1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 #include <linux/pgtable.h> 40 #include <linux/uaccess.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/vmalloc.h> 48 49 #include "internal.h" 50 #include "pgalloc-track.h" 51 52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 54 55 static int __init set_nohugeiomap(char *str) 56 { 57 ioremap_max_page_shift = PAGE_SHIFT; 58 return 0; 59 } 60 early_param("nohugeiomap", set_nohugeiomap); 61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 63 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 64 65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 66 static bool __ro_after_init vmap_allow_huge = true; 67 68 static int __init set_nohugevmalloc(char *str) 69 { 70 vmap_allow_huge = false; 71 return 0; 72 } 73 early_param("nohugevmalloc", set_nohugevmalloc); 74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 75 static const bool vmap_allow_huge = false; 76 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 77 78 bool is_vmalloc_addr(const void *x) 79 { 80 unsigned long addr = (unsigned long)kasan_reset_tag(x); 81 82 return addr >= VMALLOC_START && addr < VMALLOC_END; 83 } 84 EXPORT_SYMBOL(is_vmalloc_addr); 85 86 struct vfree_deferred { 87 struct llist_head list; 88 struct work_struct wq; 89 }; 90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 91 92 /*** Page table manipulation functions ***/ 93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 94 phys_addr_t phys_addr, pgprot_t prot, 95 unsigned int max_page_shift, pgtbl_mod_mask *mask) 96 { 97 pte_t *pte; 98 u64 pfn; 99 unsigned long size = PAGE_SIZE; 100 101 pfn = phys_addr >> PAGE_SHIFT; 102 pte = pte_alloc_kernel_track(pmd, addr, mask); 103 if (!pte) 104 return -ENOMEM; 105 do { 106 BUG_ON(!pte_none(*pte)); 107 108 #ifdef CONFIG_HUGETLB_PAGE 109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 110 if (size != PAGE_SIZE) { 111 pte_t entry = pfn_pte(pfn, prot); 112 113 entry = arch_make_huge_pte(entry, ilog2(size), 0); 114 set_huge_pte_at(&init_mm, addr, pte, entry); 115 pfn += PFN_DOWN(size); 116 continue; 117 } 118 #endif 119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 120 pfn++; 121 } while (pte += PFN_DOWN(size), addr += size, addr != end); 122 *mask |= PGTBL_PTE_MODIFIED; 123 return 0; 124 } 125 126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 127 phys_addr_t phys_addr, pgprot_t prot, 128 unsigned int max_page_shift) 129 { 130 if (max_page_shift < PMD_SHIFT) 131 return 0; 132 133 if (!arch_vmap_pmd_supported(prot)) 134 return 0; 135 136 if ((end - addr) != PMD_SIZE) 137 return 0; 138 139 if (!IS_ALIGNED(addr, PMD_SIZE)) 140 return 0; 141 142 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 143 return 0; 144 145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 146 return 0; 147 148 return pmd_set_huge(pmd, phys_addr, prot); 149 } 150 151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 152 phys_addr_t phys_addr, pgprot_t prot, 153 unsigned int max_page_shift, pgtbl_mod_mask *mask) 154 { 155 pmd_t *pmd; 156 unsigned long next; 157 158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 159 if (!pmd) 160 return -ENOMEM; 161 do { 162 next = pmd_addr_end(addr, end); 163 164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 165 max_page_shift)) { 166 *mask |= PGTBL_PMD_MODIFIED; 167 continue; 168 } 169 170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 171 return -ENOMEM; 172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 173 return 0; 174 } 175 176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 177 phys_addr_t phys_addr, pgprot_t prot, 178 unsigned int max_page_shift) 179 { 180 if (max_page_shift < PUD_SHIFT) 181 return 0; 182 183 if (!arch_vmap_pud_supported(prot)) 184 return 0; 185 186 if ((end - addr) != PUD_SIZE) 187 return 0; 188 189 if (!IS_ALIGNED(addr, PUD_SIZE)) 190 return 0; 191 192 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 193 return 0; 194 195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 196 return 0; 197 198 return pud_set_huge(pud, phys_addr, prot); 199 } 200 201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 202 phys_addr_t phys_addr, pgprot_t prot, 203 unsigned int max_page_shift, pgtbl_mod_mask *mask) 204 { 205 pud_t *pud; 206 unsigned long next; 207 208 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 209 if (!pud) 210 return -ENOMEM; 211 do { 212 next = pud_addr_end(addr, end); 213 214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 215 max_page_shift)) { 216 *mask |= PGTBL_PUD_MODIFIED; 217 continue; 218 } 219 220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 221 max_page_shift, mask)) 222 return -ENOMEM; 223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 224 return 0; 225 } 226 227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 228 phys_addr_t phys_addr, pgprot_t prot, 229 unsigned int max_page_shift) 230 { 231 if (max_page_shift < P4D_SHIFT) 232 return 0; 233 234 if (!arch_vmap_p4d_supported(prot)) 235 return 0; 236 237 if ((end - addr) != P4D_SIZE) 238 return 0; 239 240 if (!IS_ALIGNED(addr, P4D_SIZE)) 241 return 0; 242 243 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 244 return 0; 245 246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 247 return 0; 248 249 return p4d_set_huge(p4d, phys_addr, prot); 250 } 251 252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 253 phys_addr_t phys_addr, pgprot_t prot, 254 unsigned int max_page_shift, pgtbl_mod_mask *mask) 255 { 256 p4d_t *p4d; 257 unsigned long next; 258 259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 260 if (!p4d) 261 return -ENOMEM; 262 do { 263 next = p4d_addr_end(addr, end); 264 265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 266 max_page_shift)) { 267 *mask |= PGTBL_P4D_MODIFIED; 268 continue; 269 } 270 271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 272 max_page_shift, mask)) 273 return -ENOMEM; 274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 275 return 0; 276 } 277 278 static int vmap_range_noflush(unsigned long addr, unsigned long end, 279 phys_addr_t phys_addr, pgprot_t prot, 280 unsigned int max_page_shift) 281 { 282 pgd_t *pgd; 283 unsigned long start; 284 unsigned long next; 285 int err; 286 pgtbl_mod_mask mask = 0; 287 288 might_sleep(); 289 BUG_ON(addr >= end); 290 291 start = addr; 292 pgd = pgd_offset_k(addr); 293 do { 294 next = pgd_addr_end(addr, end); 295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 296 max_page_shift, &mask); 297 if (err) 298 break; 299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 300 301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 302 arch_sync_kernel_mappings(start, end); 303 304 return err; 305 } 306 307 int ioremap_page_range(unsigned long addr, unsigned long end, 308 phys_addr_t phys_addr, pgprot_t prot) 309 { 310 int err; 311 312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 313 ioremap_max_page_shift); 314 flush_cache_vmap(addr, end); 315 if (!err) 316 kmsan_ioremap_page_range(addr, end, phys_addr, prot, 317 ioremap_max_page_shift); 318 return err; 319 } 320 321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 322 pgtbl_mod_mask *mask) 323 { 324 pte_t *pte; 325 326 pte = pte_offset_kernel(pmd, addr); 327 do { 328 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 329 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 330 } while (pte++, addr += PAGE_SIZE, addr != end); 331 *mask |= PGTBL_PTE_MODIFIED; 332 } 333 334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 335 pgtbl_mod_mask *mask) 336 { 337 pmd_t *pmd; 338 unsigned long next; 339 int cleared; 340 341 pmd = pmd_offset(pud, addr); 342 do { 343 next = pmd_addr_end(addr, end); 344 345 cleared = pmd_clear_huge(pmd); 346 if (cleared || pmd_bad(*pmd)) 347 *mask |= PGTBL_PMD_MODIFIED; 348 349 if (cleared) 350 continue; 351 if (pmd_none_or_clear_bad(pmd)) 352 continue; 353 vunmap_pte_range(pmd, addr, next, mask); 354 355 cond_resched(); 356 } while (pmd++, addr = next, addr != end); 357 } 358 359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 360 pgtbl_mod_mask *mask) 361 { 362 pud_t *pud; 363 unsigned long next; 364 int cleared; 365 366 pud = pud_offset(p4d, addr); 367 do { 368 next = pud_addr_end(addr, end); 369 370 cleared = pud_clear_huge(pud); 371 if (cleared || pud_bad(*pud)) 372 *mask |= PGTBL_PUD_MODIFIED; 373 374 if (cleared) 375 continue; 376 if (pud_none_or_clear_bad(pud)) 377 continue; 378 vunmap_pmd_range(pud, addr, next, mask); 379 } while (pud++, addr = next, addr != end); 380 } 381 382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 383 pgtbl_mod_mask *mask) 384 { 385 p4d_t *p4d; 386 unsigned long next; 387 388 p4d = p4d_offset(pgd, addr); 389 do { 390 next = p4d_addr_end(addr, end); 391 392 p4d_clear_huge(p4d); 393 if (p4d_bad(*p4d)) 394 *mask |= PGTBL_P4D_MODIFIED; 395 396 if (p4d_none_or_clear_bad(p4d)) 397 continue; 398 vunmap_pud_range(p4d, addr, next, mask); 399 } while (p4d++, addr = next, addr != end); 400 } 401 402 /* 403 * vunmap_range_noflush is similar to vunmap_range, but does not 404 * flush caches or TLBs. 405 * 406 * The caller is responsible for calling flush_cache_vmap() before calling 407 * this function, and flush_tlb_kernel_range after it has returned 408 * successfully (and before the addresses are expected to cause a page fault 409 * or be re-mapped for something else, if TLB flushes are being delayed or 410 * coalesced). 411 * 412 * This is an internal function only. Do not use outside mm/. 413 */ 414 void __vunmap_range_noflush(unsigned long start, unsigned long end) 415 { 416 unsigned long next; 417 pgd_t *pgd; 418 unsigned long addr = start; 419 pgtbl_mod_mask mask = 0; 420 421 BUG_ON(addr >= end); 422 pgd = pgd_offset_k(addr); 423 do { 424 next = pgd_addr_end(addr, end); 425 if (pgd_bad(*pgd)) 426 mask |= PGTBL_PGD_MODIFIED; 427 if (pgd_none_or_clear_bad(pgd)) 428 continue; 429 vunmap_p4d_range(pgd, addr, next, &mask); 430 } while (pgd++, addr = next, addr != end); 431 432 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 433 arch_sync_kernel_mappings(start, end); 434 } 435 436 void vunmap_range_noflush(unsigned long start, unsigned long end) 437 { 438 kmsan_vunmap_range_noflush(start, end); 439 __vunmap_range_noflush(start, end); 440 } 441 442 /** 443 * vunmap_range - unmap kernel virtual addresses 444 * @addr: start of the VM area to unmap 445 * @end: end of the VM area to unmap (non-inclusive) 446 * 447 * Clears any present PTEs in the virtual address range, flushes TLBs and 448 * caches. Any subsequent access to the address before it has been re-mapped 449 * is a kernel bug. 450 */ 451 void vunmap_range(unsigned long addr, unsigned long end) 452 { 453 flush_cache_vunmap(addr, end); 454 vunmap_range_noflush(addr, end); 455 flush_tlb_kernel_range(addr, end); 456 } 457 458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 459 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 460 pgtbl_mod_mask *mask) 461 { 462 pte_t *pte; 463 464 /* 465 * nr is a running index into the array which helps higher level 466 * callers keep track of where we're up to. 467 */ 468 469 pte = pte_alloc_kernel_track(pmd, addr, mask); 470 if (!pte) 471 return -ENOMEM; 472 do { 473 struct page *page = pages[*nr]; 474 475 if (WARN_ON(!pte_none(*pte))) 476 return -EBUSY; 477 if (WARN_ON(!page)) 478 return -ENOMEM; 479 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 480 return -EINVAL; 481 482 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 483 (*nr)++; 484 } while (pte++, addr += PAGE_SIZE, addr != end); 485 *mask |= PGTBL_PTE_MODIFIED; 486 return 0; 487 } 488 489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 490 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 491 pgtbl_mod_mask *mask) 492 { 493 pmd_t *pmd; 494 unsigned long next; 495 496 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 497 if (!pmd) 498 return -ENOMEM; 499 do { 500 next = pmd_addr_end(addr, end); 501 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 502 return -ENOMEM; 503 } while (pmd++, addr = next, addr != end); 504 return 0; 505 } 506 507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 508 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 509 pgtbl_mod_mask *mask) 510 { 511 pud_t *pud; 512 unsigned long next; 513 514 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 515 if (!pud) 516 return -ENOMEM; 517 do { 518 next = pud_addr_end(addr, end); 519 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 520 return -ENOMEM; 521 } while (pud++, addr = next, addr != end); 522 return 0; 523 } 524 525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 526 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 527 pgtbl_mod_mask *mask) 528 { 529 p4d_t *p4d; 530 unsigned long next; 531 532 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 533 if (!p4d) 534 return -ENOMEM; 535 do { 536 next = p4d_addr_end(addr, end); 537 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 538 return -ENOMEM; 539 } while (p4d++, addr = next, addr != end); 540 return 0; 541 } 542 543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 544 pgprot_t prot, struct page **pages) 545 { 546 unsigned long start = addr; 547 pgd_t *pgd; 548 unsigned long next; 549 int err = 0; 550 int nr = 0; 551 pgtbl_mod_mask mask = 0; 552 553 BUG_ON(addr >= end); 554 pgd = pgd_offset_k(addr); 555 do { 556 next = pgd_addr_end(addr, end); 557 if (pgd_bad(*pgd)) 558 mask |= PGTBL_PGD_MODIFIED; 559 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 560 if (err) 561 return err; 562 } while (pgd++, addr = next, addr != end); 563 564 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 565 arch_sync_kernel_mappings(start, end); 566 567 return 0; 568 } 569 570 /* 571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 572 * flush caches. 573 * 574 * The caller is responsible for calling flush_cache_vmap() after this 575 * function returns successfully and before the addresses are accessed. 576 * 577 * This is an internal function only. Do not use outside mm/. 578 */ 579 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 580 pgprot_t prot, struct page **pages, unsigned int page_shift) 581 { 582 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 583 584 WARN_ON(page_shift < PAGE_SHIFT); 585 586 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 587 page_shift == PAGE_SHIFT) 588 return vmap_small_pages_range_noflush(addr, end, prot, pages); 589 590 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 591 int err; 592 593 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 594 page_to_phys(pages[i]), prot, 595 page_shift); 596 if (err) 597 return err; 598 599 addr += 1UL << page_shift; 600 } 601 602 return 0; 603 } 604 605 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 606 pgprot_t prot, struct page **pages, unsigned int page_shift) 607 { 608 kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 609 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 610 } 611 612 /** 613 * vmap_pages_range - map pages to a kernel virtual address 614 * @addr: start of the VM area to map 615 * @end: end of the VM area to map (non-inclusive) 616 * @prot: page protection flags to use 617 * @pages: pages to map (always PAGE_SIZE pages) 618 * @page_shift: maximum shift that the pages may be mapped with, @pages must 619 * be aligned and contiguous up to at least this shift. 620 * 621 * RETURNS: 622 * 0 on success, -errno on failure. 623 */ 624 static int vmap_pages_range(unsigned long addr, unsigned long end, 625 pgprot_t prot, struct page **pages, unsigned int page_shift) 626 { 627 int err; 628 629 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 630 flush_cache_vmap(addr, end); 631 return err; 632 } 633 634 int is_vmalloc_or_module_addr(const void *x) 635 { 636 /* 637 * ARM, x86-64 and sparc64 put modules in a special place, 638 * and fall back on vmalloc() if that fails. Others 639 * just put it in the vmalloc space. 640 */ 641 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 642 unsigned long addr = (unsigned long)kasan_reset_tag(x); 643 if (addr >= MODULES_VADDR && addr < MODULES_END) 644 return 1; 645 #endif 646 return is_vmalloc_addr(x); 647 } 648 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); 649 650 /* 651 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 652 * return the tail page that corresponds to the base page address, which 653 * matches small vmap mappings. 654 */ 655 struct page *vmalloc_to_page(const void *vmalloc_addr) 656 { 657 unsigned long addr = (unsigned long) vmalloc_addr; 658 struct page *page = NULL; 659 pgd_t *pgd = pgd_offset_k(addr); 660 p4d_t *p4d; 661 pud_t *pud; 662 pmd_t *pmd; 663 pte_t *ptep, pte; 664 665 /* 666 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 667 * architectures that do not vmalloc module space 668 */ 669 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 670 671 if (pgd_none(*pgd)) 672 return NULL; 673 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 674 return NULL; /* XXX: no allowance for huge pgd */ 675 if (WARN_ON_ONCE(pgd_bad(*pgd))) 676 return NULL; 677 678 p4d = p4d_offset(pgd, addr); 679 if (p4d_none(*p4d)) 680 return NULL; 681 if (p4d_leaf(*p4d)) 682 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 683 if (WARN_ON_ONCE(p4d_bad(*p4d))) 684 return NULL; 685 686 pud = pud_offset(p4d, addr); 687 if (pud_none(*pud)) 688 return NULL; 689 if (pud_leaf(*pud)) 690 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 691 if (WARN_ON_ONCE(pud_bad(*pud))) 692 return NULL; 693 694 pmd = pmd_offset(pud, addr); 695 if (pmd_none(*pmd)) 696 return NULL; 697 if (pmd_leaf(*pmd)) 698 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 699 if (WARN_ON_ONCE(pmd_bad(*pmd))) 700 return NULL; 701 702 ptep = pte_offset_map(pmd, addr); 703 pte = *ptep; 704 if (pte_present(pte)) 705 page = pte_page(pte); 706 pte_unmap(ptep); 707 708 return page; 709 } 710 EXPORT_SYMBOL(vmalloc_to_page); 711 712 /* 713 * Map a vmalloc()-space virtual address to the physical page frame number. 714 */ 715 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 716 { 717 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 718 } 719 EXPORT_SYMBOL(vmalloc_to_pfn); 720 721 722 /*** Global kva allocator ***/ 723 724 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 725 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 726 727 728 static DEFINE_SPINLOCK(vmap_area_lock); 729 static DEFINE_SPINLOCK(free_vmap_area_lock); 730 /* Export for kexec only */ 731 LIST_HEAD(vmap_area_list); 732 static struct rb_root vmap_area_root = RB_ROOT; 733 static bool vmap_initialized __read_mostly; 734 735 static struct rb_root purge_vmap_area_root = RB_ROOT; 736 static LIST_HEAD(purge_vmap_area_list); 737 static DEFINE_SPINLOCK(purge_vmap_area_lock); 738 739 /* 740 * This kmem_cache is used for vmap_area objects. Instead of 741 * allocating from slab we reuse an object from this cache to 742 * make things faster. Especially in "no edge" splitting of 743 * free block. 744 */ 745 static struct kmem_cache *vmap_area_cachep; 746 747 /* 748 * This linked list is used in pair with free_vmap_area_root. 749 * It gives O(1) access to prev/next to perform fast coalescing. 750 */ 751 static LIST_HEAD(free_vmap_area_list); 752 753 /* 754 * This augment red-black tree represents the free vmap space. 755 * All vmap_area objects in this tree are sorted by va->va_start 756 * address. It is used for allocation and merging when a vmap 757 * object is released. 758 * 759 * Each vmap_area node contains a maximum available free block 760 * of its sub-tree, right or left. Therefore it is possible to 761 * find a lowest match of free area. 762 */ 763 static struct rb_root free_vmap_area_root = RB_ROOT; 764 765 /* 766 * Preload a CPU with one object for "no edge" split case. The 767 * aim is to get rid of allocations from the atomic context, thus 768 * to use more permissive allocation masks. 769 */ 770 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 771 772 static __always_inline unsigned long 773 va_size(struct vmap_area *va) 774 { 775 return (va->va_end - va->va_start); 776 } 777 778 static __always_inline unsigned long 779 get_subtree_max_size(struct rb_node *node) 780 { 781 struct vmap_area *va; 782 783 va = rb_entry_safe(node, struct vmap_area, rb_node); 784 return va ? va->subtree_max_size : 0; 785 } 786 787 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 788 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 789 790 static void purge_vmap_area_lazy(void); 791 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 792 static void drain_vmap_area_work(struct work_struct *work); 793 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 794 795 static atomic_long_t nr_vmalloc_pages; 796 797 unsigned long vmalloc_nr_pages(void) 798 { 799 return atomic_long_read(&nr_vmalloc_pages); 800 } 801 802 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 803 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 804 { 805 struct vmap_area *va = NULL; 806 struct rb_node *n = vmap_area_root.rb_node; 807 808 addr = (unsigned long)kasan_reset_tag((void *)addr); 809 810 while (n) { 811 struct vmap_area *tmp; 812 813 tmp = rb_entry(n, struct vmap_area, rb_node); 814 if (tmp->va_end > addr) { 815 va = tmp; 816 if (tmp->va_start <= addr) 817 break; 818 819 n = n->rb_left; 820 } else 821 n = n->rb_right; 822 } 823 824 return va; 825 } 826 827 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 828 { 829 struct rb_node *n = root->rb_node; 830 831 addr = (unsigned long)kasan_reset_tag((void *)addr); 832 833 while (n) { 834 struct vmap_area *va; 835 836 va = rb_entry(n, struct vmap_area, rb_node); 837 if (addr < va->va_start) 838 n = n->rb_left; 839 else if (addr >= va->va_end) 840 n = n->rb_right; 841 else 842 return va; 843 } 844 845 return NULL; 846 } 847 848 /* 849 * This function returns back addresses of parent node 850 * and its left or right link for further processing. 851 * 852 * Otherwise NULL is returned. In that case all further 853 * steps regarding inserting of conflicting overlap range 854 * have to be declined and actually considered as a bug. 855 */ 856 static __always_inline struct rb_node ** 857 find_va_links(struct vmap_area *va, 858 struct rb_root *root, struct rb_node *from, 859 struct rb_node **parent) 860 { 861 struct vmap_area *tmp_va; 862 struct rb_node **link; 863 864 if (root) { 865 link = &root->rb_node; 866 if (unlikely(!*link)) { 867 *parent = NULL; 868 return link; 869 } 870 } else { 871 link = &from; 872 } 873 874 /* 875 * Go to the bottom of the tree. When we hit the last point 876 * we end up with parent rb_node and correct direction, i name 877 * it link, where the new va->rb_node will be attached to. 878 */ 879 do { 880 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 881 882 /* 883 * During the traversal we also do some sanity check. 884 * Trigger the BUG() if there are sides(left/right) 885 * or full overlaps. 886 */ 887 if (va->va_end <= tmp_va->va_start) 888 link = &(*link)->rb_left; 889 else if (va->va_start >= tmp_va->va_end) 890 link = &(*link)->rb_right; 891 else { 892 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 893 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 894 895 return NULL; 896 } 897 } while (*link); 898 899 *parent = &tmp_va->rb_node; 900 return link; 901 } 902 903 static __always_inline struct list_head * 904 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 905 { 906 struct list_head *list; 907 908 if (unlikely(!parent)) 909 /* 910 * The red-black tree where we try to find VA neighbors 911 * before merging or inserting is empty, i.e. it means 912 * there is no free vmap space. Normally it does not 913 * happen but we handle this case anyway. 914 */ 915 return NULL; 916 917 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 918 return (&parent->rb_right == link ? list->next : list); 919 } 920 921 static __always_inline void 922 __link_va(struct vmap_area *va, struct rb_root *root, 923 struct rb_node *parent, struct rb_node **link, 924 struct list_head *head, bool augment) 925 { 926 /* 927 * VA is still not in the list, but we can 928 * identify its future previous list_head node. 929 */ 930 if (likely(parent)) { 931 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 932 if (&parent->rb_right != link) 933 head = head->prev; 934 } 935 936 /* Insert to the rb-tree */ 937 rb_link_node(&va->rb_node, parent, link); 938 if (augment) { 939 /* 940 * Some explanation here. Just perform simple insertion 941 * to the tree. We do not set va->subtree_max_size to 942 * its current size before calling rb_insert_augmented(). 943 * It is because we populate the tree from the bottom 944 * to parent levels when the node _is_ in the tree. 945 * 946 * Therefore we set subtree_max_size to zero after insertion, 947 * to let __augment_tree_propagate_from() puts everything to 948 * the correct order later on. 949 */ 950 rb_insert_augmented(&va->rb_node, 951 root, &free_vmap_area_rb_augment_cb); 952 va->subtree_max_size = 0; 953 } else { 954 rb_insert_color(&va->rb_node, root); 955 } 956 957 /* Address-sort this list */ 958 list_add(&va->list, head); 959 } 960 961 static __always_inline void 962 link_va(struct vmap_area *va, struct rb_root *root, 963 struct rb_node *parent, struct rb_node **link, 964 struct list_head *head) 965 { 966 __link_va(va, root, parent, link, head, false); 967 } 968 969 static __always_inline void 970 link_va_augment(struct vmap_area *va, struct rb_root *root, 971 struct rb_node *parent, struct rb_node **link, 972 struct list_head *head) 973 { 974 __link_va(va, root, parent, link, head, true); 975 } 976 977 static __always_inline void 978 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 979 { 980 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 981 return; 982 983 if (augment) 984 rb_erase_augmented(&va->rb_node, 985 root, &free_vmap_area_rb_augment_cb); 986 else 987 rb_erase(&va->rb_node, root); 988 989 list_del_init(&va->list); 990 RB_CLEAR_NODE(&va->rb_node); 991 } 992 993 static __always_inline void 994 unlink_va(struct vmap_area *va, struct rb_root *root) 995 { 996 __unlink_va(va, root, false); 997 } 998 999 static __always_inline void 1000 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1001 { 1002 __unlink_va(va, root, true); 1003 } 1004 1005 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1006 /* 1007 * Gets called when remove the node and rotate. 1008 */ 1009 static __always_inline unsigned long 1010 compute_subtree_max_size(struct vmap_area *va) 1011 { 1012 return max3(va_size(va), 1013 get_subtree_max_size(va->rb_node.rb_left), 1014 get_subtree_max_size(va->rb_node.rb_right)); 1015 } 1016 1017 static void 1018 augment_tree_propagate_check(void) 1019 { 1020 struct vmap_area *va; 1021 unsigned long computed_size; 1022 1023 list_for_each_entry(va, &free_vmap_area_list, list) { 1024 computed_size = compute_subtree_max_size(va); 1025 if (computed_size != va->subtree_max_size) 1026 pr_emerg("tree is corrupted: %lu, %lu\n", 1027 va_size(va), va->subtree_max_size); 1028 } 1029 } 1030 #endif 1031 1032 /* 1033 * This function populates subtree_max_size from bottom to upper 1034 * levels starting from VA point. The propagation must be done 1035 * when VA size is modified by changing its va_start/va_end. Or 1036 * in case of newly inserting of VA to the tree. 1037 * 1038 * It means that __augment_tree_propagate_from() must be called: 1039 * - After VA has been inserted to the tree(free path); 1040 * - After VA has been shrunk(allocation path); 1041 * - After VA has been increased(merging path). 1042 * 1043 * Please note that, it does not mean that upper parent nodes 1044 * and their subtree_max_size are recalculated all the time up 1045 * to the root node. 1046 * 1047 * 4--8 1048 * /\ 1049 * / \ 1050 * / \ 1051 * 2--2 8--8 1052 * 1053 * For example if we modify the node 4, shrinking it to 2, then 1054 * no any modification is required. If we shrink the node 2 to 1 1055 * its subtree_max_size is updated only, and set to 1. If we shrink 1056 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1057 * node becomes 4--6. 1058 */ 1059 static __always_inline void 1060 augment_tree_propagate_from(struct vmap_area *va) 1061 { 1062 /* 1063 * Populate the tree from bottom towards the root until 1064 * the calculated maximum available size of checked node 1065 * is equal to its current one. 1066 */ 1067 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1068 1069 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1070 augment_tree_propagate_check(); 1071 #endif 1072 } 1073 1074 static void 1075 insert_vmap_area(struct vmap_area *va, 1076 struct rb_root *root, struct list_head *head) 1077 { 1078 struct rb_node **link; 1079 struct rb_node *parent; 1080 1081 link = find_va_links(va, root, NULL, &parent); 1082 if (link) 1083 link_va(va, root, parent, link, head); 1084 } 1085 1086 static void 1087 insert_vmap_area_augment(struct vmap_area *va, 1088 struct rb_node *from, struct rb_root *root, 1089 struct list_head *head) 1090 { 1091 struct rb_node **link; 1092 struct rb_node *parent; 1093 1094 if (from) 1095 link = find_va_links(va, NULL, from, &parent); 1096 else 1097 link = find_va_links(va, root, NULL, &parent); 1098 1099 if (link) { 1100 link_va_augment(va, root, parent, link, head); 1101 augment_tree_propagate_from(va); 1102 } 1103 } 1104 1105 /* 1106 * Merge de-allocated chunk of VA memory with previous 1107 * and next free blocks. If coalesce is not done a new 1108 * free area is inserted. If VA has been merged, it is 1109 * freed. 1110 * 1111 * Please note, it can return NULL in case of overlap 1112 * ranges, followed by WARN() report. Despite it is a 1113 * buggy behaviour, a system can be alive and keep 1114 * ongoing. 1115 */ 1116 static __always_inline struct vmap_area * 1117 __merge_or_add_vmap_area(struct vmap_area *va, 1118 struct rb_root *root, struct list_head *head, bool augment) 1119 { 1120 struct vmap_area *sibling; 1121 struct list_head *next; 1122 struct rb_node **link; 1123 struct rb_node *parent; 1124 bool merged = false; 1125 1126 /* 1127 * Find a place in the tree where VA potentially will be 1128 * inserted, unless it is merged with its sibling/siblings. 1129 */ 1130 link = find_va_links(va, root, NULL, &parent); 1131 if (!link) 1132 return NULL; 1133 1134 /* 1135 * Get next node of VA to check if merging can be done. 1136 */ 1137 next = get_va_next_sibling(parent, link); 1138 if (unlikely(next == NULL)) 1139 goto insert; 1140 1141 /* 1142 * start end 1143 * | | 1144 * |<------VA------>|<-----Next----->| 1145 * | | 1146 * start end 1147 */ 1148 if (next != head) { 1149 sibling = list_entry(next, struct vmap_area, list); 1150 if (sibling->va_start == va->va_end) { 1151 sibling->va_start = va->va_start; 1152 1153 /* Free vmap_area object. */ 1154 kmem_cache_free(vmap_area_cachep, va); 1155 1156 /* Point to the new merged area. */ 1157 va = sibling; 1158 merged = true; 1159 } 1160 } 1161 1162 /* 1163 * start end 1164 * | | 1165 * |<-----Prev----->|<------VA------>| 1166 * | | 1167 * start end 1168 */ 1169 if (next->prev != head) { 1170 sibling = list_entry(next->prev, struct vmap_area, list); 1171 if (sibling->va_end == va->va_start) { 1172 /* 1173 * If both neighbors are coalesced, it is important 1174 * to unlink the "next" node first, followed by merging 1175 * with "previous" one. Otherwise the tree might not be 1176 * fully populated if a sibling's augmented value is 1177 * "normalized" because of rotation operations. 1178 */ 1179 if (merged) 1180 __unlink_va(va, root, augment); 1181 1182 sibling->va_end = va->va_end; 1183 1184 /* Free vmap_area object. */ 1185 kmem_cache_free(vmap_area_cachep, va); 1186 1187 /* Point to the new merged area. */ 1188 va = sibling; 1189 merged = true; 1190 } 1191 } 1192 1193 insert: 1194 if (!merged) 1195 __link_va(va, root, parent, link, head, augment); 1196 1197 return va; 1198 } 1199 1200 static __always_inline struct vmap_area * 1201 merge_or_add_vmap_area(struct vmap_area *va, 1202 struct rb_root *root, struct list_head *head) 1203 { 1204 return __merge_or_add_vmap_area(va, root, head, false); 1205 } 1206 1207 static __always_inline struct vmap_area * 1208 merge_or_add_vmap_area_augment(struct vmap_area *va, 1209 struct rb_root *root, struct list_head *head) 1210 { 1211 va = __merge_or_add_vmap_area(va, root, head, true); 1212 if (va) 1213 augment_tree_propagate_from(va); 1214 1215 return va; 1216 } 1217 1218 static __always_inline bool 1219 is_within_this_va(struct vmap_area *va, unsigned long size, 1220 unsigned long align, unsigned long vstart) 1221 { 1222 unsigned long nva_start_addr; 1223 1224 if (va->va_start > vstart) 1225 nva_start_addr = ALIGN(va->va_start, align); 1226 else 1227 nva_start_addr = ALIGN(vstart, align); 1228 1229 /* Can be overflowed due to big size or alignment. */ 1230 if (nva_start_addr + size < nva_start_addr || 1231 nva_start_addr < vstart) 1232 return false; 1233 1234 return (nva_start_addr + size <= va->va_end); 1235 } 1236 1237 /* 1238 * Find the first free block(lowest start address) in the tree, 1239 * that will accomplish the request corresponding to passing 1240 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1241 * a search length is adjusted to account for worst case alignment 1242 * overhead. 1243 */ 1244 static __always_inline struct vmap_area * 1245 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1246 unsigned long align, unsigned long vstart, bool adjust_search_size) 1247 { 1248 struct vmap_area *va; 1249 struct rb_node *node; 1250 unsigned long length; 1251 1252 /* Start from the root. */ 1253 node = root->rb_node; 1254 1255 /* Adjust the search size for alignment overhead. */ 1256 length = adjust_search_size ? size + align - 1 : size; 1257 1258 while (node) { 1259 va = rb_entry(node, struct vmap_area, rb_node); 1260 1261 if (get_subtree_max_size(node->rb_left) >= length && 1262 vstart < va->va_start) { 1263 node = node->rb_left; 1264 } else { 1265 if (is_within_this_va(va, size, align, vstart)) 1266 return va; 1267 1268 /* 1269 * Does not make sense to go deeper towards the right 1270 * sub-tree if it does not have a free block that is 1271 * equal or bigger to the requested search length. 1272 */ 1273 if (get_subtree_max_size(node->rb_right) >= length) { 1274 node = node->rb_right; 1275 continue; 1276 } 1277 1278 /* 1279 * OK. We roll back and find the first right sub-tree, 1280 * that will satisfy the search criteria. It can happen 1281 * due to "vstart" restriction or an alignment overhead 1282 * that is bigger then PAGE_SIZE. 1283 */ 1284 while ((node = rb_parent(node))) { 1285 va = rb_entry(node, struct vmap_area, rb_node); 1286 if (is_within_this_va(va, size, align, vstart)) 1287 return va; 1288 1289 if (get_subtree_max_size(node->rb_right) >= length && 1290 vstart <= va->va_start) { 1291 /* 1292 * Shift the vstart forward. Please note, we update it with 1293 * parent's start address adding "1" because we do not want 1294 * to enter same sub-tree after it has already been checked 1295 * and no suitable free block found there. 1296 */ 1297 vstart = va->va_start + 1; 1298 node = node->rb_right; 1299 break; 1300 } 1301 } 1302 } 1303 } 1304 1305 return NULL; 1306 } 1307 1308 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1309 #include <linux/random.h> 1310 1311 static struct vmap_area * 1312 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1313 unsigned long align, unsigned long vstart) 1314 { 1315 struct vmap_area *va; 1316 1317 list_for_each_entry(va, head, list) { 1318 if (!is_within_this_va(va, size, align, vstart)) 1319 continue; 1320 1321 return va; 1322 } 1323 1324 return NULL; 1325 } 1326 1327 static void 1328 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1329 unsigned long size, unsigned long align) 1330 { 1331 struct vmap_area *va_1, *va_2; 1332 unsigned long vstart; 1333 unsigned int rnd; 1334 1335 get_random_bytes(&rnd, sizeof(rnd)); 1336 vstart = VMALLOC_START + rnd; 1337 1338 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1339 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1340 1341 if (va_1 != va_2) 1342 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1343 va_1, va_2, vstart); 1344 } 1345 #endif 1346 1347 enum fit_type { 1348 NOTHING_FIT = 0, 1349 FL_FIT_TYPE = 1, /* full fit */ 1350 LE_FIT_TYPE = 2, /* left edge fit */ 1351 RE_FIT_TYPE = 3, /* right edge fit */ 1352 NE_FIT_TYPE = 4 /* no edge fit */ 1353 }; 1354 1355 static __always_inline enum fit_type 1356 classify_va_fit_type(struct vmap_area *va, 1357 unsigned long nva_start_addr, unsigned long size) 1358 { 1359 enum fit_type type; 1360 1361 /* Check if it is within VA. */ 1362 if (nva_start_addr < va->va_start || 1363 nva_start_addr + size > va->va_end) 1364 return NOTHING_FIT; 1365 1366 /* Now classify. */ 1367 if (va->va_start == nva_start_addr) { 1368 if (va->va_end == nva_start_addr + size) 1369 type = FL_FIT_TYPE; 1370 else 1371 type = LE_FIT_TYPE; 1372 } else if (va->va_end == nva_start_addr + size) { 1373 type = RE_FIT_TYPE; 1374 } else { 1375 type = NE_FIT_TYPE; 1376 } 1377 1378 return type; 1379 } 1380 1381 static __always_inline int 1382 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head, 1383 struct vmap_area *va, unsigned long nva_start_addr, 1384 unsigned long size) 1385 { 1386 struct vmap_area *lva = NULL; 1387 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1388 1389 if (type == FL_FIT_TYPE) { 1390 /* 1391 * No need to split VA, it fully fits. 1392 * 1393 * | | 1394 * V NVA V 1395 * |---------------| 1396 */ 1397 unlink_va_augment(va, root); 1398 kmem_cache_free(vmap_area_cachep, va); 1399 } else if (type == LE_FIT_TYPE) { 1400 /* 1401 * Split left edge of fit VA. 1402 * 1403 * | | 1404 * V NVA V R 1405 * |-------|-------| 1406 */ 1407 va->va_start += size; 1408 } else if (type == RE_FIT_TYPE) { 1409 /* 1410 * Split right edge of fit VA. 1411 * 1412 * | | 1413 * L V NVA V 1414 * |-------|-------| 1415 */ 1416 va->va_end = nva_start_addr; 1417 } else if (type == NE_FIT_TYPE) { 1418 /* 1419 * Split no edge of fit VA. 1420 * 1421 * | | 1422 * L V NVA V R 1423 * |---|-------|---| 1424 */ 1425 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1426 if (unlikely(!lva)) { 1427 /* 1428 * For percpu allocator we do not do any pre-allocation 1429 * and leave it as it is. The reason is it most likely 1430 * never ends up with NE_FIT_TYPE splitting. In case of 1431 * percpu allocations offsets and sizes are aligned to 1432 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1433 * are its main fitting cases. 1434 * 1435 * There are a few exceptions though, as an example it is 1436 * a first allocation (early boot up) when we have "one" 1437 * big free space that has to be split. 1438 * 1439 * Also we can hit this path in case of regular "vmap" 1440 * allocations, if "this" current CPU was not preloaded. 1441 * See the comment in alloc_vmap_area() why. If so, then 1442 * GFP_NOWAIT is used instead to get an extra object for 1443 * split purpose. That is rare and most time does not 1444 * occur. 1445 * 1446 * What happens if an allocation gets failed. Basically, 1447 * an "overflow" path is triggered to purge lazily freed 1448 * areas to free some memory, then, the "retry" path is 1449 * triggered to repeat one more time. See more details 1450 * in alloc_vmap_area() function. 1451 */ 1452 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1453 if (!lva) 1454 return -1; 1455 } 1456 1457 /* 1458 * Build the remainder. 1459 */ 1460 lva->va_start = va->va_start; 1461 lva->va_end = nva_start_addr; 1462 1463 /* 1464 * Shrink this VA to remaining size. 1465 */ 1466 va->va_start = nva_start_addr + size; 1467 } else { 1468 return -1; 1469 } 1470 1471 if (type != FL_FIT_TYPE) { 1472 augment_tree_propagate_from(va); 1473 1474 if (lva) /* type == NE_FIT_TYPE */ 1475 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1476 } 1477 1478 return 0; 1479 } 1480 1481 /* 1482 * Returns a start address of the newly allocated area, if success. 1483 * Otherwise a vend is returned that indicates failure. 1484 */ 1485 static __always_inline unsigned long 1486 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1487 unsigned long size, unsigned long align, 1488 unsigned long vstart, unsigned long vend) 1489 { 1490 bool adjust_search_size = true; 1491 unsigned long nva_start_addr; 1492 struct vmap_area *va; 1493 int ret; 1494 1495 /* 1496 * Do not adjust when: 1497 * a) align <= PAGE_SIZE, because it does not make any sense. 1498 * All blocks(their start addresses) are at least PAGE_SIZE 1499 * aligned anyway; 1500 * b) a short range where a requested size corresponds to exactly 1501 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1502 * With adjusted search length an allocation would not succeed. 1503 */ 1504 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1505 adjust_search_size = false; 1506 1507 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1508 if (unlikely(!va)) 1509 return vend; 1510 1511 if (va->va_start > vstart) 1512 nva_start_addr = ALIGN(va->va_start, align); 1513 else 1514 nva_start_addr = ALIGN(vstart, align); 1515 1516 /* Check the "vend" restriction. */ 1517 if (nva_start_addr + size > vend) 1518 return vend; 1519 1520 /* Update the free vmap_area. */ 1521 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size); 1522 if (WARN_ON_ONCE(ret)) 1523 return vend; 1524 1525 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1526 find_vmap_lowest_match_check(root, head, size, align); 1527 #endif 1528 1529 return nva_start_addr; 1530 } 1531 1532 /* 1533 * Free a region of KVA allocated by alloc_vmap_area 1534 */ 1535 static void free_vmap_area(struct vmap_area *va) 1536 { 1537 /* 1538 * Remove from the busy tree/list. 1539 */ 1540 spin_lock(&vmap_area_lock); 1541 unlink_va(va, &vmap_area_root); 1542 spin_unlock(&vmap_area_lock); 1543 1544 /* 1545 * Insert/Merge it back to the free tree/list. 1546 */ 1547 spin_lock(&free_vmap_area_lock); 1548 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1549 spin_unlock(&free_vmap_area_lock); 1550 } 1551 1552 static inline void 1553 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1554 { 1555 struct vmap_area *va = NULL; 1556 1557 /* 1558 * Preload this CPU with one extra vmap_area object. It is used 1559 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1560 * a CPU that does an allocation is preloaded. 1561 * 1562 * We do it in non-atomic context, thus it allows us to use more 1563 * permissive allocation masks to be more stable under low memory 1564 * condition and high memory pressure. 1565 */ 1566 if (!this_cpu_read(ne_fit_preload_node)) 1567 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1568 1569 spin_lock(lock); 1570 1571 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1572 kmem_cache_free(vmap_area_cachep, va); 1573 } 1574 1575 /* 1576 * Allocate a region of KVA of the specified size and alignment, within the 1577 * vstart and vend. 1578 */ 1579 static struct vmap_area *alloc_vmap_area(unsigned long size, 1580 unsigned long align, 1581 unsigned long vstart, unsigned long vend, 1582 int node, gfp_t gfp_mask, 1583 unsigned long va_flags) 1584 { 1585 struct vmap_area *va; 1586 unsigned long freed; 1587 unsigned long addr; 1588 int purged = 0; 1589 int ret; 1590 1591 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) 1592 return ERR_PTR(-EINVAL); 1593 1594 if (unlikely(!vmap_initialized)) 1595 return ERR_PTR(-EBUSY); 1596 1597 might_sleep(); 1598 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1599 1600 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1601 if (unlikely(!va)) 1602 return ERR_PTR(-ENOMEM); 1603 1604 /* 1605 * Only scan the relevant parts containing pointers to other objects 1606 * to avoid false negatives. 1607 */ 1608 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1609 1610 retry: 1611 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1612 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 1613 size, align, vstart, vend); 1614 spin_unlock(&free_vmap_area_lock); 1615 1616 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); 1617 1618 /* 1619 * If an allocation fails, the "vend" address is 1620 * returned. Therefore trigger the overflow path. 1621 */ 1622 if (unlikely(addr == vend)) 1623 goto overflow; 1624 1625 va->va_start = addr; 1626 va->va_end = addr + size; 1627 va->vm = NULL; 1628 va->flags = va_flags; 1629 1630 spin_lock(&vmap_area_lock); 1631 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1632 spin_unlock(&vmap_area_lock); 1633 1634 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1635 BUG_ON(va->va_start < vstart); 1636 BUG_ON(va->va_end > vend); 1637 1638 ret = kasan_populate_vmalloc(addr, size); 1639 if (ret) { 1640 free_vmap_area(va); 1641 return ERR_PTR(ret); 1642 } 1643 1644 return va; 1645 1646 overflow: 1647 if (!purged) { 1648 purge_vmap_area_lazy(); 1649 purged = 1; 1650 goto retry; 1651 } 1652 1653 freed = 0; 1654 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1655 1656 if (freed > 0) { 1657 purged = 0; 1658 goto retry; 1659 } 1660 1661 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1662 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1663 size); 1664 1665 kmem_cache_free(vmap_area_cachep, va); 1666 return ERR_PTR(-EBUSY); 1667 } 1668 1669 int register_vmap_purge_notifier(struct notifier_block *nb) 1670 { 1671 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1672 } 1673 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1674 1675 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1676 { 1677 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1678 } 1679 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1680 1681 /* 1682 * lazy_max_pages is the maximum amount of virtual address space we gather up 1683 * before attempting to purge with a TLB flush. 1684 * 1685 * There is a tradeoff here: a larger number will cover more kernel page tables 1686 * and take slightly longer to purge, but it will linearly reduce the number of 1687 * global TLB flushes that must be performed. It would seem natural to scale 1688 * this number up linearly with the number of CPUs (because vmapping activity 1689 * could also scale linearly with the number of CPUs), however it is likely 1690 * that in practice, workloads might be constrained in other ways that mean 1691 * vmap activity will not scale linearly with CPUs. Also, I want to be 1692 * conservative and not introduce a big latency on huge systems, so go with 1693 * a less aggressive log scale. It will still be an improvement over the old 1694 * code, and it will be simple to change the scale factor if we find that it 1695 * becomes a problem on bigger systems. 1696 */ 1697 static unsigned long lazy_max_pages(void) 1698 { 1699 unsigned int log; 1700 1701 log = fls(num_online_cpus()); 1702 1703 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1704 } 1705 1706 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1707 1708 /* 1709 * Serialize vmap purging. There is no actual critical section protected 1710 * by this lock, but we want to avoid concurrent calls for performance 1711 * reasons and to make the pcpu_get_vm_areas more deterministic. 1712 */ 1713 static DEFINE_MUTEX(vmap_purge_lock); 1714 1715 /* for per-CPU blocks */ 1716 static void purge_fragmented_blocks_allcpus(void); 1717 1718 /* 1719 * Purges all lazily-freed vmap areas. 1720 */ 1721 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1722 { 1723 unsigned long resched_threshold; 1724 unsigned int num_purged_areas = 0; 1725 struct list_head local_purge_list; 1726 struct vmap_area *va, *n_va; 1727 1728 lockdep_assert_held(&vmap_purge_lock); 1729 1730 spin_lock(&purge_vmap_area_lock); 1731 purge_vmap_area_root = RB_ROOT; 1732 list_replace_init(&purge_vmap_area_list, &local_purge_list); 1733 spin_unlock(&purge_vmap_area_lock); 1734 1735 if (unlikely(list_empty(&local_purge_list))) 1736 goto out; 1737 1738 start = min(start, 1739 list_first_entry(&local_purge_list, 1740 struct vmap_area, list)->va_start); 1741 1742 end = max(end, 1743 list_last_entry(&local_purge_list, 1744 struct vmap_area, list)->va_end); 1745 1746 flush_tlb_kernel_range(start, end); 1747 resched_threshold = lazy_max_pages() << 1; 1748 1749 spin_lock(&free_vmap_area_lock); 1750 list_for_each_entry_safe(va, n_va, &local_purge_list, list) { 1751 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1752 unsigned long orig_start = va->va_start; 1753 unsigned long orig_end = va->va_end; 1754 1755 /* 1756 * Finally insert or merge lazily-freed area. It is 1757 * detached and there is no need to "unlink" it from 1758 * anything. 1759 */ 1760 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1761 &free_vmap_area_list); 1762 1763 if (!va) 1764 continue; 1765 1766 if (is_vmalloc_or_module_addr((void *)orig_start)) 1767 kasan_release_vmalloc(orig_start, orig_end, 1768 va->va_start, va->va_end); 1769 1770 atomic_long_sub(nr, &vmap_lazy_nr); 1771 num_purged_areas++; 1772 1773 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1774 cond_resched_lock(&free_vmap_area_lock); 1775 } 1776 spin_unlock(&free_vmap_area_lock); 1777 1778 out: 1779 trace_purge_vmap_area_lazy(start, end, num_purged_areas); 1780 return num_purged_areas > 0; 1781 } 1782 1783 /* 1784 * Kick off a purge of the outstanding lazy areas. 1785 */ 1786 static void purge_vmap_area_lazy(void) 1787 { 1788 mutex_lock(&vmap_purge_lock); 1789 purge_fragmented_blocks_allcpus(); 1790 __purge_vmap_area_lazy(ULONG_MAX, 0); 1791 mutex_unlock(&vmap_purge_lock); 1792 } 1793 1794 static void drain_vmap_area_work(struct work_struct *work) 1795 { 1796 unsigned long nr_lazy; 1797 1798 do { 1799 mutex_lock(&vmap_purge_lock); 1800 __purge_vmap_area_lazy(ULONG_MAX, 0); 1801 mutex_unlock(&vmap_purge_lock); 1802 1803 /* Recheck if further work is required. */ 1804 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1805 } while (nr_lazy > lazy_max_pages()); 1806 } 1807 1808 /* 1809 * Free a vmap area, caller ensuring that the area has been unmapped, 1810 * unlinked and flush_cache_vunmap had been called for the correct 1811 * range previously. 1812 */ 1813 static void free_vmap_area_noflush(struct vmap_area *va) 1814 { 1815 unsigned long nr_lazy_max = lazy_max_pages(); 1816 unsigned long va_start = va->va_start; 1817 unsigned long nr_lazy; 1818 1819 if (WARN_ON_ONCE(!list_empty(&va->list))) 1820 return; 1821 1822 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1823 PAGE_SHIFT, &vmap_lazy_nr); 1824 1825 /* 1826 * Merge or place it to the purge tree/list. 1827 */ 1828 spin_lock(&purge_vmap_area_lock); 1829 merge_or_add_vmap_area(va, 1830 &purge_vmap_area_root, &purge_vmap_area_list); 1831 spin_unlock(&purge_vmap_area_lock); 1832 1833 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); 1834 1835 /* After this point, we may free va at any time */ 1836 if (unlikely(nr_lazy > nr_lazy_max)) 1837 schedule_work(&drain_vmap_work); 1838 } 1839 1840 /* 1841 * Free and unmap a vmap area 1842 */ 1843 static void free_unmap_vmap_area(struct vmap_area *va) 1844 { 1845 flush_cache_vunmap(va->va_start, va->va_end); 1846 vunmap_range_noflush(va->va_start, va->va_end); 1847 if (debug_pagealloc_enabled_static()) 1848 flush_tlb_kernel_range(va->va_start, va->va_end); 1849 1850 free_vmap_area_noflush(va); 1851 } 1852 1853 struct vmap_area *find_vmap_area(unsigned long addr) 1854 { 1855 struct vmap_area *va; 1856 1857 spin_lock(&vmap_area_lock); 1858 va = __find_vmap_area(addr, &vmap_area_root); 1859 spin_unlock(&vmap_area_lock); 1860 1861 return va; 1862 } 1863 1864 static struct vmap_area *find_unlink_vmap_area(unsigned long addr) 1865 { 1866 struct vmap_area *va; 1867 1868 spin_lock(&vmap_area_lock); 1869 va = __find_vmap_area(addr, &vmap_area_root); 1870 if (va) 1871 unlink_va(va, &vmap_area_root); 1872 spin_unlock(&vmap_area_lock); 1873 1874 return va; 1875 } 1876 1877 /*** Per cpu kva allocator ***/ 1878 1879 /* 1880 * vmap space is limited especially on 32 bit architectures. Ensure there is 1881 * room for at least 16 percpu vmap blocks per CPU. 1882 */ 1883 /* 1884 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1885 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1886 * instead (we just need a rough idea) 1887 */ 1888 #if BITS_PER_LONG == 32 1889 #define VMALLOC_SPACE (128UL*1024*1024) 1890 #else 1891 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1892 #endif 1893 1894 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1895 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1896 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1897 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1898 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1899 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1900 #define VMAP_BBMAP_BITS \ 1901 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1902 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1903 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1904 1905 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1906 1907 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ 1908 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ 1909 #define VMAP_FLAGS_MASK 0x3 1910 1911 struct vmap_block_queue { 1912 spinlock_t lock; 1913 struct list_head free; 1914 }; 1915 1916 struct vmap_block { 1917 spinlock_t lock; 1918 struct vmap_area *va; 1919 unsigned long free, dirty; 1920 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); 1921 unsigned long dirty_min, dirty_max; /*< dirty range */ 1922 struct list_head free_list; 1923 struct rcu_head rcu_head; 1924 struct list_head purge; 1925 }; 1926 1927 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1928 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1929 1930 /* 1931 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1932 * in the free path. Could get rid of this if we change the API to return a 1933 * "cookie" from alloc, to be passed to free. But no big deal yet. 1934 */ 1935 static DEFINE_XARRAY(vmap_blocks); 1936 1937 /* 1938 * We should probably have a fallback mechanism to allocate virtual memory 1939 * out of partially filled vmap blocks. However vmap block sizing should be 1940 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1941 * big problem. 1942 */ 1943 1944 static unsigned long addr_to_vb_idx(unsigned long addr) 1945 { 1946 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1947 addr /= VMAP_BLOCK_SIZE; 1948 return addr; 1949 } 1950 1951 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1952 { 1953 unsigned long addr; 1954 1955 addr = va_start + (pages_off << PAGE_SHIFT); 1956 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1957 return (void *)addr; 1958 } 1959 1960 /** 1961 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1962 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1963 * @order: how many 2^order pages should be occupied in newly allocated block 1964 * @gfp_mask: flags for the page level allocator 1965 * 1966 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1967 */ 1968 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1969 { 1970 struct vmap_block_queue *vbq; 1971 struct vmap_block *vb; 1972 struct vmap_area *va; 1973 unsigned long vb_idx; 1974 int node, err; 1975 void *vaddr; 1976 1977 node = numa_node_id(); 1978 1979 vb = kmalloc_node(sizeof(struct vmap_block), 1980 gfp_mask & GFP_RECLAIM_MASK, node); 1981 if (unlikely(!vb)) 1982 return ERR_PTR(-ENOMEM); 1983 1984 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1985 VMALLOC_START, VMALLOC_END, 1986 node, gfp_mask, 1987 VMAP_RAM|VMAP_BLOCK); 1988 if (IS_ERR(va)) { 1989 kfree(vb); 1990 return ERR_CAST(va); 1991 } 1992 1993 vaddr = vmap_block_vaddr(va->va_start, 0); 1994 spin_lock_init(&vb->lock); 1995 vb->va = va; 1996 /* At least something should be left free */ 1997 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1998 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); 1999 vb->free = VMAP_BBMAP_BITS - (1UL << order); 2000 vb->dirty = 0; 2001 vb->dirty_min = VMAP_BBMAP_BITS; 2002 vb->dirty_max = 0; 2003 bitmap_set(vb->used_map, 0, (1UL << order)); 2004 INIT_LIST_HEAD(&vb->free_list); 2005 2006 vb_idx = addr_to_vb_idx(va->va_start); 2007 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 2008 if (err) { 2009 kfree(vb); 2010 free_vmap_area(va); 2011 return ERR_PTR(err); 2012 } 2013 2014 vbq = raw_cpu_ptr(&vmap_block_queue); 2015 spin_lock(&vbq->lock); 2016 list_add_tail_rcu(&vb->free_list, &vbq->free); 2017 spin_unlock(&vbq->lock); 2018 2019 return vaddr; 2020 } 2021 2022 static void free_vmap_block(struct vmap_block *vb) 2023 { 2024 struct vmap_block *tmp; 2025 2026 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 2027 BUG_ON(tmp != vb); 2028 2029 spin_lock(&vmap_area_lock); 2030 unlink_va(vb->va, &vmap_area_root); 2031 spin_unlock(&vmap_area_lock); 2032 2033 free_vmap_area_noflush(vb->va); 2034 kfree_rcu(vb, rcu_head); 2035 } 2036 2037 static void purge_fragmented_blocks(int cpu) 2038 { 2039 LIST_HEAD(purge); 2040 struct vmap_block *vb; 2041 struct vmap_block *n_vb; 2042 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2043 2044 rcu_read_lock(); 2045 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2046 2047 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 2048 continue; 2049 2050 spin_lock(&vb->lock); 2051 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 2052 vb->free = 0; /* prevent further allocs after releasing lock */ 2053 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 2054 vb->dirty_min = 0; 2055 vb->dirty_max = VMAP_BBMAP_BITS; 2056 spin_lock(&vbq->lock); 2057 list_del_rcu(&vb->free_list); 2058 spin_unlock(&vbq->lock); 2059 spin_unlock(&vb->lock); 2060 list_add_tail(&vb->purge, &purge); 2061 } else 2062 spin_unlock(&vb->lock); 2063 } 2064 rcu_read_unlock(); 2065 2066 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 2067 list_del(&vb->purge); 2068 free_vmap_block(vb); 2069 } 2070 } 2071 2072 static void purge_fragmented_blocks_allcpus(void) 2073 { 2074 int cpu; 2075 2076 for_each_possible_cpu(cpu) 2077 purge_fragmented_blocks(cpu); 2078 } 2079 2080 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2081 { 2082 struct vmap_block_queue *vbq; 2083 struct vmap_block *vb; 2084 void *vaddr = NULL; 2085 unsigned int order; 2086 2087 BUG_ON(offset_in_page(size)); 2088 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2089 if (WARN_ON(size == 0)) { 2090 /* 2091 * Allocating 0 bytes isn't what caller wants since 2092 * get_order(0) returns funny result. Just warn and terminate 2093 * early. 2094 */ 2095 return NULL; 2096 } 2097 order = get_order(size); 2098 2099 rcu_read_lock(); 2100 vbq = raw_cpu_ptr(&vmap_block_queue); 2101 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2102 unsigned long pages_off; 2103 2104 spin_lock(&vb->lock); 2105 if (vb->free < (1UL << order)) { 2106 spin_unlock(&vb->lock); 2107 continue; 2108 } 2109 2110 pages_off = VMAP_BBMAP_BITS - vb->free; 2111 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2112 vb->free -= 1UL << order; 2113 bitmap_set(vb->used_map, pages_off, (1UL << order)); 2114 if (vb->free == 0) { 2115 spin_lock(&vbq->lock); 2116 list_del_rcu(&vb->free_list); 2117 spin_unlock(&vbq->lock); 2118 } 2119 2120 spin_unlock(&vb->lock); 2121 break; 2122 } 2123 2124 rcu_read_unlock(); 2125 2126 /* Allocate new block if nothing was found */ 2127 if (!vaddr) 2128 vaddr = new_vmap_block(order, gfp_mask); 2129 2130 return vaddr; 2131 } 2132 2133 static void vb_free(unsigned long addr, unsigned long size) 2134 { 2135 unsigned long offset; 2136 unsigned int order; 2137 struct vmap_block *vb; 2138 2139 BUG_ON(offset_in_page(size)); 2140 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2141 2142 flush_cache_vunmap(addr, addr + size); 2143 2144 order = get_order(size); 2145 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2146 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2147 spin_lock(&vb->lock); 2148 bitmap_clear(vb->used_map, offset, (1UL << order)); 2149 spin_unlock(&vb->lock); 2150 2151 vunmap_range_noflush(addr, addr + size); 2152 2153 if (debug_pagealloc_enabled_static()) 2154 flush_tlb_kernel_range(addr, addr + size); 2155 2156 spin_lock(&vb->lock); 2157 2158 /* Expand dirty range */ 2159 vb->dirty_min = min(vb->dirty_min, offset); 2160 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2161 2162 vb->dirty += 1UL << order; 2163 if (vb->dirty == VMAP_BBMAP_BITS) { 2164 BUG_ON(vb->free); 2165 spin_unlock(&vb->lock); 2166 free_vmap_block(vb); 2167 } else 2168 spin_unlock(&vb->lock); 2169 } 2170 2171 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2172 { 2173 int cpu; 2174 2175 if (unlikely(!vmap_initialized)) 2176 return; 2177 2178 might_sleep(); 2179 2180 for_each_possible_cpu(cpu) { 2181 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2182 struct vmap_block *vb; 2183 2184 rcu_read_lock(); 2185 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2186 spin_lock(&vb->lock); 2187 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2188 unsigned long va_start = vb->va->va_start; 2189 unsigned long s, e; 2190 2191 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2192 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2193 2194 start = min(s, start); 2195 end = max(e, end); 2196 2197 flush = 1; 2198 } 2199 spin_unlock(&vb->lock); 2200 } 2201 rcu_read_unlock(); 2202 } 2203 2204 mutex_lock(&vmap_purge_lock); 2205 purge_fragmented_blocks_allcpus(); 2206 if (!__purge_vmap_area_lazy(start, end) && flush) 2207 flush_tlb_kernel_range(start, end); 2208 mutex_unlock(&vmap_purge_lock); 2209 } 2210 2211 /** 2212 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2213 * 2214 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2215 * to amortize TLB flushing overheads. What this means is that any page you 2216 * have now, may, in a former life, have been mapped into kernel virtual 2217 * address by the vmap layer and so there might be some CPUs with TLB entries 2218 * still referencing that page (additional to the regular 1:1 kernel mapping). 2219 * 2220 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2221 * be sure that none of the pages we have control over will have any aliases 2222 * from the vmap layer. 2223 */ 2224 void vm_unmap_aliases(void) 2225 { 2226 unsigned long start = ULONG_MAX, end = 0; 2227 int flush = 0; 2228 2229 _vm_unmap_aliases(start, end, flush); 2230 } 2231 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2232 2233 /** 2234 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2235 * @mem: the pointer returned by vm_map_ram 2236 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2237 */ 2238 void vm_unmap_ram(const void *mem, unsigned int count) 2239 { 2240 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2241 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2242 struct vmap_area *va; 2243 2244 might_sleep(); 2245 BUG_ON(!addr); 2246 BUG_ON(addr < VMALLOC_START); 2247 BUG_ON(addr > VMALLOC_END); 2248 BUG_ON(!PAGE_ALIGNED(addr)); 2249 2250 kasan_poison_vmalloc(mem, size); 2251 2252 if (likely(count <= VMAP_MAX_ALLOC)) { 2253 debug_check_no_locks_freed(mem, size); 2254 vb_free(addr, size); 2255 return; 2256 } 2257 2258 va = find_unlink_vmap_area(addr); 2259 if (WARN_ON_ONCE(!va)) 2260 return; 2261 2262 debug_check_no_locks_freed((void *)va->va_start, 2263 (va->va_end - va->va_start)); 2264 free_unmap_vmap_area(va); 2265 } 2266 EXPORT_SYMBOL(vm_unmap_ram); 2267 2268 /** 2269 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2270 * @pages: an array of pointers to the pages to be mapped 2271 * @count: number of pages 2272 * @node: prefer to allocate data structures on this node 2273 * 2274 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2275 * faster than vmap so it's good. But if you mix long-life and short-life 2276 * objects with vm_map_ram(), it could consume lots of address space through 2277 * fragmentation (especially on a 32bit machine). You could see failures in 2278 * the end. Please use this function for short-lived objects. 2279 * 2280 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2281 */ 2282 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2283 { 2284 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2285 unsigned long addr; 2286 void *mem; 2287 2288 if (likely(count <= VMAP_MAX_ALLOC)) { 2289 mem = vb_alloc(size, GFP_KERNEL); 2290 if (IS_ERR(mem)) 2291 return NULL; 2292 addr = (unsigned long)mem; 2293 } else { 2294 struct vmap_area *va; 2295 va = alloc_vmap_area(size, PAGE_SIZE, 2296 VMALLOC_START, VMALLOC_END, 2297 node, GFP_KERNEL, VMAP_RAM); 2298 if (IS_ERR(va)) 2299 return NULL; 2300 2301 addr = va->va_start; 2302 mem = (void *)addr; 2303 } 2304 2305 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2306 pages, PAGE_SHIFT) < 0) { 2307 vm_unmap_ram(mem, count); 2308 return NULL; 2309 } 2310 2311 /* 2312 * Mark the pages as accessible, now that they are mapped. 2313 * With hardware tag-based KASAN, marking is skipped for 2314 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2315 */ 2316 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2317 2318 return mem; 2319 } 2320 EXPORT_SYMBOL(vm_map_ram); 2321 2322 static struct vm_struct *vmlist __initdata; 2323 2324 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2325 { 2326 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2327 return vm->page_order; 2328 #else 2329 return 0; 2330 #endif 2331 } 2332 2333 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2334 { 2335 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2336 vm->page_order = order; 2337 #else 2338 BUG_ON(order != 0); 2339 #endif 2340 } 2341 2342 /** 2343 * vm_area_add_early - add vmap area early during boot 2344 * @vm: vm_struct to add 2345 * 2346 * This function is used to add fixed kernel vm area to vmlist before 2347 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2348 * should contain proper values and the other fields should be zero. 2349 * 2350 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2351 */ 2352 void __init vm_area_add_early(struct vm_struct *vm) 2353 { 2354 struct vm_struct *tmp, **p; 2355 2356 BUG_ON(vmap_initialized); 2357 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2358 if (tmp->addr >= vm->addr) { 2359 BUG_ON(tmp->addr < vm->addr + vm->size); 2360 break; 2361 } else 2362 BUG_ON(tmp->addr + tmp->size > vm->addr); 2363 } 2364 vm->next = *p; 2365 *p = vm; 2366 } 2367 2368 /** 2369 * vm_area_register_early - register vmap area early during boot 2370 * @vm: vm_struct to register 2371 * @align: requested alignment 2372 * 2373 * This function is used to register kernel vm area before 2374 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2375 * proper values on entry and other fields should be zero. On return, 2376 * vm->addr contains the allocated address. 2377 * 2378 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2379 */ 2380 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2381 { 2382 unsigned long addr = ALIGN(VMALLOC_START, align); 2383 struct vm_struct *cur, **p; 2384 2385 BUG_ON(vmap_initialized); 2386 2387 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2388 if ((unsigned long)cur->addr - addr >= vm->size) 2389 break; 2390 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2391 } 2392 2393 BUG_ON(addr > VMALLOC_END - vm->size); 2394 vm->addr = (void *)addr; 2395 vm->next = *p; 2396 *p = vm; 2397 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2398 } 2399 2400 static void vmap_init_free_space(void) 2401 { 2402 unsigned long vmap_start = 1; 2403 const unsigned long vmap_end = ULONG_MAX; 2404 struct vmap_area *busy, *free; 2405 2406 /* 2407 * B F B B B F 2408 * -|-----|.....|-----|-----|-----|.....|- 2409 * | The KVA space | 2410 * |<--------------------------------->| 2411 */ 2412 list_for_each_entry(busy, &vmap_area_list, list) { 2413 if (busy->va_start - vmap_start > 0) { 2414 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2415 if (!WARN_ON_ONCE(!free)) { 2416 free->va_start = vmap_start; 2417 free->va_end = busy->va_start; 2418 2419 insert_vmap_area_augment(free, NULL, 2420 &free_vmap_area_root, 2421 &free_vmap_area_list); 2422 } 2423 } 2424 2425 vmap_start = busy->va_end; 2426 } 2427 2428 if (vmap_end - vmap_start > 0) { 2429 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2430 if (!WARN_ON_ONCE(!free)) { 2431 free->va_start = vmap_start; 2432 free->va_end = vmap_end; 2433 2434 insert_vmap_area_augment(free, NULL, 2435 &free_vmap_area_root, 2436 &free_vmap_area_list); 2437 } 2438 } 2439 } 2440 2441 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2442 struct vmap_area *va, unsigned long flags, const void *caller) 2443 { 2444 vm->flags = flags; 2445 vm->addr = (void *)va->va_start; 2446 vm->size = va->va_end - va->va_start; 2447 vm->caller = caller; 2448 va->vm = vm; 2449 } 2450 2451 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2452 unsigned long flags, const void *caller) 2453 { 2454 spin_lock(&vmap_area_lock); 2455 setup_vmalloc_vm_locked(vm, va, flags, caller); 2456 spin_unlock(&vmap_area_lock); 2457 } 2458 2459 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2460 { 2461 /* 2462 * Before removing VM_UNINITIALIZED, 2463 * we should make sure that vm has proper values. 2464 * Pair with smp_rmb() in show_numa_info(). 2465 */ 2466 smp_wmb(); 2467 vm->flags &= ~VM_UNINITIALIZED; 2468 } 2469 2470 static struct vm_struct *__get_vm_area_node(unsigned long size, 2471 unsigned long align, unsigned long shift, unsigned long flags, 2472 unsigned long start, unsigned long end, int node, 2473 gfp_t gfp_mask, const void *caller) 2474 { 2475 struct vmap_area *va; 2476 struct vm_struct *area; 2477 unsigned long requested_size = size; 2478 2479 BUG_ON(in_interrupt()); 2480 size = ALIGN(size, 1ul << shift); 2481 if (unlikely(!size)) 2482 return NULL; 2483 2484 if (flags & VM_IOREMAP) 2485 align = 1ul << clamp_t(int, get_count_order_long(size), 2486 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2487 2488 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2489 if (unlikely(!area)) 2490 return NULL; 2491 2492 if (!(flags & VM_NO_GUARD)) 2493 size += PAGE_SIZE; 2494 2495 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0); 2496 if (IS_ERR(va)) { 2497 kfree(area); 2498 return NULL; 2499 } 2500 2501 setup_vmalloc_vm(area, va, flags, caller); 2502 2503 /* 2504 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2505 * best-effort approach, as they can be mapped outside of vmalloc code. 2506 * For VM_ALLOC mappings, the pages are marked as accessible after 2507 * getting mapped in __vmalloc_node_range(). 2508 * With hardware tag-based KASAN, marking is skipped for 2509 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2510 */ 2511 if (!(flags & VM_ALLOC)) 2512 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2513 KASAN_VMALLOC_PROT_NORMAL); 2514 2515 return area; 2516 } 2517 2518 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2519 unsigned long start, unsigned long end, 2520 const void *caller) 2521 { 2522 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2523 NUMA_NO_NODE, GFP_KERNEL, caller); 2524 } 2525 2526 /** 2527 * get_vm_area - reserve a contiguous kernel virtual area 2528 * @size: size of the area 2529 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2530 * 2531 * Search an area of @size in the kernel virtual mapping area, 2532 * and reserved it for out purposes. Returns the area descriptor 2533 * on success or %NULL on failure. 2534 * 2535 * Return: the area descriptor on success or %NULL on failure. 2536 */ 2537 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2538 { 2539 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2540 VMALLOC_START, VMALLOC_END, 2541 NUMA_NO_NODE, GFP_KERNEL, 2542 __builtin_return_address(0)); 2543 } 2544 2545 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2546 const void *caller) 2547 { 2548 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2549 VMALLOC_START, VMALLOC_END, 2550 NUMA_NO_NODE, GFP_KERNEL, caller); 2551 } 2552 2553 /** 2554 * find_vm_area - find a continuous kernel virtual area 2555 * @addr: base address 2556 * 2557 * Search for the kernel VM area starting at @addr, and return it. 2558 * It is up to the caller to do all required locking to keep the returned 2559 * pointer valid. 2560 * 2561 * Return: the area descriptor on success or %NULL on failure. 2562 */ 2563 struct vm_struct *find_vm_area(const void *addr) 2564 { 2565 struct vmap_area *va; 2566 2567 va = find_vmap_area((unsigned long)addr); 2568 if (!va) 2569 return NULL; 2570 2571 return va->vm; 2572 } 2573 2574 /** 2575 * remove_vm_area - find and remove a continuous kernel virtual area 2576 * @addr: base address 2577 * 2578 * Search for the kernel VM area starting at @addr, and remove it. 2579 * This function returns the found VM area, but using it is NOT safe 2580 * on SMP machines, except for its size or flags. 2581 * 2582 * Return: the area descriptor on success or %NULL on failure. 2583 */ 2584 struct vm_struct *remove_vm_area(const void *addr) 2585 { 2586 struct vmap_area *va; 2587 struct vm_struct *vm; 2588 2589 might_sleep(); 2590 2591 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2592 addr)) 2593 return NULL; 2594 2595 va = find_unlink_vmap_area((unsigned long)addr); 2596 if (!va || !va->vm) 2597 return NULL; 2598 vm = va->vm; 2599 2600 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); 2601 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); 2602 kasan_free_module_shadow(vm); 2603 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); 2604 2605 free_unmap_vmap_area(va); 2606 return vm; 2607 } 2608 2609 static inline void set_area_direct_map(const struct vm_struct *area, 2610 int (*set_direct_map)(struct page *page)) 2611 { 2612 int i; 2613 2614 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2615 for (i = 0; i < area->nr_pages; i++) 2616 if (page_address(area->pages[i])) 2617 set_direct_map(area->pages[i]); 2618 } 2619 2620 /* 2621 * Flush the vm mapping and reset the direct map. 2622 */ 2623 static void vm_reset_perms(struct vm_struct *area) 2624 { 2625 unsigned long start = ULONG_MAX, end = 0; 2626 unsigned int page_order = vm_area_page_order(area); 2627 int flush_dmap = 0; 2628 int i; 2629 2630 /* 2631 * Find the start and end range of the direct mappings to make sure that 2632 * the vm_unmap_aliases() flush includes the direct map. 2633 */ 2634 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2635 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2636 2637 if (addr) { 2638 unsigned long page_size; 2639 2640 page_size = PAGE_SIZE << page_order; 2641 start = min(addr, start); 2642 end = max(addr + page_size, end); 2643 flush_dmap = 1; 2644 } 2645 } 2646 2647 /* 2648 * Set direct map to something invalid so that it won't be cached if 2649 * there are any accesses after the TLB flush, then flush the TLB and 2650 * reset the direct map permissions to the default. 2651 */ 2652 set_area_direct_map(area, set_direct_map_invalid_noflush); 2653 _vm_unmap_aliases(start, end, flush_dmap); 2654 set_area_direct_map(area, set_direct_map_default_noflush); 2655 } 2656 2657 static void delayed_vfree_work(struct work_struct *w) 2658 { 2659 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 2660 struct llist_node *t, *llnode; 2661 2662 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 2663 vfree(llnode); 2664 } 2665 2666 /** 2667 * vfree_atomic - release memory allocated by vmalloc() 2668 * @addr: memory base address 2669 * 2670 * This one is just like vfree() but can be called in any atomic context 2671 * except NMIs. 2672 */ 2673 void vfree_atomic(const void *addr) 2674 { 2675 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2676 2677 BUG_ON(in_nmi()); 2678 kmemleak_free(addr); 2679 2680 /* 2681 * Use raw_cpu_ptr() because this can be called from preemptible 2682 * context. Preemption is absolutely fine here, because the llist_add() 2683 * implementation is lockless, so it works even if we are adding to 2684 * another cpu's list. schedule_work() should be fine with this too. 2685 */ 2686 if (addr && llist_add((struct llist_node *)addr, &p->list)) 2687 schedule_work(&p->wq); 2688 } 2689 2690 /** 2691 * vfree - Release memory allocated by vmalloc() 2692 * @addr: Memory base address 2693 * 2694 * Free the virtually continuous memory area starting at @addr, as obtained 2695 * from one of the vmalloc() family of APIs. This will usually also free the 2696 * physical memory underlying the virtual allocation, but that memory is 2697 * reference counted, so it will not be freed until the last user goes away. 2698 * 2699 * If @addr is NULL, no operation is performed. 2700 * 2701 * Context: 2702 * May sleep if called *not* from interrupt context. 2703 * Must not be called in NMI context (strictly speaking, it could be 2704 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2705 * conventions for vfree() arch-dependent would be a really bad idea). 2706 */ 2707 void vfree(const void *addr) 2708 { 2709 struct vm_struct *vm; 2710 int i; 2711 2712 if (unlikely(in_interrupt())) { 2713 vfree_atomic(addr); 2714 return; 2715 } 2716 2717 BUG_ON(in_nmi()); 2718 kmemleak_free(addr); 2719 might_sleep(); 2720 2721 if (!addr) 2722 return; 2723 2724 vm = remove_vm_area(addr); 2725 if (unlikely(!vm)) { 2726 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2727 addr); 2728 return; 2729 } 2730 2731 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) 2732 vm_reset_perms(vm); 2733 for (i = 0; i < vm->nr_pages; i++) { 2734 struct page *page = vm->pages[i]; 2735 2736 BUG_ON(!page); 2737 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 2738 /* 2739 * High-order allocs for huge vmallocs are split, so 2740 * can be freed as an array of order-0 allocations 2741 */ 2742 __free_pages(page, 0); 2743 cond_resched(); 2744 } 2745 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); 2746 kvfree(vm->pages); 2747 kfree(vm); 2748 } 2749 EXPORT_SYMBOL(vfree); 2750 2751 /** 2752 * vunmap - release virtual mapping obtained by vmap() 2753 * @addr: memory base address 2754 * 2755 * Free the virtually contiguous memory area starting at @addr, 2756 * which was created from the page array passed to vmap(). 2757 * 2758 * Must not be called in interrupt context. 2759 */ 2760 void vunmap(const void *addr) 2761 { 2762 struct vm_struct *vm; 2763 2764 BUG_ON(in_interrupt()); 2765 might_sleep(); 2766 2767 if (!addr) 2768 return; 2769 vm = remove_vm_area(addr); 2770 if (unlikely(!vm)) { 2771 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", 2772 addr); 2773 return; 2774 } 2775 kfree(vm); 2776 } 2777 EXPORT_SYMBOL(vunmap); 2778 2779 /** 2780 * vmap - map an array of pages into virtually contiguous space 2781 * @pages: array of page pointers 2782 * @count: number of pages to map 2783 * @flags: vm_area->flags 2784 * @prot: page protection for the mapping 2785 * 2786 * Maps @count pages from @pages into contiguous kernel virtual space. 2787 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2788 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2789 * are transferred from the caller to vmap(), and will be freed / dropped when 2790 * vfree() is called on the return value. 2791 * 2792 * Return: the address of the area or %NULL on failure 2793 */ 2794 void *vmap(struct page **pages, unsigned int count, 2795 unsigned long flags, pgprot_t prot) 2796 { 2797 struct vm_struct *area; 2798 unsigned long addr; 2799 unsigned long size; /* In bytes */ 2800 2801 might_sleep(); 2802 2803 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) 2804 return NULL; 2805 2806 /* 2807 * Your top guard is someone else's bottom guard. Not having a top 2808 * guard compromises someone else's mappings too. 2809 */ 2810 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2811 flags &= ~VM_NO_GUARD; 2812 2813 if (count > totalram_pages()) 2814 return NULL; 2815 2816 size = (unsigned long)count << PAGE_SHIFT; 2817 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2818 if (!area) 2819 return NULL; 2820 2821 addr = (unsigned long)area->addr; 2822 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2823 pages, PAGE_SHIFT) < 0) { 2824 vunmap(area->addr); 2825 return NULL; 2826 } 2827 2828 if (flags & VM_MAP_PUT_PAGES) { 2829 area->pages = pages; 2830 area->nr_pages = count; 2831 } 2832 return area->addr; 2833 } 2834 EXPORT_SYMBOL(vmap); 2835 2836 #ifdef CONFIG_VMAP_PFN 2837 struct vmap_pfn_data { 2838 unsigned long *pfns; 2839 pgprot_t prot; 2840 unsigned int idx; 2841 }; 2842 2843 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2844 { 2845 struct vmap_pfn_data *data = private; 2846 2847 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2848 return -EINVAL; 2849 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2850 return 0; 2851 } 2852 2853 /** 2854 * vmap_pfn - map an array of PFNs into virtually contiguous space 2855 * @pfns: array of PFNs 2856 * @count: number of pages to map 2857 * @prot: page protection for the mapping 2858 * 2859 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2860 * the start address of the mapping. 2861 */ 2862 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2863 { 2864 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2865 struct vm_struct *area; 2866 2867 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2868 __builtin_return_address(0)); 2869 if (!area) 2870 return NULL; 2871 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2872 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2873 free_vm_area(area); 2874 return NULL; 2875 } 2876 return area->addr; 2877 } 2878 EXPORT_SYMBOL_GPL(vmap_pfn); 2879 #endif /* CONFIG_VMAP_PFN */ 2880 2881 static inline unsigned int 2882 vm_area_alloc_pages(gfp_t gfp, int nid, 2883 unsigned int order, unsigned int nr_pages, struct page **pages) 2884 { 2885 unsigned int nr_allocated = 0; 2886 gfp_t alloc_gfp = gfp; 2887 bool nofail = false; 2888 struct page *page; 2889 int i; 2890 2891 /* 2892 * For order-0 pages we make use of bulk allocator, if 2893 * the page array is partly or not at all populated due 2894 * to fails, fallback to a single page allocator that is 2895 * more permissive. 2896 */ 2897 if (!order) { 2898 /* bulk allocator doesn't support nofail req. officially */ 2899 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2900 2901 while (nr_allocated < nr_pages) { 2902 unsigned int nr, nr_pages_request; 2903 2904 /* 2905 * A maximum allowed request is hard-coded and is 100 2906 * pages per call. That is done in order to prevent a 2907 * long preemption off scenario in the bulk-allocator 2908 * so the range is [1:100]. 2909 */ 2910 nr_pages_request = min(100U, nr_pages - nr_allocated); 2911 2912 /* memory allocation should consider mempolicy, we can't 2913 * wrongly use nearest node when nid == NUMA_NO_NODE, 2914 * otherwise memory may be allocated in only one node, 2915 * but mempolicy wants to alloc memory by interleaving. 2916 */ 2917 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2918 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2919 nr_pages_request, 2920 pages + nr_allocated); 2921 2922 else 2923 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2924 nr_pages_request, 2925 pages + nr_allocated); 2926 2927 nr_allocated += nr; 2928 cond_resched(); 2929 2930 /* 2931 * If zero or pages were obtained partly, 2932 * fallback to a single page allocator. 2933 */ 2934 if (nr != nr_pages_request) 2935 break; 2936 } 2937 } else if (gfp & __GFP_NOFAIL) { 2938 /* 2939 * Higher order nofail allocations are really expensive and 2940 * potentially dangerous (pre-mature OOM, disruptive reclaim 2941 * and compaction etc. 2942 */ 2943 alloc_gfp &= ~__GFP_NOFAIL; 2944 nofail = true; 2945 } 2946 2947 /* High-order pages or fallback path if "bulk" fails. */ 2948 while (nr_allocated < nr_pages) { 2949 if (fatal_signal_pending(current)) 2950 break; 2951 2952 if (nid == NUMA_NO_NODE) 2953 page = alloc_pages(alloc_gfp, order); 2954 else 2955 page = alloc_pages_node(nid, alloc_gfp, order); 2956 if (unlikely(!page)) { 2957 if (!nofail) 2958 break; 2959 2960 /* fall back to the zero order allocations */ 2961 alloc_gfp |= __GFP_NOFAIL; 2962 order = 0; 2963 continue; 2964 } 2965 2966 /* 2967 * Higher order allocations must be able to be treated as 2968 * indepdenent small pages by callers (as they can with 2969 * small-page vmallocs). Some drivers do their own refcounting 2970 * on vmalloc_to_page() pages, some use page->mapping, 2971 * page->lru, etc. 2972 */ 2973 if (order) 2974 split_page(page, order); 2975 2976 /* 2977 * Careful, we allocate and map page-order pages, but 2978 * tracking is done per PAGE_SIZE page so as to keep the 2979 * vm_struct APIs independent of the physical/mapped size. 2980 */ 2981 for (i = 0; i < (1U << order); i++) 2982 pages[nr_allocated + i] = page + i; 2983 2984 cond_resched(); 2985 nr_allocated += 1U << order; 2986 } 2987 2988 return nr_allocated; 2989 } 2990 2991 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2992 pgprot_t prot, unsigned int page_shift, 2993 int node) 2994 { 2995 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2996 bool nofail = gfp_mask & __GFP_NOFAIL; 2997 unsigned long addr = (unsigned long)area->addr; 2998 unsigned long size = get_vm_area_size(area); 2999 unsigned long array_size; 3000 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3001 unsigned int page_order; 3002 unsigned int flags; 3003 int ret; 3004 3005 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3006 3007 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3008 gfp_mask |= __GFP_HIGHMEM; 3009 3010 /* Please note that the recursion is strictly bounded. */ 3011 if (array_size > PAGE_SIZE) { 3012 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 3013 area->caller); 3014 } else { 3015 area->pages = kmalloc_node(array_size, nested_gfp, node); 3016 } 3017 3018 if (!area->pages) { 3019 warn_alloc(gfp_mask, NULL, 3020 "vmalloc error: size %lu, failed to allocated page array size %lu", 3021 nr_small_pages * PAGE_SIZE, array_size); 3022 free_vm_area(area); 3023 return NULL; 3024 } 3025 3026 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3027 page_order = vm_area_page_order(area); 3028 3029 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 3030 node, page_order, nr_small_pages, area->pages); 3031 3032 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3033 if (gfp_mask & __GFP_ACCOUNT) { 3034 int i; 3035 3036 for (i = 0; i < area->nr_pages; i++) 3037 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3038 } 3039 3040 /* 3041 * If not enough pages were obtained to accomplish an 3042 * allocation request, free them via vfree() if any. 3043 */ 3044 if (area->nr_pages != nr_small_pages) { 3045 warn_alloc(gfp_mask, NULL, 3046 "vmalloc error: size %lu, page order %u, failed to allocate pages", 3047 area->nr_pages * PAGE_SIZE, page_order); 3048 goto fail; 3049 } 3050 3051 /* 3052 * page tables allocations ignore external gfp mask, enforce it 3053 * by the scope API 3054 */ 3055 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3056 flags = memalloc_nofs_save(); 3057 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3058 flags = memalloc_noio_save(); 3059 3060 do { 3061 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3062 page_shift); 3063 if (nofail && (ret < 0)) 3064 schedule_timeout_uninterruptible(1); 3065 } while (nofail && (ret < 0)); 3066 3067 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3068 memalloc_nofs_restore(flags); 3069 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3070 memalloc_noio_restore(flags); 3071 3072 if (ret < 0) { 3073 warn_alloc(gfp_mask, NULL, 3074 "vmalloc error: size %lu, failed to map pages", 3075 area->nr_pages * PAGE_SIZE); 3076 goto fail; 3077 } 3078 3079 return area->addr; 3080 3081 fail: 3082 vfree(area->addr); 3083 return NULL; 3084 } 3085 3086 /** 3087 * __vmalloc_node_range - allocate virtually contiguous memory 3088 * @size: allocation size 3089 * @align: desired alignment 3090 * @start: vm area range start 3091 * @end: vm area range end 3092 * @gfp_mask: flags for the page level allocator 3093 * @prot: protection mask for the allocated pages 3094 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3095 * @node: node to use for allocation or NUMA_NO_NODE 3096 * @caller: caller's return address 3097 * 3098 * Allocate enough pages to cover @size from the page level 3099 * allocator with @gfp_mask flags. Please note that the full set of gfp 3100 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3101 * supported. 3102 * Zone modifiers are not supported. From the reclaim modifiers 3103 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3104 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3105 * __GFP_RETRY_MAYFAIL are not supported). 3106 * 3107 * __GFP_NOWARN can be used to suppress failures messages. 3108 * 3109 * Map them into contiguous kernel virtual space, using a pagetable 3110 * protection of @prot. 3111 * 3112 * Return: the address of the area or %NULL on failure 3113 */ 3114 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3115 unsigned long start, unsigned long end, gfp_t gfp_mask, 3116 pgprot_t prot, unsigned long vm_flags, int node, 3117 const void *caller) 3118 { 3119 struct vm_struct *area; 3120 void *ret; 3121 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3122 unsigned long real_size = size; 3123 unsigned long real_align = align; 3124 unsigned int shift = PAGE_SHIFT; 3125 3126 if (WARN_ON_ONCE(!size)) 3127 return NULL; 3128 3129 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3130 warn_alloc(gfp_mask, NULL, 3131 "vmalloc error: size %lu, exceeds total pages", 3132 real_size); 3133 return NULL; 3134 } 3135 3136 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3137 unsigned long size_per_node; 3138 3139 /* 3140 * Try huge pages. Only try for PAGE_KERNEL allocations, 3141 * others like modules don't yet expect huge pages in 3142 * their allocations due to apply_to_page_range not 3143 * supporting them. 3144 */ 3145 3146 size_per_node = size; 3147 if (node == NUMA_NO_NODE) 3148 size_per_node /= num_online_nodes(); 3149 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3150 shift = PMD_SHIFT; 3151 else 3152 shift = arch_vmap_pte_supported_shift(size_per_node); 3153 3154 align = max(real_align, 1UL << shift); 3155 size = ALIGN(real_size, 1UL << shift); 3156 } 3157 3158 again: 3159 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3160 VM_UNINITIALIZED | vm_flags, start, end, node, 3161 gfp_mask, caller); 3162 if (!area) { 3163 bool nofail = gfp_mask & __GFP_NOFAIL; 3164 warn_alloc(gfp_mask, NULL, 3165 "vmalloc error: size %lu, vm_struct allocation failed%s", 3166 real_size, (nofail) ? ". Retrying." : ""); 3167 if (nofail) { 3168 schedule_timeout_uninterruptible(1); 3169 goto again; 3170 } 3171 goto fail; 3172 } 3173 3174 /* 3175 * Prepare arguments for __vmalloc_area_node() and 3176 * kasan_unpoison_vmalloc(). 3177 */ 3178 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3179 if (kasan_hw_tags_enabled()) { 3180 /* 3181 * Modify protection bits to allow tagging. 3182 * This must be done before mapping. 3183 */ 3184 prot = arch_vmap_pgprot_tagged(prot); 3185 3186 /* 3187 * Skip page_alloc poisoning and zeroing for physical 3188 * pages backing VM_ALLOC mapping. Memory is instead 3189 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3190 */ 3191 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; 3192 } 3193 3194 /* Take note that the mapping is PAGE_KERNEL. */ 3195 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3196 } 3197 3198 /* Allocate physical pages and map them into vmalloc space. */ 3199 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3200 if (!ret) 3201 goto fail; 3202 3203 /* 3204 * Mark the pages as accessible, now that they are mapped. 3205 * The condition for setting KASAN_VMALLOC_INIT should complement the 3206 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3207 * to make sure that memory is initialized under the same conditions. 3208 * Tag-based KASAN modes only assign tags to normal non-executable 3209 * allocations, see __kasan_unpoison_vmalloc(). 3210 */ 3211 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3212 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3213 (gfp_mask & __GFP_SKIP_ZERO)) 3214 kasan_flags |= KASAN_VMALLOC_INIT; 3215 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3216 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3217 3218 /* 3219 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3220 * flag. It means that vm_struct is not fully initialized. 3221 * Now, it is fully initialized, so remove this flag here. 3222 */ 3223 clear_vm_uninitialized_flag(area); 3224 3225 size = PAGE_ALIGN(size); 3226 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3227 kmemleak_vmalloc(area, size, gfp_mask); 3228 3229 return area->addr; 3230 3231 fail: 3232 if (shift > PAGE_SHIFT) { 3233 shift = PAGE_SHIFT; 3234 align = real_align; 3235 size = real_size; 3236 goto again; 3237 } 3238 3239 return NULL; 3240 } 3241 3242 /** 3243 * __vmalloc_node - allocate virtually contiguous memory 3244 * @size: allocation size 3245 * @align: desired alignment 3246 * @gfp_mask: flags for the page level allocator 3247 * @node: node to use for allocation or NUMA_NO_NODE 3248 * @caller: caller's return address 3249 * 3250 * Allocate enough pages to cover @size from the page level allocator with 3251 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3252 * 3253 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3254 * and __GFP_NOFAIL are not supported 3255 * 3256 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3257 * with mm people. 3258 * 3259 * Return: pointer to the allocated memory or %NULL on error 3260 */ 3261 void *__vmalloc_node(unsigned long size, unsigned long align, 3262 gfp_t gfp_mask, int node, const void *caller) 3263 { 3264 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3265 gfp_mask, PAGE_KERNEL, 0, node, caller); 3266 } 3267 /* 3268 * This is only for performance analysis of vmalloc and stress purpose. 3269 * It is required by vmalloc test module, therefore do not use it other 3270 * than that. 3271 */ 3272 #ifdef CONFIG_TEST_VMALLOC_MODULE 3273 EXPORT_SYMBOL_GPL(__vmalloc_node); 3274 #endif 3275 3276 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3277 { 3278 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3279 __builtin_return_address(0)); 3280 } 3281 EXPORT_SYMBOL(__vmalloc); 3282 3283 /** 3284 * vmalloc - allocate virtually contiguous memory 3285 * @size: allocation size 3286 * 3287 * Allocate enough pages to cover @size from the page level 3288 * allocator and map them into contiguous kernel virtual space. 3289 * 3290 * For tight control over page level allocator and protection flags 3291 * use __vmalloc() instead. 3292 * 3293 * Return: pointer to the allocated memory or %NULL on error 3294 */ 3295 void *vmalloc(unsigned long size) 3296 { 3297 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3298 __builtin_return_address(0)); 3299 } 3300 EXPORT_SYMBOL(vmalloc); 3301 3302 /** 3303 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3304 * @size: allocation size 3305 * @gfp_mask: flags for the page level allocator 3306 * 3307 * Allocate enough pages to cover @size from the page level 3308 * allocator and map them into contiguous kernel virtual space. 3309 * If @size is greater than or equal to PMD_SIZE, allow using 3310 * huge pages for the memory 3311 * 3312 * Return: pointer to the allocated memory or %NULL on error 3313 */ 3314 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3315 { 3316 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3317 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3318 NUMA_NO_NODE, __builtin_return_address(0)); 3319 } 3320 EXPORT_SYMBOL_GPL(vmalloc_huge); 3321 3322 /** 3323 * vzalloc - allocate virtually contiguous memory with zero fill 3324 * @size: allocation size 3325 * 3326 * Allocate enough pages to cover @size from the page level 3327 * allocator and map them into contiguous kernel virtual space. 3328 * The memory allocated is set to zero. 3329 * 3330 * For tight control over page level allocator and protection flags 3331 * use __vmalloc() instead. 3332 * 3333 * Return: pointer to the allocated memory or %NULL on error 3334 */ 3335 void *vzalloc(unsigned long size) 3336 { 3337 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3338 __builtin_return_address(0)); 3339 } 3340 EXPORT_SYMBOL(vzalloc); 3341 3342 /** 3343 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3344 * @size: allocation size 3345 * 3346 * The resulting memory area is zeroed so it can be mapped to userspace 3347 * without leaking data. 3348 * 3349 * Return: pointer to the allocated memory or %NULL on error 3350 */ 3351 void *vmalloc_user(unsigned long size) 3352 { 3353 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3354 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3355 VM_USERMAP, NUMA_NO_NODE, 3356 __builtin_return_address(0)); 3357 } 3358 EXPORT_SYMBOL(vmalloc_user); 3359 3360 /** 3361 * vmalloc_node - allocate memory on a specific node 3362 * @size: allocation size 3363 * @node: numa node 3364 * 3365 * Allocate enough pages to cover @size from the page level 3366 * allocator and map them into contiguous kernel virtual space. 3367 * 3368 * For tight control over page level allocator and protection flags 3369 * use __vmalloc() instead. 3370 * 3371 * Return: pointer to the allocated memory or %NULL on error 3372 */ 3373 void *vmalloc_node(unsigned long size, int node) 3374 { 3375 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3376 __builtin_return_address(0)); 3377 } 3378 EXPORT_SYMBOL(vmalloc_node); 3379 3380 /** 3381 * vzalloc_node - allocate memory on a specific node with zero fill 3382 * @size: allocation size 3383 * @node: numa node 3384 * 3385 * Allocate enough pages to cover @size from the page level 3386 * allocator and map them into contiguous kernel virtual space. 3387 * The memory allocated is set to zero. 3388 * 3389 * Return: pointer to the allocated memory or %NULL on error 3390 */ 3391 void *vzalloc_node(unsigned long size, int node) 3392 { 3393 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3394 __builtin_return_address(0)); 3395 } 3396 EXPORT_SYMBOL(vzalloc_node); 3397 3398 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3399 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3400 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3401 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3402 #else 3403 /* 3404 * 64b systems should always have either DMA or DMA32 zones. For others 3405 * GFP_DMA32 should do the right thing and use the normal zone. 3406 */ 3407 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3408 #endif 3409 3410 /** 3411 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3412 * @size: allocation size 3413 * 3414 * Allocate enough 32bit PA addressable pages to cover @size from the 3415 * page level allocator and map them into contiguous kernel virtual space. 3416 * 3417 * Return: pointer to the allocated memory or %NULL on error 3418 */ 3419 void *vmalloc_32(unsigned long size) 3420 { 3421 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3422 __builtin_return_address(0)); 3423 } 3424 EXPORT_SYMBOL(vmalloc_32); 3425 3426 /** 3427 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3428 * @size: allocation size 3429 * 3430 * The resulting memory area is 32bit addressable and zeroed so it can be 3431 * mapped to userspace without leaking data. 3432 * 3433 * Return: pointer to the allocated memory or %NULL on error 3434 */ 3435 void *vmalloc_32_user(unsigned long size) 3436 { 3437 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3438 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3439 VM_USERMAP, NUMA_NO_NODE, 3440 __builtin_return_address(0)); 3441 } 3442 EXPORT_SYMBOL(vmalloc_32_user); 3443 3444 /* 3445 * small helper routine , copy contents to buf from addr. 3446 * If the page is not present, fill zero. 3447 */ 3448 3449 static int aligned_vread(char *buf, char *addr, unsigned long count) 3450 { 3451 struct page *p; 3452 int copied = 0; 3453 3454 while (count) { 3455 unsigned long offset, length; 3456 3457 offset = offset_in_page(addr); 3458 length = PAGE_SIZE - offset; 3459 if (length > count) 3460 length = count; 3461 p = vmalloc_to_page(addr); 3462 /* 3463 * To do safe access to this _mapped_ area, we need 3464 * lock. But adding lock here means that we need to add 3465 * overhead of vmalloc()/vfree() calls for this _debug_ 3466 * interface, rarely used. Instead of that, we'll use 3467 * kmap() and get small overhead in this access function. 3468 */ 3469 if (p) { 3470 /* We can expect USER0 is not used -- see vread() */ 3471 void *map = kmap_atomic(p); 3472 memcpy(buf, map + offset, length); 3473 kunmap_atomic(map); 3474 } else 3475 memset(buf, 0, length); 3476 3477 addr += length; 3478 buf += length; 3479 copied += length; 3480 count -= length; 3481 } 3482 return copied; 3483 } 3484 3485 static void vmap_ram_vread(char *buf, char *addr, int count, unsigned long flags) 3486 { 3487 char *start; 3488 struct vmap_block *vb; 3489 unsigned long offset; 3490 unsigned int rs, re, n; 3491 3492 /* 3493 * If it's area created by vm_map_ram() interface directly, but 3494 * not further subdividing and delegating management to vmap_block, 3495 * handle it here. 3496 */ 3497 if (!(flags & VMAP_BLOCK)) { 3498 aligned_vread(buf, addr, count); 3499 return; 3500 } 3501 3502 /* 3503 * Area is split into regions and tracked with vmap_block, read out 3504 * each region and zero fill the hole between regions. 3505 */ 3506 vb = xa_load(&vmap_blocks, addr_to_vb_idx((unsigned long)addr)); 3507 if (!vb) 3508 goto finished; 3509 3510 spin_lock(&vb->lock); 3511 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { 3512 spin_unlock(&vb->lock); 3513 goto finished; 3514 } 3515 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { 3516 if (!count) 3517 break; 3518 start = vmap_block_vaddr(vb->va->va_start, rs); 3519 while (addr < start) { 3520 if (count == 0) 3521 goto unlock; 3522 *buf = '\0'; 3523 buf++; 3524 addr++; 3525 count--; 3526 } 3527 /*it could start reading from the middle of used region*/ 3528 offset = offset_in_page(addr); 3529 n = ((re - rs + 1) << PAGE_SHIFT) - offset; 3530 if (n > count) 3531 n = count; 3532 aligned_vread(buf, start+offset, n); 3533 3534 buf += n; 3535 addr += n; 3536 count -= n; 3537 } 3538 unlock: 3539 spin_unlock(&vb->lock); 3540 3541 finished: 3542 /* zero-fill the left dirty or free regions */ 3543 if (count) 3544 memset(buf, 0, count); 3545 } 3546 3547 /** 3548 * vread() - read vmalloc area in a safe way. 3549 * @buf: buffer for reading data 3550 * @addr: vm address. 3551 * @count: number of bytes to be read. 3552 * 3553 * This function checks that addr is a valid vmalloc'ed area, and 3554 * copy data from that area to a given buffer. If the given memory range 3555 * of [addr...addr+count) includes some valid address, data is copied to 3556 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3557 * IOREMAP area is treated as memory hole and no copy is done. 3558 * 3559 * If [addr...addr+count) doesn't includes any intersects with alive 3560 * vm_struct area, returns 0. @buf should be kernel's buffer. 3561 * 3562 * Note: In usual ops, vread() is never necessary because the caller 3563 * should know vmalloc() area is valid and can use memcpy(). 3564 * This is for routines which have to access vmalloc area without 3565 * any information, as /proc/kcore. 3566 * 3567 * Return: number of bytes for which addr and buf should be increased 3568 * (same number as @count) or %0 if [addr...addr+count) doesn't 3569 * include any intersection with valid vmalloc area 3570 */ 3571 long vread(char *buf, char *addr, unsigned long count) 3572 { 3573 struct vmap_area *va; 3574 struct vm_struct *vm; 3575 char *vaddr, *buf_start = buf; 3576 unsigned long buflen = count; 3577 unsigned long n, size, flags; 3578 3579 addr = kasan_reset_tag(addr); 3580 3581 /* Don't allow overflow */ 3582 if ((unsigned long) addr + count < count) 3583 count = -(unsigned long) addr; 3584 3585 spin_lock(&vmap_area_lock); 3586 va = find_vmap_area_exceed_addr((unsigned long)addr); 3587 if (!va) 3588 goto finished; 3589 3590 /* no intersects with alive vmap_area */ 3591 if ((unsigned long)addr + count <= va->va_start) 3592 goto finished; 3593 3594 list_for_each_entry_from(va, &vmap_area_list, list) { 3595 if (!count) 3596 break; 3597 3598 vm = va->vm; 3599 flags = va->flags & VMAP_FLAGS_MASK; 3600 /* 3601 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need 3602 * be set together with VMAP_RAM. 3603 */ 3604 WARN_ON(flags == VMAP_BLOCK); 3605 3606 if (!vm && !flags) 3607 continue; 3608 3609 if (vm && (vm->flags & VM_UNINITIALIZED)) 3610 continue; 3611 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3612 smp_rmb(); 3613 3614 vaddr = (char *) va->va_start; 3615 size = vm ? get_vm_area_size(vm) : va_size(va); 3616 3617 if (addr >= vaddr + size) 3618 continue; 3619 while (addr < vaddr) { 3620 if (count == 0) 3621 goto finished; 3622 *buf = '\0'; 3623 buf++; 3624 addr++; 3625 count--; 3626 } 3627 n = vaddr + size - addr; 3628 if (n > count) 3629 n = count; 3630 3631 if (flags & VMAP_RAM) 3632 vmap_ram_vread(buf, addr, n, flags); 3633 else if (!(vm->flags & VM_IOREMAP)) 3634 aligned_vread(buf, addr, n); 3635 else /* IOREMAP area is treated as memory hole */ 3636 memset(buf, 0, n); 3637 buf += n; 3638 addr += n; 3639 count -= n; 3640 } 3641 finished: 3642 spin_unlock(&vmap_area_lock); 3643 3644 if (buf == buf_start) 3645 return 0; 3646 /* zero-fill memory holes */ 3647 if (buf != buf_start + buflen) 3648 memset(buf, 0, buflen - (buf - buf_start)); 3649 3650 return buflen; 3651 } 3652 3653 /** 3654 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3655 * @vma: vma to cover 3656 * @uaddr: target user address to start at 3657 * @kaddr: virtual address of vmalloc kernel memory 3658 * @pgoff: offset from @kaddr to start at 3659 * @size: size of map area 3660 * 3661 * Returns: 0 for success, -Exxx on failure 3662 * 3663 * This function checks that @kaddr is a valid vmalloc'ed area, 3664 * and that it is big enough to cover the range starting at 3665 * @uaddr in @vma. Will return failure if that criteria isn't 3666 * met. 3667 * 3668 * Similar to remap_pfn_range() (see mm/memory.c) 3669 */ 3670 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3671 void *kaddr, unsigned long pgoff, 3672 unsigned long size) 3673 { 3674 struct vm_struct *area; 3675 unsigned long off; 3676 unsigned long end_index; 3677 3678 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3679 return -EINVAL; 3680 3681 size = PAGE_ALIGN(size); 3682 3683 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3684 return -EINVAL; 3685 3686 area = find_vm_area(kaddr); 3687 if (!area) 3688 return -EINVAL; 3689 3690 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3691 return -EINVAL; 3692 3693 if (check_add_overflow(size, off, &end_index) || 3694 end_index > get_vm_area_size(area)) 3695 return -EINVAL; 3696 kaddr += off; 3697 3698 do { 3699 struct page *page = vmalloc_to_page(kaddr); 3700 int ret; 3701 3702 ret = vm_insert_page(vma, uaddr, page); 3703 if (ret) 3704 return ret; 3705 3706 uaddr += PAGE_SIZE; 3707 kaddr += PAGE_SIZE; 3708 size -= PAGE_SIZE; 3709 } while (size > 0); 3710 3711 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); 3712 3713 return 0; 3714 } 3715 3716 /** 3717 * remap_vmalloc_range - map vmalloc pages to userspace 3718 * @vma: vma to cover (map full range of vma) 3719 * @addr: vmalloc memory 3720 * @pgoff: number of pages into addr before first page to map 3721 * 3722 * Returns: 0 for success, -Exxx on failure 3723 * 3724 * This function checks that addr is a valid vmalloc'ed area, and 3725 * that it is big enough to cover the vma. Will return failure if 3726 * that criteria isn't met. 3727 * 3728 * Similar to remap_pfn_range() (see mm/memory.c) 3729 */ 3730 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3731 unsigned long pgoff) 3732 { 3733 return remap_vmalloc_range_partial(vma, vma->vm_start, 3734 addr, pgoff, 3735 vma->vm_end - vma->vm_start); 3736 } 3737 EXPORT_SYMBOL(remap_vmalloc_range); 3738 3739 void free_vm_area(struct vm_struct *area) 3740 { 3741 struct vm_struct *ret; 3742 ret = remove_vm_area(area->addr); 3743 BUG_ON(ret != area); 3744 kfree(area); 3745 } 3746 EXPORT_SYMBOL_GPL(free_vm_area); 3747 3748 #ifdef CONFIG_SMP 3749 static struct vmap_area *node_to_va(struct rb_node *n) 3750 { 3751 return rb_entry_safe(n, struct vmap_area, rb_node); 3752 } 3753 3754 /** 3755 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3756 * @addr: target address 3757 * 3758 * Returns: vmap_area if it is found. If there is no such area 3759 * the first highest(reverse order) vmap_area is returned 3760 * i.e. va->va_start < addr && va->va_end < addr or NULL 3761 * if there are no any areas before @addr. 3762 */ 3763 static struct vmap_area * 3764 pvm_find_va_enclose_addr(unsigned long addr) 3765 { 3766 struct vmap_area *va, *tmp; 3767 struct rb_node *n; 3768 3769 n = free_vmap_area_root.rb_node; 3770 va = NULL; 3771 3772 while (n) { 3773 tmp = rb_entry(n, struct vmap_area, rb_node); 3774 if (tmp->va_start <= addr) { 3775 va = tmp; 3776 if (tmp->va_end >= addr) 3777 break; 3778 3779 n = n->rb_right; 3780 } else { 3781 n = n->rb_left; 3782 } 3783 } 3784 3785 return va; 3786 } 3787 3788 /** 3789 * pvm_determine_end_from_reverse - find the highest aligned address 3790 * of free block below VMALLOC_END 3791 * @va: 3792 * in - the VA we start the search(reverse order); 3793 * out - the VA with the highest aligned end address. 3794 * @align: alignment for required highest address 3795 * 3796 * Returns: determined end address within vmap_area 3797 */ 3798 static unsigned long 3799 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3800 { 3801 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3802 unsigned long addr; 3803 3804 if (likely(*va)) { 3805 list_for_each_entry_from_reverse((*va), 3806 &free_vmap_area_list, list) { 3807 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3808 if ((*va)->va_start < addr) 3809 return addr; 3810 } 3811 } 3812 3813 return 0; 3814 } 3815 3816 /** 3817 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3818 * @offsets: array containing offset of each area 3819 * @sizes: array containing size of each area 3820 * @nr_vms: the number of areas to allocate 3821 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3822 * 3823 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3824 * vm_structs on success, %NULL on failure 3825 * 3826 * Percpu allocator wants to use congruent vm areas so that it can 3827 * maintain the offsets among percpu areas. This function allocates 3828 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3829 * be scattered pretty far, distance between two areas easily going up 3830 * to gigabytes. To avoid interacting with regular vmallocs, these 3831 * areas are allocated from top. 3832 * 3833 * Despite its complicated look, this allocator is rather simple. It 3834 * does everything top-down and scans free blocks from the end looking 3835 * for matching base. While scanning, if any of the areas do not fit the 3836 * base address is pulled down to fit the area. Scanning is repeated till 3837 * all the areas fit and then all necessary data structures are inserted 3838 * and the result is returned. 3839 */ 3840 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3841 const size_t *sizes, int nr_vms, 3842 size_t align) 3843 { 3844 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3845 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3846 struct vmap_area **vas, *va; 3847 struct vm_struct **vms; 3848 int area, area2, last_area, term_area; 3849 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3850 bool purged = false; 3851 3852 /* verify parameters and allocate data structures */ 3853 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3854 for (last_area = 0, area = 0; area < nr_vms; area++) { 3855 start = offsets[area]; 3856 end = start + sizes[area]; 3857 3858 /* is everything aligned properly? */ 3859 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3860 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3861 3862 /* detect the area with the highest address */ 3863 if (start > offsets[last_area]) 3864 last_area = area; 3865 3866 for (area2 = area + 1; area2 < nr_vms; area2++) { 3867 unsigned long start2 = offsets[area2]; 3868 unsigned long end2 = start2 + sizes[area2]; 3869 3870 BUG_ON(start2 < end && start < end2); 3871 } 3872 } 3873 last_end = offsets[last_area] + sizes[last_area]; 3874 3875 if (vmalloc_end - vmalloc_start < last_end) { 3876 WARN_ON(true); 3877 return NULL; 3878 } 3879 3880 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3881 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3882 if (!vas || !vms) 3883 goto err_free2; 3884 3885 for (area = 0; area < nr_vms; area++) { 3886 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3887 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3888 if (!vas[area] || !vms[area]) 3889 goto err_free; 3890 } 3891 retry: 3892 spin_lock(&free_vmap_area_lock); 3893 3894 /* start scanning - we scan from the top, begin with the last area */ 3895 area = term_area = last_area; 3896 start = offsets[area]; 3897 end = start + sizes[area]; 3898 3899 va = pvm_find_va_enclose_addr(vmalloc_end); 3900 base = pvm_determine_end_from_reverse(&va, align) - end; 3901 3902 while (true) { 3903 /* 3904 * base might have underflowed, add last_end before 3905 * comparing. 3906 */ 3907 if (base + last_end < vmalloc_start + last_end) 3908 goto overflow; 3909 3910 /* 3911 * Fitting base has not been found. 3912 */ 3913 if (va == NULL) 3914 goto overflow; 3915 3916 /* 3917 * If required width exceeds current VA block, move 3918 * base downwards and then recheck. 3919 */ 3920 if (base + end > va->va_end) { 3921 base = pvm_determine_end_from_reverse(&va, align) - end; 3922 term_area = area; 3923 continue; 3924 } 3925 3926 /* 3927 * If this VA does not fit, move base downwards and recheck. 3928 */ 3929 if (base + start < va->va_start) { 3930 va = node_to_va(rb_prev(&va->rb_node)); 3931 base = pvm_determine_end_from_reverse(&va, align) - end; 3932 term_area = area; 3933 continue; 3934 } 3935 3936 /* 3937 * This area fits, move on to the previous one. If 3938 * the previous one is the terminal one, we're done. 3939 */ 3940 area = (area + nr_vms - 1) % nr_vms; 3941 if (area == term_area) 3942 break; 3943 3944 start = offsets[area]; 3945 end = start + sizes[area]; 3946 va = pvm_find_va_enclose_addr(base + end); 3947 } 3948 3949 /* we've found a fitting base, insert all va's */ 3950 for (area = 0; area < nr_vms; area++) { 3951 int ret; 3952 3953 start = base + offsets[area]; 3954 size = sizes[area]; 3955 3956 va = pvm_find_va_enclose_addr(start); 3957 if (WARN_ON_ONCE(va == NULL)) 3958 /* It is a BUG(), but trigger recovery instead. */ 3959 goto recovery; 3960 3961 ret = adjust_va_to_fit_type(&free_vmap_area_root, 3962 &free_vmap_area_list, 3963 va, start, size); 3964 if (WARN_ON_ONCE(unlikely(ret))) 3965 /* It is a BUG(), but trigger recovery instead. */ 3966 goto recovery; 3967 3968 /* Allocated area. */ 3969 va = vas[area]; 3970 va->va_start = start; 3971 va->va_end = start + size; 3972 } 3973 3974 spin_unlock(&free_vmap_area_lock); 3975 3976 /* populate the kasan shadow space */ 3977 for (area = 0; area < nr_vms; area++) { 3978 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3979 goto err_free_shadow; 3980 } 3981 3982 /* insert all vm's */ 3983 spin_lock(&vmap_area_lock); 3984 for (area = 0; area < nr_vms; area++) { 3985 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3986 3987 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3988 pcpu_get_vm_areas); 3989 } 3990 spin_unlock(&vmap_area_lock); 3991 3992 /* 3993 * Mark allocated areas as accessible. Do it now as a best-effort 3994 * approach, as they can be mapped outside of vmalloc code. 3995 * With hardware tag-based KASAN, marking is skipped for 3996 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3997 */ 3998 for (area = 0; area < nr_vms; area++) 3999 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 4000 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 4001 4002 kfree(vas); 4003 return vms; 4004 4005 recovery: 4006 /* 4007 * Remove previously allocated areas. There is no 4008 * need in removing these areas from the busy tree, 4009 * because they are inserted only on the final step 4010 * and when pcpu_get_vm_areas() is success. 4011 */ 4012 while (area--) { 4013 orig_start = vas[area]->va_start; 4014 orig_end = vas[area]->va_end; 4015 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4016 &free_vmap_area_list); 4017 if (va) 4018 kasan_release_vmalloc(orig_start, orig_end, 4019 va->va_start, va->va_end); 4020 vas[area] = NULL; 4021 } 4022 4023 overflow: 4024 spin_unlock(&free_vmap_area_lock); 4025 if (!purged) { 4026 purge_vmap_area_lazy(); 4027 purged = true; 4028 4029 /* Before "retry", check if we recover. */ 4030 for (area = 0; area < nr_vms; area++) { 4031 if (vas[area]) 4032 continue; 4033 4034 vas[area] = kmem_cache_zalloc( 4035 vmap_area_cachep, GFP_KERNEL); 4036 if (!vas[area]) 4037 goto err_free; 4038 } 4039 4040 goto retry; 4041 } 4042 4043 err_free: 4044 for (area = 0; area < nr_vms; area++) { 4045 if (vas[area]) 4046 kmem_cache_free(vmap_area_cachep, vas[area]); 4047 4048 kfree(vms[area]); 4049 } 4050 err_free2: 4051 kfree(vas); 4052 kfree(vms); 4053 return NULL; 4054 4055 err_free_shadow: 4056 spin_lock(&free_vmap_area_lock); 4057 /* 4058 * We release all the vmalloc shadows, even the ones for regions that 4059 * hadn't been successfully added. This relies on kasan_release_vmalloc 4060 * being able to tolerate this case. 4061 */ 4062 for (area = 0; area < nr_vms; area++) { 4063 orig_start = vas[area]->va_start; 4064 orig_end = vas[area]->va_end; 4065 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4066 &free_vmap_area_list); 4067 if (va) 4068 kasan_release_vmalloc(orig_start, orig_end, 4069 va->va_start, va->va_end); 4070 vas[area] = NULL; 4071 kfree(vms[area]); 4072 } 4073 spin_unlock(&free_vmap_area_lock); 4074 kfree(vas); 4075 kfree(vms); 4076 return NULL; 4077 } 4078 4079 /** 4080 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4081 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4082 * @nr_vms: the number of allocated areas 4083 * 4084 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4085 */ 4086 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4087 { 4088 int i; 4089 4090 for (i = 0; i < nr_vms; i++) 4091 free_vm_area(vms[i]); 4092 kfree(vms); 4093 } 4094 #endif /* CONFIG_SMP */ 4095 4096 #ifdef CONFIG_PRINTK 4097 bool vmalloc_dump_obj(void *object) 4098 { 4099 struct vm_struct *vm; 4100 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 4101 4102 vm = find_vm_area(objp); 4103 if (!vm) 4104 return false; 4105 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4106 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 4107 return true; 4108 } 4109 #endif 4110 4111 #ifdef CONFIG_PROC_FS 4112 static void *s_start(struct seq_file *m, loff_t *pos) 4113 __acquires(&vmap_purge_lock) 4114 __acquires(&vmap_area_lock) 4115 { 4116 mutex_lock(&vmap_purge_lock); 4117 spin_lock(&vmap_area_lock); 4118 4119 return seq_list_start(&vmap_area_list, *pos); 4120 } 4121 4122 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4123 { 4124 return seq_list_next(p, &vmap_area_list, pos); 4125 } 4126 4127 static void s_stop(struct seq_file *m, void *p) 4128 __releases(&vmap_area_lock) 4129 __releases(&vmap_purge_lock) 4130 { 4131 spin_unlock(&vmap_area_lock); 4132 mutex_unlock(&vmap_purge_lock); 4133 } 4134 4135 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4136 { 4137 if (IS_ENABLED(CONFIG_NUMA)) { 4138 unsigned int nr, *counters = m->private; 4139 unsigned int step = 1U << vm_area_page_order(v); 4140 4141 if (!counters) 4142 return; 4143 4144 if (v->flags & VM_UNINITIALIZED) 4145 return; 4146 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4147 smp_rmb(); 4148 4149 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4150 4151 for (nr = 0; nr < v->nr_pages; nr += step) 4152 counters[page_to_nid(v->pages[nr])] += step; 4153 for_each_node_state(nr, N_HIGH_MEMORY) 4154 if (counters[nr]) 4155 seq_printf(m, " N%u=%u", nr, counters[nr]); 4156 } 4157 } 4158 4159 static void show_purge_info(struct seq_file *m) 4160 { 4161 struct vmap_area *va; 4162 4163 spin_lock(&purge_vmap_area_lock); 4164 list_for_each_entry(va, &purge_vmap_area_list, list) { 4165 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4166 (void *)va->va_start, (void *)va->va_end, 4167 va->va_end - va->va_start); 4168 } 4169 spin_unlock(&purge_vmap_area_lock); 4170 } 4171 4172 static int s_show(struct seq_file *m, void *p) 4173 { 4174 struct vmap_area *va; 4175 struct vm_struct *v; 4176 4177 va = list_entry(p, struct vmap_area, list); 4178 4179 if (!va->vm) { 4180 if (va->flags & VMAP_RAM) 4181 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4182 (void *)va->va_start, (void *)va->va_end, 4183 va->va_end - va->va_start); 4184 4185 goto final; 4186 } 4187 4188 v = va->vm; 4189 4190 seq_printf(m, "0x%pK-0x%pK %7ld", 4191 v->addr, v->addr + v->size, v->size); 4192 4193 if (v->caller) 4194 seq_printf(m, " %pS", v->caller); 4195 4196 if (v->nr_pages) 4197 seq_printf(m, " pages=%d", v->nr_pages); 4198 4199 if (v->phys_addr) 4200 seq_printf(m, " phys=%pa", &v->phys_addr); 4201 4202 if (v->flags & VM_IOREMAP) 4203 seq_puts(m, " ioremap"); 4204 4205 if (v->flags & VM_ALLOC) 4206 seq_puts(m, " vmalloc"); 4207 4208 if (v->flags & VM_MAP) 4209 seq_puts(m, " vmap"); 4210 4211 if (v->flags & VM_USERMAP) 4212 seq_puts(m, " user"); 4213 4214 if (v->flags & VM_DMA_COHERENT) 4215 seq_puts(m, " dma-coherent"); 4216 4217 if (is_vmalloc_addr(v->pages)) 4218 seq_puts(m, " vpages"); 4219 4220 show_numa_info(m, v); 4221 seq_putc(m, '\n'); 4222 4223 /* 4224 * As a final step, dump "unpurged" areas. 4225 */ 4226 final: 4227 if (list_is_last(&va->list, &vmap_area_list)) 4228 show_purge_info(m); 4229 4230 return 0; 4231 } 4232 4233 static const struct seq_operations vmalloc_op = { 4234 .start = s_start, 4235 .next = s_next, 4236 .stop = s_stop, 4237 .show = s_show, 4238 }; 4239 4240 static int __init proc_vmalloc_init(void) 4241 { 4242 if (IS_ENABLED(CONFIG_NUMA)) 4243 proc_create_seq_private("vmallocinfo", 0400, NULL, 4244 &vmalloc_op, 4245 nr_node_ids * sizeof(unsigned int), NULL); 4246 else 4247 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4248 return 0; 4249 } 4250 module_init(proc_vmalloc_init); 4251 4252 #endif 4253 4254 void __init vmalloc_init(void) 4255 { 4256 struct vmap_area *va; 4257 struct vm_struct *tmp; 4258 int i; 4259 4260 /* 4261 * Create the cache for vmap_area objects. 4262 */ 4263 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 4264 4265 for_each_possible_cpu(i) { 4266 struct vmap_block_queue *vbq; 4267 struct vfree_deferred *p; 4268 4269 vbq = &per_cpu(vmap_block_queue, i); 4270 spin_lock_init(&vbq->lock); 4271 INIT_LIST_HEAD(&vbq->free); 4272 p = &per_cpu(vfree_deferred, i); 4273 init_llist_head(&p->list); 4274 INIT_WORK(&p->wq, delayed_vfree_work); 4275 } 4276 4277 /* Import existing vmlist entries. */ 4278 for (tmp = vmlist; tmp; tmp = tmp->next) { 4279 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 4280 if (WARN_ON_ONCE(!va)) 4281 continue; 4282 4283 va->va_start = (unsigned long)tmp->addr; 4284 va->va_end = va->va_start + tmp->size; 4285 va->vm = tmp; 4286 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 4287 } 4288 4289 /* 4290 * Now we can initialize a free vmap space. 4291 */ 4292 vmap_init_free_space(); 4293 vmap_initialized = true; 4294 } 4295