1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 #include <linux/pgtable.h> 40 #include <linux/uaccess.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/vmalloc.h> 48 49 #include "internal.h" 50 #include "pgalloc-track.h" 51 52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 54 55 static int __init set_nohugeiomap(char *str) 56 { 57 ioremap_max_page_shift = PAGE_SHIFT; 58 return 0; 59 } 60 early_param("nohugeiomap", set_nohugeiomap); 61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 63 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 64 65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 66 static bool __ro_after_init vmap_allow_huge = true; 67 68 static int __init set_nohugevmalloc(char *str) 69 { 70 vmap_allow_huge = false; 71 return 0; 72 } 73 early_param("nohugevmalloc", set_nohugevmalloc); 74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 75 static const bool vmap_allow_huge = false; 76 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 77 78 bool is_vmalloc_addr(const void *x) 79 { 80 unsigned long addr = (unsigned long)kasan_reset_tag(x); 81 82 return addr >= VMALLOC_START && addr < VMALLOC_END; 83 } 84 EXPORT_SYMBOL(is_vmalloc_addr); 85 86 struct vfree_deferred { 87 struct llist_head list; 88 struct work_struct wq; 89 }; 90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 91 92 static void __vunmap(const void *, int); 93 94 static void free_work(struct work_struct *w) 95 { 96 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 97 struct llist_node *t, *llnode; 98 99 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 100 __vunmap((void *)llnode, 1); 101 } 102 103 /*** Page table manipulation functions ***/ 104 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 105 phys_addr_t phys_addr, pgprot_t prot, 106 unsigned int max_page_shift, pgtbl_mod_mask *mask) 107 { 108 pte_t *pte; 109 u64 pfn; 110 unsigned long size = PAGE_SIZE; 111 112 pfn = phys_addr >> PAGE_SHIFT; 113 pte = pte_alloc_kernel_track(pmd, addr, mask); 114 if (!pte) 115 return -ENOMEM; 116 do { 117 BUG_ON(!pte_none(*pte)); 118 119 #ifdef CONFIG_HUGETLB_PAGE 120 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 121 if (size != PAGE_SIZE) { 122 pte_t entry = pfn_pte(pfn, prot); 123 124 entry = arch_make_huge_pte(entry, ilog2(size), 0); 125 set_huge_pte_at(&init_mm, addr, pte, entry); 126 pfn += PFN_DOWN(size); 127 continue; 128 } 129 #endif 130 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 131 pfn++; 132 } while (pte += PFN_DOWN(size), addr += size, addr != end); 133 *mask |= PGTBL_PTE_MODIFIED; 134 return 0; 135 } 136 137 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 138 phys_addr_t phys_addr, pgprot_t prot, 139 unsigned int max_page_shift) 140 { 141 if (max_page_shift < PMD_SHIFT) 142 return 0; 143 144 if (!arch_vmap_pmd_supported(prot)) 145 return 0; 146 147 if ((end - addr) != PMD_SIZE) 148 return 0; 149 150 if (!IS_ALIGNED(addr, PMD_SIZE)) 151 return 0; 152 153 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 154 return 0; 155 156 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 157 return 0; 158 159 return pmd_set_huge(pmd, phys_addr, prot); 160 } 161 162 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 163 phys_addr_t phys_addr, pgprot_t prot, 164 unsigned int max_page_shift, pgtbl_mod_mask *mask) 165 { 166 pmd_t *pmd; 167 unsigned long next; 168 169 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 170 if (!pmd) 171 return -ENOMEM; 172 do { 173 next = pmd_addr_end(addr, end); 174 175 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 176 max_page_shift)) { 177 *mask |= PGTBL_PMD_MODIFIED; 178 continue; 179 } 180 181 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 182 return -ENOMEM; 183 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 184 return 0; 185 } 186 187 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 188 phys_addr_t phys_addr, pgprot_t prot, 189 unsigned int max_page_shift) 190 { 191 if (max_page_shift < PUD_SHIFT) 192 return 0; 193 194 if (!arch_vmap_pud_supported(prot)) 195 return 0; 196 197 if ((end - addr) != PUD_SIZE) 198 return 0; 199 200 if (!IS_ALIGNED(addr, PUD_SIZE)) 201 return 0; 202 203 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 204 return 0; 205 206 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 207 return 0; 208 209 return pud_set_huge(pud, phys_addr, prot); 210 } 211 212 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 213 phys_addr_t phys_addr, pgprot_t prot, 214 unsigned int max_page_shift, pgtbl_mod_mask *mask) 215 { 216 pud_t *pud; 217 unsigned long next; 218 219 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 220 if (!pud) 221 return -ENOMEM; 222 do { 223 next = pud_addr_end(addr, end); 224 225 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 226 max_page_shift)) { 227 *mask |= PGTBL_PUD_MODIFIED; 228 continue; 229 } 230 231 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 232 max_page_shift, mask)) 233 return -ENOMEM; 234 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 235 return 0; 236 } 237 238 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 239 phys_addr_t phys_addr, pgprot_t prot, 240 unsigned int max_page_shift) 241 { 242 if (max_page_shift < P4D_SHIFT) 243 return 0; 244 245 if (!arch_vmap_p4d_supported(prot)) 246 return 0; 247 248 if ((end - addr) != P4D_SIZE) 249 return 0; 250 251 if (!IS_ALIGNED(addr, P4D_SIZE)) 252 return 0; 253 254 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 255 return 0; 256 257 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 258 return 0; 259 260 return p4d_set_huge(p4d, phys_addr, prot); 261 } 262 263 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 264 phys_addr_t phys_addr, pgprot_t prot, 265 unsigned int max_page_shift, pgtbl_mod_mask *mask) 266 { 267 p4d_t *p4d; 268 unsigned long next; 269 270 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 271 if (!p4d) 272 return -ENOMEM; 273 do { 274 next = p4d_addr_end(addr, end); 275 276 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 277 max_page_shift)) { 278 *mask |= PGTBL_P4D_MODIFIED; 279 continue; 280 } 281 282 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 283 max_page_shift, mask)) 284 return -ENOMEM; 285 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 286 return 0; 287 } 288 289 static int vmap_range_noflush(unsigned long addr, unsigned long end, 290 phys_addr_t phys_addr, pgprot_t prot, 291 unsigned int max_page_shift) 292 { 293 pgd_t *pgd; 294 unsigned long start; 295 unsigned long next; 296 int err; 297 pgtbl_mod_mask mask = 0; 298 299 might_sleep(); 300 BUG_ON(addr >= end); 301 302 start = addr; 303 pgd = pgd_offset_k(addr); 304 do { 305 next = pgd_addr_end(addr, end); 306 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 307 max_page_shift, &mask); 308 if (err) 309 break; 310 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 311 312 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 313 arch_sync_kernel_mappings(start, end); 314 315 return err; 316 } 317 318 int ioremap_page_range(unsigned long addr, unsigned long end, 319 phys_addr_t phys_addr, pgprot_t prot) 320 { 321 int err; 322 323 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 324 ioremap_max_page_shift); 325 flush_cache_vmap(addr, end); 326 if (!err) 327 kmsan_ioremap_page_range(addr, end, phys_addr, prot, 328 ioremap_max_page_shift); 329 return err; 330 } 331 332 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 333 pgtbl_mod_mask *mask) 334 { 335 pte_t *pte; 336 337 pte = pte_offset_kernel(pmd, addr); 338 do { 339 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 340 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 341 } while (pte++, addr += PAGE_SIZE, addr != end); 342 *mask |= PGTBL_PTE_MODIFIED; 343 } 344 345 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 346 pgtbl_mod_mask *mask) 347 { 348 pmd_t *pmd; 349 unsigned long next; 350 int cleared; 351 352 pmd = pmd_offset(pud, addr); 353 do { 354 next = pmd_addr_end(addr, end); 355 356 cleared = pmd_clear_huge(pmd); 357 if (cleared || pmd_bad(*pmd)) 358 *mask |= PGTBL_PMD_MODIFIED; 359 360 if (cleared) 361 continue; 362 if (pmd_none_or_clear_bad(pmd)) 363 continue; 364 vunmap_pte_range(pmd, addr, next, mask); 365 366 cond_resched(); 367 } while (pmd++, addr = next, addr != end); 368 } 369 370 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 371 pgtbl_mod_mask *mask) 372 { 373 pud_t *pud; 374 unsigned long next; 375 int cleared; 376 377 pud = pud_offset(p4d, addr); 378 do { 379 next = pud_addr_end(addr, end); 380 381 cleared = pud_clear_huge(pud); 382 if (cleared || pud_bad(*pud)) 383 *mask |= PGTBL_PUD_MODIFIED; 384 385 if (cleared) 386 continue; 387 if (pud_none_or_clear_bad(pud)) 388 continue; 389 vunmap_pmd_range(pud, addr, next, mask); 390 } while (pud++, addr = next, addr != end); 391 } 392 393 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 394 pgtbl_mod_mask *mask) 395 { 396 p4d_t *p4d; 397 unsigned long next; 398 399 p4d = p4d_offset(pgd, addr); 400 do { 401 next = p4d_addr_end(addr, end); 402 403 p4d_clear_huge(p4d); 404 if (p4d_bad(*p4d)) 405 *mask |= PGTBL_P4D_MODIFIED; 406 407 if (p4d_none_or_clear_bad(p4d)) 408 continue; 409 vunmap_pud_range(p4d, addr, next, mask); 410 } while (p4d++, addr = next, addr != end); 411 } 412 413 /* 414 * vunmap_range_noflush is similar to vunmap_range, but does not 415 * flush caches or TLBs. 416 * 417 * The caller is responsible for calling flush_cache_vmap() before calling 418 * this function, and flush_tlb_kernel_range after it has returned 419 * successfully (and before the addresses are expected to cause a page fault 420 * or be re-mapped for something else, if TLB flushes are being delayed or 421 * coalesced). 422 * 423 * This is an internal function only. Do not use outside mm/. 424 */ 425 void __vunmap_range_noflush(unsigned long start, unsigned long end) 426 { 427 unsigned long next; 428 pgd_t *pgd; 429 unsigned long addr = start; 430 pgtbl_mod_mask mask = 0; 431 432 BUG_ON(addr >= end); 433 pgd = pgd_offset_k(addr); 434 do { 435 next = pgd_addr_end(addr, end); 436 if (pgd_bad(*pgd)) 437 mask |= PGTBL_PGD_MODIFIED; 438 if (pgd_none_or_clear_bad(pgd)) 439 continue; 440 vunmap_p4d_range(pgd, addr, next, &mask); 441 } while (pgd++, addr = next, addr != end); 442 443 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 444 arch_sync_kernel_mappings(start, end); 445 } 446 447 void vunmap_range_noflush(unsigned long start, unsigned long end) 448 { 449 kmsan_vunmap_range_noflush(start, end); 450 __vunmap_range_noflush(start, end); 451 } 452 453 /** 454 * vunmap_range - unmap kernel virtual addresses 455 * @addr: start of the VM area to unmap 456 * @end: end of the VM area to unmap (non-inclusive) 457 * 458 * Clears any present PTEs in the virtual address range, flushes TLBs and 459 * caches. Any subsequent access to the address before it has been re-mapped 460 * is a kernel bug. 461 */ 462 void vunmap_range(unsigned long addr, unsigned long end) 463 { 464 flush_cache_vunmap(addr, end); 465 vunmap_range_noflush(addr, end); 466 flush_tlb_kernel_range(addr, end); 467 } 468 469 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 470 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 471 pgtbl_mod_mask *mask) 472 { 473 pte_t *pte; 474 475 /* 476 * nr is a running index into the array which helps higher level 477 * callers keep track of where we're up to. 478 */ 479 480 pte = pte_alloc_kernel_track(pmd, addr, mask); 481 if (!pte) 482 return -ENOMEM; 483 do { 484 struct page *page = pages[*nr]; 485 486 if (WARN_ON(!pte_none(*pte))) 487 return -EBUSY; 488 if (WARN_ON(!page)) 489 return -ENOMEM; 490 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 491 return -EINVAL; 492 493 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 494 (*nr)++; 495 } while (pte++, addr += PAGE_SIZE, addr != end); 496 *mask |= PGTBL_PTE_MODIFIED; 497 return 0; 498 } 499 500 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 501 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 502 pgtbl_mod_mask *mask) 503 { 504 pmd_t *pmd; 505 unsigned long next; 506 507 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 508 if (!pmd) 509 return -ENOMEM; 510 do { 511 next = pmd_addr_end(addr, end); 512 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 513 return -ENOMEM; 514 } while (pmd++, addr = next, addr != end); 515 return 0; 516 } 517 518 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 519 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 520 pgtbl_mod_mask *mask) 521 { 522 pud_t *pud; 523 unsigned long next; 524 525 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 526 if (!pud) 527 return -ENOMEM; 528 do { 529 next = pud_addr_end(addr, end); 530 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 531 return -ENOMEM; 532 } while (pud++, addr = next, addr != end); 533 return 0; 534 } 535 536 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 537 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 538 pgtbl_mod_mask *mask) 539 { 540 p4d_t *p4d; 541 unsigned long next; 542 543 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 544 if (!p4d) 545 return -ENOMEM; 546 do { 547 next = p4d_addr_end(addr, end); 548 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 549 return -ENOMEM; 550 } while (p4d++, addr = next, addr != end); 551 return 0; 552 } 553 554 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 555 pgprot_t prot, struct page **pages) 556 { 557 unsigned long start = addr; 558 pgd_t *pgd; 559 unsigned long next; 560 int err = 0; 561 int nr = 0; 562 pgtbl_mod_mask mask = 0; 563 564 BUG_ON(addr >= end); 565 pgd = pgd_offset_k(addr); 566 do { 567 next = pgd_addr_end(addr, end); 568 if (pgd_bad(*pgd)) 569 mask |= PGTBL_PGD_MODIFIED; 570 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 571 if (err) 572 return err; 573 } while (pgd++, addr = next, addr != end); 574 575 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 576 arch_sync_kernel_mappings(start, end); 577 578 return 0; 579 } 580 581 /* 582 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 583 * flush caches. 584 * 585 * The caller is responsible for calling flush_cache_vmap() after this 586 * function returns successfully and before the addresses are accessed. 587 * 588 * This is an internal function only. Do not use outside mm/. 589 */ 590 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 591 pgprot_t prot, struct page **pages, unsigned int page_shift) 592 { 593 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 594 595 WARN_ON(page_shift < PAGE_SHIFT); 596 597 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 598 page_shift == PAGE_SHIFT) 599 return vmap_small_pages_range_noflush(addr, end, prot, pages); 600 601 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 602 int err; 603 604 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 605 page_to_phys(pages[i]), prot, 606 page_shift); 607 if (err) 608 return err; 609 610 addr += 1UL << page_shift; 611 } 612 613 return 0; 614 } 615 616 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 617 pgprot_t prot, struct page **pages, unsigned int page_shift) 618 { 619 kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 620 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 621 } 622 623 /** 624 * vmap_pages_range - map pages to a kernel virtual address 625 * @addr: start of the VM area to map 626 * @end: end of the VM area to map (non-inclusive) 627 * @prot: page protection flags to use 628 * @pages: pages to map (always PAGE_SIZE pages) 629 * @page_shift: maximum shift that the pages may be mapped with, @pages must 630 * be aligned and contiguous up to at least this shift. 631 * 632 * RETURNS: 633 * 0 on success, -errno on failure. 634 */ 635 static int vmap_pages_range(unsigned long addr, unsigned long end, 636 pgprot_t prot, struct page **pages, unsigned int page_shift) 637 { 638 int err; 639 640 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 641 flush_cache_vmap(addr, end); 642 return err; 643 } 644 645 int is_vmalloc_or_module_addr(const void *x) 646 { 647 /* 648 * ARM, x86-64 and sparc64 put modules in a special place, 649 * and fall back on vmalloc() if that fails. Others 650 * just put it in the vmalloc space. 651 */ 652 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 653 unsigned long addr = (unsigned long)kasan_reset_tag(x); 654 if (addr >= MODULES_VADDR && addr < MODULES_END) 655 return 1; 656 #endif 657 return is_vmalloc_addr(x); 658 } 659 660 /* 661 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 662 * return the tail page that corresponds to the base page address, which 663 * matches small vmap mappings. 664 */ 665 struct page *vmalloc_to_page(const void *vmalloc_addr) 666 { 667 unsigned long addr = (unsigned long) vmalloc_addr; 668 struct page *page = NULL; 669 pgd_t *pgd = pgd_offset_k(addr); 670 p4d_t *p4d; 671 pud_t *pud; 672 pmd_t *pmd; 673 pte_t *ptep, pte; 674 675 /* 676 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 677 * architectures that do not vmalloc module space 678 */ 679 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 680 681 if (pgd_none(*pgd)) 682 return NULL; 683 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 684 return NULL; /* XXX: no allowance for huge pgd */ 685 if (WARN_ON_ONCE(pgd_bad(*pgd))) 686 return NULL; 687 688 p4d = p4d_offset(pgd, addr); 689 if (p4d_none(*p4d)) 690 return NULL; 691 if (p4d_leaf(*p4d)) 692 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 693 if (WARN_ON_ONCE(p4d_bad(*p4d))) 694 return NULL; 695 696 pud = pud_offset(p4d, addr); 697 if (pud_none(*pud)) 698 return NULL; 699 if (pud_leaf(*pud)) 700 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 701 if (WARN_ON_ONCE(pud_bad(*pud))) 702 return NULL; 703 704 pmd = pmd_offset(pud, addr); 705 if (pmd_none(*pmd)) 706 return NULL; 707 if (pmd_leaf(*pmd)) 708 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 709 if (WARN_ON_ONCE(pmd_bad(*pmd))) 710 return NULL; 711 712 ptep = pte_offset_map(pmd, addr); 713 pte = *ptep; 714 if (pte_present(pte)) 715 page = pte_page(pte); 716 pte_unmap(ptep); 717 718 return page; 719 } 720 EXPORT_SYMBOL(vmalloc_to_page); 721 722 /* 723 * Map a vmalloc()-space virtual address to the physical page frame number. 724 */ 725 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 726 { 727 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 728 } 729 EXPORT_SYMBOL(vmalloc_to_pfn); 730 731 732 /*** Global kva allocator ***/ 733 734 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 735 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 736 737 738 static DEFINE_SPINLOCK(vmap_area_lock); 739 static DEFINE_SPINLOCK(free_vmap_area_lock); 740 /* Export for kexec only */ 741 LIST_HEAD(vmap_area_list); 742 static struct rb_root vmap_area_root = RB_ROOT; 743 static bool vmap_initialized __read_mostly; 744 745 static struct rb_root purge_vmap_area_root = RB_ROOT; 746 static LIST_HEAD(purge_vmap_area_list); 747 static DEFINE_SPINLOCK(purge_vmap_area_lock); 748 749 /* 750 * This kmem_cache is used for vmap_area objects. Instead of 751 * allocating from slab we reuse an object from this cache to 752 * make things faster. Especially in "no edge" splitting of 753 * free block. 754 */ 755 static struct kmem_cache *vmap_area_cachep; 756 757 /* 758 * This linked list is used in pair with free_vmap_area_root. 759 * It gives O(1) access to prev/next to perform fast coalescing. 760 */ 761 static LIST_HEAD(free_vmap_area_list); 762 763 /* 764 * This augment red-black tree represents the free vmap space. 765 * All vmap_area objects in this tree are sorted by va->va_start 766 * address. It is used for allocation and merging when a vmap 767 * object is released. 768 * 769 * Each vmap_area node contains a maximum available free block 770 * of its sub-tree, right or left. Therefore it is possible to 771 * find a lowest match of free area. 772 */ 773 static struct rb_root free_vmap_area_root = RB_ROOT; 774 775 /* 776 * Preload a CPU with one object for "no edge" split case. The 777 * aim is to get rid of allocations from the atomic context, thus 778 * to use more permissive allocation masks. 779 */ 780 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 781 782 static __always_inline unsigned long 783 va_size(struct vmap_area *va) 784 { 785 return (va->va_end - va->va_start); 786 } 787 788 static __always_inline unsigned long 789 get_subtree_max_size(struct rb_node *node) 790 { 791 struct vmap_area *va; 792 793 va = rb_entry_safe(node, struct vmap_area, rb_node); 794 return va ? va->subtree_max_size : 0; 795 } 796 797 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 798 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 799 800 static void purge_vmap_area_lazy(void); 801 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 802 static void drain_vmap_area_work(struct work_struct *work); 803 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 804 805 static atomic_long_t nr_vmalloc_pages; 806 807 unsigned long vmalloc_nr_pages(void) 808 { 809 return atomic_long_read(&nr_vmalloc_pages); 810 } 811 812 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 813 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 814 { 815 struct vmap_area *va = NULL; 816 struct rb_node *n = vmap_area_root.rb_node; 817 818 addr = (unsigned long)kasan_reset_tag((void *)addr); 819 820 while (n) { 821 struct vmap_area *tmp; 822 823 tmp = rb_entry(n, struct vmap_area, rb_node); 824 if (tmp->va_end > addr) { 825 va = tmp; 826 if (tmp->va_start <= addr) 827 break; 828 829 n = n->rb_left; 830 } else 831 n = n->rb_right; 832 } 833 834 return va; 835 } 836 837 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 838 { 839 struct rb_node *n = root->rb_node; 840 841 addr = (unsigned long)kasan_reset_tag((void *)addr); 842 843 while (n) { 844 struct vmap_area *va; 845 846 va = rb_entry(n, struct vmap_area, rb_node); 847 if (addr < va->va_start) 848 n = n->rb_left; 849 else if (addr >= va->va_end) 850 n = n->rb_right; 851 else 852 return va; 853 } 854 855 return NULL; 856 } 857 858 /* 859 * This function returns back addresses of parent node 860 * and its left or right link for further processing. 861 * 862 * Otherwise NULL is returned. In that case all further 863 * steps regarding inserting of conflicting overlap range 864 * have to be declined and actually considered as a bug. 865 */ 866 static __always_inline struct rb_node ** 867 find_va_links(struct vmap_area *va, 868 struct rb_root *root, struct rb_node *from, 869 struct rb_node **parent) 870 { 871 struct vmap_area *tmp_va; 872 struct rb_node **link; 873 874 if (root) { 875 link = &root->rb_node; 876 if (unlikely(!*link)) { 877 *parent = NULL; 878 return link; 879 } 880 } else { 881 link = &from; 882 } 883 884 /* 885 * Go to the bottom of the tree. When we hit the last point 886 * we end up with parent rb_node and correct direction, i name 887 * it link, where the new va->rb_node will be attached to. 888 */ 889 do { 890 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 891 892 /* 893 * During the traversal we also do some sanity check. 894 * Trigger the BUG() if there are sides(left/right) 895 * or full overlaps. 896 */ 897 if (va->va_end <= tmp_va->va_start) 898 link = &(*link)->rb_left; 899 else if (va->va_start >= tmp_va->va_end) 900 link = &(*link)->rb_right; 901 else { 902 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 903 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 904 905 return NULL; 906 } 907 } while (*link); 908 909 *parent = &tmp_va->rb_node; 910 return link; 911 } 912 913 static __always_inline struct list_head * 914 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 915 { 916 struct list_head *list; 917 918 if (unlikely(!parent)) 919 /* 920 * The red-black tree where we try to find VA neighbors 921 * before merging or inserting is empty, i.e. it means 922 * there is no free vmap space. Normally it does not 923 * happen but we handle this case anyway. 924 */ 925 return NULL; 926 927 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 928 return (&parent->rb_right == link ? list->next : list); 929 } 930 931 static __always_inline void 932 __link_va(struct vmap_area *va, struct rb_root *root, 933 struct rb_node *parent, struct rb_node **link, 934 struct list_head *head, bool augment) 935 { 936 /* 937 * VA is still not in the list, but we can 938 * identify its future previous list_head node. 939 */ 940 if (likely(parent)) { 941 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 942 if (&parent->rb_right != link) 943 head = head->prev; 944 } 945 946 /* Insert to the rb-tree */ 947 rb_link_node(&va->rb_node, parent, link); 948 if (augment) { 949 /* 950 * Some explanation here. Just perform simple insertion 951 * to the tree. We do not set va->subtree_max_size to 952 * its current size before calling rb_insert_augmented(). 953 * It is because we populate the tree from the bottom 954 * to parent levels when the node _is_ in the tree. 955 * 956 * Therefore we set subtree_max_size to zero after insertion, 957 * to let __augment_tree_propagate_from() puts everything to 958 * the correct order later on. 959 */ 960 rb_insert_augmented(&va->rb_node, 961 root, &free_vmap_area_rb_augment_cb); 962 va->subtree_max_size = 0; 963 } else { 964 rb_insert_color(&va->rb_node, root); 965 } 966 967 /* Address-sort this list */ 968 list_add(&va->list, head); 969 } 970 971 static __always_inline void 972 link_va(struct vmap_area *va, struct rb_root *root, 973 struct rb_node *parent, struct rb_node **link, 974 struct list_head *head) 975 { 976 __link_va(va, root, parent, link, head, false); 977 } 978 979 static __always_inline void 980 link_va_augment(struct vmap_area *va, struct rb_root *root, 981 struct rb_node *parent, struct rb_node **link, 982 struct list_head *head) 983 { 984 __link_va(va, root, parent, link, head, true); 985 } 986 987 static __always_inline void 988 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 989 { 990 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 991 return; 992 993 if (augment) 994 rb_erase_augmented(&va->rb_node, 995 root, &free_vmap_area_rb_augment_cb); 996 else 997 rb_erase(&va->rb_node, root); 998 999 list_del_init(&va->list); 1000 RB_CLEAR_NODE(&va->rb_node); 1001 } 1002 1003 static __always_inline void 1004 unlink_va(struct vmap_area *va, struct rb_root *root) 1005 { 1006 __unlink_va(va, root, false); 1007 } 1008 1009 static __always_inline void 1010 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1011 { 1012 __unlink_va(va, root, true); 1013 } 1014 1015 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1016 /* 1017 * Gets called when remove the node and rotate. 1018 */ 1019 static __always_inline unsigned long 1020 compute_subtree_max_size(struct vmap_area *va) 1021 { 1022 return max3(va_size(va), 1023 get_subtree_max_size(va->rb_node.rb_left), 1024 get_subtree_max_size(va->rb_node.rb_right)); 1025 } 1026 1027 static void 1028 augment_tree_propagate_check(void) 1029 { 1030 struct vmap_area *va; 1031 unsigned long computed_size; 1032 1033 list_for_each_entry(va, &free_vmap_area_list, list) { 1034 computed_size = compute_subtree_max_size(va); 1035 if (computed_size != va->subtree_max_size) 1036 pr_emerg("tree is corrupted: %lu, %lu\n", 1037 va_size(va), va->subtree_max_size); 1038 } 1039 } 1040 #endif 1041 1042 /* 1043 * This function populates subtree_max_size from bottom to upper 1044 * levels starting from VA point. The propagation must be done 1045 * when VA size is modified by changing its va_start/va_end. Or 1046 * in case of newly inserting of VA to the tree. 1047 * 1048 * It means that __augment_tree_propagate_from() must be called: 1049 * - After VA has been inserted to the tree(free path); 1050 * - After VA has been shrunk(allocation path); 1051 * - After VA has been increased(merging path). 1052 * 1053 * Please note that, it does not mean that upper parent nodes 1054 * and their subtree_max_size are recalculated all the time up 1055 * to the root node. 1056 * 1057 * 4--8 1058 * /\ 1059 * / \ 1060 * / \ 1061 * 2--2 8--8 1062 * 1063 * For example if we modify the node 4, shrinking it to 2, then 1064 * no any modification is required. If we shrink the node 2 to 1 1065 * its subtree_max_size is updated only, and set to 1. If we shrink 1066 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1067 * node becomes 4--6. 1068 */ 1069 static __always_inline void 1070 augment_tree_propagate_from(struct vmap_area *va) 1071 { 1072 /* 1073 * Populate the tree from bottom towards the root until 1074 * the calculated maximum available size of checked node 1075 * is equal to its current one. 1076 */ 1077 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1078 1079 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1080 augment_tree_propagate_check(); 1081 #endif 1082 } 1083 1084 static void 1085 insert_vmap_area(struct vmap_area *va, 1086 struct rb_root *root, struct list_head *head) 1087 { 1088 struct rb_node **link; 1089 struct rb_node *parent; 1090 1091 link = find_va_links(va, root, NULL, &parent); 1092 if (link) 1093 link_va(va, root, parent, link, head); 1094 } 1095 1096 static void 1097 insert_vmap_area_augment(struct vmap_area *va, 1098 struct rb_node *from, struct rb_root *root, 1099 struct list_head *head) 1100 { 1101 struct rb_node **link; 1102 struct rb_node *parent; 1103 1104 if (from) 1105 link = find_va_links(va, NULL, from, &parent); 1106 else 1107 link = find_va_links(va, root, NULL, &parent); 1108 1109 if (link) { 1110 link_va_augment(va, root, parent, link, head); 1111 augment_tree_propagate_from(va); 1112 } 1113 } 1114 1115 /* 1116 * Merge de-allocated chunk of VA memory with previous 1117 * and next free blocks. If coalesce is not done a new 1118 * free area is inserted. If VA has been merged, it is 1119 * freed. 1120 * 1121 * Please note, it can return NULL in case of overlap 1122 * ranges, followed by WARN() report. Despite it is a 1123 * buggy behaviour, a system can be alive and keep 1124 * ongoing. 1125 */ 1126 static __always_inline struct vmap_area * 1127 __merge_or_add_vmap_area(struct vmap_area *va, 1128 struct rb_root *root, struct list_head *head, bool augment) 1129 { 1130 struct vmap_area *sibling; 1131 struct list_head *next; 1132 struct rb_node **link; 1133 struct rb_node *parent; 1134 bool merged = false; 1135 1136 /* 1137 * Find a place in the tree where VA potentially will be 1138 * inserted, unless it is merged with its sibling/siblings. 1139 */ 1140 link = find_va_links(va, root, NULL, &parent); 1141 if (!link) 1142 return NULL; 1143 1144 /* 1145 * Get next node of VA to check if merging can be done. 1146 */ 1147 next = get_va_next_sibling(parent, link); 1148 if (unlikely(next == NULL)) 1149 goto insert; 1150 1151 /* 1152 * start end 1153 * | | 1154 * |<------VA------>|<-----Next----->| 1155 * | | 1156 * start end 1157 */ 1158 if (next != head) { 1159 sibling = list_entry(next, struct vmap_area, list); 1160 if (sibling->va_start == va->va_end) { 1161 sibling->va_start = va->va_start; 1162 1163 /* Free vmap_area object. */ 1164 kmem_cache_free(vmap_area_cachep, va); 1165 1166 /* Point to the new merged area. */ 1167 va = sibling; 1168 merged = true; 1169 } 1170 } 1171 1172 /* 1173 * start end 1174 * | | 1175 * |<-----Prev----->|<------VA------>| 1176 * | | 1177 * start end 1178 */ 1179 if (next->prev != head) { 1180 sibling = list_entry(next->prev, struct vmap_area, list); 1181 if (sibling->va_end == va->va_start) { 1182 /* 1183 * If both neighbors are coalesced, it is important 1184 * to unlink the "next" node first, followed by merging 1185 * with "previous" one. Otherwise the tree might not be 1186 * fully populated if a sibling's augmented value is 1187 * "normalized" because of rotation operations. 1188 */ 1189 if (merged) 1190 __unlink_va(va, root, augment); 1191 1192 sibling->va_end = va->va_end; 1193 1194 /* Free vmap_area object. */ 1195 kmem_cache_free(vmap_area_cachep, va); 1196 1197 /* Point to the new merged area. */ 1198 va = sibling; 1199 merged = true; 1200 } 1201 } 1202 1203 insert: 1204 if (!merged) 1205 __link_va(va, root, parent, link, head, augment); 1206 1207 return va; 1208 } 1209 1210 static __always_inline struct vmap_area * 1211 merge_or_add_vmap_area(struct vmap_area *va, 1212 struct rb_root *root, struct list_head *head) 1213 { 1214 return __merge_or_add_vmap_area(va, root, head, false); 1215 } 1216 1217 static __always_inline struct vmap_area * 1218 merge_or_add_vmap_area_augment(struct vmap_area *va, 1219 struct rb_root *root, struct list_head *head) 1220 { 1221 va = __merge_or_add_vmap_area(va, root, head, true); 1222 if (va) 1223 augment_tree_propagate_from(va); 1224 1225 return va; 1226 } 1227 1228 static __always_inline bool 1229 is_within_this_va(struct vmap_area *va, unsigned long size, 1230 unsigned long align, unsigned long vstart) 1231 { 1232 unsigned long nva_start_addr; 1233 1234 if (va->va_start > vstart) 1235 nva_start_addr = ALIGN(va->va_start, align); 1236 else 1237 nva_start_addr = ALIGN(vstart, align); 1238 1239 /* Can be overflowed due to big size or alignment. */ 1240 if (nva_start_addr + size < nva_start_addr || 1241 nva_start_addr < vstart) 1242 return false; 1243 1244 return (nva_start_addr + size <= va->va_end); 1245 } 1246 1247 /* 1248 * Find the first free block(lowest start address) in the tree, 1249 * that will accomplish the request corresponding to passing 1250 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1251 * a search length is adjusted to account for worst case alignment 1252 * overhead. 1253 */ 1254 static __always_inline struct vmap_area * 1255 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1256 unsigned long align, unsigned long vstart, bool adjust_search_size) 1257 { 1258 struct vmap_area *va; 1259 struct rb_node *node; 1260 unsigned long length; 1261 1262 /* Start from the root. */ 1263 node = root->rb_node; 1264 1265 /* Adjust the search size for alignment overhead. */ 1266 length = adjust_search_size ? size + align - 1 : size; 1267 1268 while (node) { 1269 va = rb_entry(node, struct vmap_area, rb_node); 1270 1271 if (get_subtree_max_size(node->rb_left) >= length && 1272 vstart < va->va_start) { 1273 node = node->rb_left; 1274 } else { 1275 if (is_within_this_va(va, size, align, vstart)) 1276 return va; 1277 1278 /* 1279 * Does not make sense to go deeper towards the right 1280 * sub-tree if it does not have a free block that is 1281 * equal or bigger to the requested search length. 1282 */ 1283 if (get_subtree_max_size(node->rb_right) >= length) { 1284 node = node->rb_right; 1285 continue; 1286 } 1287 1288 /* 1289 * OK. We roll back and find the first right sub-tree, 1290 * that will satisfy the search criteria. It can happen 1291 * due to "vstart" restriction or an alignment overhead 1292 * that is bigger then PAGE_SIZE. 1293 */ 1294 while ((node = rb_parent(node))) { 1295 va = rb_entry(node, struct vmap_area, rb_node); 1296 if (is_within_this_va(va, size, align, vstart)) 1297 return va; 1298 1299 if (get_subtree_max_size(node->rb_right) >= length && 1300 vstart <= va->va_start) { 1301 /* 1302 * Shift the vstart forward. Please note, we update it with 1303 * parent's start address adding "1" because we do not want 1304 * to enter same sub-tree after it has already been checked 1305 * and no suitable free block found there. 1306 */ 1307 vstart = va->va_start + 1; 1308 node = node->rb_right; 1309 break; 1310 } 1311 } 1312 } 1313 } 1314 1315 return NULL; 1316 } 1317 1318 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1319 #include <linux/random.h> 1320 1321 static struct vmap_area * 1322 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1323 unsigned long align, unsigned long vstart) 1324 { 1325 struct vmap_area *va; 1326 1327 list_for_each_entry(va, head, list) { 1328 if (!is_within_this_va(va, size, align, vstart)) 1329 continue; 1330 1331 return va; 1332 } 1333 1334 return NULL; 1335 } 1336 1337 static void 1338 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1339 unsigned long size, unsigned long align) 1340 { 1341 struct vmap_area *va_1, *va_2; 1342 unsigned long vstart; 1343 unsigned int rnd; 1344 1345 get_random_bytes(&rnd, sizeof(rnd)); 1346 vstart = VMALLOC_START + rnd; 1347 1348 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1349 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1350 1351 if (va_1 != va_2) 1352 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1353 va_1, va_2, vstart); 1354 } 1355 #endif 1356 1357 enum fit_type { 1358 NOTHING_FIT = 0, 1359 FL_FIT_TYPE = 1, /* full fit */ 1360 LE_FIT_TYPE = 2, /* left edge fit */ 1361 RE_FIT_TYPE = 3, /* right edge fit */ 1362 NE_FIT_TYPE = 4 /* no edge fit */ 1363 }; 1364 1365 static __always_inline enum fit_type 1366 classify_va_fit_type(struct vmap_area *va, 1367 unsigned long nva_start_addr, unsigned long size) 1368 { 1369 enum fit_type type; 1370 1371 /* Check if it is within VA. */ 1372 if (nva_start_addr < va->va_start || 1373 nva_start_addr + size > va->va_end) 1374 return NOTHING_FIT; 1375 1376 /* Now classify. */ 1377 if (va->va_start == nva_start_addr) { 1378 if (va->va_end == nva_start_addr + size) 1379 type = FL_FIT_TYPE; 1380 else 1381 type = LE_FIT_TYPE; 1382 } else if (va->va_end == nva_start_addr + size) { 1383 type = RE_FIT_TYPE; 1384 } else { 1385 type = NE_FIT_TYPE; 1386 } 1387 1388 return type; 1389 } 1390 1391 static __always_inline int 1392 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head, 1393 struct vmap_area *va, unsigned long nva_start_addr, 1394 unsigned long size) 1395 { 1396 struct vmap_area *lva = NULL; 1397 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1398 1399 if (type == FL_FIT_TYPE) { 1400 /* 1401 * No need to split VA, it fully fits. 1402 * 1403 * | | 1404 * V NVA V 1405 * |---------------| 1406 */ 1407 unlink_va_augment(va, root); 1408 kmem_cache_free(vmap_area_cachep, va); 1409 } else if (type == LE_FIT_TYPE) { 1410 /* 1411 * Split left edge of fit VA. 1412 * 1413 * | | 1414 * V NVA V R 1415 * |-------|-------| 1416 */ 1417 va->va_start += size; 1418 } else if (type == RE_FIT_TYPE) { 1419 /* 1420 * Split right edge of fit VA. 1421 * 1422 * | | 1423 * L V NVA V 1424 * |-------|-------| 1425 */ 1426 va->va_end = nva_start_addr; 1427 } else if (type == NE_FIT_TYPE) { 1428 /* 1429 * Split no edge of fit VA. 1430 * 1431 * | | 1432 * L V NVA V R 1433 * |---|-------|---| 1434 */ 1435 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1436 if (unlikely(!lva)) { 1437 /* 1438 * For percpu allocator we do not do any pre-allocation 1439 * and leave it as it is. The reason is it most likely 1440 * never ends up with NE_FIT_TYPE splitting. In case of 1441 * percpu allocations offsets and sizes are aligned to 1442 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1443 * are its main fitting cases. 1444 * 1445 * There are a few exceptions though, as an example it is 1446 * a first allocation (early boot up) when we have "one" 1447 * big free space that has to be split. 1448 * 1449 * Also we can hit this path in case of regular "vmap" 1450 * allocations, if "this" current CPU was not preloaded. 1451 * See the comment in alloc_vmap_area() why. If so, then 1452 * GFP_NOWAIT is used instead to get an extra object for 1453 * split purpose. That is rare and most time does not 1454 * occur. 1455 * 1456 * What happens if an allocation gets failed. Basically, 1457 * an "overflow" path is triggered to purge lazily freed 1458 * areas to free some memory, then, the "retry" path is 1459 * triggered to repeat one more time. See more details 1460 * in alloc_vmap_area() function. 1461 */ 1462 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1463 if (!lva) 1464 return -1; 1465 } 1466 1467 /* 1468 * Build the remainder. 1469 */ 1470 lva->va_start = va->va_start; 1471 lva->va_end = nva_start_addr; 1472 1473 /* 1474 * Shrink this VA to remaining size. 1475 */ 1476 va->va_start = nva_start_addr + size; 1477 } else { 1478 return -1; 1479 } 1480 1481 if (type != FL_FIT_TYPE) { 1482 augment_tree_propagate_from(va); 1483 1484 if (lva) /* type == NE_FIT_TYPE */ 1485 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1486 } 1487 1488 return 0; 1489 } 1490 1491 /* 1492 * Returns a start address of the newly allocated area, if success. 1493 * Otherwise a vend is returned that indicates failure. 1494 */ 1495 static __always_inline unsigned long 1496 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1497 unsigned long size, unsigned long align, 1498 unsigned long vstart, unsigned long vend) 1499 { 1500 bool adjust_search_size = true; 1501 unsigned long nva_start_addr; 1502 struct vmap_area *va; 1503 int ret; 1504 1505 /* 1506 * Do not adjust when: 1507 * a) align <= PAGE_SIZE, because it does not make any sense. 1508 * All blocks(their start addresses) are at least PAGE_SIZE 1509 * aligned anyway; 1510 * b) a short range where a requested size corresponds to exactly 1511 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1512 * With adjusted search length an allocation would not succeed. 1513 */ 1514 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1515 adjust_search_size = false; 1516 1517 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1518 if (unlikely(!va)) 1519 return vend; 1520 1521 if (va->va_start > vstart) 1522 nva_start_addr = ALIGN(va->va_start, align); 1523 else 1524 nva_start_addr = ALIGN(vstart, align); 1525 1526 /* Check the "vend" restriction. */ 1527 if (nva_start_addr + size > vend) 1528 return vend; 1529 1530 /* Update the free vmap_area. */ 1531 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size); 1532 if (WARN_ON_ONCE(ret)) 1533 return vend; 1534 1535 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1536 find_vmap_lowest_match_check(root, head, size, align); 1537 #endif 1538 1539 return nva_start_addr; 1540 } 1541 1542 /* 1543 * Free a region of KVA allocated by alloc_vmap_area 1544 */ 1545 static void free_vmap_area(struct vmap_area *va) 1546 { 1547 /* 1548 * Remove from the busy tree/list. 1549 */ 1550 spin_lock(&vmap_area_lock); 1551 unlink_va(va, &vmap_area_root); 1552 spin_unlock(&vmap_area_lock); 1553 1554 /* 1555 * Insert/Merge it back to the free tree/list. 1556 */ 1557 spin_lock(&free_vmap_area_lock); 1558 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1559 spin_unlock(&free_vmap_area_lock); 1560 } 1561 1562 static inline void 1563 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1564 { 1565 struct vmap_area *va = NULL; 1566 1567 /* 1568 * Preload this CPU with one extra vmap_area object. It is used 1569 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1570 * a CPU that does an allocation is preloaded. 1571 * 1572 * We do it in non-atomic context, thus it allows us to use more 1573 * permissive allocation masks to be more stable under low memory 1574 * condition and high memory pressure. 1575 */ 1576 if (!this_cpu_read(ne_fit_preload_node)) 1577 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1578 1579 spin_lock(lock); 1580 1581 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1582 kmem_cache_free(vmap_area_cachep, va); 1583 } 1584 1585 /* 1586 * Allocate a region of KVA of the specified size and alignment, within the 1587 * vstart and vend. 1588 */ 1589 static struct vmap_area *alloc_vmap_area(unsigned long size, 1590 unsigned long align, 1591 unsigned long vstart, unsigned long vend, 1592 int node, gfp_t gfp_mask) 1593 { 1594 struct vmap_area *va; 1595 unsigned long freed; 1596 unsigned long addr; 1597 int purged = 0; 1598 int ret; 1599 1600 BUG_ON(!size); 1601 BUG_ON(offset_in_page(size)); 1602 BUG_ON(!is_power_of_2(align)); 1603 1604 if (unlikely(!vmap_initialized)) 1605 return ERR_PTR(-EBUSY); 1606 1607 might_sleep(); 1608 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1609 1610 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1611 if (unlikely(!va)) 1612 return ERR_PTR(-ENOMEM); 1613 1614 /* 1615 * Only scan the relevant parts containing pointers to other objects 1616 * to avoid false negatives. 1617 */ 1618 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1619 1620 retry: 1621 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1622 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 1623 size, align, vstart, vend); 1624 spin_unlock(&free_vmap_area_lock); 1625 1626 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); 1627 1628 /* 1629 * If an allocation fails, the "vend" address is 1630 * returned. Therefore trigger the overflow path. 1631 */ 1632 if (unlikely(addr == vend)) 1633 goto overflow; 1634 1635 va->va_start = addr; 1636 va->va_end = addr + size; 1637 va->vm = NULL; 1638 1639 spin_lock(&vmap_area_lock); 1640 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1641 spin_unlock(&vmap_area_lock); 1642 1643 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1644 BUG_ON(va->va_start < vstart); 1645 BUG_ON(va->va_end > vend); 1646 1647 ret = kasan_populate_vmalloc(addr, size); 1648 if (ret) { 1649 free_vmap_area(va); 1650 return ERR_PTR(ret); 1651 } 1652 1653 return va; 1654 1655 overflow: 1656 if (!purged) { 1657 purge_vmap_area_lazy(); 1658 purged = 1; 1659 goto retry; 1660 } 1661 1662 freed = 0; 1663 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1664 1665 if (freed > 0) { 1666 purged = 0; 1667 goto retry; 1668 } 1669 1670 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1671 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1672 size); 1673 1674 kmem_cache_free(vmap_area_cachep, va); 1675 return ERR_PTR(-EBUSY); 1676 } 1677 1678 int register_vmap_purge_notifier(struct notifier_block *nb) 1679 { 1680 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1681 } 1682 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1683 1684 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1685 { 1686 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1687 } 1688 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1689 1690 /* 1691 * lazy_max_pages is the maximum amount of virtual address space we gather up 1692 * before attempting to purge with a TLB flush. 1693 * 1694 * There is a tradeoff here: a larger number will cover more kernel page tables 1695 * and take slightly longer to purge, but it will linearly reduce the number of 1696 * global TLB flushes that must be performed. It would seem natural to scale 1697 * this number up linearly with the number of CPUs (because vmapping activity 1698 * could also scale linearly with the number of CPUs), however it is likely 1699 * that in practice, workloads might be constrained in other ways that mean 1700 * vmap activity will not scale linearly with CPUs. Also, I want to be 1701 * conservative and not introduce a big latency on huge systems, so go with 1702 * a less aggressive log scale. It will still be an improvement over the old 1703 * code, and it will be simple to change the scale factor if we find that it 1704 * becomes a problem on bigger systems. 1705 */ 1706 static unsigned long lazy_max_pages(void) 1707 { 1708 unsigned int log; 1709 1710 log = fls(num_online_cpus()); 1711 1712 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1713 } 1714 1715 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1716 1717 /* 1718 * Serialize vmap purging. There is no actual critical section protected 1719 * by this lock, but we want to avoid concurrent calls for performance 1720 * reasons and to make the pcpu_get_vm_areas more deterministic. 1721 */ 1722 static DEFINE_MUTEX(vmap_purge_lock); 1723 1724 /* for per-CPU blocks */ 1725 static void purge_fragmented_blocks_allcpus(void); 1726 1727 /* 1728 * Purges all lazily-freed vmap areas. 1729 */ 1730 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1731 { 1732 unsigned long resched_threshold; 1733 unsigned int num_purged_areas = 0; 1734 struct list_head local_purge_list; 1735 struct vmap_area *va, *n_va; 1736 1737 lockdep_assert_held(&vmap_purge_lock); 1738 1739 spin_lock(&purge_vmap_area_lock); 1740 purge_vmap_area_root = RB_ROOT; 1741 list_replace_init(&purge_vmap_area_list, &local_purge_list); 1742 spin_unlock(&purge_vmap_area_lock); 1743 1744 if (unlikely(list_empty(&local_purge_list))) 1745 goto out; 1746 1747 start = min(start, 1748 list_first_entry(&local_purge_list, 1749 struct vmap_area, list)->va_start); 1750 1751 end = max(end, 1752 list_last_entry(&local_purge_list, 1753 struct vmap_area, list)->va_end); 1754 1755 flush_tlb_kernel_range(start, end); 1756 resched_threshold = lazy_max_pages() << 1; 1757 1758 spin_lock(&free_vmap_area_lock); 1759 list_for_each_entry_safe(va, n_va, &local_purge_list, list) { 1760 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1761 unsigned long orig_start = va->va_start; 1762 unsigned long orig_end = va->va_end; 1763 1764 /* 1765 * Finally insert or merge lazily-freed area. It is 1766 * detached and there is no need to "unlink" it from 1767 * anything. 1768 */ 1769 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1770 &free_vmap_area_list); 1771 1772 if (!va) 1773 continue; 1774 1775 if (is_vmalloc_or_module_addr((void *)orig_start)) 1776 kasan_release_vmalloc(orig_start, orig_end, 1777 va->va_start, va->va_end); 1778 1779 atomic_long_sub(nr, &vmap_lazy_nr); 1780 num_purged_areas++; 1781 1782 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1783 cond_resched_lock(&free_vmap_area_lock); 1784 } 1785 spin_unlock(&free_vmap_area_lock); 1786 1787 out: 1788 trace_purge_vmap_area_lazy(start, end, num_purged_areas); 1789 return num_purged_areas > 0; 1790 } 1791 1792 /* 1793 * Kick off a purge of the outstanding lazy areas. 1794 */ 1795 static void purge_vmap_area_lazy(void) 1796 { 1797 mutex_lock(&vmap_purge_lock); 1798 purge_fragmented_blocks_allcpus(); 1799 __purge_vmap_area_lazy(ULONG_MAX, 0); 1800 mutex_unlock(&vmap_purge_lock); 1801 } 1802 1803 static void drain_vmap_area_work(struct work_struct *work) 1804 { 1805 unsigned long nr_lazy; 1806 1807 do { 1808 mutex_lock(&vmap_purge_lock); 1809 __purge_vmap_area_lazy(ULONG_MAX, 0); 1810 mutex_unlock(&vmap_purge_lock); 1811 1812 /* Recheck if further work is required. */ 1813 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1814 } while (nr_lazy > lazy_max_pages()); 1815 } 1816 1817 /* 1818 * Free a vmap area, caller ensuring that the area has been unmapped, 1819 * unlinked and flush_cache_vunmap had been called for the correct 1820 * range previously. 1821 */ 1822 static void free_vmap_area_noflush(struct vmap_area *va) 1823 { 1824 unsigned long nr_lazy_max = lazy_max_pages(); 1825 unsigned long va_start = va->va_start; 1826 unsigned long nr_lazy; 1827 1828 if (WARN_ON_ONCE(!list_empty(&va->list))) 1829 return; 1830 1831 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1832 PAGE_SHIFT, &vmap_lazy_nr); 1833 1834 /* 1835 * Merge or place it to the purge tree/list. 1836 */ 1837 spin_lock(&purge_vmap_area_lock); 1838 merge_or_add_vmap_area(va, 1839 &purge_vmap_area_root, &purge_vmap_area_list); 1840 spin_unlock(&purge_vmap_area_lock); 1841 1842 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); 1843 1844 /* After this point, we may free va at any time */ 1845 if (unlikely(nr_lazy > nr_lazy_max)) 1846 schedule_work(&drain_vmap_work); 1847 } 1848 1849 /* 1850 * Free and unmap a vmap area 1851 */ 1852 static void free_unmap_vmap_area(struct vmap_area *va) 1853 { 1854 flush_cache_vunmap(va->va_start, va->va_end); 1855 vunmap_range_noflush(va->va_start, va->va_end); 1856 if (debug_pagealloc_enabled_static()) 1857 flush_tlb_kernel_range(va->va_start, va->va_end); 1858 1859 free_vmap_area_noflush(va); 1860 } 1861 1862 struct vmap_area *find_vmap_area(unsigned long addr) 1863 { 1864 struct vmap_area *va; 1865 1866 spin_lock(&vmap_area_lock); 1867 va = __find_vmap_area(addr, &vmap_area_root); 1868 spin_unlock(&vmap_area_lock); 1869 1870 return va; 1871 } 1872 1873 static struct vmap_area *find_unlink_vmap_area(unsigned long addr) 1874 { 1875 struct vmap_area *va; 1876 1877 spin_lock(&vmap_area_lock); 1878 va = __find_vmap_area(addr, &vmap_area_root); 1879 if (va) 1880 unlink_va(va, &vmap_area_root); 1881 spin_unlock(&vmap_area_lock); 1882 1883 return va; 1884 } 1885 1886 /*** Per cpu kva allocator ***/ 1887 1888 /* 1889 * vmap space is limited especially on 32 bit architectures. Ensure there is 1890 * room for at least 16 percpu vmap blocks per CPU. 1891 */ 1892 /* 1893 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1894 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1895 * instead (we just need a rough idea) 1896 */ 1897 #if BITS_PER_LONG == 32 1898 #define VMALLOC_SPACE (128UL*1024*1024) 1899 #else 1900 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1901 #endif 1902 1903 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1904 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1905 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1906 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1907 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1908 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1909 #define VMAP_BBMAP_BITS \ 1910 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1911 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1912 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1913 1914 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1915 1916 struct vmap_block_queue { 1917 spinlock_t lock; 1918 struct list_head free; 1919 }; 1920 1921 struct vmap_block { 1922 spinlock_t lock; 1923 struct vmap_area *va; 1924 unsigned long free, dirty; 1925 unsigned long dirty_min, dirty_max; /*< dirty range */ 1926 struct list_head free_list; 1927 struct rcu_head rcu_head; 1928 struct list_head purge; 1929 }; 1930 1931 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1932 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1933 1934 /* 1935 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1936 * in the free path. Could get rid of this if we change the API to return a 1937 * "cookie" from alloc, to be passed to free. But no big deal yet. 1938 */ 1939 static DEFINE_XARRAY(vmap_blocks); 1940 1941 /* 1942 * We should probably have a fallback mechanism to allocate virtual memory 1943 * out of partially filled vmap blocks. However vmap block sizing should be 1944 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1945 * big problem. 1946 */ 1947 1948 static unsigned long addr_to_vb_idx(unsigned long addr) 1949 { 1950 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1951 addr /= VMAP_BLOCK_SIZE; 1952 return addr; 1953 } 1954 1955 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1956 { 1957 unsigned long addr; 1958 1959 addr = va_start + (pages_off << PAGE_SHIFT); 1960 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1961 return (void *)addr; 1962 } 1963 1964 /** 1965 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1966 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1967 * @order: how many 2^order pages should be occupied in newly allocated block 1968 * @gfp_mask: flags for the page level allocator 1969 * 1970 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1971 */ 1972 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1973 { 1974 struct vmap_block_queue *vbq; 1975 struct vmap_block *vb; 1976 struct vmap_area *va; 1977 unsigned long vb_idx; 1978 int node, err; 1979 void *vaddr; 1980 1981 node = numa_node_id(); 1982 1983 vb = kmalloc_node(sizeof(struct vmap_block), 1984 gfp_mask & GFP_RECLAIM_MASK, node); 1985 if (unlikely(!vb)) 1986 return ERR_PTR(-ENOMEM); 1987 1988 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1989 VMALLOC_START, VMALLOC_END, 1990 node, gfp_mask); 1991 if (IS_ERR(va)) { 1992 kfree(vb); 1993 return ERR_CAST(va); 1994 } 1995 1996 vaddr = vmap_block_vaddr(va->va_start, 0); 1997 spin_lock_init(&vb->lock); 1998 vb->va = va; 1999 /* At least something should be left free */ 2000 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 2001 vb->free = VMAP_BBMAP_BITS - (1UL << order); 2002 vb->dirty = 0; 2003 vb->dirty_min = VMAP_BBMAP_BITS; 2004 vb->dirty_max = 0; 2005 INIT_LIST_HEAD(&vb->free_list); 2006 2007 vb_idx = addr_to_vb_idx(va->va_start); 2008 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 2009 if (err) { 2010 kfree(vb); 2011 free_vmap_area(va); 2012 return ERR_PTR(err); 2013 } 2014 2015 vbq = raw_cpu_ptr(&vmap_block_queue); 2016 spin_lock(&vbq->lock); 2017 list_add_tail_rcu(&vb->free_list, &vbq->free); 2018 spin_unlock(&vbq->lock); 2019 2020 return vaddr; 2021 } 2022 2023 static void free_vmap_block(struct vmap_block *vb) 2024 { 2025 struct vmap_block *tmp; 2026 2027 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 2028 BUG_ON(tmp != vb); 2029 2030 spin_lock(&vmap_area_lock); 2031 unlink_va(vb->va, &vmap_area_root); 2032 spin_unlock(&vmap_area_lock); 2033 2034 free_vmap_area_noflush(vb->va); 2035 kfree_rcu(vb, rcu_head); 2036 } 2037 2038 static void purge_fragmented_blocks(int cpu) 2039 { 2040 LIST_HEAD(purge); 2041 struct vmap_block *vb; 2042 struct vmap_block *n_vb; 2043 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2044 2045 rcu_read_lock(); 2046 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2047 2048 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 2049 continue; 2050 2051 spin_lock(&vb->lock); 2052 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 2053 vb->free = 0; /* prevent further allocs after releasing lock */ 2054 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 2055 vb->dirty_min = 0; 2056 vb->dirty_max = VMAP_BBMAP_BITS; 2057 spin_lock(&vbq->lock); 2058 list_del_rcu(&vb->free_list); 2059 spin_unlock(&vbq->lock); 2060 spin_unlock(&vb->lock); 2061 list_add_tail(&vb->purge, &purge); 2062 } else 2063 spin_unlock(&vb->lock); 2064 } 2065 rcu_read_unlock(); 2066 2067 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 2068 list_del(&vb->purge); 2069 free_vmap_block(vb); 2070 } 2071 } 2072 2073 static void purge_fragmented_blocks_allcpus(void) 2074 { 2075 int cpu; 2076 2077 for_each_possible_cpu(cpu) 2078 purge_fragmented_blocks(cpu); 2079 } 2080 2081 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2082 { 2083 struct vmap_block_queue *vbq; 2084 struct vmap_block *vb; 2085 void *vaddr = NULL; 2086 unsigned int order; 2087 2088 BUG_ON(offset_in_page(size)); 2089 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2090 if (WARN_ON(size == 0)) { 2091 /* 2092 * Allocating 0 bytes isn't what caller wants since 2093 * get_order(0) returns funny result. Just warn and terminate 2094 * early. 2095 */ 2096 return NULL; 2097 } 2098 order = get_order(size); 2099 2100 rcu_read_lock(); 2101 vbq = raw_cpu_ptr(&vmap_block_queue); 2102 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2103 unsigned long pages_off; 2104 2105 spin_lock(&vb->lock); 2106 if (vb->free < (1UL << order)) { 2107 spin_unlock(&vb->lock); 2108 continue; 2109 } 2110 2111 pages_off = VMAP_BBMAP_BITS - vb->free; 2112 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2113 vb->free -= 1UL << order; 2114 if (vb->free == 0) { 2115 spin_lock(&vbq->lock); 2116 list_del_rcu(&vb->free_list); 2117 spin_unlock(&vbq->lock); 2118 } 2119 2120 spin_unlock(&vb->lock); 2121 break; 2122 } 2123 2124 rcu_read_unlock(); 2125 2126 /* Allocate new block if nothing was found */ 2127 if (!vaddr) 2128 vaddr = new_vmap_block(order, gfp_mask); 2129 2130 return vaddr; 2131 } 2132 2133 static void vb_free(unsigned long addr, unsigned long size) 2134 { 2135 unsigned long offset; 2136 unsigned int order; 2137 struct vmap_block *vb; 2138 2139 BUG_ON(offset_in_page(size)); 2140 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2141 2142 flush_cache_vunmap(addr, addr + size); 2143 2144 order = get_order(size); 2145 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2146 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2147 2148 vunmap_range_noflush(addr, addr + size); 2149 2150 if (debug_pagealloc_enabled_static()) 2151 flush_tlb_kernel_range(addr, addr + size); 2152 2153 spin_lock(&vb->lock); 2154 2155 /* Expand dirty range */ 2156 vb->dirty_min = min(vb->dirty_min, offset); 2157 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2158 2159 vb->dirty += 1UL << order; 2160 if (vb->dirty == VMAP_BBMAP_BITS) { 2161 BUG_ON(vb->free); 2162 spin_unlock(&vb->lock); 2163 free_vmap_block(vb); 2164 } else 2165 spin_unlock(&vb->lock); 2166 } 2167 2168 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2169 { 2170 int cpu; 2171 2172 if (unlikely(!vmap_initialized)) 2173 return; 2174 2175 might_sleep(); 2176 2177 for_each_possible_cpu(cpu) { 2178 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2179 struct vmap_block *vb; 2180 2181 rcu_read_lock(); 2182 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2183 spin_lock(&vb->lock); 2184 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2185 unsigned long va_start = vb->va->va_start; 2186 unsigned long s, e; 2187 2188 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2189 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2190 2191 start = min(s, start); 2192 end = max(e, end); 2193 2194 flush = 1; 2195 } 2196 spin_unlock(&vb->lock); 2197 } 2198 rcu_read_unlock(); 2199 } 2200 2201 mutex_lock(&vmap_purge_lock); 2202 purge_fragmented_blocks_allcpus(); 2203 if (!__purge_vmap_area_lazy(start, end) && flush) 2204 flush_tlb_kernel_range(start, end); 2205 mutex_unlock(&vmap_purge_lock); 2206 } 2207 2208 /** 2209 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2210 * 2211 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2212 * to amortize TLB flushing overheads. What this means is that any page you 2213 * have now, may, in a former life, have been mapped into kernel virtual 2214 * address by the vmap layer and so there might be some CPUs with TLB entries 2215 * still referencing that page (additional to the regular 1:1 kernel mapping). 2216 * 2217 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2218 * be sure that none of the pages we have control over will have any aliases 2219 * from the vmap layer. 2220 */ 2221 void vm_unmap_aliases(void) 2222 { 2223 unsigned long start = ULONG_MAX, end = 0; 2224 int flush = 0; 2225 2226 _vm_unmap_aliases(start, end, flush); 2227 } 2228 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2229 2230 /** 2231 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2232 * @mem: the pointer returned by vm_map_ram 2233 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2234 */ 2235 void vm_unmap_ram(const void *mem, unsigned int count) 2236 { 2237 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2238 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2239 struct vmap_area *va; 2240 2241 might_sleep(); 2242 BUG_ON(!addr); 2243 BUG_ON(addr < VMALLOC_START); 2244 BUG_ON(addr > VMALLOC_END); 2245 BUG_ON(!PAGE_ALIGNED(addr)); 2246 2247 kasan_poison_vmalloc(mem, size); 2248 2249 if (likely(count <= VMAP_MAX_ALLOC)) { 2250 debug_check_no_locks_freed(mem, size); 2251 vb_free(addr, size); 2252 return; 2253 } 2254 2255 va = find_unlink_vmap_area(addr); 2256 if (WARN_ON_ONCE(!va)) 2257 return; 2258 2259 debug_check_no_locks_freed((void *)va->va_start, 2260 (va->va_end - va->va_start)); 2261 free_unmap_vmap_area(va); 2262 } 2263 EXPORT_SYMBOL(vm_unmap_ram); 2264 2265 /** 2266 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2267 * @pages: an array of pointers to the pages to be mapped 2268 * @count: number of pages 2269 * @node: prefer to allocate data structures on this node 2270 * 2271 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2272 * faster than vmap so it's good. But if you mix long-life and short-life 2273 * objects with vm_map_ram(), it could consume lots of address space through 2274 * fragmentation (especially on a 32bit machine). You could see failures in 2275 * the end. Please use this function for short-lived objects. 2276 * 2277 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2278 */ 2279 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2280 { 2281 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2282 unsigned long addr; 2283 void *mem; 2284 2285 if (likely(count <= VMAP_MAX_ALLOC)) { 2286 mem = vb_alloc(size, GFP_KERNEL); 2287 if (IS_ERR(mem)) 2288 return NULL; 2289 addr = (unsigned long)mem; 2290 } else { 2291 struct vmap_area *va; 2292 va = alloc_vmap_area(size, PAGE_SIZE, 2293 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2294 if (IS_ERR(va)) 2295 return NULL; 2296 2297 addr = va->va_start; 2298 mem = (void *)addr; 2299 } 2300 2301 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2302 pages, PAGE_SHIFT) < 0) { 2303 vm_unmap_ram(mem, count); 2304 return NULL; 2305 } 2306 2307 /* 2308 * Mark the pages as accessible, now that they are mapped. 2309 * With hardware tag-based KASAN, marking is skipped for 2310 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2311 */ 2312 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2313 2314 return mem; 2315 } 2316 EXPORT_SYMBOL(vm_map_ram); 2317 2318 static struct vm_struct *vmlist __initdata; 2319 2320 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2321 { 2322 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2323 return vm->page_order; 2324 #else 2325 return 0; 2326 #endif 2327 } 2328 2329 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2330 { 2331 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2332 vm->page_order = order; 2333 #else 2334 BUG_ON(order != 0); 2335 #endif 2336 } 2337 2338 /** 2339 * vm_area_add_early - add vmap area early during boot 2340 * @vm: vm_struct to add 2341 * 2342 * This function is used to add fixed kernel vm area to vmlist before 2343 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2344 * should contain proper values and the other fields should be zero. 2345 * 2346 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2347 */ 2348 void __init vm_area_add_early(struct vm_struct *vm) 2349 { 2350 struct vm_struct *tmp, **p; 2351 2352 BUG_ON(vmap_initialized); 2353 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2354 if (tmp->addr >= vm->addr) { 2355 BUG_ON(tmp->addr < vm->addr + vm->size); 2356 break; 2357 } else 2358 BUG_ON(tmp->addr + tmp->size > vm->addr); 2359 } 2360 vm->next = *p; 2361 *p = vm; 2362 } 2363 2364 /** 2365 * vm_area_register_early - register vmap area early during boot 2366 * @vm: vm_struct to register 2367 * @align: requested alignment 2368 * 2369 * This function is used to register kernel vm area before 2370 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2371 * proper values on entry and other fields should be zero. On return, 2372 * vm->addr contains the allocated address. 2373 * 2374 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2375 */ 2376 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2377 { 2378 unsigned long addr = ALIGN(VMALLOC_START, align); 2379 struct vm_struct *cur, **p; 2380 2381 BUG_ON(vmap_initialized); 2382 2383 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2384 if ((unsigned long)cur->addr - addr >= vm->size) 2385 break; 2386 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2387 } 2388 2389 BUG_ON(addr > VMALLOC_END - vm->size); 2390 vm->addr = (void *)addr; 2391 vm->next = *p; 2392 *p = vm; 2393 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2394 } 2395 2396 static void vmap_init_free_space(void) 2397 { 2398 unsigned long vmap_start = 1; 2399 const unsigned long vmap_end = ULONG_MAX; 2400 struct vmap_area *busy, *free; 2401 2402 /* 2403 * B F B B B F 2404 * -|-----|.....|-----|-----|-----|.....|- 2405 * | The KVA space | 2406 * |<--------------------------------->| 2407 */ 2408 list_for_each_entry(busy, &vmap_area_list, list) { 2409 if (busy->va_start - vmap_start > 0) { 2410 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2411 if (!WARN_ON_ONCE(!free)) { 2412 free->va_start = vmap_start; 2413 free->va_end = busy->va_start; 2414 2415 insert_vmap_area_augment(free, NULL, 2416 &free_vmap_area_root, 2417 &free_vmap_area_list); 2418 } 2419 } 2420 2421 vmap_start = busy->va_end; 2422 } 2423 2424 if (vmap_end - vmap_start > 0) { 2425 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2426 if (!WARN_ON_ONCE(!free)) { 2427 free->va_start = vmap_start; 2428 free->va_end = vmap_end; 2429 2430 insert_vmap_area_augment(free, NULL, 2431 &free_vmap_area_root, 2432 &free_vmap_area_list); 2433 } 2434 } 2435 } 2436 2437 void __init vmalloc_init(void) 2438 { 2439 struct vmap_area *va; 2440 struct vm_struct *tmp; 2441 int i; 2442 2443 /* 2444 * Create the cache for vmap_area objects. 2445 */ 2446 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2447 2448 for_each_possible_cpu(i) { 2449 struct vmap_block_queue *vbq; 2450 struct vfree_deferred *p; 2451 2452 vbq = &per_cpu(vmap_block_queue, i); 2453 spin_lock_init(&vbq->lock); 2454 INIT_LIST_HEAD(&vbq->free); 2455 p = &per_cpu(vfree_deferred, i); 2456 init_llist_head(&p->list); 2457 INIT_WORK(&p->wq, free_work); 2458 } 2459 2460 /* Import existing vmlist entries. */ 2461 for (tmp = vmlist; tmp; tmp = tmp->next) { 2462 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2463 if (WARN_ON_ONCE(!va)) 2464 continue; 2465 2466 va->va_start = (unsigned long)tmp->addr; 2467 va->va_end = va->va_start + tmp->size; 2468 va->vm = tmp; 2469 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2470 } 2471 2472 /* 2473 * Now we can initialize a free vmap space. 2474 */ 2475 vmap_init_free_space(); 2476 vmap_initialized = true; 2477 } 2478 2479 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2480 struct vmap_area *va, unsigned long flags, const void *caller) 2481 { 2482 vm->flags = flags; 2483 vm->addr = (void *)va->va_start; 2484 vm->size = va->va_end - va->va_start; 2485 vm->caller = caller; 2486 va->vm = vm; 2487 } 2488 2489 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2490 unsigned long flags, const void *caller) 2491 { 2492 spin_lock(&vmap_area_lock); 2493 setup_vmalloc_vm_locked(vm, va, flags, caller); 2494 spin_unlock(&vmap_area_lock); 2495 } 2496 2497 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2498 { 2499 /* 2500 * Before removing VM_UNINITIALIZED, 2501 * we should make sure that vm has proper values. 2502 * Pair with smp_rmb() in show_numa_info(). 2503 */ 2504 smp_wmb(); 2505 vm->flags &= ~VM_UNINITIALIZED; 2506 } 2507 2508 static struct vm_struct *__get_vm_area_node(unsigned long size, 2509 unsigned long align, unsigned long shift, unsigned long flags, 2510 unsigned long start, unsigned long end, int node, 2511 gfp_t gfp_mask, const void *caller) 2512 { 2513 struct vmap_area *va; 2514 struct vm_struct *area; 2515 unsigned long requested_size = size; 2516 2517 BUG_ON(in_interrupt()); 2518 size = ALIGN(size, 1ul << shift); 2519 if (unlikely(!size)) 2520 return NULL; 2521 2522 if (flags & VM_IOREMAP) 2523 align = 1ul << clamp_t(int, get_count_order_long(size), 2524 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2525 2526 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2527 if (unlikely(!area)) 2528 return NULL; 2529 2530 if (!(flags & VM_NO_GUARD)) 2531 size += PAGE_SIZE; 2532 2533 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2534 if (IS_ERR(va)) { 2535 kfree(area); 2536 return NULL; 2537 } 2538 2539 setup_vmalloc_vm(area, va, flags, caller); 2540 2541 /* 2542 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2543 * best-effort approach, as they can be mapped outside of vmalloc code. 2544 * For VM_ALLOC mappings, the pages are marked as accessible after 2545 * getting mapped in __vmalloc_node_range(). 2546 * With hardware tag-based KASAN, marking is skipped for 2547 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2548 */ 2549 if (!(flags & VM_ALLOC)) 2550 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2551 KASAN_VMALLOC_PROT_NORMAL); 2552 2553 return area; 2554 } 2555 2556 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2557 unsigned long start, unsigned long end, 2558 const void *caller) 2559 { 2560 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2561 NUMA_NO_NODE, GFP_KERNEL, caller); 2562 } 2563 2564 /** 2565 * get_vm_area - reserve a contiguous kernel virtual area 2566 * @size: size of the area 2567 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2568 * 2569 * Search an area of @size in the kernel virtual mapping area, 2570 * and reserved it for out purposes. Returns the area descriptor 2571 * on success or %NULL on failure. 2572 * 2573 * Return: the area descriptor on success or %NULL on failure. 2574 */ 2575 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2576 { 2577 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2578 VMALLOC_START, VMALLOC_END, 2579 NUMA_NO_NODE, GFP_KERNEL, 2580 __builtin_return_address(0)); 2581 } 2582 2583 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2584 const void *caller) 2585 { 2586 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2587 VMALLOC_START, VMALLOC_END, 2588 NUMA_NO_NODE, GFP_KERNEL, caller); 2589 } 2590 2591 /** 2592 * find_vm_area - find a continuous kernel virtual area 2593 * @addr: base address 2594 * 2595 * Search for the kernel VM area starting at @addr, and return it. 2596 * It is up to the caller to do all required locking to keep the returned 2597 * pointer valid. 2598 * 2599 * Return: the area descriptor on success or %NULL on failure. 2600 */ 2601 struct vm_struct *find_vm_area(const void *addr) 2602 { 2603 struct vmap_area *va; 2604 2605 va = find_vmap_area((unsigned long)addr); 2606 if (!va) 2607 return NULL; 2608 2609 return va->vm; 2610 } 2611 2612 static struct vm_struct *__remove_vm_area(struct vmap_area *va) 2613 { 2614 struct vm_struct *vm; 2615 2616 if (!va || !va->vm) 2617 return NULL; 2618 2619 vm = va->vm; 2620 kasan_free_module_shadow(vm); 2621 free_unmap_vmap_area(va); 2622 2623 return vm; 2624 } 2625 2626 /** 2627 * remove_vm_area - find and remove a continuous kernel virtual area 2628 * @addr: base address 2629 * 2630 * Search for the kernel VM area starting at @addr, and remove it. 2631 * This function returns the found VM area, but using it is NOT safe 2632 * on SMP machines, except for its size or flags. 2633 * 2634 * Return: the area descriptor on success or %NULL on failure. 2635 */ 2636 struct vm_struct *remove_vm_area(const void *addr) 2637 { 2638 might_sleep(); 2639 2640 return __remove_vm_area( 2641 find_unlink_vmap_area((unsigned long) addr)); 2642 } 2643 2644 static inline void set_area_direct_map(const struct vm_struct *area, 2645 int (*set_direct_map)(struct page *page)) 2646 { 2647 int i; 2648 2649 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2650 for (i = 0; i < area->nr_pages; i++) 2651 if (page_address(area->pages[i])) 2652 set_direct_map(area->pages[i]); 2653 } 2654 2655 /* Handle removing and resetting vm mappings related to the VA's vm_struct. */ 2656 static void va_remove_mappings(struct vmap_area *va, int deallocate_pages) 2657 { 2658 struct vm_struct *area = va->vm; 2659 unsigned long start = ULONG_MAX, end = 0; 2660 unsigned int page_order = vm_area_page_order(area); 2661 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2662 int flush_dmap = 0; 2663 int i; 2664 2665 __remove_vm_area(va); 2666 2667 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2668 if (!flush_reset) 2669 return; 2670 2671 /* 2672 * If not deallocating pages, just do the flush of the VM area and 2673 * return. 2674 */ 2675 if (!deallocate_pages) { 2676 vm_unmap_aliases(); 2677 return; 2678 } 2679 2680 /* 2681 * If execution gets here, flush the vm mapping and reset the direct 2682 * map. Find the start and end range of the direct mappings to make sure 2683 * the vm_unmap_aliases() flush includes the direct map. 2684 */ 2685 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2686 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2687 if (addr) { 2688 unsigned long page_size; 2689 2690 page_size = PAGE_SIZE << page_order; 2691 start = min(addr, start); 2692 end = max(addr + page_size, end); 2693 flush_dmap = 1; 2694 } 2695 } 2696 2697 /* 2698 * Set direct map to something invalid so that it won't be cached if 2699 * there are any accesses after the TLB flush, then flush the TLB and 2700 * reset the direct map permissions to the default. 2701 */ 2702 set_area_direct_map(area, set_direct_map_invalid_noflush); 2703 _vm_unmap_aliases(start, end, flush_dmap); 2704 set_area_direct_map(area, set_direct_map_default_noflush); 2705 } 2706 2707 static void __vunmap(const void *addr, int deallocate_pages) 2708 { 2709 struct vm_struct *area; 2710 struct vmap_area *va; 2711 2712 if (!addr) 2713 return; 2714 2715 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2716 addr)) 2717 return; 2718 2719 va = find_unlink_vmap_area((unsigned long)addr); 2720 if (unlikely(!va)) { 2721 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2722 addr); 2723 return; 2724 } 2725 2726 area = va->vm; 2727 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2728 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2729 2730 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2731 2732 va_remove_mappings(va, deallocate_pages); 2733 2734 if (deallocate_pages) { 2735 int i; 2736 2737 for (i = 0; i < area->nr_pages; i++) { 2738 struct page *page = area->pages[i]; 2739 2740 BUG_ON(!page); 2741 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 2742 /* 2743 * High-order allocs for huge vmallocs are split, so 2744 * can be freed as an array of order-0 allocations 2745 */ 2746 __free_pages(page, 0); 2747 cond_resched(); 2748 } 2749 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2750 2751 kvfree(area->pages); 2752 } 2753 2754 kfree(area); 2755 } 2756 2757 static inline void __vfree_deferred(const void *addr) 2758 { 2759 /* 2760 * Use raw_cpu_ptr() because this can be called from preemptible 2761 * context. Preemption is absolutely fine here, because the llist_add() 2762 * implementation is lockless, so it works even if we are adding to 2763 * another cpu's list. schedule_work() should be fine with this too. 2764 */ 2765 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2766 2767 if (llist_add((struct llist_node *)addr, &p->list)) 2768 schedule_work(&p->wq); 2769 } 2770 2771 /** 2772 * vfree_atomic - release memory allocated by vmalloc() 2773 * @addr: memory base address 2774 * 2775 * This one is just like vfree() but can be called in any atomic context 2776 * except NMIs. 2777 */ 2778 void vfree_atomic(const void *addr) 2779 { 2780 BUG_ON(in_nmi()); 2781 2782 kmemleak_free(addr); 2783 2784 if (!addr) 2785 return; 2786 __vfree_deferred(addr); 2787 } 2788 2789 static void __vfree(const void *addr) 2790 { 2791 if (unlikely(in_interrupt())) 2792 __vfree_deferred(addr); 2793 else 2794 __vunmap(addr, 1); 2795 } 2796 2797 /** 2798 * vfree - Release memory allocated by vmalloc() 2799 * @addr: Memory base address 2800 * 2801 * Free the virtually continuous memory area starting at @addr, as obtained 2802 * from one of the vmalloc() family of APIs. This will usually also free the 2803 * physical memory underlying the virtual allocation, but that memory is 2804 * reference counted, so it will not be freed until the last user goes away. 2805 * 2806 * If @addr is NULL, no operation is performed. 2807 * 2808 * Context: 2809 * May sleep if called *not* from interrupt context. 2810 * Must not be called in NMI context (strictly speaking, it could be 2811 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2812 * conventions for vfree() arch-dependent would be a really bad idea). 2813 */ 2814 void vfree(const void *addr) 2815 { 2816 BUG_ON(in_nmi()); 2817 2818 kmemleak_free(addr); 2819 2820 might_sleep_if(!in_interrupt()); 2821 2822 if (!addr) 2823 return; 2824 2825 __vfree(addr); 2826 } 2827 EXPORT_SYMBOL(vfree); 2828 2829 /** 2830 * vunmap - release virtual mapping obtained by vmap() 2831 * @addr: memory base address 2832 * 2833 * Free the virtually contiguous memory area starting at @addr, 2834 * which was created from the page array passed to vmap(). 2835 * 2836 * Must not be called in interrupt context. 2837 */ 2838 void vunmap(const void *addr) 2839 { 2840 BUG_ON(in_interrupt()); 2841 might_sleep(); 2842 if (addr) 2843 __vunmap(addr, 0); 2844 } 2845 EXPORT_SYMBOL(vunmap); 2846 2847 /** 2848 * vmap - map an array of pages into virtually contiguous space 2849 * @pages: array of page pointers 2850 * @count: number of pages to map 2851 * @flags: vm_area->flags 2852 * @prot: page protection for the mapping 2853 * 2854 * Maps @count pages from @pages into contiguous kernel virtual space. 2855 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2856 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2857 * are transferred from the caller to vmap(), and will be freed / dropped when 2858 * vfree() is called on the return value. 2859 * 2860 * Return: the address of the area or %NULL on failure 2861 */ 2862 void *vmap(struct page **pages, unsigned int count, 2863 unsigned long flags, pgprot_t prot) 2864 { 2865 struct vm_struct *area; 2866 unsigned long addr; 2867 unsigned long size; /* In bytes */ 2868 2869 might_sleep(); 2870 2871 /* 2872 * Your top guard is someone else's bottom guard. Not having a top 2873 * guard compromises someone else's mappings too. 2874 */ 2875 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2876 flags &= ~VM_NO_GUARD; 2877 2878 if (count > totalram_pages()) 2879 return NULL; 2880 2881 size = (unsigned long)count << PAGE_SHIFT; 2882 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2883 if (!area) 2884 return NULL; 2885 2886 addr = (unsigned long)area->addr; 2887 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2888 pages, PAGE_SHIFT) < 0) { 2889 vunmap(area->addr); 2890 return NULL; 2891 } 2892 2893 if (flags & VM_MAP_PUT_PAGES) { 2894 area->pages = pages; 2895 area->nr_pages = count; 2896 } 2897 return area->addr; 2898 } 2899 EXPORT_SYMBOL(vmap); 2900 2901 #ifdef CONFIG_VMAP_PFN 2902 struct vmap_pfn_data { 2903 unsigned long *pfns; 2904 pgprot_t prot; 2905 unsigned int idx; 2906 }; 2907 2908 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2909 { 2910 struct vmap_pfn_data *data = private; 2911 2912 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2913 return -EINVAL; 2914 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2915 return 0; 2916 } 2917 2918 /** 2919 * vmap_pfn - map an array of PFNs into virtually contiguous space 2920 * @pfns: array of PFNs 2921 * @count: number of pages to map 2922 * @prot: page protection for the mapping 2923 * 2924 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2925 * the start address of the mapping. 2926 */ 2927 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2928 { 2929 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2930 struct vm_struct *area; 2931 2932 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2933 __builtin_return_address(0)); 2934 if (!area) 2935 return NULL; 2936 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2937 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2938 free_vm_area(area); 2939 return NULL; 2940 } 2941 return area->addr; 2942 } 2943 EXPORT_SYMBOL_GPL(vmap_pfn); 2944 #endif /* CONFIG_VMAP_PFN */ 2945 2946 static inline unsigned int 2947 vm_area_alloc_pages(gfp_t gfp, int nid, 2948 unsigned int order, unsigned int nr_pages, struct page **pages) 2949 { 2950 unsigned int nr_allocated = 0; 2951 struct page *page; 2952 int i; 2953 2954 /* 2955 * For order-0 pages we make use of bulk allocator, if 2956 * the page array is partly or not at all populated due 2957 * to fails, fallback to a single page allocator that is 2958 * more permissive. 2959 */ 2960 if (!order) { 2961 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2962 2963 while (nr_allocated < nr_pages) { 2964 unsigned int nr, nr_pages_request; 2965 2966 /* 2967 * A maximum allowed request is hard-coded and is 100 2968 * pages per call. That is done in order to prevent a 2969 * long preemption off scenario in the bulk-allocator 2970 * so the range is [1:100]. 2971 */ 2972 nr_pages_request = min(100U, nr_pages - nr_allocated); 2973 2974 /* memory allocation should consider mempolicy, we can't 2975 * wrongly use nearest node when nid == NUMA_NO_NODE, 2976 * otherwise memory may be allocated in only one node, 2977 * but mempolicy wants to alloc memory by interleaving. 2978 */ 2979 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2980 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2981 nr_pages_request, 2982 pages + nr_allocated); 2983 2984 else 2985 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2986 nr_pages_request, 2987 pages + nr_allocated); 2988 2989 nr_allocated += nr; 2990 cond_resched(); 2991 2992 /* 2993 * If zero or pages were obtained partly, 2994 * fallback to a single page allocator. 2995 */ 2996 if (nr != nr_pages_request) 2997 break; 2998 } 2999 } 3000 3001 /* High-order pages or fallback path if "bulk" fails. */ 3002 3003 while (nr_allocated < nr_pages) { 3004 if (fatal_signal_pending(current)) 3005 break; 3006 3007 if (nid == NUMA_NO_NODE) 3008 page = alloc_pages(gfp, order); 3009 else 3010 page = alloc_pages_node(nid, gfp, order); 3011 if (unlikely(!page)) 3012 break; 3013 /* 3014 * Higher order allocations must be able to be treated as 3015 * indepdenent small pages by callers (as they can with 3016 * small-page vmallocs). Some drivers do their own refcounting 3017 * on vmalloc_to_page() pages, some use page->mapping, 3018 * page->lru, etc. 3019 */ 3020 if (order) 3021 split_page(page, order); 3022 3023 /* 3024 * Careful, we allocate and map page-order pages, but 3025 * tracking is done per PAGE_SIZE page so as to keep the 3026 * vm_struct APIs independent of the physical/mapped size. 3027 */ 3028 for (i = 0; i < (1U << order); i++) 3029 pages[nr_allocated + i] = page + i; 3030 3031 cond_resched(); 3032 nr_allocated += 1U << order; 3033 } 3034 3035 return nr_allocated; 3036 } 3037 3038 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 3039 pgprot_t prot, unsigned int page_shift, 3040 int node) 3041 { 3042 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 3043 bool nofail = gfp_mask & __GFP_NOFAIL; 3044 unsigned long addr = (unsigned long)area->addr; 3045 unsigned long size = get_vm_area_size(area); 3046 unsigned long array_size; 3047 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3048 unsigned int page_order; 3049 unsigned int flags; 3050 int ret; 3051 3052 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3053 3054 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3055 gfp_mask |= __GFP_HIGHMEM; 3056 3057 /* Please note that the recursion is strictly bounded. */ 3058 if (array_size > PAGE_SIZE) { 3059 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 3060 area->caller); 3061 } else { 3062 area->pages = kmalloc_node(array_size, nested_gfp, node); 3063 } 3064 3065 if (!area->pages) { 3066 warn_alloc(gfp_mask, NULL, 3067 "vmalloc error: size %lu, failed to allocated page array size %lu", 3068 nr_small_pages * PAGE_SIZE, array_size); 3069 free_vm_area(area); 3070 return NULL; 3071 } 3072 3073 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3074 page_order = vm_area_page_order(area); 3075 3076 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 3077 node, page_order, nr_small_pages, area->pages); 3078 3079 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3080 if (gfp_mask & __GFP_ACCOUNT) { 3081 int i; 3082 3083 for (i = 0; i < area->nr_pages; i++) 3084 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3085 } 3086 3087 /* 3088 * If not enough pages were obtained to accomplish an 3089 * allocation request, free them via __vfree() if any. 3090 */ 3091 if (area->nr_pages != nr_small_pages) { 3092 warn_alloc(gfp_mask, NULL, 3093 "vmalloc error: size %lu, page order %u, failed to allocate pages", 3094 area->nr_pages * PAGE_SIZE, page_order); 3095 goto fail; 3096 } 3097 3098 /* 3099 * page tables allocations ignore external gfp mask, enforce it 3100 * by the scope API 3101 */ 3102 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3103 flags = memalloc_nofs_save(); 3104 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3105 flags = memalloc_noio_save(); 3106 3107 do { 3108 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3109 page_shift); 3110 if (nofail && (ret < 0)) 3111 schedule_timeout_uninterruptible(1); 3112 } while (nofail && (ret < 0)); 3113 3114 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3115 memalloc_nofs_restore(flags); 3116 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3117 memalloc_noio_restore(flags); 3118 3119 if (ret < 0) { 3120 warn_alloc(gfp_mask, NULL, 3121 "vmalloc error: size %lu, failed to map pages", 3122 area->nr_pages * PAGE_SIZE); 3123 goto fail; 3124 } 3125 3126 return area->addr; 3127 3128 fail: 3129 __vfree(area->addr); 3130 return NULL; 3131 } 3132 3133 /** 3134 * __vmalloc_node_range - allocate virtually contiguous memory 3135 * @size: allocation size 3136 * @align: desired alignment 3137 * @start: vm area range start 3138 * @end: vm area range end 3139 * @gfp_mask: flags for the page level allocator 3140 * @prot: protection mask for the allocated pages 3141 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3142 * @node: node to use for allocation or NUMA_NO_NODE 3143 * @caller: caller's return address 3144 * 3145 * Allocate enough pages to cover @size from the page level 3146 * allocator with @gfp_mask flags. Please note that the full set of gfp 3147 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3148 * supported. 3149 * Zone modifiers are not supported. From the reclaim modifiers 3150 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3151 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3152 * __GFP_RETRY_MAYFAIL are not supported). 3153 * 3154 * __GFP_NOWARN can be used to suppress failures messages. 3155 * 3156 * Map them into contiguous kernel virtual space, using a pagetable 3157 * protection of @prot. 3158 * 3159 * Return: the address of the area or %NULL on failure 3160 */ 3161 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3162 unsigned long start, unsigned long end, gfp_t gfp_mask, 3163 pgprot_t prot, unsigned long vm_flags, int node, 3164 const void *caller) 3165 { 3166 struct vm_struct *area; 3167 void *ret; 3168 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3169 unsigned long real_size = size; 3170 unsigned long real_align = align; 3171 unsigned int shift = PAGE_SHIFT; 3172 3173 if (WARN_ON_ONCE(!size)) 3174 return NULL; 3175 3176 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3177 warn_alloc(gfp_mask, NULL, 3178 "vmalloc error: size %lu, exceeds total pages", 3179 real_size); 3180 return NULL; 3181 } 3182 3183 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3184 unsigned long size_per_node; 3185 3186 /* 3187 * Try huge pages. Only try for PAGE_KERNEL allocations, 3188 * others like modules don't yet expect huge pages in 3189 * their allocations due to apply_to_page_range not 3190 * supporting them. 3191 */ 3192 3193 size_per_node = size; 3194 if (node == NUMA_NO_NODE) 3195 size_per_node /= num_online_nodes(); 3196 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3197 shift = PMD_SHIFT; 3198 else 3199 shift = arch_vmap_pte_supported_shift(size_per_node); 3200 3201 align = max(real_align, 1UL << shift); 3202 size = ALIGN(real_size, 1UL << shift); 3203 } 3204 3205 again: 3206 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3207 VM_UNINITIALIZED | vm_flags, start, end, node, 3208 gfp_mask, caller); 3209 if (!area) { 3210 bool nofail = gfp_mask & __GFP_NOFAIL; 3211 warn_alloc(gfp_mask, NULL, 3212 "vmalloc error: size %lu, vm_struct allocation failed%s", 3213 real_size, (nofail) ? ". Retrying." : ""); 3214 if (nofail) { 3215 schedule_timeout_uninterruptible(1); 3216 goto again; 3217 } 3218 goto fail; 3219 } 3220 3221 /* 3222 * Prepare arguments for __vmalloc_area_node() and 3223 * kasan_unpoison_vmalloc(). 3224 */ 3225 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3226 if (kasan_hw_tags_enabled()) { 3227 /* 3228 * Modify protection bits to allow tagging. 3229 * This must be done before mapping. 3230 */ 3231 prot = arch_vmap_pgprot_tagged(prot); 3232 3233 /* 3234 * Skip page_alloc poisoning and zeroing for physical 3235 * pages backing VM_ALLOC mapping. Memory is instead 3236 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3237 */ 3238 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; 3239 } 3240 3241 /* Take note that the mapping is PAGE_KERNEL. */ 3242 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3243 } 3244 3245 /* Allocate physical pages and map them into vmalloc space. */ 3246 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3247 if (!ret) 3248 goto fail; 3249 3250 /* 3251 * Mark the pages as accessible, now that they are mapped. 3252 * The condition for setting KASAN_VMALLOC_INIT should complement the 3253 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3254 * to make sure that memory is initialized under the same conditions. 3255 * Tag-based KASAN modes only assign tags to normal non-executable 3256 * allocations, see __kasan_unpoison_vmalloc(). 3257 */ 3258 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3259 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3260 (gfp_mask & __GFP_SKIP_ZERO)) 3261 kasan_flags |= KASAN_VMALLOC_INIT; 3262 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3263 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3264 3265 /* 3266 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3267 * flag. It means that vm_struct is not fully initialized. 3268 * Now, it is fully initialized, so remove this flag here. 3269 */ 3270 clear_vm_uninitialized_flag(area); 3271 3272 size = PAGE_ALIGN(size); 3273 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3274 kmemleak_vmalloc(area, size, gfp_mask); 3275 3276 return area->addr; 3277 3278 fail: 3279 if (shift > PAGE_SHIFT) { 3280 shift = PAGE_SHIFT; 3281 align = real_align; 3282 size = real_size; 3283 goto again; 3284 } 3285 3286 return NULL; 3287 } 3288 3289 /** 3290 * __vmalloc_node - allocate virtually contiguous memory 3291 * @size: allocation size 3292 * @align: desired alignment 3293 * @gfp_mask: flags for the page level allocator 3294 * @node: node to use for allocation or NUMA_NO_NODE 3295 * @caller: caller's return address 3296 * 3297 * Allocate enough pages to cover @size from the page level allocator with 3298 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3299 * 3300 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3301 * and __GFP_NOFAIL are not supported 3302 * 3303 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3304 * with mm people. 3305 * 3306 * Return: pointer to the allocated memory or %NULL on error 3307 */ 3308 void *__vmalloc_node(unsigned long size, unsigned long align, 3309 gfp_t gfp_mask, int node, const void *caller) 3310 { 3311 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3312 gfp_mask, PAGE_KERNEL, 0, node, caller); 3313 } 3314 /* 3315 * This is only for performance analysis of vmalloc and stress purpose. 3316 * It is required by vmalloc test module, therefore do not use it other 3317 * than that. 3318 */ 3319 #ifdef CONFIG_TEST_VMALLOC_MODULE 3320 EXPORT_SYMBOL_GPL(__vmalloc_node); 3321 #endif 3322 3323 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3324 { 3325 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3326 __builtin_return_address(0)); 3327 } 3328 EXPORT_SYMBOL(__vmalloc); 3329 3330 /** 3331 * vmalloc - allocate virtually contiguous memory 3332 * @size: allocation size 3333 * 3334 * Allocate enough pages to cover @size from the page level 3335 * allocator and map them into contiguous kernel virtual space. 3336 * 3337 * For tight control over page level allocator and protection flags 3338 * use __vmalloc() instead. 3339 * 3340 * Return: pointer to the allocated memory or %NULL on error 3341 */ 3342 void *vmalloc(unsigned long size) 3343 { 3344 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3345 __builtin_return_address(0)); 3346 } 3347 EXPORT_SYMBOL(vmalloc); 3348 3349 /** 3350 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3351 * @size: allocation size 3352 * @gfp_mask: flags for the page level allocator 3353 * 3354 * Allocate enough pages to cover @size from the page level 3355 * allocator and map them into contiguous kernel virtual space. 3356 * If @size is greater than or equal to PMD_SIZE, allow using 3357 * huge pages for the memory 3358 * 3359 * Return: pointer to the allocated memory or %NULL on error 3360 */ 3361 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3362 { 3363 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3364 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3365 NUMA_NO_NODE, __builtin_return_address(0)); 3366 } 3367 EXPORT_SYMBOL_GPL(vmalloc_huge); 3368 3369 /** 3370 * vzalloc - allocate virtually contiguous memory with zero fill 3371 * @size: allocation size 3372 * 3373 * Allocate enough pages to cover @size from the page level 3374 * allocator and map them into contiguous kernel virtual space. 3375 * The memory allocated is set to zero. 3376 * 3377 * For tight control over page level allocator and protection flags 3378 * use __vmalloc() instead. 3379 * 3380 * Return: pointer to the allocated memory or %NULL on error 3381 */ 3382 void *vzalloc(unsigned long size) 3383 { 3384 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3385 __builtin_return_address(0)); 3386 } 3387 EXPORT_SYMBOL(vzalloc); 3388 3389 /** 3390 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3391 * @size: allocation size 3392 * 3393 * The resulting memory area is zeroed so it can be mapped to userspace 3394 * without leaking data. 3395 * 3396 * Return: pointer to the allocated memory or %NULL on error 3397 */ 3398 void *vmalloc_user(unsigned long size) 3399 { 3400 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3401 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3402 VM_USERMAP, NUMA_NO_NODE, 3403 __builtin_return_address(0)); 3404 } 3405 EXPORT_SYMBOL(vmalloc_user); 3406 3407 /** 3408 * vmalloc_node - allocate memory on a specific node 3409 * @size: allocation size 3410 * @node: numa node 3411 * 3412 * Allocate enough pages to cover @size from the page level 3413 * allocator and map them into contiguous kernel virtual space. 3414 * 3415 * For tight control over page level allocator and protection flags 3416 * use __vmalloc() instead. 3417 * 3418 * Return: pointer to the allocated memory or %NULL on error 3419 */ 3420 void *vmalloc_node(unsigned long size, int node) 3421 { 3422 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3423 __builtin_return_address(0)); 3424 } 3425 EXPORT_SYMBOL(vmalloc_node); 3426 3427 /** 3428 * vzalloc_node - allocate memory on a specific node with zero fill 3429 * @size: allocation size 3430 * @node: numa node 3431 * 3432 * Allocate enough pages to cover @size from the page level 3433 * allocator and map them into contiguous kernel virtual space. 3434 * The memory allocated is set to zero. 3435 * 3436 * Return: pointer to the allocated memory or %NULL on error 3437 */ 3438 void *vzalloc_node(unsigned long size, int node) 3439 { 3440 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3441 __builtin_return_address(0)); 3442 } 3443 EXPORT_SYMBOL(vzalloc_node); 3444 3445 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3446 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3447 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3448 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3449 #else 3450 /* 3451 * 64b systems should always have either DMA or DMA32 zones. For others 3452 * GFP_DMA32 should do the right thing and use the normal zone. 3453 */ 3454 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3455 #endif 3456 3457 /** 3458 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3459 * @size: allocation size 3460 * 3461 * Allocate enough 32bit PA addressable pages to cover @size from the 3462 * page level allocator and map them into contiguous kernel virtual space. 3463 * 3464 * Return: pointer to the allocated memory or %NULL on error 3465 */ 3466 void *vmalloc_32(unsigned long size) 3467 { 3468 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3469 __builtin_return_address(0)); 3470 } 3471 EXPORT_SYMBOL(vmalloc_32); 3472 3473 /** 3474 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3475 * @size: allocation size 3476 * 3477 * The resulting memory area is 32bit addressable and zeroed so it can be 3478 * mapped to userspace without leaking data. 3479 * 3480 * Return: pointer to the allocated memory or %NULL on error 3481 */ 3482 void *vmalloc_32_user(unsigned long size) 3483 { 3484 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3485 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3486 VM_USERMAP, NUMA_NO_NODE, 3487 __builtin_return_address(0)); 3488 } 3489 EXPORT_SYMBOL(vmalloc_32_user); 3490 3491 /* 3492 * small helper routine , copy contents to buf from addr. 3493 * If the page is not present, fill zero. 3494 */ 3495 3496 static int aligned_vread(char *buf, char *addr, unsigned long count) 3497 { 3498 struct page *p; 3499 int copied = 0; 3500 3501 while (count) { 3502 unsigned long offset, length; 3503 3504 offset = offset_in_page(addr); 3505 length = PAGE_SIZE - offset; 3506 if (length > count) 3507 length = count; 3508 p = vmalloc_to_page(addr); 3509 /* 3510 * To do safe access to this _mapped_ area, we need 3511 * lock. But adding lock here means that we need to add 3512 * overhead of vmalloc()/vfree() calls for this _debug_ 3513 * interface, rarely used. Instead of that, we'll use 3514 * kmap() and get small overhead in this access function. 3515 */ 3516 if (p) { 3517 /* We can expect USER0 is not used -- see vread() */ 3518 void *map = kmap_atomic(p); 3519 memcpy(buf, map + offset, length); 3520 kunmap_atomic(map); 3521 } else 3522 memset(buf, 0, length); 3523 3524 addr += length; 3525 buf += length; 3526 copied += length; 3527 count -= length; 3528 } 3529 return copied; 3530 } 3531 3532 /** 3533 * vread() - read vmalloc area in a safe way. 3534 * @buf: buffer for reading data 3535 * @addr: vm address. 3536 * @count: number of bytes to be read. 3537 * 3538 * This function checks that addr is a valid vmalloc'ed area, and 3539 * copy data from that area to a given buffer. If the given memory range 3540 * of [addr...addr+count) includes some valid address, data is copied to 3541 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3542 * IOREMAP area is treated as memory hole and no copy is done. 3543 * 3544 * If [addr...addr+count) doesn't includes any intersects with alive 3545 * vm_struct area, returns 0. @buf should be kernel's buffer. 3546 * 3547 * Note: In usual ops, vread() is never necessary because the caller 3548 * should know vmalloc() area is valid and can use memcpy(). 3549 * This is for routines which have to access vmalloc area without 3550 * any information, as /proc/kcore. 3551 * 3552 * Return: number of bytes for which addr and buf should be increased 3553 * (same number as @count) or %0 if [addr...addr+count) doesn't 3554 * include any intersection with valid vmalloc area 3555 */ 3556 long vread(char *buf, char *addr, unsigned long count) 3557 { 3558 struct vmap_area *va; 3559 struct vm_struct *vm; 3560 char *vaddr, *buf_start = buf; 3561 unsigned long buflen = count; 3562 unsigned long n; 3563 3564 addr = kasan_reset_tag(addr); 3565 3566 /* Don't allow overflow */ 3567 if ((unsigned long) addr + count < count) 3568 count = -(unsigned long) addr; 3569 3570 spin_lock(&vmap_area_lock); 3571 va = find_vmap_area_exceed_addr((unsigned long)addr); 3572 if (!va) 3573 goto finished; 3574 3575 /* no intersects with alive vmap_area */ 3576 if ((unsigned long)addr + count <= va->va_start) 3577 goto finished; 3578 3579 list_for_each_entry_from(va, &vmap_area_list, list) { 3580 if (!count) 3581 break; 3582 3583 if (!va->vm) 3584 continue; 3585 3586 vm = va->vm; 3587 vaddr = (char *) vm->addr; 3588 if (addr >= vaddr + get_vm_area_size(vm)) 3589 continue; 3590 while (addr < vaddr) { 3591 if (count == 0) 3592 goto finished; 3593 *buf = '\0'; 3594 buf++; 3595 addr++; 3596 count--; 3597 } 3598 n = vaddr + get_vm_area_size(vm) - addr; 3599 if (n > count) 3600 n = count; 3601 if (!(vm->flags & VM_IOREMAP)) 3602 aligned_vread(buf, addr, n); 3603 else /* IOREMAP area is treated as memory hole */ 3604 memset(buf, 0, n); 3605 buf += n; 3606 addr += n; 3607 count -= n; 3608 } 3609 finished: 3610 spin_unlock(&vmap_area_lock); 3611 3612 if (buf == buf_start) 3613 return 0; 3614 /* zero-fill memory holes */ 3615 if (buf != buf_start + buflen) 3616 memset(buf, 0, buflen - (buf - buf_start)); 3617 3618 return buflen; 3619 } 3620 3621 /** 3622 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3623 * @vma: vma to cover 3624 * @uaddr: target user address to start at 3625 * @kaddr: virtual address of vmalloc kernel memory 3626 * @pgoff: offset from @kaddr to start at 3627 * @size: size of map area 3628 * 3629 * Returns: 0 for success, -Exxx on failure 3630 * 3631 * This function checks that @kaddr is a valid vmalloc'ed area, 3632 * and that it is big enough to cover the range starting at 3633 * @uaddr in @vma. Will return failure if that criteria isn't 3634 * met. 3635 * 3636 * Similar to remap_pfn_range() (see mm/memory.c) 3637 */ 3638 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3639 void *kaddr, unsigned long pgoff, 3640 unsigned long size) 3641 { 3642 struct vm_struct *area; 3643 unsigned long off; 3644 unsigned long end_index; 3645 3646 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3647 return -EINVAL; 3648 3649 size = PAGE_ALIGN(size); 3650 3651 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3652 return -EINVAL; 3653 3654 area = find_vm_area(kaddr); 3655 if (!area) 3656 return -EINVAL; 3657 3658 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3659 return -EINVAL; 3660 3661 if (check_add_overflow(size, off, &end_index) || 3662 end_index > get_vm_area_size(area)) 3663 return -EINVAL; 3664 kaddr += off; 3665 3666 do { 3667 struct page *page = vmalloc_to_page(kaddr); 3668 int ret; 3669 3670 ret = vm_insert_page(vma, uaddr, page); 3671 if (ret) 3672 return ret; 3673 3674 uaddr += PAGE_SIZE; 3675 kaddr += PAGE_SIZE; 3676 size -= PAGE_SIZE; 3677 } while (size > 0); 3678 3679 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3680 3681 return 0; 3682 } 3683 3684 /** 3685 * remap_vmalloc_range - map vmalloc pages to userspace 3686 * @vma: vma to cover (map full range of vma) 3687 * @addr: vmalloc memory 3688 * @pgoff: number of pages into addr before first page to map 3689 * 3690 * Returns: 0 for success, -Exxx on failure 3691 * 3692 * This function checks that addr is a valid vmalloc'ed area, and 3693 * that it is big enough to cover the vma. Will return failure if 3694 * that criteria isn't met. 3695 * 3696 * Similar to remap_pfn_range() (see mm/memory.c) 3697 */ 3698 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3699 unsigned long pgoff) 3700 { 3701 return remap_vmalloc_range_partial(vma, vma->vm_start, 3702 addr, pgoff, 3703 vma->vm_end - vma->vm_start); 3704 } 3705 EXPORT_SYMBOL(remap_vmalloc_range); 3706 3707 void free_vm_area(struct vm_struct *area) 3708 { 3709 struct vm_struct *ret; 3710 ret = remove_vm_area(area->addr); 3711 BUG_ON(ret != area); 3712 kfree(area); 3713 } 3714 EXPORT_SYMBOL_GPL(free_vm_area); 3715 3716 #ifdef CONFIG_SMP 3717 static struct vmap_area *node_to_va(struct rb_node *n) 3718 { 3719 return rb_entry_safe(n, struct vmap_area, rb_node); 3720 } 3721 3722 /** 3723 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3724 * @addr: target address 3725 * 3726 * Returns: vmap_area if it is found. If there is no such area 3727 * the first highest(reverse order) vmap_area is returned 3728 * i.e. va->va_start < addr && va->va_end < addr or NULL 3729 * if there are no any areas before @addr. 3730 */ 3731 static struct vmap_area * 3732 pvm_find_va_enclose_addr(unsigned long addr) 3733 { 3734 struct vmap_area *va, *tmp; 3735 struct rb_node *n; 3736 3737 n = free_vmap_area_root.rb_node; 3738 va = NULL; 3739 3740 while (n) { 3741 tmp = rb_entry(n, struct vmap_area, rb_node); 3742 if (tmp->va_start <= addr) { 3743 va = tmp; 3744 if (tmp->va_end >= addr) 3745 break; 3746 3747 n = n->rb_right; 3748 } else { 3749 n = n->rb_left; 3750 } 3751 } 3752 3753 return va; 3754 } 3755 3756 /** 3757 * pvm_determine_end_from_reverse - find the highest aligned address 3758 * of free block below VMALLOC_END 3759 * @va: 3760 * in - the VA we start the search(reverse order); 3761 * out - the VA with the highest aligned end address. 3762 * @align: alignment for required highest address 3763 * 3764 * Returns: determined end address within vmap_area 3765 */ 3766 static unsigned long 3767 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3768 { 3769 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3770 unsigned long addr; 3771 3772 if (likely(*va)) { 3773 list_for_each_entry_from_reverse((*va), 3774 &free_vmap_area_list, list) { 3775 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3776 if ((*va)->va_start < addr) 3777 return addr; 3778 } 3779 } 3780 3781 return 0; 3782 } 3783 3784 /** 3785 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3786 * @offsets: array containing offset of each area 3787 * @sizes: array containing size of each area 3788 * @nr_vms: the number of areas to allocate 3789 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3790 * 3791 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3792 * vm_structs on success, %NULL on failure 3793 * 3794 * Percpu allocator wants to use congruent vm areas so that it can 3795 * maintain the offsets among percpu areas. This function allocates 3796 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3797 * be scattered pretty far, distance between two areas easily going up 3798 * to gigabytes. To avoid interacting with regular vmallocs, these 3799 * areas are allocated from top. 3800 * 3801 * Despite its complicated look, this allocator is rather simple. It 3802 * does everything top-down and scans free blocks from the end looking 3803 * for matching base. While scanning, if any of the areas do not fit the 3804 * base address is pulled down to fit the area. Scanning is repeated till 3805 * all the areas fit and then all necessary data structures are inserted 3806 * and the result is returned. 3807 */ 3808 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3809 const size_t *sizes, int nr_vms, 3810 size_t align) 3811 { 3812 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3813 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3814 struct vmap_area **vas, *va; 3815 struct vm_struct **vms; 3816 int area, area2, last_area, term_area; 3817 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3818 bool purged = false; 3819 3820 /* verify parameters and allocate data structures */ 3821 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3822 for (last_area = 0, area = 0; area < nr_vms; area++) { 3823 start = offsets[area]; 3824 end = start + sizes[area]; 3825 3826 /* is everything aligned properly? */ 3827 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3828 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3829 3830 /* detect the area with the highest address */ 3831 if (start > offsets[last_area]) 3832 last_area = area; 3833 3834 for (area2 = area + 1; area2 < nr_vms; area2++) { 3835 unsigned long start2 = offsets[area2]; 3836 unsigned long end2 = start2 + sizes[area2]; 3837 3838 BUG_ON(start2 < end && start < end2); 3839 } 3840 } 3841 last_end = offsets[last_area] + sizes[last_area]; 3842 3843 if (vmalloc_end - vmalloc_start < last_end) { 3844 WARN_ON(true); 3845 return NULL; 3846 } 3847 3848 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3849 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3850 if (!vas || !vms) 3851 goto err_free2; 3852 3853 for (area = 0; area < nr_vms; area++) { 3854 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3855 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3856 if (!vas[area] || !vms[area]) 3857 goto err_free; 3858 } 3859 retry: 3860 spin_lock(&free_vmap_area_lock); 3861 3862 /* start scanning - we scan from the top, begin with the last area */ 3863 area = term_area = last_area; 3864 start = offsets[area]; 3865 end = start + sizes[area]; 3866 3867 va = pvm_find_va_enclose_addr(vmalloc_end); 3868 base = pvm_determine_end_from_reverse(&va, align) - end; 3869 3870 while (true) { 3871 /* 3872 * base might have underflowed, add last_end before 3873 * comparing. 3874 */ 3875 if (base + last_end < vmalloc_start + last_end) 3876 goto overflow; 3877 3878 /* 3879 * Fitting base has not been found. 3880 */ 3881 if (va == NULL) 3882 goto overflow; 3883 3884 /* 3885 * If required width exceeds current VA block, move 3886 * base downwards and then recheck. 3887 */ 3888 if (base + end > va->va_end) { 3889 base = pvm_determine_end_from_reverse(&va, align) - end; 3890 term_area = area; 3891 continue; 3892 } 3893 3894 /* 3895 * If this VA does not fit, move base downwards and recheck. 3896 */ 3897 if (base + start < va->va_start) { 3898 va = node_to_va(rb_prev(&va->rb_node)); 3899 base = pvm_determine_end_from_reverse(&va, align) - end; 3900 term_area = area; 3901 continue; 3902 } 3903 3904 /* 3905 * This area fits, move on to the previous one. If 3906 * the previous one is the terminal one, we're done. 3907 */ 3908 area = (area + nr_vms - 1) % nr_vms; 3909 if (area == term_area) 3910 break; 3911 3912 start = offsets[area]; 3913 end = start + sizes[area]; 3914 va = pvm_find_va_enclose_addr(base + end); 3915 } 3916 3917 /* we've found a fitting base, insert all va's */ 3918 for (area = 0; area < nr_vms; area++) { 3919 int ret; 3920 3921 start = base + offsets[area]; 3922 size = sizes[area]; 3923 3924 va = pvm_find_va_enclose_addr(start); 3925 if (WARN_ON_ONCE(va == NULL)) 3926 /* It is a BUG(), but trigger recovery instead. */ 3927 goto recovery; 3928 3929 ret = adjust_va_to_fit_type(&free_vmap_area_root, 3930 &free_vmap_area_list, 3931 va, start, size); 3932 if (WARN_ON_ONCE(unlikely(ret))) 3933 /* It is a BUG(), but trigger recovery instead. */ 3934 goto recovery; 3935 3936 /* Allocated area. */ 3937 va = vas[area]; 3938 va->va_start = start; 3939 va->va_end = start + size; 3940 } 3941 3942 spin_unlock(&free_vmap_area_lock); 3943 3944 /* populate the kasan shadow space */ 3945 for (area = 0; area < nr_vms; area++) { 3946 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3947 goto err_free_shadow; 3948 } 3949 3950 /* insert all vm's */ 3951 spin_lock(&vmap_area_lock); 3952 for (area = 0; area < nr_vms; area++) { 3953 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3954 3955 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3956 pcpu_get_vm_areas); 3957 } 3958 spin_unlock(&vmap_area_lock); 3959 3960 /* 3961 * Mark allocated areas as accessible. Do it now as a best-effort 3962 * approach, as they can be mapped outside of vmalloc code. 3963 * With hardware tag-based KASAN, marking is skipped for 3964 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3965 */ 3966 for (area = 0; area < nr_vms; area++) 3967 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 3968 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 3969 3970 kfree(vas); 3971 return vms; 3972 3973 recovery: 3974 /* 3975 * Remove previously allocated areas. There is no 3976 * need in removing these areas from the busy tree, 3977 * because they are inserted only on the final step 3978 * and when pcpu_get_vm_areas() is success. 3979 */ 3980 while (area--) { 3981 orig_start = vas[area]->va_start; 3982 orig_end = vas[area]->va_end; 3983 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3984 &free_vmap_area_list); 3985 if (va) 3986 kasan_release_vmalloc(orig_start, orig_end, 3987 va->va_start, va->va_end); 3988 vas[area] = NULL; 3989 } 3990 3991 overflow: 3992 spin_unlock(&free_vmap_area_lock); 3993 if (!purged) { 3994 purge_vmap_area_lazy(); 3995 purged = true; 3996 3997 /* Before "retry", check if we recover. */ 3998 for (area = 0; area < nr_vms; area++) { 3999 if (vas[area]) 4000 continue; 4001 4002 vas[area] = kmem_cache_zalloc( 4003 vmap_area_cachep, GFP_KERNEL); 4004 if (!vas[area]) 4005 goto err_free; 4006 } 4007 4008 goto retry; 4009 } 4010 4011 err_free: 4012 for (area = 0; area < nr_vms; area++) { 4013 if (vas[area]) 4014 kmem_cache_free(vmap_area_cachep, vas[area]); 4015 4016 kfree(vms[area]); 4017 } 4018 err_free2: 4019 kfree(vas); 4020 kfree(vms); 4021 return NULL; 4022 4023 err_free_shadow: 4024 spin_lock(&free_vmap_area_lock); 4025 /* 4026 * We release all the vmalloc shadows, even the ones for regions that 4027 * hadn't been successfully added. This relies on kasan_release_vmalloc 4028 * being able to tolerate this case. 4029 */ 4030 for (area = 0; area < nr_vms; area++) { 4031 orig_start = vas[area]->va_start; 4032 orig_end = vas[area]->va_end; 4033 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4034 &free_vmap_area_list); 4035 if (va) 4036 kasan_release_vmalloc(orig_start, orig_end, 4037 va->va_start, va->va_end); 4038 vas[area] = NULL; 4039 kfree(vms[area]); 4040 } 4041 spin_unlock(&free_vmap_area_lock); 4042 kfree(vas); 4043 kfree(vms); 4044 return NULL; 4045 } 4046 4047 /** 4048 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4049 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4050 * @nr_vms: the number of allocated areas 4051 * 4052 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4053 */ 4054 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4055 { 4056 int i; 4057 4058 for (i = 0; i < nr_vms; i++) 4059 free_vm_area(vms[i]); 4060 kfree(vms); 4061 } 4062 #endif /* CONFIG_SMP */ 4063 4064 #ifdef CONFIG_PRINTK 4065 bool vmalloc_dump_obj(void *object) 4066 { 4067 struct vm_struct *vm; 4068 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 4069 4070 vm = find_vm_area(objp); 4071 if (!vm) 4072 return false; 4073 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4074 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 4075 return true; 4076 } 4077 #endif 4078 4079 #ifdef CONFIG_PROC_FS 4080 static void *s_start(struct seq_file *m, loff_t *pos) 4081 __acquires(&vmap_purge_lock) 4082 __acquires(&vmap_area_lock) 4083 { 4084 mutex_lock(&vmap_purge_lock); 4085 spin_lock(&vmap_area_lock); 4086 4087 return seq_list_start(&vmap_area_list, *pos); 4088 } 4089 4090 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4091 { 4092 return seq_list_next(p, &vmap_area_list, pos); 4093 } 4094 4095 static void s_stop(struct seq_file *m, void *p) 4096 __releases(&vmap_area_lock) 4097 __releases(&vmap_purge_lock) 4098 { 4099 spin_unlock(&vmap_area_lock); 4100 mutex_unlock(&vmap_purge_lock); 4101 } 4102 4103 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4104 { 4105 if (IS_ENABLED(CONFIG_NUMA)) { 4106 unsigned int nr, *counters = m->private; 4107 unsigned int step = 1U << vm_area_page_order(v); 4108 4109 if (!counters) 4110 return; 4111 4112 if (v->flags & VM_UNINITIALIZED) 4113 return; 4114 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4115 smp_rmb(); 4116 4117 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4118 4119 for (nr = 0; nr < v->nr_pages; nr += step) 4120 counters[page_to_nid(v->pages[nr])] += step; 4121 for_each_node_state(nr, N_HIGH_MEMORY) 4122 if (counters[nr]) 4123 seq_printf(m, " N%u=%u", nr, counters[nr]); 4124 } 4125 } 4126 4127 static void show_purge_info(struct seq_file *m) 4128 { 4129 struct vmap_area *va; 4130 4131 spin_lock(&purge_vmap_area_lock); 4132 list_for_each_entry(va, &purge_vmap_area_list, list) { 4133 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4134 (void *)va->va_start, (void *)va->va_end, 4135 va->va_end - va->va_start); 4136 } 4137 spin_unlock(&purge_vmap_area_lock); 4138 } 4139 4140 static int s_show(struct seq_file *m, void *p) 4141 { 4142 struct vmap_area *va; 4143 struct vm_struct *v; 4144 4145 va = list_entry(p, struct vmap_area, list); 4146 4147 /* 4148 * s_show can encounter race with remove_vm_area, !vm on behalf 4149 * of vmap area is being tear down or vm_map_ram allocation. 4150 */ 4151 if (!va->vm) { 4152 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4153 (void *)va->va_start, (void *)va->va_end, 4154 va->va_end - va->va_start); 4155 4156 goto final; 4157 } 4158 4159 v = va->vm; 4160 4161 seq_printf(m, "0x%pK-0x%pK %7ld", 4162 v->addr, v->addr + v->size, v->size); 4163 4164 if (v->caller) 4165 seq_printf(m, " %pS", v->caller); 4166 4167 if (v->nr_pages) 4168 seq_printf(m, " pages=%d", v->nr_pages); 4169 4170 if (v->phys_addr) 4171 seq_printf(m, " phys=%pa", &v->phys_addr); 4172 4173 if (v->flags & VM_IOREMAP) 4174 seq_puts(m, " ioremap"); 4175 4176 if (v->flags & VM_ALLOC) 4177 seq_puts(m, " vmalloc"); 4178 4179 if (v->flags & VM_MAP) 4180 seq_puts(m, " vmap"); 4181 4182 if (v->flags & VM_USERMAP) 4183 seq_puts(m, " user"); 4184 4185 if (v->flags & VM_DMA_COHERENT) 4186 seq_puts(m, " dma-coherent"); 4187 4188 if (is_vmalloc_addr(v->pages)) 4189 seq_puts(m, " vpages"); 4190 4191 show_numa_info(m, v); 4192 seq_putc(m, '\n'); 4193 4194 /* 4195 * As a final step, dump "unpurged" areas. 4196 */ 4197 final: 4198 if (list_is_last(&va->list, &vmap_area_list)) 4199 show_purge_info(m); 4200 4201 return 0; 4202 } 4203 4204 static const struct seq_operations vmalloc_op = { 4205 .start = s_start, 4206 .next = s_next, 4207 .stop = s_stop, 4208 .show = s_show, 4209 }; 4210 4211 static int __init proc_vmalloc_init(void) 4212 { 4213 if (IS_ENABLED(CONFIG_NUMA)) 4214 proc_create_seq_private("vmallocinfo", 0400, NULL, 4215 &vmalloc_op, 4216 nr_node_ids * sizeof(unsigned int), NULL); 4217 else 4218 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4219 return 0; 4220 } 4221 module_init(proc_vmalloc_init); 4222 4223 #endif 4224