1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 #include <linux/pgtable.h> 40 #include <linux/uaccess.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #include "internal.h" 47 #include "pgalloc-track.h" 48 49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 51 52 static int __init set_nohugeiomap(char *str) 53 { 54 ioremap_max_page_shift = PAGE_SHIFT; 55 return 0; 56 } 57 early_param("nohugeiomap", set_nohugeiomap); 58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 60 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 61 62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 63 static bool __ro_after_init vmap_allow_huge = true; 64 65 static int __init set_nohugevmalloc(char *str) 66 { 67 vmap_allow_huge = false; 68 return 0; 69 } 70 early_param("nohugevmalloc", set_nohugevmalloc); 71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 72 static const bool vmap_allow_huge = false; 73 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 74 75 bool is_vmalloc_addr(const void *x) 76 { 77 unsigned long addr = (unsigned long)kasan_reset_tag(x); 78 79 return addr >= VMALLOC_START && addr < VMALLOC_END; 80 } 81 EXPORT_SYMBOL(is_vmalloc_addr); 82 83 struct vfree_deferred { 84 struct llist_head list; 85 struct work_struct wq; 86 }; 87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 88 89 static void __vunmap(const void *, int); 90 91 static void free_work(struct work_struct *w) 92 { 93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 94 struct llist_node *t, *llnode; 95 96 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 97 __vunmap((void *)llnode, 1); 98 } 99 100 /*** Page table manipulation functions ***/ 101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 102 phys_addr_t phys_addr, pgprot_t prot, 103 unsigned int max_page_shift, pgtbl_mod_mask *mask) 104 { 105 pte_t *pte; 106 u64 pfn; 107 unsigned long size = PAGE_SIZE; 108 109 pfn = phys_addr >> PAGE_SHIFT; 110 pte = pte_alloc_kernel_track(pmd, addr, mask); 111 if (!pte) 112 return -ENOMEM; 113 do { 114 BUG_ON(!pte_none(*pte)); 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int ioremap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 if (!err) 324 kmsan_ioremap_page_range(addr, end, phys_addr, prot, 325 ioremap_max_page_shift); 326 return err; 327 } 328 329 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 330 pgtbl_mod_mask *mask) 331 { 332 pte_t *pte; 333 334 pte = pte_offset_kernel(pmd, addr); 335 do { 336 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 337 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 338 } while (pte++, addr += PAGE_SIZE, addr != end); 339 *mask |= PGTBL_PTE_MODIFIED; 340 } 341 342 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 343 pgtbl_mod_mask *mask) 344 { 345 pmd_t *pmd; 346 unsigned long next; 347 int cleared; 348 349 pmd = pmd_offset(pud, addr); 350 do { 351 next = pmd_addr_end(addr, end); 352 353 cleared = pmd_clear_huge(pmd); 354 if (cleared || pmd_bad(*pmd)) 355 *mask |= PGTBL_PMD_MODIFIED; 356 357 if (cleared) 358 continue; 359 if (pmd_none_or_clear_bad(pmd)) 360 continue; 361 vunmap_pte_range(pmd, addr, next, mask); 362 363 cond_resched(); 364 } while (pmd++, addr = next, addr != end); 365 } 366 367 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 368 pgtbl_mod_mask *mask) 369 { 370 pud_t *pud; 371 unsigned long next; 372 int cleared; 373 374 pud = pud_offset(p4d, addr); 375 do { 376 next = pud_addr_end(addr, end); 377 378 cleared = pud_clear_huge(pud); 379 if (cleared || pud_bad(*pud)) 380 *mask |= PGTBL_PUD_MODIFIED; 381 382 if (cleared) 383 continue; 384 if (pud_none_or_clear_bad(pud)) 385 continue; 386 vunmap_pmd_range(pud, addr, next, mask); 387 } while (pud++, addr = next, addr != end); 388 } 389 390 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 391 pgtbl_mod_mask *mask) 392 { 393 p4d_t *p4d; 394 unsigned long next; 395 396 p4d = p4d_offset(pgd, addr); 397 do { 398 next = p4d_addr_end(addr, end); 399 400 p4d_clear_huge(p4d); 401 if (p4d_bad(*p4d)) 402 *mask |= PGTBL_P4D_MODIFIED; 403 404 if (p4d_none_or_clear_bad(p4d)) 405 continue; 406 vunmap_pud_range(p4d, addr, next, mask); 407 } while (p4d++, addr = next, addr != end); 408 } 409 410 /* 411 * vunmap_range_noflush is similar to vunmap_range, but does not 412 * flush caches or TLBs. 413 * 414 * The caller is responsible for calling flush_cache_vmap() before calling 415 * this function, and flush_tlb_kernel_range after it has returned 416 * successfully (and before the addresses are expected to cause a page fault 417 * or be re-mapped for something else, if TLB flushes are being delayed or 418 * coalesced). 419 * 420 * This is an internal function only. Do not use outside mm/. 421 */ 422 void __vunmap_range_noflush(unsigned long start, unsigned long end) 423 { 424 unsigned long next; 425 pgd_t *pgd; 426 unsigned long addr = start; 427 pgtbl_mod_mask mask = 0; 428 429 BUG_ON(addr >= end); 430 pgd = pgd_offset_k(addr); 431 do { 432 next = pgd_addr_end(addr, end); 433 if (pgd_bad(*pgd)) 434 mask |= PGTBL_PGD_MODIFIED; 435 if (pgd_none_or_clear_bad(pgd)) 436 continue; 437 vunmap_p4d_range(pgd, addr, next, &mask); 438 } while (pgd++, addr = next, addr != end); 439 440 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 441 arch_sync_kernel_mappings(start, end); 442 } 443 444 void vunmap_range_noflush(unsigned long start, unsigned long end) 445 { 446 kmsan_vunmap_range_noflush(start, end); 447 __vunmap_range_noflush(start, end); 448 } 449 450 /** 451 * vunmap_range - unmap kernel virtual addresses 452 * @addr: start of the VM area to unmap 453 * @end: end of the VM area to unmap (non-inclusive) 454 * 455 * Clears any present PTEs in the virtual address range, flushes TLBs and 456 * caches. Any subsequent access to the address before it has been re-mapped 457 * is a kernel bug. 458 */ 459 void vunmap_range(unsigned long addr, unsigned long end) 460 { 461 flush_cache_vunmap(addr, end); 462 vunmap_range_noflush(addr, end); 463 flush_tlb_kernel_range(addr, end); 464 } 465 466 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 467 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 468 pgtbl_mod_mask *mask) 469 { 470 pte_t *pte; 471 472 /* 473 * nr is a running index into the array which helps higher level 474 * callers keep track of where we're up to. 475 */ 476 477 pte = pte_alloc_kernel_track(pmd, addr, mask); 478 if (!pte) 479 return -ENOMEM; 480 do { 481 struct page *page = pages[*nr]; 482 483 if (WARN_ON(!pte_none(*pte))) 484 return -EBUSY; 485 if (WARN_ON(!page)) 486 return -ENOMEM; 487 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 488 return -EINVAL; 489 490 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 491 (*nr)++; 492 } while (pte++, addr += PAGE_SIZE, addr != end); 493 *mask |= PGTBL_PTE_MODIFIED; 494 return 0; 495 } 496 497 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 498 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 499 pgtbl_mod_mask *mask) 500 { 501 pmd_t *pmd; 502 unsigned long next; 503 504 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 505 if (!pmd) 506 return -ENOMEM; 507 do { 508 next = pmd_addr_end(addr, end); 509 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 510 return -ENOMEM; 511 } while (pmd++, addr = next, addr != end); 512 return 0; 513 } 514 515 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 516 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 517 pgtbl_mod_mask *mask) 518 { 519 pud_t *pud; 520 unsigned long next; 521 522 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 523 if (!pud) 524 return -ENOMEM; 525 do { 526 next = pud_addr_end(addr, end); 527 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 528 return -ENOMEM; 529 } while (pud++, addr = next, addr != end); 530 return 0; 531 } 532 533 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 534 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 535 pgtbl_mod_mask *mask) 536 { 537 p4d_t *p4d; 538 unsigned long next; 539 540 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 541 if (!p4d) 542 return -ENOMEM; 543 do { 544 next = p4d_addr_end(addr, end); 545 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 546 return -ENOMEM; 547 } while (p4d++, addr = next, addr != end); 548 return 0; 549 } 550 551 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 552 pgprot_t prot, struct page **pages) 553 { 554 unsigned long start = addr; 555 pgd_t *pgd; 556 unsigned long next; 557 int err = 0; 558 int nr = 0; 559 pgtbl_mod_mask mask = 0; 560 561 BUG_ON(addr >= end); 562 pgd = pgd_offset_k(addr); 563 do { 564 next = pgd_addr_end(addr, end); 565 if (pgd_bad(*pgd)) 566 mask |= PGTBL_PGD_MODIFIED; 567 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 568 if (err) 569 return err; 570 } while (pgd++, addr = next, addr != end); 571 572 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 573 arch_sync_kernel_mappings(start, end); 574 575 return 0; 576 } 577 578 /* 579 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 580 * flush caches. 581 * 582 * The caller is responsible for calling flush_cache_vmap() after this 583 * function returns successfully and before the addresses are accessed. 584 * 585 * This is an internal function only. Do not use outside mm/. 586 */ 587 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 588 pgprot_t prot, struct page **pages, unsigned int page_shift) 589 { 590 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 591 592 WARN_ON(page_shift < PAGE_SHIFT); 593 594 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 595 page_shift == PAGE_SHIFT) 596 return vmap_small_pages_range_noflush(addr, end, prot, pages); 597 598 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 599 int err; 600 601 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 602 page_to_phys(pages[i]), prot, 603 page_shift); 604 if (err) 605 return err; 606 607 addr += 1UL << page_shift; 608 } 609 610 return 0; 611 } 612 613 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 614 pgprot_t prot, struct page **pages, unsigned int page_shift) 615 { 616 kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 617 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 618 } 619 620 /** 621 * vmap_pages_range - map pages to a kernel virtual address 622 * @addr: start of the VM area to map 623 * @end: end of the VM area to map (non-inclusive) 624 * @prot: page protection flags to use 625 * @pages: pages to map (always PAGE_SIZE pages) 626 * @page_shift: maximum shift that the pages may be mapped with, @pages must 627 * be aligned and contiguous up to at least this shift. 628 * 629 * RETURNS: 630 * 0 on success, -errno on failure. 631 */ 632 static int vmap_pages_range(unsigned long addr, unsigned long end, 633 pgprot_t prot, struct page **pages, unsigned int page_shift) 634 { 635 int err; 636 637 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 638 flush_cache_vmap(addr, end); 639 return err; 640 } 641 642 int is_vmalloc_or_module_addr(const void *x) 643 { 644 /* 645 * ARM, x86-64 and sparc64 put modules in a special place, 646 * and fall back on vmalloc() if that fails. Others 647 * just put it in the vmalloc space. 648 */ 649 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 650 unsigned long addr = (unsigned long)kasan_reset_tag(x); 651 if (addr >= MODULES_VADDR && addr < MODULES_END) 652 return 1; 653 #endif 654 return is_vmalloc_addr(x); 655 } 656 657 /* 658 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 659 * return the tail page that corresponds to the base page address, which 660 * matches small vmap mappings. 661 */ 662 struct page *vmalloc_to_page(const void *vmalloc_addr) 663 { 664 unsigned long addr = (unsigned long) vmalloc_addr; 665 struct page *page = NULL; 666 pgd_t *pgd = pgd_offset_k(addr); 667 p4d_t *p4d; 668 pud_t *pud; 669 pmd_t *pmd; 670 pte_t *ptep, pte; 671 672 /* 673 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 674 * architectures that do not vmalloc module space 675 */ 676 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 677 678 if (pgd_none(*pgd)) 679 return NULL; 680 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 681 return NULL; /* XXX: no allowance for huge pgd */ 682 if (WARN_ON_ONCE(pgd_bad(*pgd))) 683 return NULL; 684 685 p4d = p4d_offset(pgd, addr); 686 if (p4d_none(*p4d)) 687 return NULL; 688 if (p4d_leaf(*p4d)) 689 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 690 if (WARN_ON_ONCE(p4d_bad(*p4d))) 691 return NULL; 692 693 pud = pud_offset(p4d, addr); 694 if (pud_none(*pud)) 695 return NULL; 696 if (pud_leaf(*pud)) 697 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 698 if (WARN_ON_ONCE(pud_bad(*pud))) 699 return NULL; 700 701 pmd = pmd_offset(pud, addr); 702 if (pmd_none(*pmd)) 703 return NULL; 704 if (pmd_leaf(*pmd)) 705 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 706 if (WARN_ON_ONCE(pmd_bad(*pmd))) 707 return NULL; 708 709 ptep = pte_offset_map(pmd, addr); 710 pte = *ptep; 711 if (pte_present(pte)) 712 page = pte_page(pte); 713 pte_unmap(ptep); 714 715 return page; 716 } 717 EXPORT_SYMBOL(vmalloc_to_page); 718 719 /* 720 * Map a vmalloc()-space virtual address to the physical page frame number. 721 */ 722 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 723 { 724 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 725 } 726 EXPORT_SYMBOL(vmalloc_to_pfn); 727 728 729 /*** Global kva allocator ***/ 730 731 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 732 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 733 734 735 static DEFINE_SPINLOCK(vmap_area_lock); 736 static DEFINE_SPINLOCK(free_vmap_area_lock); 737 /* Export for kexec only */ 738 LIST_HEAD(vmap_area_list); 739 static struct rb_root vmap_area_root = RB_ROOT; 740 static bool vmap_initialized __read_mostly; 741 742 static struct rb_root purge_vmap_area_root = RB_ROOT; 743 static LIST_HEAD(purge_vmap_area_list); 744 static DEFINE_SPINLOCK(purge_vmap_area_lock); 745 746 /* 747 * This kmem_cache is used for vmap_area objects. Instead of 748 * allocating from slab we reuse an object from this cache to 749 * make things faster. Especially in "no edge" splitting of 750 * free block. 751 */ 752 static struct kmem_cache *vmap_area_cachep; 753 754 /* 755 * This linked list is used in pair with free_vmap_area_root. 756 * It gives O(1) access to prev/next to perform fast coalescing. 757 */ 758 static LIST_HEAD(free_vmap_area_list); 759 760 /* 761 * This augment red-black tree represents the free vmap space. 762 * All vmap_area objects in this tree are sorted by va->va_start 763 * address. It is used for allocation and merging when a vmap 764 * object is released. 765 * 766 * Each vmap_area node contains a maximum available free block 767 * of its sub-tree, right or left. Therefore it is possible to 768 * find a lowest match of free area. 769 */ 770 static struct rb_root free_vmap_area_root = RB_ROOT; 771 772 /* 773 * Preload a CPU with one object for "no edge" split case. The 774 * aim is to get rid of allocations from the atomic context, thus 775 * to use more permissive allocation masks. 776 */ 777 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 778 779 static __always_inline unsigned long 780 va_size(struct vmap_area *va) 781 { 782 return (va->va_end - va->va_start); 783 } 784 785 static __always_inline unsigned long 786 get_subtree_max_size(struct rb_node *node) 787 { 788 struct vmap_area *va; 789 790 va = rb_entry_safe(node, struct vmap_area, rb_node); 791 return va ? va->subtree_max_size : 0; 792 } 793 794 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 795 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 796 797 static void purge_vmap_area_lazy(void); 798 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 799 static void drain_vmap_area_work(struct work_struct *work); 800 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 801 802 static atomic_long_t nr_vmalloc_pages; 803 804 unsigned long vmalloc_nr_pages(void) 805 { 806 return atomic_long_read(&nr_vmalloc_pages); 807 } 808 809 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 810 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 811 { 812 struct vmap_area *va = NULL; 813 struct rb_node *n = vmap_area_root.rb_node; 814 815 addr = (unsigned long)kasan_reset_tag((void *)addr); 816 817 while (n) { 818 struct vmap_area *tmp; 819 820 tmp = rb_entry(n, struct vmap_area, rb_node); 821 if (tmp->va_end > addr) { 822 va = tmp; 823 if (tmp->va_start <= addr) 824 break; 825 826 n = n->rb_left; 827 } else 828 n = n->rb_right; 829 } 830 831 return va; 832 } 833 834 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 835 { 836 struct rb_node *n = root->rb_node; 837 838 addr = (unsigned long)kasan_reset_tag((void *)addr); 839 840 while (n) { 841 struct vmap_area *va; 842 843 va = rb_entry(n, struct vmap_area, rb_node); 844 if (addr < va->va_start) 845 n = n->rb_left; 846 else if (addr >= va->va_end) 847 n = n->rb_right; 848 else 849 return va; 850 } 851 852 return NULL; 853 } 854 855 /* 856 * This function returns back addresses of parent node 857 * and its left or right link for further processing. 858 * 859 * Otherwise NULL is returned. In that case all further 860 * steps regarding inserting of conflicting overlap range 861 * have to be declined and actually considered as a bug. 862 */ 863 static __always_inline struct rb_node ** 864 find_va_links(struct vmap_area *va, 865 struct rb_root *root, struct rb_node *from, 866 struct rb_node **parent) 867 { 868 struct vmap_area *tmp_va; 869 struct rb_node **link; 870 871 if (root) { 872 link = &root->rb_node; 873 if (unlikely(!*link)) { 874 *parent = NULL; 875 return link; 876 } 877 } else { 878 link = &from; 879 } 880 881 /* 882 * Go to the bottom of the tree. When we hit the last point 883 * we end up with parent rb_node and correct direction, i name 884 * it link, where the new va->rb_node will be attached to. 885 */ 886 do { 887 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 888 889 /* 890 * During the traversal we also do some sanity check. 891 * Trigger the BUG() if there are sides(left/right) 892 * or full overlaps. 893 */ 894 if (va->va_end <= tmp_va->va_start) 895 link = &(*link)->rb_left; 896 else if (va->va_start >= tmp_va->va_end) 897 link = &(*link)->rb_right; 898 else { 899 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 900 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 901 902 return NULL; 903 } 904 } while (*link); 905 906 *parent = &tmp_va->rb_node; 907 return link; 908 } 909 910 static __always_inline struct list_head * 911 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 912 { 913 struct list_head *list; 914 915 if (unlikely(!parent)) 916 /* 917 * The red-black tree where we try to find VA neighbors 918 * before merging or inserting is empty, i.e. it means 919 * there is no free vmap space. Normally it does not 920 * happen but we handle this case anyway. 921 */ 922 return NULL; 923 924 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 925 return (&parent->rb_right == link ? list->next : list); 926 } 927 928 static __always_inline void 929 __link_va(struct vmap_area *va, struct rb_root *root, 930 struct rb_node *parent, struct rb_node **link, 931 struct list_head *head, bool augment) 932 { 933 /* 934 * VA is still not in the list, but we can 935 * identify its future previous list_head node. 936 */ 937 if (likely(parent)) { 938 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 939 if (&parent->rb_right != link) 940 head = head->prev; 941 } 942 943 /* Insert to the rb-tree */ 944 rb_link_node(&va->rb_node, parent, link); 945 if (augment) { 946 /* 947 * Some explanation here. Just perform simple insertion 948 * to the tree. We do not set va->subtree_max_size to 949 * its current size before calling rb_insert_augmented(). 950 * It is because we populate the tree from the bottom 951 * to parent levels when the node _is_ in the tree. 952 * 953 * Therefore we set subtree_max_size to zero after insertion, 954 * to let __augment_tree_propagate_from() puts everything to 955 * the correct order later on. 956 */ 957 rb_insert_augmented(&va->rb_node, 958 root, &free_vmap_area_rb_augment_cb); 959 va->subtree_max_size = 0; 960 } else { 961 rb_insert_color(&va->rb_node, root); 962 } 963 964 /* Address-sort this list */ 965 list_add(&va->list, head); 966 } 967 968 static __always_inline void 969 link_va(struct vmap_area *va, struct rb_root *root, 970 struct rb_node *parent, struct rb_node **link, 971 struct list_head *head) 972 { 973 __link_va(va, root, parent, link, head, false); 974 } 975 976 static __always_inline void 977 link_va_augment(struct vmap_area *va, struct rb_root *root, 978 struct rb_node *parent, struct rb_node **link, 979 struct list_head *head) 980 { 981 __link_va(va, root, parent, link, head, true); 982 } 983 984 static __always_inline void 985 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 986 { 987 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 988 return; 989 990 if (augment) 991 rb_erase_augmented(&va->rb_node, 992 root, &free_vmap_area_rb_augment_cb); 993 else 994 rb_erase(&va->rb_node, root); 995 996 list_del_init(&va->list); 997 RB_CLEAR_NODE(&va->rb_node); 998 } 999 1000 static __always_inline void 1001 unlink_va(struct vmap_area *va, struct rb_root *root) 1002 { 1003 __unlink_va(va, root, false); 1004 } 1005 1006 static __always_inline void 1007 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1008 { 1009 __unlink_va(va, root, true); 1010 } 1011 1012 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1013 /* 1014 * Gets called when remove the node and rotate. 1015 */ 1016 static __always_inline unsigned long 1017 compute_subtree_max_size(struct vmap_area *va) 1018 { 1019 return max3(va_size(va), 1020 get_subtree_max_size(va->rb_node.rb_left), 1021 get_subtree_max_size(va->rb_node.rb_right)); 1022 } 1023 1024 static void 1025 augment_tree_propagate_check(void) 1026 { 1027 struct vmap_area *va; 1028 unsigned long computed_size; 1029 1030 list_for_each_entry(va, &free_vmap_area_list, list) { 1031 computed_size = compute_subtree_max_size(va); 1032 if (computed_size != va->subtree_max_size) 1033 pr_emerg("tree is corrupted: %lu, %lu\n", 1034 va_size(va), va->subtree_max_size); 1035 } 1036 } 1037 #endif 1038 1039 /* 1040 * This function populates subtree_max_size from bottom to upper 1041 * levels starting from VA point. The propagation must be done 1042 * when VA size is modified by changing its va_start/va_end. Or 1043 * in case of newly inserting of VA to the tree. 1044 * 1045 * It means that __augment_tree_propagate_from() must be called: 1046 * - After VA has been inserted to the tree(free path); 1047 * - After VA has been shrunk(allocation path); 1048 * - After VA has been increased(merging path). 1049 * 1050 * Please note that, it does not mean that upper parent nodes 1051 * and their subtree_max_size are recalculated all the time up 1052 * to the root node. 1053 * 1054 * 4--8 1055 * /\ 1056 * / \ 1057 * / \ 1058 * 2--2 8--8 1059 * 1060 * For example if we modify the node 4, shrinking it to 2, then 1061 * no any modification is required. If we shrink the node 2 to 1 1062 * its subtree_max_size is updated only, and set to 1. If we shrink 1063 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1064 * node becomes 4--6. 1065 */ 1066 static __always_inline void 1067 augment_tree_propagate_from(struct vmap_area *va) 1068 { 1069 /* 1070 * Populate the tree from bottom towards the root until 1071 * the calculated maximum available size of checked node 1072 * is equal to its current one. 1073 */ 1074 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1075 1076 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1077 augment_tree_propagate_check(); 1078 #endif 1079 } 1080 1081 static void 1082 insert_vmap_area(struct vmap_area *va, 1083 struct rb_root *root, struct list_head *head) 1084 { 1085 struct rb_node **link; 1086 struct rb_node *parent; 1087 1088 link = find_va_links(va, root, NULL, &parent); 1089 if (link) 1090 link_va(va, root, parent, link, head); 1091 } 1092 1093 static void 1094 insert_vmap_area_augment(struct vmap_area *va, 1095 struct rb_node *from, struct rb_root *root, 1096 struct list_head *head) 1097 { 1098 struct rb_node **link; 1099 struct rb_node *parent; 1100 1101 if (from) 1102 link = find_va_links(va, NULL, from, &parent); 1103 else 1104 link = find_va_links(va, root, NULL, &parent); 1105 1106 if (link) { 1107 link_va_augment(va, root, parent, link, head); 1108 augment_tree_propagate_from(va); 1109 } 1110 } 1111 1112 /* 1113 * Merge de-allocated chunk of VA memory with previous 1114 * and next free blocks. If coalesce is not done a new 1115 * free area is inserted. If VA has been merged, it is 1116 * freed. 1117 * 1118 * Please note, it can return NULL in case of overlap 1119 * ranges, followed by WARN() report. Despite it is a 1120 * buggy behaviour, a system can be alive and keep 1121 * ongoing. 1122 */ 1123 static __always_inline struct vmap_area * 1124 __merge_or_add_vmap_area(struct vmap_area *va, 1125 struct rb_root *root, struct list_head *head, bool augment) 1126 { 1127 struct vmap_area *sibling; 1128 struct list_head *next; 1129 struct rb_node **link; 1130 struct rb_node *parent; 1131 bool merged = false; 1132 1133 /* 1134 * Find a place in the tree where VA potentially will be 1135 * inserted, unless it is merged with its sibling/siblings. 1136 */ 1137 link = find_va_links(va, root, NULL, &parent); 1138 if (!link) 1139 return NULL; 1140 1141 /* 1142 * Get next node of VA to check if merging can be done. 1143 */ 1144 next = get_va_next_sibling(parent, link); 1145 if (unlikely(next == NULL)) 1146 goto insert; 1147 1148 /* 1149 * start end 1150 * | | 1151 * |<------VA------>|<-----Next----->| 1152 * | | 1153 * start end 1154 */ 1155 if (next != head) { 1156 sibling = list_entry(next, struct vmap_area, list); 1157 if (sibling->va_start == va->va_end) { 1158 sibling->va_start = va->va_start; 1159 1160 /* Free vmap_area object. */ 1161 kmem_cache_free(vmap_area_cachep, va); 1162 1163 /* Point to the new merged area. */ 1164 va = sibling; 1165 merged = true; 1166 } 1167 } 1168 1169 /* 1170 * start end 1171 * | | 1172 * |<-----Prev----->|<------VA------>| 1173 * | | 1174 * start end 1175 */ 1176 if (next->prev != head) { 1177 sibling = list_entry(next->prev, struct vmap_area, list); 1178 if (sibling->va_end == va->va_start) { 1179 /* 1180 * If both neighbors are coalesced, it is important 1181 * to unlink the "next" node first, followed by merging 1182 * with "previous" one. Otherwise the tree might not be 1183 * fully populated if a sibling's augmented value is 1184 * "normalized" because of rotation operations. 1185 */ 1186 if (merged) 1187 __unlink_va(va, root, augment); 1188 1189 sibling->va_end = va->va_end; 1190 1191 /* Free vmap_area object. */ 1192 kmem_cache_free(vmap_area_cachep, va); 1193 1194 /* Point to the new merged area. */ 1195 va = sibling; 1196 merged = true; 1197 } 1198 } 1199 1200 insert: 1201 if (!merged) 1202 __link_va(va, root, parent, link, head, augment); 1203 1204 return va; 1205 } 1206 1207 static __always_inline struct vmap_area * 1208 merge_or_add_vmap_area(struct vmap_area *va, 1209 struct rb_root *root, struct list_head *head) 1210 { 1211 return __merge_or_add_vmap_area(va, root, head, false); 1212 } 1213 1214 static __always_inline struct vmap_area * 1215 merge_or_add_vmap_area_augment(struct vmap_area *va, 1216 struct rb_root *root, struct list_head *head) 1217 { 1218 va = __merge_or_add_vmap_area(va, root, head, true); 1219 if (va) 1220 augment_tree_propagate_from(va); 1221 1222 return va; 1223 } 1224 1225 static __always_inline bool 1226 is_within_this_va(struct vmap_area *va, unsigned long size, 1227 unsigned long align, unsigned long vstart) 1228 { 1229 unsigned long nva_start_addr; 1230 1231 if (va->va_start > vstart) 1232 nva_start_addr = ALIGN(va->va_start, align); 1233 else 1234 nva_start_addr = ALIGN(vstart, align); 1235 1236 /* Can be overflowed due to big size or alignment. */ 1237 if (nva_start_addr + size < nva_start_addr || 1238 nva_start_addr < vstart) 1239 return false; 1240 1241 return (nva_start_addr + size <= va->va_end); 1242 } 1243 1244 /* 1245 * Find the first free block(lowest start address) in the tree, 1246 * that will accomplish the request corresponding to passing 1247 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1248 * a search length is adjusted to account for worst case alignment 1249 * overhead. 1250 */ 1251 static __always_inline struct vmap_area * 1252 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1253 unsigned long align, unsigned long vstart, bool adjust_search_size) 1254 { 1255 struct vmap_area *va; 1256 struct rb_node *node; 1257 unsigned long length; 1258 1259 /* Start from the root. */ 1260 node = root->rb_node; 1261 1262 /* Adjust the search size for alignment overhead. */ 1263 length = adjust_search_size ? size + align - 1 : size; 1264 1265 while (node) { 1266 va = rb_entry(node, struct vmap_area, rb_node); 1267 1268 if (get_subtree_max_size(node->rb_left) >= length && 1269 vstart < va->va_start) { 1270 node = node->rb_left; 1271 } else { 1272 if (is_within_this_va(va, size, align, vstart)) 1273 return va; 1274 1275 /* 1276 * Does not make sense to go deeper towards the right 1277 * sub-tree if it does not have a free block that is 1278 * equal or bigger to the requested search length. 1279 */ 1280 if (get_subtree_max_size(node->rb_right) >= length) { 1281 node = node->rb_right; 1282 continue; 1283 } 1284 1285 /* 1286 * OK. We roll back and find the first right sub-tree, 1287 * that will satisfy the search criteria. It can happen 1288 * due to "vstart" restriction or an alignment overhead 1289 * that is bigger then PAGE_SIZE. 1290 */ 1291 while ((node = rb_parent(node))) { 1292 va = rb_entry(node, struct vmap_area, rb_node); 1293 if (is_within_this_va(va, size, align, vstart)) 1294 return va; 1295 1296 if (get_subtree_max_size(node->rb_right) >= length && 1297 vstart <= va->va_start) { 1298 /* 1299 * Shift the vstart forward. Please note, we update it with 1300 * parent's start address adding "1" because we do not want 1301 * to enter same sub-tree after it has already been checked 1302 * and no suitable free block found there. 1303 */ 1304 vstart = va->va_start + 1; 1305 node = node->rb_right; 1306 break; 1307 } 1308 } 1309 } 1310 } 1311 1312 return NULL; 1313 } 1314 1315 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1316 #include <linux/random.h> 1317 1318 static struct vmap_area * 1319 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1320 unsigned long align, unsigned long vstart) 1321 { 1322 struct vmap_area *va; 1323 1324 list_for_each_entry(va, head, list) { 1325 if (!is_within_this_va(va, size, align, vstart)) 1326 continue; 1327 1328 return va; 1329 } 1330 1331 return NULL; 1332 } 1333 1334 static void 1335 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1336 unsigned long size, unsigned long align) 1337 { 1338 struct vmap_area *va_1, *va_2; 1339 unsigned long vstart; 1340 unsigned int rnd; 1341 1342 get_random_bytes(&rnd, sizeof(rnd)); 1343 vstart = VMALLOC_START + rnd; 1344 1345 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1346 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1347 1348 if (va_1 != va_2) 1349 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1350 va_1, va_2, vstart); 1351 } 1352 #endif 1353 1354 enum fit_type { 1355 NOTHING_FIT = 0, 1356 FL_FIT_TYPE = 1, /* full fit */ 1357 LE_FIT_TYPE = 2, /* left edge fit */ 1358 RE_FIT_TYPE = 3, /* right edge fit */ 1359 NE_FIT_TYPE = 4 /* no edge fit */ 1360 }; 1361 1362 static __always_inline enum fit_type 1363 classify_va_fit_type(struct vmap_area *va, 1364 unsigned long nva_start_addr, unsigned long size) 1365 { 1366 enum fit_type type; 1367 1368 /* Check if it is within VA. */ 1369 if (nva_start_addr < va->va_start || 1370 nva_start_addr + size > va->va_end) 1371 return NOTHING_FIT; 1372 1373 /* Now classify. */ 1374 if (va->va_start == nva_start_addr) { 1375 if (va->va_end == nva_start_addr + size) 1376 type = FL_FIT_TYPE; 1377 else 1378 type = LE_FIT_TYPE; 1379 } else if (va->va_end == nva_start_addr + size) { 1380 type = RE_FIT_TYPE; 1381 } else { 1382 type = NE_FIT_TYPE; 1383 } 1384 1385 return type; 1386 } 1387 1388 static __always_inline int 1389 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head, 1390 struct vmap_area *va, unsigned long nva_start_addr, 1391 unsigned long size) 1392 { 1393 struct vmap_area *lva = NULL; 1394 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1395 1396 if (type == FL_FIT_TYPE) { 1397 /* 1398 * No need to split VA, it fully fits. 1399 * 1400 * | | 1401 * V NVA V 1402 * |---------------| 1403 */ 1404 unlink_va_augment(va, root); 1405 kmem_cache_free(vmap_area_cachep, va); 1406 } else if (type == LE_FIT_TYPE) { 1407 /* 1408 * Split left edge of fit VA. 1409 * 1410 * | | 1411 * V NVA V R 1412 * |-------|-------| 1413 */ 1414 va->va_start += size; 1415 } else if (type == RE_FIT_TYPE) { 1416 /* 1417 * Split right edge of fit VA. 1418 * 1419 * | | 1420 * L V NVA V 1421 * |-------|-------| 1422 */ 1423 va->va_end = nva_start_addr; 1424 } else if (type == NE_FIT_TYPE) { 1425 /* 1426 * Split no edge of fit VA. 1427 * 1428 * | | 1429 * L V NVA V R 1430 * |---|-------|---| 1431 */ 1432 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1433 if (unlikely(!lva)) { 1434 /* 1435 * For percpu allocator we do not do any pre-allocation 1436 * and leave it as it is. The reason is it most likely 1437 * never ends up with NE_FIT_TYPE splitting. In case of 1438 * percpu allocations offsets and sizes are aligned to 1439 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1440 * are its main fitting cases. 1441 * 1442 * There are a few exceptions though, as an example it is 1443 * a first allocation (early boot up) when we have "one" 1444 * big free space that has to be split. 1445 * 1446 * Also we can hit this path in case of regular "vmap" 1447 * allocations, if "this" current CPU was not preloaded. 1448 * See the comment in alloc_vmap_area() why. If so, then 1449 * GFP_NOWAIT is used instead to get an extra object for 1450 * split purpose. That is rare and most time does not 1451 * occur. 1452 * 1453 * What happens if an allocation gets failed. Basically, 1454 * an "overflow" path is triggered to purge lazily freed 1455 * areas to free some memory, then, the "retry" path is 1456 * triggered to repeat one more time. See more details 1457 * in alloc_vmap_area() function. 1458 */ 1459 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1460 if (!lva) 1461 return -1; 1462 } 1463 1464 /* 1465 * Build the remainder. 1466 */ 1467 lva->va_start = va->va_start; 1468 lva->va_end = nva_start_addr; 1469 1470 /* 1471 * Shrink this VA to remaining size. 1472 */ 1473 va->va_start = nva_start_addr + size; 1474 } else { 1475 return -1; 1476 } 1477 1478 if (type != FL_FIT_TYPE) { 1479 augment_tree_propagate_from(va); 1480 1481 if (lva) /* type == NE_FIT_TYPE */ 1482 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1483 } 1484 1485 return 0; 1486 } 1487 1488 /* 1489 * Returns a start address of the newly allocated area, if success. 1490 * Otherwise a vend is returned that indicates failure. 1491 */ 1492 static __always_inline unsigned long 1493 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1494 unsigned long size, unsigned long align, 1495 unsigned long vstart, unsigned long vend) 1496 { 1497 bool adjust_search_size = true; 1498 unsigned long nva_start_addr; 1499 struct vmap_area *va; 1500 int ret; 1501 1502 /* 1503 * Do not adjust when: 1504 * a) align <= PAGE_SIZE, because it does not make any sense. 1505 * All blocks(their start addresses) are at least PAGE_SIZE 1506 * aligned anyway; 1507 * b) a short range where a requested size corresponds to exactly 1508 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1509 * With adjusted search length an allocation would not succeed. 1510 */ 1511 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1512 adjust_search_size = false; 1513 1514 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1515 if (unlikely(!va)) 1516 return vend; 1517 1518 if (va->va_start > vstart) 1519 nva_start_addr = ALIGN(va->va_start, align); 1520 else 1521 nva_start_addr = ALIGN(vstart, align); 1522 1523 /* Check the "vend" restriction. */ 1524 if (nva_start_addr + size > vend) 1525 return vend; 1526 1527 /* Update the free vmap_area. */ 1528 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size); 1529 if (WARN_ON_ONCE(ret)) 1530 return vend; 1531 1532 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1533 find_vmap_lowest_match_check(root, head, size, align); 1534 #endif 1535 1536 return nva_start_addr; 1537 } 1538 1539 /* 1540 * Free a region of KVA allocated by alloc_vmap_area 1541 */ 1542 static void free_vmap_area(struct vmap_area *va) 1543 { 1544 /* 1545 * Remove from the busy tree/list. 1546 */ 1547 spin_lock(&vmap_area_lock); 1548 unlink_va(va, &vmap_area_root); 1549 spin_unlock(&vmap_area_lock); 1550 1551 /* 1552 * Insert/Merge it back to the free tree/list. 1553 */ 1554 spin_lock(&free_vmap_area_lock); 1555 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1556 spin_unlock(&free_vmap_area_lock); 1557 } 1558 1559 static inline void 1560 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1561 { 1562 struct vmap_area *va = NULL; 1563 1564 /* 1565 * Preload this CPU with one extra vmap_area object. It is used 1566 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1567 * a CPU that does an allocation is preloaded. 1568 * 1569 * We do it in non-atomic context, thus it allows us to use more 1570 * permissive allocation masks to be more stable under low memory 1571 * condition and high memory pressure. 1572 */ 1573 if (!this_cpu_read(ne_fit_preload_node)) 1574 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1575 1576 spin_lock(lock); 1577 1578 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1579 kmem_cache_free(vmap_area_cachep, va); 1580 } 1581 1582 /* 1583 * Allocate a region of KVA of the specified size and alignment, within the 1584 * vstart and vend. 1585 */ 1586 static struct vmap_area *alloc_vmap_area(unsigned long size, 1587 unsigned long align, 1588 unsigned long vstart, unsigned long vend, 1589 int node, gfp_t gfp_mask) 1590 { 1591 struct vmap_area *va; 1592 unsigned long freed; 1593 unsigned long addr; 1594 int purged = 0; 1595 int ret; 1596 1597 BUG_ON(!size); 1598 BUG_ON(offset_in_page(size)); 1599 BUG_ON(!is_power_of_2(align)); 1600 1601 if (unlikely(!vmap_initialized)) 1602 return ERR_PTR(-EBUSY); 1603 1604 might_sleep(); 1605 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1606 1607 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1608 if (unlikely(!va)) 1609 return ERR_PTR(-ENOMEM); 1610 1611 /* 1612 * Only scan the relevant parts containing pointers to other objects 1613 * to avoid false negatives. 1614 */ 1615 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1616 1617 retry: 1618 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1619 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 1620 size, align, vstart, vend); 1621 spin_unlock(&free_vmap_area_lock); 1622 1623 /* 1624 * If an allocation fails, the "vend" address is 1625 * returned. Therefore trigger the overflow path. 1626 */ 1627 if (unlikely(addr == vend)) 1628 goto overflow; 1629 1630 va->va_start = addr; 1631 va->va_end = addr + size; 1632 va->vm = NULL; 1633 1634 spin_lock(&vmap_area_lock); 1635 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1636 spin_unlock(&vmap_area_lock); 1637 1638 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1639 BUG_ON(va->va_start < vstart); 1640 BUG_ON(va->va_end > vend); 1641 1642 ret = kasan_populate_vmalloc(addr, size); 1643 if (ret) { 1644 free_vmap_area(va); 1645 return ERR_PTR(ret); 1646 } 1647 1648 return va; 1649 1650 overflow: 1651 if (!purged) { 1652 purge_vmap_area_lazy(); 1653 purged = 1; 1654 goto retry; 1655 } 1656 1657 freed = 0; 1658 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1659 1660 if (freed > 0) { 1661 purged = 0; 1662 goto retry; 1663 } 1664 1665 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1666 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1667 size); 1668 1669 kmem_cache_free(vmap_area_cachep, va); 1670 return ERR_PTR(-EBUSY); 1671 } 1672 1673 int register_vmap_purge_notifier(struct notifier_block *nb) 1674 { 1675 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1676 } 1677 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1678 1679 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1680 { 1681 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1682 } 1683 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1684 1685 /* 1686 * lazy_max_pages is the maximum amount of virtual address space we gather up 1687 * before attempting to purge with a TLB flush. 1688 * 1689 * There is a tradeoff here: a larger number will cover more kernel page tables 1690 * and take slightly longer to purge, but it will linearly reduce the number of 1691 * global TLB flushes that must be performed. It would seem natural to scale 1692 * this number up linearly with the number of CPUs (because vmapping activity 1693 * could also scale linearly with the number of CPUs), however it is likely 1694 * that in practice, workloads might be constrained in other ways that mean 1695 * vmap activity will not scale linearly with CPUs. Also, I want to be 1696 * conservative and not introduce a big latency on huge systems, so go with 1697 * a less aggressive log scale. It will still be an improvement over the old 1698 * code, and it will be simple to change the scale factor if we find that it 1699 * becomes a problem on bigger systems. 1700 */ 1701 static unsigned long lazy_max_pages(void) 1702 { 1703 unsigned int log; 1704 1705 log = fls(num_online_cpus()); 1706 1707 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1708 } 1709 1710 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1711 1712 /* 1713 * Serialize vmap purging. There is no actual critical section protected 1714 * by this lock, but we want to avoid concurrent calls for performance 1715 * reasons and to make the pcpu_get_vm_areas more deterministic. 1716 */ 1717 static DEFINE_MUTEX(vmap_purge_lock); 1718 1719 /* for per-CPU blocks */ 1720 static void purge_fragmented_blocks_allcpus(void); 1721 1722 /* 1723 * Purges all lazily-freed vmap areas. 1724 */ 1725 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1726 { 1727 unsigned long resched_threshold; 1728 struct list_head local_purge_list; 1729 struct vmap_area *va, *n_va; 1730 1731 lockdep_assert_held(&vmap_purge_lock); 1732 1733 spin_lock(&purge_vmap_area_lock); 1734 purge_vmap_area_root = RB_ROOT; 1735 list_replace_init(&purge_vmap_area_list, &local_purge_list); 1736 spin_unlock(&purge_vmap_area_lock); 1737 1738 if (unlikely(list_empty(&local_purge_list))) 1739 return false; 1740 1741 start = min(start, 1742 list_first_entry(&local_purge_list, 1743 struct vmap_area, list)->va_start); 1744 1745 end = max(end, 1746 list_last_entry(&local_purge_list, 1747 struct vmap_area, list)->va_end); 1748 1749 flush_tlb_kernel_range(start, end); 1750 resched_threshold = lazy_max_pages() << 1; 1751 1752 spin_lock(&free_vmap_area_lock); 1753 list_for_each_entry_safe(va, n_va, &local_purge_list, list) { 1754 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1755 unsigned long orig_start = va->va_start; 1756 unsigned long orig_end = va->va_end; 1757 1758 /* 1759 * Finally insert or merge lazily-freed area. It is 1760 * detached and there is no need to "unlink" it from 1761 * anything. 1762 */ 1763 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1764 &free_vmap_area_list); 1765 1766 if (!va) 1767 continue; 1768 1769 if (is_vmalloc_or_module_addr((void *)orig_start)) 1770 kasan_release_vmalloc(orig_start, orig_end, 1771 va->va_start, va->va_end); 1772 1773 atomic_long_sub(nr, &vmap_lazy_nr); 1774 1775 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1776 cond_resched_lock(&free_vmap_area_lock); 1777 } 1778 spin_unlock(&free_vmap_area_lock); 1779 return true; 1780 } 1781 1782 /* 1783 * Kick off a purge of the outstanding lazy areas. 1784 */ 1785 static void purge_vmap_area_lazy(void) 1786 { 1787 mutex_lock(&vmap_purge_lock); 1788 purge_fragmented_blocks_allcpus(); 1789 __purge_vmap_area_lazy(ULONG_MAX, 0); 1790 mutex_unlock(&vmap_purge_lock); 1791 } 1792 1793 static void drain_vmap_area_work(struct work_struct *work) 1794 { 1795 unsigned long nr_lazy; 1796 1797 do { 1798 mutex_lock(&vmap_purge_lock); 1799 __purge_vmap_area_lazy(ULONG_MAX, 0); 1800 mutex_unlock(&vmap_purge_lock); 1801 1802 /* Recheck if further work is required. */ 1803 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1804 } while (nr_lazy > lazy_max_pages()); 1805 } 1806 1807 /* 1808 * Free a vmap area, caller ensuring that the area has been unmapped 1809 * and flush_cache_vunmap had been called for the correct range 1810 * previously. 1811 */ 1812 static void free_vmap_area_noflush(struct vmap_area *va) 1813 { 1814 unsigned long nr_lazy; 1815 1816 spin_lock(&vmap_area_lock); 1817 unlink_va(va, &vmap_area_root); 1818 spin_unlock(&vmap_area_lock); 1819 1820 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1821 PAGE_SHIFT, &vmap_lazy_nr); 1822 1823 /* 1824 * Merge or place it to the purge tree/list. 1825 */ 1826 spin_lock(&purge_vmap_area_lock); 1827 merge_or_add_vmap_area(va, 1828 &purge_vmap_area_root, &purge_vmap_area_list); 1829 spin_unlock(&purge_vmap_area_lock); 1830 1831 /* After this point, we may free va at any time */ 1832 if (unlikely(nr_lazy > lazy_max_pages())) 1833 schedule_work(&drain_vmap_work); 1834 } 1835 1836 /* 1837 * Free and unmap a vmap area 1838 */ 1839 static void free_unmap_vmap_area(struct vmap_area *va) 1840 { 1841 flush_cache_vunmap(va->va_start, va->va_end); 1842 vunmap_range_noflush(va->va_start, va->va_end); 1843 if (debug_pagealloc_enabled_static()) 1844 flush_tlb_kernel_range(va->va_start, va->va_end); 1845 1846 free_vmap_area_noflush(va); 1847 } 1848 1849 struct vmap_area *find_vmap_area(unsigned long addr) 1850 { 1851 struct vmap_area *va; 1852 1853 spin_lock(&vmap_area_lock); 1854 va = __find_vmap_area(addr, &vmap_area_root); 1855 spin_unlock(&vmap_area_lock); 1856 1857 return va; 1858 } 1859 1860 /*** Per cpu kva allocator ***/ 1861 1862 /* 1863 * vmap space is limited especially on 32 bit architectures. Ensure there is 1864 * room for at least 16 percpu vmap blocks per CPU. 1865 */ 1866 /* 1867 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1868 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1869 * instead (we just need a rough idea) 1870 */ 1871 #if BITS_PER_LONG == 32 1872 #define VMALLOC_SPACE (128UL*1024*1024) 1873 #else 1874 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1875 #endif 1876 1877 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1878 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1879 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1880 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1881 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1882 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1883 #define VMAP_BBMAP_BITS \ 1884 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1885 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1886 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1887 1888 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1889 1890 struct vmap_block_queue { 1891 spinlock_t lock; 1892 struct list_head free; 1893 }; 1894 1895 struct vmap_block { 1896 spinlock_t lock; 1897 struct vmap_area *va; 1898 unsigned long free, dirty; 1899 unsigned long dirty_min, dirty_max; /*< dirty range */ 1900 struct list_head free_list; 1901 struct rcu_head rcu_head; 1902 struct list_head purge; 1903 }; 1904 1905 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1906 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1907 1908 /* 1909 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1910 * in the free path. Could get rid of this if we change the API to return a 1911 * "cookie" from alloc, to be passed to free. But no big deal yet. 1912 */ 1913 static DEFINE_XARRAY(vmap_blocks); 1914 1915 /* 1916 * We should probably have a fallback mechanism to allocate virtual memory 1917 * out of partially filled vmap blocks. However vmap block sizing should be 1918 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1919 * big problem. 1920 */ 1921 1922 static unsigned long addr_to_vb_idx(unsigned long addr) 1923 { 1924 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1925 addr /= VMAP_BLOCK_SIZE; 1926 return addr; 1927 } 1928 1929 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1930 { 1931 unsigned long addr; 1932 1933 addr = va_start + (pages_off << PAGE_SHIFT); 1934 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1935 return (void *)addr; 1936 } 1937 1938 /** 1939 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1940 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1941 * @order: how many 2^order pages should be occupied in newly allocated block 1942 * @gfp_mask: flags for the page level allocator 1943 * 1944 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1945 */ 1946 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1947 { 1948 struct vmap_block_queue *vbq; 1949 struct vmap_block *vb; 1950 struct vmap_area *va; 1951 unsigned long vb_idx; 1952 int node, err; 1953 void *vaddr; 1954 1955 node = numa_node_id(); 1956 1957 vb = kmalloc_node(sizeof(struct vmap_block), 1958 gfp_mask & GFP_RECLAIM_MASK, node); 1959 if (unlikely(!vb)) 1960 return ERR_PTR(-ENOMEM); 1961 1962 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1963 VMALLOC_START, VMALLOC_END, 1964 node, gfp_mask); 1965 if (IS_ERR(va)) { 1966 kfree(vb); 1967 return ERR_CAST(va); 1968 } 1969 1970 vaddr = vmap_block_vaddr(va->va_start, 0); 1971 spin_lock_init(&vb->lock); 1972 vb->va = va; 1973 /* At least something should be left free */ 1974 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1975 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1976 vb->dirty = 0; 1977 vb->dirty_min = VMAP_BBMAP_BITS; 1978 vb->dirty_max = 0; 1979 INIT_LIST_HEAD(&vb->free_list); 1980 1981 vb_idx = addr_to_vb_idx(va->va_start); 1982 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1983 if (err) { 1984 kfree(vb); 1985 free_vmap_area(va); 1986 return ERR_PTR(err); 1987 } 1988 1989 vbq = raw_cpu_ptr(&vmap_block_queue); 1990 spin_lock(&vbq->lock); 1991 list_add_tail_rcu(&vb->free_list, &vbq->free); 1992 spin_unlock(&vbq->lock); 1993 1994 return vaddr; 1995 } 1996 1997 static void free_vmap_block(struct vmap_block *vb) 1998 { 1999 struct vmap_block *tmp; 2000 2001 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 2002 BUG_ON(tmp != vb); 2003 2004 free_vmap_area_noflush(vb->va); 2005 kfree_rcu(vb, rcu_head); 2006 } 2007 2008 static void purge_fragmented_blocks(int cpu) 2009 { 2010 LIST_HEAD(purge); 2011 struct vmap_block *vb; 2012 struct vmap_block *n_vb; 2013 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2014 2015 rcu_read_lock(); 2016 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2017 2018 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 2019 continue; 2020 2021 spin_lock(&vb->lock); 2022 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 2023 vb->free = 0; /* prevent further allocs after releasing lock */ 2024 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 2025 vb->dirty_min = 0; 2026 vb->dirty_max = VMAP_BBMAP_BITS; 2027 spin_lock(&vbq->lock); 2028 list_del_rcu(&vb->free_list); 2029 spin_unlock(&vbq->lock); 2030 spin_unlock(&vb->lock); 2031 list_add_tail(&vb->purge, &purge); 2032 } else 2033 spin_unlock(&vb->lock); 2034 } 2035 rcu_read_unlock(); 2036 2037 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 2038 list_del(&vb->purge); 2039 free_vmap_block(vb); 2040 } 2041 } 2042 2043 static void purge_fragmented_blocks_allcpus(void) 2044 { 2045 int cpu; 2046 2047 for_each_possible_cpu(cpu) 2048 purge_fragmented_blocks(cpu); 2049 } 2050 2051 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2052 { 2053 struct vmap_block_queue *vbq; 2054 struct vmap_block *vb; 2055 void *vaddr = NULL; 2056 unsigned int order; 2057 2058 BUG_ON(offset_in_page(size)); 2059 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2060 if (WARN_ON(size == 0)) { 2061 /* 2062 * Allocating 0 bytes isn't what caller wants since 2063 * get_order(0) returns funny result. Just warn and terminate 2064 * early. 2065 */ 2066 return NULL; 2067 } 2068 order = get_order(size); 2069 2070 rcu_read_lock(); 2071 vbq = raw_cpu_ptr(&vmap_block_queue); 2072 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2073 unsigned long pages_off; 2074 2075 spin_lock(&vb->lock); 2076 if (vb->free < (1UL << order)) { 2077 spin_unlock(&vb->lock); 2078 continue; 2079 } 2080 2081 pages_off = VMAP_BBMAP_BITS - vb->free; 2082 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2083 vb->free -= 1UL << order; 2084 if (vb->free == 0) { 2085 spin_lock(&vbq->lock); 2086 list_del_rcu(&vb->free_list); 2087 spin_unlock(&vbq->lock); 2088 } 2089 2090 spin_unlock(&vb->lock); 2091 break; 2092 } 2093 2094 rcu_read_unlock(); 2095 2096 /* Allocate new block if nothing was found */ 2097 if (!vaddr) 2098 vaddr = new_vmap_block(order, gfp_mask); 2099 2100 return vaddr; 2101 } 2102 2103 static void vb_free(unsigned long addr, unsigned long size) 2104 { 2105 unsigned long offset; 2106 unsigned int order; 2107 struct vmap_block *vb; 2108 2109 BUG_ON(offset_in_page(size)); 2110 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2111 2112 flush_cache_vunmap(addr, addr + size); 2113 2114 order = get_order(size); 2115 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2116 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2117 2118 vunmap_range_noflush(addr, addr + size); 2119 2120 if (debug_pagealloc_enabled_static()) 2121 flush_tlb_kernel_range(addr, addr + size); 2122 2123 spin_lock(&vb->lock); 2124 2125 /* Expand dirty range */ 2126 vb->dirty_min = min(vb->dirty_min, offset); 2127 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2128 2129 vb->dirty += 1UL << order; 2130 if (vb->dirty == VMAP_BBMAP_BITS) { 2131 BUG_ON(vb->free); 2132 spin_unlock(&vb->lock); 2133 free_vmap_block(vb); 2134 } else 2135 spin_unlock(&vb->lock); 2136 } 2137 2138 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2139 { 2140 int cpu; 2141 2142 if (unlikely(!vmap_initialized)) 2143 return; 2144 2145 might_sleep(); 2146 2147 for_each_possible_cpu(cpu) { 2148 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2149 struct vmap_block *vb; 2150 2151 rcu_read_lock(); 2152 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2153 spin_lock(&vb->lock); 2154 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2155 unsigned long va_start = vb->va->va_start; 2156 unsigned long s, e; 2157 2158 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2159 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2160 2161 start = min(s, start); 2162 end = max(e, end); 2163 2164 flush = 1; 2165 } 2166 spin_unlock(&vb->lock); 2167 } 2168 rcu_read_unlock(); 2169 } 2170 2171 mutex_lock(&vmap_purge_lock); 2172 purge_fragmented_blocks_allcpus(); 2173 if (!__purge_vmap_area_lazy(start, end) && flush) 2174 flush_tlb_kernel_range(start, end); 2175 mutex_unlock(&vmap_purge_lock); 2176 } 2177 2178 /** 2179 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2180 * 2181 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2182 * to amortize TLB flushing overheads. What this means is that any page you 2183 * have now, may, in a former life, have been mapped into kernel virtual 2184 * address by the vmap layer and so there might be some CPUs with TLB entries 2185 * still referencing that page (additional to the regular 1:1 kernel mapping). 2186 * 2187 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2188 * be sure that none of the pages we have control over will have any aliases 2189 * from the vmap layer. 2190 */ 2191 void vm_unmap_aliases(void) 2192 { 2193 unsigned long start = ULONG_MAX, end = 0; 2194 int flush = 0; 2195 2196 _vm_unmap_aliases(start, end, flush); 2197 } 2198 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2199 2200 /** 2201 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2202 * @mem: the pointer returned by vm_map_ram 2203 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2204 */ 2205 void vm_unmap_ram(const void *mem, unsigned int count) 2206 { 2207 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2208 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2209 struct vmap_area *va; 2210 2211 might_sleep(); 2212 BUG_ON(!addr); 2213 BUG_ON(addr < VMALLOC_START); 2214 BUG_ON(addr > VMALLOC_END); 2215 BUG_ON(!PAGE_ALIGNED(addr)); 2216 2217 kasan_poison_vmalloc(mem, size); 2218 2219 if (likely(count <= VMAP_MAX_ALLOC)) { 2220 debug_check_no_locks_freed(mem, size); 2221 vb_free(addr, size); 2222 return; 2223 } 2224 2225 va = find_vmap_area(addr); 2226 BUG_ON(!va); 2227 debug_check_no_locks_freed((void *)va->va_start, 2228 (va->va_end - va->va_start)); 2229 free_unmap_vmap_area(va); 2230 } 2231 EXPORT_SYMBOL(vm_unmap_ram); 2232 2233 /** 2234 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2235 * @pages: an array of pointers to the pages to be mapped 2236 * @count: number of pages 2237 * @node: prefer to allocate data structures on this node 2238 * 2239 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2240 * faster than vmap so it's good. But if you mix long-life and short-life 2241 * objects with vm_map_ram(), it could consume lots of address space through 2242 * fragmentation (especially on a 32bit machine). You could see failures in 2243 * the end. Please use this function for short-lived objects. 2244 * 2245 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2246 */ 2247 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2248 { 2249 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2250 unsigned long addr; 2251 void *mem; 2252 2253 if (likely(count <= VMAP_MAX_ALLOC)) { 2254 mem = vb_alloc(size, GFP_KERNEL); 2255 if (IS_ERR(mem)) 2256 return NULL; 2257 addr = (unsigned long)mem; 2258 } else { 2259 struct vmap_area *va; 2260 va = alloc_vmap_area(size, PAGE_SIZE, 2261 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2262 if (IS_ERR(va)) 2263 return NULL; 2264 2265 addr = va->va_start; 2266 mem = (void *)addr; 2267 } 2268 2269 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2270 pages, PAGE_SHIFT) < 0) { 2271 vm_unmap_ram(mem, count); 2272 return NULL; 2273 } 2274 2275 /* 2276 * Mark the pages as accessible, now that they are mapped. 2277 * With hardware tag-based KASAN, marking is skipped for 2278 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2279 */ 2280 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2281 2282 return mem; 2283 } 2284 EXPORT_SYMBOL(vm_map_ram); 2285 2286 static struct vm_struct *vmlist __initdata; 2287 2288 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2289 { 2290 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2291 return vm->page_order; 2292 #else 2293 return 0; 2294 #endif 2295 } 2296 2297 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2298 { 2299 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2300 vm->page_order = order; 2301 #else 2302 BUG_ON(order != 0); 2303 #endif 2304 } 2305 2306 /** 2307 * vm_area_add_early - add vmap area early during boot 2308 * @vm: vm_struct to add 2309 * 2310 * This function is used to add fixed kernel vm area to vmlist before 2311 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2312 * should contain proper values and the other fields should be zero. 2313 * 2314 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2315 */ 2316 void __init vm_area_add_early(struct vm_struct *vm) 2317 { 2318 struct vm_struct *tmp, **p; 2319 2320 BUG_ON(vmap_initialized); 2321 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2322 if (tmp->addr >= vm->addr) { 2323 BUG_ON(tmp->addr < vm->addr + vm->size); 2324 break; 2325 } else 2326 BUG_ON(tmp->addr + tmp->size > vm->addr); 2327 } 2328 vm->next = *p; 2329 *p = vm; 2330 } 2331 2332 /** 2333 * vm_area_register_early - register vmap area early during boot 2334 * @vm: vm_struct to register 2335 * @align: requested alignment 2336 * 2337 * This function is used to register kernel vm area before 2338 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2339 * proper values on entry and other fields should be zero. On return, 2340 * vm->addr contains the allocated address. 2341 * 2342 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2343 */ 2344 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2345 { 2346 unsigned long addr = ALIGN(VMALLOC_START, align); 2347 struct vm_struct *cur, **p; 2348 2349 BUG_ON(vmap_initialized); 2350 2351 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2352 if ((unsigned long)cur->addr - addr >= vm->size) 2353 break; 2354 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2355 } 2356 2357 BUG_ON(addr > VMALLOC_END - vm->size); 2358 vm->addr = (void *)addr; 2359 vm->next = *p; 2360 *p = vm; 2361 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2362 } 2363 2364 static void vmap_init_free_space(void) 2365 { 2366 unsigned long vmap_start = 1; 2367 const unsigned long vmap_end = ULONG_MAX; 2368 struct vmap_area *busy, *free; 2369 2370 /* 2371 * B F B B B F 2372 * -|-----|.....|-----|-----|-----|.....|- 2373 * | The KVA space | 2374 * |<--------------------------------->| 2375 */ 2376 list_for_each_entry(busy, &vmap_area_list, list) { 2377 if (busy->va_start - vmap_start > 0) { 2378 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2379 if (!WARN_ON_ONCE(!free)) { 2380 free->va_start = vmap_start; 2381 free->va_end = busy->va_start; 2382 2383 insert_vmap_area_augment(free, NULL, 2384 &free_vmap_area_root, 2385 &free_vmap_area_list); 2386 } 2387 } 2388 2389 vmap_start = busy->va_end; 2390 } 2391 2392 if (vmap_end - vmap_start > 0) { 2393 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2394 if (!WARN_ON_ONCE(!free)) { 2395 free->va_start = vmap_start; 2396 free->va_end = vmap_end; 2397 2398 insert_vmap_area_augment(free, NULL, 2399 &free_vmap_area_root, 2400 &free_vmap_area_list); 2401 } 2402 } 2403 } 2404 2405 void __init vmalloc_init(void) 2406 { 2407 struct vmap_area *va; 2408 struct vm_struct *tmp; 2409 int i; 2410 2411 /* 2412 * Create the cache for vmap_area objects. 2413 */ 2414 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2415 2416 for_each_possible_cpu(i) { 2417 struct vmap_block_queue *vbq; 2418 struct vfree_deferred *p; 2419 2420 vbq = &per_cpu(vmap_block_queue, i); 2421 spin_lock_init(&vbq->lock); 2422 INIT_LIST_HEAD(&vbq->free); 2423 p = &per_cpu(vfree_deferred, i); 2424 init_llist_head(&p->list); 2425 INIT_WORK(&p->wq, free_work); 2426 } 2427 2428 /* Import existing vmlist entries. */ 2429 for (tmp = vmlist; tmp; tmp = tmp->next) { 2430 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2431 if (WARN_ON_ONCE(!va)) 2432 continue; 2433 2434 va->va_start = (unsigned long)tmp->addr; 2435 va->va_end = va->va_start + tmp->size; 2436 va->vm = tmp; 2437 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2438 } 2439 2440 /* 2441 * Now we can initialize a free vmap space. 2442 */ 2443 vmap_init_free_space(); 2444 vmap_initialized = true; 2445 } 2446 2447 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2448 struct vmap_area *va, unsigned long flags, const void *caller) 2449 { 2450 vm->flags = flags; 2451 vm->addr = (void *)va->va_start; 2452 vm->size = va->va_end - va->va_start; 2453 vm->caller = caller; 2454 va->vm = vm; 2455 } 2456 2457 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2458 unsigned long flags, const void *caller) 2459 { 2460 spin_lock(&vmap_area_lock); 2461 setup_vmalloc_vm_locked(vm, va, flags, caller); 2462 spin_unlock(&vmap_area_lock); 2463 } 2464 2465 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2466 { 2467 /* 2468 * Before removing VM_UNINITIALIZED, 2469 * we should make sure that vm has proper values. 2470 * Pair with smp_rmb() in show_numa_info(). 2471 */ 2472 smp_wmb(); 2473 vm->flags &= ~VM_UNINITIALIZED; 2474 } 2475 2476 static struct vm_struct *__get_vm_area_node(unsigned long size, 2477 unsigned long align, unsigned long shift, unsigned long flags, 2478 unsigned long start, unsigned long end, int node, 2479 gfp_t gfp_mask, const void *caller) 2480 { 2481 struct vmap_area *va; 2482 struct vm_struct *area; 2483 unsigned long requested_size = size; 2484 2485 BUG_ON(in_interrupt()); 2486 size = ALIGN(size, 1ul << shift); 2487 if (unlikely(!size)) 2488 return NULL; 2489 2490 if (flags & VM_IOREMAP) 2491 align = 1ul << clamp_t(int, get_count_order_long(size), 2492 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2493 2494 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2495 if (unlikely(!area)) 2496 return NULL; 2497 2498 if (!(flags & VM_NO_GUARD)) 2499 size += PAGE_SIZE; 2500 2501 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2502 if (IS_ERR(va)) { 2503 kfree(area); 2504 return NULL; 2505 } 2506 2507 setup_vmalloc_vm(area, va, flags, caller); 2508 2509 /* 2510 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2511 * best-effort approach, as they can be mapped outside of vmalloc code. 2512 * For VM_ALLOC mappings, the pages are marked as accessible after 2513 * getting mapped in __vmalloc_node_range(). 2514 * With hardware tag-based KASAN, marking is skipped for 2515 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2516 */ 2517 if (!(flags & VM_ALLOC)) 2518 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2519 KASAN_VMALLOC_PROT_NORMAL); 2520 2521 return area; 2522 } 2523 2524 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2525 unsigned long start, unsigned long end, 2526 const void *caller) 2527 { 2528 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2529 NUMA_NO_NODE, GFP_KERNEL, caller); 2530 } 2531 2532 /** 2533 * get_vm_area - reserve a contiguous kernel virtual area 2534 * @size: size of the area 2535 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2536 * 2537 * Search an area of @size in the kernel virtual mapping area, 2538 * and reserved it for out purposes. Returns the area descriptor 2539 * on success or %NULL on failure. 2540 * 2541 * Return: the area descriptor on success or %NULL on failure. 2542 */ 2543 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2544 { 2545 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2546 VMALLOC_START, VMALLOC_END, 2547 NUMA_NO_NODE, GFP_KERNEL, 2548 __builtin_return_address(0)); 2549 } 2550 2551 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2552 const void *caller) 2553 { 2554 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2555 VMALLOC_START, VMALLOC_END, 2556 NUMA_NO_NODE, GFP_KERNEL, caller); 2557 } 2558 2559 /** 2560 * find_vm_area - find a continuous kernel virtual area 2561 * @addr: base address 2562 * 2563 * Search for the kernel VM area starting at @addr, and return it. 2564 * It is up to the caller to do all required locking to keep the returned 2565 * pointer valid. 2566 * 2567 * Return: the area descriptor on success or %NULL on failure. 2568 */ 2569 struct vm_struct *find_vm_area(const void *addr) 2570 { 2571 struct vmap_area *va; 2572 2573 va = find_vmap_area((unsigned long)addr); 2574 if (!va) 2575 return NULL; 2576 2577 return va->vm; 2578 } 2579 2580 /** 2581 * remove_vm_area - find and remove a continuous kernel virtual area 2582 * @addr: base address 2583 * 2584 * Search for the kernel VM area starting at @addr, and remove it. 2585 * This function returns the found VM area, but using it is NOT safe 2586 * on SMP machines, except for its size or flags. 2587 * 2588 * Return: the area descriptor on success or %NULL on failure. 2589 */ 2590 struct vm_struct *remove_vm_area(const void *addr) 2591 { 2592 struct vmap_area *va; 2593 2594 might_sleep(); 2595 2596 spin_lock(&vmap_area_lock); 2597 va = __find_vmap_area((unsigned long)addr, &vmap_area_root); 2598 if (va && va->vm) { 2599 struct vm_struct *vm = va->vm; 2600 2601 va->vm = NULL; 2602 spin_unlock(&vmap_area_lock); 2603 2604 kasan_free_module_shadow(vm); 2605 free_unmap_vmap_area(va); 2606 2607 return vm; 2608 } 2609 2610 spin_unlock(&vmap_area_lock); 2611 return NULL; 2612 } 2613 2614 static inline void set_area_direct_map(const struct vm_struct *area, 2615 int (*set_direct_map)(struct page *page)) 2616 { 2617 int i; 2618 2619 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2620 for (i = 0; i < area->nr_pages; i++) 2621 if (page_address(area->pages[i])) 2622 set_direct_map(area->pages[i]); 2623 } 2624 2625 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2626 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2627 { 2628 unsigned long start = ULONG_MAX, end = 0; 2629 unsigned int page_order = vm_area_page_order(area); 2630 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2631 int flush_dmap = 0; 2632 int i; 2633 2634 remove_vm_area(area->addr); 2635 2636 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2637 if (!flush_reset) 2638 return; 2639 2640 /* 2641 * If not deallocating pages, just do the flush of the VM area and 2642 * return. 2643 */ 2644 if (!deallocate_pages) { 2645 vm_unmap_aliases(); 2646 return; 2647 } 2648 2649 /* 2650 * If execution gets here, flush the vm mapping and reset the direct 2651 * map. Find the start and end range of the direct mappings to make sure 2652 * the vm_unmap_aliases() flush includes the direct map. 2653 */ 2654 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2655 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2656 if (addr) { 2657 unsigned long page_size; 2658 2659 page_size = PAGE_SIZE << page_order; 2660 start = min(addr, start); 2661 end = max(addr + page_size, end); 2662 flush_dmap = 1; 2663 } 2664 } 2665 2666 /* 2667 * Set direct map to something invalid so that it won't be cached if 2668 * there are any accesses after the TLB flush, then flush the TLB and 2669 * reset the direct map permissions to the default. 2670 */ 2671 set_area_direct_map(area, set_direct_map_invalid_noflush); 2672 _vm_unmap_aliases(start, end, flush_dmap); 2673 set_area_direct_map(area, set_direct_map_default_noflush); 2674 } 2675 2676 static void __vunmap(const void *addr, int deallocate_pages) 2677 { 2678 struct vm_struct *area; 2679 2680 if (!addr) 2681 return; 2682 2683 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2684 addr)) 2685 return; 2686 2687 area = find_vm_area(addr); 2688 if (unlikely(!area)) { 2689 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2690 addr); 2691 return; 2692 } 2693 2694 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2695 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2696 2697 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2698 2699 vm_remove_mappings(area, deallocate_pages); 2700 2701 if (deallocate_pages) { 2702 int i; 2703 2704 for (i = 0; i < area->nr_pages; i++) { 2705 struct page *page = area->pages[i]; 2706 2707 BUG_ON(!page); 2708 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 2709 /* 2710 * High-order allocs for huge vmallocs are split, so 2711 * can be freed as an array of order-0 allocations 2712 */ 2713 __free_pages(page, 0); 2714 cond_resched(); 2715 } 2716 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2717 2718 kvfree(area->pages); 2719 } 2720 2721 kfree(area); 2722 } 2723 2724 static inline void __vfree_deferred(const void *addr) 2725 { 2726 /* 2727 * Use raw_cpu_ptr() because this can be called from preemptible 2728 * context. Preemption is absolutely fine here, because the llist_add() 2729 * implementation is lockless, so it works even if we are adding to 2730 * another cpu's list. schedule_work() should be fine with this too. 2731 */ 2732 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2733 2734 if (llist_add((struct llist_node *)addr, &p->list)) 2735 schedule_work(&p->wq); 2736 } 2737 2738 /** 2739 * vfree_atomic - release memory allocated by vmalloc() 2740 * @addr: memory base address 2741 * 2742 * This one is just like vfree() but can be called in any atomic context 2743 * except NMIs. 2744 */ 2745 void vfree_atomic(const void *addr) 2746 { 2747 BUG_ON(in_nmi()); 2748 2749 kmemleak_free(addr); 2750 2751 if (!addr) 2752 return; 2753 __vfree_deferred(addr); 2754 } 2755 2756 static void __vfree(const void *addr) 2757 { 2758 if (unlikely(in_interrupt())) 2759 __vfree_deferred(addr); 2760 else 2761 __vunmap(addr, 1); 2762 } 2763 2764 /** 2765 * vfree - Release memory allocated by vmalloc() 2766 * @addr: Memory base address 2767 * 2768 * Free the virtually continuous memory area starting at @addr, as obtained 2769 * from one of the vmalloc() family of APIs. This will usually also free the 2770 * physical memory underlying the virtual allocation, but that memory is 2771 * reference counted, so it will not be freed until the last user goes away. 2772 * 2773 * If @addr is NULL, no operation is performed. 2774 * 2775 * Context: 2776 * May sleep if called *not* from interrupt context. 2777 * Must not be called in NMI context (strictly speaking, it could be 2778 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2779 * conventions for vfree() arch-dependent would be a really bad idea). 2780 */ 2781 void vfree(const void *addr) 2782 { 2783 BUG_ON(in_nmi()); 2784 2785 kmemleak_free(addr); 2786 2787 might_sleep_if(!in_interrupt()); 2788 2789 if (!addr) 2790 return; 2791 2792 __vfree(addr); 2793 } 2794 EXPORT_SYMBOL(vfree); 2795 2796 /** 2797 * vunmap - release virtual mapping obtained by vmap() 2798 * @addr: memory base address 2799 * 2800 * Free the virtually contiguous memory area starting at @addr, 2801 * which was created from the page array passed to vmap(). 2802 * 2803 * Must not be called in interrupt context. 2804 */ 2805 void vunmap(const void *addr) 2806 { 2807 BUG_ON(in_interrupt()); 2808 might_sleep(); 2809 if (addr) 2810 __vunmap(addr, 0); 2811 } 2812 EXPORT_SYMBOL(vunmap); 2813 2814 /** 2815 * vmap - map an array of pages into virtually contiguous space 2816 * @pages: array of page pointers 2817 * @count: number of pages to map 2818 * @flags: vm_area->flags 2819 * @prot: page protection for the mapping 2820 * 2821 * Maps @count pages from @pages into contiguous kernel virtual space. 2822 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2823 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2824 * are transferred from the caller to vmap(), and will be freed / dropped when 2825 * vfree() is called on the return value. 2826 * 2827 * Return: the address of the area or %NULL on failure 2828 */ 2829 void *vmap(struct page **pages, unsigned int count, 2830 unsigned long flags, pgprot_t prot) 2831 { 2832 struct vm_struct *area; 2833 unsigned long addr; 2834 unsigned long size; /* In bytes */ 2835 2836 might_sleep(); 2837 2838 /* 2839 * Your top guard is someone else's bottom guard. Not having a top 2840 * guard compromises someone else's mappings too. 2841 */ 2842 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2843 flags &= ~VM_NO_GUARD; 2844 2845 if (count > totalram_pages()) 2846 return NULL; 2847 2848 size = (unsigned long)count << PAGE_SHIFT; 2849 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2850 if (!area) 2851 return NULL; 2852 2853 addr = (unsigned long)area->addr; 2854 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2855 pages, PAGE_SHIFT) < 0) { 2856 vunmap(area->addr); 2857 return NULL; 2858 } 2859 2860 if (flags & VM_MAP_PUT_PAGES) { 2861 area->pages = pages; 2862 area->nr_pages = count; 2863 } 2864 return area->addr; 2865 } 2866 EXPORT_SYMBOL(vmap); 2867 2868 #ifdef CONFIG_VMAP_PFN 2869 struct vmap_pfn_data { 2870 unsigned long *pfns; 2871 pgprot_t prot; 2872 unsigned int idx; 2873 }; 2874 2875 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2876 { 2877 struct vmap_pfn_data *data = private; 2878 2879 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2880 return -EINVAL; 2881 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2882 return 0; 2883 } 2884 2885 /** 2886 * vmap_pfn - map an array of PFNs into virtually contiguous space 2887 * @pfns: array of PFNs 2888 * @count: number of pages to map 2889 * @prot: page protection for the mapping 2890 * 2891 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2892 * the start address of the mapping. 2893 */ 2894 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2895 { 2896 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2897 struct vm_struct *area; 2898 2899 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2900 __builtin_return_address(0)); 2901 if (!area) 2902 return NULL; 2903 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2904 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2905 free_vm_area(area); 2906 return NULL; 2907 } 2908 return area->addr; 2909 } 2910 EXPORT_SYMBOL_GPL(vmap_pfn); 2911 #endif /* CONFIG_VMAP_PFN */ 2912 2913 static inline unsigned int 2914 vm_area_alloc_pages(gfp_t gfp, int nid, 2915 unsigned int order, unsigned int nr_pages, struct page **pages) 2916 { 2917 unsigned int nr_allocated = 0; 2918 struct page *page; 2919 int i; 2920 2921 /* 2922 * For order-0 pages we make use of bulk allocator, if 2923 * the page array is partly or not at all populated due 2924 * to fails, fallback to a single page allocator that is 2925 * more permissive. 2926 */ 2927 if (!order) { 2928 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2929 2930 while (nr_allocated < nr_pages) { 2931 unsigned int nr, nr_pages_request; 2932 2933 /* 2934 * A maximum allowed request is hard-coded and is 100 2935 * pages per call. That is done in order to prevent a 2936 * long preemption off scenario in the bulk-allocator 2937 * so the range is [1:100]. 2938 */ 2939 nr_pages_request = min(100U, nr_pages - nr_allocated); 2940 2941 /* memory allocation should consider mempolicy, we can't 2942 * wrongly use nearest node when nid == NUMA_NO_NODE, 2943 * otherwise memory may be allocated in only one node, 2944 * but mempolicy wants to alloc memory by interleaving. 2945 */ 2946 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2947 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2948 nr_pages_request, 2949 pages + nr_allocated); 2950 2951 else 2952 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2953 nr_pages_request, 2954 pages + nr_allocated); 2955 2956 nr_allocated += nr; 2957 cond_resched(); 2958 2959 /* 2960 * If zero or pages were obtained partly, 2961 * fallback to a single page allocator. 2962 */ 2963 if (nr != nr_pages_request) 2964 break; 2965 } 2966 } 2967 2968 /* High-order pages or fallback path if "bulk" fails. */ 2969 2970 while (nr_allocated < nr_pages) { 2971 if (fatal_signal_pending(current)) 2972 break; 2973 2974 if (nid == NUMA_NO_NODE) 2975 page = alloc_pages(gfp, order); 2976 else 2977 page = alloc_pages_node(nid, gfp, order); 2978 if (unlikely(!page)) 2979 break; 2980 /* 2981 * Higher order allocations must be able to be treated as 2982 * indepdenent small pages by callers (as they can with 2983 * small-page vmallocs). Some drivers do their own refcounting 2984 * on vmalloc_to_page() pages, some use page->mapping, 2985 * page->lru, etc. 2986 */ 2987 if (order) 2988 split_page(page, order); 2989 2990 /* 2991 * Careful, we allocate and map page-order pages, but 2992 * tracking is done per PAGE_SIZE page so as to keep the 2993 * vm_struct APIs independent of the physical/mapped size. 2994 */ 2995 for (i = 0; i < (1U << order); i++) 2996 pages[nr_allocated + i] = page + i; 2997 2998 cond_resched(); 2999 nr_allocated += 1U << order; 3000 } 3001 3002 return nr_allocated; 3003 } 3004 3005 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 3006 pgprot_t prot, unsigned int page_shift, 3007 int node) 3008 { 3009 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 3010 bool nofail = gfp_mask & __GFP_NOFAIL; 3011 unsigned long addr = (unsigned long)area->addr; 3012 unsigned long size = get_vm_area_size(area); 3013 unsigned long array_size; 3014 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3015 unsigned int page_order; 3016 unsigned int flags; 3017 int ret; 3018 3019 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3020 gfp_mask |= __GFP_NOWARN; 3021 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3022 gfp_mask |= __GFP_HIGHMEM; 3023 3024 /* Please note that the recursion is strictly bounded. */ 3025 if (array_size > PAGE_SIZE) { 3026 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 3027 area->caller); 3028 } else { 3029 area->pages = kmalloc_node(array_size, nested_gfp, node); 3030 } 3031 3032 if (!area->pages) { 3033 warn_alloc(gfp_mask, NULL, 3034 "vmalloc error: size %lu, failed to allocated page array size %lu", 3035 nr_small_pages * PAGE_SIZE, array_size); 3036 free_vm_area(area); 3037 return NULL; 3038 } 3039 3040 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3041 page_order = vm_area_page_order(area); 3042 3043 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 3044 node, page_order, nr_small_pages, area->pages); 3045 3046 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3047 if (gfp_mask & __GFP_ACCOUNT) { 3048 int i; 3049 3050 for (i = 0; i < area->nr_pages; i++) 3051 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3052 } 3053 3054 /* 3055 * If not enough pages were obtained to accomplish an 3056 * allocation request, free them via __vfree() if any. 3057 */ 3058 if (area->nr_pages != nr_small_pages) { 3059 warn_alloc(gfp_mask, NULL, 3060 "vmalloc error: size %lu, page order %u, failed to allocate pages", 3061 area->nr_pages * PAGE_SIZE, page_order); 3062 goto fail; 3063 } 3064 3065 /* 3066 * page tables allocations ignore external gfp mask, enforce it 3067 * by the scope API 3068 */ 3069 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3070 flags = memalloc_nofs_save(); 3071 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3072 flags = memalloc_noio_save(); 3073 3074 do { 3075 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3076 page_shift); 3077 if (nofail && (ret < 0)) 3078 schedule_timeout_uninterruptible(1); 3079 } while (nofail && (ret < 0)); 3080 3081 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3082 memalloc_nofs_restore(flags); 3083 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3084 memalloc_noio_restore(flags); 3085 3086 if (ret < 0) { 3087 warn_alloc(gfp_mask, NULL, 3088 "vmalloc error: size %lu, failed to map pages", 3089 area->nr_pages * PAGE_SIZE); 3090 goto fail; 3091 } 3092 3093 return area->addr; 3094 3095 fail: 3096 __vfree(area->addr); 3097 return NULL; 3098 } 3099 3100 /** 3101 * __vmalloc_node_range - allocate virtually contiguous memory 3102 * @size: allocation size 3103 * @align: desired alignment 3104 * @start: vm area range start 3105 * @end: vm area range end 3106 * @gfp_mask: flags for the page level allocator 3107 * @prot: protection mask for the allocated pages 3108 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3109 * @node: node to use for allocation or NUMA_NO_NODE 3110 * @caller: caller's return address 3111 * 3112 * Allocate enough pages to cover @size from the page level 3113 * allocator with @gfp_mask flags. Please note that the full set of gfp 3114 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3115 * supported. 3116 * Zone modifiers are not supported. From the reclaim modifiers 3117 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3118 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3119 * __GFP_RETRY_MAYFAIL are not supported). 3120 * 3121 * __GFP_NOWARN can be used to suppress failures messages. 3122 * 3123 * Map them into contiguous kernel virtual space, using a pagetable 3124 * protection of @prot. 3125 * 3126 * Return: the address of the area or %NULL on failure 3127 */ 3128 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3129 unsigned long start, unsigned long end, gfp_t gfp_mask, 3130 pgprot_t prot, unsigned long vm_flags, int node, 3131 const void *caller) 3132 { 3133 struct vm_struct *area; 3134 void *ret; 3135 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3136 unsigned long real_size = size; 3137 unsigned long real_align = align; 3138 unsigned int shift = PAGE_SHIFT; 3139 3140 if (WARN_ON_ONCE(!size)) 3141 return NULL; 3142 3143 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3144 warn_alloc(gfp_mask, NULL, 3145 "vmalloc error: size %lu, exceeds total pages", 3146 real_size); 3147 return NULL; 3148 } 3149 3150 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3151 unsigned long size_per_node; 3152 3153 /* 3154 * Try huge pages. Only try for PAGE_KERNEL allocations, 3155 * others like modules don't yet expect huge pages in 3156 * their allocations due to apply_to_page_range not 3157 * supporting them. 3158 */ 3159 3160 size_per_node = size; 3161 if (node == NUMA_NO_NODE) 3162 size_per_node /= num_online_nodes(); 3163 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3164 shift = PMD_SHIFT; 3165 else 3166 shift = arch_vmap_pte_supported_shift(size_per_node); 3167 3168 align = max(real_align, 1UL << shift); 3169 size = ALIGN(real_size, 1UL << shift); 3170 } 3171 3172 again: 3173 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3174 VM_UNINITIALIZED | vm_flags, start, end, node, 3175 gfp_mask, caller); 3176 if (!area) { 3177 bool nofail = gfp_mask & __GFP_NOFAIL; 3178 warn_alloc(gfp_mask, NULL, 3179 "vmalloc error: size %lu, vm_struct allocation failed%s", 3180 real_size, (nofail) ? ". Retrying." : ""); 3181 if (nofail) { 3182 schedule_timeout_uninterruptible(1); 3183 goto again; 3184 } 3185 goto fail; 3186 } 3187 3188 /* 3189 * Prepare arguments for __vmalloc_area_node() and 3190 * kasan_unpoison_vmalloc(). 3191 */ 3192 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3193 if (kasan_hw_tags_enabled()) { 3194 /* 3195 * Modify protection bits to allow tagging. 3196 * This must be done before mapping. 3197 */ 3198 prot = arch_vmap_pgprot_tagged(prot); 3199 3200 /* 3201 * Skip page_alloc poisoning and zeroing for physical 3202 * pages backing VM_ALLOC mapping. Memory is instead 3203 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3204 */ 3205 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; 3206 } 3207 3208 /* Take note that the mapping is PAGE_KERNEL. */ 3209 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3210 } 3211 3212 /* Allocate physical pages and map them into vmalloc space. */ 3213 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3214 if (!ret) 3215 goto fail; 3216 3217 /* 3218 * Mark the pages as accessible, now that they are mapped. 3219 * The condition for setting KASAN_VMALLOC_INIT should complement the 3220 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3221 * to make sure that memory is initialized under the same conditions. 3222 * Tag-based KASAN modes only assign tags to normal non-executable 3223 * allocations, see __kasan_unpoison_vmalloc(). 3224 */ 3225 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3226 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3227 (gfp_mask & __GFP_SKIP_ZERO)) 3228 kasan_flags |= KASAN_VMALLOC_INIT; 3229 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3230 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3231 3232 /* 3233 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3234 * flag. It means that vm_struct is not fully initialized. 3235 * Now, it is fully initialized, so remove this flag here. 3236 */ 3237 clear_vm_uninitialized_flag(area); 3238 3239 size = PAGE_ALIGN(size); 3240 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3241 kmemleak_vmalloc(area, size, gfp_mask); 3242 3243 return area->addr; 3244 3245 fail: 3246 if (shift > PAGE_SHIFT) { 3247 shift = PAGE_SHIFT; 3248 align = real_align; 3249 size = real_size; 3250 goto again; 3251 } 3252 3253 return NULL; 3254 } 3255 3256 /** 3257 * __vmalloc_node - allocate virtually contiguous memory 3258 * @size: allocation size 3259 * @align: desired alignment 3260 * @gfp_mask: flags for the page level allocator 3261 * @node: node to use for allocation or NUMA_NO_NODE 3262 * @caller: caller's return address 3263 * 3264 * Allocate enough pages to cover @size from the page level allocator with 3265 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3266 * 3267 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3268 * and __GFP_NOFAIL are not supported 3269 * 3270 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3271 * with mm people. 3272 * 3273 * Return: pointer to the allocated memory or %NULL on error 3274 */ 3275 void *__vmalloc_node(unsigned long size, unsigned long align, 3276 gfp_t gfp_mask, int node, const void *caller) 3277 { 3278 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3279 gfp_mask, PAGE_KERNEL, 0, node, caller); 3280 } 3281 /* 3282 * This is only for performance analysis of vmalloc and stress purpose. 3283 * It is required by vmalloc test module, therefore do not use it other 3284 * than that. 3285 */ 3286 #ifdef CONFIG_TEST_VMALLOC_MODULE 3287 EXPORT_SYMBOL_GPL(__vmalloc_node); 3288 #endif 3289 3290 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3291 { 3292 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3293 __builtin_return_address(0)); 3294 } 3295 EXPORT_SYMBOL(__vmalloc); 3296 3297 /** 3298 * vmalloc - allocate virtually contiguous memory 3299 * @size: allocation size 3300 * 3301 * Allocate enough pages to cover @size from the page level 3302 * allocator and map them into contiguous kernel virtual space. 3303 * 3304 * For tight control over page level allocator and protection flags 3305 * use __vmalloc() instead. 3306 * 3307 * Return: pointer to the allocated memory or %NULL on error 3308 */ 3309 void *vmalloc(unsigned long size) 3310 { 3311 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3312 __builtin_return_address(0)); 3313 } 3314 EXPORT_SYMBOL(vmalloc); 3315 3316 /** 3317 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3318 * @size: allocation size 3319 * @gfp_mask: flags for the page level allocator 3320 * 3321 * Allocate enough pages to cover @size from the page level 3322 * allocator and map them into contiguous kernel virtual space. 3323 * If @size is greater than or equal to PMD_SIZE, allow using 3324 * huge pages for the memory 3325 * 3326 * Return: pointer to the allocated memory or %NULL on error 3327 */ 3328 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3329 { 3330 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3331 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3332 NUMA_NO_NODE, __builtin_return_address(0)); 3333 } 3334 EXPORT_SYMBOL_GPL(vmalloc_huge); 3335 3336 /** 3337 * vzalloc - allocate virtually contiguous memory with zero fill 3338 * @size: allocation size 3339 * 3340 * Allocate enough pages to cover @size from the page level 3341 * allocator and map them into contiguous kernel virtual space. 3342 * The memory allocated is set to zero. 3343 * 3344 * For tight control over page level allocator and protection flags 3345 * use __vmalloc() instead. 3346 * 3347 * Return: pointer to the allocated memory or %NULL on error 3348 */ 3349 void *vzalloc(unsigned long size) 3350 { 3351 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3352 __builtin_return_address(0)); 3353 } 3354 EXPORT_SYMBOL(vzalloc); 3355 3356 /** 3357 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3358 * @size: allocation size 3359 * 3360 * The resulting memory area is zeroed so it can be mapped to userspace 3361 * without leaking data. 3362 * 3363 * Return: pointer to the allocated memory or %NULL on error 3364 */ 3365 void *vmalloc_user(unsigned long size) 3366 { 3367 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3368 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3369 VM_USERMAP, NUMA_NO_NODE, 3370 __builtin_return_address(0)); 3371 } 3372 EXPORT_SYMBOL(vmalloc_user); 3373 3374 /** 3375 * vmalloc_node - allocate memory on a specific node 3376 * @size: allocation size 3377 * @node: numa node 3378 * 3379 * Allocate enough pages to cover @size from the page level 3380 * allocator and map them into contiguous kernel virtual space. 3381 * 3382 * For tight control over page level allocator and protection flags 3383 * use __vmalloc() instead. 3384 * 3385 * Return: pointer to the allocated memory or %NULL on error 3386 */ 3387 void *vmalloc_node(unsigned long size, int node) 3388 { 3389 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3390 __builtin_return_address(0)); 3391 } 3392 EXPORT_SYMBOL(vmalloc_node); 3393 3394 /** 3395 * vzalloc_node - allocate memory on a specific node with zero fill 3396 * @size: allocation size 3397 * @node: numa node 3398 * 3399 * Allocate enough pages to cover @size from the page level 3400 * allocator and map them into contiguous kernel virtual space. 3401 * The memory allocated is set to zero. 3402 * 3403 * Return: pointer to the allocated memory or %NULL on error 3404 */ 3405 void *vzalloc_node(unsigned long size, int node) 3406 { 3407 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3408 __builtin_return_address(0)); 3409 } 3410 EXPORT_SYMBOL(vzalloc_node); 3411 3412 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3413 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3414 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3415 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3416 #else 3417 /* 3418 * 64b systems should always have either DMA or DMA32 zones. For others 3419 * GFP_DMA32 should do the right thing and use the normal zone. 3420 */ 3421 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3422 #endif 3423 3424 /** 3425 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3426 * @size: allocation size 3427 * 3428 * Allocate enough 32bit PA addressable pages to cover @size from the 3429 * page level allocator and map them into contiguous kernel virtual space. 3430 * 3431 * Return: pointer to the allocated memory or %NULL on error 3432 */ 3433 void *vmalloc_32(unsigned long size) 3434 { 3435 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3436 __builtin_return_address(0)); 3437 } 3438 EXPORT_SYMBOL(vmalloc_32); 3439 3440 /** 3441 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3442 * @size: allocation size 3443 * 3444 * The resulting memory area is 32bit addressable and zeroed so it can be 3445 * mapped to userspace without leaking data. 3446 * 3447 * Return: pointer to the allocated memory or %NULL on error 3448 */ 3449 void *vmalloc_32_user(unsigned long size) 3450 { 3451 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3452 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3453 VM_USERMAP, NUMA_NO_NODE, 3454 __builtin_return_address(0)); 3455 } 3456 EXPORT_SYMBOL(vmalloc_32_user); 3457 3458 /* 3459 * small helper routine , copy contents to buf from addr. 3460 * If the page is not present, fill zero. 3461 */ 3462 3463 static int aligned_vread(char *buf, char *addr, unsigned long count) 3464 { 3465 struct page *p; 3466 int copied = 0; 3467 3468 while (count) { 3469 unsigned long offset, length; 3470 3471 offset = offset_in_page(addr); 3472 length = PAGE_SIZE - offset; 3473 if (length > count) 3474 length = count; 3475 p = vmalloc_to_page(addr); 3476 /* 3477 * To do safe access to this _mapped_ area, we need 3478 * lock. But adding lock here means that we need to add 3479 * overhead of vmalloc()/vfree() calls for this _debug_ 3480 * interface, rarely used. Instead of that, we'll use 3481 * kmap() and get small overhead in this access function. 3482 */ 3483 if (p) { 3484 /* We can expect USER0 is not used -- see vread() */ 3485 void *map = kmap_atomic(p); 3486 memcpy(buf, map + offset, length); 3487 kunmap_atomic(map); 3488 } else 3489 memset(buf, 0, length); 3490 3491 addr += length; 3492 buf += length; 3493 copied += length; 3494 count -= length; 3495 } 3496 return copied; 3497 } 3498 3499 /** 3500 * vread() - read vmalloc area in a safe way. 3501 * @buf: buffer for reading data 3502 * @addr: vm address. 3503 * @count: number of bytes to be read. 3504 * 3505 * This function checks that addr is a valid vmalloc'ed area, and 3506 * copy data from that area to a given buffer. If the given memory range 3507 * of [addr...addr+count) includes some valid address, data is copied to 3508 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3509 * IOREMAP area is treated as memory hole and no copy is done. 3510 * 3511 * If [addr...addr+count) doesn't includes any intersects with alive 3512 * vm_struct area, returns 0. @buf should be kernel's buffer. 3513 * 3514 * Note: In usual ops, vread() is never necessary because the caller 3515 * should know vmalloc() area is valid and can use memcpy(). 3516 * This is for routines which have to access vmalloc area without 3517 * any information, as /proc/kcore. 3518 * 3519 * Return: number of bytes for which addr and buf should be increased 3520 * (same number as @count) or %0 if [addr...addr+count) doesn't 3521 * include any intersection with valid vmalloc area 3522 */ 3523 long vread(char *buf, char *addr, unsigned long count) 3524 { 3525 struct vmap_area *va; 3526 struct vm_struct *vm; 3527 char *vaddr, *buf_start = buf; 3528 unsigned long buflen = count; 3529 unsigned long n; 3530 3531 addr = kasan_reset_tag(addr); 3532 3533 /* Don't allow overflow */ 3534 if ((unsigned long) addr + count < count) 3535 count = -(unsigned long) addr; 3536 3537 spin_lock(&vmap_area_lock); 3538 va = find_vmap_area_exceed_addr((unsigned long)addr); 3539 if (!va) 3540 goto finished; 3541 3542 /* no intersects with alive vmap_area */ 3543 if ((unsigned long)addr + count <= va->va_start) 3544 goto finished; 3545 3546 list_for_each_entry_from(va, &vmap_area_list, list) { 3547 if (!count) 3548 break; 3549 3550 if (!va->vm) 3551 continue; 3552 3553 vm = va->vm; 3554 vaddr = (char *) vm->addr; 3555 if (addr >= vaddr + get_vm_area_size(vm)) 3556 continue; 3557 while (addr < vaddr) { 3558 if (count == 0) 3559 goto finished; 3560 *buf = '\0'; 3561 buf++; 3562 addr++; 3563 count--; 3564 } 3565 n = vaddr + get_vm_area_size(vm) - addr; 3566 if (n > count) 3567 n = count; 3568 if (!(vm->flags & VM_IOREMAP)) 3569 aligned_vread(buf, addr, n); 3570 else /* IOREMAP area is treated as memory hole */ 3571 memset(buf, 0, n); 3572 buf += n; 3573 addr += n; 3574 count -= n; 3575 } 3576 finished: 3577 spin_unlock(&vmap_area_lock); 3578 3579 if (buf == buf_start) 3580 return 0; 3581 /* zero-fill memory holes */ 3582 if (buf != buf_start + buflen) 3583 memset(buf, 0, buflen - (buf - buf_start)); 3584 3585 return buflen; 3586 } 3587 3588 /** 3589 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3590 * @vma: vma to cover 3591 * @uaddr: target user address to start at 3592 * @kaddr: virtual address of vmalloc kernel memory 3593 * @pgoff: offset from @kaddr to start at 3594 * @size: size of map area 3595 * 3596 * Returns: 0 for success, -Exxx on failure 3597 * 3598 * This function checks that @kaddr is a valid vmalloc'ed area, 3599 * and that it is big enough to cover the range starting at 3600 * @uaddr in @vma. Will return failure if that criteria isn't 3601 * met. 3602 * 3603 * Similar to remap_pfn_range() (see mm/memory.c) 3604 */ 3605 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3606 void *kaddr, unsigned long pgoff, 3607 unsigned long size) 3608 { 3609 struct vm_struct *area; 3610 unsigned long off; 3611 unsigned long end_index; 3612 3613 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3614 return -EINVAL; 3615 3616 size = PAGE_ALIGN(size); 3617 3618 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3619 return -EINVAL; 3620 3621 area = find_vm_area(kaddr); 3622 if (!area) 3623 return -EINVAL; 3624 3625 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3626 return -EINVAL; 3627 3628 if (check_add_overflow(size, off, &end_index) || 3629 end_index > get_vm_area_size(area)) 3630 return -EINVAL; 3631 kaddr += off; 3632 3633 do { 3634 struct page *page = vmalloc_to_page(kaddr); 3635 int ret; 3636 3637 ret = vm_insert_page(vma, uaddr, page); 3638 if (ret) 3639 return ret; 3640 3641 uaddr += PAGE_SIZE; 3642 kaddr += PAGE_SIZE; 3643 size -= PAGE_SIZE; 3644 } while (size > 0); 3645 3646 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3647 3648 return 0; 3649 } 3650 3651 /** 3652 * remap_vmalloc_range - map vmalloc pages to userspace 3653 * @vma: vma to cover (map full range of vma) 3654 * @addr: vmalloc memory 3655 * @pgoff: number of pages into addr before first page to map 3656 * 3657 * Returns: 0 for success, -Exxx on failure 3658 * 3659 * This function checks that addr is a valid vmalloc'ed area, and 3660 * that it is big enough to cover the vma. Will return failure if 3661 * that criteria isn't met. 3662 * 3663 * Similar to remap_pfn_range() (see mm/memory.c) 3664 */ 3665 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3666 unsigned long pgoff) 3667 { 3668 return remap_vmalloc_range_partial(vma, vma->vm_start, 3669 addr, pgoff, 3670 vma->vm_end - vma->vm_start); 3671 } 3672 EXPORT_SYMBOL(remap_vmalloc_range); 3673 3674 void free_vm_area(struct vm_struct *area) 3675 { 3676 struct vm_struct *ret; 3677 ret = remove_vm_area(area->addr); 3678 BUG_ON(ret != area); 3679 kfree(area); 3680 } 3681 EXPORT_SYMBOL_GPL(free_vm_area); 3682 3683 #ifdef CONFIG_SMP 3684 static struct vmap_area *node_to_va(struct rb_node *n) 3685 { 3686 return rb_entry_safe(n, struct vmap_area, rb_node); 3687 } 3688 3689 /** 3690 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3691 * @addr: target address 3692 * 3693 * Returns: vmap_area if it is found. If there is no such area 3694 * the first highest(reverse order) vmap_area is returned 3695 * i.e. va->va_start < addr && va->va_end < addr or NULL 3696 * if there are no any areas before @addr. 3697 */ 3698 static struct vmap_area * 3699 pvm_find_va_enclose_addr(unsigned long addr) 3700 { 3701 struct vmap_area *va, *tmp; 3702 struct rb_node *n; 3703 3704 n = free_vmap_area_root.rb_node; 3705 va = NULL; 3706 3707 while (n) { 3708 tmp = rb_entry(n, struct vmap_area, rb_node); 3709 if (tmp->va_start <= addr) { 3710 va = tmp; 3711 if (tmp->va_end >= addr) 3712 break; 3713 3714 n = n->rb_right; 3715 } else { 3716 n = n->rb_left; 3717 } 3718 } 3719 3720 return va; 3721 } 3722 3723 /** 3724 * pvm_determine_end_from_reverse - find the highest aligned address 3725 * of free block below VMALLOC_END 3726 * @va: 3727 * in - the VA we start the search(reverse order); 3728 * out - the VA with the highest aligned end address. 3729 * @align: alignment for required highest address 3730 * 3731 * Returns: determined end address within vmap_area 3732 */ 3733 static unsigned long 3734 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3735 { 3736 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3737 unsigned long addr; 3738 3739 if (likely(*va)) { 3740 list_for_each_entry_from_reverse((*va), 3741 &free_vmap_area_list, list) { 3742 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3743 if ((*va)->va_start < addr) 3744 return addr; 3745 } 3746 } 3747 3748 return 0; 3749 } 3750 3751 /** 3752 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3753 * @offsets: array containing offset of each area 3754 * @sizes: array containing size of each area 3755 * @nr_vms: the number of areas to allocate 3756 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3757 * 3758 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3759 * vm_structs on success, %NULL on failure 3760 * 3761 * Percpu allocator wants to use congruent vm areas so that it can 3762 * maintain the offsets among percpu areas. This function allocates 3763 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3764 * be scattered pretty far, distance between two areas easily going up 3765 * to gigabytes. To avoid interacting with regular vmallocs, these 3766 * areas are allocated from top. 3767 * 3768 * Despite its complicated look, this allocator is rather simple. It 3769 * does everything top-down and scans free blocks from the end looking 3770 * for matching base. While scanning, if any of the areas do not fit the 3771 * base address is pulled down to fit the area. Scanning is repeated till 3772 * all the areas fit and then all necessary data structures are inserted 3773 * and the result is returned. 3774 */ 3775 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3776 const size_t *sizes, int nr_vms, 3777 size_t align) 3778 { 3779 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3780 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3781 struct vmap_area **vas, *va; 3782 struct vm_struct **vms; 3783 int area, area2, last_area, term_area; 3784 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3785 bool purged = false; 3786 3787 /* verify parameters and allocate data structures */ 3788 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3789 for (last_area = 0, area = 0; area < nr_vms; area++) { 3790 start = offsets[area]; 3791 end = start + sizes[area]; 3792 3793 /* is everything aligned properly? */ 3794 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3795 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3796 3797 /* detect the area with the highest address */ 3798 if (start > offsets[last_area]) 3799 last_area = area; 3800 3801 for (area2 = area + 1; area2 < nr_vms; area2++) { 3802 unsigned long start2 = offsets[area2]; 3803 unsigned long end2 = start2 + sizes[area2]; 3804 3805 BUG_ON(start2 < end && start < end2); 3806 } 3807 } 3808 last_end = offsets[last_area] + sizes[last_area]; 3809 3810 if (vmalloc_end - vmalloc_start < last_end) { 3811 WARN_ON(true); 3812 return NULL; 3813 } 3814 3815 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3816 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3817 if (!vas || !vms) 3818 goto err_free2; 3819 3820 for (area = 0; area < nr_vms; area++) { 3821 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3822 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3823 if (!vas[area] || !vms[area]) 3824 goto err_free; 3825 } 3826 retry: 3827 spin_lock(&free_vmap_area_lock); 3828 3829 /* start scanning - we scan from the top, begin with the last area */ 3830 area = term_area = last_area; 3831 start = offsets[area]; 3832 end = start + sizes[area]; 3833 3834 va = pvm_find_va_enclose_addr(vmalloc_end); 3835 base = pvm_determine_end_from_reverse(&va, align) - end; 3836 3837 while (true) { 3838 /* 3839 * base might have underflowed, add last_end before 3840 * comparing. 3841 */ 3842 if (base + last_end < vmalloc_start + last_end) 3843 goto overflow; 3844 3845 /* 3846 * Fitting base has not been found. 3847 */ 3848 if (va == NULL) 3849 goto overflow; 3850 3851 /* 3852 * If required width exceeds current VA block, move 3853 * base downwards and then recheck. 3854 */ 3855 if (base + end > va->va_end) { 3856 base = pvm_determine_end_from_reverse(&va, align) - end; 3857 term_area = area; 3858 continue; 3859 } 3860 3861 /* 3862 * If this VA does not fit, move base downwards and recheck. 3863 */ 3864 if (base + start < va->va_start) { 3865 va = node_to_va(rb_prev(&va->rb_node)); 3866 base = pvm_determine_end_from_reverse(&va, align) - end; 3867 term_area = area; 3868 continue; 3869 } 3870 3871 /* 3872 * This area fits, move on to the previous one. If 3873 * the previous one is the terminal one, we're done. 3874 */ 3875 area = (area + nr_vms - 1) % nr_vms; 3876 if (area == term_area) 3877 break; 3878 3879 start = offsets[area]; 3880 end = start + sizes[area]; 3881 va = pvm_find_va_enclose_addr(base + end); 3882 } 3883 3884 /* we've found a fitting base, insert all va's */ 3885 for (area = 0; area < nr_vms; area++) { 3886 int ret; 3887 3888 start = base + offsets[area]; 3889 size = sizes[area]; 3890 3891 va = pvm_find_va_enclose_addr(start); 3892 if (WARN_ON_ONCE(va == NULL)) 3893 /* It is a BUG(), but trigger recovery instead. */ 3894 goto recovery; 3895 3896 ret = adjust_va_to_fit_type(&free_vmap_area_root, 3897 &free_vmap_area_list, 3898 va, start, size); 3899 if (WARN_ON_ONCE(unlikely(ret))) 3900 /* It is a BUG(), but trigger recovery instead. */ 3901 goto recovery; 3902 3903 /* Allocated area. */ 3904 va = vas[area]; 3905 va->va_start = start; 3906 va->va_end = start + size; 3907 } 3908 3909 spin_unlock(&free_vmap_area_lock); 3910 3911 /* populate the kasan shadow space */ 3912 for (area = 0; area < nr_vms; area++) { 3913 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3914 goto err_free_shadow; 3915 } 3916 3917 /* insert all vm's */ 3918 spin_lock(&vmap_area_lock); 3919 for (area = 0; area < nr_vms; area++) { 3920 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3921 3922 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3923 pcpu_get_vm_areas); 3924 } 3925 spin_unlock(&vmap_area_lock); 3926 3927 /* 3928 * Mark allocated areas as accessible. Do it now as a best-effort 3929 * approach, as they can be mapped outside of vmalloc code. 3930 * With hardware tag-based KASAN, marking is skipped for 3931 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3932 */ 3933 for (area = 0; area < nr_vms; area++) 3934 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 3935 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 3936 3937 kfree(vas); 3938 return vms; 3939 3940 recovery: 3941 /* 3942 * Remove previously allocated areas. There is no 3943 * need in removing these areas from the busy tree, 3944 * because they are inserted only on the final step 3945 * and when pcpu_get_vm_areas() is success. 3946 */ 3947 while (area--) { 3948 orig_start = vas[area]->va_start; 3949 orig_end = vas[area]->va_end; 3950 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3951 &free_vmap_area_list); 3952 if (va) 3953 kasan_release_vmalloc(orig_start, orig_end, 3954 va->va_start, va->va_end); 3955 vas[area] = NULL; 3956 } 3957 3958 overflow: 3959 spin_unlock(&free_vmap_area_lock); 3960 if (!purged) { 3961 purge_vmap_area_lazy(); 3962 purged = true; 3963 3964 /* Before "retry", check if we recover. */ 3965 for (area = 0; area < nr_vms; area++) { 3966 if (vas[area]) 3967 continue; 3968 3969 vas[area] = kmem_cache_zalloc( 3970 vmap_area_cachep, GFP_KERNEL); 3971 if (!vas[area]) 3972 goto err_free; 3973 } 3974 3975 goto retry; 3976 } 3977 3978 err_free: 3979 for (area = 0; area < nr_vms; area++) { 3980 if (vas[area]) 3981 kmem_cache_free(vmap_area_cachep, vas[area]); 3982 3983 kfree(vms[area]); 3984 } 3985 err_free2: 3986 kfree(vas); 3987 kfree(vms); 3988 return NULL; 3989 3990 err_free_shadow: 3991 spin_lock(&free_vmap_area_lock); 3992 /* 3993 * We release all the vmalloc shadows, even the ones for regions that 3994 * hadn't been successfully added. This relies on kasan_release_vmalloc 3995 * being able to tolerate this case. 3996 */ 3997 for (area = 0; area < nr_vms; area++) { 3998 orig_start = vas[area]->va_start; 3999 orig_end = vas[area]->va_end; 4000 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4001 &free_vmap_area_list); 4002 if (va) 4003 kasan_release_vmalloc(orig_start, orig_end, 4004 va->va_start, va->va_end); 4005 vas[area] = NULL; 4006 kfree(vms[area]); 4007 } 4008 spin_unlock(&free_vmap_area_lock); 4009 kfree(vas); 4010 kfree(vms); 4011 return NULL; 4012 } 4013 4014 /** 4015 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4016 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4017 * @nr_vms: the number of allocated areas 4018 * 4019 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4020 */ 4021 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4022 { 4023 int i; 4024 4025 for (i = 0; i < nr_vms; i++) 4026 free_vm_area(vms[i]); 4027 kfree(vms); 4028 } 4029 #endif /* CONFIG_SMP */ 4030 4031 #ifdef CONFIG_PRINTK 4032 bool vmalloc_dump_obj(void *object) 4033 { 4034 struct vm_struct *vm; 4035 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 4036 4037 vm = find_vm_area(objp); 4038 if (!vm) 4039 return false; 4040 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4041 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 4042 return true; 4043 } 4044 #endif 4045 4046 #ifdef CONFIG_PROC_FS 4047 static void *s_start(struct seq_file *m, loff_t *pos) 4048 __acquires(&vmap_purge_lock) 4049 __acquires(&vmap_area_lock) 4050 { 4051 mutex_lock(&vmap_purge_lock); 4052 spin_lock(&vmap_area_lock); 4053 4054 return seq_list_start(&vmap_area_list, *pos); 4055 } 4056 4057 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4058 { 4059 return seq_list_next(p, &vmap_area_list, pos); 4060 } 4061 4062 static void s_stop(struct seq_file *m, void *p) 4063 __releases(&vmap_area_lock) 4064 __releases(&vmap_purge_lock) 4065 { 4066 spin_unlock(&vmap_area_lock); 4067 mutex_unlock(&vmap_purge_lock); 4068 } 4069 4070 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4071 { 4072 if (IS_ENABLED(CONFIG_NUMA)) { 4073 unsigned int nr, *counters = m->private; 4074 unsigned int step = 1U << vm_area_page_order(v); 4075 4076 if (!counters) 4077 return; 4078 4079 if (v->flags & VM_UNINITIALIZED) 4080 return; 4081 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4082 smp_rmb(); 4083 4084 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4085 4086 for (nr = 0; nr < v->nr_pages; nr += step) 4087 counters[page_to_nid(v->pages[nr])] += step; 4088 for_each_node_state(nr, N_HIGH_MEMORY) 4089 if (counters[nr]) 4090 seq_printf(m, " N%u=%u", nr, counters[nr]); 4091 } 4092 } 4093 4094 static void show_purge_info(struct seq_file *m) 4095 { 4096 struct vmap_area *va; 4097 4098 spin_lock(&purge_vmap_area_lock); 4099 list_for_each_entry(va, &purge_vmap_area_list, list) { 4100 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4101 (void *)va->va_start, (void *)va->va_end, 4102 va->va_end - va->va_start); 4103 } 4104 spin_unlock(&purge_vmap_area_lock); 4105 } 4106 4107 static int s_show(struct seq_file *m, void *p) 4108 { 4109 struct vmap_area *va; 4110 struct vm_struct *v; 4111 4112 va = list_entry(p, struct vmap_area, list); 4113 4114 /* 4115 * s_show can encounter race with remove_vm_area, !vm on behalf 4116 * of vmap area is being tear down or vm_map_ram allocation. 4117 */ 4118 if (!va->vm) { 4119 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4120 (void *)va->va_start, (void *)va->va_end, 4121 va->va_end - va->va_start); 4122 4123 goto final; 4124 } 4125 4126 v = va->vm; 4127 4128 seq_printf(m, "0x%pK-0x%pK %7ld", 4129 v->addr, v->addr + v->size, v->size); 4130 4131 if (v->caller) 4132 seq_printf(m, " %pS", v->caller); 4133 4134 if (v->nr_pages) 4135 seq_printf(m, " pages=%d", v->nr_pages); 4136 4137 if (v->phys_addr) 4138 seq_printf(m, " phys=%pa", &v->phys_addr); 4139 4140 if (v->flags & VM_IOREMAP) 4141 seq_puts(m, " ioremap"); 4142 4143 if (v->flags & VM_ALLOC) 4144 seq_puts(m, " vmalloc"); 4145 4146 if (v->flags & VM_MAP) 4147 seq_puts(m, " vmap"); 4148 4149 if (v->flags & VM_USERMAP) 4150 seq_puts(m, " user"); 4151 4152 if (v->flags & VM_DMA_COHERENT) 4153 seq_puts(m, " dma-coherent"); 4154 4155 if (is_vmalloc_addr(v->pages)) 4156 seq_puts(m, " vpages"); 4157 4158 show_numa_info(m, v); 4159 seq_putc(m, '\n'); 4160 4161 /* 4162 * As a final step, dump "unpurged" areas. 4163 */ 4164 final: 4165 if (list_is_last(&va->list, &vmap_area_list)) 4166 show_purge_info(m); 4167 4168 return 0; 4169 } 4170 4171 static const struct seq_operations vmalloc_op = { 4172 .start = s_start, 4173 .next = s_next, 4174 .stop = s_stop, 4175 .show = s_show, 4176 }; 4177 4178 static int __init proc_vmalloc_init(void) 4179 { 4180 if (IS_ENABLED(CONFIG_NUMA)) 4181 proc_create_seq_private("vmallocinfo", 0400, NULL, 4182 &vmalloc_op, 4183 nr_node_ids * sizeof(unsigned int), NULL); 4184 else 4185 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4186 return 0; 4187 } 4188 module_init(proc_vmalloc_init); 4189 4190 #endif 4191