
2493 		/*
2494 		 * This area fits, move on to the previous one.  If
2495 		 * the previous one is the terminal one, we're done.
2496 		 */
2497 		area = (area + nr_vms - 1) % nr_vms;
2498 		if (area == term_area)
2499 			break;
2500 		start = offsets[area];
2501 		end = start + sizes[area];
2502 		pvm_find_next_prev(base + end, &next, &prev);
2503 	}
2504 found:
2505 	/* we've found a fitting base, insert all va's */
2506 	for (area = 0; area < nr_vms; area++) {
2507 		struct vmap_area *va = vas[area];
2508 
2509 		va->va_start = base + offsets[area];
2510 		va->va_end = va->va_start + sizes[area];
2511 		__insert_vmap_area(va);
2512 	}
2513 
2514 	vmap_area_pcpu_hole = base + offsets[last_area];
2515 
2516 	spin_unlock(&vmap_area_lock);
2517 
2518 	/* insert all vm's */
2519 	for (area = 0; area < nr_vms; area++)
2520 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2521 				 pcpu_get_vm_areas);
2522 
2523 	kfree(vas);
2524 	return vms;
2525 
2526 err_free:
2527 	for (area = 0; area < nr_vms; area++) {
2528 		kfree(vas[area]);
2529 		kfree(vms[area]);
2530 	}
2531 err_free2:
2532 	kfree(vas);
2533 	kfree(vms);
2534 	return NULL;
2535 }
2536 
2537 /**
2538  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2539  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2540  * @nr_vms: the number of allocated areas
2541  *
2542  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2543  */
2544 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2545 {
2546 	int i;
2547 
2548 	for (i = 0; i < nr_vms; i++)
2549 		free_vm_area(vms[i]);
2550 	kfree(vms);
2551 }
2552 #endif	/* CONFIG_SMP */
2553 
2554 #ifdef CONFIG_PROC_FS
2555 static void *s_start(struct seq_file *m, loff_t *pos)
2556 	__acquires(&vmap_area_lock)
2557 {
2558 	loff_t n = *pos;
2559 	struct vmap_area *va;
2560 
2561 	spin_lock(&vmap_area_lock);
2562 	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2563 	while (n > 0 && &va->list != &vmap_area_list) {
2564 		n--;
2565 		va = list_entry(va->list.next, typeof(*va), list);
2566 	}
2567 	if (!n && &va->list != &vmap_area_list)
2568 		return va;
2569 
2570 	return NULL;
2571 
2572 }
2573 
2574 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2575 {
2576 	struct vmap_area *va = p, *next;
2577 
2578 	++*pos;
2579 	next = list_entry(va->list.next, typeof(*va), list);
2580 	if (&next->list != &vmap_area_list)
2581 		return next;
2582 
2583 	return NULL;
2584 }
2585 
2586 static void s_stop(struct seq_file *m, void *p)
2587 	__releases(&vmap_area_lock)
2588 {
2589 	spin_unlock(&vmap_area_lock);
2590 }
2591 
2592 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2593 {
2594 	if (IS_ENABLED(CONFIG_NUMA)) {
2595 		unsigned int nr, *counters = m->private;
2596 
2597 		if (!counters)
2598 			return;
2599 
2600 		if (v->flags & VM_UNINITIALIZED)
2601 			return;
2602 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2603 		smp_rmb();
2604 
2605 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2606 
2607 		for (nr = 0; nr < v->nr_pages; nr++)
2608 			counters[page_to_nid(v->pages[nr])]++;
2609 
2610 		for_each_node_state(nr, N_HIGH_MEMORY)
2611 			if (counters[nr])
2612 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2613 	}
2614 }
2615 
2616 static int s_show(struct seq_file *m, void *p)
2617 {
2618 	struct vmap_area *va = p;
2619 	struct vm_struct *v;
2620 
2621 	/*
2622 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2623 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2624 	 */
2625 	if (!(va->flags & VM_VM_AREA))
2626 		return 0;
2627 
2628 	v = va->vm;
2629 
2630 	seq_printf(m, "0x%pK-0x%pK %7ld",
2631 		v->addr, v->addr + v->size, v->size);
2632 
2633 	if (v->caller)
2634 		seq_printf(m, " %pS", v->caller);
2635 
2636 	if (v->nr_pages)
2637 		seq_printf(m, " pages=%d", v->nr_pages);
2638 
2639 	if (v->phys_addr)
2640 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2641 
2642 	if (v->flags & VM_IOREMAP)
2643 		seq_puts(m, " ioremap");
2644 
2645 	if (v->flags & VM_ALLOC)
2646 		seq_puts(m, " vmalloc");
2647 
2648 	if (v->flags & VM_MAP)
2649 		seq_puts(m, " vmap");
2650 
2651 	if (v->flags & VM_USERMAP)
2652 		seq_puts(m, " user");
2653 
2654 	if (v->flags & VM_VPAGES)
2655 		seq_puts(m, " vpages");
2656 
2657 	show_numa_info(m, v);
2658 	seq_putc(m, '\n');
2659 	return 0;
2660 }
2661 
2662 static const struct seq_operations vmalloc_op = {
2663 	.start = s_start,
2664 	.next = s_next,
2665 	.stop = s_stop,
2666 	.show = s_show,
2667 };
2668 
2669 static int vmalloc_open(struct inode *inode, struct file *file)
2670 {
2671 	if (IS_ENABLED(CONFIG_NUMA))
2672 		return seq_open_private(file, &vmalloc_op,
2673 					nr_node_ids * sizeof(unsigned int));
2674 	else
2675 		return seq_open(file, &vmalloc_op);
2676 }
2677 
2678 static const struct file_operations proc_vmalloc_operations = {
2679 	.open		= vmalloc_open,
2680 	.read		= seq_read,
2681 	.llseek		= seq_lseek,
2682 	.release	= seq_release_private,
2683 };
2684 
2685 static int __init proc_vmalloc_init(void)
2686 {
2687 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2688 	return 0;
2689 }
2690 module_init(proc_vmalloc_init);
2691 
2692 #endif
2693 
2694