1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmalloc.c 4 * 5 * Copyright (C) 1993 Linus Torvalds 6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 9 * Numa awareness, Christoph Lameter, SGI, June 2005 10 */ 11 12 #include <linux/vmalloc.h> 13 #include <linux/mm.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/sched/signal.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/interrupt.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/set_memory.h> 23 #include <linux/debugobjects.h> 24 #include <linux/kallsyms.h> 25 #include <linux/list.h> 26 #include <linux/notifier.h> 27 #include <linux/rbtree.h> 28 #include <linux/radix-tree.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/llist.h> 35 #include <linux/bitops.h> 36 #include <linux/rbtree_augmented.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/tlbflush.h> 40 #include <asm/shmparam.h> 41 42 #include "internal.h" 43 44 bool is_vmalloc_addr(const void *x) 45 { 46 unsigned long addr = (unsigned long)x; 47 48 return addr >= VMALLOC_START && addr < VMALLOC_END; 49 } 50 EXPORT_SYMBOL(is_vmalloc_addr); 51 52 struct vfree_deferred { 53 struct llist_head list; 54 struct work_struct wq; 55 }; 56 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 57 58 static void __vunmap(const void *, int); 59 60 static void free_work(struct work_struct *w) 61 { 62 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 63 struct llist_node *t, *llnode; 64 65 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 66 __vunmap((void *)llnode, 1); 67 } 68 69 /*** Page table manipulation functions ***/ 70 71 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 72 { 73 pte_t *pte; 74 75 pte = pte_offset_kernel(pmd, addr); 76 do { 77 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 78 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 79 } while (pte++, addr += PAGE_SIZE, addr != end); 80 } 81 82 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 83 { 84 pmd_t *pmd; 85 unsigned long next; 86 87 pmd = pmd_offset(pud, addr); 88 do { 89 next = pmd_addr_end(addr, end); 90 if (pmd_clear_huge(pmd)) 91 continue; 92 if (pmd_none_or_clear_bad(pmd)) 93 continue; 94 vunmap_pte_range(pmd, addr, next); 95 } while (pmd++, addr = next, addr != end); 96 } 97 98 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 99 { 100 pud_t *pud; 101 unsigned long next; 102 103 pud = pud_offset(p4d, addr); 104 do { 105 next = pud_addr_end(addr, end); 106 if (pud_clear_huge(pud)) 107 continue; 108 if (pud_none_or_clear_bad(pud)) 109 continue; 110 vunmap_pmd_range(pud, addr, next); 111 } while (pud++, addr = next, addr != end); 112 } 113 114 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 115 { 116 p4d_t *p4d; 117 unsigned long next; 118 119 p4d = p4d_offset(pgd, addr); 120 do { 121 next = p4d_addr_end(addr, end); 122 if (p4d_clear_huge(p4d)) 123 continue; 124 if (p4d_none_or_clear_bad(p4d)) 125 continue; 126 vunmap_pud_range(p4d, addr, next); 127 } while (p4d++, addr = next, addr != end); 128 } 129 130 static void vunmap_page_range(unsigned long addr, unsigned long end) 131 { 132 pgd_t *pgd; 133 unsigned long next; 134 135 BUG_ON(addr >= end); 136 pgd = pgd_offset_k(addr); 137 do { 138 next = pgd_addr_end(addr, end); 139 if (pgd_none_or_clear_bad(pgd)) 140 continue; 141 vunmap_p4d_range(pgd, addr, next); 142 } while (pgd++, addr = next, addr != end); 143 } 144 145 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 146 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 147 { 148 pte_t *pte; 149 150 /* 151 * nr is a running index into the array which helps higher level 152 * callers keep track of where we're up to. 153 */ 154 155 pte = pte_alloc_kernel(pmd, addr); 156 if (!pte) 157 return -ENOMEM; 158 do { 159 struct page *page = pages[*nr]; 160 161 if (WARN_ON(!pte_none(*pte))) 162 return -EBUSY; 163 if (WARN_ON(!page)) 164 return -ENOMEM; 165 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 166 (*nr)++; 167 } while (pte++, addr += PAGE_SIZE, addr != end); 168 return 0; 169 } 170 171 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 172 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 173 { 174 pmd_t *pmd; 175 unsigned long next; 176 177 pmd = pmd_alloc(&init_mm, pud, addr); 178 if (!pmd) 179 return -ENOMEM; 180 do { 181 next = pmd_addr_end(addr, end); 182 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 183 return -ENOMEM; 184 } while (pmd++, addr = next, addr != end); 185 return 0; 186 } 187 188 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 189 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 190 { 191 pud_t *pud; 192 unsigned long next; 193 194 pud = pud_alloc(&init_mm, p4d, addr); 195 if (!pud) 196 return -ENOMEM; 197 do { 198 next = pud_addr_end(addr, end); 199 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 200 return -ENOMEM; 201 } while (pud++, addr = next, addr != end); 202 return 0; 203 } 204 205 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 206 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 207 { 208 p4d_t *p4d; 209 unsigned long next; 210 211 p4d = p4d_alloc(&init_mm, pgd, addr); 212 if (!p4d) 213 return -ENOMEM; 214 do { 215 next = p4d_addr_end(addr, end); 216 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 217 return -ENOMEM; 218 } while (p4d++, addr = next, addr != end); 219 return 0; 220 } 221 222 /* 223 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 224 * will have pfns corresponding to the "pages" array. 225 * 226 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 227 */ 228 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 229 pgprot_t prot, struct page **pages) 230 { 231 pgd_t *pgd; 232 unsigned long next; 233 unsigned long addr = start; 234 int err = 0; 235 int nr = 0; 236 237 BUG_ON(addr >= end); 238 pgd = pgd_offset_k(addr); 239 do { 240 next = pgd_addr_end(addr, end); 241 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 242 if (err) 243 return err; 244 } while (pgd++, addr = next, addr != end); 245 246 return nr; 247 } 248 249 static int vmap_page_range(unsigned long start, unsigned long end, 250 pgprot_t prot, struct page **pages) 251 { 252 int ret; 253 254 ret = vmap_page_range_noflush(start, end, prot, pages); 255 flush_cache_vmap(start, end); 256 return ret; 257 } 258 259 int is_vmalloc_or_module_addr(const void *x) 260 { 261 /* 262 * ARM, x86-64 and sparc64 put modules in a special place, 263 * and fall back on vmalloc() if that fails. Others 264 * just put it in the vmalloc space. 265 */ 266 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 267 unsigned long addr = (unsigned long)x; 268 if (addr >= MODULES_VADDR && addr < MODULES_END) 269 return 1; 270 #endif 271 return is_vmalloc_addr(x); 272 } 273 274 /* 275 * Walk a vmap address to the struct page it maps. 276 */ 277 struct page *vmalloc_to_page(const void *vmalloc_addr) 278 { 279 unsigned long addr = (unsigned long) vmalloc_addr; 280 struct page *page = NULL; 281 pgd_t *pgd = pgd_offset_k(addr); 282 p4d_t *p4d; 283 pud_t *pud; 284 pmd_t *pmd; 285 pte_t *ptep, pte; 286 287 /* 288 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 289 * architectures that do not vmalloc module space 290 */ 291 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 292 293 if (pgd_none(*pgd)) 294 return NULL; 295 p4d = p4d_offset(pgd, addr); 296 if (p4d_none(*p4d)) 297 return NULL; 298 pud = pud_offset(p4d, addr); 299 300 /* 301 * Don't dereference bad PUD or PMD (below) entries. This will also 302 * identify huge mappings, which we may encounter on architectures 303 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 304 * identified as vmalloc addresses by is_vmalloc_addr(), but are 305 * not [unambiguously] associated with a struct page, so there is 306 * no correct value to return for them. 307 */ 308 WARN_ON_ONCE(pud_bad(*pud)); 309 if (pud_none(*pud) || pud_bad(*pud)) 310 return NULL; 311 pmd = pmd_offset(pud, addr); 312 WARN_ON_ONCE(pmd_bad(*pmd)); 313 if (pmd_none(*pmd) || pmd_bad(*pmd)) 314 return NULL; 315 316 ptep = pte_offset_map(pmd, addr); 317 pte = *ptep; 318 if (pte_present(pte)) 319 page = pte_page(pte); 320 pte_unmap(ptep); 321 return page; 322 } 323 EXPORT_SYMBOL(vmalloc_to_page); 324 325 /* 326 * Map a vmalloc()-space virtual address to the physical page frame number. 327 */ 328 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 329 { 330 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 331 } 332 EXPORT_SYMBOL(vmalloc_to_pfn); 333 334 335 /*** Global kva allocator ***/ 336 337 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 338 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 339 340 341 static DEFINE_SPINLOCK(vmap_area_lock); 342 static DEFINE_SPINLOCK(free_vmap_area_lock); 343 /* Export for kexec only */ 344 LIST_HEAD(vmap_area_list); 345 static LLIST_HEAD(vmap_purge_list); 346 static struct rb_root vmap_area_root = RB_ROOT; 347 static bool vmap_initialized __read_mostly; 348 349 /* 350 * This kmem_cache is used for vmap_area objects. Instead of 351 * allocating from slab we reuse an object from this cache to 352 * make things faster. Especially in "no edge" splitting of 353 * free block. 354 */ 355 static struct kmem_cache *vmap_area_cachep; 356 357 /* 358 * This linked list is used in pair with free_vmap_area_root. 359 * It gives O(1) access to prev/next to perform fast coalescing. 360 */ 361 static LIST_HEAD(free_vmap_area_list); 362 363 /* 364 * This augment red-black tree represents the free vmap space. 365 * All vmap_area objects in this tree are sorted by va->va_start 366 * address. It is used for allocation and merging when a vmap 367 * object is released. 368 * 369 * Each vmap_area node contains a maximum available free block 370 * of its sub-tree, right or left. Therefore it is possible to 371 * find a lowest match of free area. 372 */ 373 static struct rb_root free_vmap_area_root = RB_ROOT; 374 375 /* 376 * Preload a CPU with one object for "no edge" split case. The 377 * aim is to get rid of allocations from the atomic context, thus 378 * to use more permissive allocation masks. 379 */ 380 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 381 382 static __always_inline unsigned long 383 va_size(struct vmap_area *va) 384 { 385 return (va->va_end - va->va_start); 386 } 387 388 static __always_inline unsigned long 389 get_subtree_max_size(struct rb_node *node) 390 { 391 struct vmap_area *va; 392 393 va = rb_entry_safe(node, struct vmap_area, rb_node); 394 return va ? va->subtree_max_size : 0; 395 } 396 397 /* 398 * Gets called when remove the node and rotate. 399 */ 400 static __always_inline unsigned long 401 compute_subtree_max_size(struct vmap_area *va) 402 { 403 return max3(va_size(va), 404 get_subtree_max_size(va->rb_node.rb_left), 405 get_subtree_max_size(va->rb_node.rb_right)); 406 } 407 408 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 409 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 410 411 static void purge_vmap_area_lazy(void); 412 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 413 static unsigned long lazy_max_pages(void); 414 415 static atomic_long_t nr_vmalloc_pages; 416 417 unsigned long vmalloc_nr_pages(void) 418 { 419 return atomic_long_read(&nr_vmalloc_pages); 420 } 421 422 static struct vmap_area *__find_vmap_area(unsigned long addr) 423 { 424 struct rb_node *n = vmap_area_root.rb_node; 425 426 while (n) { 427 struct vmap_area *va; 428 429 va = rb_entry(n, struct vmap_area, rb_node); 430 if (addr < va->va_start) 431 n = n->rb_left; 432 else if (addr >= va->va_end) 433 n = n->rb_right; 434 else 435 return va; 436 } 437 438 return NULL; 439 } 440 441 /* 442 * This function returns back addresses of parent node 443 * and its left or right link for further processing. 444 */ 445 static __always_inline struct rb_node ** 446 find_va_links(struct vmap_area *va, 447 struct rb_root *root, struct rb_node *from, 448 struct rb_node **parent) 449 { 450 struct vmap_area *tmp_va; 451 struct rb_node **link; 452 453 if (root) { 454 link = &root->rb_node; 455 if (unlikely(!*link)) { 456 *parent = NULL; 457 return link; 458 } 459 } else { 460 link = &from; 461 } 462 463 /* 464 * Go to the bottom of the tree. When we hit the last point 465 * we end up with parent rb_node and correct direction, i name 466 * it link, where the new va->rb_node will be attached to. 467 */ 468 do { 469 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 470 471 /* 472 * During the traversal we also do some sanity check. 473 * Trigger the BUG() if there are sides(left/right) 474 * or full overlaps. 475 */ 476 if (va->va_start < tmp_va->va_end && 477 va->va_end <= tmp_va->va_start) 478 link = &(*link)->rb_left; 479 else if (va->va_end > tmp_va->va_start && 480 va->va_start >= tmp_va->va_end) 481 link = &(*link)->rb_right; 482 else 483 BUG(); 484 } while (*link); 485 486 *parent = &tmp_va->rb_node; 487 return link; 488 } 489 490 static __always_inline struct list_head * 491 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 492 { 493 struct list_head *list; 494 495 if (unlikely(!parent)) 496 /* 497 * The red-black tree where we try to find VA neighbors 498 * before merging or inserting is empty, i.e. it means 499 * there is no free vmap space. Normally it does not 500 * happen but we handle this case anyway. 501 */ 502 return NULL; 503 504 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 505 return (&parent->rb_right == link ? list->next : list); 506 } 507 508 static __always_inline void 509 link_va(struct vmap_area *va, struct rb_root *root, 510 struct rb_node *parent, struct rb_node **link, struct list_head *head) 511 { 512 /* 513 * VA is still not in the list, but we can 514 * identify its future previous list_head node. 515 */ 516 if (likely(parent)) { 517 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 518 if (&parent->rb_right != link) 519 head = head->prev; 520 } 521 522 /* Insert to the rb-tree */ 523 rb_link_node(&va->rb_node, parent, link); 524 if (root == &free_vmap_area_root) { 525 /* 526 * Some explanation here. Just perform simple insertion 527 * to the tree. We do not set va->subtree_max_size to 528 * its current size before calling rb_insert_augmented(). 529 * It is because of we populate the tree from the bottom 530 * to parent levels when the node _is_ in the tree. 531 * 532 * Therefore we set subtree_max_size to zero after insertion, 533 * to let __augment_tree_propagate_from() puts everything to 534 * the correct order later on. 535 */ 536 rb_insert_augmented(&va->rb_node, 537 root, &free_vmap_area_rb_augment_cb); 538 va->subtree_max_size = 0; 539 } else { 540 rb_insert_color(&va->rb_node, root); 541 } 542 543 /* Address-sort this list */ 544 list_add(&va->list, head); 545 } 546 547 static __always_inline void 548 unlink_va(struct vmap_area *va, struct rb_root *root) 549 { 550 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 551 return; 552 553 if (root == &free_vmap_area_root) 554 rb_erase_augmented(&va->rb_node, 555 root, &free_vmap_area_rb_augment_cb); 556 else 557 rb_erase(&va->rb_node, root); 558 559 list_del(&va->list); 560 RB_CLEAR_NODE(&va->rb_node); 561 } 562 563 #if DEBUG_AUGMENT_PROPAGATE_CHECK 564 static void 565 augment_tree_propagate_check(struct rb_node *n) 566 { 567 struct vmap_area *va; 568 struct rb_node *node; 569 unsigned long size; 570 bool found = false; 571 572 if (n == NULL) 573 return; 574 575 va = rb_entry(n, struct vmap_area, rb_node); 576 size = va->subtree_max_size; 577 node = n; 578 579 while (node) { 580 va = rb_entry(node, struct vmap_area, rb_node); 581 582 if (get_subtree_max_size(node->rb_left) == size) { 583 node = node->rb_left; 584 } else { 585 if (va_size(va) == size) { 586 found = true; 587 break; 588 } 589 590 node = node->rb_right; 591 } 592 } 593 594 if (!found) { 595 va = rb_entry(n, struct vmap_area, rb_node); 596 pr_emerg("tree is corrupted: %lu, %lu\n", 597 va_size(va), va->subtree_max_size); 598 } 599 600 augment_tree_propagate_check(n->rb_left); 601 augment_tree_propagate_check(n->rb_right); 602 } 603 #endif 604 605 /* 606 * This function populates subtree_max_size from bottom to upper 607 * levels starting from VA point. The propagation must be done 608 * when VA size is modified by changing its va_start/va_end. Or 609 * in case of newly inserting of VA to the tree. 610 * 611 * It means that __augment_tree_propagate_from() must be called: 612 * - After VA has been inserted to the tree(free path); 613 * - After VA has been shrunk(allocation path); 614 * - After VA has been increased(merging path). 615 * 616 * Please note that, it does not mean that upper parent nodes 617 * and their subtree_max_size are recalculated all the time up 618 * to the root node. 619 * 620 * 4--8 621 * /\ 622 * / \ 623 * / \ 624 * 2--2 8--8 625 * 626 * For example if we modify the node 4, shrinking it to 2, then 627 * no any modification is required. If we shrink the node 2 to 1 628 * its subtree_max_size is updated only, and set to 1. If we shrink 629 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 630 * node becomes 4--6. 631 */ 632 static __always_inline void 633 augment_tree_propagate_from(struct vmap_area *va) 634 { 635 struct rb_node *node = &va->rb_node; 636 unsigned long new_va_sub_max_size; 637 638 while (node) { 639 va = rb_entry(node, struct vmap_area, rb_node); 640 new_va_sub_max_size = compute_subtree_max_size(va); 641 642 /* 643 * If the newly calculated maximum available size of the 644 * subtree is equal to the current one, then it means that 645 * the tree is propagated correctly. So we have to stop at 646 * this point to save cycles. 647 */ 648 if (va->subtree_max_size == new_va_sub_max_size) 649 break; 650 651 va->subtree_max_size = new_va_sub_max_size; 652 node = rb_parent(&va->rb_node); 653 } 654 655 #if DEBUG_AUGMENT_PROPAGATE_CHECK 656 augment_tree_propagate_check(free_vmap_area_root.rb_node); 657 #endif 658 } 659 660 static void 661 insert_vmap_area(struct vmap_area *va, 662 struct rb_root *root, struct list_head *head) 663 { 664 struct rb_node **link; 665 struct rb_node *parent; 666 667 link = find_va_links(va, root, NULL, &parent); 668 link_va(va, root, parent, link, head); 669 } 670 671 static void 672 insert_vmap_area_augment(struct vmap_area *va, 673 struct rb_node *from, struct rb_root *root, 674 struct list_head *head) 675 { 676 struct rb_node **link; 677 struct rb_node *parent; 678 679 if (from) 680 link = find_va_links(va, NULL, from, &parent); 681 else 682 link = find_va_links(va, root, NULL, &parent); 683 684 link_va(va, root, parent, link, head); 685 augment_tree_propagate_from(va); 686 } 687 688 /* 689 * Merge de-allocated chunk of VA memory with previous 690 * and next free blocks. If coalesce is not done a new 691 * free area is inserted. If VA has been merged, it is 692 * freed. 693 */ 694 static __always_inline struct vmap_area * 695 merge_or_add_vmap_area(struct vmap_area *va, 696 struct rb_root *root, struct list_head *head) 697 { 698 struct vmap_area *sibling; 699 struct list_head *next; 700 struct rb_node **link; 701 struct rb_node *parent; 702 bool merged = false; 703 704 /* 705 * Find a place in the tree where VA potentially will be 706 * inserted, unless it is merged with its sibling/siblings. 707 */ 708 link = find_va_links(va, root, NULL, &parent); 709 710 /* 711 * Get next node of VA to check if merging can be done. 712 */ 713 next = get_va_next_sibling(parent, link); 714 if (unlikely(next == NULL)) 715 goto insert; 716 717 /* 718 * start end 719 * | | 720 * |<------VA------>|<-----Next----->| 721 * | | 722 * start end 723 */ 724 if (next != head) { 725 sibling = list_entry(next, struct vmap_area, list); 726 if (sibling->va_start == va->va_end) { 727 sibling->va_start = va->va_start; 728 729 /* Check and update the tree if needed. */ 730 augment_tree_propagate_from(sibling); 731 732 /* Free vmap_area object. */ 733 kmem_cache_free(vmap_area_cachep, va); 734 735 /* Point to the new merged area. */ 736 va = sibling; 737 merged = true; 738 } 739 } 740 741 /* 742 * start end 743 * | | 744 * |<-----Prev----->|<------VA------>| 745 * | | 746 * start end 747 */ 748 if (next->prev != head) { 749 sibling = list_entry(next->prev, struct vmap_area, list); 750 if (sibling->va_end == va->va_start) { 751 sibling->va_end = va->va_end; 752 753 /* Check and update the tree if needed. */ 754 augment_tree_propagate_from(sibling); 755 756 if (merged) 757 unlink_va(va, root); 758 759 /* Free vmap_area object. */ 760 kmem_cache_free(vmap_area_cachep, va); 761 762 /* Point to the new merged area. */ 763 va = sibling; 764 merged = true; 765 } 766 } 767 768 insert: 769 if (!merged) { 770 link_va(va, root, parent, link, head); 771 augment_tree_propagate_from(va); 772 } 773 774 return va; 775 } 776 777 static __always_inline bool 778 is_within_this_va(struct vmap_area *va, unsigned long size, 779 unsigned long align, unsigned long vstart) 780 { 781 unsigned long nva_start_addr; 782 783 if (va->va_start > vstart) 784 nva_start_addr = ALIGN(va->va_start, align); 785 else 786 nva_start_addr = ALIGN(vstart, align); 787 788 /* Can be overflowed due to big size or alignment. */ 789 if (nva_start_addr + size < nva_start_addr || 790 nva_start_addr < vstart) 791 return false; 792 793 return (nva_start_addr + size <= va->va_end); 794 } 795 796 /* 797 * Find the first free block(lowest start address) in the tree, 798 * that will accomplish the request corresponding to passing 799 * parameters. 800 */ 801 static __always_inline struct vmap_area * 802 find_vmap_lowest_match(unsigned long size, 803 unsigned long align, unsigned long vstart) 804 { 805 struct vmap_area *va; 806 struct rb_node *node; 807 unsigned long length; 808 809 /* Start from the root. */ 810 node = free_vmap_area_root.rb_node; 811 812 /* Adjust the search size for alignment overhead. */ 813 length = size + align - 1; 814 815 while (node) { 816 va = rb_entry(node, struct vmap_area, rb_node); 817 818 if (get_subtree_max_size(node->rb_left) >= length && 819 vstart < va->va_start) { 820 node = node->rb_left; 821 } else { 822 if (is_within_this_va(va, size, align, vstart)) 823 return va; 824 825 /* 826 * Does not make sense to go deeper towards the right 827 * sub-tree if it does not have a free block that is 828 * equal or bigger to the requested search length. 829 */ 830 if (get_subtree_max_size(node->rb_right) >= length) { 831 node = node->rb_right; 832 continue; 833 } 834 835 /* 836 * OK. We roll back and find the first right sub-tree, 837 * that will satisfy the search criteria. It can happen 838 * only once due to "vstart" restriction. 839 */ 840 while ((node = rb_parent(node))) { 841 va = rb_entry(node, struct vmap_area, rb_node); 842 if (is_within_this_va(va, size, align, vstart)) 843 return va; 844 845 if (get_subtree_max_size(node->rb_right) >= length && 846 vstart <= va->va_start) { 847 node = node->rb_right; 848 break; 849 } 850 } 851 } 852 } 853 854 return NULL; 855 } 856 857 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 858 #include <linux/random.h> 859 860 static struct vmap_area * 861 find_vmap_lowest_linear_match(unsigned long size, 862 unsigned long align, unsigned long vstart) 863 { 864 struct vmap_area *va; 865 866 list_for_each_entry(va, &free_vmap_area_list, list) { 867 if (!is_within_this_va(va, size, align, vstart)) 868 continue; 869 870 return va; 871 } 872 873 return NULL; 874 } 875 876 static void 877 find_vmap_lowest_match_check(unsigned long size) 878 { 879 struct vmap_area *va_1, *va_2; 880 unsigned long vstart; 881 unsigned int rnd; 882 883 get_random_bytes(&rnd, sizeof(rnd)); 884 vstart = VMALLOC_START + rnd; 885 886 va_1 = find_vmap_lowest_match(size, 1, vstart); 887 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 888 889 if (va_1 != va_2) 890 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 891 va_1, va_2, vstart); 892 } 893 #endif 894 895 enum fit_type { 896 NOTHING_FIT = 0, 897 FL_FIT_TYPE = 1, /* full fit */ 898 LE_FIT_TYPE = 2, /* left edge fit */ 899 RE_FIT_TYPE = 3, /* right edge fit */ 900 NE_FIT_TYPE = 4 /* no edge fit */ 901 }; 902 903 static __always_inline enum fit_type 904 classify_va_fit_type(struct vmap_area *va, 905 unsigned long nva_start_addr, unsigned long size) 906 { 907 enum fit_type type; 908 909 /* Check if it is within VA. */ 910 if (nva_start_addr < va->va_start || 911 nva_start_addr + size > va->va_end) 912 return NOTHING_FIT; 913 914 /* Now classify. */ 915 if (va->va_start == nva_start_addr) { 916 if (va->va_end == nva_start_addr + size) 917 type = FL_FIT_TYPE; 918 else 919 type = LE_FIT_TYPE; 920 } else if (va->va_end == nva_start_addr + size) { 921 type = RE_FIT_TYPE; 922 } else { 923 type = NE_FIT_TYPE; 924 } 925 926 return type; 927 } 928 929 static __always_inline int 930 adjust_va_to_fit_type(struct vmap_area *va, 931 unsigned long nva_start_addr, unsigned long size, 932 enum fit_type type) 933 { 934 struct vmap_area *lva = NULL; 935 936 if (type == FL_FIT_TYPE) { 937 /* 938 * No need to split VA, it fully fits. 939 * 940 * | | 941 * V NVA V 942 * |---------------| 943 */ 944 unlink_va(va, &free_vmap_area_root); 945 kmem_cache_free(vmap_area_cachep, va); 946 } else if (type == LE_FIT_TYPE) { 947 /* 948 * Split left edge of fit VA. 949 * 950 * | | 951 * V NVA V R 952 * |-------|-------| 953 */ 954 va->va_start += size; 955 } else if (type == RE_FIT_TYPE) { 956 /* 957 * Split right edge of fit VA. 958 * 959 * | | 960 * L V NVA V 961 * |-------|-------| 962 */ 963 va->va_end = nva_start_addr; 964 } else if (type == NE_FIT_TYPE) { 965 /* 966 * Split no edge of fit VA. 967 * 968 * | | 969 * L V NVA V R 970 * |---|-------|---| 971 */ 972 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 973 if (unlikely(!lva)) { 974 /* 975 * For percpu allocator we do not do any pre-allocation 976 * and leave it as it is. The reason is it most likely 977 * never ends up with NE_FIT_TYPE splitting. In case of 978 * percpu allocations offsets and sizes are aligned to 979 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 980 * are its main fitting cases. 981 * 982 * There are a few exceptions though, as an example it is 983 * a first allocation (early boot up) when we have "one" 984 * big free space that has to be split. 985 * 986 * Also we can hit this path in case of regular "vmap" 987 * allocations, if "this" current CPU was not preloaded. 988 * See the comment in alloc_vmap_area() why. If so, then 989 * GFP_NOWAIT is used instead to get an extra object for 990 * split purpose. That is rare and most time does not 991 * occur. 992 * 993 * What happens if an allocation gets failed. Basically, 994 * an "overflow" path is triggered to purge lazily freed 995 * areas to free some memory, then, the "retry" path is 996 * triggered to repeat one more time. See more details 997 * in alloc_vmap_area() function. 998 */ 999 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1000 if (!lva) 1001 return -1; 1002 } 1003 1004 /* 1005 * Build the remainder. 1006 */ 1007 lva->va_start = va->va_start; 1008 lva->va_end = nva_start_addr; 1009 1010 /* 1011 * Shrink this VA to remaining size. 1012 */ 1013 va->va_start = nva_start_addr + size; 1014 } else { 1015 return -1; 1016 } 1017 1018 if (type != FL_FIT_TYPE) { 1019 augment_tree_propagate_from(va); 1020 1021 if (lva) /* type == NE_FIT_TYPE */ 1022 insert_vmap_area_augment(lva, &va->rb_node, 1023 &free_vmap_area_root, &free_vmap_area_list); 1024 } 1025 1026 return 0; 1027 } 1028 1029 /* 1030 * Returns a start address of the newly allocated area, if success. 1031 * Otherwise a vend is returned that indicates failure. 1032 */ 1033 static __always_inline unsigned long 1034 __alloc_vmap_area(unsigned long size, unsigned long align, 1035 unsigned long vstart, unsigned long vend) 1036 { 1037 unsigned long nva_start_addr; 1038 struct vmap_area *va; 1039 enum fit_type type; 1040 int ret; 1041 1042 va = find_vmap_lowest_match(size, align, vstart); 1043 if (unlikely(!va)) 1044 return vend; 1045 1046 if (va->va_start > vstart) 1047 nva_start_addr = ALIGN(va->va_start, align); 1048 else 1049 nva_start_addr = ALIGN(vstart, align); 1050 1051 /* Check the "vend" restriction. */ 1052 if (nva_start_addr + size > vend) 1053 return vend; 1054 1055 /* Classify what we have found. */ 1056 type = classify_va_fit_type(va, nva_start_addr, size); 1057 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1058 return vend; 1059 1060 /* Update the free vmap_area. */ 1061 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1062 if (ret) 1063 return vend; 1064 1065 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1066 find_vmap_lowest_match_check(size); 1067 #endif 1068 1069 return nva_start_addr; 1070 } 1071 1072 /* 1073 * Free a region of KVA allocated by alloc_vmap_area 1074 */ 1075 static void free_vmap_area(struct vmap_area *va) 1076 { 1077 /* 1078 * Remove from the busy tree/list. 1079 */ 1080 spin_lock(&vmap_area_lock); 1081 unlink_va(va, &vmap_area_root); 1082 spin_unlock(&vmap_area_lock); 1083 1084 /* 1085 * Insert/Merge it back to the free tree/list. 1086 */ 1087 spin_lock(&free_vmap_area_lock); 1088 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list); 1089 spin_unlock(&free_vmap_area_lock); 1090 } 1091 1092 /* 1093 * Allocate a region of KVA of the specified size and alignment, within the 1094 * vstart and vend. 1095 */ 1096 static struct vmap_area *alloc_vmap_area(unsigned long size, 1097 unsigned long align, 1098 unsigned long vstart, unsigned long vend, 1099 int node, gfp_t gfp_mask) 1100 { 1101 struct vmap_area *va, *pva; 1102 unsigned long addr; 1103 int purged = 0; 1104 int ret; 1105 1106 BUG_ON(!size); 1107 BUG_ON(offset_in_page(size)); 1108 BUG_ON(!is_power_of_2(align)); 1109 1110 if (unlikely(!vmap_initialized)) 1111 return ERR_PTR(-EBUSY); 1112 1113 might_sleep(); 1114 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1115 1116 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1117 if (unlikely(!va)) 1118 return ERR_PTR(-ENOMEM); 1119 1120 /* 1121 * Only scan the relevant parts containing pointers to other objects 1122 * to avoid false negatives. 1123 */ 1124 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1125 1126 retry: 1127 /* 1128 * Preload this CPU with one extra vmap_area object. It is used 1129 * when fit type of free area is NE_FIT_TYPE. Please note, it 1130 * does not guarantee that an allocation occurs on a CPU that 1131 * is preloaded, instead we minimize the case when it is not. 1132 * It can happen because of cpu migration, because there is a 1133 * race until the below spinlock is taken. 1134 * 1135 * The preload is done in non-atomic context, thus it allows us 1136 * to use more permissive allocation masks to be more stable under 1137 * low memory condition and high memory pressure. In rare case, 1138 * if not preloaded, GFP_NOWAIT is used. 1139 * 1140 * Set "pva" to NULL here, because of "retry" path. 1141 */ 1142 pva = NULL; 1143 1144 if (!this_cpu_read(ne_fit_preload_node)) 1145 /* 1146 * Even if it fails we do not really care about that. 1147 * Just proceed as it is. If needed "overflow" path 1148 * will refill the cache we allocate from. 1149 */ 1150 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1151 1152 spin_lock(&free_vmap_area_lock); 1153 1154 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) 1155 kmem_cache_free(vmap_area_cachep, pva); 1156 1157 /* 1158 * If an allocation fails, the "vend" address is 1159 * returned. Therefore trigger the overflow path. 1160 */ 1161 addr = __alloc_vmap_area(size, align, vstart, vend); 1162 spin_unlock(&free_vmap_area_lock); 1163 1164 if (unlikely(addr == vend)) 1165 goto overflow; 1166 1167 va->va_start = addr; 1168 va->va_end = addr + size; 1169 va->vm = NULL; 1170 1171 1172 spin_lock(&vmap_area_lock); 1173 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1174 spin_unlock(&vmap_area_lock); 1175 1176 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1177 BUG_ON(va->va_start < vstart); 1178 BUG_ON(va->va_end > vend); 1179 1180 ret = kasan_populate_vmalloc(addr, size); 1181 if (ret) { 1182 free_vmap_area(va); 1183 return ERR_PTR(ret); 1184 } 1185 1186 return va; 1187 1188 overflow: 1189 if (!purged) { 1190 purge_vmap_area_lazy(); 1191 purged = 1; 1192 goto retry; 1193 } 1194 1195 if (gfpflags_allow_blocking(gfp_mask)) { 1196 unsigned long freed = 0; 1197 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1198 if (freed > 0) { 1199 purged = 0; 1200 goto retry; 1201 } 1202 } 1203 1204 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1205 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1206 size); 1207 1208 kmem_cache_free(vmap_area_cachep, va); 1209 return ERR_PTR(-EBUSY); 1210 } 1211 1212 int register_vmap_purge_notifier(struct notifier_block *nb) 1213 { 1214 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1215 } 1216 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1217 1218 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1219 { 1220 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1221 } 1222 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1223 1224 /* 1225 * Clear the pagetable entries of a given vmap_area 1226 */ 1227 static void unmap_vmap_area(struct vmap_area *va) 1228 { 1229 vunmap_page_range(va->va_start, va->va_end); 1230 } 1231 1232 /* 1233 * lazy_max_pages is the maximum amount of virtual address space we gather up 1234 * before attempting to purge with a TLB flush. 1235 * 1236 * There is a tradeoff here: a larger number will cover more kernel page tables 1237 * and take slightly longer to purge, but it will linearly reduce the number of 1238 * global TLB flushes that must be performed. It would seem natural to scale 1239 * this number up linearly with the number of CPUs (because vmapping activity 1240 * could also scale linearly with the number of CPUs), however it is likely 1241 * that in practice, workloads might be constrained in other ways that mean 1242 * vmap activity will not scale linearly with CPUs. Also, I want to be 1243 * conservative and not introduce a big latency on huge systems, so go with 1244 * a less aggressive log scale. It will still be an improvement over the old 1245 * code, and it will be simple to change the scale factor if we find that it 1246 * becomes a problem on bigger systems. 1247 */ 1248 static unsigned long lazy_max_pages(void) 1249 { 1250 unsigned int log; 1251 1252 log = fls(num_online_cpus()); 1253 1254 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1255 } 1256 1257 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1258 1259 /* 1260 * Serialize vmap purging. There is no actual criticial section protected 1261 * by this look, but we want to avoid concurrent calls for performance 1262 * reasons and to make the pcpu_get_vm_areas more deterministic. 1263 */ 1264 static DEFINE_MUTEX(vmap_purge_lock); 1265 1266 /* for per-CPU blocks */ 1267 static void purge_fragmented_blocks_allcpus(void); 1268 1269 /* 1270 * called before a call to iounmap() if the caller wants vm_area_struct's 1271 * immediately freed. 1272 */ 1273 void set_iounmap_nonlazy(void) 1274 { 1275 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1276 } 1277 1278 /* 1279 * Purges all lazily-freed vmap areas. 1280 */ 1281 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1282 { 1283 unsigned long resched_threshold; 1284 struct llist_node *valist; 1285 struct vmap_area *va; 1286 struct vmap_area *n_va; 1287 1288 lockdep_assert_held(&vmap_purge_lock); 1289 1290 valist = llist_del_all(&vmap_purge_list); 1291 if (unlikely(valist == NULL)) 1292 return false; 1293 1294 /* 1295 * First make sure the mappings are removed from all page-tables 1296 * before they are freed. 1297 */ 1298 vmalloc_sync_unmappings(); 1299 1300 /* 1301 * TODO: to calculate a flush range without looping. 1302 * The list can be up to lazy_max_pages() elements. 1303 */ 1304 llist_for_each_entry(va, valist, purge_list) { 1305 if (va->va_start < start) 1306 start = va->va_start; 1307 if (va->va_end > end) 1308 end = va->va_end; 1309 } 1310 1311 flush_tlb_kernel_range(start, end); 1312 resched_threshold = lazy_max_pages() << 1; 1313 1314 spin_lock(&free_vmap_area_lock); 1315 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 1316 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1317 unsigned long orig_start = va->va_start; 1318 unsigned long orig_end = va->va_end; 1319 1320 /* 1321 * Finally insert or merge lazily-freed area. It is 1322 * detached and there is no need to "unlink" it from 1323 * anything. 1324 */ 1325 va = merge_or_add_vmap_area(va, &free_vmap_area_root, 1326 &free_vmap_area_list); 1327 1328 if (is_vmalloc_or_module_addr((void *)orig_start)) 1329 kasan_release_vmalloc(orig_start, orig_end, 1330 va->va_start, va->va_end); 1331 1332 atomic_long_sub(nr, &vmap_lazy_nr); 1333 1334 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1335 cond_resched_lock(&free_vmap_area_lock); 1336 } 1337 spin_unlock(&free_vmap_area_lock); 1338 return true; 1339 } 1340 1341 /* 1342 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1343 * is already purging. 1344 */ 1345 static void try_purge_vmap_area_lazy(void) 1346 { 1347 if (mutex_trylock(&vmap_purge_lock)) { 1348 __purge_vmap_area_lazy(ULONG_MAX, 0); 1349 mutex_unlock(&vmap_purge_lock); 1350 } 1351 } 1352 1353 /* 1354 * Kick off a purge of the outstanding lazy areas. 1355 */ 1356 static void purge_vmap_area_lazy(void) 1357 { 1358 mutex_lock(&vmap_purge_lock); 1359 purge_fragmented_blocks_allcpus(); 1360 __purge_vmap_area_lazy(ULONG_MAX, 0); 1361 mutex_unlock(&vmap_purge_lock); 1362 } 1363 1364 /* 1365 * Free a vmap area, caller ensuring that the area has been unmapped 1366 * and flush_cache_vunmap had been called for the correct range 1367 * previously. 1368 */ 1369 static void free_vmap_area_noflush(struct vmap_area *va) 1370 { 1371 unsigned long nr_lazy; 1372 1373 spin_lock(&vmap_area_lock); 1374 unlink_va(va, &vmap_area_root); 1375 spin_unlock(&vmap_area_lock); 1376 1377 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1378 PAGE_SHIFT, &vmap_lazy_nr); 1379 1380 /* After this point, we may free va at any time */ 1381 llist_add(&va->purge_list, &vmap_purge_list); 1382 1383 if (unlikely(nr_lazy > lazy_max_pages())) 1384 try_purge_vmap_area_lazy(); 1385 } 1386 1387 /* 1388 * Free and unmap a vmap area 1389 */ 1390 static void free_unmap_vmap_area(struct vmap_area *va) 1391 { 1392 flush_cache_vunmap(va->va_start, va->va_end); 1393 unmap_vmap_area(va); 1394 if (debug_pagealloc_enabled_static()) 1395 flush_tlb_kernel_range(va->va_start, va->va_end); 1396 1397 free_vmap_area_noflush(va); 1398 } 1399 1400 static struct vmap_area *find_vmap_area(unsigned long addr) 1401 { 1402 struct vmap_area *va; 1403 1404 spin_lock(&vmap_area_lock); 1405 va = __find_vmap_area(addr); 1406 spin_unlock(&vmap_area_lock); 1407 1408 return va; 1409 } 1410 1411 /*** Per cpu kva allocator ***/ 1412 1413 /* 1414 * vmap space is limited especially on 32 bit architectures. Ensure there is 1415 * room for at least 16 percpu vmap blocks per CPU. 1416 */ 1417 /* 1418 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1419 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1420 * instead (we just need a rough idea) 1421 */ 1422 #if BITS_PER_LONG == 32 1423 #define VMALLOC_SPACE (128UL*1024*1024) 1424 #else 1425 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1426 #endif 1427 1428 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1429 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1430 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1431 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1432 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1433 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1434 #define VMAP_BBMAP_BITS \ 1435 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1436 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1437 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1438 1439 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1440 1441 struct vmap_block_queue { 1442 spinlock_t lock; 1443 struct list_head free; 1444 }; 1445 1446 struct vmap_block { 1447 spinlock_t lock; 1448 struct vmap_area *va; 1449 unsigned long free, dirty; 1450 unsigned long dirty_min, dirty_max; /*< dirty range */ 1451 struct list_head free_list; 1452 struct rcu_head rcu_head; 1453 struct list_head purge; 1454 }; 1455 1456 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1457 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1458 1459 /* 1460 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 1461 * in the free path. Could get rid of this if we change the API to return a 1462 * "cookie" from alloc, to be passed to free. But no big deal yet. 1463 */ 1464 static DEFINE_SPINLOCK(vmap_block_tree_lock); 1465 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 1466 1467 /* 1468 * We should probably have a fallback mechanism to allocate virtual memory 1469 * out of partially filled vmap blocks. However vmap block sizing should be 1470 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1471 * big problem. 1472 */ 1473 1474 static unsigned long addr_to_vb_idx(unsigned long addr) 1475 { 1476 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1477 addr /= VMAP_BLOCK_SIZE; 1478 return addr; 1479 } 1480 1481 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1482 { 1483 unsigned long addr; 1484 1485 addr = va_start + (pages_off << PAGE_SHIFT); 1486 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1487 return (void *)addr; 1488 } 1489 1490 /** 1491 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1492 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1493 * @order: how many 2^order pages should be occupied in newly allocated block 1494 * @gfp_mask: flags for the page level allocator 1495 * 1496 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1497 */ 1498 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1499 { 1500 struct vmap_block_queue *vbq; 1501 struct vmap_block *vb; 1502 struct vmap_area *va; 1503 unsigned long vb_idx; 1504 int node, err; 1505 void *vaddr; 1506 1507 node = numa_node_id(); 1508 1509 vb = kmalloc_node(sizeof(struct vmap_block), 1510 gfp_mask & GFP_RECLAIM_MASK, node); 1511 if (unlikely(!vb)) 1512 return ERR_PTR(-ENOMEM); 1513 1514 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1515 VMALLOC_START, VMALLOC_END, 1516 node, gfp_mask); 1517 if (IS_ERR(va)) { 1518 kfree(vb); 1519 return ERR_CAST(va); 1520 } 1521 1522 err = radix_tree_preload(gfp_mask); 1523 if (unlikely(err)) { 1524 kfree(vb); 1525 free_vmap_area(va); 1526 return ERR_PTR(err); 1527 } 1528 1529 vaddr = vmap_block_vaddr(va->va_start, 0); 1530 spin_lock_init(&vb->lock); 1531 vb->va = va; 1532 /* At least something should be left free */ 1533 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1534 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1535 vb->dirty = 0; 1536 vb->dirty_min = VMAP_BBMAP_BITS; 1537 vb->dirty_max = 0; 1538 INIT_LIST_HEAD(&vb->free_list); 1539 1540 vb_idx = addr_to_vb_idx(va->va_start); 1541 spin_lock(&vmap_block_tree_lock); 1542 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 1543 spin_unlock(&vmap_block_tree_lock); 1544 BUG_ON(err); 1545 radix_tree_preload_end(); 1546 1547 vbq = &get_cpu_var(vmap_block_queue); 1548 spin_lock(&vbq->lock); 1549 list_add_tail_rcu(&vb->free_list, &vbq->free); 1550 spin_unlock(&vbq->lock); 1551 put_cpu_var(vmap_block_queue); 1552 1553 return vaddr; 1554 } 1555 1556 static void free_vmap_block(struct vmap_block *vb) 1557 { 1558 struct vmap_block *tmp; 1559 unsigned long vb_idx; 1560 1561 vb_idx = addr_to_vb_idx(vb->va->va_start); 1562 spin_lock(&vmap_block_tree_lock); 1563 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 1564 spin_unlock(&vmap_block_tree_lock); 1565 BUG_ON(tmp != vb); 1566 1567 free_vmap_area_noflush(vb->va); 1568 kfree_rcu(vb, rcu_head); 1569 } 1570 1571 static void purge_fragmented_blocks(int cpu) 1572 { 1573 LIST_HEAD(purge); 1574 struct vmap_block *vb; 1575 struct vmap_block *n_vb; 1576 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1577 1578 rcu_read_lock(); 1579 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1580 1581 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1582 continue; 1583 1584 spin_lock(&vb->lock); 1585 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1586 vb->free = 0; /* prevent further allocs after releasing lock */ 1587 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1588 vb->dirty_min = 0; 1589 vb->dirty_max = VMAP_BBMAP_BITS; 1590 spin_lock(&vbq->lock); 1591 list_del_rcu(&vb->free_list); 1592 spin_unlock(&vbq->lock); 1593 spin_unlock(&vb->lock); 1594 list_add_tail(&vb->purge, &purge); 1595 } else 1596 spin_unlock(&vb->lock); 1597 } 1598 rcu_read_unlock(); 1599 1600 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1601 list_del(&vb->purge); 1602 free_vmap_block(vb); 1603 } 1604 } 1605 1606 static void purge_fragmented_blocks_allcpus(void) 1607 { 1608 int cpu; 1609 1610 for_each_possible_cpu(cpu) 1611 purge_fragmented_blocks(cpu); 1612 } 1613 1614 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1615 { 1616 struct vmap_block_queue *vbq; 1617 struct vmap_block *vb; 1618 void *vaddr = NULL; 1619 unsigned int order; 1620 1621 BUG_ON(offset_in_page(size)); 1622 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1623 if (WARN_ON(size == 0)) { 1624 /* 1625 * Allocating 0 bytes isn't what caller wants since 1626 * get_order(0) returns funny result. Just warn and terminate 1627 * early. 1628 */ 1629 return NULL; 1630 } 1631 order = get_order(size); 1632 1633 rcu_read_lock(); 1634 vbq = &get_cpu_var(vmap_block_queue); 1635 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1636 unsigned long pages_off; 1637 1638 spin_lock(&vb->lock); 1639 if (vb->free < (1UL << order)) { 1640 spin_unlock(&vb->lock); 1641 continue; 1642 } 1643 1644 pages_off = VMAP_BBMAP_BITS - vb->free; 1645 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1646 vb->free -= 1UL << order; 1647 if (vb->free == 0) { 1648 spin_lock(&vbq->lock); 1649 list_del_rcu(&vb->free_list); 1650 spin_unlock(&vbq->lock); 1651 } 1652 1653 spin_unlock(&vb->lock); 1654 break; 1655 } 1656 1657 put_cpu_var(vmap_block_queue); 1658 rcu_read_unlock(); 1659 1660 /* Allocate new block if nothing was found */ 1661 if (!vaddr) 1662 vaddr = new_vmap_block(order, gfp_mask); 1663 1664 return vaddr; 1665 } 1666 1667 static void vb_free(const void *addr, unsigned long size) 1668 { 1669 unsigned long offset; 1670 unsigned long vb_idx; 1671 unsigned int order; 1672 struct vmap_block *vb; 1673 1674 BUG_ON(offset_in_page(size)); 1675 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1676 1677 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1678 1679 order = get_order(size); 1680 1681 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1682 offset >>= PAGE_SHIFT; 1683 1684 vb_idx = addr_to_vb_idx((unsigned long)addr); 1685 rcu_read_lock(); 1686 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1687 rcu_read_unlock(); 1688 BUG_ON(!vb); 1689 1690 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1691 1692 if (debug_pagealloc_enabled_static()) 1693 flush_tlb_kernel_range((unsigned long)addr, 1694 (unsigned long)addr + size); 1695 1696 spin_lock(&vb->lock); 1697 1698 /* Expand dirty range */ 1699 vb->dirty_min = min(vb->dirty_min, offset); 1700 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1701 1702 vb->dirty += 1UL << order; 1703 if (vb->dirty == VMAP_BBMAP_BITS) { 1704 BUG_ON(vb->free); 1705 spin_unlock(&vb->lock); 1706 free_vmap_block(vb); 1707 } else 1708 spin_unlock(&vb->lock); 1709 } 1710 1711 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1712 { 1713 int cpu; 1714 1715 if (unlikely(!vmap_initialized)) 1716 return; 1717 1718 might_sleep(); 1719 1720 for_each_possible_cpu(cpu) { 1721 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1722 struct vmap_block *vb; 1723 1724 rcu_read_lock(); 1725 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1726 spin_lock(&vb->lock); 1727 if (vb->dirty) { 1728 unsigned long va_start = vb->va->va_start; 1729 unsigned long s, e; 1730 1731 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1732 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1733 1734 start = min(s, start); 1735 end = max(e, end); 1736 1737 flush = 1; 1738 } 1739 spin_unlock(&vb->lock); 1740 } 1741 rcu_read_unlock(); 1742 } 1743 1744 mutex_lock(&vmap_purge_lock); 1745 purge_fragmented_blocks_allcpus(); 1746 if (!__purge_vmap_area_lazy(start, end) && flush) 1747 flush_tlb_kernel_range(start, end); 1748 mutex_unlock(&vmap_purge_lock); 1749 } 1750 1751 /** 1752 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1753 * 1754 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1755 * to amortize TLB flushing overheads. What this means is that any page you 1756 * have now, may, in a former life, have been mapped into kernel virtual 1757 * address by the vmap layer and so there might be some CPUs with TLB entries 1758 * still referencing that page (additional to the regular 1:1 kernel mapping). 1759 * 1760 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1761 * be sure that none of the pages we have control over will have any aliases 1762 * from the vmap layer. 1763 */ 1764 void vm_unmap_aliases(void) 1765 { 1766 unsigned long start = ULONG_MAX, end = 0; 1767 int flush = 0; 1768 1769 _vm_unmap_aliases(start, end, flush); 1770 } 1771 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1772 1773 /** 1774 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1775 * @mem: the pointer returned by vm_map_ram 1776 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1777 */ 1778 void vm_unmap_ram(const void *mem, unsigned int count) 1779 { 1780 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1781 unsigned long addr = (unsigned long)mem; 1782 struct vmap_area *va; 1783 1784 might_sleep(); 1785 BUG_ON(!addr); 1786 BUG_ON(addr < VMALLOC_START); 1787 BUG_ON(addr > VMALLOC_END); 1788 BUG_ON(!PAGE_ALIGNED(addr)); 1789 1790 kasan_poison_vmalloc(mem, size); 1791 1792 if (likely(count <= VMAP_MAX_ALLOC)) { 1793 debug_check_no_locks_freed(mem, size); 1794 vb_free(mem, size); 1795 return; 1796 } 1797 1798 va = find_vmap_area(addr); 1799 BUG_ON(!va); 1800 debug_check_no_locks_freed((void *)va->va_start, 1801 (va->va_end - va->va_start)); 1802 free_unmap_vmap_area(va); 1803 } 1804 EXPORT_SYMBOL(vm_unmap_ram); 1805 1806 /** 1807 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1808 * @pages: an array of pointers to the pages to be mapped 1809 * @count: number of pages 1810 * @node: prefer to allocate data structures on this node 1811 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1812 * 1813 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1814 * faster than vmap so it's good. But if you mix long-life and short-life 1815 * objects with vm_map_ram(), it could consume lots of address space through 1816 * fragmentation (especially on a 32bit machine). You could see failures in 1817 * the end. Please use this function for short-lived objects. 1818 * 1819 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1820 */ 1821 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1822 { 1823 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1824 unsigned long addr; 1825 void *mem; 1826 1827 if (likely(count <= VMAP_MAX_ALLOC)) { 1828 mem = vb_alloc(size, GFP_KERNEL); 1829 if (IS_ERR(mem)) 1830 return NULL; 1831 addr = (unsigned long)mem; 1832 } else { 1833 struct vmap_area *va; 1834 va = alloc_vmap_area(size, PAGE_SIZE, 1835 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1836 if (IS_ERR(va)) 1837 return NULL; 1838 1839 addr = va->va_start; 1840 mem = (void *)addr; 1841 } 1842 1843 kasan_unpoison_vmalloc(mem, size); 1844 1845 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1846 vm_unmap_ram(mem, count); 1847 return NULL; 1848 } 1849 return mem; 1850 } 1851 EXPORT_SYMBOL(vm_map_ram); 1852 1853 static struct vm_struct *vmlist __initdata; 1854 1855 /** 1856 * vm_area_add_early - add vmap area early during boot 1857 * @vm: vm_struct to add 1858 * 1859 * This function is used to add fixed kernel vm area to vmlist before 1860 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1861 * should contain proper values and the other fields should be zero. 1862 * 1863 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1864 */ 1865 void __init vm_area_add_early(struct vm_struct *vm) 1866 { 1867 struct vm_struct *tmp, **p; 1868 1869 BUG_ON(vmap_initialized); 1870 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1871 if (tmp->addr >= vm->addr) { 1872 BUG_ON(tmp->addr < vm->addr + vm->size); 1873 break; 1874 } else 1875 BUG_ON(tmp->addr + tmp->size > vm->addr); 1876 } 1877 vm->next = *p; 1878 *p = vm; 1879 } 1880 1881 /** 1882 * vm_area_register_early - register vmap area early during boot 1883 * @vm: vm_struct to register 1884 * @align: requested alignment 1885 * 1886 * This function is used to register kernel vm area before 1887 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1888 * proper values on entry and other fields should be zero. On return, 1889 * vm->addr contains the allocated address. 1890 * 1891 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1892 */ 1893 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1894 { 1895 static size_t vm_init_off __initdata; 1896 unsigned long addr; 1897 1898 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1899 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1900 1901 vm->addr = (void *)addr; 1902 1903 vm_area_add_early(vm); 1904 } 1905 1906 static void vmap_init_free_space(void) 1907 { 1908 unsigned long vmap_start = 1; 1909 const unsigned long vmap_end = ULONG_MAX; 1910 struct vmap_area *busy, *free; 1911 1912 /* 1913 * B F B B B F 1914 * -|-----|.....|-----|-----|-----|.....|- 1915 * | The KVA space | 1916 * |<--------------------------------->| 1917 */ 1918 list_for_each_entry(busy, &vmap_area_list, list) { 1919 if (busy->va_start - vmap_start > 0) { 1920 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1921 if (!WARN_ON_ONCE(!free)) { 1922 free->va_start = vmap_start; 1923 free->va_end = busy->va_start; 1924 1925 insert_vmap_area_augment(free, NULL, 1926 &free_vmap_area_root, 1927 &free_vmap_area_list); 1928 } 1929 } 1930 1931 vmap_start = busy->va_end; 1932 } 1933 1934 if (vmap_end - vmap_start > 0) { 1935 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1936 if (!WARN_ON_ONCE(!free)) { 1937 free->va_start = vmap_start; 1938 free->va_end = vmap_end; 1939 1940 insert_vmap_area_augment(free, NULL, 1941 &free_vmap_area_root, 1942 &free_vmap_area_list); 1943 } 1944 } 1945 } 1946 1947 void __init vmalloc_init(void) 1948 { 1949 struct vmap_area *va; 1950 struct vm_struct *tmp; 1951 int i; 1952 1953 /* 1954 * Create the cache for vmap_area objects. 1955 */ 1956 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 1957 1958 for_each_possible_cpu(i) { 1959 struct vmap_block_queue *vbq; 1960 struct vfree_deferred *p; 1961 1962 vbq = &per_cpu(vmap_block_queue, i); 1963 spin_lock_init(&vbq->lock); 1964 INIT_LIST_HEAD(&vbq->free); 1965 p = &per_cpu(vfree_deferred, i); 1966 init_llist_head(&p->list); 1967 INIT_WORK(&p->wq, free_work); 1968 } 1969 1970 /* Import existing vmlist entries. */ 1971 for (tmp = vmlist; tmp; tmp = tmp->next) { 1972 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 1973 if (WARN_ON_ONCE(!va)) 1974 continue; 1975 1976 va->va_start = (unsigned long)tmp->addr; 1977 va->va_end = va->va_start + tmp->size; 1978 va->vm = tmp; 1979 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1980 } 1981 1982 /* 1983 * Now we can initialize a free vmap space. 1984 */ 1985 vmap_init_free_space(); 1986 vmap_initialized = true; 1987 } 1988 1989 /** 1990 * map_kernel_range_noflush - map kernel VM area with the specified pages 1991 * @addr: start of the VM area to map 1992 * @size: size of the VM area to map 1993 * @prot: page protection flags to use 1994 * @pages: pages to map 1995 * 1996 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1997 * specify should have been allocated using get_vm_area() and its 1998 * friends. 1999 * 2000 * NOTE: 2001 * This function does NOT do any cache flushing. The caller is 2002 * responsible for calling flush_cache_vmap() on to-be-mapped areas 2003 * before calling this function. 2004 * 2005 * RETURNS: 2006 * The number of pages mapped on success, -errno on failure. 2007 */ 2008 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 2009 pgprot_t prot, struct page **pages) 2010 { 2011 return vmap_page_range_noflush(addr, addr + size, prot, pages); 2012 } 2013 2014 /** 2015 * unmap_kernel_range_noflush - unmap kernel VM area 2016 * @addr: start of the VM area to unmap 2017 * @size: size of the VM area to unmap 2018 * 2019 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 2020 * specify should have been allocated using get_vm_area() and its 2021 * friends. 2022 * 2023 * NOTE: 2024 * This function does NOT do any cache flushing. The caller is 2025 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 2026 * before calling this function and flush_tlb_kernel_range() after. 2027 */ 2028 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 2029 { 2030 vunmap_page_range(addr, addr + size); 2031 } 2032 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 2033 2034 /** 2035 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 2036 * @addr: start of the VM area to unmap 2037 * @size: size of the VM area to unmap 2038 * 2039 * Similar to unmap_kernel_range_noflush() but flushes vcache before 2040 * the unmapping and tlb after. 2041 */ 2042 void unmap_kernel_range(unsigned long addr, unsigned long size) 2043 { 2044 unsigned long end = addr + size; 2045 2046 flush_cache_vunmap(addr, end); 2047 vunmap_page_range(addr, end); 2048 flush_tlb_kernel_range(addr, end); 2049 } 2050 EXPORT_SYMBOL_GPL(unmap_kernel_range); 2051 2052 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 2053 { 2054 unsigned long addr = (unsigned long)area->addr; 2055 unsigned long end = addr + get_vm_area_size(area); 2056 int err; 2057 2058 err = vmap_page_range(addr, end, prot, pages); 2059 2060 return err > 0 ? 0 : err; 2061 } 2062 EXPORT_SYMBOL_GPL(map_vm_area); 2063 2064 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2065 struct vmap_area *va, unsigned long flags, const void *caller) 2066 { 2067 vm->flags = flags; 2068 vm->addr = (void *)va->va_start; 2069 vm->size = va->va_end - va->va_start; 2070 vm->caller = caller; 2071 va->vm = vm; 2072 } 2073 2074 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2075 unsigned long flags, const void *caller) 2076 { 2077 spin_lock(&vmap_area_lock); 2078 setup_vmalloc_vm_locked(vm, va, flags, caller); 2079 spin_unlock(&vmap_area_lock); 2080 } 2081 2082 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2083 { 2084 /* 2085 * Before removing VM_UNINITIALIZED, 2086 * we should make sure that vm has proper values. 2087 * Pair with smp_rmb() in show_numa_info(). 2088 */ 2089 smp_wmb(); 2090 vm->flags &= ~VM_UNINITIALIZED; 2091 } 2092 2093 static struct vm_struct *__get_vm_area_node(unsigned long size, 2094 unsigned long align, unsigned long flags, unsigned long start, 2095 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 2096 { 2097 struct vmap_area *va; 2098 struct vm_struct *area; 2099 unsigned long requested_size = size; 2100 2101 BUG_ON(in_interrupt()); 2102 size = PAGE_ALIGN(size); 2103 if (unlikely(!size)) 2104 return NULL; 2105 2106 if (flags & VM_IOREMAP) 2107 align = 1ul << clamp_t(int, get_count_order_long(size), 2108 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2109 2110 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2111 if (unlikely(!area)) 2112 return NULL; 2113 2114 if (!(flags & VM_NO_GUARD)) 2115 size += PAGE_SIZE; 2116 2117 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2118 if (IS_ERR(va)) { 2119 kfree(area); 2120 return NULL; 2121 } 2122 2123 kasan_unpoison_vmalloc((void *)va->va_start, requested_size); 2124 2125 setup_vmalloc_vm(area, va, flags, caller); 2126 2127 return area; 2128 } 2129 2130 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 2131 unsigned long start, unsigned long end) 2132 { 2133 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2134 GFP_KERNEL, __builtin_return_address(0)); 2135 } 2136 EXPORT_SYMBOL_GPL(__get_vm_area); 2137 2138 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2139 unsigned long start, unsigned long end, 2140 const void *caller) 2141 { 2142 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 2143 GFP_KERNEL, caller); 2144 } 2145 2146 /** 2147 * get_vm_area - reserve a contiguous kernel virtual area 2148 * @size: size of the area 2149 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2150 * 2151 * Search an area of @size in the kernel virtual mapping area, 2152 * and reserved it for out purposes. Returns the area descriptor 2153 * on success or %NULL on failure. 2154 * 2155 * Return: the area descriptor on success or %NULL on failure. 2156 */ 2157 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2158 { 2159 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2160 NUMA_NO_NODE, GFP_KERNEL, 2161 __builtin_return_address(0)); 2162 } 2163 2164 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2165 const void *caller) 2166 { 2167 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 2168 NUMA_NO_NODE, GFP_KERNEL, caller); 2169 } 2170 2171 /** 2172 * find_vm_area - find a continuous kernel virtual area 2173 * @addr: base address 2174 * 2175 * Search for the kernel VM area starting at @addr, and return it. 2176 * It is up to the caller to do all required locking to keep the returned 2177 * pointer valid. 2178 * 2179 * Return: pointer to the found area or %NULL on faulure 2180 */ 2181 struct vm_struct *find_vm_area(const void *addr) 2182 { 2183 struct vmap_area *va; 2184 2185 va = find_vmap_area((unsigned long)addr); 2186 if (!va) 2187 return NULL; 2188 2189 return va->vm; 2190 } 2191 2192 /** 2193 * remove_vm_area - find and remove a continuous kernel virtual area 2194 * @addr: base address 2195 * 2196 * Search for the kernel VM area starting at @addr, and remove it. 2197 * This function returns the found VM area, but using it is NOT safe 2198 * on SMP machines, except for its size or flags. 2199 * 2200 * Return: pointer to the found area or %NULL on faulure 2201 */ 2202 struct vm_struct *remove_vm_area(const void *addr) 2203 { 2204 struct vmap_area *va; 2205 2206 might_sleep(); 2207 2208 spin_lock(&vmap_area_lock); 2209 va = __find_vmap_area((unsigned long)addr); 2210 if (va && va->vm) { 2211 struct vm_struct *vm = va->vm; 2212 2213 va->vm = NULL; 2214 spin_unlock(&vmap_area_lock); 2215 2216 kasan_free_shadow(vm); 2217 free_unmap_vmap_area(va); 2218 2219 return vm; 2220 } 2221 2222 spin_unlock(&vmap_area_lock); 2223 return NULL; 2224 } 2225 2226 static inline void set_area_direct_map(const struct vm_struct *area, 2227 int (*set_direct_map)(struct page *page)) 2228 { 2229 int i; 2230 2231 for (i = 0; i < area->nr_pages; i++) 2232 if (page_address(area->pages[i])) 2233 set_direct_map(area->pages[i]); 2234 } 2235 2236 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2237 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2238 { 2239 unsigned long start = ULONG_MAX, end = 0; 2240 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2241 int flush_dmap = 0; 2242 int i; 2243 2244 remove_vm_area(area->addr); 2245 2246 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2247 if (!flush_reset) 2248 return; 2249 2250 /* 2251 * If not deallocating pages, just do the flush of the VM area and 2252 * return. 2253 */ 2254 if (!deallocate_pages) { 2255 vm_unmap_aliases(); 2256 return; 2257 } 2258 2259 /* 2260 * If execution gets here, flush the vm mapping and reset the direct 2261 * map. Find the start and end range of the direct mappings to make sure 2262 * the vm_unmap_aliases() flush includes the direct map. 2263 */ 2264 for (i = 0; i < area->nr_pages; i++) { 2265 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2266 if (addr) { 2267 start = min(addr, start); 2268 end = max(addr + PAGE_SIZE, end); 2269 flush_dmap = 1; 2270 } 2271 } 2272 2273 /* 2274 * Set direct map to something invalid so that it won't be cached if 2275 * there are any accesses after the TLB flush, then flush the TLB and 2276 * reset the direct map permissions to the default. 2277 */ 2278 set_area_direct_map(area, set_direct_map_invalid_noflush); 2279 _vm_unmap_aliases(start, end, flush_dmap); 2280 set_area_direct_map(area, set_direct_map_default_noflush); 2281 } 2282 2283 static void __vunmap(const void *addr, int deallocate_pages) 2284 { 2285 struct vm_struct *area; 2286 2287 if (!addr) 2288 return; 2289 2290 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2291 addr)) 2292 return; 2293 2294 area = find_vm_area(addr); 2295 if (unlikely(!area)) { 2296 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2297 addr); 2298 return; 2299 } 2300 2301 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2302 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2303 2304 kasan_poison_vmalloc(area->addr, area->size); 2305 2306 vm_remove_mappings(area, deallocate_pages); 2307 2308 if (deallocate_pages) { 2309 int i; 2310 2311 for (i = 0; i < area->nr_pages; i++) { 2312 struct page *page = area->pages[i]; 2313 2314 BUG_ON(!page); 2315 __free_pages(page, 0); 2316 } 2317 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2318 2319 kvfree(area->pages); 2320 } 2321 2322 kfree(area); 2323 return; 2324 } 2325 2326 static inline void __vfree_deferred(const void *addr) 2327 { 2328 /* 2329 * Use raw_cpu_ptr() because this can be called from preemptible 2330 * context. Preemption is absolutely fine here, because the llist_add() 2331 * implementation is lockless, so it works even if we are adding to 2332 * nother cpu's list. schedule_work() should be fine with this too. 2333 */ 2334 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2335 2336 if (llist_add((struct llist_node *)addr, &p->list)) 2337 schedule_work(&p->wq); 2338 } 2339 2340 /** 2341 * vfree_atomic - release memory allocated by vmalloc() 2342 * @addr: memory base address 2343 * 2344 * This one is just like vfree() but can be called in any atomic context 2345 * except NMIs. 2346 */ 2347 void vfree_atomic(const void *addr) 2348 { 2349 BUG_ON(in_nmi()); 2350 2351 kmemleak_free(addr); 2352 2353 if (!addr) 2354 return; 2355 __vfree_deferred(addr); 2356 } 2357 2358 static void __vfree(const void *addr) 2359 { 2360 if (unlikely(in_interrupt())) 2361 __vfree_deferred(addr); 2362 else 2363 __vunmap(addr, 1); 2364 } 2365 2366 /** 2367 * vfree - release memory allocated by vmalloc() 2368 * @addr: memory base address 2369 * 2370 * Free the virtually continuous memory area starting at @addr, as 2371 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 2372 * NULL, no operation is performed. 2373 * 2374 * Must not be called in NMI context (strictly speaking, only if we don't 2375 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2376 * conventions for vfree() arch-depenedent would be a really bad idea) 2377 * 2378 * May sleep if called *not* from interrupt context. 2379 * 2380 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 2381 */ 2382 void vfree(const void *addr) 2383 { 2384 BUG_ON(in_nmi()); 2385 2386 kmemleak_free(addr); 2387 2388 might_sleep_if(!in_interrupt()); 2389 2390 if (!addr) 2391 return; 2392 2393 __vfree(addr); 2394 } 2395 EXPORT_SYMBOL(vfree); 2396 2397 /** 2398 * vunmap - release virtual mapping obtained by vmap() 2399 * @addr: memory base address 2400 * 2401 * Free the virtually contiguous memory area starting at @addr, 2402 * which was created from the page array passed to vmap(). 2403 * 2404 * Must not be called in interrupt context. 2405 */ 2406 void vunmap(const void *addr) 2407 { 2408 BUG_ON(in_interrupt()); 2409 might_sleep(); 2410 if (addr) 2411 __vunmap(addr, 0); 2412 } 2413 EXPORT_SYMBOL(vunmap); 2414 2415 /** 2416 * vmap - map an array of pages into virtually contiguous space 2417 * @pages: array of page pointers 2418 * @count: number of pages to map 2419 * @flags: vm_area->flags 2420 * @prot: page protection for the mapping 2421 * 2422 * Maps @count pages from @pages into contiguous kernel virtual 2423 * space. 2424 * 2425 * Return: the address of the area or %NULL on failure 2426 */ 2427 void *vmap(struct page **pages, unsigned int count, 2428 unsigned long flags, pgprot_t prot) 2429 { 2430 struct vm_struct *area; 2431 unsigned long size; /* In bytes */ 2432 2433 might_sleep(); 2434 2435 if (count > totalram_pages()) 2436 return NULL; 2437 2438 size = (unsigned long)count << PAGE_SHIFT; 2439 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2440 if (!area) 2441 return NULL; 2442 2443 if (map_vm_area(area, prot, pages)) { 2444 vunmap(area->addr); 2445 return NULL; 2446 } 2447 2448 return area->addr; 2449 } 2450 EXPORT_SYMBOL(vmap); 2451 2452 static void *__vmalloc_node(unsigned long size, unsigned long align, 2453 gfp_t gfp_mask, pgprot_t prot, 2454 int node, const void *caller); 2455 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2456 pgprot_t prot, int node) 2457 { 2458 struct page **pages; 2459 unsigned int nr_pages, array_size, i; 2460 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2461 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 2462 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 2463 0 : 2464 __GFP_HIGHMEM; 2465 2466 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 2467 array_size = (nr_pages * sizeof(struct page *)); 2468 2469 /* Please note that the recursion is strictly bounded. */ 2470 if (array_size > PAGE_SIZE) { 2471 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 2472 PAGE_KERNEL, node, area->caller); 2473 } else { 2474 pages = kmalloc_node(array_size, nested_gfp, node); 2475 } 2476 2477 if (!pages) { 2478 remove_vm_area(area->addr); 2479 kfree(area); 2480 return NULL; 2481 } 2482 2483 area->pages = pages; 2484 area->nr_pages = nr_pages; 2485 2486 for (i = 0; i < area->nr_pages; i++) { 2487 struct page *page; 2488 2489 if (node == NUMA_NO_NODE) 2490 page = alloc_page(alloc_mask|highmem_mask); 2491 else 2492 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 2493 2494 if (unlikely(!page)) { 2495 /* Successfully allocated i pages, free them in __vunmap() */ 2496 area->nr_pages = i; 2497 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2498 goto fail; 2499 } 2500 area->pages[i] = page; 2501 if (gfpflags_allow_blocking(gfp_mask)) 2502 cond_resched(); 2503 } 2504 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2505 2506 if (map_vm_area(area, prot, pages)) 2507 goto fail; 2508 return area->addr; 2509 2510 fail: 2511 warn_alloc(gfp_mask, NULL, 2512 "vmalloc: allocation failure, allocated %ld of %ld bytes", 2513 (area->nr_pages*PAGE_SIZE), area->size); 2514 __vfree(area->addr); 2515 return NULL; 2516 } 2517 2518 /** 2519 * __vmalloc_node_range - allocate virtually contiguous memory 2520 * @size: allocation size 2521 * @align: desired alignment 2522 * @start: vm area range start 2523 * @end: vm area range end 2524 * @gfp_mask: flags for the page level allocator 2525 * @prot: protection mask for the allocated pages 2526 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2527 * @node: node to use for allocation or NUMA_NO_NODE 2528 * @caller: caller's return address 2529 * 2530 * Allocate enough pages to cover @size from the page level 2531 * allocator with @gfp_mask flags. Map them into contiguous 2532 * kernel virtual space, using a pagetable protection of @prot. 2533 * 2534 * Return: the address of the area or %NULL on failure 2535 */ 2536 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2537 unsigned long start, unsigned long end, gfp_t gfp_mask, 2538 pgprot_t prot, unsigned long vm_flags, int node, 2539 const void *caller) 2540 { 2541 struct vm_struct *area; 2542 void *addr; 2543 unsigned long real_size = size; 2544 2545 size = PAGE_ALIGN(size); 2546 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 2547 goto fail; 2548 2549 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED | 2550 vm_flags, start, end, node, gfp_mask, caller); 2551 if (!area) 2552 goto fail; 2553 2554 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 2555 if (!addr) 2556 return NULL; 2557 2558 /* 2559 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2560 * flag. It means that vm_struct is not fully initialized. 2561 * Now, it is fully initialized, so remove this flag here. 2562 */ 2563 clear_vm_uninitialized_flag(area); 2564 2565 kmemleak_vmalloc(area, size, gfp_mask); 2566 2567 return addr; 2568 2569 fail: 2570 warn_alloc(gfp_mask, NULL, 2571 "vmalloc: allocation failure: %lu bytes", real_size); 2572 return NULL; 2573 } 2574 2575 /* 2576 * This is only for performance analysis of vmalloc and stress purpose. 2577 * It is required by vmalloc test module, therefore do not use it other 2578 * than that. 2579 */ 2580 #ifdef CONFIG_TEST_VMALLOC_MODULE 2581 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 2582 #endif 2583 2584 /** 2585 * __vmalloc_node - allocate virtually contiguous memory 2586 * @size: allocation size 2587 * @align: desired alignment 2588 * @gfp_mask: flags for the page level allocator 2589 * @prot: protection mask for the allocated pages 2590 * @node: node to use for allocation or NUMA_NO_NODE 2591 * @caller: caller's return address 2592 * 2593 * Allocate enough pages to cover @size from the page level 2594 * allocator with @gfp_mask flags. Map them into contiguous 2595 * kernel virtual space, using a pagetable protection of @prot. 2596 * 2597 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 2598 * and __GFP_NOFAIL are not supported 2599 * 2600 * Any use of gfp flags outside of GFP_KERNEL should be consulted 2601 * with mm people. 2602 * 2603 * Return: pointer to the allocated memory or %NULL on error 2604 */ 2605 static void *__vmalloc_node(unsigned long size, unsigned long align, 2606 gfp_t gfp_mask, pgprot_t prot, 2607 int node, const void *caller) 2608 { 2609 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 2610 gfp_mask, prot, 0, node, caller); 2611 } 2612 2613 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 2614 { 2615 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 2616 __builtin_return_address(0)); 2617 } 2618 EXPORT_SYMBOL(__vmalloc); 2619 2620 static inline void *__vmalloc_node_flags(unsigned long size, 2621 int node, gfp_t flags) 2622 { 2623 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 2624 node, __builtin_return_address(0)); 2625 } 2626 2627 2628 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 2629 void *caller) 2630 { 2631 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 2632 } 2633 2634 /** 2635 * vmalloc - allocate virtually contiguous memory 2636 * @size: allocation size 2637 * 2638 * Allocate enough pages to cover @size from the page level 2639 * allocator and map them into contiguous kernel virtual space. 2640 * 2641 * For tight control over page level allocator and protection flags 2642 * use __vmalloc() instead. 2643 * 2644 * Return: pointer to the allocated memory or %NULL on error 2645 */ 2646 void *vmalloc(unsigned long size) 2647 { 2648 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2649 GFP_KERNEL); 2650 } 2651 EXPORT_SYMBOL(vmalloc); 2652 2653 /** 2654 * vzalloc - allocate virtually contiguous memory with zero fill 2655 * @size: allocation size 2656 * 2657 * Allocate enough pages to cover @size from the page level 2658 * allocator and map them into contiguous kernel virtual space. 2659 * The memory allocated is set to zero. 2660 * 2661 * For tight control over page level allocator and protection flags 2662 * use __vmalloc() instead. 2663 * 2664 * Return: pointer to the allocated memory or %NULL on error 2665 */ 2666 void *vzalloc(unsigned long size) 2667 { 2668 return __vmalloc_node_flags(size, NUMA_NO_NODE, 2669 GFP_KERNEL | __GFP_ZERO); 2670 } 2671 EXPORT_SYMBOL(vzalloc); 2672 2673 /** 2674 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 2675 * @size: allocation size 2676 * 2677 * The resulting memory area is zeroed so it can be mapped to userspace 2678 * without leaking data. 2679 * 2680 * Return: pointer to the allocated memory or %NULL on error 2681 */ 2682 void *vmalloc_user(unsigned long size) 2683 { 2684 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2685 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 2686 VM_USERMAP, NUMA_NO_NODE, 2687 __builtin_return_address(0)); 2688 } 2689 EXPORT_SYMBOL(vmalloc_user); 2690 2691 /** 2692 * vmalloc_node - allocate memory on a specific node 2693 * @size: allocation size 2694 * @node: numa node 2695 * 2696 * Allocate enough pages to cover @size from the page level 2697 * allocator and map them into contiguous kernel virtual space. 2698 * 2699 * For tight control over page level allocator and protection flags 2700 * use __vmalloc() instead. 2701 * 2702 * Return: pointer to the allocated memory or %NULL on error 2703 */ 2704 void *vmalloc_node(unsigned long size, int node) 2705 { 2706 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 2707 node, __builtin_return_address(0)); 2708 } 2709 EXPORT_SYMBOL(vmalloc_node); 2710 2711 /** 2712 * vzalloc_node - allocate memory on a specific node with zero fill 2713 * @size: allocation size 2714 * @node: numa node 2715 * 2716 * Allocate enough pages to cover @size from the page level 2717 * allocator and map them into contiguous kernel virtual space. 2718 * The memory allocated is set to zero. 2719 * 2720 * For tight control over page level allocator and protection flags 2721 * use __vmalloc_node() instead. 2722 * 2723 * Return: pointer to the allocated memory or %NULL on error 2724 */ 2725 void *vzalloc_node(unsigned long size, int node) 2726 { 2727 return __vmalloc_node_flags(size, node, 2728 GFP_KERNEL | __GFP_ZERO); 2729 } 2730 EXPORT_SYMBOL(vzalloc_node); 2731 2732 /** 2733 * vmalloc_user_node_flags - allocate memory for userspace on a specific node 2734 * @size: allocation size 2735 * @node: numa node 2736 * @flags: flags for the page level allocator 2737 * 2738 * The resulting memory area is zeroed so it can be mapped to userspace 2739 * without leaking data. 2740 * 2741 * Return: pointer to the allocated memory or %NULL on error 2742 */ 2743 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags) 2744 { 2745 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2746 flags | __GFP_ZERO, PAGE_KERNEL, 2747 VM_USERMAP, node, 2748 __builtin_return_address(0)); 2749 } 2750 EXPORT_SYMBOL(vmalloc_user_node_flags); 2751 2752 /** 2753 * vmalloc_exec - allocate virtually contiguous, executable memory 2754 * @size: allocation size 2755 * 2756 * Kernel-internal function to allocate enough pages to cover @size 2757 * the page level allocator and map them into contiguous and 2758 * executable kernel virtual space. 2759 * 2760 * For tight control over page level allocator and protection flags 2761 * use __vmalloc() instead. 2762 * 2763 * Return: pointer to the allocated memory or %NULL on error 2764 */ 2765 void *vmalloc_exec(unsigned long size) 2766 { 2767 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2768 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2769 NUMA_NO_NODE, __builtin_return_address(0)); 2770 } 2771 2772 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2773 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2774 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2775 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2776 #else 2777 /* 2778 * 64b systems should always have either DMA or DMA32 zones. For others 2779 * GFP_DMA32 should do the right thing and use the normal zone. 2780 */ 2781 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2782 #endif 2783 2784 /** 2785 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2786 * @size: allocation size 2787 * 2788 * Allocate enough 32bit PA addressable pages to cover @size from the 2789 * page level allocator and map them into contiguous kernel virtual space. 2790 * 2791 * Return: pointer to the allocated memory or %NULL on error 2792 */ 2793 void *vmalloc_32(unsigned long size) 2794 { 2795 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 2796 NUMA_NO_NODE, __builtin_return_address(0)); 2797 } 2798 EXPORT_SYMBOL(vmalloc_32); 2799 2800 /** 2801 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2802 * @size: allocation size 2803 * 2804 * The resulting memory area is 32bit addressable and zeroed so it can be 2805 * mapped to userspace without leaking data. 2806 * 2807 * Return: pointer to the allocated memory or %NULL on error 2808 */ 2809 void *vmalloc_32_user(unsigned long size) 2810 { 2811 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2812 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2813 VM_USERMAP, NUMA_NO_NODE, 2814 __builtin_return_address(0)); 2815 } 2816 EXPORT_SYMBOL(vmalloc_32_user); 2817 2818 /* 2819 * small helper routine , copy contents to buf from addr. 2820 * If the page is not present, fill zero. 2821 */ 2822 2823 static int aligned_vread(char *buf, char *addr, unsigned long count) 2824 { 2825 struct page *p; 2826 int copied = 0; 2827 2828 while (count) { 2829 unsigned long offset, length; 2830 2831 offset = offset_in_page(addr); 2832 length = PAGE_SIZE - offset; 2833 if (length > count) 2834 length = count; 2835 p = vmalloc_to_page(addr); 2836 /* 2837 * To do safe access to this _mapped_ area, we need 2838 * lock. But adding lock here means that we need to add 2839 * overhead of vmalloc()/vfree() calles for this _debug_ 2840 * interface, rarely used. Instead of that, we'll use 2841 * kmap() and get small overhead in this access function. 2842 */ 2843 if (p) { 2844 /* 2845 * we can expect USER0 is not used (see vread/vwrite's 2846 * function description) 2847 */ 2848 void *map = kmap_atomic(p); 2849 memcpy(buf, map + offset, length); 2850 kunmap_atomic(map); 2851 } else 2852 memset(buf, 0, length); 2853 2854 addr += length; 2855 buf += length; 2856 copied += length; 2857 count -= length; 2858 } 2859 return copied; 2860 } 2861 2862 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2863 { 2864 struct page *p; 2865 int copied = 0; 2866 2867 while (count) { 2868 unsigned long offset, length; 2869 2870 offset = offset_in_page(addr); 2871 length = PAGE_SIZE - offset; 2872 if (length > count) 2873 length = count; 2874 p = vmalloc_to_page(addr); 2875 /* 2876 * To do safe access to this _mapped_ area, we need 2877 * lock. But adding lock here means that we need to add 2878 * overhead of vmalloc()/vfree() calles for this _debug_ 2879 * interface, rarely used. Instead of that, we'll use 2880 * kmap() and get small overhead in this access function. 2881 */ 2882 if (p) { 2883 /* 2884 * we can expect USER0 is not used (see vread/vwrite's 2885 * function description) 2886 */ 2887 void *map = kmap_atomic(p); 2888 memcpy(map + offset, buf, length); 2889 kunmap_atomic(map); 2890 } 2891 addr += length; 2892 buf += length; 2893 copied += length; 2894 count -= length; 2895 } 2896 return copied; 2897 } 2898 2899 /** 2900 * vread() - read vmalloc area in a safe way. 2901 * @buf: buffer for reading data 2902 * @addr: vm address. 2903 * @count: number of bytes to be read. 2904 * 2905 * This function checks that addr is a valid vmalloc'ed area, and 2906 * copy data from that area to a given buffer. If the given memory range 2907 * of [addr...addr+count) includes some valid address, data is copied to 2908 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2909 * IOREMAP area is treated as memory hole and no copy is done. 2910 * 2911 * If [addr...addr+count) doesn't includes any intersects with alive 2912 * vm_struct area, returns 0. @buf should be kernel's buffer. 2913 * 2914 * Note: In usual ops, vread() is never necessary because the caller 2915 * should know vmalloc() area is valid and can use memcpy(). 2916 * This is for routines which have to access vmalloc area without 2917 * any information, as /dev/kmem. 2918 * 2919 * Return: number of bytes for which addr and buf should be increased 2920 * (same number as @count) or %0 if [addr...addr+count) doesn't 2921 * include any intersection with valid vmalloc area 2922 */ 2923 long vread(char *buf, char *addr, unsigned long count) 2924 { 2925 struct vmap_area *va; 2926 struct vm_struct *vm; 2927 char *vaddr, *buf_start = buf; 2928 unsigned long buflen = count; 2929 unsigned long n; 2930 2931 /* Don't allow overflow */ 2932 if ((unsigned long) addr + count < count) 2933 count = -(unsigned long) addr; 2934 2935 spin_lock(&vmap_area_lock); 2936 list_for_each_entry(va, &vmap_area_list, list) { 2937 if (!count) 2938 break; 2939 2940 if (!va->vm) 2941 continue; 2942 2943 vm = va->vm; 2944 vaddr = (char *) vm->addr; 2945 if (addr >= vaddr + get_vm_area_size(vm)) 2946 continue; 2947 while (addr < vaddr) { 2948 if (count == 0) 2949 goto finished; 2950 *buf = '\0'; 2951 buf++; 2952 addr++; 2953 count--; 2954 } 2955 n = vaddr + get_vm_area_size(vm) - addr; 2956 if (n > count) 2957 n = count; 2958 if (!(vm->flags & VM_IOREMAP)) 2959 aligned_vread(buf, addr, n); 2960 else /* IOREMAP area is treated as memory hole */ 2961 memset(buf, 0, n); 2962 buf += n; 2963 addr += n; 2964 count -= n; 2965 } 2966 finished: 2967 spin_unlock(&vmap_area_lock); 2968 2969 if (buf == buf_start) 2970 return 0; 2971 /* zero-fill memory holes */ 2972 if (buf != buf_start + buflen) 2973 memset(buf, 0, buflen - (buf - buf_start)); 2974 2975 return buflen; 2976 } 2977 2978 /** 2979 * vwrite() - write vmalloc area in a safe way. 2980 * @buf: buffer for source data 2981 * @addr: vm address. 2982 * @count: number of bytes to be read. 2983 * 2984 * This function checks that addr is a valid vmalloc'ed area, and 2985 * copy data from a buffer to the given addr. If specified range of 2986 * [addr...addr+count) includes some valid address, data is copied from 2987 * proper area of @buf. If there are memory holes, no copy to hole. 2988 * IOREMAP area is treated as memory hole and no copy is done. 2989 * 2990 * If [addr...addr+count) doesn't includes any intersects with alive 2991 * vm_struct area, returns 0. @buf should be kernel's buffer. 2992 * 2993 * Note: In usual ops, vwrite() is never necessary because the caller 2994 * should know vmalloc() area is valid and can use memcpy(). 2995 * This is for routines which have to access vmalloc area without 2996 * any information, as /dev/kmem. 2997 * 2998 * Return: number of bytes for which addr and buf should be 2999 * increased (same number as @count) or %0 if [addr...addr+count) 3000 * doesn't include any intersection with valid vmalloc area 3001 */ 3002 long vwrite(char *buf, char *addr, unsigned long count) 3003 { 3004 struct vmap_area *va; 3005 struct vm_struct *vm; 3006 char *vaddr; 3007 unsigned long n, buflen; 3008 int copied = 0; 3009 3010 /* Don't allow overflow */ 3011 if ((unsigned long) addr + count < count) 3012 count = -(unsigned long) addr; 3013 buflen = count; 3014 3015 spin_lock(&vmap_area_lock); 3016 list_for_each_entry(va, &vmap_area_list, list) { 3017 if (!count) 3018 break; 3019 3020 if (!va->vm) 3021 continue; 3022 3023 vm = va->vm; 3024 vaddr = (char *) vm->addr; 3025 if (addr >= vaddr + get_vm_area_size(vm)) 3026 continue; 3027 while (addr < vaddr) { 3028 if (count == 0) 3029 goto finished; 3030 buf++; 3031 addr++; 3032 count--; 3033 } 3034 n = vaddr + get_vm_area_size(vm) - addr; 3035 if (n > count) 3036 n = count; 3037 if (!(vm->flags & VM_IOREMAP)) { 3038 aligned_vwrite(buf, addr, n); 3039 copied++; 3040 } 3041 buf += n; 3042 addr += n; 3043 count -= n; 3044 } 3045 finished: 3046 spin_unlock(&vmap_area_lock); 3047 if (!copied) 3048 return 0; 3049 return buflen; 3050 } 3051 3052 /** 3053 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3054 * @vma: vma to cover 3055 * @uaddr: target user address to start at 3056 * @kaddr: virtual address of vmalloc kernel memory 3057 * @size: size of map area 3058 * 3059 * Returns: 0 for success, -Exxx on failure 3060 * 3061 * This function checks that @kaddr is a valid vmalloc'ed area, 3062 * and that it is big enough to cover the range starting at 3063 * @uaddr in @vma. Will return failure if that criteria isn't 3064 * met. 3065 * 3066 * Similar to remap_pfn_range() (see mm/memory.c) 3067 */ 3068 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3069 void *kaddr, unsigned long size) 3070 { 3071 struct vm_struct *area; 3072 3073 size = PAGE_ALIGN(size); 3074 3075 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3076 return -EINVAL; 3077 3078 area = find_vm_area(kaddr); 3079 if (!area) 3080 return -EINVAL; 3081 3082 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3083 return -EINVAL; 3084 3085 if (kaddr + size > area->addr + get_vm_area_size(area)) 3086 return -EINVAL; 3087 3088 do { 3089 struct page *page = vmalloc_to_page(kaddr); 3090 int ret; 3091 3092 ret = vm_insert_page(vma, uaddr, page); 3093 if (ret) 3094 return ret; 3095 3096 uaddr += PAGE_SIZE; 3097 kaddr += PAGE_SIZE; 3098 size -= PAGE_SIZE; 3099 } while (size > 0); 3100 3101 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3102 3103 return 0; 3104 } 3105 EXPORT_SYMBOL(remap_vmalloc_range_partial); 3106 3107 /** 3108 * remap_vmalloc_range - map vmalloc pages to userspace 3109 * @vma: vma to cover (map full range of vma) 3110 * @addr: vmalloc memory 3111 * @pgoff: number of pages into addr before first page to map 3112 * 3113 * Returns: 0 for success, -Exxx on failure 3114 * 3115 * This function checks that addr is a valid vmalloc'ed area, and 3116 * that it is big enough to cover the vma. Will return failure if 3117 * that criteria isn't met. 3118 * 3119 * Similar to remap_pfn_range() (see mm/memory.c) 3120 */ 3121 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3122 unsigned long pgoff) 3123 { 3124 return remap_vmalloc_range_partial(vma, vma->vm_start, 3125 addr + (pgoff << PAGE_SHIFT), 3126 vma->vm_end - vma->vm_start); 3127 } 3128 EXPORT_SYMBOL(remap_vmalloc_range); 3129 3130 /* 3131 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose 3132 * not to have one. 3133 * 3134 * The purpose of this function is to make sure the vmalloc area 3135 * mappings are identical in all page-tables in the system. 3136 */ 3137 void __weak vmalloc_sync_mappings(void) 3138 { 3139 } 3140 3141 void __weak vmalloc_sync_unmappings(void) 3142 { 3143 } 3144 3145 static int f(pte_t *pte, unsigned long addr, void *data) 3146 { 3147 pte_t ***p = data; 3148 3149 if (p) { 3150 *(*p) = pte; 3151 (*p)++; 3152 } 3153 return 0; 3154 } 3155 3156 /** 3157 * alloc_vm_area - allocate a range of kernel address space 3158 * @size: size of the area 3159 * @ptes: returns the PTEs for the address space 3160 * 3161 * Returns: NULL on failure, vm_struct on success 3162 * 3163 * This function reserves a range of kernel address space, and 3164 * allocates pagetables to map that range. No actual mappings 3165 * are created. 3166 * 3167 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 3168 * allocated for the VM area are returned. 3169 */ 3170 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 3171 { 3172 struct vm_struct *area; 3173 3174 area = get_vm_area_caller(size, VM_IOREMAP, 3175 __builtin_return_address(0)); 3176 if (area == NULL) 3177 return NULL; 3178 3179 /* 3180 * This ensures that page tables are constructed for this region 3181 * of kernel virtual address space and mapped into init_mm. 3182 */ 3183 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3184 size, f, ptes ? &ptes : NULL)) { 3185 free_vm_area(area); 3186 return NULL; 3187 } 3188 3189 return area; 3190 } 3191 EXPORT_SYMBOL_GPL(alloc_vm_area); 3192 3193 void free_vm_area(struct vm_struct *area) 3194 { 3195 struct vm_struct *ret; 3196 ret = remove_vm_area(area->addr); 3197 BUG_ON(ret != area); 3198 kfree(area); 3199 } 3200 EXPORT_SYMBOL_GPL(free_vm_area); 3201 3202 #ifdef CONFIG_SMP 3203 static struct vmap_area *node_to_va(struct rb_node *n) 3204 { 3205 return rb_entry_safe(n, struct vmap_area, rb_node); 3206 } 3207 3208 /** 3209 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3210 * @addr: target address 3211 * 3212 * Returns: vmap_area if it is found. If there is no such area 3213 * the first highest(reverse order) vmap_area is returned 3214 * i.e. va->va_start < addr && va->va_end < addr or NULL 3215 * if there are no any areas before @addr. 3216 */ 3217 static struct vmap_area * 3218 pvm_find_va_enclose_addr(unsigned long addr) 3219 { 3220 struct vmap_area *va, *tmp; 3221 struct rb_node *n; 3222 3223 n = free_vmap_area_root.rb_node; 3224 va = NULL; 3225 3226 while (n) { 3227 tmp = rb_entry(n, struct vmap_area, rb_node); 3228 if (tmp->va_start <= addr) { 3229 va = tmp; 3230 if (tmp->va_end >= addr) 3231 break; 3232 3233 n = n->rb_right; 3234 } else { 3235 n = n->rb_left; 3236 } 3237 } 3238 3239 return va; 3240 } 3241 3242 /** 3243 * pvm_determine_end_from_reverse - find the highest aligned address 3244 * of free block below VMALLOC_END 3245 * @va: 3246 * in - the VA we start the search(reverse order); 3247 * out - the VA with the highest aligned end address. 3248 * 3249 * Returns: determined end address within vmap_area 3250 */ 3251 static unsigned long 3252 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3253 { 3254 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3255 unsigned long addr; 3256 3257 if (likely(*va)) { 3258 list_for_each_entry_from_reverse((*va), 3259 &free_vmap_area_list, list) { 3260 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3261 if ((*va)->va_start < addr) 3262 return addr; 3263 } 3264 } 3265 3266 return 0; 3267 } 3268 3269 /** 3270 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3271 * @offsets: array containing offset of each area 3272 * @sizes: array containing size of each area 3273 * @nr_vms: the number of areas to allocate 3274 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3275 * 3276 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3277 * vm_structs on success, %NULL on failure 3278 * 3279 * Percpu allocator wants to use congruent vm areas so that it can 3280 * maintain the offsets among percpu areas. This function allocates 3281 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3282 * be scattered pretty far, distance between two areas easily going up 3283 * to gigabytes. To avoid interacting with regular vmallocs, these 3284 * areas are allocated from top. 3285 * 3286 * Despite its complicated look, this allocator is rather simple. It 3287 * does everything top-down and scans free blocks from the end looking 3288 * for matching base. While scanning, if any of the areas do not fit the 3289 * base address is pulled down to fit the area. Scanning is repeated till 3290 * all the areas fit and then all necessary data structures are inserted 3291 * and the result is returned. 3292 */ 3293 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3294 const size_t *sizes, int nr_vms, 3295 size_t align) 3296 { 3297 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3298 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3299 struct vmap_area **vas, *va; 3300 struct vm_struct **vms; 3301 int area, area2, last_area, term_area; 3302 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3303 bool purged = false; 3304 enum fit_type type; 3305 3306 /* verify parameters and allocate data structures */ 3307 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3308 for (last_area = 0, area = 0; area < nr_vms; area++) { 3309 start = offsets[area]; 3310 end = start + sizes[area]; 3311 3312 /* is everything aligned properly? */ 3313 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3314 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3315 3316 /* detect the area with the highest address */ 3317 if (start > offsets[last_area]) 3318 last_area = area; 3319 3320 for (area2 = area + 1; area2 < nr_vms; area2++) { 3321 unsigned long start2 = offsets[area2]; 3322 unsigned long end2 = start2 + sizes[area2]; 3323 3324 BUG_ON(start2 < end && start < end2); 3325 } 3326 } 3327 last_end = offsets[last_area] + sizes[last_area]; 3328 3329 if (vmalloc_end - vmalloc_start < last_end) { 3330 WARN_ON(true); 3331 return NULL; 3332 } 3333 3334 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3335 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3336 if (!vas || !vms) 3337 goto err_free2; 3338 3339 for (area = 0; area < nr_vms; area++) { 3340 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3341 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3342 if (!vas[area] || !vms[area]) 3343 goto err_free; 3344 } 3345 retry: 3346 spin_lock(&free_vmap_area_lock); 3347 3348 /* start scanning - we scan from the top, begin with the last area */ 3349 area = term_area = last_area; 3350 start = offsets[area]; 3351 end = start + sizes[area]; 3352 3353 va = pvm_find_va_enclose_addr(vmalloc_end); 3354 base = pvm_determine_end_from_reverse(&va, align) - end; 3355 3356 while (true) { 3357 /* 3358 * base might have underflowed, add last_end before 3359 * comparing. 3360 */ 3361 if (base + last_end < vmalloc_start + last_end) 3362 goto overflow; 3363 3364 /* 3365 * Fitting base has not been found. 3366 */ 3367 if (va == NULL) 3368 goto overflow; 3369 3370 /* 3371 * If required width exeeds current VA block, move 3372 * base downwards and then recheck. 3373 */ 3374 if (base + end > va->va_end) { 3375 base = pvm_determine_end_from_reverse(&va, align) - end; 3376 term_area = area; 3377 continue; 3378 } 3379 3380 /* 3381 * If this VA does not fit, move base downwards and recheck. 3382 */ 3383 if (base + start < va->va_start) { 3384 va = node_to_va(rb_prev(&va->rb_node)); 3385 base = pvm_determine_end_from_reverse(&va, align) - end; 3386 term_area = area; 3387 continue; 3388 } 3389 3390 /* 3391 * This area fits, move on to the previous one. If 3392 * the previous one is the terminal one, we're done. 3393 */ 3394 area = (area + nr_vms - 1) % nr_vms; 3395 if (area == term_area) 3396 break; 3397 3398 start = offsets[area]; 3399 end = start + sizes[area]; 3400 va = pvm_find_va_enclose_addr(base + end); 3401 } 3402 3403 /* we've found a fitting base, insert all va's */ 3404 for (area = 0; area < nr_vms; area++) { 3405 int ret; 3406 3407 start = base + offsets[area]; 3408 size = sizes[area]; 3409 3410 va = pvm_find_va_enclose_addr(start); 3411 if (WARN_ON_ONCE(va == NULL)) 3412 /* It is a BUG(), but trigger recovery instead. */ 3413 goto recovery; 3414 3415 type = classify_va_fit_type(va, start, size); 3416 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3417 /* It is a BUG(), but trigger recovery instead. */ 3418 goto recovery; 3419 3420 ret = adjust_va_to_fit_type(va, start, size, type); 3421 if (unlikely(ret)) 3422 goto recovery; 3423 3424 /* Allocated area. */ 3425 va = vas[area]; 3426 va->va_start = start; 3427 va->va_end = start + size; 3428 } 3429 3430 spin_unlock(&free_vmap_area_lock); 3431 3432 /* populate the kasan shadow space */ 3433 for (area = 0; area < nr_vms; area++) { 3434 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3435 goto err_free_shadow; 3436 3437 kasan_unpoison_vmalloc((void *)vas[area]->va_start, 3438 sizes[area]); 3439 } 3440 3441 /* insert all vm's */ 3442 spin_lock(&vmap_area_lock); 3443 for (area = 0; area < nr_vms; area++) { 3444 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3445 3446 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3447 pcpu_get_vm_areas); 3448 } 3449 spin_unlock(&vmap_area_lock); 3450 3451 kfree(vas); 3452 return vms; 3453 3454 recovery: 3455 /* 3456 * Remove previously allocated areas. There is no 3457 * need in removing these areas from the busy tree, 3458 * because they are inserted only on the final step 3459 * and when pcpu_get_vm_areas() is success. 3460 */ 3461 while (area--) { 3462 orig_start = vas[area]->va_start; 3463 orig_end = vas[area]->va_end; 3464 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, 3465 &free_vmap_area_list); 3466 kasan_release_vmalloc(orig_start, orig_end, 3467 va->va_start, va->va_end); 3468 vas[area] = NULL; 3469 } 3470 3471 overflow: 3472 spin_unlock(&free_vmap_area_lock); 3473 if (!purged) { 3474 purge_vmap_area_lazy(); 3475 purged = true; 3476 3477 /* Before "retry", check if we recover. */ 3478 for (area = 0; area < nr_vms; area++) { 3479 if (vas[area]) 3480 continue; 3481 3482 vas[area] = kmem_cache_zalloc( 3483 vmap_area_cachep, GFP_KERNEL); 3484 if (!vas[area]) 3485 goto err_free; 3486 } 3487 3488 goto retry; 3489 } 3490 3491 err_free: 3492 for (area = 0; area < nr_vms; area++) { 3493 if (vas[area]) 3494 kmem_cache_free(vmap_area_cachep, vas[area]); 3495 3496 kfree(vms[area]); 3497 } 3498 err_free2: 3499 kfree(vas); 3500 kfree(vms); 3501 return NULL; 3502 3503 err_free_shadow: 3504 spin_lock(&free_vmap_area_lock); 3505 /* 3506 * We release all the vmalloc shadows, even the ones for regions that 3507 * hadn't been successfully added. This relies on kasan_release_vmalloc 3508 * being able to tolerate this case. 3509 */ 3510 for (area = 0; area < nr_vms; area++) { 3511 orig_start = vas[area]->va_start; 3512 orig_end = vas[area]->va_end; 3513 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, 3514 &free_vmap_area_list); 3515 kasan_release_vmalloc(orig_start, orig_end, 3516 va->va_start, va->va_end); 3517 vas[area] = NULL; 3518 kfree(vms[area]); 3519 } 3520 spin_unlock(&free_vmap_area_lock); 3521 kfree(vas); 3522 kfree(vms); 3523 return NULL; 3524 } 3525 3526 /** 3527 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3528 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3529 * @nr_vms: the number of allocated areas 3530 * 3531 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3532 */ 3533 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3534 { 3535 int i; 3536 3537 for (i = 0; i < nr_vms; i++) 3538 free_vm_area(vms[i]); 3539 kfree(vms); 3540 } 3541 #endif /* CONFIG_SMP */ 3542 3543 #ifdef CONFIG_PROC_FS 3544 static void *s_start(struct seq_file *m, loff_t *pos) 3545 __acquires(&vmap_purge_lock) 3546 __acquires(&vmap_area_lock) 3547 { 3548 mutex_lock(&vmap_purge_lock); 3549 spin_lock(&vmap_area_lock); 3550 3551 return seq_list_start(&vmap_area_list, *pos); 3552 } 3553 3554 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3555 { 3556 return seq_list_next(p, &vmap_area_list, pos); 3557 } 3558 3559 static void s_stop(struct seq_file *m, void *p) 3560 __releases(&vmap_purge_lock) 3561 __releases(&vmap_area_lock) 3562 { 3563 mutex_unlock(&vmap_purge_lock); 3564 spin_unlock(&vmap_area_lock); 3565 } 3566 3567 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3568 { 3569 if (IS_ENABLED(CONFIG_NUMA)) { 3570 unsigned int nr, *counters = m->private; 3571 3572 if (!counters) 3573 return; 3574 3575 if (v->flags & VM_UNINITIALIZED) 3576 return; 3577 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3578 smp_rmb(); 3579 3580 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3581 3582 for (nr = 0; nr < v->nr_pages; nr++) 3583 counters[page_to_nid(v->pages[nr])]++; 3584 3585 for_each_node_state(nr, N_HIGH_MEMORY) 3586 if (counters[nr]) 3587 seq_printf(m, " N%u=%u", nr, counters[nr]); 3588 } 3589 } 3590 3591 static void show_purge_info(struct seq_file *m) 3592 { 3593 struct llist_node *head; 3594 struct vmap_area *va; 3595 3596 head = READ_ONCE(vmap_purge_list.first); 3597 if (head == NULL) 3598 return; 3599 3600 llist_for_each_entry(va, head, purge_list) { 3601 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 3602 (void *)va->va_start, (void *)va->va_end, 3603 va->va_end - va->va_start); 3604 } 3605 } 3606 3607 static int s_show(struct seq_file *m, void *p) 3608 { 3609 struct vmap_area *va; 3610 struct vm_struct *v; 3611 3612 va = list_entry(p, struct vmap_area, list); 3613 3614 /* 3615 * s_show can encounter race with remove_vm_area, !vm on behalf 3616 * of vmap area is being tear down or vm_map_ram allocation. 3617 */ 3618 if (!va->vm) { 3619 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 3620 (void *)va->va_start, (void *)va->va_end, 3621 va->va_end - va->va_start); 3622 3623 return 0; 3624 } 3625 3626 v = va->vm; 3627 3628 seq_printf(m, "0x%pK-0x%pK %7ld", 3629 v->addr, v->addr + v->size, v->size); 3630 3631 if (v->caller) 3632 seq_printf(m, " %pS", v->caller); 3633 3634 if (v->nr_pages) 3635 seq_printf(m, " pages=%d", v->nr_pages); 3636 3637 if (v->phys_addr) 3638 seq_printf(m, " phys=%pa", &v->phys_addr); 3639 3640 if (v->flags & VM_IOREMAP) 3641 seq_puts(m, " ioremap"); 3642 3643 if (v->flags & VM_ALLOC) 3644 seq_puts(m, " vmalloc"); 3645 3646 if (v->flags & VM_MAP) 3647 seq_puts(m, " vmap"); 3648 3649 if (v->flags & VM_USERMAP) 3650 seq_puts(m, " user"); 3651 3652 if (v->flags & VM_DMA_COHERENT) 3653 seq_puts(m, " dma-coherent"); 3654 3655 if (is_vmalloc_addr(v->pages)) 3656 seq_puts(m, " vpages"); 3657 3658 show_numa_info(m, v); 3659 seq_putc(m, '\n'); 3660 3661 /* 3662 * As a final step, dump "unpurged" areas. Note, 3663 * that entire "/proc/vmallocinfo" output will not 3664 * be address sorted, because the purge list is not 3665 * sorted. 3666 */ 3667 if (list_is_last(&va->list, &vmap_area_list)) 3668 show_purge_info(m); 3669 3670 return 0; 3671 } 3672 3673 static const struct seq_operations vmalloc_op = { 3674 .start = s_start, 3675 .next = s_next, 3676 .stop = s_stop, 3677 .show = s_show, 3678 }; 3679 3680 static int __init proc_vmalloc_init(void) 3681 { 3682 if (IS_ENABLED(CONFIG_NUMA)) 3683 proc_create_seq_private("vmallocinfo", 0400, NULL, 3684 &vmalloc_op, 3685 nr_node_ids * sizeof(unsigned int), NULL); 3686 else 3687 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3688 return 0; 3689 } 3690 module_init(proc_vmalloc_init); 3691 3692 #endif 3693