xref: /openbmc/linux/mm/vmalloc.c (revision 62a9bbf2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48 
49 #include "internal.h"
50 #include "pgalloc-track.h"
51 
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54 
55 static int __init set_nohugeiomap(char *str)
56 {
57 	ioremap_max_page_shift = PAGE_SHIFT;
58 	return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
64 
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67 
68 static int __init set_nohugevmalloc(char *str)
69 {
70 	vmap_allow_huge = false;
71 	return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77 
78 bool is_vmalloc_addr(const void *x)
79 {
80 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 
82 	return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85 
86 struct vfree_deferred {
87 	struct llist_head list;
88 	struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91 
92 static void __vunmap(const void *, int);
93 
94 static void free_work(struct work_struct *w)
95 {
96 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
97 	struct llist_node *t, *llnode;
98 
99 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
100 		__vunmap((void *)llnode, 1);
101 }
102 
103 /*** Page table manipulation functions ***/
104 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
105 			phys_addr_t phys_addr, pgprot_t prot,
106 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
107 {
108 	pte_t *pte;
109 	u64 pfn;
110 	unsigned long size = PAGE_SIZE;
111 
112 	pfn = phys_addr >> PAGE_SHIFT;
113 	pte = pte_alloc_kernel_track(pmd, addr, mask);
114 	if (!pte)
115 		return -ENOMEM;
116 	do {
117 		BUG_ON(!pte_none(*pte));
118 
119 #ifdef CONFIG_HUGETLB_PAGE
120 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
121 		if (size != PAGE_SIZE) {
122 			pte_t entry = pfn_pte(pfn, prot);
123 
124 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
125 			set_huge_pte_at(&init_mm, addr, pte, entry);
126 			pfn += PFN_DOWN(size);
127 			continue;
128 		}
129 #endif
130 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
131 		pfn++;
132 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
133 	*mask |= PGTBL_PTE_MODIFIED;
134 	return 0;
135 }
136 
137 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
138 			phys_addr_t phys_addr, pgprot_t prot,
139 			unsigned int max_page_shift)
140 {
141 	if (max_page_shift < PMD_SHIFT)
142 		return 0;
143 
144 	if (!arch_vmap_pmd_supported(prot))
145 		return 0;
146 
147 	if ((end - addr) != PMD_SIZE)
148 		return 0;
149 
150 	if (!IS_ALIGNED(addr, PMD_SIZE))
151 		return 0;
152 
153 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
154 		return 0;
155 
156 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
157 		return 0;
158 
159 	return pmd_set_huge(pmd, phys_addr, prot);
160 }
161 
162 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
163 			phys_addr_t phys_addr, pgprot_t prot,
164 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
165 {
166 	pmd_t *pmd;
167 	unsigned long next;
168 
169 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
170 	if (!pmd)
171 		return -ENOMEM;
172 	do {
173 		next = pmd_addr_end(addr, end);
174 
175 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
176 					max_page_shift)) {
177 			*mask |= PGTBL_PMD_MODIFIED;
178 			continue;
179 		}
180 
181 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
182 			return -ENOMEM;
183 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
184 	return 0;
185 }
186 
187 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
188 			phys_addr_t phys_addr, pgprot_t prot,
189 			unsigned int max_page_shift)
190 {
191 	if (max_page_shift < PUD_SHIFT)
192 		return 0;
193 
194 	if (!arch_vmap_pud_supported(prot))
195 		return 0;
196 
197 	if ((end - addr) != PUD_SIZE)
198 		return 0;
199 
200 	if (!IS_ALIGNED(addr, PUD_SIZE))
201 		return 0;
202 
203 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
204 		return 0;
205 
206 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
207 		return 0;
208 
209 	return pud_set_huge(pud, phys_addr, prot);
210 }
211 
212 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
213 			phys_addr_t phys_addr, pgprot_t prot,
214 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
215 {
216 	pud_t *pud;
217 	unsigned long next;
218 
219 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
220 	if (!pud)
221 		return -ENOMEM;
222 	do {
223 		next = pud_addr_end(addr, end);
224 
225 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
226 					max_page_shift)) {
227 			*mask |= PGTBL_PUD_MODIFIED;
228 			continue;
229 		}
230 
231 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
232 					max_page_shift, mask))
233 			return -ENOMEM;
234 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
235 	return 0;
236 }
237 
238 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
239 			phys_addr_t phys_addr, pgprot_t prot,
240 			unsigned int max_page_shift)
241 {
242 	if (max_page_shift < P4D_SHIFT)
243 		return 0;
244 
245 	if (!arch_vmap_p4d_supported(prot))
246 		return 0;
247 
248 	if ((end - addr) != P4D_SIZE)
249 		return 0;
250 
251 	if (!IS_ALIGNED(addr, P4D_SIZE))
252 		return 0;
253 
254 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
255 		return 0;
256 
257 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
258 		return 0;
259 
260 	return p4d_set_huge(p4d, phys_addr, prot);
261 }
262 
263 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
264 			phys_addr_t phys_addr, pgprot_t prot,
265 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
266 {
267 	p4d_t *p4d;
268 	unsigned long next;
269 
270 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
271 	if (!p4d)
272 		return -ENOMEM;
273 	do {
274 		next = p4d_addr_end(addr, end);
275 
276 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
277 					max_page_shift)) {
278 			*mask |= PGTBL_P4D_MODIFIED;
279 			continue;
280 		}
281 
282 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
283 					max_page_shift, mask))
284 			return -ENOMEM;
285 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
286 	return 0;
287 }
288 
289 static int vmap_range_noflush(unsigned long addr, unsigned long end,
290 			phys_addr_t phys_addr, pgprot_t prot,
291 			unsigned int max_page_shift)
292 {
293 	pgd_t *pgd;
294 	unsigned long start;
295 	unsigned long next;
296 	int err;
297 	pgtbl_mod_mask mask = 0;
298 
299 	might_sleep();
300 	BUG_ON(addr >= end);
301 
302 	start = addr;
303 	pgd = pgd_offset_k(addr);
304 	do {
305 		next = pgd_addr_end(addr, end);
306 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
307 					max_page_shift, &mask);
308 		if (err)
309 			break;
310 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
311 
312 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
313 		arch_sync_kernel_mappings(start, end);
314 
315 	return err;
316 }
317 
318 int ioremap_page_range(unsigned long addr, unsigned long end,
319 		phys_addr_t phys_addr, pgprot_t prot)
320 {
321 	int err;
322 
323 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
324 				 ioremap_max_page_shift);
325 	flush_cache_vmap(addr, end);
326 	if (!err)
327 		kmsan_ioremap_page_range(addr, end, phys_addr, prot,
328 					 ioremap_max_page_shift);
329 	return err;
330 }
331 
332 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
333 			     pgtbl_mod_mask *mask)
334 {
335 	pte_t *pte;
336 
337 	pte = pte_offset_kernel(pmd, addr);
338 	do {
339 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
340 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
341 	} while (pte++, addr += PAGE_SIZE, addr != end);
342 	*mask |= PGTBL_PTE_MODIFIED;
343 }
344 
345 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
346 			     pgtbl_mod_mask *mask)
347 {
348 	pmd_t *pmd;
349 	unsigned long next;
350 	int cleared;
351 
352 	pmd = pmd_offset(pud, addr);
353 	do {
354 		next = pmd_addr_end(addr, end);
355 
356 		cleared = pmd_clear_huge(pmd);
357 		if (cleared || pmd_bad(*pmd))
358 			*mask |= PGTBL_PMD_MODIFIED;
359 
360 		if (cleared)
361 			continue;
362 		if (pmd_none_or_clear_bad(pmd))
363 			continue;
364 		vunmap_pte_range(pmd, addr, next, mask);
365 
366 		cond_resched();
367 	} while (pmd++, addr = next, addr != end);
368 }
369 
370 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
371 			     pgtbl_mod_mask *mask)
372 {
373 	pud_t *pud;
374 	unsigned long next;
375 	int cleared;
376 
377 	pud = pud_offset(p4d, addr);
378 	do {
379 		next = pud_addr_end(addr, end);
380 
381 		cleared = pud_clear_huge(pud);
382 		if (cleared || pud_bad(*pud))
383 			*mask |= PGTBL_PUD_MODIFIED;
384 
385 		if (cleared)
386 			continue;
387 		if (pud_none_or_clear_bad(pud))
388 			continue;
389 		vunmap_pmd_range(pud, addr, next, mask);
390 	} while (pud++, addr = next, addr != end);
391 }
392 
393 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
394 			     pgtbl_mod_mask *mask)
395 {
396 	p4d_t *p4d;
397 	unsigned long next;
398 
399 	p4d = p4d_offset(pgd, addr);
400 	do {
401 		next = p4d_addr_end(addr, end);
402 
403 		p4d_clear_huge(p4d);
404 		if (p4d_bad(*p4d))
405 			*mask |= PGTBL_P4D_MODIFIED;
406 
407 		if (p4d_none_or_clear_bad(p4d))
408 			continue;
409 		vunmap_pud_range(p4d, addr, next, mask);
410 	} while (p4d++, addr = next, addr != end);
411 }
412 
413 /*
414  * vunmap_range_noflush is similar to vunmap_range, but does not
415  * flush caches or TLBs.
416  *
417  * The caller is responsible for calling flush_cache_vmap() before calling
418  * this function, and flush_tlb_kernel_range after it has returned
419  * successfully (and before the addresses are expected to cause a page fault
420  * or be re-mapped for something else, if TLB flushes are being delayed or
421  * coalesced).
422  *
423  * This is an internal function only. Do not use outside mm/.
424  */
425 void __vunmap_range_noflush(unsigned long start, unsigned long end)
426 {
427 	unsigned long next;
428 	pgd_t *pgd;
429 	unsigned long addr = start;
430 	pgtbl_mod_mask mask = 0;
431 
432 	BUG_ON(addr >= end);
433 	pgd = pgd_offset_k(addr);
434 	do {
435 		next = pgd_addr_end(addr, end);
436 		if (pgd_bad(*pgd))
437 			mask |= PGTBL_PGD_MODIFIED;
438 		if (pgd_none_or_clear_bad(pgd))
439 			continue;
440 		vunmap_p4d_range(pgd, addr, next, &mask);
441 	} while (pgd++, addr = next, addr != end);
442 
443 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
444 		arch_sync_kernel_mappings(start, end);
445 }
446 
447 void vunmap_range_noflush(unsigned long start, unsigned long end)
448 {
449 	kmsan_vunmap_range_noflush(start, end);
450 	__vunmap_range_noflush(start, end);
451 }
452 
453 /**
454  * vunmap_range - unmap kernel virtual addresses
455  * @addr: start of the VM area to unmap
456  * @end: end of the VM area to unmap (non-inclusive)
457  *
458  * Clears any present PTEs in the virtual address range, flushes TLBs and
459  * caches. Any subsequent access to the address before it has been re-mapped
460  * is a kernel bug.
461  */
462 void vunmap_range(unsigned long addr, unsigned long end)
463 {
464 	flush_cache_vunmap(addr, end);
465 	vunmap_range_noflush(addr, end);
466 	flush_tlb_kernel_range(addr, end);
467 }
468 
469 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
470 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
471 		pgtbl_mod_mask *mask)
472 {
473 	pte_t *pte;
474 
475 	/*
476 	 * nr is a running index into the array which helps higher level
477 	 * callers keep track of where we're up to.
478 	 */
479 
480 	pte = pte_alloc_kernel_track(pmd, addr, mask);
481 	if (!pte)
482 		return -ENOMEM;
483 	do {
484 		struct page *page = pages[*nr];
485 
486 		if (WARN_ON(!pte_none(*pte)))
487 			return -EBUSY;
488 		if (WARN_ON(!page))
489 			return -ENOMEM;
490 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
491 			return -EINVAL;
492 
493 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
494 		(*nr)++;
495 	} while (pte++, addr += PAGE_SIZE, addr != end);
496 	*mask |= PGTBL_PTE_MODIFIED;
497 	return 0;
498 }
499 
500 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
501 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
502 		pgtbl_mod_mask *mask)
503 {
504 	pmd_t *pmd;
505 	unsigned long next;
506 
507 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
508 	if (!pmd)
509 		return -ENOMEM;
510 	do {
511 		next = pmd_addr_end(addr, end);
512 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
513 			return -ENOMEM;
514 	} while (pmd++, addr = next, addr != end);
515 	return 0;
516 }
517 
518 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
519 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
520 		pgtbl_mod_mask *mask)
521 {
522 	pud_t *pud;
523 	unsigned long next;
524 
525 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
526 	if (!pud)
527 		return -ENOMEM;
528 	do {
529 		next = pud_addr_end(addr, end);
530 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
531 			return -ENOMEM;
532 	} while (pud++, addr = next, addr != end);
533 	return 0;
534 }
535 
536 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
537 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
538 		pgtbl_mod_mask *mask)
539 {
540 	p4d_t *p4d;
541 	unsigned long next;
542 
543 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
544 	if (!p4d)
545 		return -ENOMEM;
546 	do {
547 		next = p4d_addr_end(addr, end);
548 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
549 			return -ENOMEM;
550 	} while (p4d++, addr = next, addr != end);
551 	return 0;
552 }
553 
554 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
555 		pgprot_t prot, struct page **pages)
556 {
557 	unsigned long start = addr;
558 	pgd_t *pgd;
559 	unsigned long next;
560 	int err = 0;
561 	int nr = 0;
562 	pgtbl_mod_mask mask = 0;
563 
564 	BUG_ON(addr >= end);
565 	pgd = pgd_offset_k(addr);
566 	do {
567 		next = pgd_addr_end(addr, end);
568 		if (pgd_bad(*pgd))
569 			mask |= PGTBL_PGD_MODIFIED;
570 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
571 		if (err)
572 			return err;
573 	} while (pgd++, addr = next, addr != end);
574 
575 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
576 		arch_sync_kernel_mappings(start, end);
577 
578 	return 0;
579 }
580 
581 /*
582  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
583  * flush caches.
584  *
585  * The caller is responsible for calling flush_cache_vmap() after this
586  * function returns successfully and before the addresses are accessed.
587  *
588  * This is an internal function only. Do not use outside mm/.
589  */
590 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
591 		pgprot_t prot, struct page **pages, unsigned int page_shift)
592 {
593 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
594 
595 	WARN_ON(page_shift < PAGE_SHIFT);
596 
597 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
598 			page_shift == PAGE_SHIFT)
599 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
600 
601 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
602 		int err;
603 
604 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
605 					page_to_phys(pages[i]), prot,
606 					page_shift);
607 		if (err)
608 			return err;
609 
610 		addr += 1UL << page_shift;
611 	}
612 
613 	return 0;
614 }
615 
616 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
617 		pgprot_t prot, struct page **pages, unsigned int page_shift)
618 {
619 	kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
620 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
621 }
622 
623 /**
624  * vmap_pages_range - map pages to a kernel virtual address
625  * @addr: start of the VM area to map
626  * @end: end of the VM area to map (non-inclusive)
627  * @prot: page protection flags to use
628  * @pages: pages to map (always PAGE_SIZE pages)
629  * @page_shift: maximum shift that the pages may be mapped with, @pages must
630  * be aligned and contiguous up to at least this shift.
631  *
632  * RETURNS:
633  * 0 on success, -errno on failure.
634  */
635 static int vmap_pages_range(unsigned long addr, unsigned long end,
636 		pgprot_t prot, struct page **pages, unsigned int page_shift)
637 {
638 	int err;
639 
640 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
641 	flush_cache_vmap(addr, end);
642 	return err;
643 }
644 
645 int is_vmalloc_or_module_addr(const void *x)
646 {
647 	/*
648 	 * ARM, x86-64 and sparc64 put modules in a special place,
649 	 * and fall back on vmalloc() if that fails. Others
650 	 * just put it in the vmalloc space.
651 	 */
652 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
653 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
654 	if (addr >= MODULES_VADDR && addr < MODULES_END)
655 		return 1;
656 #endif
657 	return is_vmalloc_addr(x);
658 }
659 
660 /*
661  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
662  * return the tail page that corresponds to the base page address, which
663  * matches small vmap mappings.
664  */
665 struct page *vmalloc_to_page(const void *vmalloc_addr)
666 {
667 	unsigned long addr = (unsigned long) vmalloc_addr;
668 	struct page *page = NULL;
669 	pgd_t *pgd = pgd_offset_k(addr);
670 	p4d_t *p4d;
671 	pud_t *pud;
672 	pmd_t *pmd;
673 	pte_t *ptep, pte;
674 
675 	/*
676 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
677 	 * architectures that do not vmalloc module space
678 	 */
679 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
680 
681 	if (pgd_none(*pgd))
682 		return NULL;
683 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
684 		return NULL; /* XXX: no allowance for huge pgd */
685 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
686 		return NULL;
687 
688 	p4d = p4d_offset(pgd, addr);
689 	if (p4d_none(*p4d))
690 		return NULL;
691 	if (p4d_leaf(*p4d))
692 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
693 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
694 		return NULL;
695 
696 	pud = pud_offset(p4d, addr);
697 	if (pud_none(*pud))
698 		return NULL;
699 	if (pud_leaf(*pud))
700 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
701 	if (WARN_ON_ONCE(pud_bad(*pud)))
702 		return NULL;
703 
704 	pmd = pmd_offset(pud, addr);
705 	if (pmd_none(*pmd))
706 		return NULL;
707 	if (pmd_leaf(*pmd))
708 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
709 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
710 		return NULL;
711 
712 	ptep = pte_offset_map(pmd, addr);
713 	pte = *ptep;
714 	if (pte_present(pte))
715 		page = pte_page(pte);
716 	pte_unmap(ptep);
717 
718 	return page;
719 }
720 EXPORT_SYMBOL(vmalloc_to_page);
721 
722 /*
723  * Map a vmalloc()-space virtual address to the physical page frame number.
724  */
725 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
726 {
727 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
728 }
729 EXPORT_SYMBOL(vmalloc_to_pfn);
730 
731 
732 /*** Global kva allocator ***/
733 
734 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
735 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
736 
737 
738 static DEFINE_SPINLOCK(vmap_area_lock);
739 static DEFINE_SPINLOCK(free_vmap_area_lock);
740 /* Export for kexec only */
741 LIST_HEAD(vmap_area_list);
742 static struct rb_root vmap_area_root = RB_ROOT;
743 static bool vmap_initialized __read_mostly;
744 
745 static struct rb_root purge_vmap_area_root = RB_ROOT;
746 static LIST_HEAD(purge_vmap_area_list);
747 static DEFINE_SPINLOCK(purge_vmap_area_lock);
748 
749 /*
750  * This kmem_cache is used for vmap_area objects. Instead of
751  * allocating from slab we reuse an object from this cache to
752  * make things faster. Especially in "no edge" splitting of
753  * free block.
754  */
755 static struct kmem_cache *vmap_area_cachep;
756 
757 /*
758  * This linked list is used in pair with free_vmap_area_root.
759  * It gives O(1) access to prev/next to perform fast coalescing.
760  */
761 static LIST_HEAD(free_vmap_area_list);
762 
763 /*
764  * This augment red-black tree represents the free vmap space.
765  * All vmap_area objects in this tree are sorted by va->va_start
766  * address. It is used for allocation and merging when a vmap
767  * object is released.
768  *
769  * Each vmap_area node contains a maximum available free block
770  * of its sub-tree, right or left. Therefore it is possible to
771  * find a lowest match of free area.
772  */
773 static struct rb_root free_vmap_area_root = RB_ROOT;
774 
775 /*
776  * Preload a CPU with one object for "no edge" split case. The
777  * aim is to get rid of allocations from the atomic context, thus
778  * to use more permissive allocation masks.
779  */
780 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
781 
782 static __always_inline unsigned long
783 va_size(struct vmap_area *va)
784 {
785 	return (va->va_end - va->va_start);
786 }
787 
788 static __always_inline unsigned long
789 get_subtree_max_size(struct rb_node *node)
790 {
791 	struct vmap_area *va;
792 
793 	va = rb_entry_safe(node, struct vmap_area, rb_node);
794 	return va ? va->subtree_max_size : 0;
795 }
796 
797 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
798 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
799 
800 static void purge_vmap_area_lazy(void);
801 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
802 static void drain_vmap_area_work(struct work_struct *work);
803 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
804 
805 static atomic_long_t nr_vmalloc_pages;
806 
807 unsigned long vmalloc_nr_pages(void)
808 {
809 	return atomic_long_read(&nr_vmalloc_pages);
810 }
811 
812 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
813 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
814 {
815 	struct vmap_area *va = NULL;
816 	struct rb_node *n = vmap_area_root.rb_node;
817 
818 	addr = (unsigned long)kasan_reset_tag((void *)addr);
819 
820 	while (n) {
821 		struct vmap_area *tmp;
822 
823 		tmp = rb_entry(n, struct vmap_area, rb_node);
824 		if (tmp->va_end > addr) {
825 			va = tmp;
826 			if (tmp->va_start <= addr)
827 				break;
828 
829 			n = n->rb_left;
830 		} else
831 			n = n->rb_right;
832 	}
833 
834 	return va;
835 }
836 
837 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
838 {
839 	struct rb_node *n = root->rb_node;
840 
841 	addr = (unsigned long)kasan_reset_tag((void *)addr);
842 
843 	while (n) {
844 		struct vmap_area *va;
845 
846 		va = rb_entry(n, struct vmap_area, rb_node);
847 		if (addr < va->va_start)
848 			n = n->rb_left;
849 		else if (addr >= va->va_end)
850 			n = n->rb_right;
851 		else
852 			return va;
853 	}
854 
855 	return NULL;
856 }
857 
858 /*
859  * This function returns back addresses of parent node
860  * and its left or right link for further processing.
861  *
862  * Otherwise NULL is returned. In that case all further
863  * steps regarding inserting of conflicting overlap range
864  * have to be declined and actually considered as a bug.
865  */
866 static __always_inline struct rb_node **
867 find_va_links(struct vmap_area *va,
868 	struct rb_root *root, struct rb_node *from,
869 	struct rb_node **parent)
870 {
871 	struct vmap_area *tmp_va;
872 	struct rb_node **link;
873 
874 	if (root) {
875 		link = &root->rb_node;
876 		if (unlikely(!*link)) {
877 			*parent = NULL;
878 			return link;
879 		}
880 	} else {
881 		link = &from;
882 	}
883 
884 	/*
885 	 * Go to the bottom of the tree. When we hit the last point
886 	 * we end up with parent rb_node and correct direction, i name
887 	 * it link, where the new va->rb_node will be attached to.
888 	 */
889 	do {
890 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
891 
892 		/*
893 		 * During the traversal we also do some sanity check.
894 		 * Trigger the BUG() if there are sides(left/right)
895 		 * or full overlaps.
896 		 */
897 		if (va->va_end <= tmp_va->va_start)
898 			link = &(*link)->rb_left;
899 		else if (va->va_start >= tmp_va->va_end)
900 			link = &(*link)->rb_right;
901 		else {
902 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
903 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
904 
905 			return NULL;
906 		}
907 	} while (*link);
908 
909 	*parent = &tmp_va->rb_node;
910 	return link;
911 }
912 
913 static __always_inline struct list_head *
914 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
915 {
916 	struct list_head *list;
917 
918 	if (unlikely(!parent))
919 		/*
920 		 * The red-black tree where we try to find VA neighbors
921 		 * before merging or inserting is empty, i.e. it means
922 		 * there is no free vmap space. Normally it does not
923 		 * happen but we handle this case anyway.
924 		 */
925 		return NULL;
926 
927 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
928 	return (&parent->rb_right == link ? list->next : list);
929 }
930 
931 static __always_inline void
932 __link_va(struct vmap_area *va, struct rb_root *root,
933 	struct rb_node *parent, struct rb_node **link,
934 	struct list_head *head, bool augment)
935 {
936 	/*
937 	 * VA is still not in the list, but we can
938 	 * identify its future previous list_head node.
939 	 */
940 	if (likely(parent)) {
941 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
942 		if (&parent->rb_right != link)
943 			head = head->prev;
944 	}
945 
946 	/* Insert to the rb-tree */
947 	rb_link_node(&va->rb_node, parent, link);
948 	if (augment) {
949 		/*
950 		 * Some explanation here. Just perform simple insertion
951 		 * to the tree. We do not set va->subtree_max_size to
952 		 * its current size before calling rb_insert_augmented().
953 		 * It is because we populate the tree from the bottom
954 		 * to parent levels when the node _is_ in the tree.
955 		 *
956 		 * Therefore we set subtree_max_size to zero after insertion,
957 		 * to let __augment_tree_propagate_from() puts everything to
958 		 * the correct order later on.
959 		 */
960 		rb_insert_augmented(&va->rb_node,
961 			root, &free_vmap_area_rb_augment_cb);
962 		va->subtree_max_size = 0;
963 	} else {
964 		rb_insert_color(&va->rb_node, root);
965 	}
966 
967 	/* Address-sort this list */
968 	list_add(&va->list, head);
969 }
970 
971 static __always_inline void
972 link_va(struct vmap_area *va, struct rb_root *root,
973 	struct rb_node *parent, struct rb_node **link,
974 	struct list_head *head)
975 {
976 	__link_va(va, root, parent, link, head, false);
977 }
978 
979 static __always_inline void
980 link_va_augment(struct vmap_area *va, struct rb_root *root,
981 	struct rb_node *parent, struct rb_node **link,
982 	struct list_head *head)
983 {
984 	__link_va(va, root, parent, link, head, true);
985 }
986 
987 static __always_inline void
988 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
989 {
990 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
991 		return;
992 
993 	if (augment)
994 		rb_erase_augmented(&va->rb_node,
995 			root, &free_vmap_area_rb_augment_cb);
996 	else
997 		rb_erase(&va->rb_node, root);
998 
999 	list_del_init(&va->list);
1000 	RB_CLEAR_NODE(&va->rb_node);
1001 }
1002 
1003 static __always_inline void
1004 unlink_va(struct vmap_area *va, struct rb_root *root)
1005 {
1006 	__unlink_va(va, root, false);
1007 }
1008 
1009 static __always_inline void
1010 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1011 {
1012 	__unlink_va(va, root, true);
1013 }
1014 
1015 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1016 /*
1017  * Gets called when remove the node and rotate.
1018  */
1019 static __always_inline unsigned long
1020 compute_subtree_max_size(struct vmap_area *va)
1021 {
1022 	return max3(va_size(va),
1023 		get_subtree_max_size(va->rb_node.rb_left),
1024 		get_subtree_max_size(va->rb_node.rb_right));
1025 }
1026 
1027 static void
1028 augment_tree_propagate_check(void)
1029 {
1030 	struct vmap_area *va;
1031 	unsigned long computed_size;
1032 
1033 	list_for_each_entry(va, &free_vmap_area_list, list) {
1034 		computed_size = compute_subtree_max_size(va);
1035 		if (computed_size != va->subtree_max_size)
1036 			pr_emerg("tree is corrupted: %lu, %lu\n",
1037 				va_size(va), va->subtree_max_size);
1038 	}
1039 }
1040 #endif
1041 
1042 /*
1043  * This function populates subtree_max_size from bottom to upper
1044  * levels starting from VA point. The propagation must be done
1045  * when VA size is modified by changing its va_start/va_end. Or
1046  * in case of newly inserting of VA to the tree.
1047  *
1048  * It means that __augment_tree_propagate_from() must be called:
1049  * - After VA has been inserted to the tree(free path);
1050  * - After VA has been shrunk(allocation path);
1051  * - After VA has been increased(merging path).
1052  *
1053  * Please note that, it does not mean that upper parent nodes
1054  * and their subtree_max_size are recalculated all the time up
1055  * to the root node.
1056  *
1057  *       4--8
1058  *        /\
1059  *       /  \
1060  *      /    \
1061  *    2--2  8--8
1062  *
1063  * For example if we modify the node 4, shrinking it to 2, then
1064  * no any modification is required. If we shrink the node 2 to 1
1065  * its subtree_max_size is updated only, and set to 1. If we shrink
1066  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1067  * node becomes 4--6.
1068  */
1069 static __always_inline void
1070 augment_tree_propagate_from(struct vmap_area *va)
1071 {
1072 	/*
1073 	 * Populate the tree from bottom towards the root until
1074 	 * the calculated maximum available size of checked node
1075 	 * is equal to its current one.
1076 	 */
1077 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1078 
1079 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1080 	augment_tree_propagate_check();
1081 #endif
1082 }
1083 
1084 static void
1085 insert_vmap_area(struct vmap_area *va,
1086 	struct rb_root *root, struct list_head *head)
1087 {
1088 	struct rb_node **link;
1089 	struct rb_node *parent;
1090 
1091 	link = find_va_links(va, root, NULL, &parent);
1092 	if (link)
1093 		link_va(va, root, parent, link, head);
1094 }
1095 
1096 static void
1097 insert_vmap_area_augment(struct vmap_area *va,
1098 	struct rb_node *from, struct rb_root *root,
1099 	struct list_head *head)
1100 {
1101 	struct rb_node **link;
1102 	struct rb_node *parent;
1103 
1104 	if (from)
1105 		link = find_va_links(va, NULL, from, &parent);
1106 	else
1107 		link = find_va_links(va, root, NULL, &parent);
1108 
1109 	if (link) {
1110 		link_va_augment(va, root, parent, link, head);
1111 		augment_tree_propagate_from(va);
1112 	}
1113 }
1114 
1115 /*
1116  * Merge de-allocated chunk of VA memory with previous
1117  * and next free blocks. If coalesce is not done a new
1118  * free area is inserted. If VA has been merged, it is
1119  * freed.
1120  *
1121  * Please note, it can return NULL in case of overlap
1122  * ranges, followed by WARN() report. Despite it is a
1123  * buggy behaviour, a system can be alive and keep
1124  * ongoing.
1125  */
1126 static __always_inline struct vmap_area *
1127 __merge_or_add_vmap_area(struct vmap_area *va,
1128 	struct rb_root *root, struct list_head *head, bool augment)
1129 {
1130 	struct vmap_area *sibling;
1131 	struct list_head *next;
1132 	struct rb_node **link;
1133 	struct rb_node *parent;
1134 	bool merged = false;
1135 
1136 	/*
1137 	 * Find a place in the tree where VA potentially will be
1138 	 * inserted, unless it is merged with its sibling/siblings.
1139 	 */
1140 	link = find_va_links(va, root, NULL, &parent);
1141 	if (!link)
1142 		return NULL;
1143 
1144 	/*
1145 	 * Get next node of VA to check if merging can be done.
1146 	 */
1147 	next = get_va_next_sibling(parent, link);
1148 	if (unlikely(next == NULL))
1149 		goto insert;
1150 
1151 	/*
1152 	 * start            end
1153 	 * |                |
1154 	 * |<------VA------>|<-----Next----->|
1155 	 *                  |                |
1156 	 *                  start            end
1157 	 */
1158 	if (next != head) {
1159 		sibling = list_entry(next, struct vmap_area, list);
1160 		if (sibling->va_start == va->va_end) {
1161 			sibling->va_start = va->va_start;
1162 
1163 			/* Free vmap_area object. */
1164 			kmem_cache_free(vmap_area_cachep, va);
1165 
1166 			/* Point to the new merged area. */
1167 			va = sibling;
1168 			merged = true;
1169 		}
1170 	}
1171 
1172 	/*
1173 	 * start            end
1174 	 * |                |
1175 	 * |<-----Prev----->|<------VA------>|
1176 	 *                  |                |
1177 	 *                  start            end
1178 	 */
1179 	if (next->prev != head) {
1180 		sibling = list_entry(next->prev, struct vmap_area, list);
1181 		if (sibling->va_end == va->va_start) {
1182 			/*
1183 			 * If both neighbors are coalesced, it is important
1184 			 * to unlink the "next" node first, followed by merging
1185 			 * with "previous" one. Otherwise the tree might not be
1186 			 * fully populated if a sibling's augmented value is
1187 			 * "normalized" because of rotation operations.
1188 			 */
1189 			if (merged)
1190 				__unlink_va(va, root, augment);
1191 
1192 			sibling->va_end = va->va_end;
1193 
1194 			/* Free vmap_area object. */
1195 			kmem_cache_free(vmap_area_cachep, va);
1196 
1197 			/* Point to the new merged area. */
1198 			va = sibling;
1199 			merged = true;
1200 		}
1201 	}
1202 
1203 insert:
1204 	if (!merged)
1205 		__link_va(va, root, parent, link, head, augment);
1206 
1207 	return va;
1208 }
1209 
1210 static __always_inline struct vmap_area *
1211 merge_or_add_vmap_area(struct vmap_area *va,
1212 	struct rb_root *root, struct list_head *head)
1213 {
1214 	return __merge_or_add_vmap_area(va, root, head, false);
1215 }
1216 
1217 static __always_inline struct vmap_area *
1218 merge_or_add_vmap_area_augment(struct vmap_area *va,
1219 	struct rb_root *root, struct list_head *head)
1220 {
1221 	va = __merge_or_add_vmap_area(va, root, head, true);
1222 	if (va)
1223 		augment_tree_propagate_from(va);
1224 
1225 	return va;
1226 }
1227 
1228 static __always_inline bool
1229 is_within_this_va(struct vmap_area *va, unsigned long size,
1230 	unsigned long align, unsigned long vstart)
1231 {
1232 	unsigned long nva_start_addr;
1233 
1234 	if (va->va_start > vstart)
1235 		nva_start_addr = ALIGN(va->va_start, align);
1236 	else
1237 		nva_start_addr = ALIGN(vstart, align);
1238 
1239 	/* Can be overflowed due to big size or alignment. */
1240 	if (nva_start_addr + size < nva_start_addr ||
1241 			nva_start_addr < vstart)
1242 		return false;
1243 
1244 	return (nva_start_addr + size <= va->va_end);
1245 }
1246 
1247 /*
1248  * Find the first free block(lowest start address) in the tree,
1249  * that will accomplish the request corresponding to passing
1250  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1251  * a search length is adjusted to account for worst case alignment
1252  * overhead.
1253  */
1254 static __always_inline struct vmap_area *
1255 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1256 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1257 {
1258 	struct vmap_area *va;
1259 	struct rb_node *node;
1260 	unsigned long length;
1261 
1262 	/* Start from the root. */
1263 	node = root->rb_node;
1264 
1265 	/* Adjust the search size for alignment overhead. */
1266 	length = adjust_search_size ? size + align - 1 : size;
1267 
1268 	while (node) {
1269 		va = rb_entry(node, struct vmap_area, rb_node);
1270 
1271 		if (get_subtree_max_size(node->rb_left) >= length &&
1272 				vstart < va->va_start) {
1273 			node = node->rb_left;
1274 		} else {
1275 			if (is_within_this_va(va, size, align, vstart))
1276 				return va;
1277 
1278 			/*
1279 			 * Does not make sense to go deeper towards the right
1280 			 * sub-tree if it does not have a free block that is
1281 			 * equal or bigger to the requested search length.
1282 			 */
1283 			if (get_subtree_max_size(node->rb_right) >= length) {
1284 				node = node->rb_right;
1285 				continue;
1286 			}
1287 
1288 			/*
1289 			 * OK. We roll back and find the first right sub-tree,
1290 			 * that will satisfy the search criteria. It can happen
1291 			 * due to "vstart" restriction or an alignment overhead
1292 			 * that is bigger then PAGE_SIZE.
1293 			 */
1294 			while ((node = rb_parent(node))) {
1295 				va = rb_entry(node, struct vmap_area, rb_node);
1296 				if (is_within_this_va(va, size, align, vstart))
1297 					return va;
1298 
1299 				if (get_subtree_max_size(node->rb_right) >= length &&
1300 						vstart <= va->va_start) {
1301 					/*
1302 					 * Shift the vstart forward. Please note, we update it with
1303 					 * parent's start address adding "1" because we do not want
1304 					 * to enter same sub-tree after it has already been checked
1305 					 * and no suitable free block found there.
1306 					 */
1307 					vstart = va->va_start + 1;
1308 					node = node->rb_right;
1309 					break;
1310 				}
1311 			}
1312 		}
1313 	}
1314 
1315 	return NULL;
1316 }
1317 
1318 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1319 #include <linux/random.h>
1320 
1321 static struct vmap_area *
1322 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1323 	unsigned long align, unsigned long vstart)
1324 {
1325 	struct vmap_area *va;
1326 
1327 	list_for_each_entry(va, head, list) {
1328 		if (!is_within_this_va(va, size, align, vstart))
1329 			continue;
1330 
1331 		return va;
1332 	}
1333 
1334 	return NULL;
1335 }
1336 
1337 static void
1338 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1339 			     unsigned long size, unsigned long align)
1340 {
1341 	struct vmap_area *va_1, *va_2;
1342 	unsigned long vstart;
1343 	unsigned int rnd;
1344 
1345 	get_random_bytes(&rnd, sizeof(rnd));
1346 	vstart = VMALLOC_START + rnd;
1347 
1348 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1349 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1350 
1351 	if (va_1 != va_2)
1352 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1353 			va_1, va_2, vstart);
1354 }
1355 #endif
1356 
1357 enum fit_type {
1358 	NOTHING_FIT = 0,
1359 	FL_FIT_TYPE = 1,	/* full fit */
1360 	LE_FIT_TYPE = 2,	/* left edge fit */
1361 	RE_FIT_TYPE = 3,	/* right edge fit */
1362 	NE_FIT_TYPE = 4		/* no edge fit */
1363 };
1364 
1365 static __always_inline enum fit_type
1366 classify_va_fit_type(struct vmap_area *va,
1367 	unsigned long nva_start_addr, unsigned long size)
1368 {
1369 	enum fit_type type;
1370 
1371 	/* Check if it is within VA. */
1372 	if (nva_start_addr < va->va_start ||
1373 			nva_start_addr + size > va->va_end)
1374 		return NOTHING_FIT;
1375 
1376 	/* Now classify. */
1377 	if (va->va_start == nva_start_addr) {
1378 		if (va->va_end == nva_start_addr + size)
1379 			type = FL_FIT_TYPE;
1380 		else
1381 			type = LE_FIT_TYPE;
1382 	} else if (va->va_end == nva_start_addr + size) {
1383 		type = RE_FIT_TYPE;
1384 	} else {
1385 		type = NE_FIT_TYPE;
1386 	}
1387 
1388 	return type;
1389 }
1390 
1391 static __always_inline int
1392 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1393 		      struct vmap_area *va, unsigned long nva_start_addr,
1394 		      unsigned long size)
1395 {
1396 	struct vmap_area *lva = NULL;
1397 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1398 
1399 	if (type == FL_FIT_TYPE) {
1400 		/*
1401 		 * No need to split VA, it fully fits.
1402 		 *
1403 		 * |               |
1404 		 * V      NVA      V
1405 		 * |---------------|
1406 		 */
1407 		unlink_va_augment(va, root);
1408 		kmem_cache_free(vmap_area_cachep, va);
1409 	} else if (type == LE_FIT_TYPE) {
1410 		/*
1411 		 * Split left edge of fit VA.
1412 		 *
1413 		 * |       |
1414 		 * V  NVA  V   R
1415 		 * |-------|-------|
1416 		 */
1417 		va->va_start += size;
1418 	} else if (type == RE_FIT_TYPE) {
1419 		/*
1420 		 * Split right edge of fit VA.
1421 		 *
1422 		 *         |       |
1423 		 *     L   V  NVA  V
1424 		 * |-------|-------|
1425 		 */
1426 		va->va_end = nva_start_addr;
1427 	} else if (type == NE_FIT_TYPE) {
1428 		/*
1429 		 * Split no edge of fit VA.
1430 		 *
1431 		 *     |       |
1432 		 *   L V  NVA  V R
1433 		 * |---|-------|---|
1434 		 */
1435 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1436 		if (unlikely(!lva)) {
1437 			/*
1438 			 * For percpu allocator we do not do any pre-allocation
1439 			 * and leave it as it is. The reason is it most likely
1440 			 * never ends up with NE_FIT_TYPE splitting. In case of
1441 			 * percpu allocations offsets and sizes are aligned to
1442 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1443 			 * are its main fitting cases.
1444 			 *
1445 			 * There are a few exceptions though, as an example it is
1446 			 * a first allocation (early boot up) when we have "one"
1447 			 * big free space that has to be split.
1448 			 *
1449 			 * Also we can hit this path in case of regular "vmap"
1450 			 * allocations, if "this" current CPU was not preloaded.
1451 			 * See the comment in alloc_vmap_area() why. If so, then
1452 			 * GFP_NOWAIT is used instead to get an extra object for
1453 			 * split purpose. That is rare and most time does not
1454 			 * occur.
1455 			 *
1456 			 * What happens if an allocation gets failed. Basically,
1457 			 * an "overflow" path is triggered to purge lazily freed
1458 			 * areas to free some memory, then, the "retry" path is
1459 			 * triggered to repeat one more time. See more details
1460 			 * in alloc_vmap_area() function.
1461 			 */
1462 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1463 			if (!lva)
1464 				return -1;
1465 		}
1466 
1467 		/*
1468 		 * Build the remainder.
1469 		 */
1470 		lva->va_start = va->va_start;
1471 		lva->va_end = nva_start_addr;
1472 
1473 		/*
1474 		 * Shrink this VA to remaining size.
1475 		 */
1476 		va->va_start = nva_start_addr + size;
1477 	} else {
1478 		return -1;
1479 	}
1480 
1481 	if (type != FL_FIT_TYPE) {
1482 		augment_tree_propagate_from(va);
1483 
1484 		if (lva)	/* type == NE_FIT_TYPE */
1485 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1486 	}
1487 
1488 	return 0;
1489 }
1490 
1491 /*
1492  * Returns a start address of the newly allocated area, if success.
1493  * Otherwise a vend is returned that indicates failure.
1494  */
1495 static __always_inline unsigned long
1496 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1497 	unsigned long size, unsigned long align,
1498 	unsigned long vstart, unsigned long vend)
1499 {
1500 	bool adjust_search_size = true;
1501 	unsigned long nva_start_addr;
1502 	struct vmap_area *va;
1503 	int ret;
1504 
1505 	/*
1506 	 * Do not adjust when:
1507 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1508 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1509 	 *      aligned anyway;
1510 	 *   b) a short range where a requested size corresponds to exactly
1511 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1512 	 *      With adjusted search length an allocation would not succeed.
1513 	 */
1514 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1515 		adjust_search_size = false;
1516 
1517 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1518 	if (unlikely(!va))
1519 		return vend;
1520 
1521 	if (va->va_start > vstart)
1522 		nva_start_addr = ALIGN(va->va_start, align);
1523 	else
1524 		nva_start_addr = ALIGN(vstart, align);
1525 
1526 	/* Check the "vend" restriction. */
1527 	if (nva_start_addr + size > vend)
1528 		return vend;
1529 
1530 	/* Update the free vmap_area. */
1531 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1532 	if (WARN_ON_ONCE(ret))
1533 		return vend;
1534 
1535 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1536 	find_vmap_lowest_match_check(root, head, size, align);
1537 #endif
1538 
1539 	return nva_start_addr;
1540 }
1541 
1542 /*
1543  * Free a region of KVA allocated by alloc_vmap_area
1544  */
1545 static void free_vmap_area(struct vmap_area *va)
1546 {
1547 	/*
1548 	 * Remove from the busy tree/list.
1549 	 */
1550 	spin_lock(&vmap_area_lock);
1551 	unlink_va(va, &vmap_area_root);
1552 	spin_unlock(&vmap_area_lock);
1553 
1554 	/*
1555 	 * Insert/Merge it back to the free tree/list.
1556 	 */
1557 	spin_lock(&free_vmap_area_lock);
1558 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1559 	spin_unlock(&free_vmap_area_lock);
1560 }
1561 
1562 static inline void
1563 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1564 {
1565 	struct vmap_area *va = NULL;
1566 
1567 	/*
1568 	 * Preload this CPU with one extra vmap_area object. It is used
1569 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1570 	 * a CPU that does an allocation is preloaded.
1571 	 *
1572 	 * We do it in non-atomic context, thus it allows us to use more
1573 	 * permissive allocation masks to be more stable under low memory
1574 	 * condition and high memory pressure.
1575 	 */
1576 	if (!this_cpu_read(ne_fit_preload_node))
1577 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1578 
1579 	spin_lock(lock);
1580 
1581 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1582 		kmem_cache_free(vmap_area_cachep, va);
1583 }
1584 
1585 /*
1586  * Allocate a region of KVA of the specified size and alignment, within the
1587  * vstart and vend.
1588  */
1589 static struct vmap_area *alloc_vmap_area(unsigned long size,
1590 				unsigned long align,
1591 				unsigned long vstart, unsigned long vend,
1592 				int node, gfp_t gfp_mask)
1593 {
1594 	struct vmap_area *va;
1595 	unsigned long freed;
1596 	unsigned long addr;
1597 	int purged = 0;
1598 	int ret;
1599 
1600 	BUG_ON(!size);
1601 	BUG_ON(offset_in_page(size));
1602 	BUG_ON(!is_power_of_2(align));
1603 
1604 	if (unlikely(!vmap_initialized))
1605 		return ERR_PTR(-EBUSY);
1606 
1607 	might_sleep();
1608 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1609 
1610 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1611 	if (unlikely(!va))
1612 		return ERR_PTR(-ENOMEM);
1613 
1614 	/*
1615 	 * Only scan the relevant parts containing pointers to other objects
1616 	 * to avoid false negatives.
1617 	 */
1618 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1619 
1620 retry:
1621 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1622 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1623 		size, align, vstart, vend);
1624 	spin_unlock(&free_vmap_area_lock);
1625 
1626 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1627 
1628 	/*
1629 	 * If an allocation fails, the "vend" address is
1630 	 * returned. Therefore trigger the overflow path.
1631 	 */
1632 	if (unlikely(addr == vend))
1633 		goto overflow;
1634 
1635 	va->va_start = addr;
1636 	va->va_end = addr + size;
1637 	va->vm = NULL;
1638 
1639 	spin_lock(&vmap_area_lock);
1640 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1641 	spin_unlock(&vmap_area_lock);
1642 
1643 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1644 	BUG_ON(va->va_start < vstart);
1645 	BUG_ON(va->va_end > vend);
1646 
1647 	ret = kasan_populate_vmalloc(addr, size);
1648 	if (ret) {
1649 		free_vmap_area(va);
1650 		return ERR_PTR(ret);
1651 	}
1652 
1653 	return va;
1654 
1655 overflow:
1656 	if (!purged) {
1657 		purge_vmap_area_lazy();
1658 		purged = 1;
1659 		goto retry;
1660 	}
1661 
1662 	freed = 0;
1663 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1664 
1665 	if (freed > 0) {
1666 		purged = 0;
1667 		goto retry;
1668 	}
1669 
1670 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1671 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1672 			size);
1673 
1674 	kmem_cache_free(vmap_area_cachep, va);
1675 	return ERR_PTR(-EBUSY);
1676 }
1677 
1678 int register_vmap_purge_notifier(struct notifier_block *nb)
1679 {
1680 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1681 }
1682 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1683 
1684 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1685 {
1686 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1687 }
1688 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1689 
1690 /*
1691  * lazy_max_pages is the maximum amount of virtual address space we gather up
1692  * before attempting to purge with a TLB flush.
1693  *
1694  * There is a tradeoff here: a larger number will cover more kernel page tables
1695  * and take slightly longer to purge, but it will linearly reduce the number of
1696  * global TLB flushes that must be performed. It would seem natural to scale
1697  * this number up linearly with the number of CPUs (because vmapping activity
1698  * could also scale linearly with the number of CPUs), however it is likely
1699  * that in practice, workloads might be constrained in other ways that mean
1700  * vmap activity will not scale linearly with CPUs. Also, I want to be
1701  * conservative and not introduce a big latency on huge systems, so go with
1702  * a less aggressive log scale. It will still be an improvement over the old
1703  * code, and it will be simple to change the scale factor if we find that it
1704  * becomes a problem on bigger systems.
1705  */
1706 static unsigned long lazy_max_pages(void)
1707 {
1708 	unsigned int log;
1709 
1710 	log = fls(num_online_cpus());
1711 
1712 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1713 }
1714 
1715 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1716 
1717 /*
1718  * Serialize vmap purging.  There is no actual critical section protected
1719  * by this lock, but we want to avoid concurrent calls for performance
1720  * reasons and to make the pcpu_get_vm_areas more deterministic.
1721  */
1722 static DEFINE_MUTEX(vmap_purge_lock);
1723 
1724 /* for per-CPU blocks */
1725 static void purge_fragmented_blocks_allcpus(void);
1726 
1727 /*
1728  * Purges all lazily-freed vmap areas.
1729  */
1730 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1731 {
1732 	unsigned long resched_threshold;
1733 	unsigned int num_purged_areas = 0;
1734 	struct list_head local_purge_list;
1735 	struct vmap_area *va, *n_va;
1736 
1737 	lockdep_assert_held(&vmap_purge_lock);
1738 
1739 	spin_lock(&purge_vmap_area_lock);
1740 	purge_vmap_area_root = RB_ROOT;
1741 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1742 	spin_unlock(&purge_vmap_area_lock);
1743 
1744 	if (unlikely(list_empty(&local_purge_list)))
1745 		goto out;
1746 
1747 	start = min(start,
1748 		list_first_entry(&local_purge_list,
1749 			struct vmap_area, list)->va_start);
1750 
1751 	end = max(end,
1752 		list_last_entry(&local_purge_list,
1753 			struct vmap_area, list)->va_end);
1754 
1755 	flush_tlb_kernel_range(start, end);
1756 	resched_threshold = lazy_max_pages() << 1;
1757 
1758 	spin_lock(&free_vmap_area_lock);
1759 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1760 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1761 		unsigned long orig_start = va->va_start;
1762 		unsigned long orig_end = va->va_end;
1763 
1764 		/*
1765 		 * Finally insert or merge lazily-freed area. It is
1766 		 * detached and there is no need to "unlink" it from
1767 		 * anything.
1768 		 */
1769 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1770 				&free_vmap_area_list);
1771 
1772 		if (!va)
1773 			continue;
1774 
1775 		if (is_vmalloc_or_module_addr((void *)orig_start))
1776 			kasan_release_vmalloc(orig_start, orig_end,
1777 					      va->va_start, va->va_end);
1778 
1779 		atomic_long_sub(nr, &vmap_lazy_nr);
1780 		num_purged_areas++;
1781 
1782 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1783 			cond_resched_lock(&free_vmap_area_lock);
1784 	}
1785 	spin_unlock(&free_vmap_area_lock);
1786 
1787 out:
1788 	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1789 	return num_purged_areas > 0;
1790 }
1791 
1792 /*
1793  * Kick off a purge of the outstanding lazy areas.
1794  */
1795 static void purge_vmap_area_lazy(void)
1796 {
1797 	mutex_lock(&vmap_purge_lock);
1798 	purge_fragmented_blocks_allcpus();
1799 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1800 	mutex_unlock(&vmap_purge_lock);
1801 }
1802 
1803 static void drain_vmap_area_work(struct work_struct *work)
1804 {
1805 	unsigned long nr_lazy;
1806 
1807 	do {
1808 		mutex_lock(&vmap_purge_lock);
1809 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1810 		mutex_unlock(&vmap_purge_lock);
1811 
1812 		/* Recheck if further work is required. */
1813 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1814 	} while (nr_lazy > lazy_max_pages());
1815 }
1816 
1817 /*
1818  * Free a vmap area, caller ensuring that the area has been unmapped,
1819  * unlinked and flush_cache_vunmap had been called for the correct
1820  * range previously.
1821  */
1822 static void free_vmap_area_noflush(struct vmap_area *va)
1823 {
1824 	unsigned long nr_lazy_max = lazy_max_pages();
1825 	unsigned long va_start = va->va_start;
1826 	unsigned long nr_lazy;
1827 
1828 	if (WARN_ON_ONCE(!list_empty(&va->list)))
1829 		return;
1830 
1831 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1832 				PAGE_SHIFT, &vmap_lazy_nr);
1833 
1834 	/*
1835 	 * Merge or place it to the purge tree/list.
1836 	 */
1837 	spin_lock(&purge_vmap_area_lock);
1838 	merge_or_add_vmap_area(va,
1839 		&purge_vmap_area_root, &purge_vmap_area_list);
1840 	spin_unlock(&purge_vmap_area_lock);
1841 
1842 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1843 
1844 	/* After this point, we may free va at any time */
1845 	if (unlikely(nr_lazy > nr_lazy_max))
1846 		schedule_work(&drain_vmap_work);
1847 }
1848 
1849 /*
1850  * Free and unmap a vmap area
1851  */
1852 static void free_unmap_vmap_area(struct vmap_area *va)
1853 {
1854 	flush_cache_vunmap(va->va_start, va->va_end);
1855 	vunmap_range_noflush(va->va_start, va->va_end);
1856 	if (debug_pagealloc_enabled_static())
1857 		flush_tlb_kernel_range(va->va_start, va->va_end);
1858 
1859 	free_vmap_area_noflush(va);
1860 }
1861 
1862 struct vmap_area *find_vmap_area(unsigned long addr)
1863 {
1864 	struct vmap_area *va;
1865 
1866 	spin_lock(&vmap_area_lock);
1867 	va = __find_vmap_area(addr, &vmap_area_root);
1868 	spin_unlock(&vmap_area_lock);
1869 
1870 	return va;
1871 }
1872 
1873 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1874 {
1875 	struct vmap_area *va;
1876 
1877 	spin_lock(&vmap_area_lock);
1878 	va = __find_vmap_area(addr, &vmap_area_root);
1879 	if (va)
1880 		unlink_va(va, &vmap_area_root);
1881 	spin_unlock(&vmap_area_lock);
1882 
1883 	return va;
1884 }
1885 
1886 /*** Per cpu kva allocator ***/
1887 
1888 /*
1889  * vmap space is limited especially on 32 bit architectures. Ensure there is
1890  * room for at least 16 percpu vmap blocks per CPU.
1891  */
1892 /*
1893  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1894  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1895  * instead (we just need a rough idea)
1896  */
1897 #if BITS_PER_LONG == 32
1898 #define VMALLOC_SPACE		(128UL*1024*1024)
1899 #else
1900 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1901 #endif
1902 
1903 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1904 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1905 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1906 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1907 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1908 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1909 #define VMAP_BBMAP_BITS		\
1910 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1911 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1912 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1913 
1914 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1915 
1916 struct vmap_block_queue {
1917 	spinlock_t lock;
1918 	struct list_head free;
1919 };
1920 
1921 struct vmap_block {
1922 	spinlock_t lock;
1923 	struct vmap_area *va;
1924 	unsigned long free, dirty;
1925 	unsigned long dirty_min, dirty_max; /*< dirty range */
1926 	struct list_head free_list;
1927 	struct rcu_head rcu_head;
1928 	struct list_head purge;
1929 };
1930 
1931 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1932 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1933 
1934 /*
1935  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1936  * in the free path. Could get rid of this if we change the API to return a
1937  * "cookie" from alloc, to be passed to free. But no big deal yet.
1938  */
1939 static DEFINE_XARRAY(vmap_blocks);
1940 
1941 /*
1942  * We should probably have a fallback mechanism to allocate virtual memory
1943  * out of partially filled vmap blocks. However vmap block sizing should be
1944  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1945  * big problem.
1946  */
1947 
1948 static unsigned long addr_to_vb_idx(unsigned long addr)
1949 {
1950 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1951 	addr /= VMAP_BLOCK_SIZE;
1952 	return addr;
1953 }
1954 
1955 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1956 {
1957 	unsigned long addr;
1958 
1959 	addr = va_start + (pages_off << PAGE_SHIFT);
1960 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1961 	return (void *)addr;
1962 }
1963 
1964 /**
1965  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1966  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1967  * @order:    how many 2^order pages should be occupied in newly allocated block
1968  * @gfp_mask: flags for the page level allocator
1969  *
1970  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1971  */
1972 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1973 {
1974 	struct vmap_block_queue *vbq;
1975 	struct vmap_block *vb;
1976 	struct vmap_area *va;
1977 	unsigned long vb_idx;
1978 	int node, err;
1979 	void *vaddr;
1980 
1981 	node = numa_node_id();
1982 
1983 	vb = kmalloc_node(sizeof(struct vmap_block),
1984 			gfp_mask & GFP_RECLAIM_MASK, node);
1985 	if (unlikely(!vb))
1986 		return ERR_PTR(-ENOMEM);
1987 
1988 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1989 					VMALLOC_START, VMALLOC_END,
1990 					node, gfp_mask);
1991 	if (IS_ERR(va)) {
1992 		kfree(vb);
1993 		return ERR_CAST(va);
1994 	}
1995 
1996 	vaddr = vmap_block_vaddr(va->va_start, 0);
1997 	spin_lock_init(&vb->lock);
1998 	vb->va = va;
1999 	/* At least something should be left free */
2000 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2001 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2002 	vb->dirty = 0;
2003 	vb->dirty_min = VMAP_BBMAP_BITS;
2004 	vb->dirty_max = 0;
2005 	INIT_LIST_HEAD(&vb->free_list);
2006 
2007 	vb_idx = addr_to_vb_idx(va->va_start);
2008 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
2009 	if (err) {
2010 		kfree(vb);
2011 		free_vmap_area(va);
2012 		return ERR_PTR(err);
2013 	}
2014 
2015 	vbq = raw_cpu_ptr(&vmap_block_queue);
2016 	spin_lock(&vbq->lock);
2017 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2018 	spin_unlock(&vbq->lock);
2019 
2020 	return vaddr;
2021 }
2022 
2023 static void free_vmap_block(struct vmap_block *vb)
2024 {
2025 	struct vmap_block *tmp;
2026 
2027 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
2028 	BUG_ON(tmp != vb);
2029 
2030 	spin_lock(&vmap_area_lock);
2031 	unlink_va(vb->va, &vmap_area_root);
2032 	spin_unlock(&vmap_area_lock);
2033 
2034 	free_vmap_area_noflush(vb->va);
2035 	kfree_rcu(vb, rcu_head);
2036 }
2037 
2038 static void purge_fragmented_blocks(int cpu)
2039 {
2040 	LIST_HEAD(purge);
2041 	struct vmap_block *vb;
2042 	struct vmap_block *n_vb;
2043 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2044 
2045 	rcu_read_lock();
2046 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2047 
2048 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2049 			continue;
2050 
2051 		spin_lock(&vb->lock);
2052 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2053 			vb->free = 0; /* prevent further allocs after releasing lock */
2054 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2055 			vb->dirty_min = 0;
2056 			vb->dirty_max = VMAP_BBMAP_BITS;
2057 			spin_lock(&vbq->lock);
2058 			list_del_rcu(&vb->free_list);
2059 			spin_unlock(&vbq->lock);
2060 			spin_unlock(&vb->lock);
2061 			list_add_tail(&vb->purge, &purge);
2062 		} else
2063 			spin_unlock(&vb->lock);
2064 	}
2065 	rcu_read_unlock();
2066 
2067 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2068 		list_del(&vb->purge);
2069 		free_vmap_block(vb);
2070 	}
2071 }
2072 
2073 static void purge_fragmented_blocks_allcpus(void)
2074 {
2075 	int cpu;
2076 
2077 	for_each_possible_cpu(cpu)
2078 		purge_fragmented_blocks(cpu);
2079 }
2080 
2081 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2082 {
2083 	struct vmap_block_queue *vbq;
2084 	struct vmap_block *vb;
2085 	void *vaddr = NULL;
2086 	unsigned int order;
2087 
2088 	BUG_ON(offset_in_page(size));
2089 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2090 	if (WARN_ON(size == 0)) {
2091 		/*
2092 		 * Allocating 0 bytes isn't what caller wants since
2093 		 * get_order(0) returns funny result. Just warn and terminate
2094 		 * early.
2095 		 */
2096 		return NULL;
2097 	}
2098 	order = get_order(size);
2099 
2100 	rcu_read_lock();
2101 	vbq = raw_cpu_ptr(&vmap_block_queue);
2102 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2103 		unsigned long pages_off;
2104 
2105 		spin_lock(&vb->lock);
2106 		if (vb->free < (1UL << order)) {
2107 			spin_unlock(&vb->lock);
2108 			continue;
2109 		}
2110 
2111 		pages_off = VMAP_BBMAP_BITS - vb->free;
2112 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2113 		vb->free -= 1UL << order;
2114 		if (vb->free == 0) {
2115 			spin_lock(&vbq->lock);
2116 			list_del_rcu(&vb->free_list);
2117 			spin_unlock(&vbq->lock);
2118 		}
2119 
2120 		spin_unlock(&vb->lock);
2121 		break;
2122 	}
2123 
2124 	rcu_read_unlock();
2125 
2126 	/* Allocate new block if nothing was found */
2127 	if (!vaddr)
2128 		vaddr = new_vmap_block(order, gfp_mask);
2129 
2130 	return vaddr;
2131 }
2132 
2133 static void vb_free(unsigned long addr, unsigned long size)
2134 {
2135 	unsigned long offset;
2136 	unsigned int order;
2137 	struct vmap_block *vb;
2138 
2139 	BUG_ON(offset_in_page(size));
2140 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2141 
2142 	flush_cache_vunmap(addr, addr + size);
2143 
2144 	order = get_order(size);
2145 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2146 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2147 
2148 	vunmap_range_noflush(addr, addr + size);
2149 
2150 	if (debug_pagealloc_enabled_static())
2151 		flush_tlb_kernel_range(addr, addr + size);
2152 
2153 	spin_lock(&vb->lock);
2154 
2155 	/* Expand dirty range */
2156 	vb->dirty_min = min(vb->dirty_min, offset);
2157 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2158 
2159 	vb->dirty += 1UL << order;
2160 	if (vb->dirty == VMAP_BBMAP_BITS) {
2161 		BUG_ON(vb->free);
2162 		spin_unlock(&vb->lock);
2163 		free_vmap_block(vb);
2164 	} else
2165 		spin_unlock(&vb->lock);
2166 }
2167 
2168 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2169 {
2170 	int cpu;
2171 
2172 	if (unlikely(!vmap_initialized))
2173 		return;
2174 
2175 	might_sleep();
2176 
2177 	for_each_possible_cpu(cpu) {
2178 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2179 		struct vmap_block *vb;
2180 
2181 		rcu_read_lock();
2182 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2183 			spin_lock(&vb->lock);
2184 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2185 				unsigned long va_start = vb->va->va_start;
2186 				unsigned long s, e;
2187 
2188 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2189 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2190 
2191 				start = min(s, start);
2192 				end   = max(e, end);
2193 
2194 				flush = 1;
2195 			}
2196 			spin_unlock(&vb->lock);
2197 		}
2198 		rcu_read_unlock();
2199 	}
2200 
2201 	mutex_lock(&vmap_purge_lock);
2202 	purge_fragmented_blocks_allcpus();
2203 	if (!__purge_vmap_area_lazy(start, end) && flush)
2204 		flush_tlb_kernel_range(start, end);
2205 	mutex_unlock(&vmap_purge_lock);
2206 }
2207 
2208 /**
2209  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2210  *
2211  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2212  * to amortize TLB flushing overheads. What this means is that any page you
2213  * have now, may, in a former life, have been mapped into kernel virtual
2214  * address by the vmap layer and so there might be some CPUs with TLB entries
2215  * still referencing that page (additional to the regular 1:1 kernel mapping).
2216  *
2217  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2218  * be sure that none of the pages we have control over will have any aliases
2219  * from the vmap layer.
2220  */
2221 void vm_unmap_aliases(void)
2222 {
2223 	unsigned long start = ULONG_MAX, end = 0;
2224 	int flush = 0;
2225 
2226 	_vm_unmap_aliases(start, end, flush);
2227 }
2228 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2229 
2230 /**
2231  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2232  * @mem: the pointer returned by vm_map_ram
2233  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2234  */
2235 void vm_unmap_ram(const void *mem, unsigned int count)
2236 {
2237 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2238 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2239 	struct vmap_area *va;
2240 
2241 	might_sleep();
2242 	BUG_ON(!addr);
2243 	BUG_ON(addr < VMALLOC_START);
2244 	BUG_ON(addr > VMALLOC_END);
2245 	BUG_ON(!PAGE_ALIGNED(addr));
2246 
2247 	kasan_poison_vmalloc(mem, size);
2248 
2249 	if (likely(count <= VMAP_MAX_ALLOC)) {
2250 		debug_check_no_locks_freed(mem, size);
2251 		vb_free(addr, size);
2252 		return;
2253 	}
2254 
2255 	va = find_unlink_vmap_area(addr);
2256 	if (WARN_ON_ONCE(!va))
2257 		return;
2258 
2259 	debug_check_no_locks_freed((void *)va->va_start,
2260 				    (va->va_end - va->va_start));
2261 	free_unmap_vmap_area(va);
2262 }
2263 EXPORT_SYMBOL(vm_unmap_ram);
2264 
2265 /**
2266  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2267  * @pages: an array of pointers to the pages to be mapped
2268  * @count: number of pages
2269  * @node: prefer to allocate data structures on this node
2270  *
2271  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2272  * faster than vmap so it's good.  But if you mix long-life and short-life
2273  * objects with vm_map_ram(), it could consume lots of address space through
2274  * fragmentation (especially on a 32bit machine).  You could see failures in
2275  * the end.  Please use this function for short-lived objects.
2276  *
2277  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2278  */
2279 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2280 {
2281 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2282 	unsigned long addr;
2283 	void *mem;
2284 
2285 	if (likely(count <= VMAP_MAX_ALLOC)) {
2286 		mem = vb_alloc(size, GFP_KERNEL);
2287 		if (IS_ERR(mem))
2288 			return NULL;
2289 		addr = (unsigned long)mem;
2290 	} else {
2291 		struct vmap_area *va;
2292 		va = alloc_vmap_area(size, PAGE_SIZE,
2293 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2294 		if (IS_ERR(va))
2295 			return NULL;
2296 
2297 		addr = va->va_start;
2298 		mem = (void *)addr;
2299 	}
2300 
2301 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2302 				pages, PAGE_SHIFT) < 0) {
2303 		vm_unmap_ram(mem, count);
2304 		return NULL;
2305 	}
2306 
2307 	/*
2308 	 * Mark the pages as accessible, now that they are mapped.
2309 	 * With hardware tag-based KASAN, marking is skipped for
2310 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2311 	 */
2312 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2313 
2314 	return mem;
2315 }
2316 EXPORT_SYMBOL(vm_map_ram);
2317 
2318 static struct vm_struct *vmlist __initdata;
2319 
2320 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2321 {
2322 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2323 	return vm->page_order;
2324 #else
2325 	return 0;
2326 #endif
2327 }
2328 
2329 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2330 {
2331 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2332 	vm->page_order = order;
2333 #else
2334 	BUG_ON(order != 0);
2335 #endif
2336 }
2337 
2338 /**
2339  * vm_area_add_early - add vmap area early during boot
2340  * @vm: vm_struct to add
2341  *
2342  * This function is used to add fixed kernel vm area to vmlist before
2343  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2344  * should contain proper values and the other fields should be zero.
2345  *
2346  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2347  */
2348 void __init vm_area_add_early(struct vm_struct *vm)
2349 {
2350 	struct vm_struct *tmp, **p;
2351 
2352 	BUG_ON(vmap_initialized);
2353 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2354 		if (tmp->addr >= vm->addr) {
2355 			BUG_ON(tmp->addr < vm->addr + vm->size);
2356 			break;
2357 		} else
2358 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2359 	}
2360 	vm->next = *p;
2361 	*p = vm;
2362 }
2363 
2364 /**
2365  * vm_area_register_early - register vmap area early during boot
2366  * @vm: vm_struct to register
2367  * @align: requested alignment
2368  *
2369  * This function is used to register kernel vm area before
2370  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2371  * proper values on entry and other fields should be zero.  On return,
2372  * vm->addr contains the allocated address.
2373  *
2374  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2375  */
2376 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2377 {
2378 	unsigned long addr = ALIGN(VMALLOC_START, align);
2379 	struct vm_struct *cur, **p;
2380 
2381 	BUG_ON(vmap_initialized);
2382 
2383 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2384 		if ((unsigned long)cur->addr - addr >= vm->size)
2385 			break;
2386 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2387 	}
2388 
2389 	BUG_ON(addr > VMALLOC_END - vm->size);
2390 	vm->addr = (void *)addr;
2391 	vm->next = *p;
2392 	*p = vm;
2393 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2394 }
2395 
2396 static void vmap_init_free_space(void)
2397 {
2398 	unsigned long vmap_start = 1;
2399 	const unsigned long vmap_end = ULONG_MAX;
2400 	struct vmap_area *busy, *free;
2401 
2402 	/*
2403 	 *     B     F     B     B     B     F
2404 	 * -|-----|.....|-----|-----|-----|.....|-
2405 	 *  |           The KVA space           |
2406 	 *  |<--------------------------------->|
2407 	 */
2408 	list_for_each_entry(busy, &vmap_area_list, list) {
2409 		if (busy->va_start - vmap_start > 0) {
2410 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2411 			if (!WARN_ON_ONCE(!free)) {
2412 				free->va_start = vmap_start;
2413 				free->va_end = busy->va_start;
2414 
2415 				insert_vmap_area_augment(free, NULL,
2416 					&free_vmap_area_root,
2417 						&free_vmap_area_list);
2418 			}
2419 		}
2420 
2421 		vmap_start = busy->va_end;
2422 	}
2423 
2424 	if (vmap_end - vmap_start > 0) {
2425 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2426 		if (!WARN_ON_ONCE(!free)) {
2427 			free->va_start = vmap_start;
2428 			free->va_end = vmap_end;
2429 
2430 			insert_vmap_area_augment(free, NULL,
2431 				&free_vmap_area_root,
2432 					&free_vmap_area_list);
2433 		}
2434 	}
2435 }
2436 
2437 void __init vmalloc_init(void)
2438 {
2439 	struct vmap_area *va;
2440 	struct vm_struct *tmp;
2441 	int i;
2442 
2443 	/*
2444 	 * Create the cache for vmap_area objects.
2445 	 */
2446 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2447 
2448 	for_each_possible_cpu(i) {
2449 		struct vmap_block_queue *vbq;
2450 		struct vfree_deferred *p;
2451 
2452 		vbq = &per_cpu(vmap_block_queue, i);
2453 		spin_lock_init(&vbq->lock);
2454 		INIT_LIST_HEAD(&vbq->free);
2455 		p = &per_cpu(vfree_deferred, i);
2456 		init_llist_head(&p->list);
2457 		INIT_WORK(&p->wq, free_work);
2458 	}
2459 
2460 	/* Import existing vmlist entries. */
2461 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2462 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2463 		if (WARN_ON_ONCE(!va))
2464 			continue;
2465 
2466 		va->va_start = (unsigned long)tmp->addr;
2467 		va->va_end = va->va_start + tmp->size;
2468 		va->vm = tmp;
2469 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2470 	}
2471 
2472 	/*
2473 	 * Now we can initialize a free vmap space.
2474 	 */
2475 	vmap_init_free_space();
2476 	vmap_initialized = true;
2477 }
2478 
2479 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2480 	struct vmap_area *va, unsigned long flags, const void *caller)
2481 {
2482 	vm->flags = flags;
2483 	vm->addr = (void *)va->va_start;
2484 	vm->size = va->va_end - va->va_start;
2485 	vm->caller = caller;
2486 	va->vm = vm;
2487 }
2488 
2489 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2490 			      unsigned long flags, const void *caller)
2491 {
2492 	spin_lock(&vmap_area_lock);
2493 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2494 	spin_unlock(&vmap_area_lock);
2495 }
2496 
2497 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2498 {
2499 	/*
2500 	 * Before removing VM_UNINITIALIZED,
2501 	 * we should make sure that vm has proper values.
2502 	 * Pair with smp_rmb() in show_numa_info().
2503 	 */
2504 	smp_wmb();
2505 	vm->flags &= ~VM_UNINITIALIZED;
2506 }
2507 
2508 static struct vm_struct *__get_vm_area_node(unsigned long size,
2509 		unsigned long align, unsigned long shift, unsigned long flags,
2510 		unsigned long start, unsigned long end, int node,
2511 		gfp_t gfp_mask, const void *caller)
2512 {
2513 	struct vmap_area *va;
2514 	struct vm_struct *area;
2515 	unsigned long requested_size = size;
2516 
2517 	BUG_ON(in_interrupt());
2518 	size = ALIGN(size, 1ul << shift);
2519 	if (unlikely(!size))
2520 		return NULL;
2521 
2522 	if (flags & VM_IOREMAP)
2523 		align = 1ul << clamp_t(int, get_count_order_long(size),
2524 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2525 
2526 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2527 	if (unlikely(!area))
2528 		return NULL;
2529 
2530 	if (!(flags & VM_NO_GUARD))
2531 		size += PAGE_SIZE;
2532 
2533 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2534 	if (IS_ERR(va)) {
2535 		kfree(area);
2536 		return NULL;
2537 	}
2538 
2539 	setup_vmalloc_vm(area, va, flags, caller);
2540 
2541 	/*
2542 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2543 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2544 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2545 	 * getting mapped in __vmalloc_node_range().
2546 	 * With hardware tag-based KASAN, marking is skipped for
2547 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2548 	 */
2549 	if (!(flags & VM_ALLOC))
2550 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2551 						    KASAN_VMALLOC_PROT_NORMAL);
2552 
2553 	return area;
2554 }
2555 
2556 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2557 				       unsigned long start, unsigned long end,
2558 				       const void *caller)
2559 {
2560 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2561 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2562 }
2563 
2564 /**
2565  * get_vm_area - reserve a contiguous kernel virtual area
2566  * @size:	 size of the area
2567  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2568  *
2569  * Search an area of @size in the kernel virtual mapping area,
2570  * and reserved it for out purposes.  Returns the area descriptor
2571  * on success or %NULL on failure.
2572  *
2573  * Return: the area descriptor on success or %NULL on failure.
2574  */
2575 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2576 {
2577 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2578 				  VMALLOC_START, VMALLOC_END,
2579 				  NUMA_NO_NODE, GFP_KERNEL,
2580 				  __builtin_return_address(0));
2581 }
2582 
2583 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2584 				const void *caller)
2585 {
2586 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2587 				  VMALLOC_START, VMALLOC_END,
2588 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2589 }
2590 
2591 /**
2592  * find_vm_area - find a continuous kernel virtual area
2593  * @addr:	  base address
2594  *
2595  * Search for the kernel VM area starting at @addr, and return it.
2596  * It is up to the caller to do all required locking to keep the returned
2597  * pointer valid.
2598  *
2599  * Return: the area descriptor on success or %NULL on failure.
2600  */
2601 struct vm_struct *find_vm_area(const void *addr)
2602 {
2603 	struct vmap_area *va;
2604 
2605 	va = find_vmap_area((unsigned long)addr);
2606 	if (!va)
2607 		return NULL;
2608 
2609 	return va->vm;
2610 }
2611 
2612 static struct vm_struct *__remove_vm_area(struct vmap_area *va)
2613 {
2614 	struct vm_struct *vm;
2615 
2616 	if (!va || !va->vm)
2617 		return NULL;
2618 
2619 	vm = va->vm;
2620 	kasan_free_module_shadow(vm);
2621 	free_unmap_vmap_area(va);
2622 
2623 	return vm;
2624 }
2625 
2626 /**
2627  * remove_vm_area - find and remove a continuous kernel virtual area
2628  * @addr:	    base address
2629  *
2630  * Search for the kernel VM area starting at @addr, and remove it.
2631  * This function returns the found VM area, but using it is NOT safe
2632  * on SMP machines, except for its size or flags.
2633  *
2634  * Return: the area descriptor on success or %NULL on failure.
2635  */
2636 struct vm_struct *remove_vm_area(const void *addr)
2637 {
2638 	might_sleep();
2639 
2640 	return __remove_vm_area(
2641 		find_unlink_vmap_area((unsigned long) addr));
2642 }
2643 
2644 static inline void set_area_direct_map(const struct vm_struct *area,
2645 				       int (*set_direct_map)(struct page *page))
2646 {
2647 	int i;
2648 
2649 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2650 	for (i = 0; i < area->nr_pages; i++)
2651 		if (page_address(area->pages[i]))
2652 			set_direct_map(area->pages[i]);
2653 }
2654 
2655 /* Handle removing and resetting vm mappings related to the VA's vm_struct. */
2656 static void va_remove_mappings(struct vmap_area *va, int deallocate_pages)
2657 {
2658 	struct vm_struct *area = va->vm;
2659 	unsigned long start = ULONG_MAX, end = 0;
2660 	unsigned int page_order = vm_area_page_order(area);
2661 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2662 	int flush_dmap = 0;
2663 	int i;
2664 
2665 	__remove_vm_area(va);
2666 
2667 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2668 	if (!flush_reset)
2669 		return;
2670 
2671 	/*
2672 	 * If not deallocating pages, just do the flush of the VM area and
2673 	 * return.
2674 	 */
2675 	if (!deallocate_pages) {
2676 		vm_unmap_aliases();
2677 		return;
2678 	}
2679 
2680 	/*
2681 	 * If execution gets here, flush the vm mapping and reset the direct
2682 	 * map. Find the start and end range of the direct mappings to make sure
2683 	 * the vm_unmap_aliases() flush includes the direct map.
2684 	 */
2685 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2686 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2687 		if (addr) {
2688 			unsigned long page_size;
2689 
2690 			page_size = PAGE_SIZE << page_order;
2691 			start = min(addr, start);
2692 			end = max(addr + page_size, end);
2693 			flush_dmap = 1;
2694 		}
2695 	}
2696 
2697 	/*
2698 	 * Set direct map to something invalid so that it won't be cached if
2699 	 * there are any accesses after the TLB flush, then flush the TLB and
2700 	 * reset the direct map permissions to the default.
2701 	 */
2702 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2703 	_vm_unmap_aliases(start, end, flush_dmap);
2704 	set_area_direct_map(area, set_direct_map_default_noflush);
2705 }
2706 
2707 static void __vunmap(const void *addr, int deallocate_pages)
2708 {
2709 	struct vm_struct *area;
2710 	struct vmap_area *va;
2711 
2712 	if (!addr)
2713 		return;
2714 
2715 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2716 			addr))
2717 		return;
2718 
2719 	va = find_unlink_vmap_area((unsigned long)addr);
2720 	if (unlikely(!va)) {
2721 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2722 				addr);
2723 		return;
2724 	}
2725 
2726 	area = va->vm;
2727 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2728 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2729 
2730 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2731 
2732 	va_remove_mappings(va, deallocate_pages);
2733 
2734 	if (deallocate_pages) {
2735 		int i;
2736 
2737 		for (i = 0; i < area->nr_pages; i++) {
2738 			struct page *page = area->pages[i];
2739 
2740 			BUG_ON(!page);
2741 			mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2742 			/*
2743 			 * High-order allocs for huge vmallocs are split, so
2744 			 * can be freed as an array of order-0 allocations
2745 			 */
2746 			__free_pages(page, 0);
2747 			cond_resched();
2748 		}
2749 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2750 
2751 		kvfree(area->pages);
2752 	}
2753 
2754 	kfree(area);
2755 }
2756 
2757 static inline void __vfree_deferred(const void *addr)
2758 {
2759 	/*
2760 	 * Use raw_cpu_ptr() because this can be called from preemptible
2761 	 * context. Preemption is absolutely fine here, because the llist_add()
2762 	 * implementation is lockless, so it works even if we are adding to
2763 	 * another cpu's list. schedule_work() should be fine with this too.
2764 	 */
2765 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2766 
2767 	if (llist_add((struct llist_node *)addr, &p->list))
2768 		schedule_work(&p->wq);
2769 }
2770 
2771 /**
2772  * vfree_atomic - release memory allocated by vmalloc()
2773  * @addr:	  memory base address
2774  *
2775  * This one is just like vfree() but can be called in any atomic context
2776  * except NMIs.
2777  */
2778 void vfree_atomic(const void *addr)
2779 {
2780 	BUG_ON(in_nmi());
2781 
2782 	kmemleak_free(addr);
2783 
2784 	if (!addr)
2785 		return;
2786 	__vfree_deferred(addr);
2787 }
2788 
2789 static void __vfree(const void *addr)
2790 {
2791 	if (unlikely(in_interrupt()))
2792 		__vfree_deferred(addr);
2793 	else
2794 		__vunmap(addr, 1);
2795 }
2796 
2797 /**
2798  * vfree - Release memory allocated by vmalloc()
2799  * @addr:  Memory base address
2800  *
2801  * Free the virtually continuous memory area starting at @addr, as obtained
2802  * from one of the vmalloc() family of APIs.  This will usually also free the
2803  * physical memory underlying the virtual allocation, but that memory is
2804  * reference counted, so it will not be freed until the last user goes away.
2805  *
2806  * If @addr is NULL, no operation is performed.
2807  *
2808  * Context:
2809  * May sleep if called *not* from interrupt context.
2810  * Must not be called in NMI context (strictly speaking, it could be
2811  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2812  * conventions for vfree() arch-dependent would be a really bad idea).
2813  */
2814 void vfree(const void *addr)
2815 {
2816 	BUG_ON(in_nmi());
2817 
2818 	kmemleak_free(addr);
2819 
2820 	might_sleep_if(!in_interrupt());
2821 
2822 	if (!addr)
2823 		return;
2824 
2825 	__vfree(addr);
2826 }
2827 EXPORT_SYMBOL(vfree);
2828 
2829 /**
2830  * vunmap - release virtual mapping obtained by vmap()
2831  * @addr:   memory base address
2832  *
2833  * Free the virtually contiguous memory area starting at @addr,
2834  * which was created from the page array passed to vmap().
2835  *
2836  * Must not be called in interrupt context.
2837  */
2838 void vunmap(const void *addr)
2839 {
2840 	BUG_ON(in_interrupt());
2841 	might_sleep();
2842 	if (addr)
2843 		__vunmap(addr, 0);
2844 }
2845 EXPORT_SYMBOL(vunmap);
2846 
2847 /**
2848  * vmap - map an array of pages into virtually contiguous space
2849  * @pages: array of page pointers
2850  * @count: number of pages to map
2851  * @flags: vm_area->flags
2852  * @prot: page protection for the mapping
2853  *
2854  * Maps @count pages from @pages into contiguous kernel virtual space.
2855  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2856  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2857  * are transferred from the caller to vmap(), and will be freed / dropped when
2858  * vfree() is called on the return value.
2859  *
2860  * Return: the address of the area or %NULL on failure
2861  */
2862 void *vmap(struct page **pages, unsigned int count,
2863 	   unsigned long flags, pgprot_t prot)
2864 {
2865 	struct vm_struct *area;
2866 	unsigned long addr;
2867 	unsigned long size;		/* In bytes */
2868 
2869 	might_sleep();
2870 
2871 	/*
2872 	 * Your top guard is someone else's bottom guard. Not having a top
2873 	 * guard compromises someone else's mappings too.
2874 	 */
2875 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2876 		flags &= ~VM_NO_GUARD;
2877 
2878 	if (count > totalram_pages())
2879 		return NULL;
2880 
2881 	size = (unsigned long)count << PAGE_SHIFT;
2882 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2883 	if (!area)
2884 		return NULL;
2885 
2886 	addr = (unsigned long)area->addr;
2887 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2888 				pages, PAGE_SHIFT) < 0) {
2889 		vunmap(area->addr);
2890 		return NULL;
2891 	}
2892 
2893 	if (flags & VM_MAP_PUT_PAGES) {
2894 		area->pages = pages;
2895 		area->nr_pages = count;
2896 	}
2897 	return area->addr;
2898 }
2899 EXPORT_SYMBOL(vmap);
2900 
2901 #ifdef CONFIG_VMAP_PFN
2902 struct vmap_pfn_data {
2903 	unsigned long	*pfns;
2904 	pgprot_t	prot;
2905 	unsigned int	idx;
2906 };
2907 
2908 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2909 {
2910 	struct vmap_pfn_data *data = private;
2911 
2912 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2913 		return -EINVAL;
2914 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2915 	return 0;
2916 }
2917 
2918 /**
2919  * vmap_pfn - map an array of PFNs into virtually contiguous space
2920  * @pfns: array of PFNs
2921  * @count: number of pages to map
2922  * @prot: page protection for the mapping
2923  *
2924  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2925  * the start address of the mapping.
2926  */
2927 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2928 {
2929 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2930 	struct vm_struct *area;
2931 
2932 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2933 			__builtin_return_address(0));
2934 	if (!area)
2935 		return NULL;
2936 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2937 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2938 		free_vm_area(area);
2939 		return NULL;
2940 	}
2941 	return area->addr;
2942 }
2943 EXPORT_SYMBOL_GPL(vmap_pfn);
2944 #endif /* CONFIG_VMAP_PFN */
2945 
2946 static inline unsigned int
2947 vm_area_alloc_pages(gfp_t gfp, int nid,
2948 		unsigned int order, unsigned int nr_pages, struct page **pages)
2949 {
2950 	unsigned int nr_allocated = 0;
2951 	struct page *page;
2952 	int i;
2953 
2954 	/*
2955 	 * For order-0 pages we make use of bulk allocator, if
2956 	 * the page array is partly or not at all populated due
2957 	 * to fails, fallback to a single page allocator that is
2958 	 * more permissive.
2959 	 */
2960 	if (!order) {
2961 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2962 
2963 		while (nr_allocated < nr_pages) {
2964 			unsigned int nr, nr_pages_request;
2965 
2966 			/*
2967 			 * A maximum allowed request is hard-coded and is 100
2968 			 * pages per call. That is done in order to prevent a
2969 			 * long preemption off scenario in the bulk-allocator
2970 			 * so the range is [1:100].
2971 			 */
2972 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2973 
2974 			/* memory allocation should consider mempolicy, we can't
2975 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
2976 			 * otherwise memory may be allocated in only one node,
2977 			 * but mempolicy wants to alloc memory by interleaving.
2978 			 */
2979 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2980 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2981 							nr_pages_request,
2982 							pages + nr_allocated);
2983 
2984 			else
2985 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2986 							nr_pages_request,
2987 							pages + nr_allocated);
2988 
2989 			nr_allocated += nr;
2990 			cond_resched();
2991 
2992 			/*
2993 			 * If zero or pages were obtained partly,
2994 			 * fallback to a single page allocator.
2995 			 */
2996 			if (nr != nr_pages_request)
2997 				break;
2998 		}
2999 	}
3000 
3001 	/* High-order pages or fallback path if "bulk" fails. */
3002 
3003 	while (nr_allocated < nr_pages) {
3004 		if (fatal_signal_pending(current))
3005 			break;
3006 
3007 		if (nid == NUMA_NO_NODE)
3008 			page = alloc_pages(gfp, order);
3009 		else
3010 			page = alloc_pages_node(nid, gfp, order);
3011 		if (unlikely(!page))
3012 			break;
3013 		/*
3014 		 * Higher order allocations must be able to be treated as
3015 		 * indepdenent small pages by callers (as they can with
3016 		 * small-page vmallocs). Some drivers do their own refcounting
3017 		 * on vmalloc_to_page() pages, some use page->mapping,
3018 		 * page->lru, etc.
3019 		 */
3020 		if (order)
3021 			split_page(page, order);
3022 
3023 		/*
3024 		 * Careful, we allocate and map page-order pages, but
3025 		 * tracking is done per PAGE_SIZE page so as to keep the
3026 		 * vm_struct APIs independent of the physical/mapped size.
3027 		 */
3028 		for (i = 0; i < (1U << order); i++)
3029 			pages[nr_allocated + i] = page + i;
3030 
3031 		cond_resched();
3032 		nr_allocated += 1U << order;
3033 	}
3034 
3035 	return nr_allocated;
3036 }
3037 
3038 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3039 				 pgprot_t prot, unsigned int page_shift,
3040 				 int node)
3041 {
3042 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3043 	bool nofail = gfp_mask & __GFP_NOFAIL;
3044 	unsigned long addr = (unsigned long)area->addr;
3045 	unsigned long size = get_vm_area_size(area);
3046 	unsigned long array_size;
3047 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3048 	unsigned int page_order;
3049 	unsigned int flags;
3050 	int ret;
3051 
3052 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3053 
3054 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3055 		gfp_mask |= __GFP_HIGHMEM;
3056 
3057 	/* Please note that the recursion is strictly bounded. */
3058 	if (array_size > PAGE_SIZE) {
3059 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3060 					area->caller);
3061 	} else {
3062 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3063 	}
3064 
3065 	if (!area->pages) {
3066 		warn_alloc(gfp_mask, NULL,
3067 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3068 			nr_small_pages * PAGE_SIZE, array_size);
3069 		free_vm_area(area);
3070 		return NULL;
3071 	}
3072 
3073 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3074 	page_order = vm_area_page_order(area);
3075 
3076 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3077 		node, page_order, nr_small_pages, area->pages);
3078 
3079 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3080 	if (gfp_mask & __GFP_ACCOUNT) {
3081 		int i;
3082 
3083 		for (i = 0; i < area->nr_pages; i++)
3084 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3085 	}
3086 
3087 	/*
3088 	 * If not enough pages were obtained to accomplish an
3089 	 * allocation request, free them via __vfree() if any.
3090 	 */
3091 	if (area->nr_pages != nr_small_pages) {
3092 		warn_alloc(gfp_mask, NULL,
3093 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
3094 			area->nr_pages * PAGE_SIZE, page_order);
3095 		goto fail;
3096 	}
3097 
3098 	/*
3099 	 * page tables allocations ignore external gfp mask, enforce it
3100 	 * by the scope API
3101 	 */
3102 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3103 		flags = memalloc_nofs_save();
3104 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3105 		flags = memalloc_noio_save();
3106 
3107 	do {
3108 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3109 			page_shift);
3110 		if (nofail && (ret < 0))
3111 			schedule_timeout_uninterruptible(1);
3112 	} while (nofail && (ret < 0));
3113 
3114 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3115 		memalloc_nofs_restore(flags);
3116 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3117 		memalloc_noio_restore(flags);
3118 
3119 	if (ret < 0) {
3120 		warn_alloc(gfp_mask, NULL,
3121 			"vmalloc error: size %lu, failed to map pages",
3122 			area->nr_pages * PAGE_SIZE);
3123 		goto fail;
3124 	}
3125 
3126 	return area->addr;
3127 
3128 fail:
3129 	__vfree(area->addr);
3130 	return NULL;
3131 }
3132 
3133 /**
3134  * __vmalloc_node_range - allocate virtually contiguous memory
3135  * @size:		  allocation size
3136  * @align:		  desired alignment
3137  * @start:		  vm area range start
3138  * @end:		  vm area range end
3139  * @gfp_mask:		  flags for the page level allocator
3140  * @prot:		  protection mask for the allocated pages
3141  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3142  * @node:		  node to use for allocation or NUMA_NO_NODE
3143  * @caller:		  caller's return address
3144  *
3145  * Allocate enough pages to cover @size from the page level
3146  * allocator with @gfp_mask flags. Please note that the full set of gfp
3147  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3148  * supported.
3149  * Zone modifiers are not supported. From the reclaim modifiers
3150  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3151  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3152  * __GFP_RETRY_MAYFAIL are not supported).
3153  *
3154  * __GFP_NOWARN can be used to suppress failures messages.
3155  *
3156  * Map them into contiguous kernel virtual space, using a pagetable
3157  * protection of @prot.
3158  *
3159  * Return: the address of the area or %NULL on failure
3160  */
3161 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3162 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3163 			pgprot_t prot, unsigned long vm_flags, int node,
3164 			const void *caller)
3165 {
3166 	struct vm_struct *area;
3167 	void *ret;
3168 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3169 	unsigned long real_size = size;
3170 	unsigned long real_align = align;
3171 	unsigned int shift = PAGE_SHIFT;
3172 
3173 	if (WARN_ON_ONCE(!size))
3174 		return NULL;
3175 
3176 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3177 		warn_alloc(gfp_mask, NULL,
3178 			"vmalloc error: size %lu, exceeds total pages",
3179 			real_size);
3180 		return NULL;
3181 	}
3182 
3183 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3184 		unsigned long size_per_node;
3185 
3186 		/*
3187 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3188 		 * others like modules don't yet expect huge pages in
3189 		 * their allocations due to apply_to_page_range not
3190 		 * supporting them.
3191 		 */
3192 
3193 		size_per_node = size;
3194 		if (node == NUMA_NO_NODE)
3195 			size_per_node /= num_online_nodes();
3196 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3197 			shift = PMD_SHIFT;
3198 		else
3199 			shift = arch_vmap_pte_supported_shift(size_per_node);
3200 
3201 		align = max(real_align, 1UL << shift);
3202 		size = ALIGN(real_size, 1UL << shift);
3203 	}
3204 
3205 again:
3206 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3207 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3208 				  gfp_mask, caller);
3209 	if (!area) {
3210 		bool nofail = gfp_mask & __GFP_NOFAIL;
3211 		warn_alloc(gfp_mask, NULL,
3212 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3213 			real_size, (nofail) ? ". Retrying." : "");
3214 		if (nofail) {
3215 			schedule_timeout_uninterruptible(1);
3216 			goto again;
3217 		}
3218 		goto fail;
3219 	}
3220 
3221 	/*
3222 	 * Prepare arguments for __vmalloc_area_node() and
3223 	 * kasan_unpoison_vmalloc().
3224 	 */
3225 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3226 		if (kasan_hw_tags_enabled()) {
3227 			/*
3228 			 * Modify protection bits to allow tagging.
3229 			 * This must be done before mapping.
3230 			 */
3231 			prot = arch_vmap_pgprot_tagged(prot);
3232 
3233 			/*
3234 			 * Skip page_alloc poisoning and zeroing for physical
3235 			 * pages backing VM_ALLOC mapping. Memory is instead
3236 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3237 			 */
3238 			gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3239 		}
3240 
3241 		/* Take note that the mapping is PAGE_KERNEL. */
3242 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3243 	}
3244 
3245 	/* Allocate physical pages and map them into vmalloc space. */
3246 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3247 	if (!ret)
3248 		goto fail;
3249 
3250 	/*
3251 	 * Mark the pages as accessible, now that they are mapped.
3252 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3253 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3254 	 * to make sure that memory is initialized under the same conditions.
3255 	 * Tag-based KASAN modes only assign tags to normal non-executable
3256 	 * allocations, see __kasan_unpoison_vmalloc().
3257 	 */
3258 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3259 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3260 	    (gfp_mask & __GFP_SKIP_ZERO))
3261 		kasan_flags |= KASAN_VMALLOC_INIT;
3262 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3263 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3264 
3265 	/*
3266 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3267 	 * flag. It means that vm_struct is not fully initialized.
3268 	 * Now, it is fully initialized, so remove this flag here.
3269 	 */
3270 	clear_vm_uninitialized_flag(area);
3271 
3272 	size = PAGE_ALIGN(size);
3273 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3274 		kmemleak_vmalloc(area, size, gfp_mask);
3275 
3276 	return area->addr;
3277 
3278 fail:
3279 	if (shift > PAGE_SHIFT) {
3280 		shift = PAGE_SHIFT;
3281 		align = real_align;
3282 		size = real_size;
3283 		goto again;
3284 	}
3285 
3286 	return NULL;
3287 }
3288 
3289 /**
3290  * __vmalloc_node - allocate virtually contiguous memory
3291  * @size:	    allocation size
3292  * @align:	    desired alignment
3293  * @gfp_mask:	    flags for the page level allocator
3294  * @node:	    node to use for allocation or NUMA_NO_NODE
3295  * @caller:	    caller's return address
3296  *
3297  * Allocate enough pages to cover @size from the page level allocator with
3298  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3299  *
3300  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3301  * and __GFP_NOFAIL are not supported
3302  *
3303  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3304  * with mm people.
3305  *
3306  * Return: pointer to the allocated memory or %NULL on error
3307  */
3308 void *__vmalloc_node(unsigned long size, unsigned long align,
3309 			    gfp_t gfp_mask, int node, const void *caller)
3310 {
3311 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3312 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3313 }
3314 /*
3315  * This is only for performance analysis of vmalloc and stress purpose.
3316  * It is required by vmalloc test module, therefore do not use it other
3317  * than that.
3318  */
3319 #ifdef CONFIG_TEST_VMALLOC_MODULE
3320 EXPORT_SYMBOL_GPL(__vmalloc_node);
3321 #endif
3322 
3323 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3324 {
3325 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3326 				__builtin_return_address(0));
3327 }
3328 EXPORT_SYMBOL(__vmalloc);
3329 
3330 /**
3331  * vmalloc - allocate virtually contiguous memory
3332  * @size:    allocation size
3333  *
3334  * Allocate enough pages to cover @size from the page level
3335  * allocator and map them into contiguous kernel virtual space.
3336  *
3337  * For tight control over page level allocator and protection flags
3338  * use __vmalloc() instead.
3339  *
3340  * Return: pointer to the allocated memory or %NULL on error
3341  */
3342 void *vmalloc(unsigned long size)
3343 {
3344 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3345 				__builtin_return_address(0));
3346 }
3347 EXPORT_SYMBOL(vmalloc);
3348 
3349 /**
3350  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3351  * @size:      allocation size
3352  * @gfp_mask:  flags for the page level allocator
3353  *
3354  * Allocate enough pages to cover @size from the page level
3355  * allocator and map them into contiguous kernel virtual space.
3356  * If @size is greater than or equal to PMD_SIZE, allow using
3357  * huge pages for the memory
3358  *
3359  * Return: pointer to the allocated memory or %NULL on error
3360  */
3361 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3362 {
3363 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3364 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3365 				    NUMA_NO_NODE, __builtin_return_address(0));
3366 }
3367 EXPORT_SYMBOL_GPL(vmalloc_huge);
3368 
3369 /**
3370  * vzalloc - allocate virtually contiguous memory with zero fill
3371  * @size:    allocation size
3372  *
3373  * Allocate enough pages to cover @size from the page level
3374  * allocator and map them into contiguous kernel virtual space.
3375  * The memory allocated is set to zero.
3376  *
3377  * For tight control over page level allocator and protection flags
3378  * use __vmalloc() instead.
3379  *
3380  * Return: pointer to the allocated memory or %NULL on error
3381  */
3382 void *vzalloc(unsigned long size)
3383 {
3384 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3385 				__builtin_return_address(0));
3386 }
3387 EXPORT_SYMBOL(vzalloc);
3388 
3389 /**
3390  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3391  * @size: allocation size
3392  *
3393  * The resulting memory area is zeroed so it can be mapped to userspace
3394  * without leaking data.
3395  *
3396  * Return: pointer to the allocated memory or %NULL on error
3397  */
3398 void *vmalloc_user(unsigned long size)
3399 {
3400 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3401 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3402 				    VM_USERMAP, NUMA_NO_NODE,
3403 				    __builtin_return_address(0));
3404 }
3405 EXPORT_SYMBOL(vmalloc_user);
3406 
3407 /**
3408  * vmalloc_node - allocate memory on a specific node
3409  * @size:	  allocation size
3410  * @node:	  numa node
3411  *
3412  * Allocate enough pages to cover @size from the page level
3413  * allocator and map them into contiguous kernel virtual space.
3414  *
3415  * For tight control over page level allocator and protection flags
3416  * use __vmalloc() instead.
3417  *
3418  * Return: pointer to the allocated memory or %NULL on error
3419  */
3420 void *vmalloc_node(unsigned long size, int node)
3421 {
3422 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3423 			__builtin_return_address(0));
3424 }
3425 EXPORT_SYMBOL(vmalloc_node);
3426 
3427 /**
3428  * vzalloc_node - allocate memory on a specific node with zero fill
3429  * @size:	allocation size
3430  * @node:	numa node
3431  *
3432  * Allocate enough pages to cover @size from the page level
3433  * allocator and map them into contiguous kernel virtual space.
3434  * The memory allocated is set to zero.
3435  *
3436  * Return: pointer to the allocated memory or %NULL on error
3437  */
3438 void *vzalloc_node(unsigned long size, int node)
3439 {
3440 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3441 				__builtin_return_address(0));
3442 }
3443 EXPORT_SYMBOL(vzalloc_node);
3444 
3445 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3446 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3447 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3448 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3449 #else
3450 /*
3451  * 64b systems should always have either DMA or DMA32 zones. For others
3452  * GFP_DMA32 should do the right thing and use the normal zone.
3453  */
3454 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3455 #endif
3456 
3457 /**
3458  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3459  * @size:	allocation size
3460  *
3461  * Allocate enough 32bit PA addressable pages to cover @size from the
3462  * page level allocator and map them into contiguous kernel virtual space.
3463  *
3464  * Return: pointer to the allocated memory or %NULL on error
3465  */
3466 void *vmalloc_32(unsigned long size)
3467 {
3468 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3469 			__builtin_return_address(0));
3470 }
3471 EXPORT_SYMBOL(vmalloc_32);
3472 
3473 /**
3474  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3475  * @size:	     allocation size
3476  *
3477  * The resulting memory area is 32bit addressable and zeroed so it can be
3478  * mapped to userspace without leaking data.
3479  *
3480  * Return: pointer to the allocated memory or %NULL on error
3481  */
3482 void *vmalloc_32_user(unsigned long size)
3483 {
3484 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3485 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3486 				    VM_USERMAP, NUMA_NO_NODE,
3487 				    __builtin_return_address(0));
3488 }
3489 EXPORT_SYMBOL(vmalloc_32_user);
3490 
3491 /*
3492  * small helper routine , copy contents to buf from addr.
3493  * If the page is not present, fill zero.
3494  */
3495 
3496 static int aligned_vread(char *buf, char *addr, unsigned long count)
3497 {
3498 	struct page *p;
3499 	int copied = 0;
3500 
3501 	while (count) {
3502 		unsigned long offset, length;
3503 
3504 		offset = offset_in_page(addr);
3505 		length = PAGE_SIZE - offset;
3506 		if (length > count)
3507 			length = count;
3508 		p = vmalloc_to_page(addr);
3509 		/*
3510 		 * To do safe access to this _mapped_ area, we need
3511 		 * lock. But adding lock here means that we need to add
3512 		 * overhead of vmalloc()/vfree() calls for this _debug_
3513 		 * interface, rarely used. Instead of that, we'll use
3514 		 * kmap() and get small overhead in this access function.
3515 		 */
3516 		if (p) {
3517 			/* We can expect USER0 is not used -- see vread() */
3518 			void *map = kmap_atomic(p);
3519 			memcpy(buf, map + offset, length);
3520 			kunmap_atomic(map);
3521 		} else
3522 			memset(buf, 0, length);
3523 
3524 		addr += length;
3525 		buf += length;
3526 		copied += length;
3527 		count -= length;
3528 	}
3529 	return copied;
3530 }
3531 
3532 /**
3533  * vread() - read vmalloc area in a safe way.
3534  * @buf:     buffer for reading data
3535  * @addr:    vm address.
3536  * @count:   number of bytes to be read.
3537  *
3538  * This function checks that addr is a valid vmalloc'ed area, and
3539  * copy data from that area to a given buffer. If the given memory range
3540  * of [addr...addr+count) includes some valid address, data is copied to
3541  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3542  * IOREMAP area is treated as memory hole and no copy is done.
3543  *
3544  * If [addr...addr+count) doesn't includes any intersects with alive
3545  * vm_struct area, returns 0. @buf should be kernel's buffer.
3546  *
3547  * Note: In usual ops, vread() is never necessary because the caller
3548  * should know vmalloc() area is valid and can use memcpy().
3549  * This is for routines which have to access vmalloc area without
3550  * any information, as /proc/kcore.
3551  *
3552  * Return: number of bytes for which addr and buf should be increased
3553  * (same number as @count) or %0 if [addr...addr+count) doesn't
3554  * include any intersection with valid vmalloc area
3555  */
3556 long vread(char *buf, char *addr, unsigned long count)
3557 {
3558 	struct vmap_area *va;
3559 	struct vm_struct *vm;
3560 	char *vaddr, *buf_start = buf;
3561 	unsigned long buflen = count;
3562 	unsigned long n;
3563 
3564 	addr = kasan_reset_tag(addr);
3565 
3566 	/* Don't allow overflow */
3567 	if ((unsigned long) addr + count < count)
3568 		count = -(unsigned long) addr;
3569 
3570 	spin_lock(&vmap_area_lock);
3571 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3572 	if (!va)
3573 		goto finished;
3574 
3575 	/* no intersects with alive vmap_area */
3576 	if ((unsigned long)addr + count <= va->va_start)
3577 		goto finished;
3578 
3579 	list_for_each_entry_from(va, &vmap_area_list, list) {
3580 		if (!count)
3581 			break;
3582 
3583 		if (!va->vm)
3584 			continue;
3585 
3586 		vm = va->vm;
3587 		vaddr = (char *) vm->addr;
3588 		if (addr >= vaddr + get_vm_area_size(vm))
3589 			continue;
3590 		while (addr < vaddr) {
3591 			if (count == 0)
3592 				goto finished;
3593 			*buf = '\0';
3594 			buf++;
3595 			addr++;
3596 			count--;
3597 		}
3598 		n = vaddr + get_vm_area_size(vm) - addr;
3599 		if (n > count)
3600 			n = count;
3601 		if (!(vm->flags & VM_IOREMAP))
3602 			aligned_vread(buf, addr, n);
3603 		else /* IOREMAP area is treated as memory hole */
3604 			memset(buf, 0, n);
3605 		buf += n;
3606 		addr += n;
3607 		count -= n;
3608 	}
3609 finished:
3610 	spin_unlock(&vmap_area_lock);
3611 
3612 	if (buf == buf_start)
3613 		return 0;
3614 	/* zero-fill memory holes */
3615 	if (buf != buf_start + buflen)
3616 		memset(buf, 0, buflen - (buf - buf_start));
3617 
3618 	return buflen;
3619 }
3620 
3621 /**
3622  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3623  * @vma:		vma to cover
3624  * @uaddr:		target user address to start at
3625  * @kaddr:		virtual address of vmalloc kernel memory
3626  * @pgoff:		offset from @kaddr to start at
3627  * @size:		size of map area
3628  *
3629  * Returns:	0 for success, -Exxx on failure
3630  *
3631  * This function checks that @kaddr is a valid vmalloc'ed area,
3632  * and that it is big enough to cover the range starting at
3633  * @uaddr in @vma. Will return failure if that criteria isn't
3634  * met.
3635  *
3636  * Similar to remap_pfn_range() (see mm/memory.c)
3637  */
3638 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3639 				void *kaddr, unsigned long pgoff,
3640 				unsigned long size)
3641 {
3642 	struct vm_struct *area;
3643 	unsigned long off;
3644 	unsigned long end_index;
3645 
3646 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3647 		return -EINVAL;
3648 
3649 	size = PAGE_ALIGN(size);
3650 
3651 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3652 		return -EINVAL;
3653 
3654 	area = find_vm_area(kaddr);
3655 	if (!area)
3656 		return -EINVAL;
3657 
3658 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3659 		return -EINVAL;
3660 
3661 	if (check_add_overflow(size, off, &end_index) ||
3662 	    end_index > get_vm_area_size(area))
3663 		return -EINVAL;
3664 	kaddr += off;
3665 
3666 	do {
3667 		struct page *page = vmalloc_to_page(kaddr);
3668 		int ret;
3669 
3670 		ret = vm_insert_page(vma, uaddr, page);
3671 		if (ret)
3672 			return ret;
3673 
3674 		uaddr += PAGE_SIZE;
3675 		kaddr += PAGE_SIZE;
3676 		size -= PAGE_SIZE;
3677 	} while (size > 0);
3678 
3679 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3680 
3681 	return 0;
3682 }
3683 
3684 /**
3685  * remap_vmalloc_range - map vmalloc pages to userspace
3686  * @vma:		vma to cover (map full range of vma)
3687  * @addr:		vmalloc memory
3688  * @pgoff:		number of pages into addr before first page to map
3689  *
3690  * Returns:	0 for success, -Exxx on failure
3691  *
3692  * This function checks that addr is a valid vmalloc'ed area, and
3693  * that it is big enough to cover the vma. Will return failure if
3694  * that criteria isn't met.
3695  *
3696  * Similar to remap_pfn_range() (see mm/memory.c)
3697  */
3698 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3699 						unsigned long pgoff)
3700 {
3701 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3702 					   addr, pgoff,
3703 					   vma->vm_end - vma->vm_start);
3704 }
3705 EXPORT_SYMBOL(remap_vmalloc_range);
3706 
3707 void free_vm_area(struct vm_struct *area)
3708 {
3709 	struct vm_struct *ret;
3710 	ret = remove_vm_area(area->addr);
3711 	BUG_ON(ret != area);
3712 	kfree(area);
3713 }
3714 EXPORT_SYMBOL_GPL(free_vm_area);
3715 
3716 #ifdef CONFIG_SMP
3717 static struct vmap_area *node_to_va(struct rb_node *n)
3718 {
3719 	return rb_entry_safe(n, struct vmap_area, rb_node);
3720 }
3721 
3722 /**
3723  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3724  * @addr: target address
3725  *
3726  * Returns: vmap_area if it is found. If there is no such area
3727  *   the first highest(reverse order) vmap_area is returned
3728  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3729  *   if there are no any areas before @addr.
3730  */
3731 static struct vmap_area *
3732 pvm_find_va_enclose_addr(unsigned long addr)
3733 {
3734 	struct vmap_area *va, *tmp;
3735 	struct rb_node *n;
3736 
3737 	n = free_vmap_area_root.rb_node;
3738 	va = NULL;
3739 
3740 	while (n) {
3741 		tmp = rb_entry(n, struct vmap_area, rb_node);
3742 		if (tmp->va_start <= addr) {
3743 			va = tmp;
3744 			if (tmp->va_end >= addr)
3745 				break;
3746 
3747 			n = n->rb_right;
3748 		} else {
3749 			n = n->rb_left;
3750 		}
3751 	}
3752 
3753 	return va;
3754 }
3755 
3756 /**
3757  * pvm_determine_end_from_reverse - find the highest aligned address
3758  * of free block below VMALLOC_END
3759  * @va:
3760  *   in - the VA we start the search(reverse order);
3761  *   out - the VA with the highest aligned end address.
3762  * @align: alignment for required highest address
3763  *
3764  * Returns: determined end address within vmap_area
3765  */
3766 static unsigned long
3767 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3768 {
3769 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3770 	unsigned long addr;
3771 
3772 	if (likely(*va)) {
3773 		list_for_each_entry_from_reverse((*va),
3774 				&free_vmap_area_list, list) {
3775 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3776 			if ((*va)->va_start < addr)
3777 				return addr;
3778 		}
3779 	}
3780 
3781 	return 0;
3782 }
3783 
3784 /**
3785  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3786  * @offsets: array containing offset of each area
3787  * @sizes: array containing size of each area
3788  * @nr_vms: the number of areas to allocate
3789  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3790  *
3791  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3792  *	    vm_structs on success, %NULL on failure
3793  *
3794  * Percpu allocator wants to use congruent vm areas so that it can
3795  * maintain the offsets among percpu areas.  This function allocates
3796  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3797  * be scattered pretty far, distance between two areas easily going up
3798  * to gigabytes.  To avoid interacting with regular vmallocs, these
3799  * areas are allocated from top.
3800  *
3801  * Despite its complicated look, this allocator is rather simple. It
3802  * does everything top-down and scans free blocks from the end looking
3803  * for matching base. While scanning, if any of the areas do not fit the
3804  * base address is pulled down to fit the area. Scanning is repeated till
3805  * all the areas fit and then all necessary data structures are inserted
3806  * and the result is returned.
3807  */
3808 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3809 				     const size_t *sizes, int nr_vms,
3810 				     size_t align)
3811 {
3812 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3813 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3814 	struct vmap_area **vas, *va;
3815 	struct vm_struct **vms;
3816 	int area, area2, last_area, term_area;
3817 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3818 	bool purged = false;
3819 
3820 	/* verify parameters and allocate data structures */
3821 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3822 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3823 		start = offsets[area];
3824 		end = start + sizes[area];
3825 
3826 		/* is everything aligned properly? */
3827 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3828 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3829 
3830 		/* detect the area with the highest address */
3831 		if (start > offsets[last_area])
3832 			last_area = area;
3833 
3834 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3835 			unsigned long start2 = offsets[area2];
3836 			unsigned long end2 = start2 + sizes[area2];
3837 
3838 			BUG_ON(start2 < end && start < end2);
3839 		}
3840 	}
3841 	last_end = offsets[last_area] + sizes[last_area];
3842 
3843 	if (vmalloc_end - vmalloc_start < last_end) {
3844 		WARN_ON(true);
3845 		return NULL;
3846 	}
3847 
3848 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3849 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3850 	if (!vas || !vms)
3851 		goto err_free2;
3852 
3853 	for (area = 0; area < nr_vms; area++) {
3854 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3855 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3856 		if (!vas[area] || !vms[area])
3857 			goto err_free;
3858 	}
3859 retry:
3860 	spin_lock(&free_vmap_area_lock);
3861 
3862 	/* start scanning - we scan from the top, begin with the last area */
3863 	area = term_area = last_area;
3864 	start = offsets[area];
3865 	end = start + sizes[area];
3866 
3867 	va = pvm_find_va_enclose_addr(vmalloc_end);
3868 	base = pvm_determine_end_from_reverse(&va, align) - end;
3869 
3870 	while (true) {
3871 		/*
3872 		 * base might have underflowed, add last_end before
3873 		 * comparing.
3874 		 */
3875 		if (base + last_end < vmalloc_start + last_end)
3876 			goto overflow;
3877 
3878 		/*
3879 		 * Fitting base has not been found.
3880 		 */
3881 		if (va == NULL)
3882 			goto overflow;
3883 
3884 		/*
3885 		 * If required width exceeds current VA block, move
3886 		 * base downwards and then recheck.
3887 		 */
3888 		if (base + end > va->va_end) {
3889 			base = pvm_determine_end_from_reverse(&va, align) - end;
3890 			term_area = area;
3891 			continue;
3892 		}
3893 
3894 		/*
3895 		 * If this VA does not fit, move base downwards and recheck.
3896 		 */
3897 		if (base + start < va->va_start) {
3898 			va = node_to_va(rb_prev(&va->rb_node));
3899 			base = pvm_determine_end_from_reverse(&va, align) - end;
3900 			term_area = area;
3901 			continue;
3902 		}
3903 
3904 		/*
3905 		 * This area fits, move on to the previous one.  If
3906 		 * the previous one is the terminal one, we're done.
3907 		 */
3908 		area = (area + nr_vms - 1) % nr_vms;
3909 		if (area == term_area)
3910 			break;
3911 
3912 		start = offsets[area];
3913 		end = start + sizes[area];
3914 		va = pvm_find_va_enclose_addr(base + end);
3915 	}
3916 
3917 	/* we've found a fitting base, insert all va's */
3918 	for (area = 0; area < nr_vms; area++) {
3919 		int ret;
3920 
3921 		start = base + offsets[area];
3922 		size = sizes[area];
3923 
3924 		va = pvm_find_va_enclose_addr(start);
3925 		if (WARN_ON_ONCE(va == NULL))
3926 			/* It is a BUG(), but trigger recovery instead. */
3927 			goto recovery;
3928 
3929 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
3930 					    &free_vmap_area_list,
3931 					    va, start, size);
3932 		if (WARN_ON_ONCE(unlikely(ret)))
3933 			/* It is a BUG(), but trigger recovery instead. */
3934 			goto recovery;
3935 
3936 		/* Allocated area. */
3937 		va = vas[area];
3938 		va->va_start = start;
3939 		va->va_end = start + size;
3940 	}
3941 
3942 	spin_unlock(&free_vmap_area_lock);
3943 
3944 	/* populate the kasan shadow space */
3945 	for (area = 0; area < nr_vms; area++) {
3946 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3947 			goto err_free_shadow;
3948 	}
3949 
3950 	/* insert all vm's */
3951 	spin_lock(&vmap_area_lock);
3952 	for (area = 0; area < nr_vms; area++) {
3953 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3954 
3955 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3956 				 pcpu_get_vm_areas);
3957 	}
3958 	spin_unlock(&vmap_area_lock);
3959 
3960 	/*
3961 	 * Mark allocated areas as accessible. Do it now as a best-effort
3962 	 * approach, as they can be mapped outside of vmalloc code.
3963 	 * With hardware tag-based KASAN, marking is skipped for
3964 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3965 	 */
3966 	for (area = 0; area < nr_vms; area++)
3967 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3968 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3969 
3970 	kfree(vas);
3971 	return vms;
3972 
3973 recovery:
3974 	/*
3975 	 * Remove previously allocated areas. There is no
3976 	 * need in removing these areas from the busy tree,
3977 	 * because they are inserted only on the final step
3978 	 * and when pcpu_get_vm_areas() is success.
3979 	 */
3980 	while (area--) {
3981 		orig_start = vas[area]->va_start;
3982 		orig_end = vas[area]->va_end;
3983 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3984 				&free_vmap_area_list);
3985 		if (va)
3986 			kasan_release_vmalloc(orig_start, orig_end,
3987 				va->va_start, va->va_end);
3988 		vas[area] = NULL;
3989 	}
3990 
3991 overflow:
3992 	spin_unlock(&free_vmap_area_lock);
3993 	if (!purged) {
3994 		purge_vmap_area_lazy();
3995 		purged = true;
3996 
3997 		/* Before "retry", check if we recover. */
3998 		for (area = 0; area < nr_vms; area++) {
3999 			if (vas[area])
4000 				continue;
4001 
4002 			vas[area] = kmem_cache_zalloc(
4003 				vmap_area_cachep, GFP_KERNEL);
4004 			if (!vas[area])
4005 				goto err_free;
4006 		}
4007 
4008 		goto retry;
4009 	}
4010 
4011 err_free:
4012 	for (area = 0; area < nr_vms; area++) {
4013 		if (vas[area])
4014 			kmem_cache_free(vmap_area_cachep, vas[area]);
4015 
4016 		kfree(vms[area]);
4017 	}
4018 err_free2:
4019 	kfree(vas);
4020 	kfree(vms);
4021 	return NULL;
4022 
4023 err_free_shadow:
4024 	spin_lock(&free_vmap_area_lock);
4025 	/*
4026 	 * We release all the vmalloc shadows, even the ones for regions that
4027 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4028 	 * being able to tolerate this case.
4029 	 */
4030 	for (area = 0; area < nr_vms; area++) {
4031 		orig_start = vas[area]->va_start;
4032 		orig_end = vas[area]->va_end;
4033 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4034 				&free_vmap_area_list);
4035 		if (va)
4036 			kasan_release_vmalloc(orig_start, orig_end,
4037 				va->va_start, va->va_end);
4038 		vas[area] = NULL;
4039 		kfree(vms[area]);
4040 	}
4041 	spin_unlock(&free_vmap_area_lock);
4042 	kfree(vas);
4043 	kfree(vms);
4044 	return NULL;
4045 }
4046 
4047 /**
4048  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4049  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4050  * @nr_vms: the number of allocated areas
4051  *
4052  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4053  */
4054 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4055 {
4056 	int i;
4057 
4058 	for (i = 0; i < nr_vms; i++)
4059 		free_vm_area(vms[i]);
4060 	kfree(vms);
4061 }
4062 #endif	/* CONFIG_SMP */
4063 
4064 #ifdef CONFIG_PRINTK
4065 bool vmalloc_dump_obj(void *object)
4066 {
4067 	struct vm_struct *vm;
4068 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4069 
4070 	vm = find_vm_area(objp);
4071 	if (!vm)
4072 		return false;
4073 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4074 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4075 	return true;
4076 }
4077 #endif
4078 
4079 #ifdef CONFIG_PROC_FS
4080 static void *s_start(struct seq_file *m, loff_t *pos)
4081 	__acquires(&vmap_purge_lock)
4082 	__acquires(&vmap_area_lock)
4083 {
4084 	mutex_lock(&vmap_purge_lock);
4085 	spin_lock(&vmap_area_lock);
4086 
4087 	return seq_list_start(&vmap_area_list, *pos);
4088 }
4089 
4090 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4091 {
4092 	return seq_list_next(p, &vmap_area_list, pos);
4093 }
4094 
4095 static void s_stop(struct seq_file *m, void *p)
4096 	__releases(&vmap_area_lock)
4097 	__releases(&vmap_purge_lock)
4098 {
4099 	spin_unlock(&vmap_area_lock);
4100 	mutex_unlock(&vmap_purge_lock);
4101 }
4102 
4103 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4104 {
4105 	if (IS_ENABLED(CONFIG_NUMA)) {
4106 		unsigned int nr, *counters = m->private;
4107 		unsigned int step = 1U << vm_area_page_order(v);
4108 
4109 		if (!counters)
4110 			return;
4111 
4112 		if (v->flags & VM_UNINITIALIZED)
4113 			return;
4114 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4115 		smp_rmb();
4116 
4117 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4118 
4119 		for (nr = 0; nr < v->nr_pages; nr += step)
4120 			counters[page_to_nid(v->pages[nr])] += step;
4121 		for_each_node_state(nr, N_HIGH_MEMORY)
4122 			if (counters[nr])
4123 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4124 	}
4125 }
4126 
4127 static void show_purge_info(struct seq_file *m)
4128 {
4129 	struct vmap_area *va;
4130 
4131 	spin_lock(&purge_vmap_area_lock);
4132 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4133 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4134 			(void *)va->va_start, (void *)va->va_end,
4135 			va->va_end - va->va_start);
4136 	}
4137 	spin_unlock(&purge_vmap_area_lock);
4138 }
4139 
4140 static int s_show(struct seq_file *m, void *p)
4141 {
4142 	struct vmap_area *va;
4143 	struct vm_struct *v;
4144 
4145 	va = list_entry(p, struct vmap_area, list);
4146 
4147 	/*
4148 	 * s_show can encounter race with remove_vm_area, !vm on behalf
4149 	 * of vmap area is being tear down or vm_map_ram allocation.
4150 	 */
4151 	if (!va->vm) {
4152 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4153 			(void *)va->va_start, (void *)va->va_end,
4154 			va->va_end - va->va_start);
4155 
4156 		goto final;
4157 	}
4158 
4159 	v = va->vm;
4160 
4161 	seq_printf(m, "0x%pK-0x%pK %7ld",
4162 		v->addr, v->addr + v->size, v->size);
4163 
4164 	if (v->caller)
4165 		seq_printf(m, " %pS", v->caller);
4166 
4167 	if (v->nr_pages)
4168 		seq_printf(m, " pages=%d", v->nr_pages);
4169 
4170 	if (v->phys_addr)
4171 		seq_printf(m, " phys=%pa", &v->phys_addr);
4172 
4173 	if (v->flags & VM_IOREMAP)
4174 		seq_puts(m, " ioremap");
4175 
4176 	if (v->flags & VM_ALLOC)
4177 		seq_puts(m, " vmalloc");
4178 
4179 	if (v->flags & VM_MAP)
4180 		seq_puts(m, " vmap");
4181 
4182 	if (v->flags & VM_USERMAP)
4183 		seq_puts(m, " user");
4184 
4185 	if (v->flags & VM_DMA_COHERENT)
4186 		seq_puts(m, " dma-coherent");
4187 
4188 	if (is_vmalloc_addr(v->pages))
4189 		seq_puts(m, " vpages");
4190 
4191 	show_numa_info(m, v);
4192 	seq_putc(m, '\n');
4193 
4194 	/*
4195 	 * As a final step, dump "unpurged" areas.
4196 	 */
4197 final:
4198 	if (list_is_last(&va->list, &vmap_area_list))
4199 		show_purge_info(m);
4200 
4201 	return 0;
4202 }
4203 
4204 static const struct seq_operations vmalloc_op = {
4205 	.start = s_start,
4206 	.next = s_next,
4207 	.stop = s_stop,
4208 	.show = s_show,
4209 };
4210 
4211 static int __init proc_vmalloc_init(void)
4212 {
4213 	if (IS_ENABLED(CONFIG_NUMA))
4214 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4215 				&vmalloc_op,
4216 				nr_node_ids * sizeof(unsigned int), NULL);
4217 	else
4218 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4219 	return 0;
4220 }
4221 module_init(proc_vmalloc_init);
4222 
4223 #endif
4224